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Abstract There is a classical relationship in algebraic geometry between a
hyperelliptic curve and an associated pencil of quadric hypersurfaces. We
investigate symplectic aspects of this relationship, with a view to applications
in low-dimensional topology.
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1 Introduction

1.1 Two contexts

The main result of this paper, Theorem 1.1, belongs to categorical symplec-
tic topology in the sense of Donaldson, Fukaya and Kontsevich. It relates the
derived Fukaya categories of a genus g surface �g and of the complete inter-
sectionQ0 ∩Q1 of two smooth quadric hypersurfaces in P

2g+1. The result is
of interest in at least two different contexts.

• The intersection of two quadric 4-folds in P
5 is also a moduli space of

solutions to the anti-self-dual Yang-Mills equations on the product �2 ×
S1 [60, 61]. Theorem 1.1, in the special case g = 2, can be seen as an
instance of the “Seiberg-Witten equals Donaldson” philosophy for gauge-
theory invariants of 3-manifolds.

• Theorem 1.1 can also be viewed as a symplectic analogue of a classical
theorem of Bondal and Orlov [13] in algebraic geometry, concerned with
derived categories of sheaves on the same spaces. The passage here from
algebraic to symplectic geometry fits into the broader program of Kontse-
vich’s Homological Mirror Symmetry conjecture.
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After formulating a precise version of the main theorem, the rest of the In-
troduction will flesh out these two contexts, and then indicate the basic strat-
egy of the proof, which is itself motivated—via mirror symmetry—by several
classical theorems on derived categories of sheaves.

1.2 The theorem

Let �g be a closed surface of genus g ≥ 2, equipped with a symplectic form.
This has a well-defined balanced Fukaya category F(�g), linear over C. Let

{Q2g
t }t∈P1 ⊂ P

2g+1 denote a pencil of smooth 2g-dimensional quadric hy-

persurfaces in P
2g+1, with smooth base locus Q2g

0 ∩Q2g
1 . By Moser’s theo-

rem, the symplectic manifold underlying the complete intersection Q0 ∩Q1
is independent of the choice of generic pencil of quadrics. It is a simply-
connected Fano variety, in particular a monotone symplectic manifold with
a well-defined monotone Fukaya category F(Q0 ∩Q1), again defined over
C. The latter category actually splits into a collection of mutually orthogo-
nal A∞-subcategories, one for each eigenvalue of quantum multiplication by
the first Chern class on the quantum cohomology of Q0 ∩Q1. We denote by
DπC the cohomological category H(TwπC) underlying the split-closure of
the category of twisted complexes of an A∞-category C. Our main result is:

Theorem 1.1 There is a C-linear equivalence of Z2-graded split-closed tri-
angulated categories

DπF(�g)�DπF(Q2g
0 ∩Q2g

1 ;0)
where F(•;0) denotes the summand corresponding to the 0-eigenvalue of
quantum cup-product by the first Chern class.

The proof of Theorem 1.1 given here relies essentially on the (typically
non-geometric) passage to idempotent completion.

If �g→ P
1 is a hyperelliptic curve, branched over {λ1, . . . , λ2g+2} ⊂C, it

determines a (2,2)-complete intersection

Q0 ∩Q1 =
(∑

z2j = 0
)
∩

(∑
λjz

2
j = 0

)
⊂ P

2g+1.

Varying the λj in C, one obtains a natural action, by parallel transport, of the

hyperelliptic mapping class group �hyp
g,1 of a once-pointed curve on each of

�g andQ0∩Q1. (There is no universal hyperelliptic curve over configuration
space Conf2g+2(P

1) [55]; we have constrained the λj to lie in C⊂ P
1, which

accounts for the appearance of once-pointed curves.)

Addendum 1.2 The equivalence of Theorem 1.1 is compatible with the weak
action of �hyp

g,1 .
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Considering the situation when branch points go to infinity more carefully,
there is a non-split finite extension

1→ Z
2g
2 −→ �̃hyp

g −→ �hyp
g → 1

of the classical hyperelliptic mapping class group which acts, via parallel
transport, by symplectomorphisms of Q0 ∩ Q1, cf. Remark 4.11. A fairly
direct consequence of Theorem 1.1 is:

Corollary 1.3 The natural representation �̃hyp
g → π0 Symp(Q0 ∩ Q1) is

faithful.

Classical surgery theory [83, Theorem 13.5] shows �̃hyp
g → π0 Diff(Q0 ∩

Q1) has infinite kernel. More surprisingly, the �hyp
g,1 -action extends to a faith-

ful weak action of the full mapping class group �g by autoequivalences of
DπF(Q0 ∩ Q1), which has no obvious direct geometric construction. The
construction of faithful mapping class group actions on triangulated cate-
gories is a well-known problem in that part of representation theory concerned
with categorification.

1.3 Entropy

Corollary 1.3 is essentially equivalent to a related dynamical statement. For a
symplectic manifold X the (conjugation-invariant) Floer-theoretic entropy of
a mapping class φ ∈ Symp(X)/Ham(X) is

hFloer(φ) = lim sup
1

n
log rk HF(φn).

This is a kind of robust version of the periodic entropy, robust in the sense that
it depends on a symplectic diffeomorphism only through its mapping class;
by contrast topological and periodic entropy are typically very sensitive to
perturbation. For area-preserving diffeomorphisms of a surface �, the Floer-
theoretic entropy (of the action on � itself) co-incides with the minimum of
topological or periodic entropy amongst representatives of the mapping class
[17, 27, 28]; moreover, hFloer(φ) > 0⇔ φ has a pseudo-Anosov component.
In this low dimension, these phenomena are basically detected by the funda-
mental group.

Theorem 1.4 A diffeomorphism φ ∈ �̃hyp
g has a pseudo-Anosov component if

and only if the induced map onQ0 ∩Q1 has positive Floer-theoretic entropy.

This seems to be one of the few computations of non-zero Floer-theoretic
entropy in a closed symplectic manifold which is not detected by classical
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topology. Analogous results for symplectomorphisms of certain K3 surfaces
can be derived from combining [73] and [42].

1.4 Representation varieties

Fix a point p ∈ �g and denote by M(�g) the moduli space of rank two,
fixed odd determinant stable bundles on a complex curve of genus g, equiva-
lently the space of conjugacy classes of SU(2)-representations of π1(�\{p})
which have holonomy −I at the puncture. M(�g) admits a natural symplec-
tic structure; the symplectic volume of M(�g) was computed by Witten and
Jeffrey-Weitsman [38, 90], and techniques from number theory, gauge theory
and birational geometry have all been brought to bear on understanding its
cohomology [4, 60, 84]. The connection to pencils of quadrics goes back to
Newstead [61], who constructed an isomorphism M(�2) ∼=Q4

0 ∩Q4
1 ⊂ P

5.
Theorem 1.1 therefore computes part of the Fukaya category of M(�2).

In the topological setting, there is an extension �̂(�g) of the (full,
not hyperelliptic) classical mapping class group �g = π0 Diff+(�g) by

Z
2g
2 = H 1(�g;Z2) which acts on the moduli space via a homomorphism
�̂(�g)→ SympM(�g). Goldman [34] proved �̂(�g) acts ergodically. Let
ρ̂ : �̂(�g)→ π0 SympM(�g) denote the associated representation on groups
of components.

Theorem 1.5 For g ≥ 2, ρ̂ : �̂(�g) −→ π0 SympM(�g) does not factor
through the symplectic group (i.e. ρ̂ is non-trivial on the Torelli group). When
g = 2, ρ̂ is faithful.

The second statement is just Corollary 1.3, and it implies the first state-
ment by an argument of Wehrheim and Woodward which we recall in Corol-
lary 2.12. By contrast, the action of �̂(�g) on H ∗(M(�g)) factors through
the symplectic group. Theorem 1.5 answers a question of Dostoglou and Sala-
mon [21, Remark 5.6]. Donaldson’s former student Michael Callahan proved
(unfinished Oxford D. Phil thesis, circa 1993) that ρ̂ distinguished the Dehn
twist on a separating curve σ ⊂ �2 from the identity. Callahan apparently
used the gauge theoretic methods recalled in Sect. 2.3, which seem less well
suited to treat the general case. A related faithfulness result, for the action of
a cousin of the 5-strand spherical braid group on a four-dimensional moduli

space P
2#5P

2
of parabolic bundles on S2, was established by Seidel [76, Ex-

ample 2.13] using Gromov-Witten invariants and positivity of intersections
of closed holomorphic curves in 4-manifolds.

There is also a fixed-point theorem valid at any genus: this is something of
a digression from the main theme of the paper, but has some relevance in light
of the conjectural description of F(M(�g)) discussed in Sect. 1.6 below, and
is needed for Corollary 1.8.
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Theorem 1.6 If φ ∈ SympM(�g) represents a class in im(ρ̂) then φ fixes a
point of M(�g).

If ψ ∈ �̂(�g) lies in the Torelli group, then the Lefschetz number of ρ̂(ψ)
is zero, and ρ̂(ψ) is isotopic to a diffeomorphism of M(�g) without fixed
points. Thus Theorem 1.3 and 1.6 both detect essentially symplectic phenom-
ena. There is an obvious correspondence between fixed points of the action of
φ on M(�g), and representations of the fundamental group of the mapping
torus of φ. This gives a purely topological application of the main theorems.

Corollary 1.7 Let Y → S1 be a closed 3-manifold fibring over the circle with
fibre �g .

• There is a non-abelian SO(3)-representation of π1(Y ).
• Suppose g = 2 and Y is hyperbolic. There are cyclic degree d covers
Yd→ Y for which the number of conjugacy classes of non-abelian SO(3)-
representations of π1(Yd) grows exponentially in d .

The first result was proved by Kronheimer-Mrowka [45] using gauge the-
ory; the second (which should generalise to higher genus fibres) appears to
be new though closely related results are in the literature, cf. Sect. 2.3. In
any case, it’s interesting that these are amenable to techniques of symplectic
geometry.

1.5 Instanton Floer homology

Let f : Yh → S1 be a fibred 3-manifold with a distinguished section, de-
fined by a monodromy map h ∈ �(�g,1) in the mapping class group of a
once-marked surface f−1(pt). Up to isomorphism there is a unique non-
trivial SO(3)-bundle E → f−1(pt), with 〈w2(E), f

−1(pt)〉 �= 0; the sec-
tion of Yh→ S1 defines a distinguished extension of E to an SO(3) bun-
dle (still denoted) E→ Yh. If Yh is a homology S1 × S2, this is the unique
non-trivial SO(3)-bundle over Yh up to isomorphism. Any such E admits no
reducible flat connexion, hence is “admissible” in the sense of Donaldson
[20], so there is an associated Z4-graded instanton Floer homology group
HFinst(Yh;E) computed from the Chern-Simons functional on connexions in
E. Now h acts canonically on M(f−1(pt)) via an element ĥ ∈ �̂(f−1(pt)),
and the famous theorem of Dostoglou and Salamon [22] gives an isomor-
phism HFinst(Yh;E)∼=HF(ρ̂(ĥ)). Appealing in addition to Theorems 1.1 and
(the proof of) 1.6 yields:

Corollary 1.8 Fix a 3-manifold Yh→ S1 fibred by genus 2 curves, which in
addition is a homology S1 × S2, and let E→ Yh be the non-trivial SO(3)-
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bundle. There is an isomorphism of Z2-graded C-vector spaces

HFinst(Yh;E) ∼= C⊕HF(h)⊕C. (1.1)

By work of Cotton-Clay [17] the central summand HF(h) on the right
side, which is computed on the curve �2 itself rather than on any associated
moduli space, can be algorithmically computed from a presentation of h as
a word in positive and negative Dehn twists, or from a suitable traintrack.
In general, if we make no assumption on the action of h on H1(�2;Z), the
instanton Floer homologies HFinst(Yh;E) of the different principal bundles
E→ Yh arising as mapping tori of h are given by Hochschild cohomologies
C⊕HH∗(hξ )⊕C, with hξ the various autoequivalences of F(�2) obtained
by combining the action of h and tensoring by some flat line bundle ξ ∈
H 1(�2;Z2). We should emphasise that it seems to be very hard to compute
these instanton Floer homology groups by direct computations on Yh, or even
to write down the underlying chain groups.

1.6 Witten’s conjecture

We include a brief speculative discussion, which should nonetheless set
these topological results in a helpful context. The space M(�g) is always
a simply-connected Fano variety, symplectomorphic to the variety of (g−2)-
dimensional linear subspaces of Q0 ∩Q1 ⊂ P

2g+1, hence there is an evalua-
tion from the total space of a projective bundle

P
g−2 ×̃M(�g)−→Q0 ∩Q1.

Probably deeper analysis of the birational structure of this map would help
relate the Fukaya category of the intersection of quadrics to that of the moduli
space. Explicitly:

Conjecture 1.9 There is a C-linear equivalence of Z2-graded triangulated
categories

DπF(�g) � DπF(M(�g);4(g − 2)).

We give a slightly more precise statement in Remark 2.19. Conjecture 1.9
should be seen in light of Witten’s conjecture relating Seiberg-Witten and
Donaldson invariants in low-dimensional topology. The spaces M(�g) arise
as moduli spaces of instantons on �g×S1. The corresponding moduli spaces
of Seiberg-Witten solutions on �g × S1 are given by symmetric products of
�g . A theorem of Munoz [58] implies the spectrum of quantum multiplication
by the first Chern class on M(�g) is given (dropping some factors of i) by

{−4(g− 1),−4(g − 2), . . . ,−4,0,4, . . . ,4(g− 2),4(g − 1)}.
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The Fukaya category F(M(�g)) breaks into summands indexed by these
values. Moreover, the summands for ±λ should be equivalent. Naively, one
would expect the Fukaya category summand F(M(�g);4(g − k − 1)) to be
built out of the Fukaya category of the symmetric product Symk(�g), when
|k| < g (this is an intentionally vague statement, not least because we have
not specified a symplectic form on the symmetric product). In particular,
the summands corresponding to the outermost eigenvalues ±4(g − 1) are
expected to be semisimple (equivalent to the Fukaya category of a point).
Whilst we do not prove this, Theorem 1.6 provides rather strong evidence.
More precisely, that theorem is proved by showing that the symplectic Floer
cohomology HF(φ) has a distinguished rank one summand, given by its gen-
eralized eigenspace for the eigenvalue 4(g − 1). This should be compared to
similar rank one pieces of monopole or Heegaard Floer homology [46, 66],
in that context associated to the “top” Spinc-structure. In this vein, Conjec-
ture 1.9—or Theorem 1.1, when g = 2—can be viewed as an instance of the
general “Seiberg-Witten= Donaldson” philosophy, for invariants of mapping
tori coming from the next highest Spinc-structure.

Practically, one might hope—by analogy with derived categories of
sheaves, cf. Sect. 1.7 below—that Fukaya categories behave well under both
blowing up and down, and under passing to the total space of a projective
bundle. Then Thaddeus’ work on flip diagrams [84], in which flips along pro-
jective bundles over symmetric products explicitly relate a projective bundle
over M(�g) to a projective space, would seem to give a cut-and-paste route
to assembling F(M(�g)) from the F(Symk(�g)). In reality, it seems hard to
give a complete argument on these lines using current technology. The inter-
mediate spaces in Thaddeus’ work have less good monotonicity properties
than M(�g) itself, whilst there is some delicacy in the choice of symplectic
form on Symk(�g). Note that the latter delicacy is absent precisely for the
summands corresponding to Symk(�g) for k = 0,1, which are those treated
in this paper.

1.7 Homological mirror symmetry

The proof of Theorem 1.1 involves establishing Fukaya category analogues
of three well-known results concerning derived categories of sheaves.

• (Bondal-Orlov) The derived category of sheaves on the intersection of two
even-dimensional quadrics has a semi-orthogonal decomposition in which
one factor is the derived category of sheaves on an underlying hyperelliptic
curve [13].

• (Kapranov) The derived category of sheaves on an even-dimensional
quadric has a semi-orthogonal decomposition in which one factor is the
derived category of sheaves on a pair of points [39].
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• (Bondal-Orlov) If X→ Y is the blow-up along a smooth centre B ⊂ Y of
codimension at least 2, the derived category of sheaves on B embeds in the
derived category of sheaves on X [13].

Obviously, Theorem 1.1 is exactly the symplectic analogue of the first of
these results. Our proof of Theorem 1.1 relates both categories appearing in
its statement with the Fukaya category of the relative quadric Z, given by
blowing up P

2g+1 along Q0 ∩ Q1. We construct equivalences with quasi-
isomorphic images

DπF(�g) ↪→ DπF(Z) ←↩ DπF(Q0 ∩Q1;0).
Although it occupies only a small part of the final proof, the geometric heart
of ↪→ and arguably of Theorem 1.1 is Sect. 4.1, which gives a derived equiv-
alence between the nilpotent summand of the Fukaya category of a quadric
Q⊂ P

2g+1 and the Fukaya category of a pair of points S0. This is precisely
the symplectic analogue of Kapranov’s theorem. From that perspective, a
hyperelliptic curve and the total space of the associated pencil of quadrics
behave, categorically, like fibrations with the same fibre and monodromy.
To pass between DπF(Z) and DπF(Q0 ∩Q1) involves relating the derived
Fukaya category of a base locus and of a blow-up, akin to the second men-
tioned theorem of Bondal-Orlov (in this case, however, the symplectic story
is carried out in more restricted circumstances, for blow-ups of codimension
two complete intersections satisfying a raft of convenient hypotheses). In light
of these analogies, one is led to compare the chains of spaces

∅ ⊂ 2 points ⊂ �g ⊂ X

� � � �
P

2g+1 ⊃ Q ⊃ Q0 ∩Q1 ⊃ X∨
(1.2)

where the top line corresponds to double branched covers of projective space
of dimensions d =−1,0,1,2 over divisors of degree 2g + 2, and the lower
line the base locus of a d-dimensional family of quadrics in P

2g+1. There
are equivalences between the Fukaya category of a space in the top line, and
the nilpotent summand of the Fukaya category of the space below it, in each
of the first 3 columns, mirror to a small part of Kuznetsov’s “homological
projective duality” [47]. The situation in the final column is less clear. For in-
stance, when g = 2, bothX andX∨ areK3 surfaces, but in general they don’t
have equivalent derived categories of coherent sheaves unless one introduces
a twist by a class in the Brauer group. It would be interesting to know whether
this has any symplectic analogue. The hypersurface of degenerate quadrics is
singular in codimension 3, so technical difficulties arise in pushing this any
further.

Given the proposed Landau-Ginzburg mirror w : YQ0∩Q1 → C of Q0 ∩
Q1 [41, 70], and the proofs by Seidel and Efimov of mirror symmetry for
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curves of genus ≥ 2, [24, 78], Theorem 1.1 essentially proves one direction
of Homological Mirror Symmetry for the Fano variety which is the complete
intersection of two quadrics:

DπF(Q0 ∩Q1;0) � Dbsing(YQ0∩Q1,w|open subset)

(restricting w throws out certain “massive modes”). In particular, this gives
the first proof of HMS for a moduli space of bundles on a curve of higher
genus.

Remark 1.10 Homological Mirror Symmetry typically relates symplectic and
algebraic geometry. The relation of Theorem 1.1 to HMS is roughly as fol-
lows. The mirror of a Fano varietyX is a Landau-Ginzburg modelw : Y →C;
blowing up the Fano X′ → X is expected to introduce new singular fibres

Y ⊂ Y ′ w′→ C into the LG-model. Blow-ups induce semi-orthogonal decom-
positions of the derived categoryDb(X′)= 〈Db(X),C〉, hence corresponding
semi-orthogonal decompositions relating the Fukaya-Seidel categories of the
mirrors. On the other hand, the new singular fibre of (Y ′,w′) leads to a new
summand to its derived category of singularities, which should correspond to
a new summand in the Fukaya category of X′ (and perhaps some bulk defor-
mation of the summands coming from X). For more on the mirror symmetric
background and motivation for Theorem 1.1, see [40].

1.8 Another birational motivation

There is another description of M(�2) = Q0 ∩Q1 ⊂ P
5 which, whilst not

used in this paper, is undoubtedly related to the g = 2 case of Theorem 1.1,
and provided motivation for the result. Let’s say that a line l ⊂ Q0 ∩ Q1
is generic if its normal bundle is holomorphically trivial O ⊕ O rather than
O(i)⊕O(−i). Recall that a genus 2 curve, whilst not a complete intersection,
admits an embedding as a (2,3)-curve on a quadric hypersurface P

1 × P
1 ⊂

P
3.

Lemma 1.11 The blow-up W →M(�2) at a generic line inside Q0 ∩Q1
is isomorphic to the blow-up W ′ → P

3 along an embedded genus 2 curve of
degree 5.

A proof is given in [36]. The diagram P
3 ← BlC(P3)= Bll(Q0 ∩Q1)→

Q0 ∩Q1 is also the simplest of the “flip-diagrams” constructed using stable
pairs by Thaddeus in [84] (in this special case there are actually no flips, see
op. cit. Sect. 3.19; the map to Q0 ∩Q1 is his non-abelian Abel-Jacobi map).

If one believes that Fukaya categories should behave well under birational
transformations—a view espoused by Katzarkov and his collaborators, see for
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instance [40], and encouraged by the particular cases treated in this paper—
then one expects F(W) to be built out of F(P1), which has two semisimple
summands, and of F(M(�2)), whilst F(W ′) should be assembled from F(P3)

(four semisimple summands) and F(�2). Equating F(W) and F(W ′) would
quickly give Theorem 1.1 in the case g = 2. Whilst the argument we give is
more roundabout, it seems technically simpler (because of its appeal to the
special geometric features of Lefschetz fibrations), and also applies in greater
generality (g ≥ 2).

1.9 Outline of proof

As mentioned previously, our proof of Theorem 1.1 constructs equivalences
with quasi-isomorphic images

DπF(�) ↪→ DπF(Z) ←↩ DπF(Q0 ∩Q1;0).
Both F(�g) and F(Q0 ∩Q1) are naturally Z4g−4-graded, but only the un-
derlying Z2-graded categories are equivalent; from this perspective, that is
because the intermediate category F(Z) only admits a Z2-grading. At a tech-
nical level, the proof of Theorem 1.1 combines five principal ingredients.

(1) Lefschetz fibrations provide the basic geometric setting in which all
the investigations take place. Thus, a hyperelliptic curve and the rel-
ative quadric Z are viewed as Lefschetz fibrations with categorically-
equivalent fibres.

(2) Eigenvalue splittings for Fukaya categories; in particular, we derive suf-
ficient conditions for a collection of Lagrangian spheres to split-generate
a particular summand.

(3) Quilt theory, in the sense of Mau-Wehrheim-Woodward; specifically, we
appeal to their work to construct embeddings of categories associated
to (idempotent summands of) Lagrangian correspondences which arise
from blowing up certain codimension two complete intersections.

(4) Surgery and Z-gradings, whereby certain holomorphic polygons are con-
strained by knowledge of related polygons for a Lagrange surgery at an
isolated intersection point, or by their intersection numbers with divisors
of poles of holomorphic volume forms.

(5) Finite determinacy, introduced in this setting in Seidel’s beautiful paper
[78], which relies on Kontsevich’s formality theorem to describe certain
A∞-structures in terms of polyvector fields. Eventually, the Fukaya cate-
gories of the curve and the relative quadric are identified by singling out
a quasi-isomorphism class of A∞-structures on an exterior algebra with
the desired Hochschild cohomology.

These ingredients are assembled as general tools in Sect. 3, and deployed in
the subsequent parts of the paper. The connection ←↩ between F(Z) and the
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Fukaya category of the base locus seems to be part of a wider phenomenon
for blow-ups; it also makes a connection to a well-known “spinning” con-
struction of Lagrangian spheres, which provides a link between algebra and
geometry useful for establishing Addendum 1.2. The material on Fukaya cat-
egories of blow-ups should be compared to the work of Abouzaid, Auroux
and Katzarkov (in preparation), who derive closely related results from the
“Strominger-Yau-Zaslow” perspective of Lagrangian torus fibrations; similar
techniques are also applied in Seidel’s recent [79]. These results might be
viewed as an open-string counterpart to the symplectic birational geometry
programme of Yongbin Ruan and his collaborators.

Remark 1.12 The symplectic manifolds which occur in the paper are real
surfaces or Fano varieties, hence are monotone with minimal Chern number
≥ 1, and the Lagrangian submanifolds we consider are monotone of minimal
Maslov number≥ 2. These hypotheses considerably simplify the definition of
F(•;λ), which can then be constructed using essentially classical tools, and
allow us to make systematic use of the quilted Floer theory of Mau, Wehrheim
and Woodward [53]. We emphasise that Fukaya categories enter the main ar-
gument in a rather formal manner, and the properties we require would hold
independent of the finer details of the construction. That underlying construc-
tion is nonetheless a very substantial undertaking, and we are accordingly
indebted to the foundational work of Fukaya-Oh-Ohta-Ono, of Seidel, and of
Mau-Wehrheim-Woodward.

Organisation of the paper Section 2 gives background on the spaces M(�g)
and derives the results of Sects. 1.4 and 1.5, assuming Theorem 1.1. This
section is largely self-contained, though at one or two points we refer ahead
for general Floer-theoretical results. Such results are collected in Sect. 3. The
proof of Theorem 1.1 itself takes up the remainder of the paper, Sects. 4 and 5.
A low-dimensional topologist happy to take the proof of Theorem 1.1 on faith
can stop reading at the end of Sect. 2. A symplectic topologist interested in
Theorem 1.1 but unconcerned with 3-manifolds can start reading from Sect. 3.

2 The representation variety

2.1 Topology

Recall that M(�g) denotes the variety of twisted representations of the fun-
damental group of a punctured surface �g\{p}:

M(�g)=
{
(A1,B1, . . . ,Ag,Bg) ∈ SU(2)2g|

∏
i

[Ai,Bi] = −I
}/

SO(3)

(2.1)
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where SO(3) = SU(2)/{±I } acts diagonally by conjugation. There are
no reducible representations (since an abelian representation couldn’t have
holonomy −I around the puncture), and the moduli space is a smooth com-
pact manifold of real dimension 6g − 6. It has a natural symplectic struc-
ture, which comes from a skew form on the tangent space H 1(adE) given
by combining the Killing form in the Lie algebra su2 with wedge product.
The representation variety is symplectomorphic to the moduli space of sta-
ble bundles of rank two and fixed odd determinant on a Riemann surface of
genus g [60], which in turn carries a canonical Kähler form arising from its
interpretation as an infinite-dimensional quotient of the space of connexions
on �g : gauge theoretically, the symplectic structure is inherited from that on
adjoint-bundle-valued 1-forms given by 〈a, b〉 = ∫

�
a ∧∗b. Let �(�) denote

the mapping class group of isotopy classes of diffeomorphisms of � which
preserve p; let I(�) denote the Torelli subgroup of �(�) of elements which
act trivially on homology. There is a short exact sequence

1→ π1(�)→ �(�)→ �g→ 1 (2.2)

where the classical mapping class group �g = π0 Diff+(�) = Out(π1(�))

acts on the variety Hom(π1(�),SO(3))/SO(3), which is a symplectic orb-
ifold. This latter space has two connected components, corresponding to
flat connexions in the trivial respectively non-trivial SO(3)-bundle over �.
The latter component is a quotient of M(�) by the finite group Z

2g
2 =

H 1(�;Z2)= Hom(π1(�),Z2). This acts via Ai �→ ±Ai,Bj �→ ±Bj in the
explicit description of the moduli space given above, or by tensoring by order
two elements of the Jacobian torus of degree zero line bundles if one regards
M(�) as a moduli space of stable bundles. It follows that the representation
ρ : �(�)→ π0 Symp(M(�)) actually factors through a representation

ρ̂ : �̂(�)→ π0 Symp(M(�))

where �̂(�) is an extension of �g by Z
2g
2 .

Remark 2.1 Finite subgroups of �(�)∼= �g,1 are cyclic, which implies that
the sequence of (2.2) does not split [26]. Results of Morita [56, 57] imply that
for g ≥ 2

Z2 ↪→ H 2(�g;H 1(�;Z2)),

the map being an isomorphism for large g. It follows that there are two dis-
tinct extensions of the mapping class group by the finite group H 1(�;Z2),
and �̂ is isomorphic to the non-trivial extension (cf. [23, Sect. 9] and [57,
Proposition 4]). That is, the quotient sequence

1→H 1(�;Z2)→ �̂(�)→ �g→ 1 (2.3)
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does not split; compare to Remark 3.23. However, the pullback of the exten-
sion to the mapping class group �g,1 does split, since Morita computes that
H1(�g,1;H1(�;Z))∼= Z, which implies H 2(�g,1;H 1(�;Z2))= 0. It there-
fore makes good sense to compare the (weak) actions of the split extension of
�g,1 by H 1(�;Z2) on F(�g) and F(M(�g)).

There is a universal rank 2 bundle E→ � ×M(�); this is not uniquely
defined, but its endomorphism bundle End(E) is unique. By decomposing
the second Chern class c2(End(E)) into Künneth components (i.e. using slant
product) one obtains a map

μ :H∗(�;Z)−→H 4−∗(M(�);Z) (2.4)

which we refer to as the μ-map. We recall a number of well-known facts (see
[19, 36, 61, 85] for proofs; many other references are also appropriate).

