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Abstract For contact manifolds in dimension three, the notions of weak and
strong symplectic fillability and tightness are all known to be inequivalent.
We extend these facts to higher dimensions: in particular, we define a natu-
ral generalization of weak fillings and prove that it is indeed weaker (at least
in dimension five), while also being obstructed by all known manifestations
of “overtwistedness”. We also find the first examples of contact manifolds in
all dimensions that are not symplectically fillable but also cannot be called
overtwisted in any reasonable sense. These depend on a higher dimensional
analogue of Giroux torsion, which we define via the existence in all dimen-
sions of exact symplectic manifolds with disconnected contact boundary.

1 Introduction

Contact structures in dimension 2n− 1 arise naturally from symplectic struc-
tures in dimension 2n by considering symplectic manifolds with a convexity
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condition at the boundary. It has been understood since the work of Gromov
[34] and Eliashberg [14] in the late 1980’s that not every contact structure
arises in this way, i.e. not all contact structures are symplectically fillable.
Moreover, in dimension three, there are distinct notions of strong and weak
fillability, and they are both closely related to the deep dichotomy between
tightness and overtwistedness, which plays a crucial role in the problem of
classifying contact structures. One has in particular the following inclusions
among classes of contact structures on 3-manifolds:

{strongly fillable} ⊂ {weakly fillable} ⊂ {tight}.
Both of these are proper inclusions: in the first case this was shown by Eliash-
berg [16], and in the second by Etnyre and Honda [20], though today a simple
alternative construction is also available using the notion of Giroux torsion.
This invariant, introduced by Giroux in [31], measures the amount that a con-
tact structure “twists” in neighborhoods of certain embedded 2-tori; it does
not imply overtwistedness but does obstruct strong [22] and sometimes also
weak [26] fillability. It also plays a key role in several classification results
for tight contact structures, such as the “coarse” classification due to Colin,
Giroux and Honda [10].

Most of the above discussion only makes sense so far in dimension three.
This is partly because it is not known whether the tight/overtwisted dichotomy
extends to higher dimensions, although recent work of the second author and
others (e.g. [7, 47]) has revealed hints of “overtwistedness” in certain classes
of examples. It also has not been clear up to now whether the notions of weak
filling and Giroux torsion have any interesting higher dimensional counter-
parts. One of our main goals in this paper is to answer the latter question
in the affirmative: we will show that several well known three-dimensional
phenomena, such as the existence of tight but non-fillable or weakly but not
strongly fillable contact manifolds, also occur in higher dimensions.

Let us begin the discussion with the phenomenon of contact structures that
are tight but not (strongly) fillable. The emblematic example is the family of
contact structures on T

3 defined for k ∈ N by

ξk := ker(cos ks dθ + sinks dt),

where we define T
3 as (R/2πZ)× (R/Z)2 with coordinates (s, t, θ). These

contact structures are all tight due to Bennequin’s theorem [2], since they are
covered by the standard contact structure on R

3, but Eliashberg [16] showed
that only ξ1 has a strong symplectic filling. Despite this lack of fillability, they
share other important properties that are incompatible with overtwistedness.
For example, they are hypertight, i.e. they allow Reeb vector fields without
contractible closed orbits, in contrast to Hofer’s theorem [35] that such orbits
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always exist in the overtwisted case. More importantly, they are not “flex-
ible,” meaning they are all homotopic as plane fields yet not isotopic [30],
whereas overtwisted contact structures are maximally flexible due to Eliash-
berg’s classification theorem [13].

In higher dimensions, it is an open question whether one can define a rea-
sonable notion of tightness, but of course flexibility and contractible Reeb
orbits are easy to define. Strong fillability can also be defined in the same
way as in dimension three, by considering symplectic manifolds with convex
boundary (see Definition 3 below). This allows us to compare the properties
of the contact structures ξk on T

3 discussed above with the following state-
ment.

Theorem A Identify the torus T
2 with (R/2πZ)× (R/Z) with coordinates

(s, t). In any odd dimension, there is a closed manifold M carrying two con-
tact forms α+ and α− such that the formula

ξk := ker

(
1 + cos ks

2
α+ + 1 − cos ks

2
α− + sinks dt

)

for k ∈ N defines a family of contact structures on T
2 ×M with the following

properties:

(1) They all admit Reeb vector fields without contractible closed orbits.
(2) They are all homotopic as almost contact structures but not contactomor-

phic.
(3) (T2 ×M,ξk) is strongly fillable only for k = 1.

We recover the 3-dimensional case discussed above by taking M = S
1 :=

R/Z and α± = ±dθ in the theorem.
The non-fillability of the above contact structures on T

3 was later rec-
ognized to be a consequence of the positivity of their Giroux torsion, and
we’d next like to generalize this fact. Let us briefly recall the definition of
Giroux torsion, in language that is suitable for generalization to higher di-
mensions. Denote by (A,β) the cylinder A := R×S

1 with coordinates (s, θ),
together with the 1-form β := s dθ , which makes it the completion of a Li-
ouville domain (see Definition 3). The contactization1 of (A,β) is the man-
ifold A × S

1 = R × S
1 × S

1 = R × T
2 equipped with the contact structure

ker(dt + β), where t denotes the coordinate on the new S
1-factor. This con-

tact structure is tangent to the R-factor, and it makes a half twist as we move

1Our use of the term “contactization” is slightly nonstandard, as the word is typically used in

the literature to mean a product of a Liouville domain with R instead of with S
1. In this paper,

we shall go back and forth between both meanings of the term—it should always be clear from
context which one is meant.
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from s = −∞ to s = +∞. One can then compactify this domain by iden-
tifying it with the interior of [0, π] × S

1 × S
1 with coordinates (s, t, θ) and

contact structure

ker(cos s dθ + sin s dt).

This last contact manifold is called a Giroux π -torsion domain (or some-
times Giroux half-torsion domain). Such domains can be glued along bound-
ary tori to achieve any number of half turns. The Giroux torsion of a contact
3-manifold (V , ξ) is defined to be the supremum of all integers n such that
(V , ξ) contains 2n Giroux π -torsion domains glued together.

The idea described above can be conveniently rephrased in terms of ideal
Liouville domains, a notion recently introduced by Giroux. We will review
the precise definition in Sect. 5, but in a nutshell, an ideal Liouville domain is
the compactification of a complete Liouville manifold that appears naturally
e.g. as the closure of a page of a supporting open book decomposition, or
more generally, the closure of any component of a ξ -convex hypersurface
minus its dividing set. With this notion, a Giroux π -torsion domain can be
viewed directly as the contactization of an ideal Liouville domain. In this
paper, we shall refer to contactizations of ideal Liouville domains as Giroux
domains. The fact that Giroux torsion is an obstruction to strong fillability
[22] is then generalized to the following theorem.

Theorem B If a contact manifold contains a connected codimension 0 sub-
manifold with nonempty boundary obtained by gluing together two Giroux
domains, then it is not strongly fillable.

Observe that at least one of the Giroux domains in Theorem B must always
have disconnected boundary. The existence of Liouville domains with discon-
nected boundary in dimensions four and higher is itself a nontrivial fact: the
first examples were found by McDuff [43] in dimension four, and more were
found by Geiges in dimensions four [24] and six [23], and Mitsumatsu [45] in
dimension four. The following notion generalizes the construction of Geiges:

Definition 1 A Liouville pair on an oriented (2n− 1)-dimensional manifold
M is a pair (α+, α−) of contact forms such that ±α± ∧ dαn−1± > 0, and the
1-form

β := e−sα− + esα+
on R ×M satisfies dβn > 0.

A Liouville pair allows us to construct Liouville domains with two bound-
ary components (in fact, by attaching Stein 1-handles to these examples one
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can obtain examples with any number of boundary components). These man-
ifolds can then be used to build Giroux domains of the form [0, π] × S

1 ×M
with contact form

λGT = 1 + cos s

2
α+ + 1 − cos s

2
α− + sin s dt, (1.1)

which can be stacked together to produce the examples described in Theo-
rem A.

In order to state an existence result2 for Liouville pairs, recall that a number
field of degree n is a field that is an n-dimensional vector space over Q. Recall
also that R contains number fields of arbitrary degree.

Theorem C One can associate canonically to any number field k of degree n
a (2n− 1)-dimensional closed contact manifold (Mk, ξk). If k can be embed-
ded into R, then Mk also admits a Liouville pair, hence R ×Mk is Liouville.

Corollary There exist Liouville domains with disconnected boundary in all
even dimensions.

This corollary provides a source of examples3 that can be plugged into
Theorem B to construct nonfillable contact manifolds in all dimensions, and
a special case of this leads to the examples of Theorem A as well as the higher
dimensional version of Giroux torsion discussed in Sect. 9. The proof of The-
orem B is in fact a generalization to higher dimensions of a construction that
was used by the third author in [56] to show that every contact 3-manifold
with Giroux torsion is weakly symplectically cobordant to one that is over-
twisted. In higher dimensions, the overtwistedness will come from a general-
ization of the work of Atsuhide Mori in [46]. Note that already in dimension
three, the cobordism argument requires the fact that overtwistedness obstructs
weak (not only strong) fillability, a notion that has not previously been defined
in any satisfactory way in higher dimensions. In dimension three of course,
the subtle differences between weak and strong fillings are of interest in them-
selves, not only as a tool for understanding strong fillability.

As preparation for the definition of weak fillability that we will propose
here, let us first have a look at the realm of (almost) complex manifolds.

Definition 2 One says that a contact manifold (V , ξ) is the tamed pseudo-
convex boundary of an almost complex manifold (W,J ) if V = ∂W and

2Our proof of Theorem C owes a considerable debt to Yves Benoist, who explained to us how
to use number theory to find lattices in the groups considered by Geiges in [23].
3Actually this construction provides infinitely many examples with pairwise distinct funda-
mental groups. We thank Gaëtan Chenevier for arithmetic discussions clarifying this.
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• ξ is the hyperplane field T V ∩ JT V of J -complex tangencies,
• W admits a symplectic form ω taming J , and
• V is J -convex.

The last point means that if we orient V as the boundary of W , then for any
1-form λ defining ξ (i.e. λ is a 1-form with ξ = kerλ as oriented hyperplanes),
we have dλ(v, Jv) > 0 for every nonzero vector v ∈ ξ .

Note that there is no direct relation in the definition between the taming
form ω and the contact structure ξ . It must also be pointed out that the ex-
istence of (W,J ) is not very restrictive without the taming condition. For
instance, the overtwisted contact structure on S

3 that is homotopic to the stan-
dard contact structure can be realized as a pseudoconvex boundary of the ball
for some almost complex structure, but the Eliashberg-Gromov theorem im-
plies that this structure can never be tamed.

We now recall the standard definitions on the symplectic side.

Definition 3 Let V be a closed oriented manifold with a positive and co-
oriented contact structure ξ . We say that a compact symplectic manifold
(W,ω) is a symplectic filling of (V , ξ) if ∂W = V as oriented manifolds and
ω admits a primitive λ (a Liouville form) near ∂W which restricts to V as a
contact form for ξ . We call (W,ω) an exact filling of (V , ξ), or a Liouville
domain, if the Liouville form λ extends globally over W .

Note that a Liouville form λ gives rise (via the ω-dual) to a Liouville vec-
tor field, whose flow is a symplectic dilation, and the condition that λ|T V be a
positive contact form means that the Liouville vector field points transversely
outward at the boundary. For this reason we say in this case that (W,ω)
has (symplectically) convex boundary. In dimension three, it is customary
to distinguish this notion from the weaker version discussed below by calling
(W,ω) a strong filling of (V , ξ), and we shall also apply this convention to
higher dimensions in the present paper.

To obtain a weaker notion of symplectic filling, recall that every co-
oriented contact structure ξ carries a natural conformal class CSξ of sym-
plectic structures: indeed, if λ is any contact form for ξ , then dλ|ξ defines a
symplectic bundle structure that is independent of the choice of λ up to scal-
ing. If (W,ω) is a symplectic manifold and V = ∂W carries a positive con-
tact structure ξ , one says, following [17], that ω dominates ξ if the restriction
ωξ := ω|ξ belongs to CSξ . This is always the case if (W,ω) is a strong filling
of (V , ξ), and in dimension three it defines a strictly weaker notion of sym-
plectic fillability, e.g. it is obstructed by overtwistedness but not by Giroux
torsion. A symplectic 4-manifold (W,ω) dominating a contact structure ξ at
its boundary V = ∂W is therefore called a weak filling of (V , ξ). However,
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McDuff proved [43, Lemma 2.1] that from dimension 5 upward, the domi-
nating condition already implies that (W,ω) is a strong filling. In this paper,
we propose the following weak filling condition for all dimensions.

Definition 4 Let ξ be a co-oriented contact structure on a manifold V . De-
note by CSξ the canonical conformal class of symplectic structures on ξ . Let
(W,ω) be a symplectic manifold with ∂W = V as oriented manifolds and
denote by ωξ the restriction of ω to ξ . We say that (W,ω) is a weak filling of
(V , ξ) (and ω weakly dominates ξ ) if ωξ is symplectic and ωξ + CSξ is a ray
of symplectic structures on ξ .

The weak filling condition is thus equivalent to the requirement that

α ∧ (dα+ωξ)n−1 and α ∧ωn−1
ξ

should be positive volume forms for every choice of contact form α for ξ .
If one fixes a contact form α, then this is equivalent to requiring α ∧ (ωξ +
τ dα)n−1 > 0 for all constants τ ≥ 0, and it holds for instance whenever

α ∧ dαk ∧ωn−1−k
ξ > 0

for all k ∈ {0,1, . . . , n− 1}. In dimension three, weak domination is equiva-
lent to domination, hence our definition of weak filling reduces to the standard
one.

The first important result to state about this new definition is that it is the
purely symplectic counterpart of tamed pseudoconvex boundaries.4

Theorem D A symplectic manifold (W,ω) is a weak filling of a contact man-
ifold (V , ξ) (Definition 4) if and only if it admits a smooth almost complex
structure J that is tamed by ω and makes (V , ξ) the tamed pseudoconvex
boundary of (W,J ) (Definition 2).

By contrast, weak fillings are not automatically strong fillings. Indeed,
weak domination of a fixed ξ is an open condition on ω, so one can easily
construct weak fillings that are non-exact at the boundary by taking small
perturbations of strong fillings. The following less trivial examples of weak
fillings non-exact at the boundary are inspired by Giroux’s construction [29]
of weak fillings for the tight contact structures ξk on T

3.

Example 1.1 Starting from a closed contact manifold (V , ξ) and a support-
ing open book decomposition [32], Frédéric Bourgeois constructed in [4] a

4We are deeply indebted to Bruno Sévennec and Jean-Claude Sikorav for discussions that led
to the proof of Theorem D.
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contact structure on V × T
2. It can be written as the kernel of the 1-form

αε = αV + εf dx1 + εg dx2

for any ε > 0, where (x1, x2) are the coordinates on T
2 = S

1 × S
1, αV is a

contact form on V compatible with the given open book, and f,g : V → R

are functions associated to the open book. Now if (W,ω) is a weak filling
of (V , ξ), one can check by examining the limit ε → 0 that the Bourgeois
contact structure on V × T

2 is weakly filled by (W × T
2,ω ⊕ ωT2), where

ωT2 is an area form on T
2.

The next result extends the fact that weak fillability is strictly weaker than
strong fillability beyond dimension three. Though we prove this only for di-
mension five, it is presumably true in all dimensions; see Sect. 9 for further
discussion.

Theorem E There exist 3-manifolds M with Liouville pairs (α+, α−) such
that the contact manifolds (T2 ×M,ξk) of Theorem A are all weakly fillable.
In particular, there exist contact 5-manifolds that are weakly but not strongly
fillable.

As in dimension three, one should expect that any notion of “overtwist-
edness” one might define in higher dimensions obstructs the existence of a
weak filling. Here we have two possible notions in mind: recall first that
the second author [47] has introduced a higher dimensional generalization
of the overtwisted disk, called the plastikstufe. We shall introduce in Sect. 4
a natural generalization of this, called a bordered Legendrian open book (or
“bLob” for short), and refer to contact manifolds that contain such objects
as PS-overtwisted. An alternative (though not necessarily inequivalent) no-
tion emerges from the observation that a contact 3-manifold is overtwisted
if and only if it has a supporting open book that is the negative stabilization
of another open book. The corresponding condition in higher dimensions is
known to imply algebraic overtwistedness, i.e. vanishing contact homomol-
ogy [7]. We will show that each of these conditions gives an obstruction to
semipositive5 weak fillings:

Theorem F If (V , ξ) is a closed contact manifold that either

(i) contains a contractible PS-overtwisted subdomain, or

5In Theorem F and several other results in this paper, we write the word “semipositive” in
parentheses: this means that the condition is presently necessary for technical reasons, but
should be removable in the future using the polyfold technology of Hofer-Wysocki-Zehnder,
cf. [36].
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(ii) is obtained as the negative stabilization of an open book,

then (V , ξ) has no (semipositive) weak filling.
Hence any contact structure on a closed manifold V with dimV ≥ 3 can

be modified within its homotopy class of almost contact structures to one that
admits no (semipositive) weak fillings.

We will also show in Sect. 2 that the weak filling condition is conveniently
amenable to deformations near the boundary. An often used fact in dimension
three, due originally to Eliashberg [15], is that any weak filling which is exact
near the boundary can be deformed to a strong filling. This was extended in
[50] to show that every weak filling can be deformed to make the boundary a
stable hypersurface, so that weak fillings can be studied using the machinery
of Symplectic Field Theory (SFT). Extending this idea to higher dimensions
led to the notion of a stable symplectic filling defined in [39], and we will
show:

Proposition 6 Any weak filling can be deformed near its boundary to a stable
filling. Moreover, if the symplectic form is exact near the boundary, then it can
be deformed to a strong filling.

The fact that weak fillings can be “stabilized” means that they are ob-
structed by the invariants defined in [39], known as algebraic torsion. The
following corollary, which we will not use in this paper, comes of course with
the standard caveat about the analytical foundations of SFT:

Corollary 7 If (V , ξ) has fully twisted algebraic torsion in the sense of [39],
then it is not weakly fillable. In particular, this is the case if (V , ξ) has van-
ishing contact homology with fully twisted coefficients.

The contact structures defined in (1.1) can be used to define a higher
dimensional version of the standard 3-dimensional Lutz twist along a pre-
Lagrangian torus. Notably, whenever (V , ξ) contains a hypersurface H that
is isomorphic to one of the boundary components of the domain [0,2π] ×
S

1 ×M with the contact structure given by λGT, we can cut V open along
H and glue in an arbitrary number of such domains to modify the contact
structure on V . The contact structure obtained from this operation will never
be strongly fillable, and in some cases it is not even weakly fillable:

Theorem G By inserting contact domains of the form ([0,2πk] × S
1 ×

M,kerλGT) for various k ∈ N, one can construct closed manifolds in any di-
mension 2n− 1 ≥ 3 which admit infinite families of hypertight but not weakly
fillable contact structures that are homotopic as almost contact structures but
not contactomorphic.
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We will also discuss in Sect. 9 a “blown down” version of the above
operation, which generalizes both the classical Lutz twist along transverse
knots in dimension three and a 5-dimensional version recently introduced by
A. Mori [46]. As we shall see, this operation always produces a contact struc-
ture that is in the same homotopy class of almost contact structures, but is
PS-overtwisted and thus not weakly fillable. See also [21] for a completely
different generalization of the Lutz twist to higher dimensions.

Organization Here is an outline of the remainder of the paper.
In Sect. 2 we establish some basic properties of the weak filling condition,

including its relation to tamed pseudoconvexity and behavior under deforma-
tions in collar neighborhoods. This includes the proofs of Theorem D and
Proposition 6.

Section 3 shows that weak fillings are obstructed by negatively stabilized
open books. The technology here involves finite energy holomorphic planes
in the noncompact completion of a weak filling; it is a minor adaptation of
the contact homology computation due to Bourgeois and van Koert [7]. In-
stead of appealing to contact homology, however, we argue directly that the
moduli space of holomorphic planes found in [7] cannot exist if there is a
semipositive weak filling.

In Sect. 4, we introduce the bLob as a natural generalization of the plastik-
stufe and adapt the standard “Bishop family of holomorphic disks” argument
to prove the remainder of Theorem F.

The next three sections establish the proof of Theorem B, defining the
first higher dimensional filling obstruction that is distinct from any notion of
“overtwistedness”. In Sect. 5, we discuss ideal Liouville domains and Giroux
domains, and state a more precise version of Theorem B that can also be ap-
plied to weak fillings. The proof requires a surgery construction explained in
Sect. 6, which is inspired by the construction in [56] of symplectic cobordisms
from any contact 3-manifold with Giroux torsion to one that is overtwisted.
In our case, we consider a contact manifold (V , ξ) which contains a region
with nonempty boundary consisting of two Giroux domains G0 = Σ0 × S

1

and G1 =Σ1 × S
1 glued together. It turns out that one can attach along G0

a symplectic “handle” of the form Σ0 × D
2, the effect of which is to replace

G0 ∪G1 with a region that is PS-overtwisted, thus a weak filling of (V , ξ)
with suitable cohomological properties at the boundary gives rise to a larger
weak filling of something PS-overtwisted and hence a contradiction. Note
that since the new boundary is only weakly filled in general, the new notion
of weak fillability plays a crucial role even just for proving that (V , ξ) is
not strongly fillable. We shall also provide in Sect. 7 an alternative argument
that avoids holomorphic disks and uses the somewhat simpler technology of
closed holomorphic spheres; this allows us to overcome transversality prob-
lems using the recently developed polyfold machinery [37].
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In Sect. 8 we switch gears and address the existence of Liouville pairs in all
dimensions, proving Theorem C. For this we borrow an idea of Geiges from
[23] to look for Liouville pairs among left-invariant 1-forms on noncompact
Lie groups that admit co-compact lattices and hence compact quotients. Our
examples of left-invariant Liouville pairs on Lie groups are quite easy to write
down (see e.g. Eq. (8.1)), but in order to find co-compact lattices we’ll need
to apply some basic algebraic number theory.

Finally, Sect. 9 explains the most important special cases of the filling ob-
struction from Theorem B, leading to higher dimensional generalizations of
Giroux torsion and the Lutz twist. From this follow the proofs of Theorems A,
E and G.

The Appendix contains some technical results in symplectic linear algebra
needed for the proof of Theorem D, relating weak symplectic fillings and
tamed pseudoconvexity.

Notation Unless otherwise indicated, throughout this paper we will assume
(W,ω) is a compact symplectic manifold of dimension 2n ≥ 4, and (V , ξ)
is a closed (2n − 1)-dimensional contact manifold, with ξ positive and co-
oriented. In cases where V is identified with ∂W , we assume that this identi-
fication matches the orientation induced by ξ to the natural boundary orien-
tation determined by ω. Also when V = ∂W , we will often use the abbrevia-
tions

ωV := ω|T V and ωξ := ω|ξ .

2 The weak filling condition

2.1 Pseudoconvexity and weak filling

The aim of this section is to show that our definition of a weak filling (Defi-
nition 4 in the introduction) is in a certain sense the purely symplectic coun-
terpart of a tamed almost complex manifold with pseudoconvex boundary.

Before proving the main theorem on this subject, we will need some impor-
tant properties of complex structures on vector spaces which were explained
to us by Bruno Sévennec and Jean-Claude Sikorav. We will give proofs of the
following two propositions in Appendix A.1 and A.2 respectively.

Proposition 2.1 The space of complex structures on a vector space E tamed
by two given symplectic forms ω0 and ω1 is either empty or contractible.

Proposition 2.2 Let E be a real vector space equipped with two symplectic
forms ω0 and ω1. The following properties are equivalent:

1. the linear segment between ω0 and ω1 consists of symplectic forms
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2. the ray starting at ω0 and directed by ω1 consists of symplectic forms
3. there is a complex structure J on E tamed by both ω0 and ω1.

Remark 2.3 When choosing an almost complex structure J on a symplec-
tic manifold, for most applications it makes no difference whether one re-
quires J to be calibrated (i.e. compatible with) or tamed by the symplec-
tic structure, and typically very little attention is paid to this distinction in
the literature. Note however that the cotaming condition is strictly weaker
than cocalibrating, and in many cases it is not possible to require the lat-
ter. For instance, one can prove (by hand or using the previous proposition)
that there exists a complex structure on R

4 that is cotamed by the two forms
ω0 = dx1 ∧ dx3 + dx2 ∧ dx4 and ω1 = dx2 ∧ dx1 + dx3 ∧ dx4. On the other
hand, one can use the fact that ω0 ∧ ω1 = 0 to show that there does not exist
any complex structure that is both calibrated by ω0 and tamed by ω1.

The following is a restatement of Theorem D from the introduction.

Theorem 2.4 A symplectic manifold (W,ω) is a weak filling of (∂W, ξ) if
and only if there is an almost complex structure J on W which is tamed by ω
and such that (∂W, ξ) is the strictly pseudoconvex boundary of (W,J ).

Proof We denote the boundary of W by V and use the notation of the intro-
duction. Suppose we have a weak filling. From Proposition 2.2, using the fact
that the cotaming property is open, it follows that every point in the manifold
V has a small neighborhood on which there exists a complex structure Jξ on
ξ which is tamed by both ωξ and CSξ . Using the contractibility of the space
of such Jξ ’s (Proposition 2.1), we can then replace Jξ with a global com-
plex structure on ξ that has this property. Choose any vector field X on V that
spans kerωV , and extend it to a collar neighborhoodU of V . Let Y be a vector
field on U that lies along V in the ω-orthogonal complement of ξ and that sat-
isfies ω(X,Y ) > 0. We extend Jξ to an almost complex structure J on U by
setting JX = Y . Clearly, J is tamed by ω on a small neighborhood of V , and
we can then extend J to the interior of W to obtain the desired tamed almost
complex structure on the entire filling W . By construction, ξ = T V ∩ JT V ,
and V is strictly J -pseudoconvex since Jξ is tamed by CSξ .

