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The referee has called my attention to an error in the proof of Theorem 2.6.
The Harvey–Lawson variety may be singular at M even in case this is strongly
pseudoconvex (see [1, 2, 4]). However, there does exist a manifold X with
boundary M (not just a strip with M as a component of its boundary as in
Theorem 2.2); this is true if we do not make the unnecessary request that X

stays inside C
n.

Theorem 1 Let M � C
n be a smooth, compact, connected, CR manifold

without boundary of hypersurface type, pseudoconvex-oriented. Then, there
is a manifold X with boundary M equipped with a C∞-map π : X → C

n

such that π is holomorphic on X \M and is a smooth embedding on a neigh-
borhood of M . Moreover, there is a weight function on X which is strictly
plurisubharmonic in a neighborhood of M .

Proof We start from the strip on the pseudoconvex side of M , smooth up to
M , of Theorem 2.2. We point out that this strip is contained in C

n since it is
given as a smooth family of discs of C

n (attached to either M or its extension
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at points of local minimality and propagation respectively). We further extend
the strip, again from its pseudoconvex side, to a normal variety over C

n, ac-
cording to Theorem I p. 547 of [5]. This point is also explained in detail by
Yau [7] at the end of Sect. 5 and in the entire Sect. 6 which follows in turn
Siu’s proof in [6] of Rothstein’s Theorem. But then the singularities of the
normal variety are confined outside the initial strip and thus they are compact
and hence isolated. By blowing them up, we get the manifold X with smooth
boundary M and the map π : X → C

n with the required properties.
Finally, notice that, X coinciding with the strip of C

n in a neighborhood
of M , it inherits from C

n the strictly plurisubharmonic weight |z|2, z ∈ C
n. �

With Theorem 1 in hand, the proof of Theorem 2.6 follows immediately
from Kohn [3] Theorem 5.3.
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