(1) The space M(�g) is simply connected (so there is no distinction between
Hamiltonian and symplectic isotopy).

(2) M(�g) has Euler characteristic zero. It admits a perfect Morse-Bott func-
tion with critical submanifolds (i) two S3-bundles over M(�g−1), one the
absolute minimum and one the absolute maximum; and (ii) a torus T 2g−2

of middle index.
(3) The cohomology ring H ∗(M(�);Z) is generated by the image of the
μ-map. The action �̂(�)→ Aut(H ∗(M(�);R) factors through the sym-
plectic group Sp2g(Z), in particular H 1(�;Z2) acts trivially.

(4) M(�) is a smooth Fano variety with H 2(M(�);Z)∼= Z. The first Chern
class is twice the generator.

Example 2.2 We noted in the Introduction that M(�2)∼=Q0∩Q1 ⊂ P
5. The

map μ : H1(�;Z)→ H 3(M(�);Z) is an isomorphism, equivariant for the
action of the symplectic group Sp4(Z).

The quantum cohomology of any closed symplectic manifold splits into
generalised eigenspaces for the action of quantum multiplication by the first
Chern class, cf. Sect. 3.1 for a fuller discussion. For M(�2) one can compute
this explicitly, starting from a presentation of quantum cohomology derived
by Donaldson.

Lemma 2.3 There is a ring isomorphism

QH∗(M(�2)) ∼= H ∗(pt)⊕H ∗(�2)⊕H ∗(pt)
with summands the generalised eigenspaces for quantum cup with
c1(M(�2)).
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Proof Let hj denote the generator of Hj(M(�2)), for j = 2,4,6. Let γi
denote classes in H1(�), and δ(·, ·) the intersection pairing on �. Starting
from the classical facts that

• there are four lines through the generic point of M(�2);
• given two generic lines l1, l2, there are two other lines which meet both li ;

Donaldson [19] proved that h2 ∗h2 = 4h4+ 1 and h2 ∗h4 = h6+ 2h2, whilst
hj ∗ μ(γi) = 0 for degree reasons. Write h = h2, to simplify notation; one
then obtains that QH∗(M(�2)) is the ring with generators and relations

〈h,μ(γi) | h4 = 16h2, hμ(γi)= 0, μ(γi)μ(γj )= δ(γi, γj )(h3/4− 4h)〉.
Since h= c1/2, we are interested in the generalised eigenspaces for ∗h. Now
take the three summands to be respectively generated by

〈h2/16〉, 〈1− h2/16, μ(H1(�)), h
3 − 16h〉, 〈(h3 + 4h2)/128〉

and observe that the summands are mutually orthogonal and closed under
quantum product. �

2.2 Monodromy and degenerations

There are several easy similarities between Floer cohomology computations
on �2 and on M(�2) which helped to motivate Theorem 1.1. Let γ ⊂ �
denote a homologically essential simple closed curve. Taking the subspace
of representations trivial along γ defines a co-isotropic submanifold Vγ ⊂
M(�) which is an SU(2)-bundle over M(�g−1), where the lower genus sur-
face is essentially the normalisation of the nodal surface �/{γ }. When g = 2,
M(�g−1) is a single point, and Vγ ∼= SU(2) is a Lagrangian 3-sphere.

Lemma 2.4 Fix g = 2. Let γ and γ ′ be homologically independent simple
closed curves in �2.

• If γ ∩ γ ′ = ∅ then Vγ ∩ Vγ ′ = ∅.
• If γ � γ ′ = {pt} then Vγ � Vγ ′ = {pt}.
Proof In the first case, a representation in Vγ ∩ Vγ ′ defines a flat connexion
on the sphere given by cutting �2 open along γ ∪ γ ′, which however has
non-trivial holonomy at the puncture. No such representation can exist. Sim-
ilarly, if γ � γ ′ = {pt}, any element of Vγ ∩ Vγ ′ defines a flat connexion on
the torus given by cutting along γ ∪ γ ′, with non-trivial monodromy at the
puncture. Such a connexion is defined by a pair of matrices (A,B) ∈ SU(2)2

with [A,B] = −I , and it is a straightforward exercise to see that there is
a unique such pair up to simultaneous conjugation. We must check that the
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corresponding intersection point of Vγ and Vγ ′ is transverse, a result easily
extracted from either of [19, 72]. The map f : (A2,B2) �→ [A2,B2] from
SU(2)2→ SU(2) has −I as a regular value, and there is an embedding

η : f−1(−I )×BI (δ) ↪→ SU(2)× SU(2)

for which f ◦ η(x,u)=−u, with BI (δ) a small open neighbourhood of I ∈
SU(2). We can therefore embed an open neighbourhood of the zero-section
Vγ = SU(2)⊂ T ∗SU(2)∼= su2 × SU(2) ↪→M(�) by a map

g : (h,B2) �→ (−e−h,B2, η(A2,B2, [e−h,B2]−1).

This shows that locally near Vγ , the fibre direction su2 is parametrised by
the holonomy of the transverse curve γ ′, which implies that Vγ and Vγ ′ meet
transversely. �

Remark 2.5 An essential simple closed curve γ ⊂�2 defines two Lagrangian
3-spheres, namely hol−1

γ (±I ). Call these Vγ and Vγ̄ . Since these spheres are
disjoint, one obviously has

HF(Vγ ,Vγ )∼=H ∗(S3)∼=HF(Vγ̄ ,Vγ̄ ); HF(Vγ ,Vγ̄ )= 0. (2.5)

The spheres Vγ and Vγ̄ lie in the same homology class and the same orbit
under the action of H 1(�;Z2). This should be compared with Remark 3.22.

The action on M(�) of a Dehn twist on � has been studied by Callahan
and Seidel (both unpublished, now discussed in detail in [89]). Let σ ⊂ �
denote a nullhomologous but not nullhomotopic simple closed curve, dividing
� into subsurfaces of genus 1 and g − 1 say (see Fig. 2). There is a unique
conjugation-invariant function

SU2 −→ [0,1] for which log

(
eiπt 0

0 e−iπt
)
�→ t, 0≤ t ≤ 1.

This induces a map f :M(�)→ [0,1], by taking the conjugacy class of the
holonomy around σ . A theorem of Goldman [34] implies that, on the open
subset f−1(0,1) where f is smooth, it is the Hamiltonian function of a circle
action. Explicitly, if σ corresponds to the curve defining the matrix Ag in the
notation above, and if Ag �= ±I , there is a unique homomorphism

φ :U(1)→ SU2 with Ag ∈ φ({�(z) > 0})
and the circle acts via

λ · (Ai,Bi) = (A1,B1, . . . ,Ag,φ(λ)Bg).
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Let Vσ = f−1(ε) for a small ε > 0; V ⊂M(�) is a separating hypersurface
which is preserved and acted upon freely by this S1-action. This manifests it
as a fibred co-isotropic submanifold, with base the moduli space correspond-
ing to the disconnected curve given by normalising the nodal surface in which
σ is collapsed to a point.

Proposition 2.6 (Seidel, Callahan) Let tc denote the positive Dehn twist
along a curve c ⊂ � and let τc denote the induced action of the twist
on M(�).

• τγ is a rank 3 fibred positive Dehn twist in the S3-fibred co-isotropic Vγ̄ .
• τσ is a rank 1 fibred positive Dehn twist in the S1-fibred co-isotropic Vσ .

Both results are proved by considering the monodromy of suitable Morse-
Bott degenerations, cf. related discussions in [67, 72, 89] (the last refer-
ence contains proofs of both cases). If there is any equivalence of cate-
gories DπF(�2) �DπF(M(�2);0) which respects the actions of the map-
ping class group, then necessarily [γ ] �→ [Vγ̄ ], by combining Proposition 2.6
and Corollary 3.7 (which says that Lagrangian spheres are essentially deter-
mined by their associated twist functors). Unfortunately, we do not know of
any (smooth and embedded) Lagrangian correspondence � ⊂ �2 ×M(�2)

which might define such a functor. The upshot of the following sections will
be to show that a certain generalised Lagrangian correspondence

�2 �Z� M(�2)

does define an equivalence on suitable subcategories, where Z denotes the
relative quadric BlM(�)(P5). Even here, two subtleties arise: the first corre-
spondence (from the curve to the relative quadric) would be singular, and not
amenable to quilt theory (so we will avoid it and use more algebraic argu-
ments); and the second correspondence will not itself be fully faithful, but
will have an idempotent summand which induces the desired equivalence.

2.3 Fibred 3-manifolds

Recall that an SO(3)-bundle on a closed oriented 3-manifold Y is determined
up to isomorphism by its second Stiefel-Whitney class w2(E) ∈H 2(Y ;Z2).
Let f : Y → S1 be a 3-manifold which fibres smoothly over the circle. The
fibre f−1(pt) is necessarily homologically essential and primitive, and we
fix an SO(3)-bundle E over Y for which 〈w2(E), [f−1(pt)]〉 �= 0. Indeed,
we take E to be the mapping torus of a lift of the monodromy of Y to the
unique non-trivial SO(3)-bundle over a preferred fibre f−1(pt), with w2(E)

Poincaré dual to a section of f . The Chern-Simons functional

a �→
∫

Y

a ∧ da + a ∧ a ∧ a
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on the affine space �1(Y ) of connexions A=A0+ a on E has critical points
the flat connexions, which give rise to irreducible representations of π1(Y )

into SO(3) whose restriction to the fibre � = f−1(pt) defines a flat connex-
ion in the original bundle E|� . In other words, the relevant representations of
π1(Y ) are exactly those arising from fixed-points of the natural action of the
monodromy φ of f (lifted to E) on M(�). All of these representations are
non-abelian, since they restrict to non-abelian representations of π1(�). By
counting solutions to the anti-self-dual Yang-Mills equations on Y ×R, one
can define a Morse-Floer theory for the Chern-Simons functional and hence
an instanton Floer homology group HFinst(Y ;E). The classical theorem of
Dostoglou and Salamon [22] asserts

HFinst(Y ;E) ∼= HF(ρ̂(φ)). (2.6)

Since the fixed points of mapping classes on M(�) define representations of
π1(Y ), the latter can be studied via symplectic Floer homology; this will be
the approach taken in the proof of Corollary 1.7 later.

Remark 2.7 If Yh→ S1 has monodromy h with im(1− h∗)=H1(�;Z) for
the induced action on H1(�;Z), the mapping torus is a homology S1 × S2,
and there is a unique SO(3)-bundle over Yh. In particular, the left hand side of
(2.6) is independent of the lift of h to the principal bundle E→�. It follows
that the Floer homologies on the representation variety of all lifts of h to �̂(�)
are actually isomorphic, which doesn’t seem obvious directly.

Finally, one can consider the set of non-abelian SO(3)-representations of
π1(Y ) and its behaviour under coverings, analogously to recent interest in the
growth of Betti numbers or Heegaard genus of covers. Long and Reid [50]
proved that any hyperbolic 3-manifold has finite covers with arbitrarily many
representations into the dihedral group A5 and hence non-abelian SO(3)-
representations. However, these covers are not cyclic. Ian Agol pointed out to
the author that if a 3-manifold Y has a non-trivial JSJ-decomposition—for in-
stance, the mapping torus of a reducible surface diffeomorphism—some finite
cover has fundamental group mapping onto a rank 2 free group, hence there
are covers with infinitely many non-abelian SO(3)-representations. However,
if Y is actually hyperbolic, properties of SO(3)-representations under cyclic
covers seem mysterious, and the second statement in Corollary 1.7 seems to
be new.
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2.4 Faithfulness

For a symplectic manifold X consider the conjugation-invariant Floer-
theoretic entropy of a mapping class φ ∈ Symp(X)/Ham(X)

hFloer(φ) = lim sup
1

n
log rkK HF(φn).

As mentioned in the Introduction, for area-preserving diffeomorphisms of a
surface � the Floer-theoretic entropy (of the action on � itself) co-incides
with the topological entropy which in turn co-incides with the periodic en-
tropy, or rather their minimal values on the isotopy class [17, 27, 28]. Thus

hFloer(φ) > 0 ⇔ φ has a pseudo-Anosov component. (2.7)

This follows from the classical fact that pseudo-Anosov maps have exponen-
tially growing numbers of periodic points realising exponentially many dif-
ferent Nielsen classes; Floer-theoretically one can actually make much more
precise statements [17]. Recall also there is a natural representation

ρ̂ : �̂(�)−→ π0 Symp(M(�))

where �(�) → �g is a Z
2g
2 -extension of the mapping class group

π0 Diff+(�g). Mildly abusing notation, we will say φ̂ ∈ �̂(�) has a pseudo-
Anosov component if that is true of its image φ ∈ �g . Our faithfulness crite-
rion Lemma 2.9 relies on a classical observation of Thurston:

Lemma 2.8 (Thurston) Let �g be a closed surface and σ ⊂�g a separating
simple closed curve. There is another separating simple closed curve σ ′ ⊂�g
for which the products τ kσ τ

−k
σ ′ are pseudo-Anosov mapping classes for all

k ≥ 1.

In fact, one chooses σ ′ so that σ ∪ σ ′ fill �g in the sense that their com-
plement is a union of disks. Then any word in positive twists along σ and
negative twists along σ ′ (with both twists appearing) yields a pseudo-Anosov
diffeomorphism; a proof is given in [27, Exposé 13, Théorème III.3].

Lemma 2.9 Let g(�) ≥ 2. Suppose that for any φ̂ ∈ �̂(�) with a pseudo-
Anosov component, ρ̂(φ̂) has strictly positive Floer-theoretic entropy. Then ρ̂
is faithful.

Proof Suppose a mapping class φ̂ �= id lies in the kernel of ρ̂. We first claim
that φ̂ cannot be in the finite subgroup H 1(�;Z2) which is the kernel of
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�̂(�)→ �g . Indeed, a theorem of Narasimhan and Ramanan [59] implies
that for ι ∈H 1(�;Z2)\{id},

Fix(ι) = Prym(ι) ∼= T 2g−2

is an abelian variety of dimension g − 1, isomorphic to the Prym variety
of the double cover of � defined by ι. These fixed points form a smooth
Morse-Bott manifold, which arises as a clean intersection between the graph
of ι and the diagonal. Pozniak’s “local-to-global” spectral sequence for Floer
cohomology [69] then implies that

dimK(HF(ι)) ≤ dimK(H
∗(T 2g−2))

which is strictly smaller than dimK(QH∗(M(�)), cf. Sect. 2.1. It follows that
HF(ι) �∼=HF(id), so ι �∈ ker(ρ̂). Accordingly, if φ̂ does lie in this kernel, it has
non-trivial image φ in the classical mapping class group �g . The hypothesis
implies that φ has no pseudo-Anosov component; Thurston’s classification
of surface diffeomorphisms [27] implies φ is reducible with all components
periodic. If any periodic component is non-trivial, the mapping class ρ̂(φ̂)
acts non-trivially on cohomology, via the μ-map of (2.4) and the non-trivial
action on H ∗(�). We therefore reduce to φ being a product of powers of
Dehn twists on disjoint separating simple closed curves.

If σ ⊂� is a separating curve, by Lemma 2.8 we can find another separat-
ing curve σ ′ for which the elements τ kσ τ

−k
σ ′ are pseudo-Anosov when k > 0.

By the hypothesis, these therefore map to elements of positive Floer-theoretic
entropy under ρ̂. If a lift to �̂(�) of some power of the twist τσ was in the
kernel of ρ̂, then the Floer cohomology of iterates of τ−1

σ ′ would grow expo-
nentially in rank, hence so would the Floer cohomologies of iterates of τσ ′
recalling HF(ψ−1)∼=HF(ψ)∗. However, it is straightforward using Proposi-
tion 2.6 to write down an explicit representative for the action of τσ ′ on M(�)

for which the Floer chain groups grow only linearly in rank under iteration.
It follows that the Dehn twist in the separating curve σ actually maps to an
element of infinite order. The same trick shows a product of separating twists
in disjoint curves is also infinite order. The result follows. �

Remark 2.10 It may be worth emphasising that the hypotheses of the faith-
fulness criterion Lemma 2.9 could be derived from something much weaker
than Conjecture 1.9; for instance it would follow (over K = �C) from the
existence of a formal deformation of categories from F(M(�g);4(g− 2)) to
F(�g). Such (bulk) deformations seem likely to arise in the obvious strategies
to attack Conjecture 1.9 as coming from flip diagrams, cf. Sect. 1.8.

Lemma 2.11 If g(�)= 2, the hypothesis of Lemma 2.9 is satisfied.
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Proof Again take φ̂ ∈ �̂(�) with image φ, and pick a representative dif-
feomorphism of the surface � for that mapping class. This can be written
as a product of Dehn twists in simple closed curves associated to matching
paths in C, which means that the action of the diffeomorphism onDπF(�)�
DπF(M(�);0) is determined by the twist functors in the spheres Vγ . These
act compatibly with the equivalence of categories, by Addendum 1.2, cf.
Corollaries 4.45 and 5.29. For any k ∈ Z, the Floer group HF(φk)∼=HH(Gφk )
is given by the group of natural transformations between the identity functor
and that induced by φk , by Corollary 3.12. In particular this Floer group is
completely determined by the action of φ on the Fukaya category. It follows
that the Floer cohomology of the mapping class on the underlying surface is a
summand of the Floer cohomology on the moduli space. Equation (2.7) now
proves the Lemma. �

When g = 2, the Floer-theoretic entropy of ρ̂(φ̂) is positive if and only
if φ has a pseudo-Anosov component; the converse implication holds by the
proof of Lemma 2.9. Combining the two previous results, we obtain a proof
of Theorem 1.5 from the Introduction, using an argument due to Wehrheim
and Woodward.

Corollary 2.12 For g ≥ 2, the representation �̂(�g)→ π0 Symp(M(�g)) is
non-trivial on the Torelli group I(�).

Proof For g = 2, we have actually seen that the Dehn twist on the sep-
arating waist curve σ ⊂ �2 induces a non-identity functor of Donaldson’s
quantum category H(FM(�2)). For higher genus, following Wehrheim and
Woodward, we use induction on g with g = 2 the base case. Suppose for
contradiction that τσ induces the identity functor of the Donaldson category
H(F(M(�g))) but the separating twist is non-trivial at genus g− 1. Viewing
the co-isotropic vanishing cycles Vγ as Lagrangian correspondences, there

are natural isomorphisms of functors Vγ ◦ τgσ ◦ V op
γ
∼= τg−1
σ (this is the coho-

mology level version of Theorem 3.14). But if τgσ � idHFM(�g) then the left
hand side gives the identity functor, contradicting the inductive hypothesis. �

2.5 A fixed point theorem

Since there are periodic, fixed-point free surface diffeomorphisms, even when
g = 2 Theorem 1.1 does not imply that HF(ρ̂(φ)) �= 0 for an arbitrary map-
ping class φ. In fact, such a non-vanishing result does hold in any genus; the
proof relies on concentrating not on the summand of the Fukaya category
corresponding to the underlying curve but on a “semi-simple” summand. The
moduli space M(�g) is monotone with minimal Chern number 2, hence its
quantum cohomology is mod 4 graded. We recall a result of Munoz [58]:
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Theorem 2.13 (Munoz) The eigenvalues of quantum cap-product ∗h by the
generator h ∈ H 2(M(�g);Z) ∼= Z on the quantum cohomology
QH∗(M(�g)) are {0,±4,±8, . . . ,±4(g − 1)}. Moreover, with field co-
efficients, the generalised eigenspaces associated to the eigenvalues ±4(g −
1) have rank 1.

For V ⊂M an Sk-fibred coisotropic submanifold with base B , denote by
τV the fibred positive Dehn twist along V . We will not distinguish notation-
ally between V and the associated Lagrangian correspondence V ⊂ B ×M .
Fix a homologically essential simple closed curve γ ⊂ �g , hence a La-
grangian correspondence Vγ ⊂M(�g−1)×M(�g), cf. Sect. 2.2.

Corollary 2.14 (Perutz) There is an isomorphism

HF(Vγ ,Vγ ) ∼= QH∗(M(�g−1))⊗H ∗(S3;K)
as QH∗(M(�g−1))-modules.

This is [67, Theorem 7.5] (and is a direct application of Perutz’ Theo-
rem 3.3 in a case where the Euler class of the sphere bundle vanishes).

Lemma 2.15 Let φ ∈ Symp(M(�g)). The eigenvalues of quantum cup-
product by the generator h ∈ H 2(M(�g)) on HF(Vγ , (φ × id)Vγ ) are con-
tained in {0,±4, . . . ,±4(g − 2)}.
Proof Let R be a unital ring, A a finitely generated R-algebra and r ∈ R.
The spectrum of multiplication by r on A is a subset of that of multiplication
by r on R. Indeed, there is a surjective quotient π : Rk→ A, and ker(π) is
stable under multiplication by elements of R. The result then follows from
the well-known fact that if a transformation T on a vector space V has invari-
ant subspace W , the minimal polynomial of the induced map on V/W is a
factor of the minimal polynomial of T . Therefore, it suffices to compute the
spectrum of quantum cup-product by h on HF(Vγ ,Vγ ).

Since Vγ ⊂ M(�g−1) × M(�g) is simply-connected, it has minimal
Maslov number 4. Lemma 3.1 implies that under the natural map

QH∗(M(�g−1))⊗QH∗(M(�g))
∼=QH∗(M(�g−1)×M(�g))−→HF(Vγ ,Vγ )

the first Chern class maps to zero. (In the language of Sect. 3.1, m0(Vγ )= 0.)
Therefore, 1⊗ c1(M(�g)) and c1(M(�g−1))⊗ 1 have the same image up to
sign, so it is enough to know the spectrum of the latter class. The action of
this is determined by Corollary 2.14, and the result follows on combining that
with Theorem 2.13. �
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Theorem 2.16 (Wehrheim-Woodward) Let k > 1. Suppose that V ⊂ M is
an Sk-fibred co-isotropic, whose graph defines an orientable monotone La-
grangian submanifold of M × B of minimal Maslov number ≥ 4. Let φ ∈
Symp(M). There is an exact triangle

· · · →HF∗(φ)→HF∗(τV ◦ φ)→HF∗(V , (φ × idB)V )
[1]−→HF∗(φ)→ ·· ·

of (relatively graded) modules for the ring QH∗(M;K).

This is taken from [89]. We point out that when g = 2, the case relevant for
determining instanton Floer homology of genus 2 fibred 3-manifolds in (1.1),
the generalised Dehn twist of Proposition 2.6 is just a classical Dehn twist
in a Lagrangian 3-sphere, and the proof of the following Corollary simplifies
accordingly.

Corollary 2.17 Let φ̂ ∈ Symp(M(�g)) represent a mapping class in the
image of the natural homomorphism ρ̂ : �̂(�g)→ π0 Symp(M(�g)). Then
HF(φ̂) �= 0.

Proof Write the given mapping class φ̂ = ρ̂(φ◦) and write φ◦ =∏
i t
±εi
γi as

a product of (positive and negative) Dehn twists along non-separating simple
closed curves; this is always possible. We consider the long exact sequences
in Floer cohomology associated to the induced rank 3 fibred Dehn twists on
M(�g) of Proposition 2.6:

HF(ψ)→HF(τV ◦ψ)→HF(V , (ψ × id)V )
[1]−→ · · ·

where ψ is a sub-composite of Dehn twists. We claim by induction on the
number of twists in the expression of φ, equivalently φ◦, that HF(φ̂) is non-
trivial. Indeed, we make the following somewhat stronger inductive hypothe-
sis: the generalized eigenspace for ∗h on HF(ψ) for the eigenvalue 4(g−1) is
rank 1 whenever ψ is a product of ≤ k (positive or negative) Dehn twists. If k
is zero, then φ̂ = id and we have a ring isomorphism HF(id)∼=QH∗(M(�g)),
in which case this result is exactly Munoz’ theorem.

Taking generalized eigenspaces is an exact functor over any field; con-
sider the associated exact sequence of generalised eigenspaces, for eigen-
value 4(g − 1), for the operation given by quantum cup-product ∗h in
the exact sequence above. If g = 2 the third term in the sequence is
HF(Lγ ,ψ(Lγ )). Quantum cohomology acts via the module structure of this
group over HF(Lγ ,Lγ ) ∼= H ∗(S3), which is trivial in relative (mod 4) de-
gree 2, from which it immediately follows that ∗h is nilpotent. More gener-
ally, Lemma 2.15 implies that the spectrum of ∗h on HF(Vγ , (ψ × id)Vγ ) is
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contained in {0, . . . ,±4(g− 2)}, so the generalized eigenspace for the eigen-
value 4(g − 1) is trivial. By exactness, if that eigenspace has rank 1 for ψ , it
also has rank 1 for τV ◦ψ . The argument for inserting a negative Dehn twist
is the same, but working with the exact triangle

HF(τ−1
V ψ)→HF(τV ◦ (τ−1

V ψ))→HF(V , (τ−1
V ψ × id)V ).

In either case, the induction implies that for any mapping class, there is a
distinguished rank one summand in HF(φ), so in particular HF(φ) �= 0. �

Corollary 2.17, via the circle of ideas of Sect. 2.3, yields:

Corollary 2.18 Every fibred 3-manifold admits a non-abelian SO(3)-repre-
sentation.

A stronger statement was proved by Kronheimer-Mrowka [45], who used
Feehan and Leness’ deep work on the relation between Seiberg-Witten and
Donaldson invariants of closed 4-manifolds (note the proof given above uses
the Dehn twist exact triangle, but not the existence of the Fukaya category).

Any element of the mapping class group �2,1 can be written as a product
of Dehn twists in simple closed curves lifted from arcs in C. Addendum 1.2
and Corollary 2.17 imply that over K=C, there is an isomorphism

HF(ρ̂(φ))∼=C⊕HF(φ)⊕C (2.8)

determining HF(ρ̂(φ)) for any φ ∈ �2,1, and not just for φ = id (the spe-
cial case of Lemma 2.3, which we knew previously). The central term on the
RHS can be computed, via results of [17], from knowledge of the Thurston
decomposition of φ or from the train-track obtained from a description of φ
as a product of positive and negative Dehn twists in simple closed curves.
Equation (2.7) and the general discussion of Sect. 2.3 now implies Corol-
lary 1.7. Viewed in terms of Corollary 3.12, (2.8) describes the Hochschild
cohomology of general functors of the Fukaya category obtained from map-
ping classes on the surface, rather than just of the identity functor. Modulo
Remark 5.30, the instanton Floer homologies of other SO(3)-bundles on the
mapping torus are computed by the Hochschild cohomologies of the other
lifts of the monodromy to the split extension of �g by H 1(�;Z2) which acts
on F(�g).

Remark 2.19 Corollary 2.17 implies that the summand F(�g;4(g− 1)) �= ∅.
One can exhibit explicit Lagrangian submanifolds in this summand using
toric degeneration methods. For instance, when g = 2, Nishinou et al. [62]
show by degenerating M(�2) to the toric intersection {x2 = yz, p2 = qr} ⊂
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P
5 that there is a Lagrangian torus with m0(T

3)= 4 and with Floer cohomol-
ogy a Clifford algebra.

In general, take an idempotent summand of a Lagrangian L+ ∈
TwπF(M(�g−1)) lying in the top summand of its Fukaya category, corre-
sponding to eigenvalue 4(g − 2), and with HF(L+,L+) ∼= K. Given any
homologically essential simple closed curve γ ⊂ �g with associated La-
grangian correspondence Vγ ⊂ M(�g−1) × M(�g), one gets an object
�(Vγ )(L

+) ∈ TwπF(M(�g)). This seems a good candidate for the image

of γ under the conjectural equivalenceDπF(�g)
?�DπF(M(�g);4(g−2)).

3 The Fukaya category

Notation Fix a coefficient field K which is algebraically closed and of char-
acteristic zero; unless otherwise specified we assume K = C, but for much
of the paper one could work with the Novikov field �C of formal series∑
i∈Z
ait
qi with ai ∈C, qi ∈R and qi→∞.

3.1 Floer and quantum cohomology

Let (M2n,ω) be a spherically monotone closed symplectic manifold, mean-
ing that the homomorphisms π2(M)→ R defined by the symplectic form
and the first Chern class are positively proportional. Recall that a Lagrangian
submanifold L is monotone if the symplectic area and Maslov index homo-
morphisms π2(M,L)→ R are positively proportional. If M is spherically
monotone and π1(L) = 0 then L is automatically monotone, with minimal
Maslov index given by twice the first Chern class 2c1(M). We will always
assume that L is orientable and equipped with a Spin structure. Floer coho-
mology is particularly benign in the monotone case, since energy and index of
holomorphic curves are correlated. For general background see [10, 29, 64].
Here we collect a number of more specialised results to be used later, and fix
notation.