Conversely, assumeW has an almost complex structure J that is tamed by
ω and makes the boundary strictly pseudoconvex, with ξ as the field of com-
plex tangencies T V ∩ JT V . We can then write ξ as the kernel of a nonvan-
ishing 1-form α, and pseudoconvexity implies that we can choose the sign of
α in such a way that dα|ξ tames J |ξ , and such that the natural orientation of ξ
together with its co-orientation defined via α is compatible with the boundary
orientation of W . Since ω tames J , ωξ also tames J |ξ . We therefore have
cotaming forms on ξ , so the easy implication (3) =⇒ (2) of Proposition 2.2
guarantees that (W,ω) is a weak filling of (V , ξ). �
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Suppose now U is a domain inside a symplectic manifold (W,ω) and
V := ∂U is pseudoconvex for some tamed J . Using the easy direction of the
preceding theorem, we see that (U,ω|U) is a weak filling of (V ,T V ∩JT V ).
It is not true in general that it is a strong filling. This was observed first in
[17, p. 158], where an example in C

n with its standard Kähler structure is
discussed. In this example, Eliashberg proved that the relevant contact struc-
ture is actually Stein fillable, but weak fillability is much easier to check (re-
call that we used the easy direction). By Theorem F in the introduction, this
already implies global information about the contact structure, such as the
nonexistence of a contractible PS-overtwisted subdomain, or of a negatively
stabilized supporting open book.

2.2 Magnetic collars and cones

Recall that for any co-oriented hyperplane field ξ on a manifold V , one can
consider the annihilator of ξ in T ∗V :

Sξ := {
λ ∈ T ∗V | kerλ= ξ and λ(v) > 0 if v is positively transverse to ξ

}
.

The field ξ is a contact structure if and only if Sξ is a symplectic submanifold
of (T ∗V,ωcan), and in this case Sξ is called the symplectization of ξ . Any
contact form α is a section of this R

∗+-bundle, and thus determines a trivi-
alization Sξ ∼= R

∗+ × V . In this trivialization, the restriction of the canonical
symplectic form ωcan becomes d(tα), where t is the coordinate in R

∗+.
In order to rephrase the definition of weak filling in these terms, we need

to recall one further notion. Suppose ωV is any closed 2-form on V , and
denote the projection from T ∗V to V by π . The 2-form ωcan + π∗ωV is then
a symplectic form on T ∗V , which is called magnetic.

The definition of weak fillings can now be reformulated as follows.

Lemma 2.5 Let (W,ω) be a symplectic manifold with ∂W = V . Denote by
ωV the restriction of ω to T V and by ωξ its restriction to a contact structure
ξ on V . The manifold (W,ω) is a weak filling of (V , ξ) if and only if ωξ
is symplectic and Sξ is a symplectic submanifold of the magnetic cotangent
bundle associated to ωV .

In the case where (W,ω) strongly fills (V , ξ), it admits a Liouville vector
field X near V , which induces the contact form α = ιXω|T V on V . Let ϕt
denote the flow ofX for time t . For sufficiently small ε > 0, the map (t,m) �→
ϕln t (m) embeds ((1 − ε,1]×V,ωcan) symplectically intoW . This allows the
completion ofW by adding the positive half (1,∞)×V of Sξ . To understand
this from a magnetic point of view, observe that ωV = dα, so the magnetic
form on Sξ is ωV + d(tα) = d((t + 1)α). Thus (t,m) �→ (t + 1,m) is a
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symplectomorphism from the magnetic symplectization to the cylindrical end
of the completed strong filling.

In the setting of weak fillings, we would similarly like to be able to com-
plete (W,ω) by adding the magnetic symplectization. For this we need a
suitable description of a collar neighborhood of the boundary: the follow-
ing lemma has an obvious analogue for the situation where V is an oriented
boundary component of a symplectic manifold (W,ω).

Lemma 2.6 Suppose V ⊂W is an oriented hypersurface in the interior of a
2n-dimensional symplectic manifold (W,ω), ξ ⊂ T V is the co-oriented (and
hence also oriented) hyperplane distribution induced by a nowhere vanishing
1-form λ on V , and the restriction of ω to ξ is symplectic and induces the pos-
itive orientation. Then a neighborhood of V in (W,ω) is symplectomorphic
to (

(−ε, ε)× V, d(tλ)+ωV
)
,

for some ε > 0, where ωV := ω|T V , V is identified in the natural way with
{0} × V , and the direction of ∂t is such that ι∂t ω

n = λ∧ωn−1. Moreover, the
vector field ∂t in W can be chosen to extend any given vector field which has
these properties on a neighborhood of some part of V .

Remark 2.7 The statement about the direction of ∂t means that in the version
of this lemma for the boundary of a weak filling, one obtains a neighborhood
of the form ((−ε,0] × V,d(tλ) + ωV ), so in particular ∂t points outwards.
There is a corresponding variation for negative boundary components of weak
symplectic cobordisms, for which ∂t points inwards.

Proof of Lemma 2.6 An identical proof has been given for the 3-dimensional
case in [50]. We will first define a collar neighborhood of V by choosing a
vector field that is transverse to V . Let E ⊂ TW |V be the ω-orthogonal com-
plement of ξ along V . The intersection of E with T V is a 1-dimensional
subbundle, and we can uniquely define a Reeb-like vector field Xω by tak-
ing the section in E ∩ T V that satisfies λ(Xω) ≡ 1. By our definition,
ω(Xω, ·)|T V = 0 holds. Choose now a second section Y in E that is trans-
verse to V , and normalize it such that ω(Y,Xω) ≡ 1. Note that if such a
section is already given near some subset of V , then we can choose Y to be
an extension of that section. We now have ω(Y, ·)|T V = λ, since both forms
vanish on ξ and agree on Xω.

Extend Y to a smooth vector field in a neighborhood of V , and use the flow
ϕY of this vector field to define a smooth diffeomorphism

Φ : (−ε, ε)× V ↪→W,(t,p) �→ ϕYt (p),
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which agrees with the canonical identification on {0} ×V . Next, compare the
2-forms Φ∗ω and ωV + d(tλ) on (−ε, ε) × V . Both forms coincide along
{0} × V , thus the linear interpolation of these forms is a path of symplectic
structures (decreasing ε > 0 if necessary). We can then use the Moser trick to
show that they are all symplectomorphic to each other (perhaps in a smaller
neighborhood) by an isotopy that keeps the level set {0} × V fixed. �

Corollary 2.8 If (W,ω) is a weak filling of (V , ξ), then one can extend W
to a magnetic completion (Ŵ , ω̂) with Ŵ =W ∪ Sξ , ω̂|W = ω and ω̂|Sξ =
ωcan +ωV .

Moreover, for every positive t , ({t} × V, ξ ) is then weakly filled by W ∪
(0, t] × V equipped with the restriction of ω̂.

In the previous section we proved that whenever (W,ω) is a weak filling
of (V , ξ), there is a J on ξ which is tamed by CSξ and also by the restriction
of ω. However, it is sometimes desirable to fix a complex structure on ξ in
advance. The following observation allows us to do this, at the price of first
adding a sufficiently large part of the magnetic completion. The proof is a
short computation using the fact that for T � 0, the restriction of ωV +d(tα)
to {T } × V is dominated by the second term.

Lemma 2.9 Suppose ωV is a closed 2-form on V weakly dominating a con-
tact structure ξ , α is a contact form for ξ and Rα is its Reeb vector field.
Further, suppose J is an almost complex structure on [0,∞)× V which pre-
serves ξ such that J |ξ is tamed by dα|ξ and J∂t = Rα , with t denoting the
coordinate on [0,∞). Then there exists a number T ≥ 0 such that J is tamed
by ωV + d(tα) on [T ,∞)× V .

2.3 Deformations of weak fillings

We now want to deform completions of weak fillings in order to obtain some
flexibility for ωV .

Lemma 2.10 Let ωV be a closed 2-form weakly dominating a contact struc-
ture ξ = kerα on V , and suppose ω′

V is any closed 2-form on V that is co-
homologous to ωV . Then the symplectic structure ωV + d(tα) on [0,∞)×V
can be deformed away from {0} × V so that it coincides with ω′

V + d(tα) on
(t1,∞)× V for some large number t1 > 0 and all levels ({t} × V, ξ) remain
weakly filled.

Proof Since ωV and ω′
V are cohomologous, there exists a 1-form β on V such

that ω′
V = ωV + dβ . Consider the closed 2-form ω′ = d(tα)+ ωV + d(ρβ)

on [0,∞) × V , where ρ : [0,∞)→ [0,1] is a smooth monotone function
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that is equal to 0 near t = 0 and to 1 for large values of t . We now show
that, if the support of ρ is sufficiently far away from 0 and ρ increases suffi-
ciently slowly, the new structure ω′ will be symplectic. Since it is closed by
construction, we only need to check nondegeneracy. We compute:

(
ω′)n = dt ∧ (α+ ρ′β

)∧ (t dα +ωV + ρ dβ)n−1.

To prove that t dα+ωV +ρ dβ is a symplectic form on ker(α+ρ′β), choose
an auxiliary norm on the space of differential forms on V , and set c1 := ‖β‖
and c2 := ‖ωV ‖ + ‖dβ‖.

The map Ω1(V )×Ω2(V )→Ω2n+1(V ), (γ, η) �→ γ ∧ ηn is continuous,
so that we find constants ε1, ε2 > 0 such that γ ∧ ηn > 0 for every pair
(γ, η) ∈Ω1(V )×Ω2(V ) with ‖γ − α‖< ε1, and ‖η− dα‖< ε2. Then for
η = dα + ωV /t + ρ dβ/t , we obtain ‖η− dα‖ = ‖ωV /t + ρ dβ/t‖ ≤ c2/t ,
and similarly, we find for γ = α+ ρ′β that ‖γ − α‖ = ρ′c1.

The nondegeneracy of ω′ is immediate whenever t lies outside the sup-
port of ρ. If we let ρ increase sufficiently slowly so that ρ′ < ε1/c1 and
also assume ρ(t) = 0 for t < c2/ε2, then the above calculation shows that
ω′ is nondegenerate everywhere. By the same reasoning, every hypersurface
({t} × V,α) will be weakly filled in the new manifold. �

Remark 2.11 This lemma implies that a weak filling gives rise to a strong fill-
ing whenever ω|T V is exact. This does not mean however that ω is a weak fill-
ing of a unique isotopy class of contact structures on the boundary—there are
counter-examples in dimension 3. As explained for instance in [42, Sect. 4.2],
any Seifert 3-manifold V is the boundary of a symplectic manifold (W,ω)
such that kerω|T V is tangent to the fibers. Thus any (positive) contact struc-
ture on V which is transverse to the fibers is weakly filled by (W,ω). If V is
a Brieskorn sphere −Σ(2,3,6n− 1), then the results of [27, 42] combine to
prove that there are n− 2 isotopy classes of contact structures transverse to
the fibers. Since those manifolds are homology spheres, ω|T V is exact.

We now make the connection between weak fillings and stable hypersur-
faces, establishing Proposition 6 and hence Corollary 7 from the introduction.

Corollary 2.12 Any weak filling (W,ω) of a contact manifold (V , ξ) can
be deformed to have the additional property that kerωV = kerdα for some
nondegenerate contact form α for ξ . In particular, (α,ωV ) is then a stable
Hamiltonian structure on V , and (W,ω) is a stable filling of (V , ξ) in the
sense of [39].

Proof Since weak filling is an open condition, we can perturb ω so that with-
out loss of generality it represents a rational cohomology class in H 2

dR(V ).
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Then by a result of Cieliebak and Volkov [9, Proposition 2.16], (V , ξ) admits
a nondegenerate contact form α and a 2-form ω′

V cohomologous to ωV such
that the pair (α,ω′

V ) define a stable Hamiltonian structure. The claim now
follows by application of the preceding lemma. �

3 Negative stabilizations

Corollary 7 in the introduction, together with the result of Bourgeois and van
Koert [7] that negatively stabilized contact manifolds have vanishing contact
homology (with full group ring coefficients), implies in principle that such
manifolds are not weakly fillable and always admit contractible Reeb orbits.
In this section we shall show how the computation from [7] can be modified
to produce direct proofs of these facts without relying on SFT.

The simplest example of a negatively stabilized contact manifold is the
sphere (S2n−1, ξ−) that is supported by the open book with page T ∗

S
n−1

and monodromy isotopic to a single negative Dehn-Seidel twist. By an ob-
servation due to Giroux, we may for our purposes define an arbitrary closed
(2n− 1)-dimensional contact manifold to be negatively stabilized if and only
if it is the contact connected sum of (S2n−1, ξ−) with some other closed con-
tact manifold. Our goal is thus to prove the following:

Theorem 3.1 For any closed (2n− 1)-dimensional contact manifold (M, ξ),
the contact connected sum (M, ξ)#(S2n−1, ξ−) has no (semipositive) weak
filling, and its Reeb vector fields always admit contractible closed orbits.

To prepare the proof, recall that a 1-form λ and closed 2-formΩ on an ori-
ented (2n− 1)-dimensional manifold V form a stable Hamiltonian structure
(λ,Ω) if λ ∧Ωn−1 > 0 and kerdλ⊂ kerΩ . Such a pair always determines
a unique vector field R with the properties λ(R)≡ 1 and Ω(R, ·)≡ 0. Note
that if λ is also a contact form, then R is simply the Reeb vector field. We
shall say that an almost complex structure J on R × V is adjusted to (λ,Ω)
if it is R-invariant, maps the unit vector in the R-direction to the vector field
R, and restricts to an Ω-tame complex bundle structure on ξ := kerλ.

Lemma 3.2 Suppose (V , ξ) is a closed (2n− 1)-dimensional contact man-
ifold with nondegenerate contact form λ and closed 2-form Ω such that
kerλ = ξ and (λ,Ω) forms a stable Hamiltonian structure on V . Suppose
moreover that R×V admits an almost complex structure J adjusted to (λ,Ω)
with the following properties:

• There exists a finite energy J -holomorphic plane u0 : C → R × V which
is Fredholm regular, has Fredholm index 1 and is asymptotic to a simply
covered Reeb orbit γ .
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• Other than R-translations of u0, R × V admits no finite energy punctured
J -holomorphic curves of genus zero with one positive end asymptotic to γ
and no other positive ends.

Then (V , ξ) does not admit any (semipositive) weak filling (W,ω) for which
ω|T V is cohomologous to Ω .

Proof Assume the contrary, that there exists a weak filling (W,ω) with
[ωV ] = [Ω] ∈H 2

dR(V ). By Lemma 2.10, we can complete (W,ω) to an open
symplectic manifold (Ŵ ,ω) by attaching a cylindrical end ([0,∞)× V,ω)
such that for some T > 0, ω =Ω + d(tλ) on [T ,∞)× V . Assign to (Ŵ ,ω)
an ω-tame almost complex structure that matches the given R-invariant struc-
ture J on [T ,∞)×M and is generic everywhere else; we shall denote this
extension also by J . The point of assuming (λ,Ω) to be a stable Hamiltonian
structure is that the compactness results of Symplectic Field Theory [8] are
now valid for finite energy J -holomorphic curves in (Ŵ ,ω).

The R-translations of the J -holomorphic plane u0 : C → R × V asymp-
totic to the orbit γ now give rise to a smooth 1-dimensional family of J -
holomorphic curves in [T ,∞) × V ⊂ Ŵ . Let M denote the unique con-
nected component of the moduli space of unparametrized finite energy J -
holomorphic curves in Ŵ that contains this family. All curves in M are
planes asymptotic to the simply covered orbit γ and are thus somewhere in-
jective. Let M+ ⊂ M denote the subset consisting of curves whose images
are contained entirely in [T ,∞)× V . By the uniqueness assumption for u0,
all of these are R-translations of u0, thus M+ ∼= [0,∞). Then by generic-
ity, all curves in M \ M+ are also Fredholm regular, hence M is a smooth
1-dimensional manifold (without boundary). Observe that M \ M+ is an
open subset. Its closure M \ M+ ⊂ M has exactly one boundary point, the
unique curve in M+ that touches {T } × V .

We claim that M \ M+ is compact. Indeed, by [8], any sequence uk ∈
M \ M+ has a subsequence convergent to a J -holomorphic building u∞ of
arithmetic genus 0, with one positive end asymptotic to γ and no other ends.
If u∞ has any nontrivial upper level, then the uniqueness assumption implies
that this level can only be an R-translation of u0, thus it has no negative ends
and the main level of u∞ must be empty. But this can happen only if uk has
its image in [T ,∞)× V for large k, hence uk ∈ M+, giving a contradiction.
Thus u∞ has only a main level, and is at worst a nodal J -holomorphic curve
in Ŵ , including exactly one component that is a plane asymptotic to γ , while
all other components are spheres. The spheres are ruled out by semipositivity:
since dim M = 1, any spheres that could appear in u∞ would necessarily be
covers of somewhere injective spheres with negative index, and thus cannot
exist since J is generic. It follows that u∞ is a smooth J -holomorphic plane,
hence M \ M+ is compact as claimed.
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The above shows that M \ M+ is diffeomorphic to a compact 1-
dimensional manifold whose boundary is a single point. Since no such space
exists, we have a contradiction and conclude that the filling (W,ω) cannot
exist. �

For the case Ω = dλ, there is a variation on the above argument using a
trick pioneered by Hofer in [35]. Instead of considering a completed filling
(Ŵ ,ω), one considers an exact cylindrical symplectic cobordism (R × V,ω)
with ω = d(etλ) near +∞ and d(etλ′) near −∞, where λ′ may be taken to
be a constant multiple of any given contact form for ξ . Defining a moduli
space of J -holomorphic planes in R × V based on the R-translations of u0
as above, the same compactness argument goes through and produces a con-
tradiction unless planes bubble off in the negative end, which means λ′ must
admit a contractible Reeb orbit. Note that in this case it’s even easier to rule
out sphere bubbling, as the exact cobordism (R ×M,ω) does not admit any
closed holomorphic curves. This proves:

Lemma 3.3 If the assumptions of Lemma 3.2 are satisfied withΩ = dλ, then
every contact form on (V , ξ) admits a contractible closed Reeb orbit.

Proof of Theorem 3.1 For the case of Ω exact, [7] establishes precisely
the hypotheses of Lemma 3.2, thus proving that (M, ξ)#(S2n−1, ξ−) is nei-
ther strongly fillable nor (by Lemma 3.3) hypertight. Specifically, Bourgeois
and van Koert construct a contact form and suitable complex structure for
(S2n−1, ξ−) such that there is a special Reeb orbit γ , which has smaller period
than all other Reeb orbits in S

2n−1, and is the asymptotic end of a unique J -
holomorphic plane u0. In the case of the connected sum (M, ξ)#(S2n−1, ξ−),
they also observe that γ ⊂ S

2n−1 can be assumed to have smaller period than
all other Reeb orbits except for a special set of orbits in the tube connecting
S

2n−1 to M , and there can be no holomorphic curves from γ to any combi-
nation of these orbits. To rule out weak fillings (W,ω) with arbitrary coho-
mology β := [ω|T (M#S2n−1)] ∈H 2

dR(M#S
2n−1), we now argue as follows. We

can first perturb ω to assume without loss of generality that β is a rational
cohomology class. Let β ′ ∈ H 2

dR(M) denote the image of β under the natu-
ral isomorphism H 2

dR(M#S
2n−1)→ H 2

dR(M). Using the construction in [9,
Proposition 2.16], we can find a stable Hamiltonian structure (λ′,Ω ′) on M
such that kerλ′ = ξ , [Ω ′] = β ′ and Ω ′ = dλ′ outside a tubular neighbor-
hood N (Σ) of a contact submanifold Σ ⊂ M such that [Σ] ∈ H2n−3(M)

is Poincaré dual to a multiple of β ′. The contact form λ′ may also be cho-
sen freely outside N (Σ), and we may assume that the ball deleted from M

to form the connected sum is disjoint from N (Σ). The stable Hamiltonian
structure (λ′,Ω ′) can then be extended overM#S

2n−1 as a stable Hamiltonian
structure (λ,Ω) such that [Ω] = β , and outside of N (Σ), Ω = dλ with λ an
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arbitrarily chosen contact form for ξ#ξ−. This construction can therefore be
arranged to guarantee the same essential properties of the orbit γ and curve u0
as in the exact case, thus establishing the hypotheses of Lemma 3.2. �

4 Bordered Legendrian open books

In this section, we will first introduce a generalization of the plastikstufe that
is more natural and less restrictive than the initial version introduced in [47].
Subsequently we will prove that these objects, under a certain homological
condition (which is trivially satisfied for the overtwisted disk), represent ob-
structions to weak fillability.

Definition LetN be a compact manifold with nonempty boundary. A relative
open book on N is a pair (B, θ) where:

• the binding B is a nonempty codimension 2 submanifold in the interior of
N with trivial normal bundle;

• θ : N \B → S
1 is a fibration whose fibers are transverse to ∂N , and which

coincides in a neighborhood B × D
2 of B = B × {0} with the normal an-

gular coordinate.

Definition Let (V , ξ) be a (2n+ 1)-dimensional contact manifold. A com-
pact (n + 1)-dimensional submanifold N ↪→ V with boundary is called a
bordered Legendrian open book (abbreviated bLob), if it has a relative open
book (B, θ) such that:

(i) all fibers of θ are Legendrian;
(ii) the boundary of N is Legendrian.

Remark 4.1 The binding B of a Legendrian open book is automatically
isotropic because its tangent space is contained in the tangent space of the
closure of all pages. Similarly, the fibers of θ and the boundary of N meet
transversely in N , and saying that they are both Legendrian implies that the
induced foliation on N is singular on B and ∂N .

A bLob is an example of a maximally foliated submanifold of (V , ξ), mean-
ing that the singular distribution defined by intersecting its tangent spaces
with ξ is integrable, thus forming an oriented singular foliation, and it has
the largest dimension for which this is possible (see [47, Sect. 1] for further
discussion). A bLob in a 3-dimensional contact manifold is the “flat version”
of the overtwisted disk, the one where the characteristic foliation is singular
along the boundary. This is a slight difference compared with the definition
of plastikstufes in [47], where the boundary was a regular leaf of the induced
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foliation, hence analogous to the “cambered version” of the overtwisted disk.
This is a minor technical detail; each version can be deformed into the other
one.

Definition 4.2 A contact manifold that admits a bLob is called PS-over-
twisted.

Note that the definition of the bLob is topologically much less restrictive
than the initial definition of the plastikstufe. For example, a 3-manifold admits
a relative open book if and only if its boundary is a nonempty union of tori.
On the other hand, a plastikstufe in dimension 5 is always diffeomorphic to a
solid torus S

1 × D
2.

In this paper we will discuss one setting where we can find bLobs and are
unable to find plastikstufes: in Proposition 5.9, we show that bLobs always
exist in certain subdomains that are naturally associated to Liouville domains
with disconnected boundary, a special case of which produces the Lutz-type
twist due to Mori [46] (cf. Sect. 9.1).

Remark 4.3 Some bLobs also naturally arise in relation to the results of [48],
where it is shown that sufficiently large neighborhoods of overtwisted sub-
manifolds in higher dimensional contact manifolds give a filling obstruction.
In [48] this required a rather technical argument involving holomorphic disks
with an immersed boundary condition, but it can be simplified and strength-
ened by showing (using arguments similar to those of Proposition 5.9) that
such neighborhoods always contain a bLob.

Of course, finding a bLob would be useless without the following theorem.

Theorem 4.4 If a closed contact manifold is PS-overtwisted, then it does not
have any (semipositive) weak symplectic filling (W,ω) for which ω restricted
to the bLob is exact.

Remark 4.5 The condition that the restriction of the symplectic form ω

should be exact is trivially satisfied in dimension 5 for the plastikstufes de-
fined in [47], which were all diffeomorphic to S

1 × D
2. In general however

this condition could fail, and we believe that this could provide a hint as to
varying degrees of filling obstructions or overtwistedness. Though it is un-
known whether there is a unique natural notion of overtwistedness beyond
dimension 3, or whether the different definitions known thus far are inequiv-
alent, it would be interesting to speculate that a manifold can only be over-
twisted in some “universal” sense if the bLob (or a similar object) can be em-
bedded into a ball within the contact manifold. In this way the cohomological
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condition is satisfied automatically, thus defining an obstruction to weak fill-
ings due to the above theorem. We will refer to any bLob that lies inside a ball
in the contact manifold as a small bLob.

If dimV ≥ 3, then any contact structure ξ on V can be modified either by
[49, 52] or by [21]—in the latter case without changing the homotopy class
of almost contact structures—to produce one that is PS-overtwisted. In both
cases, the change produces a small plastikstufe, hence Theorem 4.4 and the
preceding section imply Theorem F stated in the introduction.

In the proof of Theorem 4.4 below, the general strategy is the same as
in [47, 48], but there are differences coming from two sources: the need to
handle weak rather than strong fillings, and bLobs rather than plastikstufes.
Working with weak fillings complicates the question of energy bounds be-
cause the integral of ω on a holomorphic curve no longer has a direct relation
to the integral of dα. This is where the homological condition comes in. Fur-
ther, it is no longer obvious that we can choose our almost complex structure
to be both adapted to a contact form near the binding and boundary of the
bLob and tamed by ω. As far as the differences between the plastikstufe and
the bLob are concerned, the first is the singularity along the boundary, which
makes energy control easier but makes it harder to ensure that holomorphic
curves cannot escape through the boundary. This difference can be handled
similarly to the analogous work in [48], which dealt with the case where the
fibration of the bLob becomes trivial at the boundary. The general case addi-
tionally requires the somewhat technical Lemmas 4.6 and 4.7 below (though
since we will not need this level of generality for our main results, the reader
may skip these if desired). The second difference is of course that pages are
more complicated and the interior monodromy can be anything, but this plays
no role in the proof; what matters is the existence of a fibration over S

1.