Monotonicity and orientability imply that L bounds no non-constant holo-
morphic disk of Maslov index < 2; since the virtual dimension of un-
parametrised holomorphic disks with boundary on L in a class β is

n+μ(β)− 3

the cycle swept out by boundary values of such disks only contains contribu-
tions from Maslov index 2 disks, and defines an obstruction class m0(L)[L] ∈
Hn(L) which is a multiple of the fundamental class (the multiple counts how
many Maslov index 2 disks pass through the generic point of L, weighted by
their symplectic areas). If the Maslov number of L is > 2, m0(L) = 0 and
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HF(L,L) is well-defined as a K-vector space; moreover, one can take K=C

(the Spin structures give orientations of moduli spaces and hence induce a
signed differential in the Floer complex, so one can work in characteristic zero
[31, Chap. 9]; moreover, there are no convergence issues since only finitely
many holomorphic curves contribute to any given differential). More gener-
ally, HF(L,L′) is well-defined provided m0(L)=m0(L

′), since the square of
the differential in the complex CF(L,L′) is given by the difference between
these two values, coming from bubbling along either of the boundary com-
ponents of the strip [0,1] ×R. The group HF(L,L) is naturally a unital ring
via the holomorphic triangle product, with the unit 1L ∈ HFev(L,L) defined
by counting perturbed holomorphic half-planes with boundary on L.

The quantum cohomology QH∗(M) refers to the “small quantum coho-
mology”, namely the vector space H ∗(M;K) with grading reduced modulo
2 and with product ∗ defined by the 3-point Gromov-Witten invariants count-
ing rational curves through appropriate cycles in M ; see [54] for the details
of the construction. The Floer cohomology HF(L,L′) is a bimodule for the
quantum cohomology ring QH∗(M;K), in particular there is a natural map
QH∗(M)→HF∗(L,L), which is a unital ring homomorphism. Quantum co-
homology itself splits naturally as a ring

QH∗(M) =
⊕

λ∈Spec(∗c1)
QH∗(M;λ) (3.1)

into the generalised eigenspaces (Jordan blocks) for the linear transformation
given by quantum product ∗c1(M) : QH∗(M)→ QH∗(M). This splitting is
into subrings which are mutually orthogonal for the quantum product. For
later, we quote the following result of Auroux, Kontsevich and Seidel [6]
(recall we work with C-coefficients):

Proposition 3.1 The map QH∗(M) → HF∗(L,L) takes c1(M) �→
m0(L) · 1L.

Sketch Counting holomorphic disks with one interior marked point, con-
strained to lie on a closed cycle in M\L, and one boundary marked point
defines a map

H ∗(M,L)∼=H ∗ct (M\L)−→HF∗(L,L). (3.2)

The Maslov class defines an element of H 2(M,L), hence a class in
H2n−2(M\L). Fix a cycle D ⊂M\L representing this class (in [6] this cycle
is taken to be a holomorphic anticanonical divisor disjoint fromL, which need
not exist in general). The argument of [6] implies that, provided L bounds no
Maslov index ≤ 0 disks, (3.2) takes D to twice the obstruction class 2m0(L).
(This argument computes the quantum cap action of D on the fundamental
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class of L; the fact that L⊂M\D eliminates the possibility of a non-trivial
contribution from constant holomorphic disks.) On the other hand, over C the
map in (3.2) factors through the natural map H ∗(M,L)→H ∗(M), and the
Maslov cycle maps to 2c1(M) ∈H ∗(M). The result follows. �

The map QH∗(M)→ HF∗(L,L) counts disks with an interior marked
point, viewed as input, and a boundary marked point, which is the output.
Following Albers [3], see also [1], one can reverse the roles of input and out-
put to obtain a map HF∗(L,L)→QH∗(M). (The domain of this map would
more naturally be the Floer homology of L, but we have used Poincaré duality
to identify this with Floer cohomology; in particular, the second map is not a
ring map, and not of degree zero.)

Lemma 3.2 The composite map QH∗(M) → HF∗(L,L) → QH∗(M) is
given by quantum cup-product with the fundamental class [L].

Sketch The composite counts pairs of disks, each with one interior marked
point, and with an incidence condition at their boundary marked points on L.
Gluing, one obtains a disk with boundary on L and two interior marked points
lying on the real diameter, but no boundary marked point. The relevant one-
dimensional moduli space (with modulus the distance d between the interior
marked points) has another boundary component, where d→ 0 rather than
d →∞; this is geometrically realised by a degeneration to a disk attached
to a sphere bubble which carries the two interior marked points. Since the
disk component has no boundary marked point and a unique interior marked
point, for rigid configurations it will actually be constant, so the sphere passes
through L. This shows the composite map is chain homotopic to quantum
product with [L]. (Compare to [11, Sect. 2.4] or [1, Sect. 6], which study
the composite of the maps in the other order via a similar degeneration argu-
ment.) �

Let V ⊂M be a co-isotropic submanifold which is fibred by circles S1 ↪→
V → B with reduced space B . Suppose B and M are monotone and that
viewed as a Lagrangian correspondence, V ⊂ B ×M has minimal Maslov
number k. If in addition k = 2, fix a global angular chain [σ ] ⊂ V , which by
definition is a chain with boundary the pull-back π∗B(eV ) of the Euler class of
the circle bundle V → B . Finally, let L1,L2 be Lagrangian submanifolds of
B , and let L̃i ⊂M be the lifts of the Li via V , i.e. the circle bundles over the
Li defined by V |Li ; note L̃i ⊂M is also Lagrangian. Then Perutz’ quantum
Gysin sequence [67, Sects. 1.4 & 6.1], together with Wehrheim-Woodward
quilt theory, implies:
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Theorem 3.3 (Perutz) The Floer cohomology HF(L̃1, L̃2) is the cohomology
of the mapping cone of quantum cup-product

∗(eV + σ) : CF(L1,L2)→ CF(L1,L2)

with the sum of the Euler class of V → B and a correction term σ · 1 ∈
QH∗(B), where σ is the algebraic count of the number of Maslov index 2
disks meeting both a generic point of V and the global angular chain [σ ].

Under the same hypotheses, the Floer cohomology HF(V ,V ) (computed
in B×M) is the (chain-level) mapping cone on quantum product by the same
element on QH∗(B). If the co-isotropic V has minimal Maslov number > 2
there is no correction term, and the relevant isomorphisms hold with the map
being quantum product by the Euler class. The exact triangle

· · · −→HF(L1,L2)
∗(eV+σ)−−−−−→HF(L1,L2)−→HF(L̃1, L̃2)

[1]−→ · · · (3.3)

is an exact triangle of QH∗(B)-modules, and in particular one obtains analo-
gous triangles for particular generalised eigenspaces in the sense of (3.1).

3.2 Higher order products

The monotone Fukaya category F(M) is a Z2-graded A∞-category, linear
over C. By definition, F(M) has:

• objects being monotone oriented Lagrangian submanifolds equipped with
Spin structures and additional perturbation data1;

• morphisms given by Floer cochain complexes CF(L,L′); and
• higher order composition operations from counting pseudoholomorphic

polygons.

The higher order operations of the A∞-structure comprise a collection of
maps μdF of degree d (mod 2), for d ≥ 1, with μ1

F being the differential and
μ2

F the holomorphic triangle product mentioned previously:

μdF : CF(Ld−1,Ld)⊗ · · · ⊗CF(L0,L1)→ CF(L0,Ld)[2− d].
The {μdF} have matrix coefficients which are defined by counting holomor-
phic disks with (d + 1)-boundary punctures, whose arcs map to the La-
grangian submanifolds (L0, . . . ,Ld) in cyclic order. The construction of the
operations μdF is rather involved, and we defer to [77] for details. We should

1One can also equip the Lagrangians with flat unitary line bundles; we will not need that
refinement in this paper, though see Remark 3.22.
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emphasise that monotonicity enters crucially in ensuring that the only disk
and sphere bubbling in the zero- or one-dimensional moduli spaces of solu-
tions we wish to count comes from bubbling of Maslov index 2 disks on the
Lagrangian boundary conditions, because the other possible bubbles sweep
out subsets of M or the Lj of sufficiently high codimension to not interact
with holomorphic polygons of index at most 1. Monotonicity, together with
Lemma 3.1, further ensures that the Maslov index 2 disks are multiples of
chain-level representatives for the units 1Li in the complexes CF(Li,Li),
which in turn means that their contributions to the boundary strata of one-
dimensional solution spaces cancel algebraically.

Remark 3.4 The simplest construction of F(M) uses Hamiltonian perturba-
tions to guarantee that the Lagrangian submanifolds {Lj } which are bound-
ary conditions for a given higher-order product are pairwise transverse. In the
sequel, we will encounter Lagrangians fibred over arcs in C (as matching cy-
cles in Lefschetz fibrations), and the Riemann mapping theorem will provide
a useful constraint on the μdF . To take advantage of this systematically would
preclude using Hamiltonian perturbations. There is another approach to the
Fukaya category, based on counting pearls—configurations of holomorphic
polygons and gradient flow trees—which is the open string counterpart of
work of Biran, Cornea and Lalonde. For closed curves in monotone M the
theory is developed in [10], and for open curves the theory is described in [78,
Sect. 7] and [82, Sect. 4] (in the balanced, or monotone, and exact settings re-
spectively). The fact that a pearly definition gives rise to a quasi-isomorphic
category to that obtained through Hamiltonian perturbations is addressed by
a “mixed category” trick in [82, Sect. 4.8], cf. [77, Sect. 10a].

In general, pearly moduli spaces cannot be made transverse, and a com-
plete definition of the Fukaya category using only pearls relies on virtual
perturbation techniques. In this paper, the A∞-structures are essentially al-
ways constrained by their formal algebraic properties, rather than by explicit
computations (or the computations involve rather benign non-transversal sit-
uations, for instance a pair of Lagrangians meeting cleanly in a Morse-Bott
intersection). However, a pearly model would be more natural in Sect. 5.5,
even if not strictly required.

Suppose λ ∈K is not an eigenvalue of the quantum cup-product

∗c1(M) :QH∗(M;K)→QH∗(M;K).
Then c1(M) − λ1M is invertible in QH∗(M); on the other hand, if L ∈
F(M;λ), then Lemma 3.1 implies that c1(M) − λ1M �→ 0 ∈ HF∗(L,L),
which implies that HF∗(L,L)= 0. Lemma 3.1 therefore implies that a mono-
tone symplectic manifold M gives rise to a collection of mutually orthogo-
nal categories F(M;λ), which are non-trivial only for λ an eigenvalue of
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∗c1(M) : QH∗(M)→ QH∗(M). The summand F(M;λ) has as objects the
Lagrangian submanifolds L for which m0(L)= λ, i.e. for which the natural
map of Z2-graded unital rings

QH∗(M)→HF(L,L) takes c1(M) �→m0(L) · (unit). (3.4)

We will refer to the category F(M;0) as the nilpotent summand of the Fukaya
category. We next recall the definition of the Hochschild cohomology of an
A∞-category, which is defined by a bar complex CC∗(A) as follows. A de-
gree r cochain is a sequence (hd)d≥0 of collections of linear maps

hd(X1,...,Xd+1)
:

1⊗
i=d

homA(Xi,Xi+1)→ homA(X1,Xd+1)[r − d]

for each (X1, . . . ,Xd+1) ∈Ob(A)d+1. The differential is defined by the sum
over concatenations, letting �i = |a1| + · · · + |ai | − i,

(∂h)d(ad, . . . , a1)

=
∑

i+j<d+1

(−1)(r+1)�i

·μd+1−j
A (ad, . . . , ai+j+1, h

j (ai+j , . . . , ai+1), ai, . . . , a1)

+
∑

i+j≤d+1

(−1)�i+r+1

· hd+1−j (ad, . . . , ai+j+1,μ
j

A(ai+j , . . . , ai+1), ai, . . . , a1). (3.5)

It is a basic fact that HH∗(A) = H(homfun(A,A)(id, id)) computes the mor-
phisms in the A∞-category of endofunctors of A from the identity functor to
itself; moreover, the Hochschild cohomology of an A∞-category over a field
is invariant under passing to a split-closed triangulated envelope [12, Theo-
rem 4.12]. The maps of (3.4) are the lowest order pieces of a natural “open-
closed string map”

QH∗(M)−→HH∗(F(M))
from quantum cohomology to Hochschild cohomology, given by counting
holomorphic polygons with one interior marked point, constrained to a cycle
in M , and a collection of boundary punctures, one of which is outgoing and
the rest incoming. Equation (3.4) corresponds to the case in which there are no
boundary inputs. By construction, the open-closed string map is compatible
with the decomposition of the Fukaya category into orthogonal summands
and with the splitting of (3.1), giving maps

QH∗(M;λ)−→HH∗(F(M;λ))
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for each λ ∈ Spec(∗c1(M)).

Remark 3.5 The monotone Fukaya category F(M) is invariant, up to quasi-
isomorphism, under rescaling the symplectic form. Some care must be taken,
however, when considering products of monotone manifolds, since the factors
cannot be scaled independently preserving monotonicity.

3.3 Twisting and generation

Let A be an A∞-category. There is a two-stage purely algebraic operation
which formally enlarges A to yield a more computable object: first, pass-
ing to twisted complexes to give TwA; second, idempotent-completing to
give �(TwA) = TwπA. Twisted complexes themselves form the objects of
a non-unital A∞-category Tw(A), which has the property that all morphisms
can be completed with cones to sit in exact triangles. Idempotent comple-
tion, or split-closure, includes objects quasi-representing all cohomological
idempotents, and is discussed further in Sect. 4.3. We write nu-fun(A,B)
for the A∞-category of non-unital functors from A to B; mod-A for nu-
fun(Aopp,Ch), where Ch is the dg-category (viewed as an A∞-category with
vanishing higher differentials) of chain complexes of K-vector spaces. Given
Y ∈ Ob A and an A-module M, we define the algebraic twist TYM as the
module

TYM(X)=M(Y )⊗ homA(X,Y )[1] ⊕M(X)

(with operations we shall not write out here). The twist is the cone over the
canonical evaluation morphism

M(Y )⊗ Y→M

where Y denotes the Yoneda image of Y . For two objects Y0, Y1 ∈ Ob A, the
essential feature of the twist is that it gives rise to a canonical exact triangle
in H(A)

· · · →HomH(A)(Y0, Y1)⊗ Y0→ Y1→ TY0(Y1)
[1]→ · · ·

(where TY0(Y1) is any object whose Yoneda image is TY0(Y1)). Note that if
A decomposes into a collection of orthogonal subcategories, and if Y0 lives
purely in one of these, the algebraic twist by definition acts trivially on all the
other summands.

The twist functor TL ∈ nu-fun(F(M),F(M)) plays an essential role
when L is spherical, meaning that HomH(F(M))(L,L) ∼= H ∗(Sn). Suppose
L⊂M is a Lagrangian sphere; the geometric twist τL is the autoequivalence
of F(M) defined by the positive Dehn twist in L. On the other hand, sinceM
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is monotone, such a sphere gives rise to a well-defined (though not a priori
non-zero) object of the Fukaya category by the classical work of Oh [64],
hence an algebraic twist functor in the sense described above.

Proposition 3.6 (Seidel) If L ⊂M is a Lagrangian sphere, equipped with
the non-trivial Spin structure if L ∼= S1, then the geometric twist and the
algebraic twist are quasi-isomorphic in nu-fun(F(M),F(M)).

This is [77, Corollary 17.17] for exact symplectic manifolds; the argument
carries over mutatis mutandis to the monotone case (see [89] for a detailed
account, but note most of their work is needed only for the strictly more dif-
ficult case of fibred Dehn twists). Seidel also proves that if G :A→ B is an
A∞-functor, then for Y ∈A,

G ◦ TY � TG(Y ) ◦ G ∈ nu-fun(A,B). (3.6)

Corollary 3.7 A Lagrangian sphere L ⊂ M is determined up to quasi-
isomorphism in F(M) by its associated twist functor TL together with the
natural transformation id→ TL[−1].

Proof In general: if Y1 and Y2 ∈ A are spherical and TY1 and TY2 are quasi-
isomorphic as objects of nu-fun(mod-A,mod-A), by an isomorphism which
entwines the natural transformations id→ TYi [−1], then Y1 and Y2 are quasi-
isomorphic objects of A. In the geometric situation at hand, the natural trans-
formation of functors id→ TL[−1] arises from counting holomorphic sec-
tions of a Lefschetz fibration over the annulus with a unique interior critical
point having vanishing cycle the given Lagrangian sphere. The cone on this
natural transformation is the evaluation map, whose image lies in the subcate-
gory of mod-A generated by the object Y itself; indeed, all elements in the im-
age are twisted complexes of the form V ⊗Y , for graded vector spaces V . The
only spherical such object is Y itself, for reasons of rank, hence id→ TY [−1]
determines Y . �

We will later need a split-generation criterion for finite collections of
Lagrangian spheres, which is a minor variant on an argument due to Sei-
del [78]. Let M be a closed symplectic manifold and {V1, . . . , Vk} a col-
lection of Lagrangian spheres in M for which there is a positive relation,
i.e. some word w in the positive Dehn twists τVj is equal to the identity
in Symp(M)/Ham(M); if M is simply-connected, this quotient is the map-
ping class group π0 Symp(M). The word w, strictly speaking together with
a choice of Hamiltonian isotopy from that product of twists to the identity,
defines a Lefschetz fibration W→ S2 with fibre M , where w encodes the
monodromy homomorphism of the fibration. We suppose that the Lagrangian
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spheres all lie in the λ-summand F(M;λ). Fix a homotopy class of sections
β of W→ S2; the moduli space of J -holomorphic sections in this homotopy
class has complex virtual dimension

〈c1(T vt(W), β〉 + dimC(M).

Suppose now the moduli spaces of sections define pseudocycles, or more gen-
erally carry a virtual class. Evaluation at a point therefore defines, by Poincaré
duality, a cycle in H ev(M;C) depending on β , and arranging these for dif-
ferent homology classes of section defines an element of H ev(M;�C), or of
H ev(M;C) in the fibre-monotone case, which we call the cycle class C(w) of
the word w.

Proposition 3.8 If for some positive relation w in the τVj quantum cup-
product by the cycle class C(w) is nilpotent as an operation on QH∗(M;λ),
the spheres {Vj } split-generate DπF(M;λ).
Proof By the correspondence between algebraic and geometric Dehn twists,
Proposition 3.6, there are exact triangles

· · · →HF(V ,K)⊗ V →K→ τV (K) [1]−→ · · ·
for any LagrangianK ⊂M lying in the λ-summand of the category. Concate-
nating the triangles for the τVj occurring in w defines a natural map

K→
∏
ij∈I
τVij
K ∼=K (3.7)

defined by an element of HFev(K,K). Recall from the construction of the
long exact sequence in Floer cohomology [74], cf. the proof of Corollary 3.7,
that the natural map id �→ TL[−1] arises from counting sections of a Lef-
schetz fibration over an annulus with a single critical point. It is well-known
that one can achieve transversality for holomorphic curves without fibre
components using almost complex structures which make the fibration map
pseudo-holomorphic. The gluing theorem [74, Proposition 2.22] implies that
the concatenation of such maps counts holomorphic sections of the Lefschetz
fibration given by sewing several such annuli together. The map in (3.7) is ac-
cordingly given by the image of the cycle class r(C(w)) ∈HFev(K,K) under
the natural restriction map r :H ev(M)→HFev(K,K). If C(w) vanishes, one
map in the concatenated exact triangle vanishes, and we therefore see that K
is a summand in an iterated cone amongst the objects {Vij }. If the cycle class
is not trivial but quantum product with the cycle class is nilpotent, we can run
the same argument after taking an iterated fibre sum of the Lefschetz fibration
with itself. �
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Proposition 3.9 If the vanishing cycles {Vj } all lie in the summand F(M;λ)
and for some positive relation w in the τVj the cycle class C(w) is a multiple
of c1(M)− λ id, then the {Vj } split-generate DπF(M;λ).
Proof The image of the cycle class under the natural map QH∗(M) →
HF(L,L) is zero for any L ∈ ObF(M;λ), by definition of that summand
of the category, cf. (3.4). The proof now proceeds as before. �

This is particularly useful when λ= 0, for the nilpotent summand.

3.4 Functors from quilts

Geometrically, functors between Fukaya categories are obtained from counts
of quilted holomorphic surfaces, using the theory developed by Mau,
Wehrheim and Woodward [52, 53, 87, 88]. They begin by defining an
extended category F#(M) which comes with a fully faithful embedding
F(M) ↪→ F#(M); objects of the extended category are generalised La-
grangian submanifolds, which comprise an integer k ≥ 1 and a sequence of
symplectic manifolds and Lagrangian correspondences

({pt} =M0,M1, . . . ,Mk =M); Li,i+1 ⊂M−i ×Mi+1, 0≤ i ≤ k − 1

where (X,ω)− is shorthand for (X,−ω). These form the objects of a cate-
gory H(F#(M)), in which morphisms are given by quilted Floer cohomol-
ogy groups. A quilted (d + 1)-marked disc is a disc D ⊂ C with bound-
ary marked points {z0, z1, . . . , zd} and with a distinguished horocycle—the
seam—at the point z0. Any quilted Riemann surface whose boundary compo-
nents are labelled by Lagrangian submanifolds and whose seams are labelled
by Lagrangian correspondences determines an elliptic boundary value prob-
lem. This problem studies a collection of holomorphic maps, one defined on
each subdomain of the surface, subject to Lagrangian boundary conditions
as prescribed by the labelling data along boundaries and seams. There is an
A∞-category F#(M) underlying the cohomological category H(F#(M)), in
which the higher order operations count suitable quilted disks.

The moduli space Md,1 of nodal stable quilted (d + 1)-marked discs
(which we shall not define) is a convex polytope homeomorphic to the multi-
plihedron. The codimension one boundary faces of the multiplihedron corre-
spond to the terms of the quadratic A∞-functor equation

∑
ij ,k

μkB(F(an, . . . , ai1),F(ai1−1, . . . , ai2), . . . ,F(aik−1, . . . a1))

=
∑
d

(−1)�j−dF(an, . . . , aj ,μdA (aj−d, . . . , aj−d−1), aj−d, . . . a1)
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for an A∞-functor F : A → B. Mau’s gluing theorem [52] shows that
the counts of nodal stable quilted discs indeed reflect the combinatorial
boundary structure of the Md,1 and hence the A∞-functor equations. It fol-
lows that to every monotone, oriented and spin Lagrangian correspondence
L� ⊂M− ×N , there is a Z2-graded A∞-functor FL� : F#(M)→ F#(N) de-
fined on objects by

L−→FL�(L) taking

(L1,L23, . . . ,Lk−1,k) �→ (L1,L23, . . . ,Lk−1,k,L
�)

and on morphisms and higher products by a signed count of quilted discs. The
upshot is the following.

Theorem 3.10 (Mau, Wehrheim, Woodward) Let M and N be monotone
symplectic manifolds. The association L� �→ FL� defines a Z2-graded A∞-
functor

� : F(M− ×N) −→ nu-fun(F#(M),F#(N)).

We will combine this general theory with an argument from [2], which
uses properties of Yoneda embeddings to deduce that, in special cases, the
Mau-Wehrheim-Woodward functor is actually fully faithful.

Corollary 3.11 In the situation of Proposition 3.9, the Hochschild cohomol-
ogy

HH∗(DπF(M;λ))∼=QH∗(M;λ)
is isomorphic to the λ-generalised eigenspace of quantum cohomology.

Proof We will use quilts to resolve the λ-summand of the diagonal�⊂M×
M , which in turn will yield information on Hochschild cohomology. Recall
from Proposition 3.6 that the Dehn twist acts on the Fukaya category via an
algebraic twist, hence sits in a canonical exact triangle of functors

→ id→ TL→Hom(L, ·)⊗L [1]−→
in nu-fun(F(M),F(M)). This triangle is the image under the Mau-Wehrheim-
Woodward functor � of a triangle

→�M→ �(τL)→ L×L [1]−→ (3.8)

with �M the diagonal and �(τL) the graph of the geometric Dehn twist, cf.
[89, Theorem 7.2]. The functor� is in general not fully faithful. In the setting
of Proposition 3.9, we let A(M) denote the subcategory generated by the
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vanishing cycles {Vj } and let A(M ×M) denote the subcategory generated
by product Lagrangians Vi × Vj . We define A⊕ ⊂ F#(M) to comprise those
generalised correspondences

({pt} =M0,M1, . . . ,Mk =M);
Li,i+1 ∼= Vi0 × Vi1 ⊂M−i ×Mi+1, 0≤ i ≤ k − 1

so each correspondence lies in A(M×M). Lemma 7.5 of [2] shows Tw(A)�
Tw(A⊕), and moreover that � induces a functor

� :A(M ×M)→ nu-fun(TwπA⊕(M),TwπA⊕(M))

which is a fully faithful embedding [2, Lemma 7.8]. Note that this argument
relies on the existence of chain-level units in the Fukaya category satisfying

μ2(e, e)= e; μk(e, . . . , e)= 0 for k > 2.

In [2] these existed for grading reasons; in general, to obtain such units one
must pass from the Fukaya category to its category of modules, in the man-
ner of [1, Sect. 4]. In the situation at hand, TwπA(M) � Twπ(F(M;λ)), by
Proposition 3.9. We now go back to the proof of that proposition; the argu-
ment, lifted by � to the category F(M ×M) as in (3.8), leads to a collection
of exact triangles which concatenate to one of the shape

�M→ �
(∏
ij

τVij

)
→〈V × V ′〉

where the third term is built out of product Lagrangians of the shape Vi ×
τVj (Vk) and the first arrow is given by quantum product by the cycle class
C(w). Since HF(�M,�M)∼=QH∗(M) as a QH∗(M)-module, the first arrow
in this triangle vanishes on the idempotent summand of �M corresponding
to QH∗(M;λ). In other words, that idempotent summand �λ of the diagonal
is split-generated by product Lagrangians, and lies in the split-closure of the
category A(M ×M). At this point, we infer that � restricted to the extended
category

A�
λ

(M ×M)
which comprises product Lagrangians and the relevant summand of the di-
agonal, is also a fully faithful embedding. Since the diagonal maps to the
identity functor of TwπA(M)⊂ TwπF#(M), this implies that

HF((�,�);λ)∼=Homnu-fun(id, id)
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where the RHS is computed in endofunctors of TwπA(M) � TwπF(M;λ).
But then the natural transformations of the identity functor exactly compute
Hochschild cohomology. �

For any endofunctor G :A→A of an A∞-category, there is a Hochschild
cohomology group HH∗(G) = H(homfun(A,A)(G, id), generalising the
Hochschild cohomology of the category which arises for G = id. Symplec-
tomorphisms of a monotone symplectic manifold act naturally on the mono-
tone Fukaya category. Write HF(φ) for the fixed-point Floer cohomology of
a symplectomorphism φ, so HF(id) ∼= QH∗(M) by the Piunikhin-Salamon-
Schwarz isomorphism. As usual, the group HF(φ) is a module for quantum
cohomology, hence has an eigenspace splitting into summands indexed by
Spec(∗c1(M)).
Corollary 3.12 In the situation of Proposition 3.9, for any φ ∈ Symp(M) in
the subgroup generated by Dehn twists in the vanishing cycles Vj inducing a
functor Gφ of F(M;λ), one has

HF(φ;λ)∼=HH∗(Gφ).

Proof We use the standard identification HF(φ) ∼= HF(�φ,�) where �φ ⊂
M × M denotes the graph. The λ-summand of this graph is resolved by
suitable product Lagrangians built from the vanishing cycles, as in Corol-
lary 3.11. The proof now proceeds as before, using fullness and faithfulness
of the Mau-Wehrheim-Woodward functor in this setting. �

Remark 3.13 For any subcategory A⊂ F(M), there are always natural open-
closed string maps

HH∗(A,A)→QH∗(M)→HH∗(A,A).

Abouzaid [1] proves (in the exact case, and for wrapped Floer cohomology)
that if the unit is in the image of the first map, then A split-generates the
Fukaya category. Such split-generation results are often proved by show-
ing that the diagonal is resolved by products, in the manner of Beilinson’s
classical argument for sheaves on projective space. In our case, we know
from Proposition 3.9 that the appropriate A split-generates, without know-
ing that the diagonal is resolved by products. Quilts enable us to refine split-
generation to this more geometric fact, which in turn has consequences for
quantum cohomology.

Suppose L�0 ⊂ M− × N and L�1 ⊂ N− × P are Lagrangian correspon-

dences. Their geometric composition is given by pulling L�0 back to M ×
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N ×N × P , intersecting with the diagonal M ×�N × P , and pushing for-
ward toN−×P ; in general, although the intersection can be made transverse,
the push-forward is only immersed.

Theorem 3.14 (Mau, Wehrheim, Woodward) Given correspondences L�0 ⊂
M−×N and L�1 ⊂N−×P with the geometric composition L�1 ◦L�0 ⊂M−×
P smooth, embedded and transversely cut out, there is a quasi-isomorphism
of functors

F
L
�
1◦L�0 � F

L
�
1
◦F
L
�
0
.

The construction of a morphism in the functor-category between F
L
�
1◦L�0

and F
L
�
1
◦F
L
�
0

comes from counting “biquilted” disks with two interior seams

(two parallel horocycles). The quasi-isomorphism statement is a difficult re-
sult which relies on a delicate strip-shrinking argument for the associated
cohomological functors, proved in detail in [88]. A different proof of the co-
homological isomorphism has recently been given by Lekili and Lipyanskiy
[48].