Proof of Theorem 4.4 Let N be a bLob in (V , ξ) with induced Legendrian
open book (B, θ). Suppose that (W,ω) is a weak filling of V for which ω|TN
is exact. We choose a contact form α for ξ and attach to (W,ω) the cor-
responding conical end from Corollary 2.8. Since the restriction of ω to a
neighborhood of the bLob is exact, we can choose a closed 2-form Ω on V
that is cohomologous to ω|T V and vanishes on a neighborhood of N . In a
second step, we can deform the symplectic structure on the conical end to

([t1,∞)× V,Ω + d(tα))

for large t1 as described in Lemma 2.10.
Identify the contact manifold (V , ξ) with a level set {T } × V in the coni-

cal end for sufficiently large T > t1, and choose an almost complex structure
J close to {T } × V that makes ({T } × V, ξ) pseudoconvex and is tamed by
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d(tα). We require this J to be of the explicit form given in [47] in a neigh-
borhood of the binding {T }×B , which means the following. We can identify
a neighborhood of {T } × B symplectically with an open set in C

2 × T ∗B ,
with symplectic structure ω0 ⊕ dλcan, such that the part of the bLob inter-
secting this neighborhood lies in C

2 ×B . The desired almost complex struc-
ture is then the product of the standard structure i on the first factor with a
tamed almost complex structure on the cotangent bundle. This choice sim-
plifies the behavior of local holomorphic disks significantly: indeed, any disk
lying entirely in this neighborhood and having boundary on the bLob projects
to disks in C

2 and T ∗B , and the latter has boundary in the zero-section and
must therefore be constant for energy reasons. In this way one can easily un-
derstand small disks close to the binding of the bLob, and in particular one
obtains the existence of a Bishop family of holomorphic disks close to B , as
well as the important fact that any holomorphic disk intersecting this model
neighborhood must be part of the Bishop family. We refer to [47] for the full
details.

Similarly, J should agree on a neighborhood of {T } × ∂N with an almost
complex structure that we will describe in Lemma 4.7 below. As explained
in Lemma 2.9, we can ensure by increasing T that the chosen J will not
only be tamed by d(tα) but also by Ω + d(tα) close to {T } × V . Denote the
symplectic manifold obtained by attaching [0, T ] × V to W by Ŵ . We use
contractibility of the space of tamed almost complex structure to extend J to
the interior of the weak filling Ŵ .

As in [47], we now study the connected moduli space of J -holomorphic
disks

u : (D2, ∂D2)→ (
Ŵ , {T } × (N \B))

emerging from a so-called Bishop family of disks in a neighborhood of some
point on B . The boundaries of these disks necessarily intersect each page of
the Legendrian open book exactly once.

We first establish the energy bound required for Gromov compactness. Any
holomorphic disk u in the moduli space under consideration can be capped
with a disk D lying in the bLob so that u together withD bounds a 3-ball B3.
Using Stokes’ theorem,

0 =
∫
B3
dω=

∫
u

ω+
∫
D

ω,

it then follows that the energy of the holomorphic disk is equal to minus the
symplectic area ofD ⊂N . But since the restriction of ω to the bLob coincides
with T dα in our construction, this quantity can be determined by integrating
T α over the common boundary of the two disks u and D:

Eω(u)=
∫
u

ω= −
∫
D

T dα = T
∫
∂u

α.
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Since the foliation on the bLob is given by ξ ∩TN = kerdθ , there is a contin-
uous function f : N → R that is everywhere nonnegative and vanishes only
on B ∪ ∂N such that α|TN = f dθ . The energy of u is thus bounded by

Eω(u)= T
∫
∂u

α ≤ 2πT max
p∈N f (p).

This leads to the same contradiction to Gromov compactness as in the
proof for strong fillings [47], because by Lemma 4.7 below, the boundaries
of the holomorphic disks are trapped between B and ∂N , and the topology of
the Legendrian open book prevents bubbling of disks. �

Lemma 4.6 Suppose N is a manifold with boundary carrying a relative open
book (B, θ) which embeds as a bLob into two contact manifolds (V1, ξ1) and
(V2, ξ2). Then there are neighborhoods U1 ⊂ V1 and U2 ⊂ V2 of ∂N and a
contactomorphism Φ : (U1, ξ1)→ (U2, ξ2) such that Φ(N ∩U1)=N ∩U2.

Proof Denote the two embeddings by ιj : N ↪→ Vj for j = 1,2. The first step
will be to prove the existence of contact forms α1 and α2 for ξ1 and ξ2 with
ι∗1α1 = ι∗2α2 near ∂N . Start with any pair of contact forms α1 and α2. By the
definition of a bLob, there are functions h1 and h2 which vanish exactly along
∂N such that ι∗jαj = hj dθ . We will prove shortly that h1 and h2 are both
transverse to zero along ∂N . The implicit function theorem then guarantees
the existence of a positive function f on V with h1 = f h2, allowing us to
replace α2 by f α2. The key point is that ι∗j dαj = dhj ∧ dθ , so dhj cannot
vanish anywhere along ∂N , otherwise TN would be an isotropic subspace of
dimension n+ 1 inside the symplectic vector space (ξj , dαj ) of dimension
2n.

We now turn to the construction of the desired contactomorphism. We fix
near ∂N a vector field Xr tangent to kerdθ and a vector field Xθ tangent to
∂N such that dθ(Xθ)= 1. Then dαj (Xr,Xθ)= ι∗j dαj (Xr,Xθ)= dh(Xr) is
positive. We denote by F the foliation on ∂N induced by the pages, meaning
TF = T ∂N ∩ ker dθ . Its tangent space is dαj -orthogonal to the symplec-
tic subspace span(Xr,Xθ), so we can construct for each j = 1,2 a complex
structure Jj on ξj which is compatible with dαj , such thatXθ = JjXr and the
dαj -symplectic complement of span(Xr,Xθ) in ξj is TF ⊕JjTF . Denoting
the Reeb vector field of αj by Rj , we obtain the decomposition

T Vj |∂N = span(Xr,Xθ)⊕ TF ⊕ JjTF ⊕ span(Rj ).

The first two summands span TN |∂N , and each νj := JjTF ⊕ span(Rj ) can
be identified with the normal bundle ofN . Let τj be the restriction to νj of the
exponential map for some auxilliary Riemannian metric. Each τj allows us to
identify a tubular neighborhood of N with a neighborhood of the zero section
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in νj . The bundles ν1 and ν2 are related by the bundle map Φ := Ψ ⊕ ΦR ,
where ΦR sends t ·R1 to t ·R2 and Ψ = φ−1

2 ◦ φ1, with φj : JjTF → T ∗F
denoting the interior product with dαj . Thus τ2 ◦Φ ◦ τ−1

1 combines with the
identity on N to give a diffeomorphism between tubular neighborhoods of N
in V1 and V2 near ∂N . This map pulls α2 back to α1 and dα2 to dα1 for every
p ∈ ∂N , so that the linear interpolation between both forms is a contact form,
and we may apply the Moser trick.

Denoting by βt with t ∈ [0,1] the interpolation between the pulled back
contact forms, the Moser vector field Yt is the unique solution to the two
equations

βt(Yt )= 0 and (ιYt dβt )|kerβt = −β̇t |kerβt .

From this we see that Yt vanishes along ∂N , so that the isotopy ϕt is well
defined on a small neighborhood U of ∂N and fixes ∂N pointwise. We now
observe that Yt |N lies in kerdθ , so that the isotopy preserves N . Indeed, if
Yt had any component in the complement of the Lagrangian subspace kerdθ ,
it would pair via dβt with a vector in kerdθ and thus be different from −β̇t ,
which vanishes on TN . �

We can now construct a suitable almost complex structure on a model
which will be universal according to the preceding lemma.

Lemma 4.7 Assume (W,ω) has a conical end, and identify (V , ξ) with a
level set {T } × V of this conical end. Let α be any contact form for ξ . If
N is a bLob in V , then we can choose an almost complex structure J0 in a
neighborhood UW ⊂W of the boundary ∂N with the following properties:

• J0 is compatible with the symplectization form d(tα) and it restricts to ξ .
• If J is any almost complex structure onW that makes (V , ξ) pseudoconvex

and for which J |UW = J0, then every compact J -holomorphic curve

u : (Σ, ∂Σ)→ (W,N)

that intersects UW and whose boundary lies in the bLob must be constant.

Proof The first step is to construct a model neighborhood for ∂N which is a
bundle with exact symplectic fibers and holomorphic projection map. Let F0
be a fiber of the map θ |∂N : ∂N → S

1. Then F0 is the intersection of ∂N with
a page of the bLob, and ∂N is the mapping torus of some diffeomorphism
ψ : F0 → F0. We consider the T ∗F0-fibration

π : C × R × (
R × T ∗F0

)
/∼ → C × T ∗

S
1,

(z, r; s;q,p) �→ (z; s, r),
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where we use the equivalence relation (z, r; s;q,p) ∼ (z, r; s + 1;ψ(q),
(Dψ−1)∗p) on the total space.

Since (ψ, (Dψ−1)∗) is symplectic, we get a symplectic structure dλcan
on the vertical bundle kerDπ . Let JF be a compatible complex structure on
this bundle. Note that the directions ∂r , and ∂s are well defined, so that we
can extend JF to an almost complex structure J = i ⊕ i ⊕ JF on the total
space, where i∂r = ∂s , and i∂s = −∂r . By construction, π is holomorphic
with respect to J upstairs and i ⊕ i on C × T ∗

S
1.

The next step consists in finding a J -plurisubharmonic function on a neigh-
borhood of {1}×{0}×(R× F0)/∼, where F0 denotes the 0-section in T ∗F0.
Define a function h on C×R× (R×T ∗F0)/∼ by using a metric on the vec-
tor bundle C×R× (R×T ∗F0)/∼ over C×R× (R× F0)/∼, and defining
h(v)= ‖v‖2/2 for every vector v in this bundle. In a bundle chart, we obtain

h(z, r; s;q,p)= 1

2

∑
i,j

gi,j (z, r; s;q)pipj ,

and it follows that ddch= d(dh◦J ) simplifies on the 0-section of this bundle
to

ddch=
∑
i,j

gi,j dpi ∧ (dpj ◦ J ).

We claim now that the function

F : C × R × (
R × T ∗F0

)
/∼ → [0,∞),

(z, r; s;q,p) �→ |z|2 + r2 + h(z, r; s;q,p)
is J -plurisubharmonic in a neighborhood of {1} × R × (R × F0)/ ∼. Here
one just needs to check that −ddcF simplifies near {1} × R × (R × F0)/∼
to

−ddcF = 4dx ∧ dy + 2dr ∧ ds − ddch,
where x = Re z and y = Im z. This 2-form is positive on complex lines.

We find a neighborhood of {x = 1} in the level set F−1(1), where the re-
striction of the 1-form α := −dF ◦J defines a contact structure. Furthermore,
the submanifold N ′ ⊂ F−1(1) given by the embedding

[0, ε)× (R × F0)/∼ ↪→ C × R × (
R × T ∗F0

)
/∼

(r; s;q) �→ (√
1 − r2, r; s;q,0)

has N ′ ∩ {r = 0} as boundary and inherits a singular Legendrian folia-
tion given by the form r ds. This foliation is diffeomorphic to the one
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Fig. 1 The neighborhood of the boundary ∂N can be thought of as a T ∗F0-bundle. We obtain
a simple model by projecting this neighborhood and the holomorphic curve u to the base space.
The holomorphic curve π ◦u has to be cut off and will have two types of boundary: the original
one that sits in the bLob and the boundary where the curve has been cut off. Along the cut-off
boundary the x-value is minimal, and there will be a point where the y-value also becomes
extremal, but this contradicts the boundary point lemma showing that the x- and y-values of u
have to be constant

on the bLob N in the collar neighborhood of ∂N , so that by Lemma 4.6
above, there is a small relatively open set UW ⊂ F−1((0,1]) containing
{(1,0)} × (R × F0)/ ∼ in the model such that ∂+U := UW ∩ F−1(1) with
contact form α is contactomorphic to a neighborhood UV of ∂N in V . Note
that for δ > 0 sufficiently small, the level set {x = 1 − δ} is a compact hyper-
surface with boundary in ∂+U , and we will set ∂−U := {x = 1 − δ} ∩ UW ,
writing from now on UW for the compact set UW ∩ {x ≥ 1 − δ}.

Extending this contactomorphism, we can embed UW into the symplec-
tic manifold W such that ∂+U lies in {T } × V , and N ′ ∩ UW is mapped to
N ∩UV . Choose the almost complex structure J on UW constructed above,
and extend it to one that makes the contact manifold (V , ξ) pseudoconvex.

Now let u : (Σ, ∂Σ)→ (W,N) be any J -holomorphic curve that inter-
sects the neighborhood UW . Our aim is to show that u must be constant.
Define G := u−1(UW) and write u|G for the restriction of u. Perturbing δ
slightly, we can assume that u−1(∂−U)⊂G is a properly embedded subman-
ifold so that G has piecewise smooth boundary. Project the curve u|G via

π : C × R × (
R × T ∗F0

)
/∼ → C × T ∗

S
1,

and note that π ◦ u|G is a holomorphic map with respect to the standard struc-
ture (see Fig. 1). The boundary π ◦ u(∂G) lies in the union of

π
(
∂+U ∩N ′)= {

(z; s, r) | Re z≥ 1 − δ, Im z= 0, r = −
√

1 − |z|2}

and

π(∂−U)=
{
(z; s, r) | Re z= 1 − δ, |z|2 + r2 ≤ 1

}
.
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Since both coordinate functions x = Re z and y = Im z are harmonic, it
follows that the maxima and minima are both attained on ∂G, so that if we
assume y is not everywhere equal to 0, then u must intersect π(∂−U), and
in particular the minimum of x will be 1 − δ. Let z0 ∈ ∂G be a point for
which u(z0) has both minimal x-coordinate and extremal y-coordinate. At
this point, it follows that the derivative of π ◦ u|G in the ∂G-direction has
vanishing x and y-coordinates. Using the Cauchy-Riemann equation at the
point z0, we then see that the derivatives also vanish in the radial direction,
thus contradicting the boundary point lemma, making both x and y constant
on G.

It follows now that u is completely contained in UW ∩ {z = x0}, and
from this we immediately recover that the r-coordinate of u|∂Σ is equal

to −
√

1 − x2
0 . The r-coordinate is also harmonic, and it follows that π ◦ u

must have constant r-coordinate everywhere, since both its maximum and its
minimum are equal, and the Cauchy-Riemann equation then implies that the
s-coordinate is also constant. This finishes the proof, because it follows that
the projection π ◦u is constant, so that u is completely contained in a fiber of
π that is symplectomorphic to T ∗F0 with exact symplectic form dλcan, but
since JF was compatible with dλcan, and since the boundary of u lies in the
0-section of T ∗F0, it follows that u has no dλcan-energy, and hence must be
constant. �

5 Giroux domains

While the filling obstructions we’ve discussed so far (namely bLobs and neg-
ative stabilizations) were previously understood in less general forms, in this
section we shall introduce a subtler class of filling obstructions that gener-
alizes Giroux torsion in dimension three and is completely new in higher
dimensions. The fundamental objects in this discussion are called Giroux
domains and ideal Liouville domains. As was sketched in the introduction,
an ideal Liouville domain is a natural compactification of a complete Liou-
ville manifold, and its product with S

1 naturally inherits a contact structure,
producing what we call a Giroux domain. The definitions and elementary
properties of these objects, including a blow-down operation along boundary
components, are due to Giroux but cannot yet be found anywhere in the liter-
ature, so we will discuss them in some detail in Sect. 5.2 and the beginning
of Sect. 5.3. Before that, in Sect. 5.1, we introduce for later convenience a
slightly more general context for the blow-down operation. Some explicit ex-
amples of blown down Giroux domains have already appeared in the work
of Mori [46], who showed that his examples always contain a plastikstufe.
The notion of the bLob allows us to generalize this result using a purely topo-
logical description that we will explain in Sect. 5.4. The last subsection, cul-



Weak and strong fillability in higher dimensions 315

minating with the statement of Theorem 5.13, defines a filling obstruction
in terms of Giroux domains which refines Theorem B from the introduction
and sets the stage for our higher dimensional generalization of Giroux torsion
in Sect. 9.

5.1 Round hypersurfaces

We say that an oriented hypersurface H in a contact manifold (V , ξ) is a
ξ -round hypersurface modeled on some closed contact manifold (M, ξM) if
it is transverse to ξ and admits an orientation preserving identification with
S

1 ×M such that ξ ∩ TH = T S
1 ⊕ ξM . In this definition, the word “round”

is used as in “round handle”. In general, the orientation of a round hypersur-
face may be chosen at will, and we shall assume in particular that whenever
H is a component of ∂V , its orientation is the opposite of the natural bound-
ary orientation; see Remark 5.2 below. Observe that in dimension three, a
ξ -round hypersurface is simply a pre-Lagrangian torus with closed character-
istic leaves.

Lemma 5.1 Any ξ -round hypersurface H = S
1 × M in the interior (or

boundary) of (V , ξ) has a neighborhood (−ε, ε)×H (or [0, ε)×H respec-
tively) on which ξ can be defined by the contact form αM + s dt where s is the
coordinate on the interval, t the coordinate in S

1 and αM is a contact form
for ξM .

Proof Fix any tubular neighborhood (or collar neighborhood) of H with co-
ordinate t . The 1-form described defines a contact form nearH which induces
the same hyperplane field as ξ on H , hence they are isotopic relative to H .
Pulling back the neighborhood under this isotopy gives the desired neighbor-
hood. �

Suppose H is a ξ -round boundary component of (V , ξ), with orientation
opposite the boundary orientation, and consider the collar neighborhood from
the preceding lemma. We now explain how to modify (V , ξ) by blowing down
H to M . Let D be the disk of radius

√
ε in R

2. The map Ψ : (reiθ ,m) �→
(r2, θ,m) is a diffeomorphism from (D \ {0})×M to (0, ε)× S

1 ×M which
pulls back αM+s dt to the contact form αM+r2 dθ . Thus we can glueD×M
to V \H to get a new contact manifold in which H has been replaced by M .
This process is equivalent to performing a contact cut of V with respect to
the (local) θ -action, as described in [40].

Remark 5.2 Topologically, the blow down operation glues D
2 ×M to V via

the natural identification of ∂(D2 ×M) with S
1 ×M =H ⊂ V . This is why

it is appropriate to assign to H the reverse of its natural boundary orientation
with respect to V .
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5.2 Ideal Liouville domains

The following notion is of central importance for the new filling obstructions
that we will introduce.

Definition (Giroux) Let Σ be a compact manifold with boundary, ω a sym-
plectic form on the interior Σ̊ ofΣ and ξ a contact structure on ∂Σ . The triple
(Σ,ω, ξ) is an ideal Liouville domain if there exists an auxiliary 1-form β on
Σ̊ such that:

• dβ = ω on Σ̊ ,
• For any smooth function f : Σ → [0,∞) with regular level set ∂Σ =
f−1(0), the 1-form fβ extends smoothly to ∂Σ such that its restriction
to ∂Σ is a contact form for ξ .

In this situation, β is called a Liouville form for (Σ,ω, ξ).

Remark 5.3 In the above definition, the space of possible auxiliary Liouville
forms β is contractible. Indeed, we first observe that if the second condition
is satisfied for any given function f1 as specified in the definition, then it is
also satisfied for any other function f2 with the required properties, as we
then have f2 = gf1 for some smooth function g :Σ → (0,∞). Thus we can
fix a suitable function f and see that the set of admissible primitives β on Σ̊
is convex. An interesting variation on the above definition is obtained by also
regarding ξ as auxiliary data: this still leaves a contractible space of auxiliary
choices, but it is slightly less convenient for our purposes.

Remark 5.4 Note that for β and f as in the above definition, there is no re-
quirement that d(fβ) should be symplectic, and in general it is not. It is true
however that one can always find (using Lemma 5.5 below) suitable func-
tions f for which fβ also defines a Liouville form on Σ̊ , and Liouville
forms of this type arise naturally in certain examples, cf. Example 5.7 and
Remark 5.11.

One can check that a Liouville form β for an ideal Liouville domain Σ
defines on the interior of Σ the structure of a complete Liouville manifold.
This means that the flow of the vector field X which is ω-dual to β is com-
plete, and in particular the interior ofΣ has infinite volume with respect to ω.
This follows from Lemma 5.5 below, which describes precisely what happens
near ∂Σ . For our purposes, one may regard the statement of this lemma as
part of the definition of an ideal Liouville domain, but keeping in mind that it
is already implied by the definition above.

Lemma 5.5 (Giroux) Suppose (Σ,ω, ξ) is an ideal Liouville domain with
auxiliary Liouville form β , and let X denote its ω-dual vector field, i.e. the
unique vector field on Σ̊ that satisfies ιXω= β .
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Choose any smooth function f :Σ → [0,∞) with regular level set ∂Σ =
f−1(0). Then the vector field Xf := 1

f
X on Σ̊ extends smoothly over ∂Σ so

that it points transversely outward. Moreover, a collar neighborhood of ∂Σ
can be identified with (0,1] × ∂Σ with coordinate s ∈ (0,1] such that β =

1
1−s α on (0,1)× ∂Σ , where α is a contact form for ξ .

Proof By definition, the 1-form γ := fβ extends smoothly to Σ and re-
stricts on the boundary ∂Σ to a contact form for ξ . The smooth 2n-form
μ := f dγ n − ndf ∧ γ ∧ dγ n−1 on the domain Σ simplifies on the inte-
rior Σ̊ to

μ= f n+1ωn,

and is hence a volume form on Σ̊ . It is also nondegenerate along ∂Σ , since
f dγ n vanishes and γ ∧ dγ n−1 is a volume form on T (∂Σ) = kerdf . It
follows that there is a unique vector field Xf on Σ satisfying the equation

ιXf μ= nγ ∧ dγ n−1.

Using ιXωn = nβ∧dβn−1 on the interior Σ̊ , one can check thatXf |
Σ̊

= 1
f
X,

and since the first term of μ vanishes at ∂Σ and f decreases in the outward
direction, it follows that Xf points transversely outward through ∂Σ .

We now construct the collar neighborhood. The basic idea is to follow the
flow of Xf starting from ∂Σ , but for a particular choice of the function f :
Σ → [0,∞) with regular level set f−1(0)= ∂Σ . Starting from an arbitrary
function f of this type, any other such function h can be written as h = gf
for some positive function g on Σ . We then seek h such that the vector field
Xh = 1

h
X satisfies

LXh(hβ)= 0.

This condition is equivalent to dh(Xh) = −1, which leads to the ordinary
differential equation dg(Xf )= −1+df (Xf )

f
g. The function f vanishes along

∂Σ , and by the construction above, we see that df (Xf ) = −1 on ∂Σ , thus
the differential equation is well behaved at ∂Σ and can be solved with initial
condition g|∂Σ ≡ 1.

We denote by α the contact form induced by hβ on ∂Σ . Since ιXhhβ = 0
and LXhhβ = 0, the flow ϕXht ofXh for negative t pulls hβ back to α. Further,
from dh(Xh)= −1 we obtain h ◦ ϕXht = −t , so

(
ϕ
Xh
t

)∗
(hβ)= −t · (ϕXht )∗

β = α.
Reparameterizing the time variable, we finally obtain the map Φ(s,p) :=
ϕ
Xh
s−1(p)which gives the desired collar neighborhood with (1−s)Φ∗β = α. �
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5.3 Giroux domains

Given an ideal Liouville domain (Σ,ω, ξ) and a Liouville form β , one can
endowΣ×R with the contact structure ker(f dt +fβ) for any smooth func-
tion f : Σ → [0,∞) with regular level set f−1(0) = ∂Σ . Over the interior
of Σ , ker(f dt + fβ)= ker(dt + β), so one recovers the standard notion of
the contactization of the Liouville manifold defined by β . On the boundary
we have f dt = 0, so the contact hyperplanes are ξ ⊕ TR. Any two contact
structures obtained in this way from different Liouville forms are isotopic
relative to the boundary. Since the contact forms constructed on Σ × R are
R-invariant, one can just as well replace R by S

1. We will refer to Σ × S
1

with the contact structure defined in this way as the Giroux domain associated
to (Σ,ω, ξ); see Example 5.7 below for our main motivation. Observe that
the boundary is a ξ -round hypersurface modeled on (∂Σ, ξ).

Remark 5.6 The above is a special case of a more general construction, also
due to Giroux, known as the suspension of a symplectomorphism ϕ with com-
pact support in Σ̊ . The result of this construction also has ξ -round boundary,
and blowing it down gives the contact manifold associated to the abstract
open book (Σ,ϕ). Observe that unlike Giroux’s original construction of the
contact structure associated to an open book (see e.g. in [25, Sect. 7.3]), this
construction does not require any tweaking near the binding.

In a different direction, one can generalize the construction of Giroux do-
mains to allow for nontrivial circle bundles over Σ using ideas from [11].

Example 5.7 We consider

Σ = S
1 × [0, π], ω= 1

sin2 s
dθ ∧ ds,

where s is the coordinate in [0, π] and θ the coordinate in S
1, carrying the triv-

ial contact structure ker±dθ . One can take as a Liouville form β = cot s dθ .
Setting f (θ, s)= sin s, we get the contact form f (θ, s) ·(β+dt)= cos s dθ+
sin s dt on Σ × S

1. Thus the Giroux domain associated to this ideal Liouville
domain is a Giroux π -torsion domain.

5.4 Blowing down

Let M be a union of connected components of the boundary of a Giroux
domainΣ×S

1. These components are ξ -round hypersurfaces and can thus be
blown down as described in Sect. 5.1. We shall denote the resulting manifold
by (Σ × S

1)//M . It inherits a natural contact structure for which each of
the blown down boundary components becomes a codimension two contact
submanifold.
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Example 5.8 Continuing the annulus example, a Giroux π -torsion domain
with one boundary component blown down is a so-called Lutz tube, i.e. the
solid torus that results from performing a Lutz twist along a transverse knot.
With both boundary components blown down, it is the standard contact struc-
ture on S

2 × S
1.

In the above example, when one boundary component is blown down but
not the other, the resulting domain contains an overtwisted disk. We now
generalize this to higher dimensions.

Proposition 5.9 Suppose (V , ξ) is a contact manifold containing a subdo-
mainG with nonempty boundary, obtained from a Giroux domain by blowing
down at least one boundary component. Then (V , ξ) contains a small bLob
(cf. Remark 4.5).