3.5 Grading and deformations

A one-parameter deformation of A∞-categories is an A∞-category Aq over
K[[q]], with μdAq = μdA +O(q), i.e.

μdAq = μdA + qμdAq ,1 + q2μdAq ,2 + · · · (3.9)

with each μdAq ,j comprising K-linear maps

homA(Xd1,Xd)⊗ · · · ⊗ homA(X1,X2)→ homA(X1,Xd)[2− d]
for any (X1, . . . ,Xd)∈ (Ob A)d . The operations μdAq should be q-adically
convergent (for us they will always vanish for q � 0). In applications, such
deformations of Fukaya categories will arise from (partial) compactifications
of symplectic manifoldsM ⊂ M̄ , obtained by adding in a divisor �= M̄\M
disjoint from the Lagrangian submanifolds under consideration. The opera-
tion μd

F(M̄),j
will count pseudoholomorphic d-gons with multiplicity j over

�, so setting q = 0 corresponds to working in the open part M = M̄\�. As-
suming that one can achieve transversality within the class of almost complex
structures which make �⊂ M̄ a pseudoholomorphic submanifold, positivity
of intersections ensures that the μdAq are compatible with the filtration on

Floer cochain complexes in M̄ by powers of q . Under suitable monotonicity
hypotheses on M̄ , one can further set q = 1 since all series converge.
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The formal parameter q of a deformation arising from a partial compact-
ification of an open symplectic manifold with c1 = 0 typically has non-zero
degree.

Lemma 3.15 If the first Chern class c1(M̄) = r[�], with r ∈ Q, then
deg(q)= 2r .

This is a consequence of the index theorem for the Cauchy-Riemann equa-
tions with totally real boundary conditions, see [77, Sect. 11]. It is most fa-
miliar in the case when c1(M̄)= 0, and the deformed category is Z-graded,
or when � ⊂ M̄ is an anticanonical divisor and the deformation parameter
has degree 2 (for instance, deforming the cohomology of the zero-section
T n ⊂ (C∗)n from an exterior algebra to the Clifford algebra on compactify-
ing to CP

n, with � the toric anticanonical divisor).
Suppose then c1(M̄) is effective, that c1(M) = 0, and fix a holomorphic

volume form η ∈ H 0(KM̄) with poles of order r along the divisor � ⊂ M̄ .
We denote by ιη the absolute indices for generators of Floer complexes be-
tween graded Lagrangian submanifolds (which are assumed to lie within the
open part M). If L′ is obtained as a Hamiltonian perturbation of L for a
Hamiltonian function whose restriction to L is Morse, the index iη of a point
of L ∩ L′ is equal to the Morse index of the corresponding critical point.
Suppose now one has a holomorphic polygon u : D→ M̄ with Lagrangian
boundary conditions inM . In this setting,

vdim(u)= iη(x0)−
k∑
j=1

iη(xk)+ k − 2+ 2r� · im(u) (3.10)

for a holomorphic (k + 1)-gon with one outgoing boundary puncture x0
(the sign of the last term corresponds to the fact that η has poles on � =
r · PD[c1(M̄)], and the virtual dimension is increased by adding positive
Chern number components).

3.6 Formality

A natural and recurring question studying Fukaya categories is to determine
the A∞-structure on an algebra A =⊕

i,j HF(Li,Lj ), where the {Li} are
some finite collection of Lagrangians distinguished by the geometry in some
fashion. In general this is a rather intractable problem, but in the case when
A is smooth and commutative, A∞-structures up to gauge equivalence cor-
respond to classical Poisson structures, by Kontsevich’s formality theorem.
The particular case of this that pertains to exterior algebras was used by Sei-
del in computing F(�2), and will play an important role later.
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Let A be a Z2-graded algebra. We will be interested in Z2-graded A∞-
structures on A which have trivial differential. Such a structure comprises a
collection of maps

{αi :A⊗i→A}i≥2

of parity i; usually we will assume that the product agrees with the given prod-
uct on A, and consider (αi)i≥3. We introduce the mod 2 graded Hochschild
cochain complex

CC•+1(A,A) =
∏
i≥2

Hom(•+i)(A⊗i ,A)

where Hom(•+i) means we consider homomorphisms of parity • + i. This
carries the usual differential dCC• and the Gerstenhaber bracket [·, ·].

Remark 3.16 The shift in grading follows the convention of [78], since we
will later imitate some arguments from that paper. The shift fits with a view
of A∞-structures as defined by formal super-vector fields, but disagrees with
the usual conventions of the bar complex. One typically incorporates a for-
mal parameter q of even degree into CC•+1(A,A), which makes the resulting
Lie algebra g = CC•+1[[q]] filtered pronilpotent. This is necessary to guar-
antee convergence of formal gauge transformations; L∞-quasi-isomorphisms
of filtered pronilpotent L∞-algebras induce bijections between equivalence
classes of Maurer-Cartan elements. In the sequel, we will encounter gauge
transformations on exterior algebras �∗(C3) arising from formal diffeomor-
phisms of C

3 which can be seen explicitly to act on A∞-structures defined
over C, cf. (3.13). Geometrically, the formal parameter q can be incorporated
as that of a deformation obtained by partial compactification, in the sense
of (3.9). The power of q in any given expression is therefore determined by
Lemma 3.15, and can be reconstructed from the other geometric data. To sim-
plify notation, we omit this parameter throughout, compare to [78, Sects. 4,
5].

A∞-structures (αi) on A which extend its given product correspond to
elements of CC1(A,A) satisfying the Maurer-Cartan equation

∂α+ 1

2
[α,α] = 0 with α1 = α2 = 0. (3.11)

The first terms of the Maurer-Cartan equation give

∂α3 = 0; ∂α4 + 1

2
[α3, α3] = 0; ∂α5 + [α3, α4] = 0, . . . (3.12)
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Elements (gi)i≥1 of CC0(A,A), comprising maps A⊗i→A of parity i − 1,
act by gauge transformations on the set of Maurer-Cartan solutions (αi)i≥2,
at least when suitable convergence conditions apply. Suppose that A is finite-
dimensional in each degree; let g ∈ CC0(A,A) have constant term g0 ∈ A1

vanishing. Define

⎧
⎪⎨
⎪⎩

φ1 = id+ g1 + 1
2g

1g1 + · · · = exp(g1),

φ2 = g2 + 1
2g

1g2 + 1
2g

2(g1 ⊗ id)+ 1
2g

2(id⊗ g1)+ 1
3g

2(g1⊗ g1)+ · · · ,
...

(3.13)
The term φj is the sum of all possible concatenations of components of g
to yield a j -linear map. For a term involving r components, which may be
ordered in s different ways compatibly with their appearance in the concate-
nation, the constant in front of the associated term is s(r!)−1, which ensures
convergence of φj . If α and α̃ are Maurer-Cartan elements which are re-
lated by (gi), the associated A∞-structures are related by φ, which is an
A∞-isomorphism. There are obvious simplifications to the formulae when
g1 = 0, which will be the case for gauge transformations acting trivially on
cohomology relating solutions with α2 = 0.

Lemma 3.17 Let A denote the A∞-algebra defined by the Maurer-Cartan
element α ∈ CC1(A,A), with H(A) = A. The Hochschild cohomology
HH∗(A,A) is the cohomology of the complex CC•(A,A) with respect to
the twisted differential dCC• + [·, α].

Proof The Maurer-Cartan equation for α implies that the twisted differential
does square to zero. The lemma follows on comparing the resulting complex
with the bar complex defining Hochschild cohomology of an A∞-algebra
given in (3.5). �

Kontsevich’s remarkable result [43], specialised to the case of relevance in
the sequel, is then:

Theorem 3.18 (Formality Theorem, Kontsevich) When A=�(V ) is an ex-
terior algebra, with its natural Z2-grading placing V in degree 1, there is an
L∞-quasi-isomorphism

� : CC•(A,A)−→ Sym•(V ∨)⊗�(V )

between the Hochschild complex and its cohomology, the Lie algebra of
polyvector fields.



190 I. Smith

Remark 3.19 In fact, this � is strictly left-inverse to an explicit quasi-
isomorphism

� : Sym•(V ∨)⊗�(V )→ CC•(�(V ),�(V ))
defined by Kontsevich. The components of � are linear combinations �i =∑
λi⊗U�i , where U�i is a multilinear operation indexed by a certain class of

graphs {�i}, and the coefficients λi are explicit integrals over configuration
spaces of points in the upper half-plane.

The Lie algebra of polyvector fields on a finite-dimensional vector space
V is the algebra

Sym•(V ∨)⊗�(V ) = C[[V ]] ⊗�(V ).
The Lie algebra structure comes from the Schouten bracket

[f ξi1 ∧ · · · ∧ ξik , g ξj1 ∧ · · · ∧ ξjl ]
=

∑
q

(−1)k−q−1f (∂iq g) ξi1 ∧ · · · ∧ ξ̂iq ∧ · · · ∧ ξik ∧ ξj1 ∧ · · · ∧ ξjl

+
∑
q

(−1)l−q+(k−1)(l−1)g (∂jq f ) ξj1 ∧ · · · ∧ ξ̂jq ∧ · · ·

∧ ξjl ∧ ξi1 ∧ · · · ∧ ξik . (3.14)

The quasi-isomorphism � identifies gauge equivalence classes of Maurer-
Cartan solutions. In particular, since the Schouten bracket vanishes on func-
tions, any formal function W ∈ C[[V ]] defines a solution of Maurer-Cartan,
hence an A∞-structure on �(V ). Lemma 3.17 and the Formality Theo-
rem 3.18 imply that the Hochschild cohomology of a Z2-gradedA∞-structure
on �(V ) defined by an element α ∈ HH1 is given by the cohomology of the
Z2-graded complex

(C[[V ]] ⊗�ev(V ))
[·,α]−−⇀↽−−[·,α] (C[[V ]] ⊗�

odd(V )). (3.15)

The following Example will recur in the discussion of Fukaya categories
of quadric hypersurfaces in Sect. 4.1.

Example 3.20 Let V have dimension 1 and A = �(V ), with basis 1, x say.
Any formal function W ∈ C[[x]] of degree ≥ 2 defines an A∞-structure on
A, which induces the given product if and only if the degree 2 component
vanishes. Up to formal change of variables (gauge transformation), any

W(x)= xk +O(xk+1) � yk via y = x(1+ α1x + α2x
2 + · · · )
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is equivalent to a monomial, hence the resulting A∞-structures are equivalent
to those defined by monomial functions. Equation (3.15) simplifies to the
complex

0−→C[[x]] ⊗ 〈dx〉 ιdW−−−→C[[x]] −→ 0

with cohomology C[[x]]/〈W ′(x)〉 given by the Jacobian ring, so the
Hochschild cohomology of Ak = (A,W = xk) has rank k − 1.

Remark 3.21 For the ring R = C[x]/〈x2 − 1〉, the Hochschild cohomology2

group of the category of Z2-graded modules has rank 2 if deg(x) is even and
rank 1 if deg(x) is odd (the latter fact is the computation of Example 3.20 in
the special case k = 1, where the underlying product on A is itself deformed).
This comes down to the fact that the group

HomR⊗R(R⊗R,R)
of bimodule homomorphisms has rank 2 in the first case, comprising the ele-
ments 1⊗ 1 �→ α1+ βx, but only rank 1 in the second, since for a Z2-graded
map one must have 1 ⊗ 1 �→ α1. From another viewpoint, when deg(x) is
even, R is semisimple, splitting into two orthogonal idempotent summands,
but when deg(x) is odd the idempotents are not of pure degree and there is no
such splitting.

3.7 The Fukaya category of a curve

Take �g ∼= C p→ P
1 to be the unique curve branched over the points

{0, ξ j , 1≤ j ≤ 2g + 1}, where ξ is a primitive (2g + 1)-st root of unity. We
can exhibit embedded circles in C via matching arcs amongst these points,
i.e. the projections of Z2-invariant curves to P

1. For instance, when g = 2, 5
Lagrangian submanifolds {Lj } of C are determined by the arcs of the pen-
tagram on the left of Fig. 1 (the vertices are the 5th roots of unity); more
generally there is a spikier (2g+ 1)-gram defining 2g+ 1 associated spheres
permuted by the obvious cyclic symmetry. In an act of shameless innumeracy,
we will refer to all these figures as pentagrams. If we divide C by the lift of
this cyclic group action from P

1 to C, all the circles {Lj } are identified with
a single immersed circle L̄ ⊂ S2

orb in an orbifold S2 with 3 orbifold points
each of order 2g + 1 (these come from the unique preimage of 0 ∈ P

1 in C
and the two preimages of ∞∈ P

1). This immersed curve actually bounds no
teardrops, hence Floer theory can be defined unproblematically for it, or one
can work equivariantly upstairs.

2Classically, HH∗ would be 2-periodic and we’re just taking HH0 and HH1.
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Fig. 1 Lagrangian spheres from the g = 2 pentagram and its g = 3 cousin; on the left one
radial path and one basic path are also dotted

For any symplectic surface �g,ω� of genus g ≥ 2, let σ : ST� → �
be the projection from the unit tangent bundle. Seidel defines the balanced
Fukaya category, an A∞-category linear over C, with respect to an auxil-
iary choice of one-form θ ∈ �1(ST �) which is a primitive for the pull-
back of the symplectic form, dθ = σ ∗ω� . (Such forms exist since, by the
Gysin sequence, H 2(ST �,R) = 0 for g(�) ≥ 2.) Objects of the balanced
Fukaya category are simple closed curves L⊂� for which

∫
L
ι∗Lθ = 0, where

ιL : L→ ST� is the tangent lift of L ↪→� (these curves should be equipped
with orientations and Spin structures as usual). Homotopically trivial curves
are never balanced; there is a unique balanced representative up to Hamilto-
nian isotopy in every other homotopy class of embedded curve. The balancing
condition is an analogue of monotonicity; it implies that energy and index are
correlated for holomorphic curves with balanced boundary conditions, which
in turn means that the balanced category F(�) is defined over C. Different
choices of θ yield quasi-isomorphic categories, and the mapping class group
�g acts by autoequivalences of DπF(�g), cf. [78].

Remark 3.22 An isotopy class of essential simple closed curve γ ⊂� defines
two objects in F(�) modulo shifts, namely the balanced representative of γ
equipped with either Spin structure. Label these γ and γ̄ for the non-trivial
respectively trivial Spin-structure. Then

HF(γ, γ )∼=C∼=HF(γ̄ , γ̄ ); HF(γ, γ̄ )= 0. (3.16)

One can equivalently regard γ̄ as the pair (γ, ξ) where ξ → γ is the non-
trivial line bundle with holonomy in Z2, from which point of view one sees
that the group H 1(�;Z2) acts on F(�), tensoring by flat line bundles.

Remark 3.23 One can combine the actions of diffeomorphisms and tensoring
by flat line bundles into an action of the canonical split extension �̂split(�g)
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of �g by H 1(�;Z2). Strictly, this is only a weak action, meaning that the
functors Ggi associated to group elements gi satisfy Gg1Gg2

∼= Gg1g2 (but we
do not keep track of coherence amongst these isomorphisms). We will sup-
press this point in the sequel, but it would probably enter in reconciling the
appearance of �̂split with Remark 2.1; compare to [77, Remark 10.4].

We collect a number of other facts from the work of Seidel [78] and Efimov
[24]: let V be a 3-dimensional vector space over K=C.

(1) The pentagram circles {L1, . . . ,L2g+1}, each equipped with the non-
trivial Spin structure, split-generate F(�g) (this is an application of
Proposition 3.8);

(2) The Floer cohomology algebra A = ⊕2g+1
i,j=1 HF(Li,Lj ) ∼= �∗(V ) �

Z/(2g + 1), where V is graded in degree 1 and the exterior algebra in-
herits the obvious Z/2-grading;

(3) TheA∞-structure A onA=H(A) is characterised up toA∞-equivalence
as follows: the operation μd = μd0 + μd1 + · · · decomposes as a sum of
pieces μdi of degrees 6− 3d + (4g− 4)i; and there is a basis {x1, x2, x3}
for V such that, if e generates �0(V ), then

μ3
0(x1, x2, x3)=−e; μ

2g+1
1 (xi, . . . , xi)= e for i ∈ {1,2,3};

(3.17)
(4) Concretely, the operation μdi counts holomorphic polygons u which, pro-

jected to P
1, have i =multu(∞)+ (1/2)multu(0).

The critical statement (3) is a “finite determinacy” theorem, and at heart
is an application of Theorem 3.18. Unfortunately, we will not be able to use
the result in quite this form: even working over C

∗ ⊂ P
1, the Fukaya category

of the relative quadric Z �=0,∞ which appears later is not Z-graded. However,
Seidel and Efimov deduce this finite determinacy statement from the result in
singularity theory that a power series with an isolated singularity at the origin
is determined up to formal change of variables by a finite part of its Taylor
series. This result does not rely on gradings, so we will reduce ourselves to
applying that directly.

4 From the base locus to the relative quadric

4.1 The Fukaya category of a quadric

Recall from (1.2) we are supposed to identify, categorically, a pair of points
S0 and a smooth even-dimensional quadric Q. For completeness, we discuss
quadrics of both even and odd dimension.
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Lemma 4.1 A quadric hypersurface Q⊂ P
n+1contains a distinguished iso-

topy class of Lagrangian sphere L, which is the unique sphere arising as the
vanishing cycle of an algebraic degeneration. If n > 1, this sphere lies in the
nilpotent summand F(Q;0).
Proof A singular quadric is a cone on a quadric of lower-dimension, hence a
quadric with isolated singularities has a unique singular point. In particular, a
quadric can have at most one node. Moreover, the space of quadrics with one
node is connected, since the generic point of the space of singular quadrics is
given by specifying the location of the node and the smooth quadric of lower
dimension which is the base of the cone, and these parameter spaces are irre-
ducible. This implies the first statement by a standard Moser argument. The
minimal Maslov number of the Lagrangian sphere is 2n, so when n > 1 the
sphere trivially lies in the nilpotent summand of the category (the obstruction
class m0 counts Maslov 2 disks through the generic point of L). �

Lemma 4.2 Let n = dimC(Q) and let τL denote the Dehn twist in the La-
grangian sphere L of Lemma 4.1.

(1) If n is odd, then τL is Hamiltonian isotopic to the identity.
(2) If n is even, then τL ∈ π0 Symp(Q) has order 2.

Proof Consider a Lefschetz pencil of hyperplane sections of Qn ⊂ P
n+1,

with general fibre Qn−1 and base locus Qn−2. An Euler characteristic count
shows that there are exactly two singular fibres, and the vanishing cycles for
both singularities must be given by the sphere L, by Lemma 4.1. Considering
the monodromy of the corresponding family over P

1, this implies that for any
n, the square τ 2

L must be symplectically and hence Hamiltonian isotopic to
the identity. Now consider instead the pencil of quadrics defined by

Q0 =
{
n+1∑
j=0

z2j = 0

}
, Q1 =

{
n+1∑
j=0

λjz
2
j = 0

}
(4.1)

which has singular fibres precisely at the {λj }. More precisely tQ0 −Q1 de-
fines a singular hypersurface if and only if t ∈ {λj }, in which case it has a
node. The vanishing cycles all equal L, and the monodromy of the corre-
sponding family over P

1 shows that τn+2
L = id. If n is odd, the two results

imply that τL � id. If n is even, the Dehn twist cannot have order 1 rather
than 2, since it acts non-trivially on homology (reversing the orientation of L,
on which it acts antipodally). �

We recall the quantum cohomology ring of the quadric, as determined by
Beauville [9].
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Lemma 4.3 Let Q ⊂ P
n+1 denote a smooth n-dimensional quadric hyper-

surface. The quantum cohomology ring admits the presentation

• if n= 4k + 2, 〈h,a, b | hn+1 = 4h, h(a − b)= 0, ab= (hn − 2)/2, a2 =
1= b2〉;

• if n= 4k, 〈h,a, b | hn+1 = 4h, h(a − b)= 0, ab= 1, a2 = (hn − 2)/2=
b2〉;

• if n= 2k + 1, 〈h | hn+1 = 4h〉.
The element h ∈QH2 is induced by the hyperplane class, whilst a, b ∈QH2k

are the classes of the two ruling P
k’s on the quadric.

Now take a pencil of quadrics {Qt }t∈P1 ⊂ P
n+1 generated by two smooth

quadrics Q0,Q1 meeting transversely. Let Z denote the relative quadric, the
blow-up of P

n+1 along Q0 ∩Q1.

Lemma 4.4 If Y is the blow-up of P
n+1 along a (d1, d2)-complete intersec-

tion, with d1 ≥ d2, then |pH −E| is very ample provided p ≥ d1 + 1.

A proof is given in either of [16, 33]. Therefore Z is a Fano variety, in
fact the anti-canonical class is very ample; this is obvious if one views Z ⊂
P
n+1 × P

1 as a divisor of bidegree (2,1). We equip Z with the monotone
symplectic form. For generic pencils of quadrics, the fibration w : Z→ P

1

of proper transforms of quadric hypersurfaces is a Lefschetz fibration with
(n+ 2) singular fibres; Lemma 4.1 shows these all define the same vanishing
cycle in Q.

Example 4.5 Suppose n= 2g. The monodromy

π1(P
1\{λj })→ π0 Symp(Q) (4.2)

of the pencil (4.1) factors through the cyclic subgroup Z2 generated by the
Dehn twist τL, by Lemma 4.2. The monodromy therefore defines a hyperel-
liptic curve �g→ P

1 branched over the points {λ0, . . . , λ2g+1} ⊂C⊂ P
1.

Lemma 4.6 The nilpotent summand F(Q;0) is split-generated by the La-
grangian sphere of Lemma 4.1.

Proof Denote by w : Zn+1 → P
1 the Lefschetz fibration constructed above.

We compute the cycle class C(w); we work with the given integrable almost
complex structure J . Write L for the class of a line in P

n+1, R for the ruling
class of the exceptional divisor E ⊂ Z, and H for the hyperplane class on P

n;
so the intersection pairing H2n(Z)×H2(Z)→ Z is given by

H.L= 1, H.R = 0, E.L= 0, E.R =−1.
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Since the class of the fibre 2H −E is base-point free, it meets every effective
curve non-negatively, so effective curves live in classes dL− rR with r ≤ 2d
(and d ≥ 0). The space of sections of w in a homology class β has virtual
complex dimension c1(T vt(Z))[β]+dimC(Q)= c1(Z)[β]+n−2. Therefore
the space of sections has dimension greater than the fibre, and the cycle class
vanishes, unless 0 ≤ c1(Z)[β] = (n+ 2)d − r ≤ 2, which forces d = 0 and
r ∈ {−1,−2}. Since sections satisfy 〈2H − E, [β]〉 = 1, the case r = −2 is
also excluded, so we are left with sections which are ruling curves, d = 0 and
r =−1. All such curves lie inside the exceptional divisorE, sinceE.R =−1.
Moreover, the curves are regular by the “automatic regularity” criterion of
[54, Lemma 3.3.1]: we are dealing with holomorphic spheres for an integrable
almost complex structure for which all summands of the normal bundle have
Chern number ≥ −1. The associated cycle class is therefore a copy of the
base locus inside the fibre C(w) =Q0 ∩Q1 ⊂ Q. This is a multiple of the
first Chern class of Q by the Lefschetz theorem; the result now follows from
Proposition 3.9. �

Lemma 4.7 Let Lg ⊂ Q2g be the Lagrangian sphere of Lemma 4.1, in an
even-dimensional quadric. Then HF(L,L) is semisimple, and carries a for-
mal A∞-structure.

Proof Since L has minimal Maslov number 4g − 2 > dimR(L) + 1, its
Floer differential is undeformed and additively, HF(L,L) ∼= H ∗(S2g). We
claim that the ring structure on this group is semisimple, so HF(L,L) ∼=
C[t]/〈t2 = 1〉. From Lemma 4.3, the generators a, b of QH2g(Q) are invert-
ible elements in the quantum cohomology ring, hence have invertible image in
HF2g(L,L), and the natural map QH∗(Q)→ HF∗(L,L) is surjective. This
implies that the generator of HF2g(L,L) has non-zero square; see for in-
stance Biran-Cornea [10, Proposition 6.33]. Formality of the A∞-structure
now follows from the Hochschild cohomology computation of Remark 3.21.
More precisely, that computation shows that up to rescaling, the unique non-
formal A∞-structure treats the idempotent summands of 1L asymmetrically,
and hence the non-formal structure admits no autoequivalence which acts on
HF(L,L) in the same way as the Dehn twist τL (this must act non-trivially
since it reverses orientation on L, hence interchanges the two idempotents). �

We remark that one can also derive the above formality result from the fact
that the Lagrangian sphere is invariant under an anti-symplectic involution of
the quadric, together with 4-divisibility of all its Maslov indices, using [31,
Chap. 8].

Lemma 4.8 Let L2k+1 ⊂Q2k+1 be the Lagrangian sphere of Lemma 4.1, in
an odd-dimensional quadric. Then HF(L,L) ∼= Cl1 is quasi-isomorphic to
the Clifford algebra with vanishing higher order products.
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Proof Because the minimal Maslov number is 2k, additively HF(L,L) ∼=
H ∗(S2k+1), which with its natural mod 2 grading is additively isomorphic to
an exterior algebra. According to Corollary 3.11, the Hochschild cohomol-
ogy of the category F(Q;0) is isomorphic to the 0-generalised eigenspace of
QH∗(Q), which from Lemma 4.3 has rank 1 for an odd-dimensional quadric.
According to Sect. 3.6, A∞-structures on the exterior algebra on one gener-
ator are determined by formal power series W ∈ C[[x]] in one variable, and
Example 3.20 shows both that the only structure with the correct Hochschild
cohomology is the one in which the product is deformed, and that up to gauge
equivalence one can assume that the higher products vanish. �

Let S0 denote a zero-dimensional sphere (which is a rather trivial symplec-
tic manifold), and continue to write Cl1 for the Clifford algebra structure on
�∗(R).

Corollary 4.9 We have the following equivalences:

• If Q⊂ P
2g+1 is an even-dimensional quadric, DπF(Q;0)�DπF(S0).

• If Q ⊂ P
2g is an odd-dimensional quadric, DπF(Q;0) � Dπ(mod-Cl1),

except when dim(Q) = 1 and the nilpotent summand of the category is
empty.

Proof This is an immediate consequence of Lemmata 4.6, 4.7 and 4.8. �

Remark 4.10 Every twisted complex in TwF(S0) is quasi-isomorphic to a
pair of graded vector spaces, one supported at each point of S0. The endo-
morphism algebra of any idempotent is therefore a sum of matrix algebras,
hence has rank two if and only if it is a direct sum of two one-dimensional
matrix algebras. It follows that, for an even-dimensional quadric, DπF(Q;0)
contains a unique spherical object up to quasi-isomorphism.

4.2 Hyperelliptic curves and quadrics

This section expands on Example 4.5. If � → P
1 is a hyperelliptic curve

branched over the (distinct) points {λ1, . . . , λ2g+2} ⊂ C⊂ P
1, there is an as-

sociated pencil of quadric hypersurfaces {sQ0 + tQ1}[s:t]∈P1 , where

Q0 =
{∑

z2j = 0
}
⊂ P

2g+1; Q1 =
{∑

λjz
2
j = 0

}
⊂ P

2g+1. (4.3)

Remark 4.11 The fundamental group of the universal family of hyperelliptic
curves is a central extension

1→ Z2 −→ �hyp
g −→ π1 Conf2g+2(CP

1)→ 1
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with the first factor generated by the hyperelliptic involution. More explicitly,
as Seidel pointed out (MIT reading group, unpublished notes), to identify the
hyperelliptic curves

y2 =
∏
j

(λj −μjx) and y2 =
∏
j

(tjλj − tjμjx)

associated to points (λj ,μj ), (tjλj , tjμj ) ⊂ C
2\{0} relies on a choice of

square root of
∏
tj , which is how the central Z2-factor arises when con-

structing parallel transport maps. (Accordingly, there is no universal hyperel-
liptic curve over Conf2g+2(P

1) [55], rather than over a covering space, which
is why Addendum 1.2 was stated for once-pointed curves.) For the (2,2)-
intersection Q0 ∩Q1 ⊂ P

2g+1, the corresponding fundamental group �̃ fits
into a sequence

1→ Z
2g+1
2 −→ �̃ −→ π1 Conf2g+2(CP

1)→ 1.

Now the first factor Z
2g+1
2 = Z

2g+2
2 /(Z2) acts by changing signs of homo-

geneous co-ordinates in P
2g+1, and this can again be interpreted as choosing

square roots of each tj (modulo changing all choices simultaneously) when
identifying

{∑
λjx

2
j = 0=

∑
μjx

2
j

}
and

{∑
tj λjx

2
j = 0=

∑
tjμjx

2
j

}
.

It follows that the group �̃ can be expressed as an extension

1→ Z
2g
2 −→ �̃hyp

g −→ �hyp
g → 1

where the first factor is the subgroup of even elements of Z
2g+1. This is the

group occurring in Corollary 1.3. Denote by ι a generator of Z
2g
2 , for instance

[x0 : x1 : x2 : . . . : x2g+1] ι−→ [−x0 : −x1 : x2 : . . . : x2g+1].
This has fixed point set onQ0∩Q1 the intersection of two quadrics in P

2g−1.
Therefore,

rkH ∗(Fix(ι)) < rkH ∗(Q0 ∩Q1).