The bLob in the above proposition will come from a Lagrangian subman-
ifold in an ideal Liouville domain (Σ,ω, ξ). We first need a technical def-
inition describing how these submanifolds will be allowed to approach the
boundary. We say that a submanifold L properly embedded inside Σ and
transverse to the boundary is a Lagrangian with cylindrical end if:

• L̊ is Lagrangian in Σ̊ ,
• ∂L is Legendrian in ∂Σ ,
• There is a Liouville form β whose ω-dual vector field is tangent to L near
∂Σ . More precisely, there is a collar (0,1] × ∂Σ as in Lemma 5.5 which
intersects L along (0,1] × ∂L.

We will say that the Liouville form in this definition is adapted to L.

Lemma 5.10 Let (Σ,ω, ξ) be an ideal Liouville domain. If L is a La-
grangian with cylindrical end in Σ , then L̂ := L× S

1 inside the contactiza-
tion Σ × S

1 is isotopic to a maximally foliated submanifold whose singular
set is its boundary and whose foliation is otherwise defined via a fibration

ϑ : L̂→ S
1, (l, t) �→ F(l)+ t,

for some smooth function F : L → S
1 that is constant on a neighborhood

of ∂L.

Proof We first assume that there is a Liouville form β adapted to L which
induces a rational cohomology class on L. This implies there is a real number
�> 0 such that �

−1 times the cohomology class of the restriction of β to L
is integral: �

−1[i∗β] ∈H 1(L;Z). First note that �udt + uβ defines a contact
structure isotopic to ker(udt+uβ) relative to the boundary of the Giroux do-
main G :=Σ × S

1. Furthermore, the vector field constructed in the standard
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proof of Gray’s theorem vanishes along ∂Σ × S
1, so this isotopy is actually

tangent to the identity along the boundary. We shall now prove the lemma
using this contact form (and no further isotopy of L× S

1).
In the interior of G, the contact structure is defined by �dt + β , which

restricts to η = �dt + i∗β on L̂. Since η is closed, L̂ is foliated. Moreover,
�dt never vanishes in L̂, so there is no singularity there. Along the boundary,
the contact structure is defined by uβ , whose restriction to L̂ vanishes, thus
the singularities are as claimed.

We now define the fibration ϑ using Tischler’s construction (cf. [54]). Let
(l0, t0) be any base point in the interior of L̂. We define ϑ(l, t) = 1

�

∫
γ
η,

where γ is any path from (l0, t0) to (l, t). Since η is closed, Stokes’ theorem
guarantees that this is well defined modulo the integral of η along loops based
at (l0, t0). If (γL, γt ) is such a loop, then the integral over it is 〈[β], [γL]〉 +
�〈[dt], [γt ]〉, which belongs to �Z + �Z = �Z, thus ϑ has a well-defined
value in S

1 = R/Z. Observe that ϑ(l, t)= ϑ(l,0)+ t , and two points (l1, t1)
and (l2, t2) lie in the same connected component of a fiber of ϑ if and only
if they lie on the same leaf of the Legendrian foliation. On a suitable collar
neighborhood of the boundary, the 1-form η simplifies to �dt , so the behavior
of ϑ is also as claimed.

We now explain how to enforce the rationality assumption by perturbation
of the Liouville structure. Suppose β0 is any Liouville form adapted to L,
in which case β0|T L is a closed 1-form that vanishes on a collar neighbor-
hood of ∂L. For every ε > 0, we will find a closed 1-form λL on L with
compact support in L̊ and ‖λL‖ < ε (in the C 0-norm with respect to a fixed
auxiliary metric on L) such that i∗β0 + λL represents a rational cohomology
class on L. Since the restriction of β0 to L vanishes near ∂L, its cohomology
class belongs to the kernel K of the map H 1

dR(L)→ H 1
dR(∂L) induced by

inclusion. Let α1, . . . , αp be a set of closed 1-forms representing a basis of
the image in K of H 1(L;Z). By the definition of K , we can assume that all
these 1-forms vanish near the boundary of L. The restriction of β0 to L can
be written as

∑
ciαi + df for some real coefficients ci and some function f .

Since Q is dense in R, one can find arbitrarily small numbers εi such that
ci + εi is rational for all i and then set λL =∑

εiαi .
We extend λL to a tubular neighborhood U of L in Σ by pulling it back to

the normal bundle, and multiply it by a fixed cutoff function ρ : U → [0,1]
that has compact support on U and equals 1 on L. In this way we obtain a
1-form β ′

0 given by β0 + ρλL on U that extends smoothly to β0 on Σ \ U ,
and whose restriction to L yields the desired closed 1-form with compact
support in L̊ that represents a rational cohomology class. We can choose ε
above arbitrarily small, hence we can assume that all forms in the segment
between dβ0 and dβ ′

0 are symplectic. The corresponding contact structures
are then isotopic relative to Σ \U and ∂Σ . �
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Proof of Proposition 5.9 Let (Σ,ω, ξ∂) denote the ideal Liouville domain
used to construct G. We will construct a Lagrangian L ⊂ Σ with cylindri-
cal end and blow down the foliated submanifold of Lemma 5.10 to find the
desired bLob. If dimΣ = 2, it suffices to take for L an embedded path be-
tween two distinct boundary components of Σ , where one corresponds to a
blown down boundary component of G and the other does not. More gener-
ally, choose two disjoint boundary parallel Lagrangian disks Lbd and Lp with
cylindrical ends in Σ such that ∂Lbd is a Legendrian sphere in one of the
blown down boundary components of ∂Σ , and ∂Lp is a Legendrian sphere in
another boundary component that is not blown down. By a symplectic isotopy
supported in a tube connecting them, we can deform Lp away from ∂Lp so
that it intersects Lbd transversely.

One can remove transverse self-intersection points between two La-
grangians L and L′ using [51]. This construction works by removing for each
intersection two small balls from L and L′ containing this point, and glu-
ing in a tube diffeomorphic to [−ε, ε] × S

n−1 joining the boundaries of the
two balls. In fact, the construction is explicit: choose a Darboux chart around
the intersection point such that L and L′ are represented by the n-planes
{(x1, . . . , xn,0, . . . ,0)} and {(0, . . . ,0, y1, . . . , yn)} respectively. Remove a
disk of radius ε around 0 in both planes and glue in the tube

(−ε, ε)× S
n−1 ↪→ R

2n,

(t;x1, . . . , xn) �→
(
ρ1(t) · (x1, . . . , xn);ρ2(t) · (x1, . . . , xn)

)
for a smooth function ρ1 : (−ε, ε)→ [0,1] that is 0 for values between −ε
and −ε/2, has positive derivative for t >−ε/2 and is the identity close to +ε.
Define ρ2(t) := ρ1(−t). This defines a Lagrangian manifold that glues well
to L \ ε · D

n for t close to ε and to L′ \ ε · D
n for t close to −ε.

The symplectic isotopy and the surgery process both took place far away
from the boundary, so we obtain by this construction a Lagrangian that still
has cylindrical ends. Lemma 5.10 then produces a foliated submanifold which
becomes a bLob in the blown down Giroux domain. This bLob also embeds
into a ball, because L is obtained from two Lagrangian disks parallel to the
boundary and a thin tube that lies in the neighborhood of an embedded path,
so that L lies in a ball of the form [0,1] × D

2n−1 ⊂Σ . Moving to the con-
tactization and blowing down the corresponding boundary components then
gives a neighborhood diffeomorphic to a ball D

2 × D
2n−1 that contains the

bLob. �

5.5 Convex hypersurfaces and gluing

Recall that a hypersurface Σ in a contact manifold (V , ξ) is said to be
ξ -convex (cf. [28]) if there is a contact vector field X transverse to Σ . In
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this situation, the dividing set associated to Σ and X is the hypersurface Γ in
Σ where X is tangent to ξ . Observe that since the vector field X corresponds
to a “contact Hamiltonian” function and can thus be cut off away from Σ , its
flow identifies a neighborhood of Σ with Σ × R, with ξ defined by γ + udt
where t denotes the coordinate on R, γ is a 1-form on Σ and u a function
on Σ . It follows from the computations in [28] that the 1-form γ induces
a contact structure ξΓ on the dividing set Γ and, if Σ0 denotes the closure
of a connected component of Σ \ Γ , (Σ0, d(γ /u), ξΓ ) is an ideal Liouville
domain whose contactization is Σ0 × R equipped with the restriction of ξ .

If Σ is closed then Γ cannot be empty, otherwise Σ would be a closed
exact symplectic manifold, contradicting Stokes’ theorem. So in this case,
Σ \ Γ has at least one component on which u is positive and one where it is
negative. One can then seeΣ×R as several contactizations of ideal Liouville
domains glued together. Going in the opposite direction, we can take advan-
tage of the fact that boundary components of Giroux domains are ξ -round
hypersurfaces and use Lemma 5.1 to glue together any two Giroux domains
along boundary components modeled on isomorphic contact manifolds.

Remark 5.11 One can check that the ideal Liouville domain (Σ0, d(γ /u), ξΓ )

defined above depends only on the contact structure and contact vector field
near Σ , not on the choice of contact form. For an arbitrary choice of contact
form, one cannot expect dγ itself to be symplectic everywhere on Σ \Γ , but
analogously to Remark 5.4, one can always choose a contact form for which
this is true. The surface Σ × {const} ⊂ Σ × S

1 in Example 5.7 provides a
popular example.

5.6 Obstructions to fillability

We now want to state a non-fillability result. As preparation, note that any em-
bedding of the interior of a Giroux domain IΣ := Σ̊ × S

1 into a contact man-
ifold (V , ξ) determines a distinguished subspace H1(Σ;R) ⊗ H1(S

1;R) ⊂
H2(V ;R). We call its annihilator inH 2

dR(V ) the space of cohomology classes
obstructed by IΣ , and we denote it by O(IΣ). Classes in O(IΣ) are exactly
those whose restriction to IΣ can be represented by closed 2-forms pulled
back from the interior of Σ . If N ⊂ (V , ξ) is any subdomain resulting from
gluing together a collection of Giroux domains IΣ1, . . . , IΣk and blowing
down some of their boundary components, then we define its obstructed sub-
space O(N)⊂H 2

dR(V ) to be O(IΣ1)∩ · · · ∩ O(IΣk). We will say that such a
domain is fully obstructing if O(N)=H 2

dR(V ).

Example 5.12 If Σ is homeomorphic to [−1,1] ×M for some closed mani-
fold M , and N is the result of blowing down one boundary component of the
Giroux domain IΣ , then any embedding ofN is fully obstructing. Indeed, any
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class in H1(Σ;R)⊗H1(S
1;R) can be represented by a cycle in the M × D

2

part of the blown down Giroux domain and, of course, H1(S
1;R) becomes

trivial in H1(D
2;R). For instance, a Lutz tube (see Example 5.8) in a contact

3-manifold is always fully obstructing, and the same is true for the higher
dimensional generalization that we will discuss in Sect. 9.

Theorem 5.13 Suppose (V , ξ) is a closed contact manifold containing a sub-
domain N with nonempty boundary, which is obtained by gluing and blowing
down Giroux domains.

(a) If N has at least one blown down boundary component then it contains a
small bLob, hence (V , ξ) does not have any (semipositive) weak filling.

(b) If N contains two Giroux domains Σ+ ×S
1 andΣ− ×S

1 glued together
such that Σ− has a boundary component not touching Σ+, then (V , ξ)
has no (semipositive) weak filling (W,ω) with [ωV ] ∈ O(Σ+ × S

1).

In particular (V , ξ) has no (semipositive) strong filling in either case.

The first statement in this theorem follows immediately from Proposi-
tion 5.9 and Theorem 4.4. We will prove the second in Sect. 7, essentially
by using the symplectic cobordism construction of the next section to reduce
it to the first statement, though some care must be taken because the filling
obtained by attaching our cobordism to a given semipositive filling need not
always be semipositive. We will also give in Sect. 7 an alternative argument
for both parts of Theorem 5.13 using J -holomorphic spheres: this requires
slightly stricter homological assumptions than stated above, but has the ad-
vantage of not requiring semipositivity at all, due to the polyfold machinery
recently developed in [37].

Without delving into the details, we should mention that we also expect
the above filling obstruction to be detected algebraically in Symplectic Field
Theory via the notion of algebraic torsion defined in [39]. Recall that a con-
tact manifold is said to be algebraically overtwisted if it has algebraic 0-
torsion (this is equivalent to having vanishing contact homology), but there
are also infinitely many “higher order” filling obstructions known as alge-
braic k-torsion for integers k ≥ 1. It turns out that one can always choose the
data on a Giroux domain Σ × S

1 so that gradient flow lines of a Morse func-
tion on Σ give rise to holomorphic curves in the symplectization of Σ × S

1,
and these can be counted in SFT. The expected result is as follows:

Conjecture 5.14 Suppose (V , ξ) contains a subdomain N as in Theo-
rem 5.13, choose any c ∈ O(N) and consider SFT with coefficients in
R[H2(V ;R)/ker c]. Then (V , ξ) has algebraic 1-torsion, and it is also alge-
braically overtwisted if N contains any blown down boundary components.
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6 Surgery along Giroux domains

6.1 A handle attachment theorem

In this section, we explain a surgery procedure which removes the interior
of a Giroux domain from a contact manifold and blows down the resulting
boundary. This surgery corresponds to a symplectic cobordism that can be
glued on top of any weak filling satisfying suitable cohomological conditions,
leading to a proof of Theorem 5.13.

Suppose (V , ξ) is a (2n−1)-dimensional contact manifold without bound-
ary, containing a Giroux domain G⊂ V , possibly with some boundary com-
ponents blown down. Removing the interior of G, the boundary of V \G is
then a ξ -round hypersurface

∂(V \G)=M × S
1,

where (M, ξM) is a (possibly disconnected) closed contact manifold. We can
thus blow it down as described in Sect. 5.1, producing a new manifold

V ′ := (V \G)//M
without boundary, which inherits a natural contact structure ξ ′.

Topologically, the surgery taking (V , ξ) to (V ′, ξ ′) can be understood as a
certain handle attachment. We now give a point-set description of this handle
attachment which is sufficient to state the theorem below, and postpone the
smooth description to the next subsection. Assume that G is obtained from
the ideal Liouville domain (Σ,ω, ξΣ) with boundary ∂Σ = Mp �Mbd by
blowing down the Giroux domainΣ×S

1 atMbd ×S
1 but preservingMp ×S

1

as in Fig. 2(a) (here bd stands for “blown down”, and p for “preserved”). Then
topologically,

G= (
Mbd × D

2)∪Mbd×S1

(
Σ × S

1).
Note that Mbd can now be regarded as a codimension 2 contact submanifold
of G, namely by identifying it with Mbd × {0}.

Next, remove a small open collar neighborhood ofMbd fromΣ and denote
the resulting submanifold by Σh. We can regard Σh × S

1 as a subdomain
of G, and consider the manifold with boundary and corners defined by

([0,1] × V )∪{1}×(Σh×S1)

(
Σh × D

2).
After smoothing the corners, this becomes a smooth oriented cobordism W

with boundary (see Fig. 2(b)),

∂W = −V � V ′ � (Mbd × S
2).
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Fig. 2 Handle attachment along a Giroux domain

We can now state the main theorem of this section.

Theorem 6.1 SupposeW denotes the 2n-dimensional smooth cobordism de-
scribed above, and Ω is a closed 2-form on V such that:

• Ω weakly dominates ξ
• the cohomology class of Ω belongs to the obstructed subspace O(G),

i.e. for every 1-cycle Z in Σ ,
∫
Z×S1

Ω = 0.

Then W admits a symplectic structure ω with the following properties:

1. ω|T V =Ω .
2. The co-coreΣh×{0} ⊂Σh×D

2 ⊂W is a symplectic submanifold weakly
filling (∂Σh × {0}, ξΣ).

3. (V ′, ξ ′) is a weakly filled boundary component of (W,ω) that is contacto-
morphic to the blown down manifold (V \G)//Mp.

4. A neighborhood of Mbd × S
2 ⊂ ∂W in (W,ω) can be identified symplec-

tically with (
(−δ,0] ×Mbd × S

2,ω0 ⊕ωS2

)
for some δ > 0, where ωS2 is an area form on S

2 and ω0 is a symplectic
form on (−δ,0] ×Mbd for which the boundary (Mbd, ξΣ) is weakly filled.
Moreover, the intersection of the co-core Σ × {0} with this neighborhood
has the form (−δ,0] ×Mbd × {const}.

Remark 6.2 Recall that due to Lemma 2.6, a pair of weak symplectic cobor-
disms can be smoothly glued together along a positive/negative pair of con-
tactomorphic boundary components whenever the symplectic forms restricted
to these boundary components match. Thus the symplectic cobordism of the
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above theorem can be glued on top of any weak filling (W,ω) of (V , ξ) for
which [ω|T V ] ∈ O(G).

6.2 Construction of the symplectic cobordism

In this section we will give the proof of Theorem 6.1. The proof will consist
of the following five steps:

1. Find a standardized model with a special contact form λ for tubular neigh-
borhoods of ∂G and the blown down components Mbd.

2. Construct a symplectic form on our proto-cobordism [0,1]×V that is well
adjusted to both Ω and λ.

3. Carve out the interior of {1}×Σ×S
1 from [0,1]×V . This creates a notch

with corners along its edges, and we will then smoothly glue the handle
Σ × D

2 into the cavity, creating a smooth manifold.
4. Study the symplectic form induced from the proto-cobordism on the glued

part of the handle and extend it to the whole handle.
5. Check that the new boundary of the cobordism has the desired properties.

Step 1: Neighborhoods and contact form for G
For simplicity, we first pretend that G is a Giroux domain Σ × S

1 without
blown down boundary components. Consider a collar neighborhood (0,1] ×
∂Σ associated to some Liouville form β by Lemma 5.5 and denote by α
the corresponding contact form on ∂Σ . Let s be the coordinate in (0,1]. We
denote by u a smooth function Σ → [0,1] which has the boundary ∂Σ =
u−1(0) as a regular level set, equals 1 − s in the region s ≥ 3/4 and 1 in the
region s ≤ 1/4 and outside the collar, and satisfies u′ ≤ 0 everywhere on the
collar (see Fig. 3). We set γ = uβ . The contact form onG associated to β and
u is then λ := uβ + udθ = γ + udθ , where θ denotes the coordinate on S

1.
In the collar one can set f := u/(1 − s) so that λ= f α + udθ . Note that the
contact condition in (0,1] × ∂Σ × S

1 is equivalent to

f
(
f ′u− u′f

)
> 0, (6.1)

so appealing to Lemma 5.1, we can slightly extend our collar neighborhood
embedded in (V , ξ) to one of the form (0,1 + ε] × ∂Σ × S

1, with λ written
as above and u extended as 1 − s when s > 1.

In the more general case whereG is a Giroux domain with some boundary
components blown down, the function u becomes r2 inMbd ×D

2, so λ is still
a smooth contact form (but of course there is no extended collar).

Step 2: The symplectic form on [0,1] × V
The assumption that Ω weakly dominates ξ implies that the 2-form ω =
d(tλ)+Ω is symplectic on (−δ,1] × V for some small positive constant δ.
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Fig. 3 The functions u
and f

The cohomological assumption [Ω] ∈ O(G) implies thatΩ is cohomologous
to some 2-form ω0 such that ω0|G is the pull back of a 2-form on Σ . In addi-
tion, since the collar neighborhood (0,1]×∂Σ retracts to ∂Σ , we can assume
that ι∂sω0 = 0 when s ≥ 1/4.

Lemma 6.3 We can modify the form ω defined above to a new symplectic
form on (−δ,1] ×V , keeping the assumption that ω restrict to Ω on {0} ×V
and ξ be weakly dominated by ω on each slice {t}×V , but asking in addition
that ω restrict to C d(tλ)+ω0 on [1/2,1]×V for some large constant C > 0.

Proof Using Lemma 2.10, we find a symplectic form ω′ on (−δ,∞) × V
such that each {t}×V is still weakly filled and ω′ restricts to d(tλ)+ω0 for t
greater than some large constant C/2. The scaling diffeomorphism (t, v) �→
(t/C, v) pulls back ω′ to the desired symplectic form. �

Step 3: Handle attachment
We now give a smooth description of the handle attachment which is compat-
ible with the smooth description of the blow-down process for ξ -round hy-
persurfaces. For this, we will first create a small basin in the top of [0,1] ×V
to which we can glue in the handle.

Recall that Mbd denotes the blown down boundary components of the Li-
ouville domain Σ , and Mp denotes the other components. Let h be a smooth
function from Σ to (1/2,∞) such that

• h restricts on the special collar of Step 1 to a function only depending on s
with nonnegative derivative h′(s),

• h is constant on (0,1/4)× ∂Σ and outside the boundary collar,
• For s ≥ 1 − ε, h(s)= s near Mp, and h(s)= s + ε near Mbd.

We denote by Σh the subset of Σ on which h is less than or equal to 1, and
by H ⊂ [0,1] × V the product of S

1 with the graph of h over Σh, see Fig. 4.
We discard the region {t ≥ h} from [0,1] × V to get an open manifold, to
which we will glue the “handle” Σh ×D. Here D denotes the disk around
the origin in R

2 with radius
√
ε. In the following, we will find a symplectic

vector field X in a neighborhood of the hypersurface H in [0,1] × V that
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Fig. 4 Smooth handle attachment

is transverse to H, never points in the positive t-direction, and is tangent to
{1} × V near the boundary of H. Shrinking ε if needed, we may assume that
the flow ofX starting from H embeds H ×[0, ε] into [1/2,1]×V . We denote
by ϕXτ the flow of X at time τ . The manifold W ′ is obtained by attaching
Σh × D to ([0,1] × V ) \ {t ≥ h} using the gluing map Ψ from Σh × D∗
(where D∗ =D \ {0}) to [0,1] × V defined by

Ψ
(
σ, reiθ

)= ϕX
r2

(
h(σ), σ, θ

)
.

Note that as a point-set operation, the handle attachement reduces to the op-
eration of adding the co-core Σh × {0} to the open manifold ([0,1] × V ) \
{t ≥ h}.

The vector field X that we will use below coincides with ∂s near {1}× ∂G.
This implies that the attachment using Ψ restricts precisely to the gluing map
used to blow down the ξ -round hypersurface Mp × S

1.
As a gluing vector field X, we choose the ω-dual of −C dθ , where C is the

constant appearing in ω. Since this 1-form is closed, X is a symplectic vector
field.

Lemma 6.4 The vector field X is transverse to the hypersurface H and coin-
cides with ∂s near {1} × ∂G and {1} ×Mbd.

Proof Away from the special collar neighborhoods considered in Step 1,
λ = dθ + β , and this gives dt (X) = −1. Elsewhere, on the collars [0,1] ×
([1/4,1] × ∂Σ × S

1), we use the ansatz X = Xt∂t + Xs∂s . Computing the
interior product ιXω using ω = C d(t (udθ + f α))+ ω0 and ι∂sω0 = 0, we
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find that X is indeed ω-dual to −C dθ provided

uXt + tu′Xs = −1,

fXt + tf ′Xs = 0.

This system is everywhere nonsingular due to the contact condition (6.1). For
s ≥ 3/4 and t = 1, we have X = ∂s as promised. For s < 3/4, the conditions
f (s) > 0 and f ′(s) > 0 imply Xt < 0 and Xs > 0, hence X is transverse
to H. �

Step 4: Symplectic form on the handle

Lemma 6.5 The gluing map Ψ from Σh ×D∗ to [0,1] × V pulls back ω to

Ψ ∗ω= 2CωD +C d(hu)∧ dθ +Ω0,

where ωD := −r dr ∧ dθ and Ω0 is a symplectic form on Σh which weakly
fills (∂Σh,kerγ ).

Proof Let jH denote the embedding Σh × S
1 → H ⊂ [0,1] × V, (σ, θ) �→

(h(σ ), σ, θ). Then we can decompose Ψ as Ψ =Φ ◦ P , where P is the map
from Σh ×D∗ to Σh × (0, ε] × S

1 defined by P(σ, reiθ )= (σ, r2, θ) and

Φ(σ, τ, θ) := ϕXτ
(
h(σ), σ, θ

)= ϕXτ
(
jH(σ, θ)

)
.

Using the fact that the flow of (ϕXτ )∗∂τ =X preserves ω and ιXω = −C dθ ,
we obtain for the pull back

Φ∗ω= −C dτ ∧ dθ + j∗
Hω,

and since the symplectic form ω is given in the range of jH by C d(tλ)+ ω0
with λ= udθ + γ , we can compute

j∗
Hω= C d(hλ)+ω0 = C d(hu)∧ dθ +Ω0,

where we have set Ω0 = C d(hγ )+ω0 (which is a 2-form on Σh).
Now since P ∗dτ = 2r dr , the only thing left to prove is that Ω0 is

a symplectic form which weakly fills (∂Σh,kerγ ). Since ωD is the only
term in Ψ ∗ω that contains a dr-factor, and thus it follows that (Ψ ∗ω)n =
2nCωD ∧Ωn−1

0 �= 0, we deduce that Ω0 is symplectic.
The 2-form Ω0 restricts on ∂Σh to C dγ + ω0. Recall that the weakly

dominating condition on {1}×V means that for any constant ν ≥ 0, λ∧ (ω+
ν dλ)n−1 > 0. Restricting to {1}×G, where λ= udθ+γ and ω= C dλ+ω0,
this becomes:

(udθ + γ )∧ [(C + ν) du∧ dθ + (C dγ +ω0 + ν dγ )]n−1
> 0,
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which we expand along {1} × ∂Σh × S
1 as

(n− 1)(C + ν)γ ∧ du∧ dθ ∧ (C dγ +ω0 + ν dγ )n−2 > 0.

In particular, this proves that γ ∧ (Ω0 + ν dγ )n−2 never vanishes. In order to
check that it has the correct sign, it suffices to consider the case ν = 0. �

To finish the construction of the symplectic cobordism, we want to define a
symplectic structure onΣh×D that agrees in a neighborhood of the boundary
Σh × ∂D with Ψ ∗ω, and that has a split form near Σh × {0}. Let ρ1 and ρ2
be functions from [0,√ε] to R (constraints will be added later). We set:

ω̃ := 2Cρ1ωD +C d(ρ2hu)∧ dθ +Ω0

= gωD +Cρ2 d(hu)∧ dθ +Ω0 with g :=
(

2ρ1 − huρ′
2

r

)
C.

We choose ρ1(r) = ρ2(r) = 1 for r close to
√
ε, so that ω̃ extends Ψ ∗ω.

Near 0, we choose ρ1 to be a large positive constant and ρ2 to vanish so that
ω̃ makes sense near the center of D. One can compute ω̃n = ngωD ∧Ωn−1

0 .
Since Ω0 is symplectic on Σh, we see that ω̃ is symplectic as soon as g is
positive. This condition is arranged by choosing ρ1 sufficiently large away
from r = √

ε.

Step 5: Properties of the new boundary of W
We now consider in turns the two types of new boundary components result-
ing from the above construction: V ′ and Mbd × S

2. Since hu is constant on
∂Σh, the restriction of ω̃ to Mp ×D is gωD +Ω0. As we already noted, the
gluing map Ψ extends the one used to define the blow-down, and the contact
form on V ′ is λ= γ −r2dθ . Thus in order to check the weak filling condition,
we only need compute, for any constant ν ≥ 0,

λ∧ (ω̃+ ν dλ)n−1 = (n− 1)(g + 2ν)ωD ∧ γ ∧ (Ω0 + ν dγ )n−2.

This is indeed a positive volume form for any nonnegative ν because
(Σh,Ω0) is a weak filling of (Mp,kerγ ) according to Lemma 6.5.

The situation along Mbd × S
2 is very similar. There ω̃ induces ωS2 +Ω0

for some area form ωS2 . The distribution we consider is kerγ . We compute:

γ ∧ (ω̃+ ν dγ )n−1 = (n− 1)ωS2 ∧ γ ∧ (Ω0 + ν dγ )n−2

so the restriction of ω̃ is symplectic on kerγ because of Lemma 6.5.
Lemma 2.6 then gives us a neighborhood of Mbd × S

2 in (W ′, ω̃) that can
be identified symplectically with

(
(−ε,0] ×Mbd × S

2,
(
d(tγ )+Ω0

)⊕ωS2

)
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for ε > 0 sufficiently small. Observe also that ω̃ already takes this split form in
a neighborhood of the co-core Σh× {0} ⊂W ′, so we can apply the extension
property of Lemma 2.6 to get a collar whose intersection with the co-core is
precisely (−ε,0] ×Mbd × {0} with 0 ∈ D ⊂ S

2.

7 Giroux domains and non-fillability

We now use the cobordism of the preceding section to prove Theorem 5.13
on filling obstructions. We will present two slightly different approaches in
Sect. 7.1 and Sect. 7.2 respectively: the first uses holomorphic disks and the
bLob, thus relying on a version of Theorem 4.4. The second approach uses
holomorphic spheres and proves a slightly weaker result, as it requires stricter
homological assumptions on the Giroux domains—though it should be men-
tioned that these assumptions are satisfied in all the interesting examples we
know thus far, namely for the higher dimensional notions of Lutz twists and
Giroux torsion defined in Sect. 9. The use of spheres instead of disks simpli-
fies the proof in that it makes the Fredholm and compactness properties easier,
while at the same time allowing the use of the recently completed polyfold
technology [37] to handle transversality issues. For this reason the second
proof does not require semipositivity.

7.1 Proof of Theorem 5.13 via the bLob

Part (a) of the theorem follows immediately from the fact that if (V , ξ) con-
tains a Giroux domain N that has some boundary components that are blown
down and others that are not, then by Proposition 5.9 it contains a small bLob,
so Theorem 4.4 implies that (V , ξ) does not admit any semipositive weak fill-
ing.

To prove part (b), suppose N has the form

N = (
Σ+ × S

1)∪Y×S1

(
Σ− × S

1),
where Σ± are ideal Liouville domains with boundary ∂Σ± = ∂glueΣ

± �
∂freeΣ

±, Y := ∂glueΣ
+ = ∂glueΣ

− carries the induced contact form α and
∂freeΣ

− is not empty. Arguing by contradiction, assume that (V , ξ) is weakly
filled by a semipositive symplectic filling (W0,ω) with [ω|T V ] ∈ O(Σ+).
This establishes the cohomological condition needed by Theorem 6.1 on
Σ+ × S

1, so applying the theorem, we can enlarge (W0,ω) by attaching
Σ+ × D

2, producing a compact symplectic manifold (W1,ω) whose bound-
ary (V ′, ξ ′) supports a contact structure that is weakly filled.

Since the boundary V ′ of the new symplectic manifold (W1,ω) is contac-
tomorphic to (V \ (Σ+ × S1))//Y , we find in (V ′, ξ ′) a domain isomorphic
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to (Σ− × S
1)//Y that contains a small bLob. Unfortunately this does not di-

rectly obstruct the existence of the weak filling (W1,ω), because even though
W0 was semipositive, W1 might not be. We will follow the proof of Theo-
rem 4.4, with the difference that we need to reconsider compactness to make
sure that bubbling is still a “codimension 2 phenomenon”.

Choose an almost complex structure J on (W1,ω)with the following prop-
erties:

(i) J is tamed by ω and makes (V ′, ξ ′) strictly J -convex,
(ii) J is adapted to the bLob in the standard way, i.e. it is chosen close to the

boundary of the bLob according to Lemma 4.7 and in a neighborhood of
the binding according to [47] (cf. the proof of Theorem 4.4),

(iii) for some small radius r > 0, J = JΣ+ ⊕ i on Σ+ × D
2
r ⊂W1, where

JΣ+ is a tamed almost complex structure onΣ+ for which ∂Σ+ is JΣ+ -
convex.

The third condition uses the fact from Theorem 6.1 that the co-core K′ :=
Σ+ × {0} of the handle is a symplectic (and now also J -holomorphic) hy-
persurface weakly filling its boundary. The binding of the bLob lies in the
boundary of the co-core K′+, and the normal form described in [47] is com-
patible with the splitting Σ+ × D

2
r so that (ii) and (iii) can be simultaneously

achieved.
By choosing JΣ+ generic, we can also assume that every somewhere in-

jective JΣ+ -holomorphic curve in Σ+ is Fredholm regular and thus has non-
negative index. Note that any closed J -holomorphic curve in Σ+ × D

2
r is

necessarily contained in Σ+ × {z} for some z ∈ D
2
r , and the index of this

curve differs from its index as a JΣ+ -holomorphic curve in Σ+ by the Euler
characteristic of its domain. This implies that every somewhere injective J -
holomorphic sphere contained in Σ+ × D

2
r has index at least 2. Likewise, by

a generic perturbation of J outside of this neighborhood we may assume all
somewhere injective curves that are not contained entirely in Σ+ × D

2
r also

have nonnegative index.
Now let M be the connected moduli space of holomorphic disks attached

to the bLob that contains the standard Bishop family. We can cap off every
holomorphic disk u ∈ M by attaching a smooth disk that lies in the bLob,
producing a trivial homology class in H2(W1). The cap and the co-core in-
tersect exactly once, and it follows that u also must intersect the co-core K′+
exactly once, because u and K′+ are both J -complex.

To finish the proof, we have to study the compactness of M and argue
that M \ M consists of strata of codimension at least 2. A nodal disk u∞
lying in M \ M has exactly one disk component u0, which is injective at
the boundary, and one component u+ that intersects the co-core once; either
u+ = u0 or u+ is a holomorphic sphere. Every other nonconstant connected
component v is a holomorphic sphere whose homology class has vanishing
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intersection with the relative class [K′+]. So either v does not intersect the
J -complex submanifold K′+ at all or v is completely contained in K′+. In
either case, v is homotopic to a sphere lying in W0: indeed, if v does not
intersect the co-core, we can move it out of the handle by pushing it radially
from Σ+ × (D2 \ {0}) into the boundary Σ+ × S

1 ⊂W0, and if v ⊂ K′+ =
Σ+ × {0}, then we can simply shift it to Σ+ × {1} ⊂W0. Using the fact that
u0 and u+ are both somewhere injective, together with the semipositivity and
genericity assumptions, we deduce that every connected component of u∞
has nonnegative index, thus M \ M has codimension at least two in M. The
rest of the proof is the same as for Theorem 4.4.

7.2 An alternative argument using holomorphic spheres

In this section we will prove the following variation on Theorem 5.13, which
does not involve the word “semipositive” at all.

Theorem 7.1 Suppose (V , ξ) is a closed contact manifold containing a sub-
domain N with nonempty boundary, which is obtained by gluing and blowing
down Giroux domains. If either N has at least one blown down boundary
component or it includes at least two Giroux domains glued together, then
(V , ξ) does not admit any weak filling (W,ω) with [ωV ] ∈ O(N). In particu-
lar (V , ξ) is not strongly fillable.

Proof We consider first the case where N has no blown down boundary com-
ponents but consists of at least two Giroux domains glued together: without
loss of generality, we may then assume N has the form

N = (
Σ+ × S

1)∪Y×S1

(
Σ− × S

1),
where Σ± are ideal Liouville domains with boundary ∂Σ± = ∂glueΣ

± �
∂freeΣ

±, Y := ∂glueΣ
+ = ∂glueΣ

− carries the induced contact form α and
∂freeΣ

+ is not empty. Arguing by contradiction, assume also that (V , ξ) has
a weak filling (W0,ω) with [ω|T V ] ∈ O(N). This establishes the cohomo-
logical condition needed by Theorem 6.1 on both Σ+ × S

1 and Σ− × S
1,

so applying the theorem, we can enlarge (W0,ω) by attaching Σ+ × D
2 and

Σ− × D
2 in succession, producing a compact symplectic manifold (W1,ω)

whose boundary is a disjoint union of pieces

∂W1 = ∂sphW1 � ∂ctW1,

where ∂ctW1 �= ∅ supports a contact structure that is weakly dominated and
∂sphW1 ∼= Y ×S

2 with symplectic fibers {∗}×S
2 (here ct stands for “contact”

and sph for “sphere”). Moreover, a neighborhood of ∂sphW1 in (W1,ω) can
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be identified symplectically with the collar
(
(−δ,0] × Y × S

2,ωY ⊕ωS2

)
,

where ωS2 is an area form on S
2 and ωY is a symplectic form on (−δ,0] × Y

with weakly filled boundary (Y,kerα).
We can choose an almost complex structure J on (W1,ω) with the follow-

ing properties:

(i) J is tamed by ω and makes ∂ctW1 strictly J -convex,
(ii) J = JY ⊕ j on the collar (−δ,0]×Y ×S

2, where j is an ωS2 -compatible
almost complex structure on S

2 and JY is an almost complex structure on
(−δ,0]×Y which is tamed by ωY and makes {0}×Y strictly JY -convex.

By choosing J generic outside the collar neighborhood (−δ,0] × Y × S
2,

we may assume all somewhere injective J -holomorphic curves that aren’t
contained entirely in that region are Fredholm regular.

For each (t, y) ∈ (−δ,0] × Y , there is now an embedded pseudoholomor-
phic sphere

u(t,y) :
(
S

2, j
)→ (

(−δ,0] × Y × S
2, J

)
, z �→ (t, y, z).

These curves are all Fredholm regular: indeed, a neighborhood of u(t,y) in
the moduli space of unparametrized J -holomorphic spheres in W1 can be
identified with a neighborhood of zero in the kernel of the linearized Cauchy-
Riemann operator on its normal bundle, but the latter is a trivial bundle with
the standard Cauchy-Riemann operator. Hence the operator splits into a direct
sum of standard Cauchy-Riemann operators on trivial line bundles over S

2,
all of which have index 2 and are surjective by the Riemann-Roch theorem
(cf. [44]). It follows also that the curves u(t,y) have index 2n− 2.

Denote the co-cores of the two handles by

K′± :=Σ± × {0} ⊂Σ± × D
2 ⊂W1.

The curves u(t,y) have exactly one transverse intersection with each of the
two co-cores, so we have homological intersection numbers:

[u(t,y)] • [K′+
]= [u(t,y)] • [K′−

]= 1. (7.1)

We claim that every somewhere injective J -holomorphic sphere inW1 which
intersects {0} × Y × S

2 is equivalent to u(0,y) for some y ∈ Y . Indeed, if
u : S

2 →W1 is any such sphere, we define the open subset U = u−1((−δ,0]×
Y ×S

2), and observe that u|U can be identified with a pair of maps uS2 : U →
S

2 and uY : U → (−δ,0] × Y which are j -holomorphic and JY -holomorphic
respectively. But then uY touches the boundary of (−δ,0] × Y tangentially,
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which is impossible due to pseudoconvexity unless uY is constant, so we
conclude that U = S

2 and uS2 : S
2 → S

2 is a degree 1 holomorphic map,
hence the identity up to parameterization.

Let M denote the connected component of the moduli space of un-
parametrized J -holomorphic spheres containing the curves u(t,y), and define
M1 to be the same space of curves but with one marked point, along with the
natural compactifications M and M1, consisting of nodal J -holomorphic
spheres. Note that curves in M can never touch ∂ctW1 due to J -convexity.
By (7.1), every curve in M intersects each of K′+ and K′− algebraically once,
thus all curves in M are somewhere injective, and the only nodal curves in
M intersecting {0} × Y × S

2 are u(0,y) for y ∈ Y . Now our genericity as-
sumptions for J , along with the Fredholm regularity of the special curves
u(t,y), imply that M is a smooth (2n− 2)-dimensional manifold with bound-
ary, where the boundary is a single connected component consisting of the
curves u(0,y). After perhaps shrinking δ > 0, we claim in fact that every curve
in M intersecting (−δ,0] × Y × S

2 is one of the special curves u(t,y): were
this not the case, we would find sequences of negative numbers tk → 0 and
holomorphic spheres uk ∈ M which are not equivalent to any u(t,y) but inter-
sect {tk} × Y × S

2, and a subsequence then converges to a nodal curve in M
intersecting {0} × Y × S

2, but the latter must be of the form u(0,y). We then
obtain a contradiction from the implicit function theorem, as the (2n − 2)-
dimensional moduli space of curves close to u(0,y) consists only of curves of
the form u(t ′,y′) for some (t ′, y′) ∈ (−δ,0] × Y .

Although M and M1 are smooth as explained above, their compactifi-
cations M and M1 need not be, due to the presence of nodal curves with
multiply covered components for which transversality fails. This is exactly
the kind of problem that the polyfold machinery of Hofer-Wysocki-Zehnder
[37] is designed to solve: we perturb the nonlinear Cauchy-Riemann equation
via a generic multisection of the appropriate polyfold bundle so that the com-
pact space M′

of solutions to this perturbed equation is, in general, an ori-
ented, weighted branched orbifold with boundary and corners. In the case at
hand, the perturbation can be chosen to have support in a neighborhood of the
nonsmooth part of M, thus we may assume in particular that elements of M′

approaching a neighborhood of the boundary are still actually J -holomorphic
curves, so the uniqueness statements above continue to hold.

To conclude the proof, choose a smoothly embedded path �⊂W1 with one
boundary point in ∂ctW1 and the other in ∂sphW1, meeting both transversely,
and define the compact space

M′
� = ev−1(�)

where ev : M′
1 → W1 denotes the natural evaluation map. For generic

choices, M′
� is then a smooth, compact, oriented, weighted branched
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1-dimensional manifold with boundary, the latter being ev−1(∂�). By pseu-
doconvexity however, no curve in M′

intersects ∂ctW1, hence ∂M′
� =

ev−1(∂sphW1), but this consists of only one curve, namely the unique
u(0,y) with y ∈ ∂�. Since there is no compact, oriented, weighted branched
1-manifold with connected boundary (see e.g. [53, Lemma 5.11]), this gives
the desired contradiction.

The proof is essentially the same but slightly simpler if N ⊂ (V , ξ) has
any blown down boundary components. If suffices then to consider the
case where N is a single blown down Giroux domain (Σ × S

1)//Mbd. At-
taching Σ × D

2 via Theorem 6.1, we again obtain a symplectic manifold
(W1,ω) with ∂W1 = ∂ctW1 � ∂sphW1, where ∂ctW1 �= ∅ is weakly filled and
∂sphW1 ∼= Mbd × S

2 is foliated by symplectic spheres that give rise to J -
holomorphic spheres intersecting the co-core Σ × {0} exactly once. The rest
of the argument is the same. �

Remark 7.2 If the original filling is assumed semipositive, then the above
proof can also be modified to take advantage of the symplectic co-core in the
same way as Sect. 7.1 and thus avoid the need for polyfolds.

8 Construction of Liouville domains with disconnected boundary

8.1 Contact products and Liouville pairs

In this section we shall construct Liouville pairs on closed manifolds of ev-
ery odd dimension; more precisely, we shall prove Theorem C from the in-
troduction and thus lay the groundwork for our Giroux torsion construction
in Sect. 9. Recall that the goal is to find positive/negative pairs of contact
forms (α+, α−) on oriented odd-dimensional manifolds M with the property
that, if s ∈ R denotes the coordinate on the first factor of R ×M ,

β := e−sα− + esα+

defines a positively oriented Liouville form on R ×M .
The first example of a Liouville pair is ±dθ on S

1. One can construct
higher dimensional examples using contact products. The contact product
of (M1, ξ1) and (M2, ξ2) is defined as the product of their symplectizations
Sξ1 × Sξ2 divided by the diagonal R-action (cf. [33]). This describes a con-
tact manifold but, since the Liouville pair condition is really about contact
forms and not only contact structures, we want a more specific construction.
Suppose we have contact forms α1 and α2. Those give identifications be-
tween Sξi and R×Mi with fiber coordinates ti on R. On the product, one has
the Liouville form λ = et1α1 + et2α2 and its dual vector field X = ∂t1 + ∂t2 .
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We shall say that a manifold V with a contact form λ is a linear model for
the contact product of (M1, α1) and (M2, α2) if it is realized as a hypersur-
face in Sξ1 × Sξ2 transverse to X and defined by a linear equation on t1
and t2. Concretely, this means V =M1 × R ×M2 is embedded into the prod-
uct (R ×M1)× (R ×M2) by ϕ(m1, t,m2)= (μt,m1, νt,m2) for some con-
stants μ and ν. This gives a hypersurface positively transverse to X provided
ν > μ. The contact form induced by λ on V is then eμtα1 + eνtα2.

Proposition 8.1 IfM1 is R or S
1 endowed with the Liouville pair α± = ±dθ

and (M2, α2) is any manifold with a contact form, then any linear model for
the contact product inherits a Liouville pair ±eμtdθ + eνtα.

Proof We set a = es + e−s , b = es − e−s and eρ = eρt for any real number
ρ so that our candidate Liouville form on R ×M1 × R ×M2 is B = aeνα +
beμ dθ . One computes

dB = eν(aν dt + b ds)∧ α+ aeν dα+ eμ(bμdt + a ds)∧ dθ
and then, denoting by 2q + 1 the dimension of M2,

dBq+2 = f (νa2 −μb2)ds ∧ dθ ∧ dt ∧ α ∧ dαq,

where f = (q + 1)(q + 2)aqeμ+(q+1)ν and νa2 − μb2 is positive because
ν > μ and a2 − b2 = 4. �

Remark 8.2 One can ask whether the above proposition extends to other Li-
ouville pairs. It seems that not all linear models will be suitable for this. What
we can prove, but will not use in this paper, is that if α± is a Liouville pair on
some manifold M1 (of any dimension) then α± + etα is a Liouville pair on
M1 × R ×M2.

Of course, the disadvantage of the contact product construction is that the
resulting manifold is never compact, and there seems to be no general way of
finding compact quotients of contact products. We shall therefore specialize
further by seeking examples among Lie groups which can be seen as sym-
plectizations of some subgroups that have co-compact lattices. (The idea to
consider left-invariant contact forms on Lie groups is borrowed from Geiges
[23].)

Before that, let us describe a corollary of the following algebraic construc-
tions that has the advantage of seeming somewhat more concrete. We will not
use this concrete description explicitly, so we leave it as an exercise to check
that it can indeed be related to our abstract treatment below. Taking any inte-
ger n ≥ 0, if we assign to R

n × R
n+1 the coordinates (t1, . . . , tn, θ0, . . . , θn)
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then one can show using the above proposition or by an explicit calculation
that for a suitable choice of orientation on R

n × R
n+1,

α± := ±et1+···+tn dθ0 + e−t1 dθ1 + · · · + e−tn dθn. (8.1)

is a Liouville pair. We would like to prove the existence of compact quo-
tients of R

n× R
n+1 to which α+ and α− both descend. Observe that both are

invariant under the group action of R
n on R

n × R
n+1 defined by

(τ1, . . . , τn) · (t1, . . . , tn, θ0, θ1, . . . , θn)

:= (t1 + τ1, · · · , tn + τn, e−(τ1+···+τn)θ0, e
τ1θ1, . . . , e

τnθn). (8.2)

What we will prove in the next few sections implies the following:

Lemma 8.3 There exist lattices Λ⊂ R
n and Λ′ ⊂ R

n+1 such that the group
action of Λ on R

n × R
n+1 defined by (8.2) preserves R

n ×Λ′.

It follows that the action of Λ on R
n × R

n+1 descends to a smooth group
action on R

n × (Rn+1/Λ′), so dividing by this action we obtain a bundle
with fiber R

n+1/Λ′ ∼= T
n+1 and base R

n/Λ∼= T
n, to which the Liouville pair

(α+, α−) descends. In this way one obtains the following result, which suf-
fices to prove the existence of Liouville domains with disconnected boundary
in all dimensions:

Proposition 8.4 For every integer n ≥ 0, the Liouville pair defined by (8.1)
on R

n × R
n+1 descends to a compact quotient which is a T

n+1-bundle over
T
n.

Lemma 8.3 is trivial when n= 0, and elementary when n= 1: for the latter
case, one can choose Λ⊂ R to be generated by any real number τ �= 0 such
that eτ is an eigenvalue of some matrix A ∈ SL(2,Z). Then A may be viewed
as the matrix of the linear transformation R

2 → R
2 : (θ0, θ1) �→ (e−τ θ0, e

τ θ1)

in some other basis where it has integer coefficients. This transformation
therefore preserves the lattice generated by that basis. This produces a Li-
ouville pair on every T

2-bundle over S
1 with hyperbolic monodromy—these

examples have appeared in the previous work of Geiges [24] and Mitsumatsu
[45]. A hint of the general arithmetic strategy we will use below appears in
this discussion, as the condition that eτ should be an eigenvalue of some ma-
trix in SL(2,Z) implies that eτ belongs to a quadratic extension of the field Q.

8.2 Some Lie groups as symplectizations

Denote by Aff+(R) the group of orientation preserving affine transforma-
tions of the real line. Similarly, Ãff(C) will denote the universal cover of
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the group Aff(C) of affine transformations of the complex plane, which
can be identified with the semi-direct product C � C by associating to any
(a, b) ∈ C × C the transformation z �→ eaz+ b. Observe that the same trick
identifies Aff+(R) with R � R.

Let gR denote the Lie algebra of the affine group Aff+(R). The identifi-
cation Aff+(R) = R � R defines global coordinates (t, θ) on Aff+(R) and
hence a basis (T ,Θ) of left-invariant vector fields that match (∂t , ∂θ ) at the
identity; they satisfy [T ,Θ] =Θ . Writing the dual Lie algebra as g∗

R
, its dual

basis is the pair of left-invariant 1-forms

T ∗ = dt, Θ∗ = e−t dθ.
Thus we can associate to Aff+(R) the left-invariant Liouville forms Θ∗ or
−Θ∗ and view it as the symplectization of (R, dθ) or (R,−dθ) respectively
with fiber coordinate −t = − ln◦det. Note that (R,±dθ) has a canonical
contact type embedding into (Aff+(R),±Θ∗), namely as the unimodular sub-
group {det = 1}.

We denote by gC the Lie algebra of Ãff(C) = C � C. Using coordinates
(u + iv, x + iy) on C � C, the basis (U,V,X,Y ) of gC defined to match
(∂u, ∂v, ∂x, ∂y) at the identity satisfies the relations

[U,X] =X, [V,X] = Y,
[U,Y ] = Y, [V,Y ] = −X,

with all other brackets vanishing. These relations give the following exterior
derivatives for the dual basis of left-invariant 1-forms:

dU∗ = 0, dX∗ =X∗ ∧U∗ + V ∗ ∧ Y ∗,
dV ∗ = 0, dY ∗ =X∗ ∧ V ∗ + Y ∗ ∧U∗.

(8.3)

Although this will not be used, we note for concreteness that in the coordi-
nates defined above,

U∗ = du, X∗ = e−u(cosv)dx + e−u(sinv)dy,
V ∗ = dv, Y ∗ = −e−u(sinv)dx + e−u(cosv)dy.

Now we can define a left-invariant Liouville form as, for instance,

β =X∗ so that dβ2 = −2U∗ ∧ V ∗ ∧X∗ ∧ Y ∗.

The corresponding Liouville vector field is β# = −U , which is transverse to
the unimodular subgroup {|det |2 = 1} = iR � C, whose Lie algebra is the
kernel of U∗. So we have on Ãff(C) a left-invariant symplectization structure
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with fiber coordinate − ln◦|det |, where det denotes the determinant of the
projection in Aff(C).

We now combine any number of copies of the two preceding Lie groups as
Gr,s := Aff+(R)r × Ãff(C)s , and then consider the subgroup

Gr,s1 =
{
(ϕ1, . . . , ϕr ,ψ1, . . . ,ψs) ∈ Gr,s

∣∣∣∣
∏
i

detϕi
∏
j

|detψj |2 = 1

}
,

where detψj should be understood again as the determinant of the projection
of ψj to Aff(C). The discussion above shows that this group can be seen as a
linear model for a contact product. When r is positive, we can single out one
of the Aff+(R) factors and apply Proposition 8.1 to obtain:

Corollary 8.5 For any positive r , the Lie group Gr,s1 admits a left-invariant
Liouville pair.