The local-to-global spectral sequence of Pozniak [69] now implies that
HF(ι) �= HF(id), which means that ι ∈ π0 Symp(Q0 ∩Q1) is non-trivial (by
contrast, since it has zero Lefschetz number it acts trivially on cohomology).
From here, it is straightforward to deduce Corollary 1.3 from Theorem 1.1,
either by direct consideration of the action of the mapping class group on
F(�g), or by following the argument of Sect. 2.4.
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From now on, we will always work with curves unbranched at infinity, and
co-ordinate representations of the associated pencil of quadrics as in (4.3).

There are numerous classical connections between the topology of � and
that of the base locus Q0 ∩Q1, see [8, 71, 86]; Reid’s unpublished thesis is
especially lucid.

• There is an isomorphism H 1(�g) ∼= H 2g−1(Q0 ∩Q1) of odd cohomolo-
gies.

• The variety of (g − 1)-planes in Q0 ∩Q1 is isomorphic to the Jacobian
J (�g).

• The moduli spaces of smooth hyperelliptic curves and of pencils of
quadrics for which the discriminant has no multiple root co-incide.

The last statement in particular implies that, by taking parallel transport in
suitable families, there is a canonical representation

ρ : �hyp
g,1 −→ π0 Symp(Q0 ∩Q1)

from the hyperelliptic mapping class group of once-pointed curves (un-
branched at infinity) to the symplectic mapping class group of the associated
(2,2)-complete intersection in P

2g+1.

Lemma 4.12 (Wall) An Ak-chain of curves {γ1, . . . , γk} ⊂� each invariant
under the hyperelliptic involution defines an Ak-chain of Lagrangian spheres
{Vγ1, . . . , Vγk } ⊂Q0 ∩Q1.

When g = 2, this is precisely the content of Lemma 2.4. In general, it
is a special case of Wall’s [86, Theorem 1.4], who showed that an isolated
singularity in the base locus of a linear system of quadrics has the same topo-
logical type as the singularity in the discriminant of the family, provided all
the quadrics have corank at most 1. For pencils, the only possible singularities
of the (isolated) discriminant are multiple points, which are Ak-singularities;
the Lagrangian spheres in the base locus arise as the vanishing cycles of the
corresponding degeneration. In particular, a simple closed curve γ ⊂�g in-
variant under the hyperelliptic involution defines a Hamiltonian isotopy class
of Lagrangian sphere Vγ ⊂Q0 ∩Q1. Note that when g = 2, once the iden-
tification Q0 ∩Q1 ∼=M(�2) is fixed, Vγ is actually defined canonically and
not just up to isotopy.

Remark 4.13 A classical result of Knörrer [44] asserts that if Q0 ∩ Q1 is
a complete intersection of two quadrics in P

2g+1 with isolated singularities,
then the number of singular points of Q0 ∩Q1 is at most 2g + 2 (these are
then necessarily all nodes, and the bound is realised). The curve �g admits at
most g+1 pairwise disjoint balanced simple closed curves invariant under the
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Fig. 2 Dehn twists for the
genus 2 pencil on K3

hyperelliptic involution, each of which can carry either of two Spin structures,
so this fits nicely.

Consider now a net of quadric 2g-folds in P
2g+1, spanned by Q0 =

{∑ z2j = 0}, Q1 = {∑λjz2j = 0} and Q2 = {∑j μjz2j = 0}. We suppose the
scalars λj and μk are generic and in particular pairwise distinct. Indeed, we
make the stronger hypothesis that the discriminant

{
[s0 : s1 : s2] ∈ P

2
∣∣det(s0Q0 + s1Q1 + s2Q2)= 0

}

defines a smooth curve B ⊂ P
2 of degree 2g+ 2, and hence a smooth surface

K → P
2 double covering the plane branched along B . The preimages of a

generic pencil of lines in P
2 define a genus g Lefschetz pencil on K with

(2g + 1)(2g + 2) singular fibres (the degree of the dual curve to the branch
locus) and two base-points. The monodromy of this pencil is well-known: if ti
denotes the Dehn twist in the curve ζi of Fig. 2, the monodromy when g = 2
is given by (t1t2t3t4t5)6 = id (or, in the pointed mapping class group, the same
expression is the product of the Dehn twists t∂1 t∂2 around the two punctures,
which lie in the two halves of the surface given by cutting along the {ζj }).
For g > 2 one gets the obvious generalisation (t1 . . . t2g+1)

2g+2 = id. After
compactifying by adding in one of the two points of the base locus, one can
view this monodromy as determined by a representation η : π1(S

2\{Crit})→
�g,1.

There is also a distinguished pencil of quadric-quadric intersections on the
2g-fold Q2 = {∑μjz2j = 0}, which is a Lefschetz pencil by Lemma 4.12,

again with (2g + 1)(2g + 2) singular fibres. Let W→ S2 be the Lefschetz
fibration with fibreQ0∩Q1 given by blowing upQ2 at the base of this pencil
(if g = 2 this is a blow-up along a genus 17 curve).

Lemma 4.14 W is defined by ρ ◦ η : π1(S
2\{Crit})→ π0 Symp(Q0 ∩Q1).

This is true essentially tautologically, by definition of ρ. There are (2g +
1)(2g+2) singular fibres in W, defining a collection of that many Lagrangian
(2g−1)-spheres inQ0∩Q1. These actually only give rise to (2g+1) distinct
Hamiltonian isotopy classes {Vj } ⊂Q0 ∩Q1; when g = 2 these are associ-
ated to the 5 distinct vanishing cycles {ζj } in the pencil on the sextic K3, cf.
Fig. 2.
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Lemma 4.15 The Lagrangian spheres {Vj } split-generateDπF(Q0∩Q1;0).

Proof We have a basis H,E comprising the hyperplane and exceptional
divisor for H 2(W), dual to a basis L,−R of a line and ruling curve for
H2(W). Working with the obvious integrable almost complex structure, ra-
tional curves in W must meet the fibre non-negatively, which means that
curves only exist in classes dL− rR with r ≤ 2d; on the other hand, curves in
classes with a positive coefficient of R meet E negatively, hence are entirely
contained in that divisor. The cycle class C(w) of w :W→ S2 counts curves
in homotopy classes β for which

vdimC(M(β))= c1(T vt(W))[β] + dimC(Fibre)= c1(W)[β] + 1

is at most the dimension of the fibre, here (2g − 1); that forces c1(W)[β] ≤
2g − 2. But c1(W) = 2gH − E, and together with the constraint r ≤ 2d , it
follows that only curves in classes which are multiples of R can count. Since
we only count sections, that means we are actually interested in R-curves.
These are automatically regular, being spheres whose normal bundle is a sum
of bundles of Chern number≥−1, and the regular moduli space forms a copy
of the base locus of the pencil. But this is exactly a cycle representing the first
Chern class of the fibre, hence Proposition 3.9 applies. �

Corollary 4.16 There is a ring isomorphism HH∗(F(Q0 ∩ Q1);0)) ∼=
H ∗(�g).

Proof Corollary 3.11 implies that HH∗(F(Q0∩Q1;0))∼=QH∗(Q0∩Q1;0).
The odd-dimensional cohomologyH 2g−1(Q0∩Q1) is isomorphic toH 1(�g),
is generated by Lagrangian spheres of minimal Maslov number > 2, and
therefore lies entirely in the zero eigenspace for the action of ∗c1. The
quantum cohomology ring of Q0 ∩ Q1 was determined by Beauville [9]:
QH∗(Q0 ∩Q1) is generated by the primitive middle-degree cohomology and
a class h subject to

h∗2g = 16h∗h; h∗(H prim)= 0; α∗β = δ(α,β)(h2g−1/4−4h2g−3)

with δ the intersection pairing. This implies that QH∗(Q0 ∩Q1;0) has rank
2g + 2; checking the ring structure is easy algebra (we did this for g = 2 in
Lemma 2.3). �

4.3 Idempotents for functors

We require a functoriality property of split-closures of A∞-categories. We
begin by recalling the construction of a split-closure. An idempotent up to
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homotopy for an object Y ∈A is an A∞-functor from K to A taking the unit
of the field to Y . Explicitly, this amounts to giving a collection of elements

℘d ∈ hom1−d
A (Y,Y ); d ≥ 1

satisfying the equations

∑
r

∑
s1,...,sr

μrA(℘
s1, . . . ,℘sr )=

{
℘d−1 if d is even,
0 if d is odd

(4.4)

summing over partitions s1 + · · · + sr = d . If p ∈ HomH(A)(Y,Y ) is an
idempotent endomorphism in the cohomological category,3 there is always
an idempotent up to homotopy ℘ for which [℘1] = p [77, Lemma 4.2].
Any A∞-category has a split-closure �A, meaning a fully faithful functor
A→�A with the property that in the larger category all abstract images of
idempotents up to homotopy are quasi-represented. The abstract image of ℘
(an idempotent with target Y ∈A) is a certain A∞-module Z in mod-A, with
underlying vector spaces

X �→ homA(X,Y )[q] where q is a formal variable of degree −1

and with operations beginning with

μ1
Z(b(q))=

∑
r

∑
s2,...,sr

δs2+···+srq μrA(℘
sr , . . . ,℘s2, b(q))+�b(q).

Here δq is normalised formal differentiation, qk �→ qk−1 and q0 �→ 0, whilst
� denotes antisymmetrization followed by δq (we will not write out the
higher order operations). By [77, Lemma 4.5], one has the critical property
that:

HomH(mod-A)(Z,Z
′) ∼= e ·HomH(A)(Y,Y

′) · e′ (4.5)

whenever Z and Z′ are the abstract images of idempotents up to homo-
topy with targets Y,Y ′ corresponding to cohomological idempotents e ∈
HomH(A)(Y,Y ) and e′ ∈HomH(A)(Y ′, Y ′).

Lemma 4.17 Let A,B and C be non-unitalA∞-categories and suppose there
is an A∞-functor� :A→ nu-fun(B,C). To each idempotent up to homotopy
℘ for Y ∈A one can canonically associate an element of nu-fun(B,�C).

3Since our categories are Z2-graded, such idempotents are necessarily of even degree.
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Proof ℘ is defined by a functor K→A so there is a composite functor K→
nu-fun(B,C) with target �Y . This is defined by a sequence of elements

℘d�Y ∈ hom1−d
nu-fun(B,C)(�Y ,�Y ).

The degree zero term in this morphism of functors yields elements

℘�Y (B) ∈ hom1−d
C (�Y (B),�Y (B))

which satisfy the conditions of (4.4). Thus ℘�Y (B) is an idempotent up to
homotopy for �Y (B) ∈ C, for each B ∈ B. The functor �Y is defined by a
collection of natural maps

homB(Bd−1,Bd)⊗· · ·⊗ homB(B1,B2)→ homC(�Y (B1),�Y (Bd))[1− d].
We claim these induce maps

homB(Bd−1,Bd)⊗· · ·⊗homB(B1,B2)→ hom�C(℘�Y (B1),℘�Y (B2))[1−d]
where ℘• denotes the abstract image of the given idempotent. To see this,
since�C is by definition a certain category of modules, thus of functors from
C to chain complexes, an element of hom�C(F,G) is explicitly defined by the
collection of maps

homC(Cd−1,Cd)⊗ · · · ⊗ homC(C1,C2)→ homCh(F(C1),G(Cd)).

Taking the functors F =�Y (B1) and G=�Y (Bd), we require maps

homC(Cd−1,Cd)⊗ · · · ⊗ homC(C1,C2)

−→ homCh (homC(C1,�Y (B))[q],homC(Cd,�Y (B))[q]) .
These are canonically obtained by using composition μdC in the category C.
It is a straightforward check to see that the construction is compatible with
varying B , hence yields a functor from B to �C as required. �

Corollary 4.18 There is a natural functor �A→ nu-fun(B,�C).

We will not need this stronger result and omit the proof.

4.4 An illustrative example

Let X = Bl0(C2) denote the blow-up of the complex plane at the origin. We
equip this with a symplectic form giving the exceptional divisor area c > 0.
Let Clk denote the Clifford algebra associated to a non-degenerate quadratic
form on C

k , of total dimension 2k .
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Fig. 3 A Lagrangian torus
in O(−1)

Lemma 4.19 X contains a Lagrangian torus T which, equipped with the
Spin structure which is non-trivial on both factors, has HF(T , T )∼= Cl2 �= 0.

Proof There is a natural Hamiltonian torus action on C
2, which is inherited

by the blow-up since we have blown up a toric fixed point. The relevant mo-
ment polytope is depicted in Fig. 3; in this figure the fibre lying over the black
dot, placed symmetrically at the “internal corner” of the polytope, defines the
Lagrangian torus T .

All the holomorphic disks with boundaries on the fibres of the moment
map can be computed explicitly, cf. [6, 15]; in this case the torus bounds 3
families of Maslov index 2 disks, all having the same area, so T is in fact
monotone. The three dotted lines emanating from the black dot in Fig. 3 are
schematic images of the three Maslov index 2 disks through a point; the disks
actually fibre over arcs in the affine structure on the moment polytope deter-
mined by complex rather than symplectic geometry, but the disks do intersect
the boundary facets as indicated. We equip T with the Spin structure which
is bounding on both factors. The contributions of these disks to the Floer dif-
ferential and product can be determined explicitly exactly as in op. cit.; the
Lagrangian moment map fibres with non-zero Floer cohomology for some
Spin structure are precisely those lying over critical values of the superpoten-
tial, which in this example is

W(z1, z2) = z1 + z2 + ecz1z2.
The constituent monomials are indexed by the toric boundary strata of the
moment polytope, cf. [6, Proposition 4.3], with the logarithm of the corre-
sponding coefficient giving the distance of the defining hyperplane from the
origin in R

2. There is a unique critical point (−e−c,−e−c) lying over the fi-
bre of the moment map given by the black dot (c, c)= (− log |z1|,− log |z2|).
Since the critical point is non-degenerate, this torus has HF(T 2, T 2)∼= Cl2. �

Remark 4.20 The torus T is actually special Lagrangian with respect to the
pullback of the holomorphic volume form dz1/z1 ∧ dz2/z2 from C

2. The
pullback has first order poles along the proper transforms of the axes and
the exceptional divisor, hence any Maslov index 2 disk must meet this locus
transversely once, as in Fig. 3.
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For another viewpoint on the Lagrangian torus T ⊂O(−1), recall the con-
struction of the symplectic blow-up. We let

O(−1)=
{
((z1, z2), [w1 :w2]) ∈C

2 × P
1
∣∣ z1w2 =w1z2

}

be the standard embedding of the tautological line bundle and write O(−1)δ =
�−1(B(δ)) for the preimage of the ball B(δ)⊂ C

2 under the first projection
�. The standard symplectic form giving the exceptional sphere area πχ2 > 0
is just �χ =�∗ωstd + χ2π∗

P1ωFS, where ωFS is the appropriately normalised
Fubini-Study form on the projective line. The basic observation, see e.g. [54,
Lemma 7.11], is that

(O(−1)δ\O(−1)0,�χ) ∼= (B(
√
χ2 + δ2\B(χ),ωstd)⊂C

2. (4.6)

Thus there is a symplectic form on the blow-up with area c on the exceptional
sphere whenever a ball of radius strictly larger than c/

√
π embeds in the orig-

inal space. Now take the equator S1 ⊂ P
1 =E inside the exceptional divisor.

Consider the union of the circles inside fibres lying over the equator which
bound disks of area c; from the above discussion, such a tubular neighbour-
hood embeds in the blow-up (in general this will be true if c is sufficiently
small, but a ball of any size fits in C

2). The torus T swept out by these fibres
of constant radius is Lagrangian, since via (4.6) it comes from a Clifford-type
torus inside a sphere in C

2; it is invariant under the usual S1× S1 action, and
in fact co-incides with the toric fibre discussed in Lemma 4.19.

To put the reformulation in a more general context, note that we have cor-
respondences

�1 = S1
eq ⊂ {pt} × P

1 ∼=E; �2 ⊂E ×X (4.7)

with �2 = ∂νE the 3-sphere which is the boundary of a tubular neighbourhood
νE of the exceptional curve, viewed not as a submanifold inX but in the prod-
uct E×X. This 3-sphere is the graph of a Hopf map from C

2\{0}→ P
1. We

claim that for suitable symplectic forms, these correspondences are monotone
Lagrangian (compare to Remark 3.5 to see why this is delicate). Let (•,ω)−
denote the symplectic manifold (•,−ω). Recall that a co-isotropic subman-
ifold W ⊂ (M,ωM) with integrable characteristic distribution and reduced
space (N,ωN) defines a Lagrangian graph in (N,ωN)− × (M,ωM).
Lemma 4.21 Equip E = P

1 with the symplectic form 2ωFS of area 2π , and
equip X = O(−1) with the symplectic form �1 giving the zero-section area
π . Define ∂νE as the boundary of the sphere of radius

√
2 in C

2, viewed via
(4.6) as the boundary of the unit disk subbundle O(−1)1 ⊂ O(−1). Then the
correspondence �2 ⊂ E− × X associated to νE is a monotone Lagrangian
submanifold.
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Proof The key point is that the symplectic form on P
1 obtained by taking

the reduction of the coisotropic submanifold νE ⊂ (O(−1),�1) has area 2π ,
even though the zero-section in that line bundle has area π . This is clear from
the description of (4.6), or from a toric picture, Fig. 3 (the line parallel to
the boundary facet defining the exceptional curve and passing through the
distinguished point • defines a co-isotropic 3-sphere, and the reduced space
is obviously a P

1 of area determined by the radius of the corresponding ball
in C

2 before blowing up). Therefore, the co-isotropic �2 defines a Lagrangian
graph inside (P1,−2ωFS)× (O(−1),�1). On the other hand, the first Chern
class of this product is the class (−2,1) ∈ H 2(P1)⊕ H 2(O(−1)) ∼= Z

2, so
�2 is indeed monotone. �

The composite of the two correspondences

�1 ◦ �2 ⊂ {pt} ×X

is exactly the Lagrangian torus T . This also partially explains the particular
choice of Spin-structure on T ; it should be equipped with a Spin-structure
which in the �2-direction is inherited from the ambient correspondence S3,
hence on that circle factor we must pick the bounding structure.

Lemma 4.22 The Lagrangian torus T of Lemma 4.19 has a non-trivial idem-
potent.

Proof Cl2 is a matrix algebra, hence splits into two idempotents each of
which has endomorphism algebra of rank 1. More precisely, if Cl2 is gen-
erated by x and y of degree 1 subject to xy + yx = 1 with x2 = 0= y2, then
xy = e+ and yx = e− are idempotents; the morphisms between the corre-
sponding summands of T are HF(e+, e−)∼=K. �

Remark 4.23 The proof shows there are two “indistinguishable” idempotents
in HF(T , T ), and one could use either in the construction of the functor below.
In fact,

e+ ∼= e−[1] and e− ∼= e+[1]
(which is compatible with the fact that the double shift is isomorphic to the
identity in the Z2-graded Fukaya category). The same binary choice appears
on the mirror side, when one considers Knörrer periodicity for Orlov’s derived
categories of singularities. In principle, this choice fibrewise in a family of
Clifford-like 2-tori could lead to an obstruction to the existence of a global
idempotent, but this obstruction will vanish when we later blow up the base-
locus of a pencil of hyperplanes.
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Fig. 4 The symplectic cut
of a Lagrangian tube in
Blp"q(C2) (the dotted balls
are collapsed in performing
the blow-up)

Remark 4.24 Non-triviality of HF(T , T ) implies that the Lagrangian corre-
spondences �i are non-trivial elements of their Fukaya categories. Note that
the individual correspondences �1 ∼= S1 and �2 ∼= S3 cannot split for reasons
of degree: in both cases only the identity lives in HFev.

The composite correspondence �1 ◦�2 has an idempotent summand which
defines a functor

�(e+) : F({pt})→ TwπF(X) (4.8)

which takes the unique Lagrangian submanifold of the base locus {pt} to an
object on the RHS with the same Floer cohomology; i.e. the summand of
the functor is fully faithful. To obtain a slightly less trivial example, one can
consider blowing up a collection of points in C

2 by equal amounts. Taking a
common size for the blow-ups implies that the resulting space contains La-
grangian 2-spheres, which arise from the symplectic cut of trivial Lagrangian
cylinders in C

2.

Example 4.25 Let p = (0,0) ∈C
2 and consider the arc γ ⊂R

+ ⊂C= {w =
0} ⊂ C

2, with co-ordinates (z,w) on C
2. The blow-up at p is effected sym-

plectically by choosing a ball with boundary

S3
ε = {|z|2 + |w|2 = ε2}

and quotienting out Hopf circles. Suppose now we consider the circles {|w| =
ε} lying over the arc γ ⊂ {w = 0}. The union of these circles is a Lagrangian
tube in C

2 which meets S3
ε only over the end-point of γ at the origin, where

the intersection is precisely the circle {z = 0, |w| = ε} which is collapsed in
forming the blow-up, cf. Fig. 4.

The Lagrangian tube therefore defines a smooth Lagrangian disk in
Blp(C2). If we now blow up C

2 at p = (0,0) and q = (2,0), with equal
weights c= πε2 at the two-points, there is a Lagrangian sphere L⊂ Blp"qC2

in the homology class ±(E1−E2). This arises from a pair of such disks, and
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is naturally a matching sphere associated to a path γ ⊂C= {w = 0} between
the points p = (0,0) and q = (2,0).

Lemma 4.26 The torus T ⊂ Bl0(C2) meets the Lagrangian disk � which is
the symplectic cut of R≥0×{|w| = ε} cleanly in a circle. The Floer cohomol-
ogy HF(T 2,�)∼=H ∗(S1).

Proof The disk� fibres over the horizontal arc emanating from the vertex on
the y-axis in the moment image of Fig. 3. The disk and the torus meet cleanly
along the circle where z= ε ∈ R+. We claim the Morse-Bott-Floer differen-
tial vanishes: it is enough to see that HF(T 2,�) �= 0. To prove this, we intro-
duce a Lefschetz fibration viewpoint on these constructions. The trivial fibra-
tion C

2 → C which is projection to the z-co-ordinate induces a Lefschetz fi-
bration on Bl0(C2)with a unique critical fibre, which contains the exceptional
sphere. The vanishing cycle is homotopically trivial, and the monodromy is
Hamiltonian isotopic to the identity. There is a unique radius of circle centred
at the origin in the base, determined by the size c of the blow-up parameter,
for which the Lagrangian torus which is swept out by the vanishing cycle in
each fibre (defined relative to parallel transport along a radial arc) is actually
monotone, and this is our torus T . The disk � of Lemma 4.26 is the unique
Lefschetz thimble, and the non-vanishing of HF(T ,�) is an instance of the
general fact that a basis of vanishing thimbles generates a category containing
all weakly unobstructed compact Lagrangians. This is a theorem of [77] in the
case of exact Lefschetz fibrations; Proposition 5.8 explains why the argument
applies in the current setting. �

From Lemma 4.26 one sees that HF(e±,�)∼=K. In the Fukaya category V

of the Lefschetz fibration, the individual summands e± are isomorphic up to
shifts to the disk �. We record one elementary point from this reformulation.
Suppose one has anA2-chain of Lagrangian S0’s, i.e. two zero-spheres V0 and
V1 sharing a point, say V0 = {(−1,0), (0,0)} and V1 = {(0,0), (1,0)} ⊂ C

2.
We fix real arcs�i ⊂C×{0} bounding the Vi and meeting at the origin, with
respect to which we obtain spun Lagrangian 2-spheres V̂i ⊂ Bl3 points(C

2),
and we consider the Floer product

HF(V̂0, V̂1)⊗HF(T , V̂0)−→HF(T , V̂1). (4.9)

The relevant Lagrangians fibre, in the Lefschetz fibration described above—
locally restricting to a subspace Bl0(C2) of the 3-point blow-up—over a circle
centred at the origin and the positive and negative real half-lines; the V̂i are
here viewed as compactifications of Lagrangian disks fibring over these half-
lines. In this local picture, the triangle product must be non-vanishing, just
because the Lagrangian disks are actually isomorphic in the Fukaya category
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of the Lefschetz fibration, both being the unique Lefschetz thimble. On the
other hand, by the maximum principle all the holomorphic triangles are local,
hence this non-vanishing actually applies to (4.9).

4.5 Idempotents and blow-ups

Let (X,ω) be a projective variety, {Ht }t∈P1 a Lefschetz pencil of hypersur-
face sections with smooth base locus B = H0 ∩H1 ⊂ X. For simplicity, we
suppose π1(B)= 0. We also fix an additional “reference” hyperplane section
Href linearly equivalent to the Hi but not in the pencil defining B , so there
is an associated net of hyperplanes 〈H0,H1,Href 〉. We denote by b : Y →X
the blow-up Y = BlB(X) along the base locus, and by E ⊂ Y the excep-
tional divisor; note that E ∼= B × P

1 canonically, since the normal bundle
νB/X ∼= L⊗C

2 for the line bundle L= νHi/X . We assume:

• X,B and Y are all monotone (Fano); c1(X)= (d + 2)H with d ≥ 2;
• c1(L|B) is proportional to c1(B); B has minimal Chern number ≥ 2;
• B contains a Lagrangian sphere.

(4.10)
The first assumption determines the size λ of the blow-up parameter, i.e. the
area of the ruling curve P

1 ⊂E. We actually strengthen the first assumption,
and demand that

• c1(Y )− PD[E] = b∗c1(X)− 2PD[E] is ample, so contains Kähler forms;
(4.11)

note that this implies there are Kähler forms on Y which give the ruling curves
P

1 ⊂ E twice the area they have for the monotone form. Recall our notation
(•,ω)− for the symplectic manifold (•,−ω). As in (4.7), we consider the two
correspondences

�R = B × S1
eq ⊂ B− × (B × P

1)

where S1
eq ⊂ P

1 denotes the equator and

�E =UνE ⊂ E− × Y
where νE→E is the normal bundle to E in Y and UνE denotes a circle sub-
bundle. The correspondences are equipped with bounding Spin structures. As
in Lemma 4.21, by choosing the radius of this subbundle and the symplectic
forms appropriately:

Lemma 4.27 Under hypothesis (4.11), the correspondences �E and �R can
be chosen to be embedded monotone Lagrangian submanifolds, with embed-
ded monotone composition � = �R ◦ �E ⊂ B− × Y .
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Proof Let H ⊂ Z be a codimension 2 symplectic submanifold of a symplec-
tic manifold (Z,ωZ), with the symplectic form ωH = (ωZ)|H . Equip the
normal bundle ν→ H with a Hermitian metric. The symplectic form on a
neighbourhood of the zero-section in the total space of ν is

�ν = π∗ωH + 1

2
d(r2α) (4.12)

where r is the radial co-ordinate and α is a connection form for the bundle
satisfying dα = −π∗τ , with τ a curvature 2-form on H with [τ ] = [c1(ν)]
as obtained from Chern-Weil theory. Note that the form �ν is a standard area
form on the fibres of the disk bundle. The symplectic form induced on the
reduced space Hred of the co-isotropic submanifold which is the boundary
of the radius r disk bundle in ν differs from ωH by subtracting r2τ/2. In
particular, when it is possible to take r = √2, the reduced form lies in the
cohomology class [ωH − c1(ν)], compare to Lemma 4.21.

The symplectic normal bundle to B × P
1 ∼= E ⊂ Y is the tensor product

π∗BL ⊗ π∗
P1 O(−1), with first Chern class (c1(L),−1) ∈ H 2(B) ⊕ H 2(P1).

We fix a tensor product Hermitian metric and connexion, taking τ to be a
product 2-form. The ruling P

1 ⊂ E has area 1 for a monotone Kähler form
ωmon on Y which is cohomologous to the first Chern class. By hypothesis,
we have Kähler forms ω on Y for which the area of P

1 is > 2. After nor-
malising the Kähler form near E, one can blow down to obtain a symplectic
form on X which contains a radius

√
2+ δ disk bundle around the base lo-

cus B; compare to [54, Lemma 7.11] or [35, Theorem 2.3]. If we now blow
up again by amount 1, the exceptional divisor E ⊂ (Y,ωmon) naturally lies
inside a standard symplectic disk bundle whose fibres have area 1+ δ. This
is sufficiently large to contain an embedded circle bundle UνE in which the
circles bound fibre disks of area 1. (Blowing down and up in this way ef-
fects a symplectic inflation. Indeed, when Gompf puts symplectic structures
on Lefschetz pencils in general dimension, he precisely patches in a large
symplectic disk bundle over the base locus [35, p. 279, and his embedding ϕ
onto a disk bundle of radius R].)