The goal of the next two sections is to prove the existence of co-compact
lattices in this group in order to find closed manifolds with Liouville pairs.
As preparation, it will be useful observe that both Gr,s and Gr,s1 can be viewed
as semi-direct products: setting

h
r,s := R

r × C
s,

h
r,s
1 :=

{
(t1, . . . , tr ,w1, . . . ,ws) ∈ h

r,s

∣∣∣∣
∑
i

ti + 2
∑
j

Rewj = 0

}
(8.4)

and defining the action of each on R
r × C

s by

(t1, . . . , tr ,w1, . . . ,ws) · (θ1, . . . , θr , z1, . . . , zs)

:= (
et1θ1, . . . , e

tr θr , e
w1z1, . . . , e

ws zs
)
,

we have natural isomorphisms Gr,s = hr,s � (Rr × C
s) and Gr,s1 = h

r,s
1 �

(Rr × C
s).

Remark 8.6 For most of the following discussion, the reader is free to assume
s = 0, since this suffices to prove Lemma 8.3 and thus the existence of closed
manifolds admitting Liouville pairs in all dimensions. The case s > 0 is only
really needed to relate our results to those of Geiges in Sect. 8.5.

8.3 Some number theory

In this section we will need some standard notions and results from algebraic
number theory, e.g. Dirichlet’s Unit Theorem; a good reference for this mate-
rial is [41].
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Throughout this section and the next, k will denote a number field, i.e. a
finite degree extension of Q, and n will denote its degree [k : Q]. Such a
field is always isomorphic to Q[X]/(f ) for some irreducible polynomial f ∈
Q[X] of degree n (with simple roots). We will denote by r the number of
real roots and by s the number of complex conjugate pairs of nonreal roots,
thus n = r + 2s. Each root α gives an embedding of k into C, sending (the
equivalence class of)X to α. These embeddings will be denoted by ρ1, . . . , ρr
and σ1, . . . , σs, σ̄1, . . . , σ̄s . This method actually gives all embeddings of k
into C, and we can collect them to define an injective map

j : k → R
r × C

s : x �→ (
ρ1(x), . . . , ρr(x), σ1(x), . . . , σs(x)

)
.

The norm of an element of k is defined as N(x)=∏
i ρi(x)

∏
j |σj (x)|2, and

the fact that f is irreducible implies that N(x) vanishes only when x = 0.
The ring of integers Ok of k is by definition the set of all elements in k which
are roots of monic polynomials with coefficients in Z. These all have integer-
valued norms, and an important observation is that the map j defined above
sends Ok to a lattice in R

r × C
s .

Invertible elements in the ring Ok are called units of k, and they form
a (multiplicative) group denoted by O×

k . They all have norm ±1 since
N(xy) = N(x)N(y). We denote by O×,+

k the subgroup of positive units:
O×,+

k = {x ∈ O×
k | ρi(x) > 0 for all i}. Among units are the roots of unity,

whose (finite) set is denoted by Uk. We also set U
+
k = Uk ∩ O×,+

k . Dirichlet’s
Unit Theorem implies that O×

k is a finitely generated abelian group with tor-
sion Uk and rank r + s − 1. Since x2 ∈ O×,+

k whenever x ∈ O×
k , it follows

that O×,+
k is similarly the product of the finite cyclic group U

+
k with a free

abelian group of rank r + s − 1. The map j restricts to an injective group ho-
momorphism of O×,+

k into the multiplicative group Hr,s := (R∗+)r × (C∗)s ,
and since N(O×,+

k )= {1}, its image lies in the subgroup

H
r,s
1 =

{
(ρ1, . . . , ρr , σ1, . . . , σs) ∈Hr,s

∣∣∣∣
∏
i

ρi
∏
j

|σj |2 = 1

}
.

The precise formulation of Dirichlet’s theorem is that j (O×,+
k ) is a lattice

in Hr,s1 .

Examples We now discuss three examples of increasing complexity to see all
the objects discussed above appearing. In the next subsection we will see the
contact manifolds associated to these fields and the Liouville pair construc-
tion where applicable.

The very first example of a number field is Q itself. In this case n = 1,
f =X− 1, r = 1, s = 0 and j is the inclusion of Q in R. The ring of integers
is Ok = Z, with O×

k = {±1} and O×,+
k = {1}.
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As a less trivial number field, we consider k = Q[i]. We have n = 2 and
can set f =X2 +1, so the roots are ±i, hence r = 0 and s = 1. Choosing i as
a member of the complex conjugate pair ±i, we have j : k → C : a + bX �→
a + ib. The norm of a + bX is a2 + b2. The integer ring Ok is Z + ZX,
and its image under j is the lattice Z + iZ in C. The group of units is O×

k =
{±1,±X} = Uk. All units are automatically positive since there is no real
embedding. We have H 0,1 = C

∗ and H 0,1
1 = S

1, in which j (O×,+
k ) is indeed

a lattice.
As a last example, we consider k = Q[√2]. Here n = 2 and f = X2 − 2

with roots ±√
2, so r = 2 and s = 0. The j map is defined by a + bX �→

(a + b√2, a − b√2). The norm of a + bX is a2 − 2b2. The integer ring Ok
is Z + ZX, and its image under j is the lattice

{
(a + b√2, a − b√2) | a, b ∈ Z

}= Z(1,1)+ Z(
√

2,−√
2)⊂ R

2.

The group of units is O×
k = {±(1 +X)k | k ∈ Z}, and Uk = {±1}. Restricting

to positive elements, we have O×,+
k = {(3 + 2X)k | k ∈ Z} and U

+
k = {1}.

The image of O×,+
k in H 2,0 = (R∗+)2 is j (O×,+

k ) = {((3 + 2
√

2)k, (3 −
2
√

2)k) | k ∈ Z}, which is indeed a lattice in H 2,0
1 = {(y,1/y) ∈ (R∗+)2 | y >

0}.

8.4 A manifold associated to a number field

The next result provides the desired co-compact lattices in the Lie groups Gr,s1 .

Proposition 8.7 Suppose k = Q[X]/(f ) is a number field of degree n= r +
2s ≥ 1, where f ∈ Q[X] is an irreducible polynomial with r real and 2s
complex roots (all simple). Then one can associate to k a lattice Gk ⊂ Gr,s1
such that the quotient

Mk := Gr,s1 /Gk

is a T
n-bundle over T

n−1.

To prove this, we continue with the same notation as in the previous section
and observe that the Lie algebras of Hr,s and Hr,s1 are precisely hr,s and h

r,s
1

respectively, defined in (8.4) above. Since Hr,s is abelian, the exponential
map

exp : h
r,s →Hr,s : (t1, . . . , tr ,w1, . . . ,ws) �→

(
et1, . . . , etr , ew1, . . . , ews

)

is a surjective group homomorphism, as is its restriction to h
r,s
1 →H

r,s
1 , and

its kernel is the free abelian group {0} × 2πiZs ⊂ h
r,s
1 . Thus the preimage
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of j (O×,+
k ) in h

r,s
1 is a rank r + s − 1 + s = n− 1 lattice, which we denote

by Γk.
The group Hr,s acts on R

r × C
s via coordinate-wise multiplication, so

pulling back this action via the exponential map defines an action of Γk on
R
r × C

s , which preserves the lattice j (Ok) since multiplication by elements
of O×

k preserves Ok. The inclusions Γk ↪→ h
r,s
1 and j (Ok) ↪→ R

r × C
s can

therefore be combined to an inclusion of the semi-direct product

Gk := Γk � j (Ok) ↪→ h
r,s
1 �

(
R
r × C

s
)= Gr,s1 ,

forming a lattice. Proposition 8.7 now follows from the observation that the
projection Gr,s1 = h

r,s
1 � (Rr × C

s)→ h
r,s
1 descends to a well-defined projec-

tion

Gr,s1 /Gk → h
r,s
1 /Γk,

forming a bundle with fiber (Rr×C
s)/j (Ok)∼= T

n and base h
r,s
1 /Γk ∼= T

n−1.
Note that the only choices we made in the construction of Mk were the

ordering of the embeddings of k into R and C, and which complex embed-
ding we pick out of each complex conjugate pair. The manifold Mk does
not depend on these choices up to diffeomorphism. Moreover, each choice of
orientations for the factors of Aff+(R) in Gr,s determines a contact struc-
ture on Mk uniquely up to isotopy. Indeed, aside from the orientation of
Aff+(R), the only other choices involved were the Liouville forms on the
relevant Lie groups, but one can check that all possible left-invariant Liou-
ville forms defining the same orientation are isotopic—they form a connected
open subset of the dual Lie algebra. If we fix a single orientation of Aff+(R)
from the beginning, we then obtain the canonical contact structure promised
in Theorem C from the introduction.

We remark that Gk is not the only possible lattice in Gr,s1 . In the totally
real case (s = 0) in particular, one can replace Ok by any additive subgroup
M of k which is a free abelian group of rank n, and O×,+

k by any of its finite
index subgroups preserving M . The contact manifolds obtained in this way
are cusp cross sections of Hilbert modular varieties, see [55, Chap. 1]. In
particular, they are Stein fillable and can be embedded as separating strictly
pseudoconvex hypersurfaces in closed holomorphic manifolds.

For later use in Sect. 9, we note the following observation.

Lemma 8.8 If k is a totally real number field which is not Q, then π1(Mk)

has trivial center.

Proof SinceMk = Gr,s1 /Gk and Gr,s1 is simply connected, the lemma is equiv-
alent to the claim that the group Gk has trivial center. In the totally real case
(i.e. s = 0), we have Gk = O×,+

k � Ok, so as a set Gk = O×,+
k × Ok, and the
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composition law is (u, x)(u′, x′) = (uu′, x + ux′). Suppose (u, x) is central
in Gk. This implies that for any (u′, x′), x + ux′ = x′ + u′x.

We can apply this to u′ = 1 to deduce that for any integer x′, ux′ = x′.
Since Ok is integral (recall it embeds in R), we get u= 1 or x′ = 0. Since Ok
is not a trivial group (it has rank deg(k)), this implies u= 1.

Similarly, we can apply the above formula with x′ = 0 to deduce that for
any unit u′, u′x = x. Hence u′ = 1 or x = 0. Since O×,+

k has rank deg(k)− 1
and we assume deg(k) > 1, we obtain x = 0, so (1,0) is the only central
element. �

Examples Recall that our first example was k = Q. The corresponding Gr,s1
is the group of affine transformations of R with determinant one, i.e. it is R.
The unit group O×,+

k is trivial, hence it acts trivially on R, implying MQ =
R/j (Ok)∼= R/Z = S

1. The resulting Liouville pair on S
1 is (dθ,−dθ).

Our second example was k = Q[i], and the corresponding Gr,s1 is Ãff(C)=
iR � C, whose elements (iv,w) correspond to affine transformations z �→
eivz + w. Note that since r = 0 in this case, all left-invariant contact forms
on Gr,s1 induce the same orientation, so there can be no left-invariant Liou-
ville pair, but we can still extract a co-compact lattice. We have h

r,s
1 = iR ⊂

C = hr,s , and Γk ⊂ iR is spanned by m := iπ/2, where m stands for “mon-
odromy”. The action of m on C is z �→ eiπ/2z, which does indeed preserve
the lattice j (Ok) = Z + iZ. We conclude that Mk is a T

2-bundle over S
1

whose monodromy is a quarter turn. Observe that Mk is a finite quotient of
T

3, which cannot admit any Liouville pair due to [57, Example 2.14].
We proceed to the last example k = Q[√2]. The corresponding Gr,s1 is

the unimodular subgroup within Aff+(R)2, which is the solvable group of
Thurston’s geometries. In the hyperplane h

r,s
1 = {(−t, t)} ⊂ R

2 = hr,s , Γk

is spanned by m := (ln(3 + 2
√

2), ln(3 − 2
√

2)). The action of m on R
2 is

then (y1, y2) �→ ((3 + 2
√

2)y1, (3 − 2
√

2)y2), and one can check by hand
that it indeed preserves the lattice j (Ok). Recall that a basis of this lattice is
{(1,1), (√2,−√

2)}. In this basis, the matrix of m is A = (
3 4
2 3

)
, so we see

thatMk is a T
2-bundle over S

1 with monodromy A, which is hyperbolic. The
Liouville pair we constructed yields two contact structures which rotate in
opposite directions between the stable and unstable foliations of the Anosov
flow defined by the monodromy (cf. [45]).

8.5 Geiges pairs and Geiges groups

The idea of Geiges in [23] was to consider a special class of Liouville pairs
(without the general definition) that satisfy a much stronger algebraic con-
dition, and to look for examples among left-invariant contact forms on Lie
groups. The particular groups that Geiges considered turn out to be a subfam-
ily of the ones that we’ve studied above.
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Definition A Geiges pair on an oriented manifoldM2n+1 is a pair of contact
forms α+ and α− on M such that:

• α+ ∧ dαn+ = −α− ∧ dαn− > 0, and
• for all 0 ≤ k ≤ n− 1, α± ∧ dαk± ∧ dαn−k∓ = 0.

A version of [23, Proposition 1] is then the simple observation that Geiges
pairs are also Liouville pairs. Note that the Liouville pairs we constructed in
the preceding section are Geiges pairs in dimensions 1 and 3, but not in higher
dimensions in general.

Geiges constructed in each odd dimension 2n−1 a Lie groupG2n−1 admit-
ting a left-invariant Geiges pair, and also found co-compact lattices in these
groups in dimensions 3 and 5, thus giving examples of compact Liouville
domains with two boundary components in dimensions 4 and 6. We shall
now show that our number theoretic construction can also be used to find co-
compact lattices for all the Geiges groups, implying the existence of Geiges
pairs on some closed manifold in every odd dimension.

Proposition 8.9 For any positive integer n, there is an isomorphism between
G2n−1 and Gr,s1 where r = 1 if n is odd, r = 2 if n is even, and s = (n− r)/2.

The remainder of this section is devoted to the proof of this isomorphism.
The pairs constructed by Geiges have a nice form in the basis of the Lie
algebra he considered, but our isomorphism will not preserve this basis in
any nice way. Of course, the point of our description of these groups was that
it makes the construction of co-compact lattices much easier.

First we recall the definition of the Geiges group G2n−1. For each positive
integer n, let A denote the n× n matrix

A=

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1
−1 0 . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎠
.

We define the (2n − 1)-dimensional Geiges group G2n−1 as the semi-
direct product R

n−1
�A R

n, where (y1, . . . , yn−1) acts as exp(y1A + · · · +
yn−1A

n−1) on R
n. Reversing the sign of the first vector in the canonical basis

of R
n, one sees that A is similar to the matrix of cyclic permutation of this ba-

sis. In particular, all powers of A appearing in the action have vanishing trace,
because powers between 1 and n− 1 of this permutation have no nontrivial
fixed points, thus no diagonal term can appear.

The matrix A is orthogonal and has characteristic polynomial Xn − 1, so
its eigenvalues are the nth roots of unity. We denote by Rα the 2 × 2 rotation
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matrix with angle α and set θ = 2π/n. Then A is similar to a block diagonal
matrix B = diag(1,Rθ , . . . ,Rsθ ) if r = 1, or B = diag(1,−1,Rθ , . . . ,Rsθ )
if r = 2. Choose an invertible matrix P such that A = P−1BP . The map
(y, x) �→ (y,Px) is now an isomorphism R

n−1
�AR

n → R
n−1

�BR
n, where

we define the latter group using B instead of A to construct the R
n−1-action

analogously.
To simplify the notation, we now assume that n is odd, so r = 1 and

s = (n − 1)/2; the other case is completely analogous. The matrix B can
be seen as acting on R×C

s , with Rθ acting as multiplication by eiθ . The ma-
trix ρ(y)= y1B + · · · + yn−1B

n−1 for y ∈ R
n−1 thus splits into block form

as diag(ρ0(y), ρ1(y), . . . , ρs(y)) for some linear maps ρ0 : R
n−1 → R and

ρi : R
n−1 → C, i = 1, . . . , s. Using the identification Gr,s = (R×C

s)� (R×
C
s), we can now write down an injective group homomorphism

R
n−1

�B

(
R × C

s
)→ Gr,s(

y, (x, z1, . . . , zs)
) �→ (

(ρ0(y), ρ1(y), . . . , ρs(y)), (x, z1, . . . , zs)
)
.

Since B is similar to A and each power of A appearing in the definition of
the Geiges group has vanishing trace, the same is true for B . After taking the
exponential, this translates to the fact that the above map actually takes values

in the subgroup Gr,s1 : indeed, | exp(eiθ )|2 = exp(2 Re eiθ ) = exp(trRθ). We
conclude that it is an isomorphism to Gr,s1 since the dimensions match. The
desired isomorphism from G2n−1 to Gr,s1 is now obtained by composing the
two isomorphisms we’ve constructed.

9 Lutz twists and Giroux torsion in higher dimensions

In this section we examine the (2n − 1)-dimensional generalizations of
Giroux torsion and Lutz twists that arise from any closed (2n − 3)-
dimensional manifold with a Liouville pair. We will begin with general con-
siderations and then turn to specific examples constructed using the Liou-
ville manifolds of Sect. 8 to prove Theorems A and E (in Sect. 9.3) and G
(in Sect. 9.4) from the introduction.

Throughout the following, we choose an integer n≥ 2 and assumeM to be
a closed oriented (2n− 3)-dimensional manifold with a fixed Liouville pair
(α+, α−), writing the resulting positive/negative contact structures as ξ± =
kerα±. We will often consider manifolds of the form R × S

1 ×M or S
1 ×

S
1 ×M , with the natural coordinates on the first two factors denoted by s

and t respectively.
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9.1 Torsion domains and the Lutz-Mori twist

GivenM with Liouville pair (α+, α−), we define a 1-form on R×S
1 ×M by

λGT = 1 + cos s

2
α+ + 1 − cos s

2
α− + (sin s) dt, (9.1)

and denote ξGT := kerλGT.

Proposition 9.1 The co-oriented distribution ξGT defined above is a positive
contact structure on R × S

1 ×M , which can be viewed as an infinite chain
of Giroux domains [kπ, (k + 1)π] × S

1 ×M = (M × [kπ, (k + 1)π])× S
1

glued together.

Proof Let ϕ : (0, π)→ R denote the orientation reversing diffeomorphism
defined by ϕ(s) = ln 1+cos s

sin s . This induces an orientation preserving diffeo-
morphism from the interior of Σ :=M × [0, π] to R ×M , so pulling back
β := 1

2(e
uα+ + e−uα−) gives a Liouville form which defines on Σ the struc-

ture of an ideal Liouville domain. Regarding ∂Σ as the zero-set of the func-
tion sin s and writing u= ϕ(s), the Giroux domain Σ × S

1, then inherits the
contact form

λGT = (sin s) ·
[
dt + 1

2

(
euα+ + e−uα−

)]
,

proving that λGT is indeed a positive contact form on M × [0, π] × S
1 =

[0, π] × S
1 × M . A similar argument proves the contact condition on

[π,2π] × S
1 ×M , and the rest follows by periodicity. �

For any positive integer k, one can then define the Giroux 2kπ -torsion
domain modeled on (M,α+, α−) as ([0,2kπ] × S

1 ×M,λGT).
The fact that Giroux torsion is a filling obstruction in dimension three now

generalizes to the following immediate consequence of Theorem 5.13. Note
that for the case n = 2, the additional topological condition giving an ob-
struction to weak fillability is equivalent to the condition that the embedding
[0,2π] × S

1 ×M ↪→ V should separate V .

Corollary 9.2 If (V , ξ) is a closed (2n − 1)-dimensional contact manifold
admitting a contact embedding ι : ([0,2π] × S

1 ×M,ξGT) ↪→ (V , ξ), then
(V , ξ) is not strongly fillable. Moreover, if ι∗([S1] × C)= 0 ∈ H2(V ;R) for
every C ∈H1(M;R), then (V , ξ) is also not weakly fillable.

The torsion domains ([0,2kπ] × S
1 × M,ξGT) allow us to define a

“twisting” operation on contact structures that generalizes the 3-dimensional
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Lutz modification along a pre-Lagrangian torus with closed leaves, see [10,
Sect. 1.4]. Note that for any k, both boundary components of [0,2kπ]×S

1 ×
M are ξGT-round hypersurfaces modeled on (M, ξ+) (see Sect. 5.1). Now if
(V , ξ) is any (2n−1)-dimensional contact manifold containing a ξ -round hy-
persurfaceH ⊂ V modeled on (M, ξ+), then we can cut V open alongH and
insert ([0,2kπ] × S

1 ×M,ξGT) such that the contact structures glue together
smoothly. The resulting manifold is diffeomorphic to V , and it determines a
new contact structure ξk on V uniquely up to isotopy. We shall say in this case
that ξk is obtained from ξ by a k-fold Lutz-Mori twist along H (we use the
name Mori to emphasize that A. Mori [46] introduced a similar modification
along a codimension 2 contact submanifold in dimension 5, see below).

Recall that any positive co-oriented contact structure ξ on an oriented
(2n− 1)-dimensional manifold V induces an almost contact structure on V ,
i.e. a reduction of the structure group of T V to U(n− 1). For our purposes,
we can regard an almost contact structure as equivalent to a choice of co-
oriented hyperplane distribution ξ ⊂ T V together with a symplectic structure
on the bundle ξ → V , and this choice is determined uniquely up to homotopy
when ξ is contact. The homotopy class of almost contact structures amounts
to a “classical” invariant that one can use to distinguish non-isotopic contact
structures. As we will see, one of the important properties of the Lutz-Mori
twist is that it does not change this invariant, though it can change the isomor-
phism class of the contact structure.

Theorem 9.3 Suppose (V , ξ) is any contact manifold containing a closed ξ -
round hypersurfaceH modeled on (M, ξ+), where ξ+ = kerα+ and (α+, α−)
is a Liouville pair on M . Then for any positive integer k, one can modify ξ
near H by the k-fold Lutz-Mori twist as described above to define a contact
structure ξk with the following properties:

1. ξ and ξk are homotopic through a family of almost contact structures.
2. (V , ξk) is not strongly fillable if V is closed.
3. If V is closed and the natural map H1(M;R)→H2(V ;R) induced by the

inclusion S
1 ×M =H ↪→ V is trivial, then (V , ξk) is not weakly fillable.

Before proving this theorem, we note the following characterization of Li-
ouville pairs, the proof of which is a simple computation. It will be useful for
understanding homotopy classes of almost contact structures as well as Reeb
vector fields in the next section.

Lemma 9.4 A pair of 1-forms (α+, α−) on an oriented (2n−1)-dimensional
manifold M is a Liouville pair if and only if for every pair of constants
C+,C− ≥ 0 not both zero,

(C+α+ −C−α−)∧
(
C+ dα+ +C− dα−

)n−1
> 0.
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Fig. 5 The function ϕk is a
diffeomorphism from
(−ε, ε) onto (−ε,2πk+ ε)
that has slope 1 outside
[ε/3,2ε/3]. The function ψ
is 1 on the interval
[ε/3,2ε/3] and falls off to
zero

Proof of Theorem 9.3 The last two statements are simply Corollary 9.2. To
prove the first, we can model the Lutz-Mori twist as follows. By Lemma 5.1,
a neighborhood ofH in (V , ξ) can be identified with a neighborhood of {0}×
S

1 ×M in (R × S
1 ×M,ξGT), i.e. with ((−ε, ε)× S

1 ×M,ξGT) for ε > 0
sufficiently small. Then given k, choose a diffeomorphism ϕk : (−ε, ε) →
(−ε,2πk + ε) as shown in Fig. 5, with fixed slope 1 outside the interval
(ε/3,2ε/3), and define a new contact form on (−ε, ε)× S

1 ×M by

λk := 1 + cosϕk(s)

2
α+ + 1 − cosϕk(s)

2
α− + (

sinϕk(s)
)
dt.

For convenience, let us also set ϕ0(s)= s, so λ0 := λGT and ξ0 := ξGT. Then
it will suffice to show that for each integer k ≥ 0, the almost contact structure
induced by ξk on (−ε, ε)× S

1 ×M admits a compactly supported homotopy
through almost contact structures to a fixed almost contact structure indepen-
dent of k.

To see this, choose a smooth function ψ : [0, ε] → [0,1] which vanishes
near the boundary and equals 1 precisely on [ε/3,2ε/3] (see Fig. 5), and for
τ ∈ [0,1], define a smooth 1-parameter family of nowhere zero 1-forms and
co-oriented hyperplane fields by

λk,τ = [
1 − τψ(s)]λk + τψ(s) ds, ξk,τ = kerλk,τ .

We have λk,τ = λk outside of some compact subset of (0, ε)× S
1 ×M for

all τ , while λk,0 ≡ λk and λk,1 is everywhere independent of k. This shows
that the homotopy type of ξk as a co-oriented hyperplane field is independent
of k. It remains only to show that the homotopy {ξk,τ }τ∈[0,1] can be accom-
panied by a homotopy {Ωk,τ }τ∈[0,1] of symplectic bundle structures such that
Ωk,0 = dλk and Ωk,1 has no k-dependence.

We claim first that λk,τ is always contact, with the exception of λk,1 =
ds on [ε/3,2ε/3] × S

1 ×M . Indeed, λk,τ ∧ (dλk,τ )n−1 = (1 − τψ)nλk ∧
(dλk)

n−1 since the term τψ(s) ds vanishes in this product; firstly it is closed,
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and secondly the only term where dt appears in dλk is a multiple of ds ∧ dt .
Since λk is contact, it follows that λk,τ also is whenever τψ < 1. Thus dλk,τ
defines a suitable family of symplectic bundle structures for τ < 1, which we
next would like to modify so that it extends to τ = 1. To facilitate this, ob-
serve that whenever τ and ψ are both close to 1, the projection along the
s-direction restricts to a fiberwise isomorphism ξk,τ → T (S1 × M). Thus
any symplectic bundle structure Ω on ξk,τ can be identified via this iso-
morphism with an s-dependent family of nondegenerate (but not necessarily
closed) 2-forms Ω̂(s) on S

1 ×M . For Ω = dλk,τ in particular, we find that
d̂λk,τ (s) belongs to the contractible space Ξ of 2-forms on S

1 ×M having
the form

ω := C+ dα+ +C− dα− + δα+ ∧ α− +B dt ∧ (C+α+ −C−α−)

for some constants C+,C− ≥ 0, B > 0 and δ ∈ R, where C+ and C− are
assumed not both zero. In the case of d̂λk,τ (s), one can compute:

C± = 1 ± cosϕk
2

, δ = −1 − τψ
2τψ

ϕ′
k sinϕk and B = 1 − τψ

τψ
ϕ′
k.

It turns out that any 2-form in Ξ is nondegenerate since

ωn = (n− 1)B dt ∧ (C+α+ −C−α−)∧ (C+ dα+ +C− dα−)n−1

is nonzero due to Lemma 9.4. We can therefore solve the extension prob-
lem to modify d̂λk,τ (s) for τ near 1 to a smooth homotopy of nonde-
generate 2-forms that match d̂λk,τ (s) outside a neighborhood of {ε/3 ≤
s ≤ 2ε/3} but also extend to τ = 1 as nondegenerate forms with no de-
pendence on k. Pulling back through the fiberwise isomorphism ξk,τ →
T (S1 ×M), this determines a homotopy of almost contact structures as de-
sired. �

The original Lutz twist in dimension three modifies a contact structure
in the neighborhood of a transverse knot to produce one that is always over-
twisted, and Mori [46] generalized this to an operation on contact 5-manifolds
along certain special contact submanifolds of codimension 2. In our context,
Mori’s construction generalizes as follows: suppose (V , ξ) is a (2n − 1)-
dimensional contact manifold containing a contact submanifold M ⊂ V of
codimension 2 with trivial normal bundle such that ξ ∩ TM = ξ+. For any
k, let (Yk, ξGT) denote the result of blowing down ([0,2kπ] × S

1 ×M,ξGT)

along the ξGT-round hypersurface {0} × S
1 ×M as described in Sect. 5.1.

We can then remove a small neighborhood of M from (V , ξ) and glue in a
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correspondingly small neighborhood of (Yk, ξGT)⊂ (Yk+1, ξGT) such that the
contact structures match up. The resulting manifold is again diffeomorphic
to V and determines a new contact structure ξk up to isotopy, and we shall
say that ξk is obtained from ξ by a k-fold Lutz-Mori twist along M .

Theorem 9.5 Suppose (V , ξ) contains a closed codimension 2 contact sub-
manifold M ⊂ V with trivial normal bundle such that ξ ∩ TM = ξ+ where
ξ+ = kerα+ for some Liouville pair (α+, α−) on M . Then for any positive
integer k, one can modify ξ near M by a k-fold Lutz-Mori twist as described
above to define a contact structure ξk with the following properties:

1. ξk and ξ are homotopic through a family of almost contact structures.
2. (V , ξk) is PS-overtwisted (cf. Definition 4.2) and not weakly fillable (if V

is closed).

Proof Since the homotopy of almost contact structures in our proof of Theo-
rem 9.3 had compact support in (0, ε)× S

1 ×M , the argument can be carried
over verbatim to the present context to prove the first statement. The pres-
ence of a bLob can be deduced from the general Proposition 5.9, but also
much more directly for the concrete examples we discussed in Sect. 8. In-
deed, one can check that the torus bundles on which we constructed Liouville
pairs (α+, α−) always contain an n-torus T on which both α+ and α− van-
ish. In [0,2π] × S

1 ×M , the contact form λGT induces on [0, π] × S
1 × T

the integrable 1-form (sin s) dt , whose kernel is singular exactly along the
boundary. Blowing down {0} × S

1 ×M turns this domain into a plastikstufe
inside (Yk, ξGT).

Non-fillability can also be deduced directly from Theorem 7.1, with the
technical advantage that it does not require any semipositivity assumption
thanks to the polyfold technology for holomorphic spheres [37]. (The corre-
sponding technology for holomorphic disks remains under development.) �

Remark 9.6 In the 3-dimensional case one can also define the so-called “half-
Lutz twist” along a positively transverse knot, which both changes the homo-
topy class of the contact structure and makes it overtwisted, producing a neg-
atively transverse knot at the core of the inserted tube. The equivalent opera-
tion here would be defined by replacing a neighborhood of (M, ξ+) in (V , ξ)
with the domain ([π,2π] × S

1 ×M,ξGT) blown down along {π} × S
1 ×M .

A variation on the above argument shows that the resulting contact manifold
is also PS-overtwisted, and in this case the submanifold M at the center of
the inserted “tube” inherits the negative contact structure ξ− instead of ξ+.

It is not remotely clear under what circumstances in general one can say
that the modification from ξ to ξk or ξ� produces non-isomorphic contact
structures for k �= �, though we will show in the next few subsections that
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this is at least sometimes the case for Lutz-Mori twists along round hypersur-
faces. In light of the flexibility exhibited by overtwisted contact structures in
dimension three, the following natural question arises:

Question If ξk and ξ� are obtained from the same contact structure by a k-
fold and �-fold Lutz-Mori twist respectively along a fixed contact submani-
fold of codimension 2, when are they isomorphic?

Remark 9.7 It should be emphasized that Lutz-Mori twists cannot be per-
formed along arbitrary round hypersurfaces or codimension 2 contact sub-
manifolds: we always need to assume that the contact structure restricted to
the submanifold M admits a contact form belonging to a Liouville pair. This
is a serious constraint, as there are many smooth manifolds that are known to
admit contact structures but not Liouville pairs: for instance, by [19] and [1],
this is the case for any 3-manifold whose contact structures are all known to
be planar (e.g. S

3 and S
1 ×S

2) or partially planar (e.g. T
3), as these can never

admit strong symplectic semifillings with disconnected boundary. The fact
that 3-dimensional Lutz twists can be inserted along any contact submanifold
(here transverse knots) can then be seen as a consequence of the fact that ev-
ery contact form on every closed 1-dimensional manifold obviously belongs
to a Liouville pair.

9.2 Liouville pairs and Reeb vector fields

In this section we describe the Reeb vector fields corresponding to contact
forms coming from Liouville pairs.

Lemma 9.4 implies that for any Liouville pair (α+, α−) and constants
C+,C− ≥ 0 that do not both vanish, the 2-form C+ dα+ +C− dα− has max-
imal rank. Its kernel therefore defines a nonsingular line field on M .

Definition A Liouville pair (α+, α−) is called hypertight if for every pair of
constants C+,C− ≥ 0 that are not both zero, M admits no contractible loops
tangent to ker(C+ dα+ +C− dα−).

In particular, this condition implies that α+ and α− each admit no con-
tractible closed Reeb orbits. As one can check, nonzero left-invariant vector
fields on the Lie groups Gr,s1 of Sect. 8 never have closed orbits, thus we have
the following useful observation:

Proposition 9.8 All the Liouville pairs constructed in Sect. 8 are hypertight.

The following computation will be useful for understanding Reeb vector
fields on our examples in the next two subsections. As a simple application,
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it immediately implies that whenever the pair (α+, α−) is hypertight, λGT
admits no contractible closed Reeb orbits.

Lemma 9.9 Suppose (α+, α−) is a hypertight Liouville pair on a manifoldM
of dimension 2n− 3 ≥ 1, and f,g,h : R → R are smooth functions such that
f and g are both nonnegative and never vanish simultaneously, and the 1-
form on R × S

1 ×M defined by

λ := f (s)α+ + g(s)α− + h(s) dt
is contact. Then the Reeb vector field Rλ associated to λ has the form
Rλ(s, t,m)=Xs(m)+ u(s)∂t , where u : R → R is a smooth function and Xs
is a smooth 1-parameter family of vector fields on M , each of which either
vanishes identically or has no contractible closed orbits.

Proof Computing λ∧ (dλ)n−1, we find that the contact condition implies
[(
hf ′ − h′f

)
α+ + (

hg′ − h′g
)
α−
]∧ (f dα+ + g dα−)n−2 �= 0, (9.2)

thus there is for each s ∈ R a unique vector field Xs on M satisfying the
conditions (

hf ′ − h′f
)
α+(Xs)+

(
hg′ − h′g

)
α−(Xs)= −h′,

f dα+(Xs, ·)+ g dα−(Xs, ·)= 0.

This vector field vanishes precisely when h′(s)= 0, and otherwise it has no
contractible orbits due to the hypertightness assumption. The relation (9.2)
also implies that h(s) and h′(s) can never simultaneously vanish, thus one
can define a function u : R → R by

u(s)=
{

1
h
[1 − f α+(Xs)− gα−(Xs)] when h(s) �= 0,

− 1
h′ [f ′α+(Xs)+ g′α−(Xs)] when h(s)= 0.

With these definitions, it is straightforward to check that dλ(Xs+u(s)∂t , ·)=
0 and λ(Xs + u(s)∂t )= 1. �

9.3 A sequence of contact structures on T
2 ×M

In order to prove Theorems A and E from the introduction, we now con-
sider an example that generalizes the well-known sequence of weakly but not
strongly fillable contact structures on T

3 [16, 29]. Assume as usual that M
has a Liouville pair (α+, α−), and define for each positive integer k a contact
structure ξk on T

2 ×M by identifying the latter with (R/2kπZ)× S
1 ×M

and setting ξk := ξGT via (9.1). Theorems A and E are then consequences of
the following result, together with Example 9.11 below.
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Theorem 9.10 For any closed manifold M with a Liouville pair (α+, α−),
the sequence of contact structures {ξk}k>0 on T

2 ×M defined above has the
following properties:

(1) (T2 ×M,ξ1) is exactly fillable.
(2) (T2 ×M,ξk) is not strongly fillable for any k ≥ 2.
(3) For any k, �, ξk and ξ� are homotopic through a family of almost contact

structures.
(4) If (α+, α−) is hypertight (see Definition 9.2) then every ξk for k ∈ N is

hypertight, and no two of these contact structures are isotopic. If addi-
tionally π1(M) has trivial center, then no two of these contact structures
are contactomorphic.

(5) Suppose additionally that S
1 ×M admits a closed 2-form ω such that for

some constants c+, c− > 0 and all sufficiently small ε > 0, εω+c+dα++
c−dα− is symplectic on S

1 ×M . Then (T2 ×M,ξk) is weakly fillable for
every k.

In particular, the first four statements are true for all the examples of Sect. 8
with dimM ≥ 3 and s = 0 (see Proposition 9.8 and Lemma 8.8), and the fifth
statement is also true when dimM = 3, so M may be any T

2-bundle over S
1

with hyperbolic monodromy (see the discussion following Proposition 8.4).

Example 9.11 We do not know any examples of Liouville pairs with
dimM ≥ 5 for which we can verify the last condition, and this is why The-
orem E in the introduction is stated only for dimension five. For dimM = 1,
the condition is the trivial observation that T

2 admits an area form, and our
argument will then reproduce Giroux’s construction [29] of weak fillings for
the tight contact structures on T

3, which directly inspired our general case.
Theorem E depends on finding closed 3-manifolds M with Liouville pairs
such that S

1 ×M is symplectic, and this is also not hard. Every T
2-bundle

over S
1 with hyperbolic monodromy admits a hypertight Liouville pair that

can be written as follows: on R × R
2 with coordinates (t, x, y) let

α± = ±et dx + e−t dy.
Then if A ∈ SL(2,Z) has eigenvalues e±τ for τ > 0, one can find a lat-
tice ΛA ⊂ R

2 which is preserved by the linear transformation (x, y) �→
(e−τ x, eτ y), so that α+ and α− both descend to the mapping torus

MA := (
R × (

R
2/ΛA

))/
(t, x, y)∼ (

t + τ, e−τ x, eτ y).
Since MA fibers over S

1, S
1 ×MA admits a symplectic form, and we can

write it explicitly as

ω= dφ ∧ dt + dx ∧ dy,
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where φ denotes the additional S
1-coordinate. This form satisfies ω∧ dα± =

0, hence εω + c+ dα+ + c− dα− is symplectic for all constants ε > 0 and
c± ∈ R.

Our argument for distinguishing the contact structures ξk for different val-
ues of k will use cylindrical contact homology as sketched by Eliashberg-
Givental-Hofer [18], a theory which in its most general form has not yet been
rigorously defined due to the difficulty of achieving transversality for multi-
ply covered holomorphic curves. In our situation however, we are in the lucky
position of being able to rule out multiply covered curves topologically. Sup-
pose (V , ξ) is a closed contact manifold and ā denotes a free homotopy class
of loops S1 → V . We shall say that a contact form λ for (V , ξ) is ā-admissible
if all its Reeb orbits in the homotopy class ā are Morse-Bott and their peri-
ods are uniformly bounded, and there are no contractible Reeb orbits. The
idea sketched in [18] is that if λ is nondegenerate, one should define a chain
complex generated by a certain class of Reeb orbits homotopic to ā, with
the differential counting rigid holomorphic cylinders in the symplectization
for a generic choice of almost complex structure adapted to λ. The resulting
homology is meant to depend only on (V , ξ) and ā up to natural isomor-
phisms, so we denote it by HCā∗ (V , ξ). Bourgeois [3] has also explained how
to extend this definition to Morse-Bott contact forms by counting so-called
“holomorphic cascades.”

Lemma 9.12 Suppose ā is a free homotopy class of loops in (V , ξ) which is
primitive, i.e. it is not a positive multiple of any other homotopy class, and
suppose (V , ξ) admits an ā-admissible contact form. Then the cylindrical
contact homology HCā∗ (V , ξ) sketched in [18] is well defined and can be
computed as described in [3] by counting holomorphic cascades for generic
data associated to any ā-admissible contact form.

Proof We only need to supplement the standard Floer-theoretic picture with
the following observations. First, every Reeb orbit homotopic to ā must be
simply covered, thus every holomorphic curve having only one positive end,
which is asymptotic to such an orbit, is guaranteed to be somewhere injective.
Transversality for these curves can therefore be achieved via a generic pertur-
bation of the almost complex structure, using the standard result of Dragnev
[12] (see also the appendix of [5]). Secondly, if λ has no contractible Reeb
orbits and λ′ is a sufficiently small nondegenerate perturbation of it as in [3],
then one may assume every contractible Reeb orbit for λ′ to have arbitrar-
ily large period. Then since the periods of Reeb orbits homotopic to ā are
bounded, one can choose a generic almost complex structure J adapted to
λ′ and define a subcomplex of the usual complex for the data (λ′, J ) by tak-
ing as generators all the Reeb orbits up to a certain period, chosen so that
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all perturbations of the Morse-Bott orbits homotopic to ā are included but
holomorphic planes can never appear in the relevant compactifications be-
cause they have too much energy. For appropriate choices of the period cut-
off, the standard construction of natural isomorphisms (i.e. by counting rigid
holomorphic cylinders in symplectic cobordisms) suffices to prove that the
homology is independent of auxiliary choices. �

Proof of Theorem 9.10 Statements (2) and (3) in the theorem follow imme-
diately from Corollary 9.2 and Theorem 9.3 respectively. We shall now prove
statements (1), (5) and (4), in that order.

Proof of (1). An exact filling of (T2 × M,ξ1) can be constructed as
the product of two Liouville domains of the form ([−1,1] × S

1, σ dθ)

and ([−c, c] ×M,esα+ + e−sα−) with rounded corners, where c > 0 may
be assumed arbitrarily large and (σ, θ) denote the natural coordinates on
[−1,1] × S

1.
Proof of (5). If S

1 × M also admits a 2-form ω as in the condition of
statement (5), then we can modify the exact filling constructed above to define
weak fillings of every (T2 ×M,ξk), using the fact that the latter is naturally
a k-fold cover of (T2 ×M,ξ1). Indeed, the assumption implies that we can
find s0 ∈ (−1,1) such that for any ε > 0 sufficiently small, the 2-form

εω+ es0 dα+ + e−s0 dα− (9.3)

is symplectic on S
1 ×M . Now observe that since the weak filling condition is

open with respect to the symplectic form, ([−1,1] × S
1 × [−c, c] ×M,ωε)

with rounded corners and

ωε := d[es α+ + e−s α− + σ dθ]+ εω
is also a weak filling of (T2 ×M,ξ1) if ε > 0 is sufficiently small, and for
any σ0 ∈ (−1,1) its restriction to the interior submanifold

X0 := {σ0} × S
1 × {s0} ×M ⊂ ([−1,1] × S

1 × [−c, c] ×M,ωε
)

is precisely (9.3). Thus we have a weak filling of (T2 ×M,ξ1) diffeomorphic
to D

2 ×S
1 ×M and containing {0}×S

1 ×M as a symplectic submanifold. For
any k, the k-fold symplectic branched cover of this, branched at {0}×S

1 ×M ,
gives a weak filling of (T2 ×M,ξk).

Proof of (4). Assume now that (α+, α−) is a hypertight Liouville pair.
Lemma 9.9 then implies that λGT has no contractible Reeb orbits.

We next compute the cylindrical contact homology of (T2 ×M,ξk), which
is a straightforward adaptation of the calculation for the tight 3-tori ex-
plained in [6, § 4.2]. Let ā denote the free homotopy class of the loop
S

1 → S
1 × S

1 × M : φ �→ (const, φ, const). Applying Lemma 9.9 again,
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the Reeb orbits of λGT in homotopy class ā on R/(2πkZ) × S
1 ×M con-

sist of precisely k Morse-Bott families foliating the submanifolds {cos s =
0, sin s = 1} ∼= S

1 ×M . Moreover, all of these orbits have the same period,
thus our contact form is ā-admissible in the sense of Lemma 9.12. Now for
any choice of admissible almost complex structure J on the symplectization
of (T2 ×M,ξk), there can never be any index 1 J -holomorphic cylinders con-
necting two orbits in homotopy class ā since it would have zero energy. After
making a nondegenerate perturbation as explained in [6], nondegenerate or-
bits in homotopy class ā are in one-to-one correspondence with the critical
points of a Morse function on the parameter space of the Morse-Bott fam-
ilies, i.e. on M . Similarly, the holomorphic cylinders for the perturbed data
correspond to so-called “holomorphic cascades” for the unperturbed data, and
in the absence of actual holomorphic cylinders, these are in one-to-one corre-
spondence with gradient flow lines onM . We conclude thatHCā∗ (T2 ×M,ξk)
is isomorphic (up to a shift in the grading) to the direct sum of k copies of the
Morse homology of M , which is simply the singular homology H∗(M).

Observe also that if b̄ �= ā is any other free homotopy class of loops in
T

2 × M whose projections to M are contractible, then there are no Reeb
orbits homotopic to b̄ at all, hence HCb̄∗(T2 ×M,ξk) is trivial.

The above computation shows that if k �= �, then there can be no con-
tactomorphism (T2 ×M,ξk)→ (T2 ×M,ξ�) whose action on π1(T

2 ×M)
preserves the subgroup

G := π1
(
T

2)× {1} ⊂ π1
(
T

2)× π1(M)= π1
(
T

2 ×M).
Indeed, we have computed the cylindrical contact homology for all homotopy
classes in this subgroup, and by Lemma 9.12, these computations would have
to match if such a contactomorphism existed. This already implies that ξk and
ξ� cannot be isotopic. To show that they are not even diffeomorphic, we add
the assumption that π1(M) has trivial center: then the center of π1(T

2 ×M)
is G, which is therefore preserved by every automorphism of π1(T

2 ×M). �

9.4 Hypertight but not weakly fillable

We now construct a family of examples in all dimensions that implies Theo-
rem G from the introduction. Throughout this section, we denote by Σg the
closed oriented surface of genus g, and byΣg,m the compact oriented surface
with genus g and m boundary components.

Theorem 9.13 Suppose M is any closed (2n− 3)-dimensional manifold ad-
mitting a hypertight Liouville pair. Then for any integer g > 0, Σ2g × M

admits a sequence of contact structures {ξk}k>0 with the following proper-
ties:
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(1) (Σ2g ×M,ξ1) is exactly fillable.
(2) (Σ2g ×M,ξk) is not weakly fillable for any k ≥ 2.
(3) (Σ2g ×M,ξk) is hypertight for all k.
(4) For any k �= �, ξk and ξ� are homotopic through a family of almost contact

structures but are not isotopic. If additionally π1(M) has trivial center
and is solvable, then they are not even contactomorphic.

In particular, all of these statements are true for the Liouville pairs defined
from totally real number fields in Sect. 8.

The contact structures ξk on Σ2g ×M will be constructed using a simple
generalization of the blow-down operation along round hypersurfaces that
was introduced in Sect. 5.1. To start with, we consider (Zk, ξGT) where Zk :=
[0, (2k − 1)π] × S

1 ×M , so the two boundary components

∂+Zk := {0} × S
1 ×M, ∂−Zk := {

(2k − 1)π
}× S

1 ×M
are ξGT-round hypersurfaces modeled on (M, ξ+) and (−M,ξ−) respectively.
At ∂+Zk in particular, we find by Lemma 5.1 a collar neighborhood identi-
fied with ([0, ε) × S

1 ×M,ker(α+ + s dt)) for some ε > 0. Now choose a
Liouville form β on Σg,1 such that

∫
∂Σg,1

β = ε. Then ∂Σg,1 has a neigh-

borhood N (∂Σg,1)⊂ (Σg,1, β) that can be identified with ((0, ε]× S
1, s dt),

defining a natural embedding Φ+ : N (∂Σg,1)×M ↪→ (0, ε] × S
1 ×M ⊂Zk

with Φ∗+ξGT = ker(β + α+). Similarly, the other end of Z̊k admits an ori-
entation preserving embedding Φ− : N (∂Σg,1) × (−M) ↪→ Z̊k such that
Φ∗−ξGT = ker(β + α−). We can therefore glue three pieces together to define

(Σ2g ×M,ξk) :=
(
Σg,1 ×M,ker(β + α+)

)∪Φ+ (Z̊k, ξGT)

∪Φ−
(
Σg,1 × (−M),ker(β + α−)

)
.

Note that if g = 0, this construction is equivalent to blowing down (Zk, ξGT)

at both boundary components as defined in Sect. 5.1, and we shall think of
the more general operation defined here as “blowing down with genus g.”

We now proceed to construct a model of (Σ2g × M,ξk) with a more
tractable Reeb vector field. The disadvantage of using λGT for this purpose
is that it cannot easily be related to the normal forms α± + s dt coming
from Lemma 5.1, as for instance near ∂+Zk , the α−-term in λGT is small
but not identically vanishing. The following lemma allows us to eliminate
it entirely after a small adjustment which essentially replaces the Liouville
form esα+ + e−sα− on R ×M by one which is explicitly the completion of
a Liouville domain [−c, c] ×M .

Lemma 9.14 Choose a smooth cutoff function ψ : R → [0,1] that equals 0
on (−∞,0] and 1 on [1,∞). Then for any Liouville pair (α+, α−) on a (2n−
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1)-dimensional manifold M , the 1-form

β :=ψ(c+ s) esα+ +ψ(c− s) e−sα−

is Liouville if c > 0 is a sufficiently large constant.

Proof The claim is immediate whenever ψ ′ = 0, so it will suffice to examine
dβ on the segments {−c ≤ s ≤ −c+ 1} and {c− 1 ≤ s ≤ c}. On the former,
we have β =ψc(s)esα+ + e−sα− where ψc(s) :=ψ(c+ s). Thus

dβn = nds ∧ (ψcesα+ − e−sα− +ψ ′
ce
sα+

)∧ (ψces dα+ + e−s dα−
)n−1

= ne−ns ds ∧ [(ψce2sα+ − α−
)∧ (ψce2s dα+ + dα−

)n−1

+ e2sψ ′
c α+ ∧ (ψce2s dα+ + dα−

)n−1]
.

In this last expression, the first term in the brackets can be made arbitrarily
close to −α− ∧ dαn−1− > 0 by assuming c > 0 large, while the second term
can be made arbitrarily close to 0, hence the sum is positive. A similar argu-
ment also works for the segment {c− 1 ≤ s ≤ c}. �

Combining this lemma with the reparametrization trick in the proof of
Proposition 9.1, we can now introduce a convenient modification of the con-
tact form λGT: on Zk = [0, (2k − 1)π] × S

1 ×M , there exists a contact form
of type

λk = f (s)α+ + g(s)α− + h(s) dt
for some smooth functions f,g,h : [0, (2k − 1)π] → R, such that for some
small constant ε > 0:

• λk = λGT on [2ε, (2k − 1)π − 2ε] × S
1 ×M ,

• λk is everywhere C1-close to λGT,
• λk = α+ + s dt on [0, ε] × S

1 ×M ,
• λk = α− + [(2k − 1)π − s]dt on [(2k − 1)π − ε, (2k − 1)π] × S

1 ×M .

Then if β denotes the Liouville form on Σg,1 as described above with
collar neighborhood N (∂Σg,1) = (0, ε] × S

1 in which β = s dt , we can
smoothly glue Σg,1 ×M with contact form λk := α+ + β to the interior of
(Zk, λk) along (0, ε] × S

1 ×M . Similarly, defining the auxiliary coordinate
s′ := (2k− 1)π − s ∈ [0, ε] on the opposite collar neighborhood, we can glue
this neighborhood to Σg,1 ×M with contact form λk := α− + β so that the
coordinates (s′, t) match the collar N (∂Σg,1)= (0, ε] × S

1. The kernel of λk
is now isotopic to ξk .

Proof of Theorem 9.13 The claim regarding almost contact structures follows
by the same argument as in Theorem 9.3. With this understood, we shall now
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proceed to prove items (3) and (4) from the statement of the theorem, and
after that prove items (1) and (2).

Proof of (3) and (4). The contact form λk constructed above determines a
Reeb vector field Rλk that is given by Lemma 9.9 on [ε, (2k−1)π−ε]×S

1 ×
M and matches the Reeb vector fields of α+ and α− respectively on the two
copies ofΣg,1 ×M . While this vector field does have nullhomologous closed
orbits, none of them are contractible if g > 0 since ∂Σg,1 is not contractible
in Σ2g . Similarly, for g > 0 one can define the cylindrical contact homology
HCā∗ (Σ2g ×M,ξk) for any primitive homotopy class ā due to Lemma 9.12.
A repeat of the argument in the proof of Theorem 9.10 then shows that for
k �= �, there is no contactomorphism

(Σ2g ×M,ξk)→ (Σ2g ×M,ξ�)
whose action on π1(Σ2g ×M) preserves π1(Σ2g). So in particular, ξk and
ξ� are not isotopic. Under the additional assumption on π1(M), they are not
even contactomorphic due to Lemma 9.15 below.