From (4.12), the reduced space of the co-isotropicUνE has symplectic form
(ωY )|E − τ in cohomology class

[ωY ]|E − [(c1(L),−1)]. (4.13)

We can view Y ⊂ X × P
1 as a divisor in class (c1(L),1). It follows that

the monotone form ωY lies in cohomology class (c1(X) − c1(L),1) ∈
image(H 2(X) ⊕ H 2(P1)→ H 2(Y )) (the latter map being an isomorphism
by the Lefschetz theorem in our examples). Combining this with (4.13) and
noting that c1(B)= c1(X)|B − 2c1(L), by adjunction, shows that the reduced
symplectic form on B × P

1 coming from the co-isotropic UνE is monotone.
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We have arranged that the coisotropic defining the Lagrangian correspon-
dence �E lives inside the blow-up BlB(νB/X) = TotO(−1)(E) of a large
disk normal bundle to B in X. By construction, all Maslov index 2 disks
in this open subset have the same area, compare to Lemma 4.19. Since
H1(B) = 0, these local disks together with rational curves in the total space
span H2(E × Y,�E), hence are sufficient to detect monotonicity. It follows
that �E is monotone. The corresponding statement for �R is trivial, taking the
monotone forms on B and B × P

1; and monotonicity is then inherited by the
Lagrangian composition (note this is well-defined since the symplectic forms
on B × P

1 arising as the output of �R and the input of �E do co-incide). �

Remark 4.28 We emphasise that there are two different symplectic forms on
B×P

1 in play; first, the non-monotone form arising by restricting a monotone
form on Y to E ⊂ Y ; second, the monotone form arising from co-isotropic
reduction of the boundary of a suitable disk bundle νE ⊂ Y . We only use the
Fukaya category of the monotone form; as a mild abuse of notation, we will
continue to write E for the space B × P

1 even though it is not equipped with
the symplectic form it inherits from the embedding in the ambient space Y .

Remark 4.29 For the case of interest in this paper, namely (2,2)-intersections
in P

2g+1 with g ≥ 2, the ampleness hypothesis (4.11) holds by Lemma 4.4.
When g = 1, this conditions fails; the class c1(P3) − 2PD[E] lies on the
boundary of the Kähler cone of the blow-up of P

3 along a complete intersec-
tion elliptic curve. In that case, there is no monotone correspondence, which
fits with the fact that the elliptic curve has no balanced Fukaya category and
F(�1) is naturally defined over �C.

Remark 4.30 There is another viewpoint on the composite correspondence
� = �R ◦ �E which is often useful. Again starting from a Kähler form on Y
which is standard in a large disk bundle over E, we perform a symplectic cut
[49] along the boundary of a sub-disk bundle. Algebro-geometrically, sym-
plectic cutting is effected by deformation to the normal cone [32, Chap. 5]. We
obtain a space with two components meeting along a divisor. One component
is a F1-bundle over B , given by projective completion of the normal bundle
to E, and the other Y ′ is holomorphically isomorphic to Y , but equipped with
a different Kähler form (of smaller volume). The hypothesis (4.11) implies
that one can perform the cut so as to obtain a Kähler form which is mono-
tone on the total space of the F1-bundle. The associated monotone P

2-bundle
over B is the completion P(L⊕L⊕O) of its normal bundle. Being the pro-
jectivisation of a direct sum of line bundles, the structure group reduces to a
maximal torus T 2 ≤ PGL3(C), which implies that there is a (cohomologous)
linear Kähler form on the P

2-bundle for which parallel transport preserves the
fibrewise Lagrangian torus which is the monotone torus in P

2. Globally, this
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gives rise to a Lagrangian submanifold

�cut = T 2×̃B ⊂ P(L⊗2 ⊕O)×B (4.14)

which is a monotone 2-torus bundle over the diagonal �B . If one now blows
back up and moreover smooths the normal crossing locus of the symplectic
cut, in each case deforming the symplectic form in a region disjoint from �cut,
one obtains a Lagrangian correspondence �cut ⊂ B × Y , which is exactly �.

As remarked above, � = T 2×̃B is a 2-torus bundle, which in general is
differentiably non-trivial. However, given any simply-connected Lagrangian
L⊂ B , the restriction of the correspondence to L is trivial (because the sym-
plectic line bundle L → L is flat and hence trivial), and the geometric com-
position of L with the correspondence is a Lagrangian submanifold diffeo-
morphic to a product L× T 2 ⊂ Y .

The quilted Floer theory of Mau, Wehrheim and Woodward, Theorem 3.10
of Sect. 3.4, associates to a monotone Lagrangian submanifold � ⊂M− ×
N a Z2-graded A∞-functor �� : F(M)→ F#(N), where F#(•) is the A∞-
category of generalised Lagrangian correspondences. Theorem 3.14 implies
that the functors ��R ◦��E and ��R◦�E are quasi-isomorphic.

Lemma 4.31 The functor ��R◦�E is quasi-isomorphic to a functor with im-
age in the fully faithfully embedded A∞-subcategory F(Y )⊂ F#(Y ).

Sketch Write � = �R ◦ �E ⊂ B− × Y . For every object L ∈ F(B) the
image of L under � is a smooth Lagrangian submanifold L̂ in Y . Quilt
theory, via Theorem 3.14, again provides a quasi-isomorphism of functors
F(pt)→ F#(Y ) with images L̂ and ��(L); the quasi-isomorphism of func-
tors implies that the target objects

L̂
∼−→ {pt

L−→ B �−→ Y } = ��(L)
are quasi-isomorphic objects of F#(Y ), and in particular HF(L̂,��(L)) ∼=
HF(L̂, L̂). More explicitly, the Floer chain group

CF(L̂, {pt L→ B �→ Y }) = CF(L̂× �−,�×L)
where the RHS is computed in Y ×Y− ×B . These Lagrangian submanifolds
meet cleanly, and projection to the first factor identifies the clean intersection
locus with L̂. A chain-level representative e ∈ CF(L̂×�−,�×L)= C∗(L̂)
for the identity 1 ∈HF(L̂, L̂) provides the desired quasi-isomorphism. Simi-
larly,

CF(pt
L0→ B �→ Y, pt L1→ B �→ Y)
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is given by chains on the intersection locus (� × �−) ∩ (L−0 ×�Y × L1)⊂
B− × Y × Y− × B , and this clean intersection is exactly L̂0 ∩L1 = L̂0 ∩
L̂1. Projection to the central two factors Y × Y− again identifies the Floer
chain group with CF(L̂0, L̂1). The subcategories of F#(Y ) generated by the
L̂-images and the corresponding generalised Lagrangian branes are quasi-
equivalent, and the former lies inside F(Y ). �

We will henceforth replace �� by such a quasi-isomorphic functor to
F(Y ), without however changing our notation. We would like this composite
correspondence � to behave like a sheaf of Clifford algebras over B . One can
filter the Floer complex for T 2×̃B by projecting generators down to critical
points of a Morse function on B and filtering by Morse degree. This yields a
spectral sequence of rings

E
∗,∗
2 =H ∗(B;HF(T 2, T 2))∼=H ∗(B)⊗Cl2 ⇒ HF(T 2×̃B,T 2×̃B).

In the simplest case, the spectral sequence degenerates, the non-trivial idem-
potents in the Clifford algebra survive to E∞, and they split the total cor-
respondence, as in Remark 4.24. This was trivially the situation in the ex-
ample considered in Lemma 4.19, where B = {pt}. In general, the picture
is less clear: even additively the Floer cohomology of the composite corre-
spondence is more complicated, coming from the non-triviality of the normal
bundle L of the original hyperplanes Hi ⊂X. However, this complication be-
comes irrelevant on the appropriate summand of the Fukaya category of the
base locus.

Lemma 4.32 Suppose L ∈ F(B;0), and let �L denote its image under the
correspondence � = �R ◦ �E . Either HF(�L,�L) = 0 for all L ∈ F(B;0),
or there is an isomorphism HF(�L,�L) ∼= HF(L,L) ⊗ Cl2 of QH∗(B;0)-
modules.

Proof We work with the monotone symplectic forms provided by Lemma 4.27.
The Floer cohomology of L × S1

eq ⊂ B− × P
1 can be computed using the

Künneth theorem, since all holomorphic curves split in the obvious product
description, as does their deformation theory. One therefore gets

HF(L× S1
eq,L× S1

eq)
∼= HF(L,L)⊗HF(S1

eq, S
1
eq).

By the Künneth theorem in quantum cohomology, QH∗(E) ∼= QH∗(B) ⊗
QH∗(P1). We next apply the quantum Gysin sequence, in the form of Theo-
rem 3.3, or rather its Lagrangian analogue. This says that HF(�L,�L) is the
cone on quantum cup-product on HF(L× S1

eq,L× S1
eq) by the corrected Eu-

ler class e+σ · 1, where σ ∈K counts Maslov index 2 disks through a global
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angular chain for UνE . In our case, writing t ∈ QH2(P1) for the fundamental
class,

e= h⊗ 1+ 1⊗ (−t)
where h = c1(L|B) ∈ H 2(B) is the restriction of c1(νH/X). Recall that our
initial assumptions imply this is proportional to c1(B). We should therefore
compute quantum product by

h⊗ 1+ (1⊗ (σ · 1− t)) :
HF(L,L)⊗HF(S1

eq, S
1
eq)→HF(L,L)⊗HF(S1

eq, S
1
eq).

Now for L in the nilpotent summand F(B;0), h �→ 0 ∈ HF(L,L) by
Lemma 3.1, and the above therefore simplifies to the map

x ⊗ y �→ x ⊗ (σ1− t)y
which has cone HF(L,L) ⊗ Cone(σ1 − t). If σ �= 1 then the map is id⊗
(invertible) and hence HF(�L,�L)= 0, so �L is quasi-isomorphic to zero for
every L. If σ = 1 this map vanishes and then HF(�L,�L)∼=HF(L,L)⊗Cl2.
Since the quantum Gysin sequence is an exact sequence of QH∗-modules, the
statement on the module structure follows. �

The force of Lemma 4.32 is that to obtain a conclusion for an arbitrary
L ∈ F(B;0), it suffices to find a single such L for which HF(�L,�L) �= 0.
We now aim to prove this non-vanishing when L is a Lagrangian sphere as
provided by hypothesis (4.10). Let U ⊂ L⊕2→ B denote an open neighbour-
hood of B ⊂X, symplectomorphic to a sub-disk bundle of the normal bundle.
Write Ltaut for a symplectic disk bundle neighbourhood of E ⊂ Y inside its
normal bundle, which is just the tautological bundle over E = P(L⊕2). Since
π2(B × Y,�) = π2(B × BlB(U),�), all possible homotopy classes of holo-
morphic disk with boundary on � are visible in B × BlB(U).

Lemma 4.33 If for some Lagrangian sphere L⊂ B all holomorphic disks of
Maslov index 2 with boundary on �L lie inside the disk bundle Ltaut → E,
then �L �� 0.

Proof We continue to write � = �R ◦ �E . There is a canonical projection

p : B × BlB(U) −→ B ×B (4.15)

under which � �→ �B . Any Lagrangian sphere L ⊂ B necessarily lies in
F(B;0) since B has minimal Chern number ≥ 2. Disks with non-constant
image in B × B under the map of (4.15) have Maslov number at least 4.
Therefore the only Maslov index 2 disks with boundary on �E(L× S1

eq) lie
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in homotopy classes which project trivially to B×B , and thus lie in Bl0(C2)-
fibres of the projection p, with boundary on T 2-fibres of � ∼= T 2×̃B . All such
disks are therefore visible in the model of Lemma 4.19, and in that case we
know σ = 1 since we know a priori that the Floer cohomology of the torus T
was non-vanishing. (In the model one can check explicitly that only one of the
three holomorphic disks through the generic point of T has boundary passing
through a global angular chain for the unit circle fibration of O(−1)→ P

1.) �

Since Y = BlB(X) is the blow-up of a base locus of a pencil of hyperplanes
{Ht }, it has a natural fibration structure π : Y → P

1, with fibre homologous
to π∗H −E. We choose a holomorphic volume form� on Y which has poles
along the reducible divisor

D� = E + [π−1(0)] + [π−1(∞)] + dHref (4.16)

where we recall c1(X) = (d + 2)H . For suitable choices of fibres H0 =
π−1(0) and H∞ = π−1(∞) we have L× T 2 ⊂ Y\D�. Remark 4.20 implies
that L× T 2 can be graded with respect to �.

Lemma 4.34 Suppose dimC(B) > 1. Then Maslov index 2 disks with bound-
ary on L×T 2 meet exactly one of E, H0 and H∞ once, and are disjoint from
Href . In particular, no such Maslov index 2 disk can project onto P

1 under π .

Proof Since dimC(B) > 1, the Lagrangian sphere L is simply connected,
which implies that H2(B)→ H2(B,L) is surjective. One can therefore as-
sume that the Maslov index for holomorphic disks in B with boundary on
L is given by intersection number with dHref ∩ B . The choice of holomor-
phic volume form then implies that Maslov index of disks with boundary on
L× T 2 is given by their intersection number with D�. The result follows. �

Example 4.35 (Auroux) The hypothesis on dim(B) plays a definite role. Take
a pencil of linear hyperplanes in P

3 with base locus P
1 and blow that up. This

may be done torically, and we obtain a toric variety whose moment map is a
truncated tetrahedron. The Lagrangian L× T 2 is just the monotone torus T 3

which is the central fibre of that moment map, and it bounds one family of
Maslov index 2 disks for each facet of the moment polytope, in particular it
bounds 5 families, not all of which miss the reference hyperplane Href if this
is taken to be one face of the tetrahedron.

This is because the original Lagrangian L ⊂ B is an equatorial S1 ⊂ P
1,

in particular it bounds Maslov index 2 disks. The natural map H2(B)→
H2(B,L) is not surjective; although the first Chern class “contains”Href with
multiplicity d = 2, the actual toric divisor which naturally represents it does
not contain Href with multiplicity 2, but rather Href and another homologous
component.
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Fig. 5 The moment
polytope for F1 and
associated divisors

Away from B ∩Href , the original net of hyperplanes on X defines a map
to P

2. Blowing up along B , one obtains a map φ from Y\(E ∩Href ) to the
first Hirzebruch surface F1. Then

(1) the projection map π is the composite Y\(E ∩Href )
φ−→ F1→ P

1, with
the second map the natural projection;

(2) the proper transforms of H0 and H∞ lie over the fibres of F1 over 0,∞∈
P

1;
(3) the divisors E and Href (minus their common intersection) live over the
−1 respectively +1 section of F1.

This is pictured schematically in Fig. 5, via the usual moment map image
for F1. The fibre over the centre of gravity • is a monotone Lagrangian torus
T⊂ F1.

Lemma 4.36 Assuming that dimC(B) > 1 and that the hypotheses (4.10),
(4.11) hold, then �L �= 0 for a Lagrangian sphere L⊂ B .

Proof The proof uses a degeneration argument modelled on deformation to
the normal cone; compare to [79, Sect. 5]. We symplectically blow up Y ×C

along E×{0}; the resulting spaceW has an obvious projection p to C, which
we take to be holomorphic. The zero-fibre has two components, one of which
C0 is diffeomorphic to E but with a Kähler form of smaller volume (shifted in
cohomology class by a real multiple of the divisor E), and the other of which
C1 is the projective completion of the normal bundle to E, hence is the total
space of an F1-bundle over B . We can arrange that:

(1) The total space W of the blow-up carries a Kähler form � which on the
component C1 co-incides with the form obtained by symplectic reduction
of the co-isotropic UνE ⊂ Y appearing in Lemma 4.27. In particular, C1
contains the monotone Lagrangian submanifold KL = L× T 2 which is
the Clifford torus bundle over L⊂ B , as in Remark 4.30.
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(2) The total space (W,�) of the blow-up contains a Lagrangian submani-
fold L diffeomorphic to L× T 2 × [0,∞), fibring over the positive real
half-line in C, with p−1(0)∩L=KL.

(3) The generic fibre of π is a Kähler manifold symplectomorphic to Y with
its monotone form, and the Lagrangian submanifold L∩π−1(t) is Hamil-
tonian isotopic to �E(L).

The proof relies on a picking a suitable symplectic connexion on the regular
part of the fibration near the componentC1 and parallel transportingKL along
the real axis, compare to an identical construction in the case B = {pt} given
in [80, Sect. 4]. The last statement in (3) follows from the reformulation of
�E given in Remark 4.30.

We now consider a sequence (uk :D2 →W) of holomorphic disks in W
with boundary on the total Lagrangian L. Assume moreover that for each k,
the disk uk has image inside the fibre p−1(tk) for some sequence tk→ 0 of
positive real numbers. Gromov compactness in the total space (W,L) implies
that there is some limit stable disk u∞, but since the projections p ◦ ut are
constant maps, that limit disk must lie entirely in the zero fibre of p. The
general description of a Gromov-Floer limit of disks as a tree of holomorphic
disks and sphere bubbles, see for instance [30], implies that u∞ has at least
one disk component inside C1, with boundary onKL, and that any component
of u∞ meeting C0\(C0 ∩C1) must be a rational curve, since L∩C0 = ∅.

We now suppose that all the disks uk have Maslov index 2. Any non-
constant disk in C1 with boundary on KL has Maslov index ≥ 2, by mono-
tonicity. Moreover, any non-trivial holomorphic sphere in C0 has strictly pos-
itive Chern number, since that space is a Fano variety. It follows that the limit
disk u∞ has no component contained in C0, and indeed no component which
intersects the divisor C0 ∩ C1 (such a component would be glued to a non-
constant sphere in the component C0 or it would not be locally smoothable
to the nearby fibre; compare to the degeneration formula for Gromov-Witten
invariants [37]). Therefore, for sufficiently large k, the holomorphic disk uk
must live inside the open neighbourhood of E ⊂ π−1(tk) bound by UνE . The
result now follows from Lemma 4.33. �

Remark 4.37 Another viewpoint on the previous proof is also informative.
The fibration over F1 has a (generally singular) discriminant curve, whose
amoeba projects to some complicated subset of the moment map image. How-
ever, this image is disjoint from the −1-section, because we originally chose
Href transverse to B (i.e. a net of hypersurfaces with smooth base locus). A
holomorphic rescaling of F1 (the lift of the holomorphic action on P

2 tak-
ing [x : y : z] �→ [x : y : cz] where we obtain F1 from blowing up [0 : 0 : 1])
will move the discriminant into a small neigbourhood of Href . On the other
hand, the symplectic structure on Y was constructed, via inflation, to contain
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a large standard symplectic disk bundle, containing the monotone Lagrangian
L× T 2, cf. the proof of Lemma 4.27. In consequence, we may assume that
the monotone L × T 2 projects into the upper half of Fig. 5, whilst the dis-
criminant lies in the lower half.

The effect of deformation to the normal cone is to make the Kähler form
standard in a neighbourhood of E containing L× T 2. Suppose we start with
a net of sections obtained by perturbation from a net on the normal crossing
degeneration which are degree 1 in the P

2-fibres of P(L⊗2⊕O) (we have es-
sentially linearised, replacing s0 and s1 by Ds0,Ds1 which span the normal
bundle of B ⊂X). As in Remark 4.30, one can then suppose—after smooth-
ing and small compactly supported perturbation of the symplectic form near
the normal crossing divisor—that L× T 2 fibres over T. There is now a La-
grangian isotopy of L× T 2, moving the image point in the moment polytope
towards the facet E at the top of Fig. 5. Since this is not a Hamiltonian iso-
topy, and the Lagrangian does not stay monotone, there may a priori be wall-
crossing. However, Maslov index zero disks project holomorphically to F1,
where Maslov index is given by intersection number with the toric boundary.
The projection of any such wall-crossing disk must therefore be constant, so
it in fact lay inside a fibre of the projection φ. Equivalently, the disk would
lie inside a copy of B . The Lagrangian isotopy viewed inside B is monotone,
since π1(L) = 0, so in fact there is no wall-crossing. We move L× T 2 into
a small neighbourhood of E without changing the families of Maslov 2 disks
which it bounds. These can now be understood by projection to F1; each disk
hits one of E,H0,H∞, and there are 3 well-known families of such disks,
which were those visible in Lemma 4.33.

Lemma 4.32 now says that HF(�L,�L) ∼= HF(L,L)⊗ Cl2 as a module
over QH∗(B;0). Although the ring structure on the second tensor factor is
not a priori determined by the quantum Gysin sequence, for degree reasons
the Floer product amongst the codimension 1 cycles given by the circle fac-
tors L× {pt} × S1 and L× S1 × {pt} is completely determined by disks of
Maslov index 2. The constraints on the Maslov 2 disks obtained in the proof
of Lemma 4.36 are sufficient to imply that

HF(�L,�L) ∼= HF(L,L)⊗Cl2

as a ring. This is true for all Lagrangian spheres L ∈ F(B;0), hence for any
such L the image �L has a non-trivial idempotent. We can analyse the Floer
cohomology HF(�,�) of the entire correspondence � ⊂ B × Y via an anal-
ogous Gysin sequence, using the fact that � is the image of a Lagrangian
submanifold �B × S1

eq ⊂ B × E under a correspondence B × E � B × Y
(the appropriate symplectic forms come from Remark 4.28). Taking the 0-
generalised eigenspace for the action of c1(B), we again arrive at the mapping
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cone of a quantum product

∗(e+ σ · 1) :QH∗(B;0)⊗HF(S1
eq, S

1
eq)−→QH∗(B;0)⊗HF(S1

eq, S
1
eq)

(4.17)
with e = h ⊗ 1 + 1 ⊗ (−t) as before. Now h acts nilpotently, rather than
trivially, on QH∗(B;0). Lemma 4.32, and non-triviality of �L for some L,
shows that σ = 1 in (4.17), which means that the second term 1⊗ (σ · 1− t)
acts trivially on HF(S1

eq, S
1
eq), so HF(�,�;0B) inherits a Clifford algebra

factor. The idempotents for the individual �L derived above have as common
source an idempotent for � arising from splitting this Clifford algebra. We
deduce that the functor �� associated to � by quilt theory has non-trivial
idempotents, if one views its domain as the nilpotent summand F(B;0). We
now appeal to Lemma 4.17 to see that there is a functor �+� : TwF(B;0)→
Twπ F(Y ) associated to either choice of idempotent in the Clifford algebra
factor (strictly, associated to a choice of idempotent up to homotopy for the
chosen cohomological idempotent).

Lemma 4.38 The functor �+� is fully faithful.

Proof Let Li , i = 1,2, be objects of F(B;0). For simplicity we suppose they
are simply-connected (this is the only case which shall be used in the sequel).
The functor �+� takes these to idempotent summands of Li × T 2, which we
formally denote by (Li × T 2)+. According to (4.5), we know

HF((Li × T 2)+, (Lj × T 2)+) ∼= (+i )HF(Li × T 2,Lj × T 2)(+j )
where the RHS denotes the action on the cohomological morphism group
of the relevant idempotents under the module structure of that group for
HF(Li × T 2,Li × T 2) on the left and HF(Lj × T 2,Lj × T 2) on the right.
From the proof of Lemma 4.32, the idempotents both come from a fixed idem-
potent p ∈HF(T 2, T 2), via an isomorphism

HF((Li × T 2)+, (Lj × T 2)+) ∼= HF(Li,Lj )⊗ p ·HF(T 2, T 2) · p.
The second tensor factor is just a copy of the coefficient field K, completing
the proof. �

Proposition 4.39 Assuming (4.10), (4.11) and that dimC(B) > 1, there is a
fully faithful embedding DπF(B;0) ↪→DπF(Y ).

This is exactly the content of Lemmas 4.31 and 4.38. Now take B =
Q0∩Q1 ⊂ P

2g+1 for some g > 1, so the space Y → P
1 is the relative quadric.

Lemma 4.4 shows that the crucial hypothesis (4.11) holds, and Proposi-
tion 4.39 yields one of the embeddings of Theorem 1.1.
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4.6 Spinning

There is a more geometric approach to the material of Sect. 4.5, relevant for
proving Addendum 1.2. Let ν→H be a real rank 2 symplectic vector bundle
over a symplectic manifold (H,ωH ), and equip ν with a Hermitian metric.
Suppose the first Chern class c1(ν) = t[ωH ] ∈ H 2(H) is positively propor-
tional to the symplectic form. The symplectic form on the total space of the
disk bundle of ν of radius < 1/

√
t is

�ν = π∗ωH + 1

2
d(r2α)

where r is the radial co-ordinate and α is a connection form for the bundle
satisfying dα =−tπ∗ωH . Fibrewise, this is the standard area form on R

2. If
�⊂H is a Lagrangian cycle and �̂ is the lift of � to ν given by taking the
union over � of circles {r = constant}, then �̂ is also Lagrangian, since

�ν |�̂ =
(
π∗ωH + r.dr.dα + 1

2
r2dα

)∣∣∣∣
�̂

= π∗(1− tr2/2)ωH

is pulled back from the base. Now suppose we have a pencil of hyperplane
sections {Ht }t∈P1 of a projective variety P with base locus H0 ∩H∞ =M ⊂
P . Strengthening hypothesis (4.10), we suppose the elements of the pencil
are ample hypersurfaces Poincaré dual to a multiple of the symplectic form,
which is the condition c1(ν)= t[ωH ] above. The blow-up BlMP is obtained
by removing a symplectic tubular neighbourhood of M , with boundary an
S3-bundle overM , and then projectivising the fibres of that unit normal bun-
dle via the Hopf map S3 → S2. Suppose we have a symplectic form �λ on
BlM(P ) for which the ruling curves have area λ > 0.

Lemma 4.40 Let Sn ∼= L ⊂M be a Lagrangian sphere. Fix a Lagrangian
disk �n+1 ⊂H with ∂�= L in a smooth element H ⊂ P of the pencil, and
with � ∩M = L. There is a Lagrangian sphere Sn+2 ∼= L̂⊂ (BlM(P ),�λ).
The Hamiltonian isotopy class of L̂ is determined by the Lagrangian isotopy
class of �.

Proof Locally nearH , the symplectic manifold P is symplectomorphic to the
normal bundle ν→H . Fix a compatible metric on this normal bundle. Form
a Lagrangian tube in P from the radius λ circles over �. After an isotopy
of � if necessary, this Lagrangian tube will meet the boundary of the λ-disk
bundle over M in a subfibration which is a circle bundle over L composed
entirely of Hopf circles in S3-fibres of the normal bundle. Blowing up (i.e.
symplectic cutting) will collapse these circles to points. Differentiably, the lift
of the tube over � is therefore a circle bundle over an (n+ 1)-disk with the
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circles collapsed over the boundary; this is topologically a sphere, and near
any collapsed circle it is locally modelled on Example 4.25, hence is globally
smooth. It is easy to see that the choices, for fixed λ, lead to Lagrangian
isotopic lifts to the total space, which are therefore Hamiltonian isotopic. �

Definition 4.41 In the situation of Lemma 4.40, we will say that L̂ is obtained
from L⊂M by spinning the thimble �.

In general, for such an Sn ∼= L ⊂M , we now have two constructions of
spherical objects in TwπBlM(P ), namely L̂ and the image �+� (L). At least in
the special case in which F(M) is split-generated by a chain of Lagrangian
spheres, we are able to relate these two objects. To make sense of the next
result, note that a symplectomorphism φ :M→M which is the monodromy
of a family of embeddings {Mt }t∈S1 → P induces a symplectomorphism φ̂ :
BlM(P )→ BlM(P ), well-defined up to isotopy, by taking parallel transport
in a fibrewise blow-up. We again refer to φ̂ as the spin of φ.

Lemma 4.42 In the situation of Lemma 4.40, let {V1, . . . , Vn} be Lagrangian
spheres inM which are vanishing cycles for the pencil {Ht } on P . There are
spinnings {V̂j } ⊂ (BlM(P ),�λ) with the property that V̂i ∩ V̂j = Vi ∩ Vj for
all i �= j . Moreover, for any choice of vanishing thimble � for Vj , the Dehn
twist τVj onM spins to the Dehn twist τ

V̂j
in V̂j ⊂ BlM(P ).

Proof We choose the bounding thimbles�j with ∂�j = Vj to lie in one fixed
smooth element H of the pencil of hypersurfaces on P , and to meet only
at their boundaries (this is always possible by the definition of a Lefschetz
pencil). The associated Lagrangian tubes meet only in the circle fibrations
which are collapsed by the blowing-up process, which gives the co-incidence
of intersections V̂i ∩ V̂j = Vi ∩Vj . The last statement follows by considering
parallel transport around the loop which encircles the path in C over which a
chosen Lefschetz thimble fibres. �

We now return to the specific situation of Sect. 4.2. Take γ ⊂ �g to be
a simple closed curve associated to a matching path of �→ P

1, so γ is in-
variant under the hyperelliptic involution on �g . From Wall’s Lemma 4.12
there is a vanishing cycle Vγ ⊂ Q0 ∩Q1 associated to the degeneration of
� which collapses γ . Thus, Vγ is a vanishing cycle for the family of (2,2)-
intersections defined by a hyperelliptic Lefschetz fibration over the disk with
fibre � and vanishing cycle γ . We know from Sect. 4.2 that Vγ arises as a
vanishing cycle for a Lefschetz pencil on the quadric 2g-foldQ⊂ P

2g+1. Vγ
therefore bounds a Lagrangian disk �γ ⊂Q, and by fixing a choice of such
a Lagrangian disk one can spin the sphere Vγ to obtain a Lagrangian sphere
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V̂γ ⊂ Z, as in Definition 4.41. Write P⊂ F(Z) for the subcategory generated
by spun spheres V̂γ , for hyperelliptic-invariant curves γ ⊂�.