Proof of (1). An exact filling of (Σ2g ×M,ξ1) can be constructed as the
product of the two Liouville domains (Σg,1, β) and ([−c, c] ×M,esα+ +
e−sα−) for sufficiently large c.

Proof of (2). Corollary 9.2 implies that (Σ2g×M,ξk) is not weakly fillable
for k ≥ 3; note that here we need the fact that for any 1-cycle C in M , the 2-
cycle {const} × S

1 ×C in Zk ⊂Σ2g ×M can be realized as the boundary of
Σg,1 ×M and is thus nullhomologous.

At this point we’ve proved everything except the fact that (Σ2g ×M,ξ2) is
not weakly fillable. Since this already suffices to prove Theorem G, and the
non-fillability of ξ2 doesn’t quite follow from our previous results as stated,
we shall content ourselves with a sketch of the proof. The idea is analogous
to the proof of Theorem 7.1, but using a straightforward generalization of
the surgery in Sect. 6 to accommodate boundary components that are, in the
terminology introduced above, blown down with genus. In particular, (Σ2g ×
M,ξ2) can be realized as a chain of three Giroux domainsG0 ∪G1 ∪G2 glued
end to end, with the dangling ends of G0 and G2 blown down with genus g.
Now if we perform surgery to remove the interiors of G0 and G1, we obtain
a symplectic cobordism to a manifold with three connected components

(M ×Σg) �
(
M × S

2) � (V ′, ξ ′),
where (V ′, ξ ′) is a weakly filled boundary component and the other two com-
ponents are foliated by symplectic submanifolds {∗} ×Σg and {∗} × S

2 re-
spectively. Then if (Σ2g ×M,ξ2) is assumed to be weakly fillable, one can
derive a contradiction as in the proof of Theorem 7.1 by examining the moduli
space of holomorphic spheres that emerge from the symplectic submanifolds
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{∗} × S
2. This only involves one feature not already present in the proof of

Theorem 7.1: the holomorphic spheres cannot approach the boundary com-
ponent M ×Σg . This is guaranteed if one uses a product complex structure
near this boundary component, because then every somewhere injective holo-
morphic curve touching a neighborhood of it must be of the form {∗} ×Σg ,
and no sequence of holomorphic spheres can converge to any cover of these
curves since such a cover would necessarily have positive genus. �

In the above proof we used the following algebraic lemma, whose proof
was kindly explained to us by Yves de Cornulier.

Lemma 9.15 Suppose Σ is a closed oriented surface of genus at least two.
If G is any solvable group with trivial center, then any automorphism of
π1(Σ)×G preserves π1(Σ).

Proof We set H = π1(Σ)×G. Our goal will be to show that G is the unique
maximal normal solvable subgroup of H , thus G is preserved by any auto-
morphism. Since G has trivial center, its centralizer in H is π1(Σ), which is
therefore also preserved by any automorphism.

We now prove the claim about G. Suppose G1 is a normal solvable sub-
group of H . The projection p(G1) of G1 into π1(Σ) is normal in π1(Σ)

and solvable. We now view π1(Σ) as a Zariski dense subgroup of PSL(2,R).
The Zariski closure of p(G1) is still solvable and is normal in the closure
of π1(Σ), hence trivial because PSL(2,R) is simple and not solvable. Thus
p(G1) is trivial and G1 ⊂G. �
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Appendix: Cotamed complex structures: existence and convexity

A.1 Contractibility of the space of cotamed almost complex structures

To go from the linear situation to global existence results on a manifold we
will need the following result.
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Proposition 2.1 (Sévennec) The space of complex structures on a finite di-
mensional vector space tamed by two given symplectic forms is either empty
or contractible.

Using the fact that the space of complex structures tamed by a symplectic
form is nonempty (which follows for instance by the linear Darboux theo-
rem), and applying the proposition above twice to the same symplectic form,
we recover as a special case the classical result of Gromov that states that the
space of tamed complex structures is contractible. The proof of the proposi-
tion uses the following two lemmas, of which the first is more or less standard.

Lemma A.1 (Cayley, Sévennec) Let V be a real finite dimensional vector
space and J (V ) the space of complex structures on V . We can define for any
fixed J0 ∈ J (V ) a map

μJ0 : J �→ (J + J0)
−1 · (J − J0)

which is a diffeomorphism from

J ∗
J0
(V ) := {

J ∈ J (V ) | J + J0 ∈ GL(V )
}

to

A∗
J0
(V ) := {

A ∈ End(V ) | AJ0 = −J0A and A− I ∈ GL(V )
}
.

The inverse of this map is given by μ−1
J0

: A �→ (A− I )J0(A− I )−1.

Proof One can view A∗
J0
(V ) as the set of J0-complex antilinear maps that

do not have any eigenvalue equal to 1. Using the equations (J − J0)J0 =
−J (J − J0) and (J + J0)J0 = J (J + J0), one sees that the image of μJ0

consists of J0-complex antilinear maps, and μJ0(J )− I = −2(J + J0)
−1J0

is invertible. �

Lemma A.2 (Sévennec) Let (V ,ω) be a finite dimensional symplectic vector
space and denote by Jt (ω) ⊂ J (V ) the space of complex structures tamed
by ω. Choosing any J0 ∈ Jt (ω), it follows that Jt (ω) lies in J ∗

J0
(V ), and the

image of Jt (ω) under the associated map μJ0 is a convex domain in A∗
J0
(V ).

We first explain how to prove Proposition 2.1 using the above lemma. Sup-
pose there is a complex structure J0 tamed by ω0 and ω1. The space of co-
tamed complex structures Jt (ω0) ∩ Jt (ω1) is then diffeomorphic under the
map μJ0 to the intersection of the convex subsets given by the lemma. This
intersection is again convex and hence contractible.
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Proof of Lemma A.2 For any complex structure J tamed by ω, the en-
domorphism J + J0 is invertible because for any nonzero w, we have
ω(w, (J + J0)w) > 0, so in particular (J + J0)w is not zero. This proves
the first part of the lemma.

Now fix a nonzero vector v ∈ V , and let Cv be the set of A ∈ End(V ) that
anticommute with J0, and that satisfy

ω
(
(A− I )v, (A− I )J0v

)= −ω((A− I )v, J0(A+ I )v)> 0.

We now prove that Cv ⊂ End(V ) is convex. Every segment As = (1− s)A0 +
sA1 with s ∈ [0,1] for arbitraryA0,A1 ∈ Cv defines a polynomial of degree 2

P(s)= −ω((As − I )v, J0(As + I )v),
and the above inequality corresponds to checking that P(s) is positive for all
values s ∈ [0,1]. The leading coefficient −ω((A1 −A0)v, J0(A1 −A0)v) of
P(s) is never positive, because J0 tames ω, so that P(s) is either a line or a
parabola facing downward. In both cases P(s)≥ min{P(0),P (1)}> 0 for all
s ∈ (0,1) so the inequality holds for the whole segment As .

Note that Cv �= ∅ since 0 ∈Cv . Define the intersection

C∗ :=
⋂
v �=0

Cv,

which is a nonempty convex subset of End(V ). In fact, one has C∗ ⊂ A∗
J0
(V ),

because if there were a matrix A ∈ C∗ with det(A − I ) = 0, then A would
have an eigenvectorw ∈ V with eigenvalue 1, but then −ω((A−I )w,J0(A+
I )w)= 0 so that A /∈ Cw .

Since C∗ lies in the domain of μ−1
J0

and Jt (ω) lies in the domain of μJ0 ,
we have C∗ = μJ0(Jt (ω)), so that the image of the complex structures tamed
by ω is convex as we wanted to show. �

A.2 Existence of a cotamed complex structure

In this appendix, we prove Proposition 2.2, which we now recall:

Proposition 2.2 Let V be a finite dimensional real vector space equipped
with two symplectic forms ω0 and ω1. The following properties are equiva-
lent:

(1) the segment between ω0 and ω1 consists of symplectic forms
(2) the ray starting at ω0 and directed by ω1 consists of symplectic forms
(3) there is a complex structure J on V tamed both by ω0 and by ω1.
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The equivalence between (1) and (3) was explained to us by Jean-Claude
Sikorav. It relies on the simultaneous reduction of symplectic forms. Specifi-
cally, we need [38, Theorem 9.1] which we shall state (in a slightly weakened
form) and reprove (in its full force) below as Proposition A.3, since the very
general context of [38] makes it hard to read for people interested only in the
symplectic case.

Recall that according to the linear Darboux theorem, any symplectic form
on a 2n-dimensional vector space is represented in some basis by the standard
matrix

Ω2n =
(

0 1
−1 0

)
.

We now want to understand what can be said for a pair of symplectic struc-
tures. Below we give an approximate normal form which is sufficient for our
purposes and more pleasant to state than the precise result (cf. [38, Theo-
rem 9.1]), though the precise result can also be extracted from the proof that
we will give at the end of this section.

Proposition A.3 Let ω0 and ω1 be symplectic forms on a finite dimensional
vector space V . There exists a matrix A1 that splits into blocks of the form

(
0 λ

−λ 0

)
∈ M2(R) and

⎛
⎜⎜⎝

0 0 μ ν

0 0 −ν μ

−μ ν 0 0
−ν −μ 0 0

⎞
⎟⎟⎠ ∈ M4(R)

for λ, ν �= 0 with the following property: for any ε > 0, there is a basis of V
such that ω0 is represented by a block diagonal matrix with standard blocks
Ω2k , and ω1 is represented by a matrix which is ε-close to A1.

If the linear segment between ω0 and ω1 consists of symplectic forms, then
the coefficients λ in the 2 × 2-blocks of A1 described above cannot be nega-
tive.

The relation with cotamed complex structures will come from the follow-
ing.

Proposition A.4

(a) Let V = R
2 with two antisymmetric bilinear forms ω0 and ω1 defined by

ωj (v,w)= vtAjw, where

A0 =
(

0 1
−1 0

)
and A1 =

(
0 λ

−λ 0

)
.

If λ > 0, then J = ( 0 −1
1 0

)
is tamed by both forms.
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(b) Let V = R
4, and let ω0 and ω1 be antisymmetric bilinear forms defined

by the matrixes

A0 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ and A1 =

⎛
⎜⎜⎝

0 0 λ μ

0 0 −μ λ

−λ μ 0 0
−μ −λ 0 0

⎞
⎟⎟⎠ ,

with μ �= 0. Then there exists a complex structure J on R
4 that is tamed

by both forms.

Proof We only need to prove (b). For simplicity write V as C
2, and the ma-

trices A0 and A1 as

A0 =
(

0 1
−1 0

)
and A1 =

(
0 z

−z̄ 0

)

with z= λ+ iμ= reiψ . The matrices

Jφ =
(

0 eiφ

−e−iφ 0

)

define complex structures on V , and it follows that A0Jφ = −( e−iφ 0
0 eiφ

)
is

positive definite if cosφ < 0, and A1Jφ = −r( ei(ψ−φ) 0
0 ei(φ−ψ)

)
is positive defi-

nite if cos(ψ−φ) < 0. As long as ψ �= π (which we have excluded by requir-
ing that μ �= 0), it follows that we can choose φ such that φ ∈ (π/2,3π/2)
and φ −ψ ∈ (π/2,3π/2)+ 2πZ. �

Proof of Proposition 2.2 We first explain the easy equivalence between (1)
and (2). The (open) ray starting at ω0 and directed by ω1 and the open in-
terval between ω0 and ω1 span the same cone in the space of antisymmetric
bilinear forms. Since being symplectic is invariant under nonzero scalar mul-
tiplication, we have the equivalence.

The implication (3) =⇒ (1) is also direct because, for any t ∈ [0,1], we
have

(
(1 − t)ω0 + tω1

)
(v, Jv)= (1 − t)ω0(v, Jv)+ tω1(v, Jv),

which is positive whenever v ∈ V is nonzero. So in particular, no such v can
be in the kernel of an element of the segment between ω0 and ω1.

To prove (1) =⇒ (3), we use the fact that by Proposition A.3, there is a
matrix A′

1 that splits into certain standard blocks, such that we can find for
any ε > 0 a basis of V for which ω0 is in canonical form, and for which ω1 is
represented by a matrix that is ε-close to A′

1.
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If condition (1) holds, then the blocks of A′
1 correspond to the ones de-

scribed in Proposition A.4, and we obtain the existence of a complex struc-
ture J on V that is tamed both by the standard symplectic form and by A′

1.
By choosing ε > 0 sufficiently small, it follows that J is also tamed by ω0
and ω1, because tameness is an open condition. �

Proof of Proposition A.3 The proof will proceed in several steps.
Decomposition into generalized eigenspaces. In the first step we shall de-

compose V into suitable subspaces that are both ω0- and ω1-orthogonal.
Let ϕr : V → V ∗ for r = 0,1 be the isomorphisms defined by ϕr(v) :=

ωr(v, ·). We consider the endomorphism B = ϕ−1
0 ◦ ϕ1 of V so that

ω1(v,w) = ω0(Bv,w). The endomorphism B is invertible and it is ω0-
symmetric since:

ω0(Bv,w)= ω1(v,w)= −ω1(w, v)= −ω0(Bw,v)= ω0(v,Bw).

To define the generalized eigenspaces of B , complexify the vector space V
to obtain V C, and extend the ωr to sesquilinear forms ωC

r . A computation
analogous to the preceding one shows that B is ωC

0 -symmetric and we still
have ωC

0 (v,Bw)= ωC

1 (v,w).
The characteristic polynomial of B splits over C as P(X)=∏

λ(X−λ)mλ ,
so we can decompose V C into generalized eigenspaces

V C =
⊕

λ∈Sp(B)
EC

λ ; EC

λ = ker(B − λ)mλ.

Lemma A.5 If λ and μ are eigenvalues of B such that λ �= μ̄, then EC

λ and
EC
μ are both ωC

0 - and ωC

1 -orthogonal.

Proof We prove by induction on k and l that ker(B − λ)k and ker(B − μ)l
are orthogonal.

To start the induction, note that if vλ ∈ ker(B − λ), and vμ ∈ ker(B − μ),
then

(λ̄−μ)ωC

0 (vλ, vμ)= ωC

0

(
(B − μ̄)vλ, vμ

)= ωC

0

(
vλ, (B −μ)vμ

)= 0,

thus since λ �= μ̄, it follows that ωC

0 (vλ, vμ) = 0. Similarly, ωC

1 (vλ, vμ) =
ωC

0 (vλ,Bvμ)= μωC

0 (vλ, vμ)= 0.
Assume now it has already been shown for the integers k and l that

ker(B − λ)k and ker(B − μ)l are both ωC

0 - and ωC

1 -orthogonal. Choose a
vector v′

λ ∈ ker(B − λ)k+1 and use the fact that Bv′
λ = λv′

λ + w for some
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w ∈ ker(B − λ)k . Then we obtain for any vμ ∈ ker(B −μ)l ,

(λ̄−μ)lωC

0

(
v′
λ, vμ

)= (λ̄−μ)l−1ωC

0

(
(B − μ̄)v′

λ −w,vμ
)

= (λ̄−μ)l−1ωC

0

(
(B − μ̄)v′

λ, vμ
)

= ωC

0

(
v′
λ, (B −μ)lvμ

)= 0,

and also ωC

1 (v
′
λ, vμ)= ωC

0 (Bv
′
λ, vμ)= λ̄ωC

0 (v
′
λ, vμ)+ωC

0 (w, vμ)= 0, which
proves the induction step from (k, l) to (k + 1, l). Since λ and μ have com-
pletely symmetric roles, this also explains how to go to (k, l + 1). �

We now relate this decomposition of V C to the initial real vector space V .
For a real eigenvalue λ, the intersection V ∩ EC

λ defines a real subspace
Eλ with dimREλ = dimCE

C

λ . Complex conjugation defines an isomorphism
EC

λ → EC

λ̄
, vλ �→ v̄λ, and we can write V ∩ (EC

λ ⊕EC

λ̄
) for λ ∈ C \ R as the

direct sum of real subspaces E{λ,λ̄} = {v+ v̄ | v ∈EC

λ } ⊕ {i(v− v̄) | v ∈EC

λ }.
This way we find a decomposition of V into pairwise ω0- and ω1-

orthogonal subspaces

Eμ1 ⊕ · · · ⊕Eμk ⊕E{λ1,λ̄1} ⊕ · · · ⊕E{λl,λ̄l}

with μ1, . . . ,μk ∈ R \ {0}, and λ1, . . . , λl ∈ C \ R.
Blocks with real eigenvalue. For the following considerations, we restrict

to one of the subspaces Eλj with λj ∈ R, and denote λj for simplicity just
by λ. We will construct a basis of Eλ such that ω0 and ω1 have the partic-
ularly nice form described in the proposition. Note that ω0 and ω1 are both
nondegenerate on Eλ.

Let k + 1 be the nilpotency index of B − λ, i.e. (B − λ)k+1 = 0 and
(B − λ)k �= 0. Let v0 be an element of Eλ not in ker(B − λ)k . We set
vj := ε−j (B−λ)jv0 to define a collection of vectors v0, . . . , vk . Choose now
a vector wk ∈ Eλ with ω0(vk,wk) = 1 and ω0(vj ,wk) = 0 for every j �= k,
and define inductively wj−1 := ε−1(B − λ)wj , or equivalently

Bwj = λwj + εwj−1

for j ≥ 1.

Lemma A.6 The vectors v0, . . . , vk,w0, . . . ,wk are linearly independent
and satisfy the relations ωr(vj , vj ′) = ωr(wj ,wj ′) = 0 for all r = 0,1, and
j, j ′, and

ω0(vj ,wj ′)= δj,j ′ and ω1(vj ,wj ′)= λδj,j ′ + εδj,j ′−1.
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Proof We start by proving ωr(vj , vj ′)= 0. For this we will use an induction
on |j − j ′|. If j − j ′ = 0 then the statement follows directly from the anti-
symmetry of ωr . Suppose that the claim is true for j − j ′ ≤m and consider
any j and j ′ with j − j ′ =m+ 1 (in particular j ≥ 1). We have

εω0(vj , vj ′)= ω0
(
(B − λ)vj−1, vj ′

)= ω1(vj−1, vj ′)− λω0(vj−1, vj ′)= 0

by the induction hypothesis. Using the fact that Bvj ′ = εvj ′+1 + λvj ′ , we
compute

ω1(vj , vj ′)= ω0(vj ,Bvj ′)= εω0(vj , vj ′+1)+ λω0(vj , vj ′).

The first term is zero by the induction hypothesis and the second one is zero
because of the preceding computation. The proof of ωr(wj ,wj ′)= 0 follows
the same lines, and will be omitted.

Note that

ω0(vj ,wj ′)= εj ′−kω0
(
vj , (B − λ)k−j ′

wk
)

= εj ′−kω0
(
(B − λ)k−j ′

vj ,wk
)= ω0(vk+j−j ′,wk)= δj,j ′,

and in particular this implies that v0, . . . , vk,w0, . . . ,wk are linearly indepen-
dent vectors with respect to which ω0 has standard form.

The remaining relation for ω1 can be obtained by

ω1(vj ,wj ′)= ω0(vj ,Bwj ′)= λω0(vj ,wj ′)+ εω0(vj ,wj ′−1)

= λδj,j ′ + εδj,j ′−1. �

If we restrict ω0 and ω1 to the subspace E = span(v0, . . . , vk,w0, . . . ,wk)

and represent them in this basis, we now find that ω0 is in standard form Ω2k
and ω1 is represented by a matrix ε-close to λΩ2k .

To continue the proof, restrict ω0, ω1, and B to the ω0-symplectic comple-
ment E′ of the space E. Note that E′ is stable under B because for u ∈E′,

ω0(vj ,Bu)= ω0(Bvj , u)= λω0(vj , u)+ εω0(vj−1, u)= 0,

and similarly for ω0(wj ,Bu) = 0. We can thus proceed as before to reduce
all eigenspaces Eλ with λ ∈ R to ω0-symplectic blocks in normal form.

Blocks with complex eigenvalue. We proceed now to the generalized com-
plex eigenspace EC

λ with λ ∈ C \ R. Let k be the largest integer for which
EC

λ �= ker(B−λ)k , and construct as before a chain of vectors v0, . . . , vk ∈EC

λ

by starting with an element v0 ∈EC

λ \ ker(B − λ)k , and defining inductively

vj+1 := ε−1(B − λ)vj .
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Using complex conjugation, we also find a chain v̄0, . . . , v̄k that lies in EC

λ̄
.

Since B is the complexification of a real linear map, v̄j+1 := ε−1(B − λ̄)v̄j
holds.

Next, we define two chains w0, . . . ,wk in EC

λ̄
and w̄0, . . . , w̄k in EC

λ by

starting with a vector wk ∈ EC

λ̄
with ωC

0 (vk,wk)= 1 and ωC

0 (vj ,wk)= 0 for

every j �= k, and defining wj−1 := ε−1(B − λ̄)wj , or equivalently

Bwj = λ̄wj + εwj−1

for j ≥ 1. Similarly, we obtain w̄j−1 = ε−1(B − λ)w̄j .

Lemma A.7

(a) The space spanned by v0, . . . , vk−1, v̄0, . . . , v̄k−1 and the one spanned by
w0, . . . ,wk−1, w̄0, . . . , w̄k−1 are each isotropic with respect to both ω0
and ω1.

(b) The ωC

0 -pairings for these vectors are given by

ωC

0 (vj , w̄j ′)= 0, ωC

0 (vj ,wj ′)= δj,j ′,

ωC

0 (v̄j ,wj ′)= 0, ωC

0 (v̄j , w̄j ′)= δj,j ′ .

(c) The ωC

1 -pairings for these vectors are given by

ωC

1 (vj , w̄j ′)= 0, ωC

1 (vj ,wj ′)= λδj,j ′ + εδj,j ′−1,

ωC

1 (v̄j ,wj ′)= 0, ωC

1 (v̄j , w̄j ′)= λ̄δj,j ′ + εδj,j ′−1.

Proof To prove (a) note that since λ �= λ̄, the spaces EC

λ and EC

λ̄
are both ωC

0 -

and ωC

1 -isotropic, so we only need to show that ωC
r (v̄j , vj ′)= ωC

r (w̄j ,wj ′)=
0 for all j, j ′, and for r = 0,1. If j = j ′, we write vj as vx + ivy , and we use
sesquilinearity as follows:

ωC

0 (v̄j , vj )= ωC

0 (vx, vx)+ωC

0 (vx, ivy)−ωC

0 (ivy, vx)−ωC

0 (ivy, ivy)

= ω0(vx, vx)+ iω0(vx, vy)+ iω0(vy, vx)−ω0(vy, vy)

= 0.

By the same computation, ωC

1 (v̄j , vj )= 0.
If the statement is true for j ′ − j =m≥ 0, then

εωC

0 (v̄j , vj ′+1)= ωC

0

(
v̄j , (B − λ)vj ′

)= ωC

1 (v̄j , vj ′)− λωC

0 (v̄j , vj ′)

= 0
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and

ωC

1 (v̄j , vj ′+1)= ωC

0 (Bv̄j , vj ′+1)= ωC

0 (λ̄v̄j + εv̄j+1, vj ′+1)

= 0,

which finishes the induction. The argument for ωC
r (w̄j ,wj ′) is identical.

To prove (b), note first that the second two equations are the complex con-
jugate of the first two. Since vj , w̄j ′ ∈ EC

λ , it also follows immediately that
ωC

0 (v̄j , w̄j ′) = 0, so that we are only left with showing ωC

0 (vj ,wj ′) = δj,j ′ ,
but the required computation is identical to the one used to show the analo-
gous relation in the proof of Lemma A.6.

The equalities for (c) follow similarly. �

We will now intersect the complex subspace spanned by the chains defined
above with the initial real vector space V to finish the proof of the proposition.
For this, define for all j ≤ k the real vectors

v+
j = 1√

2
(vj + v̄j ), v−

j = i√
2
(vj − v̄j )

and

w+
j = 1√

2
(wj + w̄j ), w−

j = i√
2
(wj − w̄j )

which all lie in Eλ,λ̄. Using the results deduced above, we obtain for
all r = 0,1, and j, j ′ the equations ωr(v

+
j , v

±
j ′) = ωr(v

−
j , v

±
j ′) = 0 and

ωr(w
+
j ,w

±
j ′)= ωr(w−

j ,w
±
j ′)= 0, and finally

2ω0
(
v+
j ,w

+
j ′
)= ωC

0 (vj ,wj ′ + w̄j ′)+ωC

0 (v̄j ,wj ′ + w̄j ′)= 2δj,j ′,

2ω0
(
v+
j ,w

−
j ′
)= iωC

0 (vj ,wj ′ − w̄j ′)+ iωC

0 (v̄j ,wj ′ − w̄j ′)= 0,

2ω1
(
v+
j ,w

+
j ′
)= ωC

1 (vj ,wj ′ + w̄j ′)+ωC

1 (v̄j ,wj ′ + w̄j ′)

= ωC

0 (vj ,Bwj ′)+ωC

0 (v̄j ,Bw̄j ′)

= λ̄ωC

0 (vj ,wj ′)+ εωC

0 (vj ,wj ′−1)

+ λωC

0 (v̄j , w̄j ′)+ εωC

0 (v̄j , w̄j−1)

= (λ+ λ̄)δj,j ′ + 2εδj,j ′−1

and similar computations for the other matrix elements, which prove the de-
sired result with μ= Reλ and ν = Imλ.
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Sign of real eigenvalues. Assume that all 2-forms in the family

ωt := (1 − t)ω0 + tω1

for t ∈ [0,1] are nondegenerate. The λ-coefficients in the 2 × 2-blocks of
A′

1 correspond to the real eigenvalues of the map B , so that if λ < 0 with
eigenvector v, then we have ω1(v, ·)= ω0(Bv, ·)= λω0(v, ·), and it follows
that ωt(v, ·)= (1− t+ tλ)ω0(v, ·) has to vanish for a certain value t0 ∈ (0,1),
so that ωt0 is degenerate. �
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