According to Sect. 3.7, the Fukaya category of the curve �, and hence the
subcategory P, is split-generated by an A2g+1-chain of Lagrangian spheres
(when g = 2 these are the spheres associated to the curves ζj , 1 ≤ j ≤ 5,
of Fig. 2). Lemma 4.12 shows that the associated Vγ -spheres also define an
A2g+1-chain in Q2,2, which moreover split-generate the nilpotent summand
of its Fukaya category. Label the spheres of this chain by Vγ1, . . . , Vγ2g+1 ,

and their spinnings by V̂γj . Recall the functor �+� : DπF(Q0 ∩ Q1;0)→
DπF(Z) of Proposition 4.39 takes any simply-connected Lagrangian sub-
manifold L to an idempotent summand of L× T 2 ⊂ Z.

Lemma 4.43 The cup-product map

HF(V̂γj , V̂γj+1)⊗HF(Vγj × T 2, V̂γj )−→HF(Vγj × T 2, V̂γj+1) (4.18)

does not vanish.

Proof Let Qref denote a “reference” quadric hypersurface, taking the role
of the abstract Href from Sect. 4.5 and extending the given pencil 〈Q0,Q1〉
of quadrics to a net. The Lefschetz thimbles �γi ⊂ Q lie in the fixed hy-
persurface Q from the original pencil, and we may assume they lie in the
complement of Q ∩ Qref . Moreover, the base locus B ⊂ Q meets Qref in
a hypersurface Poincaré dual to its normal bundle, hence the complement
B\(B ∩ Qref ) ⊂ Q\(Q ∩ Qref ) has trivial normal bundle. The Lagrangian
submanifolds appearing in (4.18) are, locally near the intersection circle of
Vγj ×T 2 and V̂γj+1 , products of two Lagrangian disks in B\(B ∩Qref )meet-
ing transversely once at a point p0, with the Lagrangian submanifolds oc-
curring in (4.9). The discussion there shows the map of (4.18) does not van-
ish provided all holomorphic triangles remain in an open neighbourhood of
{p0} × T 2 ⊂ (B\(B ∩ Qref )) × Bl0(C2) in which this product description
holds valid.

The argument is now a variant of that of Lemma 4.36. Fix a volume form
�perp on Bl0(C2) with simple poles along the transform of a co-ordinate axis
in C

2. We fix a holomorphic volume form �′ on Z with the properties

• the polar divisor D�′ = [π−1(∞)] + g[Qref ] � c1(Z);
• locally near the affine open set B\(B ∩Qref ), �′ =�base ∧�perp.

Using �base we grade the Lagrangian spheres Vγj in B\(B ∩ Qref ) such
that the intersection point at p0 has degree 0. The non-trivial Floer gradings
amongst the Lagrangians of (4.18) come from fibre directions, and the model
of (4.9). Here all Floer gradings are concentrated in degrees {0,1}, since in
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that Lefschetz fibration over C the Lagrangians were given by two isomor-
phic Lefschetz thimbles and a torus meeting each thimble cleanly in a circle.
It follows that all contributing holomorphic triangles have Maslov index 0;
by Lemma 3.15 they are disjoint from D�′ (cf. the corresponding argument
in Lemma 4.34, noting that dimC(B) > 1 in our case).

Disjointness from D�′ means that all relevant holomorphic triangles live
over the complement of the boundary divisors Qref and Q∞, denoted Href
and H∞ in Fig. 5. As in Lemma 4.36, we perform a symplectic cut at the
boundary of a tubular neighbourhood of E large enough to contain the V̂γ
and Vγ × T 2. Via Gromov compactness, we consider the holomorphic trian-
gles in the reducible zero-fibre of the total space of the deformation to the
normal cone, and observe they cannot reach the component which is not the
F1-bundle for Maslov index reasons (all spheres in the other component have
positive Chern number). Indeed, disjointness from Qref implies that all the
Maslov zero holomorphic triangles are localised in the complement inside
the F1-bundle over B of the subvariety defined by Q∞, hence live inside a
bundle with fibre Bl0(C2). Maximum principle under projection to the affine
part B\(B ∩Qref ) and in the fibres Bl0(C2) shows that all the relevant holo-
morphic triangles are those described in the discussion after (4.9). �

Lemma 4.44 �+� (Vγ )� V̂γ are quasi-isomorphic objects of mod-P.

Proof It suffices to show that, for γ = γj , there is an element

q ∈ CFev(�+� (Vγ ), V̂γ )

for which

CF(V̂γ , V̂γi )
μ2(·,q)−−−−→ CF(�+� (Vγ ), V̂γi ) (4.19)

is an isomorphism for each 1≤ i ≤ 2g + 1. A fibred version of Lemma 4.26
shows that V̂γ and Vγ × T 2 have non-trivial intersection, meeting cleanly
along a copy of Vγ × S1, which moreover can be perturbed by a Morse func-
tion to give intersection locus two copies of Vγ , of differing Z2-grading. The
choice of idempotent in HF(Vγ × T 2,Vγ × T 2) picks out one of these two
graded pieces, and there is a quasi-isomorphism

CF(�+� (Vγ ), V̂γ ) � CF(Vγ ,Vγ ).

Take q to be a chain-level representative for the cohomological unit of
HF(Vγ ,Vγ ). The chain groups appearing in (4.19) vanish, so the fact that
multiplication by q is an isomorphism is trivial, unless |i − j | < 2. Hence
there are really two cases to consider: i = j and |i− j | = 1, corresponding to
taking the same curve twice, respectively adjacent curves, in theA2g+1-chain.
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The two arguments are similar: we give that for |i − j | = 1. In this case, the
two Floer complexes in (4.19) have rank one cohomology, so the map is either
an isomorphism or vanishes. To exclude the latter case, since the idempotent
summands in Vγ × T 2 are quasi-isomorphic up to shift, it is enough to show
that the map

HF(V̂γj , V̂γj+1)⊗HF(Vγj × T 2, V̂γj )
μ2(·,q)−−−−→HF(Vγj × T 2, V̂γj+1) (4.20)

does not vanish. This is the conclusion of Lemma 4.43. �

Corollary 4.45 The triangulated embedding �+ : DπF(Q0 ∩ Q1) ↪→
DπF(Z) is compatible with the natural weak actions of the hyperelliptic
pointed mapping class group, in the sense that for any element f ∈ �hyp

g,1
there is some quasi-equivalence of functors

�+ ◦ f |DπF(Q0∩Q1) � f |DπF(Z) ◦�+.

Proof It is sufficient to prove compatibility with the Dehn twist defined by
an essential simple closed curve γ ⊂ � invariant under the hyperelliptic in-
volution, since such twists generate the hyperelliptic mapping class group.
We actually restrict to twists in curves projecting to arcs in C ⊂ P

1, hence
the group �hyp

g,1 , so that the relevant hyperelliptic curves live in families over
configuration spaces of points in C and the description of the associated pen-
cil of quadrics in the co-ordinate terms of (4.3) is always valid. The Dehn
twist in γ ⊂ � acts by the Dehn twist in Vγ ⊂ Q0 ∩ Q1 by Sect. 4.2 and
Lemma 4.12, and by the Dehn twist in V̂γ ⊂ Z by Lemma 4.42. The relation
between algebraic and geometric twists, Proposition 3.6 and more specifi-
cally (3.6), implies

T�+(Vγ ) ◦�+ = �+ ◦ TVγ .

Using Lemma 4.44 to identify �+(Vγ )� V̂γ , we see �+ entwines the action
of a Dehn twist. This implies the Lemma (note we do not claim any compati-
bility between the quasi-isomorphisms for different mapping classes). �

5 From the curve to the relative quadric

Notation For a space M equipped with a map p :M→ P
1, write M�=t for

the complement of the fibre p−1(t)⊂M ; similarlyM�=T denotes the comple-
ment of the union of the fibres for t ∈ T .
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5.1 Matching spheres

Let Z continue to denote the blow-up of P
2g+1 along Q0 ∩Q1. A matching

cycle is by definition a path χ : [−1,1] → P
1 in the base of a Lefschetz fi-

bration which ends at distinct critical values (and is otherwise disjoint from
the set of critical values) and for which the associated vanishing cycles are
Hamiltonian isotopic in the fibre over χ(0). Any path between critical points
for Z→ P

1 is a matching path, by Lemma 4.1.

Lemma 5.1 Any matching path χ : [−1,1] → P
1 for Z→ P

1 defines a La-
grangian sphere Lχ ⊂ Z, unique up to Hamiltonian isotopy.

Proof The monotone symplectic form on Z is restricted from a global Kähler
form on P

2g+1×P
1. We define the sphere Lχ to be the vanishing cycle of the

nodal algebraic degeneration of Z in which two critical values coalesce along
χ (such a degeneration is easily obtained by moving Z in a Lefschetz pencil
on P

2g+1 × P
1). �

Remark 5.2 If one restricts to Z �=t for some t �∈ χ , there is another description
of this sphere. By hypothesis the vanishing cycles associated to χ |[−1,0] and
χ |[0,1] are Hamiltonian isotopic in the fibre Q0, by a Hamiltonian isotopy
Hs . One can deform the symplectic connection of the fibration Z �=t → C so
that the parallel transport along χ |[−δ,δ] incorporates this isotopy, and exactly
matches up the boundaries of the two vanishing thimbles, cf. Lemma 8.4 of
[7]. It is standard that the two constructions give rise to the same Lagrangian
sphere up to isotopy. Note that the matching cycle construction, requiring
a deformation of symplectic connection, a priori only yields a Lagrangian
sphere for a cohomologically perturbed symplectic form on the total space
of Z, rather than of Z �=t , which is why the definition as a vanishing cycle is
preferable.

A matching sphere Lχ can be oriented by choosing an orientation of the
matching path χ and of the vanishing cycle in the fibre. (Since Dehn twists
act on even-dimensional spheres by reversing orientation, the latter choice
will not generally be preserved by monodromy.) The spheres Lχ are homo-
logically essential, which implies that they are non-zero objects of F(Z), with
Floer homology additively given by H ∗(S2g+1).

Lemma 5.3 For a matching path γ ⊂ C defining Lγ ⊂ Z, HF(Lγ ,Lγ ) ∼=
H ∗(S2g+1) as a ring.

Proof From Lemma 3.2, there are natural maps

QH∗(Z)→HF∗(Lγ ,Lγ )→QH∗(Z) (5.1)
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whose composite is given by quantum product

QH∗(Z)−→QH∗(Z), α �→ [Lγ ] ∗ α
with the fundamental class [Lγ ] ∈ QH∗(Z). Let L†

γ denote the matching cy-
cle associated to a path meeting γ transversely once, so [L†

γ ] and [Lγ ] rep-
resent Poincaré dual cycles in Z. Equation (5.1) takes [L†

γ ] �→ [Lγ ] ∗ [L†
γ ].

The image is non-zero, since the classical cup-product of the classes is ±1
and deformation to the quantum product does not change the coefficient in
the maximal cohomological degree. It follows that

QH∗(Z)→HF∗(Lγ ,Lγ )

is surjective, with 1Z and [L†
γ ] mapping to generators (the image of the first

is non-trivial by unitality; the images of the two classes are distinct since they
have different mod 2 degrees). Since [L†

γ ] ∗ [L†
γ ] = 0 ∈ QHev(Z) by graded

commutativity, the Floer product in HF∗(Lγ ,Lγ ) is undeformed. �

Seidel [73] proved there are no Lagrangian spheres in P
2g+1, so these

matching spheres necessarily intersect the exceptional divisor E ⊂ Z. Any
such intersection point lies on a ruling curve R ⊂ E, which can then be
viewed as a Maslov index 2 disk with (collapsed) boundary on Lγ .

Lemma 5.4 For any matching path γ , the sphere Lγ ∈ F(Z;1).

Proof Let L = Lγ , and fix a Poincaré dual sphere L† as before. By
Lemma 5.3, it suffices to compute the coefficient of the dual cycle [L] in the
quantum cup-product c1(Z) ∗ [L†] ∈ QHodd(Z). A dimension count shows
that only Chern class 1 spheres contribute, and the only such sphere with
a holomorphic representative is the ruling curve R, so we are interested in
the algebraic number of R-curves passing through L, L† and E. The spin-
ning construction of L and L† given in Sect. 4.6 shows we can take them to
come from (2g−1)-spheres insideE meeting transversely once. TheR-curve
through that intersection point is then the unique curve which contributes to
the product. �

Lemma 5.5 For a matching path γ ⊂C, the spun sphere V̂γ and the match-
ing sphere Lγ are quasi-isomorphic objects of F(Z).

Proof Take a loop Y → S1 of genus g curves {�tg}t∈S1 with monodromy the
Dehn twist tγ . Y is obtained as the double cover of P

1 × S1 over a multi-
section comprising 2g constant sections and a bi-section in which the branch
points undergo a half-twist. There is an obvious inclusion Y ↪→ Y → C to
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a Lefschetz fibration in which the curve defined by γ has collapsed in the
central fibre. Y defines Lefschetz fibrations with generic fibre Z in two ways.
First, one can construct a family of relative quadrics acquiring a node, with
vanishing cycle Lγ , as in Lemma 5.1. Second, one can consider the Lefschetz
fibration of (2,2)-intersections {Q2,2}t∈C with vanishing cycle Vγ , define a
family of relative quadrics by blowing up C

∗×P
2g+1 along C

∗×(Q2,2)t , and
noting that the total space again extends to an algebraic Lefschetz fibration
over C. The induced monodromy around the circle is then a Dehn twist in
V̂γ , by Lemma 4.42. The constructions exhibit both Lγ and V̂γ as vanishing
cycles for the algebraic degeneration of Z with monodromy induced by tγ ,
which implies they are Hamiltonian isotopic. �

Corollary 5.6 The subcategory P ⊂ F(Z;1) generated by the matching
spheres Lγ for arbitrary paths γ has Hochschild cohomology HH∗(P,P)∼=
H ∗(�g).

Proof Lemma 5.5 shows that P is the same as the subcategory defined by
spun spheres V̂γ . According to Lemma 4.44 this is in turn the subcategory
which is the image of the functor �+ : TwπF(Q0 ∩Q1;0)→ TwπF(Z). On
the other hand, this summand of the functor � is fully faithful, by Lemma
4.38; and finally, the Hochschild cohomology of F(Q0 ∩Q1;0) (and hence
its split-closure) was calculated in Corollary 4.16. �

Remark 5.7 The relative quadric Z ⊂ P
2g+1 × P

1 is a divisor of bidegree
(2,1), from which perspective it is straightforward to construct a Lefschetz
pencil with fibre Z and with vanishing cycles matching spheres in the sense
of Lemma 5.1. However, the cycle class C(w) for the corresponding fibra-
tion w : BlZ∩Z′(P2g+1 × P

1)→ P
1 does not act nilpotently on HF(Lχ,Lχ),

which means we can’t compute the Hochschild cohomology of P by direct
appeal to Corollary 3.11. This accounts for the somewhat roundabout proof
of Corollary 5.6, and its appeal to Lemma 4.44.

We take the matching paths of the pentagram, Fig. 1, and write A for the
subcategory of F(Z) generated by the associated matching spheres.

5.2 Thimbles

For π :W → C a Lefschetz fibration, with exact or monotone fibres, we de-
note by V(π) the Fukaya category of the Lefschetz fibration in the sense of
[77, Sect. 18]; we refer to op.cit. for foundational material on such categories.
V(π) has objects either closed Lagrangian submanifolds or Lefschetz thim-
bles, equipped with the usual brane and perturbation data; we recall that one
can achieve transversality for curves without components contained in fibres
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within the class of almost complex structures making π pseudo-holomorphic.
In generalW will not be convex at infinity. However, when we consider com-
pact Lagrangian submanifolds, they project to a compact set in C, and (using
almost complex structures compatible with the fibration structure) the max-
imum principle in the base ensures spaces of holomorphic curves are com-
pact. When we consider A∞-operations between Lefschetz thimbles, these
thimbles will always be perturbed so all the intersection points lie within a
compact set in the base, which is sufficient for well-definition of the Fukaya
category. As a particular instance of this, the Floer cohomology of a Lefschetz
thimble with itself is defined by small Hamiltonian perturbation at infinity.

Proposition 5.8 (Seidel) Any compact Lagrangian submanifold in V(π) is
generated by a distinguished basis of Lefschetz thimbles.

Sketch In the exact case, this is Proposition 18.17 of [77]. The argument relies
on a beautiful double-covering trick. Namely, one considers the double cover
Ŵ of W over a smooth fibre π−1(t), viewed as near infinity. Lefschetz thim-
bles �i with boundary lying in π−1(t) lift to closed Lagrangian spheres Si
in Ŵ , and one actually defines V(π) as a Z2-equivariant version of the usual
Fukaya category F(Ŵ ); this requires the underlying coefficient field K not
to be of characteristic 2. Any compact L⊂W lifts to a pair of disjoint com-
pact Lagrangians L± ⊂ Ŵ , which are exchanged by the covering involution
ι. This involution can be expressed as a product of Dehn twists ι=∏

j τSij
in

the spheres Si associated to a basis of thimbles {�i}. We now use the mono-
tone version of Proposition 3.6. (Recall that Wehrheim and Woodward have
extended Seidel’s exact triangle for a Dehn twist to the monotone case, Theo-
rem 2.16, see also Oh’s [65]. The exact triangle, together with general aspects
of quilt theory, implies that the geometric Dehn twist and algebraic twist are
quasi-isomorphic functors [89].) The disjointness

∏
j

τSij
(L+)∩L+ = L− ∩L+ = ∅

therefore yields a vanishing arrow in an exact triangle in F(Ŵ ) which implies
split-generation of the summand L+ by the spheres Sj . This is then inter-
preted downstairs in W , i.e. in V(π), as generation by the thimbles �j . �

Let C�=∞ and Z �=∞ be the Lefschetz fibrations over C with fibre a pair
of points, respectively a 2g-dimensional quadric, given by removing the ∞-
fibres from the closed manifolds C and Z. We can alternatively remove the
0-fibres to yield C�=0 and Z �=0, which are also Lefschetz fibrations over C=
P

1\{∞}.
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Lemma 5.9 The categories TwV(C�=∞) and TwV(Z �=∞) are quasi-iso-
morphic as Z2-graded A∞-categories. Similarly, TwV(C�=0)� TwV(Z �=0).

Proof The category generated by a distinguished basis of vanishing thimbles
is just the directed category amongst the associated vanishing cycles {∂�i}.
This category is computed entirely inside the fibre of the Lefschetz fibration.
For Z �=∞ the vanishing cycles are all the particular Lagrangian sphere con-
structed in Lemma 4.1 (whilst the fibre S0 of C�=∞ →C obviously contains a
unique Lagrangian sphere). Thus, the relevant summands of the Fukaya cat-
egories of the fibres are quasi-isomorphic by an equivalence which identifies
the ordered collection of vanishing cycles; the result follows. The argument
for the categories given by removing the 0-fibres is identical, since Proposi-
tion 5.8 does not require that the Lefschetz fibration have trivial monodromy
at infinity. �

Let’s call a basic path a linear path in C between two (2g + 1)-st roots
of unity adjacent in argument; one is dotted in Fig. 1. Thus, the pentagram
spheres are matching spheres for paths which are given by completing a pair
of consecutive basic paths to a triangle. Similarly, if a radial path is one from
the origin to a root of unity, the pentagram spheres are alternatively obtained
from pairs of radial paths. We record this for later:

Lemma 5.10 Each pentagram matching path is obtained from some basic,
respectively radial, matching path by applying a half twist along another ba-
sic, respectively radial, matching path.

Lemma 5.11 The equivalence of Lemma 5.9 yields a quasi-isomorphism be-
tween the subcategories TwA(C�=∞) and TwA(Z �=∞) generated by the finite
set of Lagrangian matching spheres associated to the arcs of the generalised
pentagram.

Proof The matching sphere for a basic path is the cone on a distinguished
degree zero morphism between the thimbles associated to the end-points, by
[77, Proposition 18.21 & Remark 20.5] (note that our fibres are semi-simple,
so it is the special case covered by Remark 20.5 which is relevant). These
cones amongst thimbles involve identical data in the two spaces. The same
argument shows that the twist functors associated to the spheres for basic
matching paths are entwined by the equivalence of Lemma 5.9. The result
now follows from Lemma 5.10. Note that the quasi-equivalence acts coho-
mologically by the obvious isomorphism of the underlying vector spaces of
cohomology groups. �

Lemma 5.11 and the description of F(�g) given in Sect. 3.7 imply that
the Floer cohomology algebra A= H(A) defined by the pentagram spheres
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in Z �=∞ is the Z2-graded semi-direct product �(V ) � Z2g+1, for a 3-
dimensional vector space V . To pin down higher products explicitly, it is
computionally most efficient to avoid Hamiltonian perturbations, and to pass
to a pearly model for the Fukaya category as in Remark 3.4. This involves
fixing metrics and Morse functions on the individual pentagram Lagrangians.
We take these to be equivariant under the obvious finite rotation symmetry
group.

Lemma 5.12 One can define A(Z) with respect to almost complex structures
with the following properties: (i) the map π :Z→ P

1 is pseudoholomorphic;
(ii) the structure is integrable near the fibres lying over 0 and ∞; (ii) the
rotation group Z2g+1 pulled back from P

1 acts holomorphically.

Sketch The first statement is standard. The fibres over 0 and ∞ are dis-
joint from the Lagrangians, and holomorphic pearls contributing to the A∞-
structure contain no sphere bubbles by monotonicity, which implies the sec-
ond statement. Since no holomorphic curve components of any pearl lie inside
the fixed locus of the rotation group, one can achieve equivariant transversal-
ity by perturbations on the domain, which gives the last statement, see [78,
Remark 9.1]. �

Remark 5.13 The usual obstruction to equivariant transversality is the exis-
tence of holomorphic curves entirely contained in the fixed point locus of
the finite group action, cf. [42, Lemma 5.12], which cannot exist if the finite
group action is free on the Lagrangian submanifolds involved in the relevant
category A. More generally, working in characteristic zero one can always
take the A∞-structure on A to be strictly invariant under a given action of
a finite group �. In the approach pioneered in [31], the A∞-operations are
constructed via virtual perturbations and Kuranishi chains, and equivariance
with respect to arbitrary finite group actions is built in from the start. An al-
ternative argument, due to Paul Seidel (private communication), introduces
an artificially enlarged category A+ which contains many copies of each ob-
ject, one for each group element. The �-action is now free on objects, hence
can be made strict on A+; on the other hand, starting from the equivalence in
characteristic zero H ∗(CC∗(A+,A+)�) = HH∗(A+,A+)� , a deformation
theory argument shows that there must be some �-invariant structure on A

itself.

5.3 Exterior algebra

We continue to study the algebra A = H(A) defined by the (2g + 1) pen-
tagram spheres of Fig. 1. We orient the spheres equivariantly for the cyclic
symmetry group which permutes them. Any two pentagram spheres are ei-
ther disjoint, meet transversely in a point, or meet cleanly in a copy of S2g .
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The two generators of the Floer complex in the last case have degrees of
the same parity, so there is no differential. Therefore as Z2-graded groups,
HF(Li,Lj ) can be computed equivalently in Z �=∞ or in Z (in either case
one just recovers the cohomology of the clean intersection). It follows that
H(A) = ⊕

i,j HF(Li,Lj ) is isomorphic, as a Z2-graded complex vector
space, to the space �(V ) � Z2g+1 obtained in Lemma 5.11, and hence to
the graded vector space describing F(�g) from Sect. 3.7. Our strategy now
has three components:

(1) Prove the exterior algebra structure on H(A) survives compactification
from Z �=∞ to Z;

(2) Prove that the “first order term” (cubic term) of the A∞-structure is non-
trivial;

(3) Infer that the A∞-structure on the exterior algebra is determined up
to quasi-isomorphism by knowledge of this first order term and of the
Hochschild cohomology.

Whilst the final step is pure algebra, and bypasses having to make explicit
computations with holomorphic curves, the first two require some control on
holomorphic polygons. Recall from Lemma 5.3 that for each of the individual
pentagram spheres L, the Floer cohomology ring HF(L,L)∼=H ∗(S2g+1) is
undeformed in Z.

Lemma 5.14 For a pair of pentagram spheres L,L′, the Floer products

HF(L′,L′)⊗HF(L,L′)−→HF(L,L′)
HF(L′,L)⊗HF(L,L′)−→HF(L,L)

(5.2)

are the same in Z as in Z �=∞.

Proof In the first case, the input element of HF(L′,L′) is either the iden-
tity, in which case the product is obviously determined, or has odd mod 2
degree. However, HF(L,L′) is concentrated in a single mod 2 degree. There-
fore, only μ2(1L′, ·) can be non-trivial. The second case is analogous. By
Poincaré duality in Floer cohomology, the groups HF(L,L′) and HF(L′,L)
are concentrated in distinct mod 2 degrees. Therefore, the product can only be
non-trivial into the odd degree component of HF(L,L), which is spanned by
the fundamental class. This component is determined by the non-degeneracy
of Poincaré duality, via its trace, hence will be independent of the compacti-
fication to Z. �

To compute the algebra structure onH(A) (taken inside Z) completely, we
must therefore understand Floer products amongst 3 different Lagrangians.
Since 3 distinct pentagram spheres are pairwise transverse or cleanly in-
tersecting, holomorphic pearls reduce to Morse-Bott Floer trajectories, in
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Fig. 6 Possible
holomorphic triangles

which we count holomorphic triangles which may have non-trivial cycle con-
straints (or attached flowlines) at a corner mapping to a clean intersection.
Lemma 5.12 implies that such a Floer disk projects to a holomorphic triangle
in P

1 with boundary on the pentagram (but in principle holomorphic triangles
in Z might project onto P

1). There are only two distinct possible boundary
patterns for the boundary of the triangle in P

1, modulo the rotation action by
Z2g+1 (in either picture any of the three vertices might be the output of the
Floer product). These are depicted in Fig. 6 in the case g = 2.

In Z �=∞, the generators of the exterior algebra are given by (Z2g+1 orbits
of) the idempotent summands of the Floer cohomology of the clean intersec-
tion spheres (lying over interval vertices) and the isolated external vertices.
Lemma 5.11 implies that we can choose Z2-gradings which reproduce those
of F(�g). From [78] and [24], or by direct computation, these are as follows:

(1) HF∗(Lγ ,Le−2iπ/(2g+1)γ )
∼=H ∗(S2g)[1] is concentrated in odd degree;

(2) HF∗(Lγ ,Le−4iπ/(2g+1γ )
∼=C is concentrated in even degree.

To clarify, for the small holomorphic triangle on the left of Fig. 6 with the
anticlockwise boundary orientation that it inherits as a holomorphic disk in
C, the clean intersections at the internal vertices will be concentrated in odd
degree when viewed as inputs, and will have output the even degree external
vertex. (Thus, the output is even degree read anticlockwise, meaning viewed
as a morphism going from the upper edge to the lower.) In Z �=∞ (and in the
affine hyperelliptic curve) there are rigid holomorphic triangles projecting to
these small triangles, and their cyclically rotated versions, which define the
exterior algebra structure. The existence of these triangles determines the mod
2 degrees of the Floer generators of the algebra H(A).

Lemma 5.15 No rigid holomorphic triangle in Z has boundary which
projects to the second triangle of Fig. 6.

Proof The mod 2 gradings of the vertices preclude existence of any rigid
triangle, recalling that μ2 has degree zero. For instance, on the right of Fig. 6,
if the external vertices are the inputs, they each have odd degree, but the
internal vertex as an output also has odd degree. �



Floer cohomology and pencils of quadrics 233

Fig. 7 Lagrange surgery at
a vertex

Return to the small triangle of Fig. 6. Label the Lagrangians on that tri-
angle: L′′ is the vertical side, L the lower side and L′ the upper side. Let
p ∈ HFodd(L,L′) be the Floer generator at the external vertex, viewed as an
input.

Lemma 5.16 The product μ2
F(Z)(p, ·) :HFodd(L′′,L)→HFev(L′′,L′) is an

isomorphism.

Proof Consider the Lagrange surgery L#L′ of L and L′ at p, in the sense
of [68], as depicted by the curved path in Fig. 7. This surgery is equivalently
given by taking the Dehn twist of L′ about L. The surgery is Hamiltonian
isotopic, via matching spheres, to a sphere L#L′ which is disjoint from L′′.

The exact triangle for monotone Dehn twists implies there is an exact tri-
angle in F(Z)

L L′

L#L′
[1]

(5.3)

This gives a long exact sequence of Floer cohomology groups in Z

· · · →HF(L′′,L)→HF(L′′,L′)→HF(L′′,L#L′)→ ·· ·

Since the terms HF(L′′,L#L′) = 0, we deduce μ2(p, ·) : HF(L′′,L) ∼−→
HF(L′′,L′) is an isomorphism. �

Non-vanishing of μ2(p, ·) a posteriori implies that the algebraic number
of triangles in Z with the boundary conditions on the left of Fig. 6 is non-
zero. The same argument proves that right multiplication by p also defines an
isomorphism

HFodd(L′,L′′)
μ2

F(Z)(·,p)−−−−−−→HFev(L,L′′). (5.4)
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Poincaré duality in Floer cohomology is graded commutative [77, Sect. 12e].
Together with associativity of Floer cup-product, Lemma 5.14 and Lem-
ma 5.16 together imply that H(A) is still given by an exterior algebra after
compactification from Z �=∞ to Z, compare to [78, Sect. 10]. Explicitly, in
the notation of that paper, the generators of �1 arise from p = ξ3 and the
two idempotents ξ1, ξ2 of HFodd(L′′,L), or rather their Z2g+1-orbits. The
generators of �2 are the Poincaré dual cycles ξ̄3, ξ̄1, ξ̄2, and the unit respec-
tively fundamental class of the pentagram spheres give the generators 1 ∈�0

and q ∈ �3. Lemma 5.16 and its cousin (5.4) imply that ξ2 · ξ3 = ξ̄1 and
ξ3 · ξ1 = ξ̄2, for suitably chosen signs of the generators, whilst Lemma 5.14
implies that ξi · ξ̄i = q =−ξ̄i · ξi . These relations define an exterior algebra.

Corollary 5.17 If g ≥ 2, the Floer cohomology algebra generated by the
pentagram spheres in Z is �(C3)� Z2g+1 (graded mod 2).

Both the curve C and the relative quadric Z define A∞-structures on the
exterior algebra which can be viewed as deformations of the particular quasi-
isomorphism type of Lemma 5.11, with the deformation parameter counting
intersections of holomorphic curves with the fibre over ∞ ∈ P

1. Since the
relevant deformation space is large, we appeal to more algebraic methods to
pin down the A∞-structure.

Remark 5.18 By comparing to [78] and [24], one sees that two of the gen-
erators of the exterior algebra arise from the two idempotent summands of
HF(V ,V ) ∼= H ∗(S0), where V ⊂Q is the Lagrangian vanishing cycle in a
quadric fibre of Z. These play an essentially symmetric role. Indeed, return-
ing to Remark 4.11, there is a holomorphic involution τ of Z which reverses
the sign of the first projective homogeneous co-ordinate x0, and acts fibre-
wise over P

1, in particular fixes the nodes in the singular fibres. τ is one
lift of the hyperelliptic involution on � to a symplectomorphism of Z. The
monotone Kähler form, which is pulled back from P

2g+1×P
1, is τ -invariant,

which means that the associated parallel transport maps along matching paths
are τ -invariant, so τ preserves the Lagrangian pentagram spheres. In partic-
ular, τ preserves the vanishing cycle V = L′′ ∩ L in the fibre Q defined by
the corresponding matching paths. Being a lift of the hyperelliptic involu-
tion, τ reverses orientation on V (and so on L,L′′), by compatibility of the
symplectic group representations on the Riemann surface and the associated
(2,2)-intersection and hence relative quadric, cf. [71].

Working with equivariant almost complex structures as in Lemma 5.12,
and appealing to Remark 5.13, we can assume that the A∞-structure on Z
is equivariant with respect to τ . Note that if e and f denote generators for
HF(V ,V )∼=HF(L′′,L) above, then the idempotent summands are (e±f )/2,
and the fundamental class of V is the difference between the idempotents.
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Since the involution τ acts by an orientation-reversing automorphism of the
Lagrangian vanishing cycle it sends f �→ −f and exchanges the two idem-
potents. Therefore τ -equivariance amounts to saying that A(Z) is equivariant
under changing f �→ −f .

5.4 The cubic term

Although the category A(Z) generated by the pentagram spheres is only Z2-
graded, as in Sect. 3.5 one can impose a Z-grading by considering the fil-
trations on Floer complexes coming from intersections of holomorphic poly-
gons with the polar divisor � of a meromorphic 1-form. We will choose the
divisor � disjoint from the pentagram Lagrangians, at which point one can
achieve transversality with perturbations of the almost complex structure and
Floer equation supported away from �. The reason this is useful is that the
term � · [im(u)] in (3.10) is necessarily positive, by positivity of intersec-
tions of holomorphic curves with holomorphic divisors. If one knows some-
thing about the absolute indices ιη(xj ) of intersection points, this can be a
non-trivial constraint on which polygons exist. As an illustration, we will ex-
tract slightly more from the argument of Lemma 5.16, to give at least partial
information on the cubic term μ3

A(Z) of the A∞-structure.
Choose a fibrewise hyperplane section of Z—the pullback of a general

hyperplane H ⊂ P
2g+1, which now plays the role of Href from Sect. 4.5—

whose complement is an affine quadric bundle at least over a large open set
in C containing the finite set of pentagram matching paths. (Globally, any
choice of hyperplane H ⊂ P

2g+1 will fail to be transverse to a finite num-
ber of the quadrics in the pencil, and its complement will not globally be a
T ∗S2g-bundle over P

1; but one can put the singular fibres near infinity, and
they will make no difference to the computations undertaken below.) Up to
symplectomorphism, one can identify an open set in this T ∗S2g-bundle with
an open set in a suitable family of Milnor fibres

W =
{
(x0, . . . , x2g, y)

∣∣h(x0)+
∑
i>0

x2
i = y2

}
⊂ C

2g+2

as studied by Khovanov and Seidel in [42], taking h(z)= z(z2g+1− 1) to ob-
tain a family of affine quadrics with nodal singular fibres at the origin and the
(2g+1)-st roots of unity. Since this open subset of Z �=∞ is simply-connected,
as are the Lagrangians, we know a priori that gradings, which come from triv-
ialisations of K⊗2 and associated phase functions, are unique.

Lemma 5.19 The Z-gradings on the pentagram algebra insideW are Z2g+1-
equivariant.
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Proof For any M = g−1(0)⊂ C
n+1, there is a holomorphic n-form η on M

given by

detC(dgx ∧ . . .)|TM (5.5)

for which the phase of an oriented Lagrangian n-plane with orthonormal basis
〈e1, . . . , en〉 is given by detC(dgx∧e1 · · ·∧en)2. Starting from here, [42, (6.5)]
shows that for a Lagrangian Lγ ⊂W associated to a matching path γ (t), the
phase function is

t �→ h(γ (t))2g−1γ ′(t)2 (5.6)

where h(z)= z(z2g+1 − 1) and the phase is O(2g + 1)-invariant so depends
only on the base co-ordinate. Equation (5.6) extends continuously over the
two points of the sphere Lγ ⊂W ⊂ Z �=∞ lying over the endpoints of γ , and is
invariant under rotation by exp(2iπ/(2g+ 1)), so the phase functions for the
different pentagram spheres Lj are identical under natural parametrisations.
Absolute gradings in Floer theory are determined by local geometry near the
intersection point and the associated phase function; here, both are invariant
under rotation. �

Remark 5.20 (Notation) Recall in Fig. 7 the three Lagrangians are L′′ (ver-
tical), L (lower) and L′ (upper). We will write e, f and p for three Floer
generators (or their Z2g+1-orbits) arising as follows: p is the external vertex
of the pentagram, graded in odd degree as the generator of HF(L,L′) (as
in the proof of Lemma 5.16); and e, f are the generators of H ∗(S2g)[1] =
HF(L′′,L) (which are also, by equivariance, the odd degree generators of
HF(L′,L′′), cf. op. cit.). We will write ē, f̄ for the Poincaré dual gener-
ators, and ιη(·) = | · | for the absolute index of any generator. We declare
|f | = |e| + 2g, so e arises from the cohomological identity of the S2g-clean
intersection and f from the fundamental class.

We now take a holomorphic volume form ηZ onZ which has poles of order
g along Href and simple poles along the fibre Z∞, recalling that c1(Z) =
(2g+ 2)H −E = 2gH + [Fibre]. Up to homotopy, the induced volume form
on the subset W ⊂ Z �=∞ agrees with that from (5.5), so the corresponding
gradings are Z2g+1-invariant. Note that although the Z2-graded A∞-structure
on A(Z) can be taken to be invariant under the involution of Remark 5.18,
the Z-gradings need not be, since� is not invariant. Poincaré duality in Floer
cohomology implies that if x ∈ CF(L,L′) is a transverse intersection, then

ιη(x)= (2g+ 1)− ιη(x̄)
where x̄ ∈ CF(L′,L) is the morphism viewed in the opposite direction.

The proof of Lemma 5.16 relied only on the fact that the Lagrange surgery
L#L′ was Hamiltonian isotopic to a Lagrangian sphere disjoint from L′′. This
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is true inside the affine open subset W , so the holomorphic triangles whose
existence was implied by Lemma 5.16 actually exist in W , in particular have
trivial intersection number with the divisor �. This provides a constraint on
the absolute gradings of the Floer generators, via (3.10):

|e| + |p| and |f | + |p| ∈ {|ē|, |f̄ |} = {2g + 1− |e|,1− |e|}
where the two equations come from the fact that μ2(p, ·)was an isomorphism
in Lemma 5.16, so of rank 2. On the other hand, we also know

|f | = |e| + 2g.

The two previous equations imply 2|e| + |p| = 1. Now we consider cubic
terms:

μ3(e, e,p); μ3(e, f,p); μ3(f, f,p). (5.7)

We are interested in the coefficient of the identity 1L in these cubic terms,
which are pieces of the product

μ3 : CF∗(L′′,L)⊗CF∗(L′,L′′)⊗CF∗(L,L′)−→ CF(L,L)[−1].
Consider first working in Z �=∞. One can import some information about
the higher A∞-structure on A(Z �=∞), using Lemma 5.11 and our knowl-
edge of A(C�=∞) arising from the results of Seidel and Efimov described in
Sect. 3.7. Recall from (3.12) that the cubic term of an A∞-structure extend-
ing a given product defines a Hochschild cocycle; exponentiated infinitesimal
gauge transformations

α �→ α− ∂γ + [γ,α] + 1

2
[γ, [γ,α] − ∂γ ] + · · ·

by elements γ ∈ CC0 with vanishing linear term γ = (γ i)i≥2, so preserving
the product, preserve the cohomology class�1(α3) ∈HH∗ of α3, which is ac-
cordingly well-defined, cf. [78, (5.6)]. In this vein, we record one implication
of Seidel and Efimov’s work.

Lemma 5.21 In Z �=∞, the product μ3(e+f, e−f,p) contains 1L with non-
zero coefficient, whilst μ3(e+ f, e+ f,p) is trivial.

This follows from (3.17); in that notation, the first statement of the lemma
reflects the non-trivial cubic term v1v2v3 whilst the second reflects the van-
ishing of the terms v2

i v3, i = 1,2. We now combine Lemma 5.21 with the
Z-grading considerations discussed before (5.7). Lemma 3.15 implies that
intersections with Href respectively Z∞ contribute 4g respectively 2 to the
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Maslov index of the corresponding holomorphic polygon. Indeed, for a rigid
(virtual dimension zero) polygon contributing to μk , with inputs xj and out-
put the identity element 1L ∈HF0(L,L), Lemma 3.15 implies

∑
j

|xj | + 2− k = � · [im(u)] = 4g im(u) ·Href + 2 im(u) ·Z∞. (5.8)

We now put together the following pieces of information:

• By Remark 5.18, the A∞ structures on Z �=∞ and Z can be taken invari-
ant under an involution which preserves p and e but sends f �→ −f , so
μ3(e, f,p)= 0 in both cases;

• Lemma 5.21 then implies μ3�=∞(e, e,p) �= μ3�=∞(f, f,p) when computed
in Z �=∞. By (5.8), and the discussion before (5.7), the holomorphic poly-
gons which contribute to these expressions are necessarily disjoint from�,
for μ3�=∞(e, e,p), respectively meet � exactly once, for μ3�=∞(f, f,p).

Now consider the term μ3
A(Z)(e, e,p). Equation (5.8) and the relation

2|e|+ |p| = 1 implies that no holomorphic polygon contributing to this prod-
uct can meet either Href or Z∞, in particular its value does not change under
compactification from Z �=∞ to Z. There are in principle new holomorphic
polygons which contribute to μ3

A(Z)(f, f,p), given by adding a Chern num-
ber zero sphere in homology class 2gR − L to a disk living in Z �=∞. (Since
our total space is monotone, such a Chern number zero sphere cannot itself
be represented by a holomorphic curve, so these additional polygons do not
arise from broken configurations by gluing on sphere bubble components.)
However, we can deduce:

Corollary 5.22 The coefficient of 1L in exactly one of

μ3
A(Z)(e+ f, e− f,p) and μ3

A(Z)(e+ f, e+ f,p)
is non-zero.

Proof This is immediate from the preceding discussion. Either the coefficient
of 1L in μ3(f, f,p) does not change on compactification, in which case we
inherit the non-vanishing of Lemma 5.21, or it does change, but since the
analogous coefficient didn’t change in μ3(e, e,p), that would imply the sec-
ond outcome. �

Remark 5.23 It is possible to compute the absolute grading of A(Z) using the
theory of “bigraded curves” developed in [42], given a computer to plot phase
functions along matching paths (and a blackboard to extract the gradings from
those plots). Knowledge of A(Z �=∞) gives many further a priori constraints
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on the bigrading; for instance, (3.17) implies μ2g+1
�=∞ (p, . . . , p) �= 0, which

together with Lemma 3.15 shows that |p| = 4gk − 1 for some k ≥ 1, etc.

5.5 Finite determinacy

We return to the situation of Sect. 3.6, and an A∞-structure on an exterior
algebra A=�∗(V ). Suppose now V ∼=C

3 is 3-dimensional, so A has graded
summands

A0 =C⊕�2(V ); A1 = V ⊕�3(V ).

According to [78, Theorem 3.3], the L∞-quasi-isomorphism � of The-
orem 3.18 has linear term �1 which is given by restricting elements
of Hom(�(V )⊗i ,�(V )) to the subspace of symmetric elements of
Hom(V⊗i ,�(V )) (this is the Hochschild-Kostant-Rosenberg map). Since V
is in odd degree, αi(v1, . . . , vi) ∈�0 ⊕�2 for all i and any vj ∈ V . In other
words, taking the parities of the αi into consideration, a Maurer-Cartan ele-
ment comprises a pair

(W,η) ∈C[[V ∨]] ⊕C[[V ∨]] ⊗�2(V )

of a formal function and a formal 2-form, satisfying

[W,W ] = 0; [η,η] = 0; [W,η] = 0.

Since the given A∞-structure does not deform the algebra structure on�(V ),
we may suppose thatW and η have no coefficients of polynomial degree< 3.
Note that the equation [W,W ] = 0 always holds, since the Schouten bracket
on polyvector fields involves contraction of the differential form, hence van-
ishes identically on 0-forms. In particular, any formal function W together
with the trivial 2-form (W,0) defines a Z2-graded A∞-structure on �(C3).
Gauge transformations are now by pairs

(g1, g3) ∈
(
C[[V ∨]] ⊗�1(V )

)
⊕

(
C[[V ∨]] ⊗�3(V )

)
.

For vector fields vanishing at the origin the first term acts on both components
(W,η), by pullback by the diffeomorphism obtained from exponentiating the
vector field. Explicitly, a vector field g1 acts on a formal function through the
adjoint action

exp(g1) ·W = W +
∑
n≥0

ad(g1)n

(n+ 1)! [g
1,W ]. (5.9)

The second term acts by interior contraction

(0, g3) · (W,η) = (W,η+ ιdW (g3)). (5.10)
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In this language, we can re-express the outcome of the previous section. Pick
co-ordinates ξ1, ξ2, ξ3 on V and dual co-ordinates (v1, v2, v3) on V ∨ ∼= C

3.
Write O(k) for power series all of whose terms have degree ≥ k. The ac-
tion of G= Z2g+1 on V comes geometrically from the rotation action on P

1

permuting Lagrangian pentagram spheres, so the generator of G acts on the
hyperelliptic curve

y2 = z(z2g+1 − 1) via (y, z) �→ (ξg+1y, ξz), with ξ = e 2iπ
2g+1 .

Via Lemma 5.11, there is a basis with respect to whichG acts on V by diago-
nal matrices with entries which are non-trivial roots of unity; explicitly, there
is a basis for which G acts via the diagonal matrix with entries (ξ, ξ, ξ2g−1).

Lemma 5.24 The formal functionW defining the A∞-structure on A(Z) has
the form

W = λv1v2v3 +O(4) or W = λ(v2
1 + v2

2)v3 +O(4)
for some non-zero λ ∈C

∗.

Proof The generators vi of the exterior algebra correspond, up to scale, to
the Floer generators e+ f, e− f,p of Sect. 5.4. Hyperelliptic invariance, ex-
changing f and−f , corresponds to invariance under v1↔ v2. Corollary 5.22
implies that either the term v1v2v3 inW has non-zero coefficient, or the term
v2

1v3 (and hence by symmetry v2
2v3) has non-zero coefficient. Moreover, these

two cases are mutually exclusive. The two cases cover the only possible cubic
terms in W , by Z2g+1-invariance, which gives the result. �

We now explore more systematically the constraints imposed by Z2g+1-
equivariance. One can consider only G-equivariant Z2-graded A∞-structures
on �(V ) by imposing G-equivariance throughout the discussion of Sect. 3.6;
in particular, the inverse� to Kontsevich’s map� gives a quasi-isomorphism
between equivariant Hochschild cochains and equivariant polyvector fields,
andG-equivariant gauge transformations act on the set of suchG-equivariant
Maurer-Cartan solutions.

As in Sect. 3.6, Lemma 3.17 and the Formality Theorem 3.18 imply that
the Hochschild cohomology of a Z2-graded A∞-structure on �(V ) defined
by a pair (W,η) is given by the cohomology of the Z2-graded complex

C[[V ∨]] ⊕ (C[[V ∨]] ⊗�2(V ))

[·,η]⊕[·,W+η]−−−−−−−−−⇀↽−−−−−−−−−[·,W+η]⊕[·,W ]
(C[[V ∨]] ⊗�1(V ))⊕ (C[[V ∨]] ⊗�3(V )) (5.11)
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noting that ξ �→ [ξ,W ] = ιdW (ξ) vanishes on 0-forms, and similarly ξ �→
[ξ, η] vanishes on 3-forms, for degree reasons. The group HH∗(A,A)Z2g+1 is
computed by the complex

(
C[[V ∨]] ⊗�ev(V )

)Z2g+1
[·,W+η]−−−−−⇀↽−−−−−[·,W+η]

(
C[[V ∨]] ⊗�odd(V )

)Z2g+1 . (5.12)

Note that 1 ∈C[[V ∨]] always defines a non-trivial class in HHev, since HH∗
is a unital ring. Therefore, Corollary 5.6 implies that in our case there is pre-
cisely one other non-trivial class. The Maurer-Cartan equation implies that
both W and η are themselves cocycles, so some linear combination of them
must be a coboundary. The force of Lemma 5.24 is that we can prove that η
is in fact already a coboundary in the Koszul complex associated toW .

The Koszul complex of a holomorphic function W is acyclic in degrees
greater than the dimension of the critical locus of W , see [18, Chap. 6,
Prop. 2.21]. The underlying acyclicity result applies more generally to com-
plexes of finitely generated free modules over a Noetherian local ring R,
which is useful in the context of formal rather than holomorphic functions.
Indeed, [14, Corollary 1] or [25, Sect. 20.3] says that a complex of free R-
modules

0→ Fn φn−→ Fn−1
φn−1−−→ · · ·→ F2

φ2−→ F1

is exact if and only if

(1) rk(Fk)= rk(φk)+ rk(φk+1) and
(2) the depth of the ideal I (φk)≥ k − 1

for k = 2, . . . , n. Here, the rank of φk is the size of the largest non-vanishing
minor in a matrix representing φk , and I (φk) is the ideal in R generated by the
determinants of all r× r minors, where r = rk(φk). C[[v1, v2, v3]] is Noethe-
rian [5, Corollary 10.27] and Cohen-Macaulay. In a Cohen-Macaulay ring,
depth of an ideal (maximal length of a regular sequence) equals its codimen-
sion [25, Theorem 18.2], and the criterion above, applied to the Koszul com-
plex truncated in degree > k of a holomorphic W with critical set of dimen-
sion k, recovers the familiar acyclicity result stated previously. Taking W to
be a formal function in 3 variables, we would like to know when the truncated
complex

0→�3 [·,dW ]−−−→�2 [·,dW ]−−−→�1

is acyclic, with �i the free module of rank
(3
i

)
over R = C[[v1, v2, v3]].

It is easy to check that whenever W �= 0, the first condition on the ranks
of the maps and modules is satisfied. Since R contains no zero-divisors,
depth I (φ2)≥ 1 is trivial, so the key condition is

depth I (φ3)≥ 2.
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This certainly holds if one can order the partial derivatives (∂iW, ∂jW,∂kW)
in such a way that some linear combination u.∂iW + v.∂jW is not a zero-
divisor in R/〈∂kW 〉. If u∂iW + v∂jW is such a zero-divisor, then

φ · (u∂iW + v∂jW)=ψ∂kW
for some formal functions φ,ψ with ∂kW � |φ. Since R is moreover a unique
factorisation domain, this can happen for all u, v only if the partial deriva-
tives share a common irreducible factor (which is not a unit, so has vanishing
constant term). However, this is precluded by Lemma 5.24. We deduce:

Lemma 5.25 A(Z) is defined by a Maurer-Cartan pair (W,η) for which η is
a coboundary in the Koszul complex associated toW , so there is some formal
3-form g3 for which [g3, dW ] = η.

We can therefore apply a gauge transformation as in (5.10) to kill η, so up
to gauge equivalence, the A∞-structure on Z is defined by a formal function
W satisfying Lemma 5.24, together with the trivial 2-form. Gauge transfor-
mations of A∞-structures induce the identity on cohomology. There are also
A∞-equivalences which act non-trivially on cohomology; in particular, A∞-
structures on �(V )�G are invariant under G-equivariant linear transforma-
tions in GL(V ). Since the cubic polynomials

v1v2v3 and (v2
1 + v2

2)v3

are related by a linear transformation which commutes with G (which acts
by ξ · id on the subspace 〈v1, v2〉 ⊂ V ∨), we can suppose up to quasi-
isomorphism that

W = λv1v2v3 +O(4) and η≡ 0. (5.13)

We next recall some background on Hochschild cohomology of semi-direct
products, see for instance [81]. The Hochschild cohomology of a semi-
direct product of a finite-dimensional algebra with a finite group � has an
eigenspace-type decomposition over conjugacy classes of �. In particular,
HH∗(A�Zn,A�Zn) splits into a piece corresponding to id ∈ Zn and (n−1)
other summands indexed by the other characters:

HH∗(A � Zn,A � Zn)=
⊕
γ∈Zn

Ext∗bimod-A(A,Graph(γ ))Zn . (5.14)

The summand for γ = 1 is canonically identified with the invariant part
HH∗(A,A)Zn . In the special case of an A∞-structure on the exterior alge-
bra, each of the other summands is computed by a cochain complex which
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actually defines a Koszul resolution of C, hence has one-dimensional coho-
mology [75, Sect. 4b], whilst the invariant part of HH∗(A,A) can be com-
puted from the complex of (5.11). As an illustration, we explicitly verify that
the algebraic description of the Fukaya category DπF(�g)�D(A � Z2g+1)

given in Sect. 3.7 is consistent with the prediction of Corollary 3.11.

Lemma 5.26 HH∗(DπF(�g))�H ∗(�g) as Z2g+1-representations.

Proof From the preceding discussion, we identify the invariant part
HH∗(A,A)Z2g+1 with the invariant part of the Jacobian ring

J (Q)=C[[x1, x2, x3]]/〈∂1Q,∂2Q,∂3Q〉
under the inherited Z2g+1-action, where Q = −x1x2x3 + x2g+1

1 + x2g+1
2 +

x
2g+1
3 is the polynomial superpotential controlling the A∞-structure on A=
�(C3). In our case, the invariant part J (Q)Z2g+1 is generated by the poly-
nomials 1 and x1x2x3, noting that modulo the ideal of relations 〈∂iQ〉 one
has

(x1x2x3)
2 ∼ (x1x2x3)

2g

and that 1− (x1x2x3)
2g−2 is invertible since we work over formal power se-

ries, hence x1x2x3 has order 2 in J (Q)Z2g+1 . The upshot is that the eigenspace
decomposition of HH∗ under the Z2g+1-action has a two-dimensional zero-
eigenspace and 2g one-dimensional eigenspaces. This matches the cohomol-
ogy (= quantum cohomology) of �g , with Z2g+1 acting on H 1 with minimal
polynomial 1+ λ+ λ2 + λ3 + · · · + λ2g and acting trivially on H 0 ⊕H 2. �

The subcategory A(Z) is determined by a Z2g+1-equivariant Maurer-
Cartan pair (W,0) as in (5.13). Corollary 5.6 and the discussion around (5.14)
imply that the Hochschild cohomology HH∗(A � Z2g+1,A � Z2g+1) has 2g
one-dimensional summands for the non-identity elements, living in odd de-
gree, and two even-degree classes (corresponding to H 0 and H 2 of the genus
g curve).

Lemma 5.27 If the formal functionW = λv1v2v3+O(4), λ �= 0, determines
an A∞-structure A on �(C3)� Z2g+1 for which HH∗(A,A)Z2g+1 has rank

2, then the coefficients of the 3 monomials v2g+1
i in W are all non-zero.

Proof The Hochschild cohomology of the A∞-structure is the cohomology
of the Koszul complex

0→C[[V ∨]] ⊗�3(V )
ιdW−−→C[[V ∨]] ⊗�2(V )

ιdW−−→C[[V ∨]] ⊗�1(V )

ιdW−−→C[[V ∨]]→ 0. (5.15)
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This contains in degree zero a copy of the Jacobian ring J (W) =
C[[V ∨]]/〈∂iW 〉, which must therefore contain a unique non-identity element.

If the coefficient μi of the monomial v2g+1
i is zero, then v2g+1

i will survive
into the Jacobian ring (since this is the lowest monomial term that can occur
inW by Z2g+1-invariance). Therefore, at most one of the μi>0 can be zero, in
fact μ3 since the A∞-structure is invariant under permuting v1 and v2; and in
this case W must contain a monomial v4g+2

3 (or the element [v2g+1
3 ] ∈ J (W)

will not have square zero). However, if W = λv1v2v3 +μ(v2g+1
1 + v2g+1

2 )+
μ3v

4g+2
3 + p where all terms of p of degree < 2g + 1 involve at least two

variables, then [v1v2v3] and [v2g+1
3 ] give distinct elements of J (W), which

again contradicts the invariant part of HH∗ having rank 2. �

We recall Noether’s classical result [63] that the invariant subring
C[v1, v2, v3]G under a finite group G is generated by monomials of degree at
most the order of G. Let Q ∈C[[V ∨]]G denote

Q=−v1v2v3 + v2g+1
1 + v2g+1

2 + v2g+1
3 .

The following is a variant of Seidel’s [78, Lemma 4.1], whose proof we follow
closely.

Lemma 5.28 Pick constants (λ,μ1,μ2,μ3) ∈ (C∗)4. Let p(·) be a poly-
nomial of degree 4 ≤ deg(p) ≤ 2g + 1, with vanishing coefficients of the
monomials v2g+1

i . The A∞-structure defined by any Z2g+1-invariant Maurer-
Cartan pair (W,0) with

W = λv1v2v3+p(v1, v2, v3)+μ1v
2g+1
1 +μ2v

2g+1
2 +μ3v

2g+1
3 +O(2g+ 2)

is A∞-isomorphic to the structure defined by (Q,0).

Proof To be maximally explicit, we suppose first g = 2, so p(·) = 0, and
explain the modifications for the general case at the end. Let Wμ denote the
degree ≤ 5 = 2g + 1 part of the given formal function W . Letting I denote
the ideal generated by the partial derivatives I = 〈∂1Wμ,∂2Wμ,∂3Wμ〉, one
checks that:

• vivj ∈ I +O(4)
• v6
i ∈ I ·O(2)+O(8).

Explicitly, to check the second claim, one starts from ∂1Wμ ∈ I and writes

5μ1v
4
1 ∈ I +μ0v2v3 ⇒ v6

1 ∈ I ·O(2)+C · v2
1v2v3
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and then substitutes

v2
1v2v3 = (v1v2) · (v1v3) ∈ (I −Cv4

3) · (I −Cv4
2).

Given any n, direct manipulation now yields a co-ordinate transformation
exp(g1) (which can be averaged to be G-equivariant) for which

exp(g1) · (W)=Wμ +O(n).
Explicitly, ifW =Wμ+O(6) is Z5-equivariant, it contains no monomials vti
for t = 6,7,8. Then W −Wμ is a sum of terms vj .vk.(·) and terms of order
≥ 9, henceW−Wμ ∈ I ·O(≥ 4)+O(≥ 9). For a suitable change of variables

v′j = vj + f4,j (v); f4,j ∈O(4)
one sees W(v′1, v′2, v′3) is given by

W(v1, v2, v3)+
∑
j

f4,j ∂jW + · · · +O(9)

which we write as:

W +
∑
j

f4,j ∂jWμ +
∑
j

f4,j (∂jW − ∂jWμ)+O(9).

Now using the bullet point above, one can choose the f4,j so that the first
two terms give exactly the part of W − Wμ in I · O(4), and all the other
Taylor coefficients areO(9), so we have improved n from 6 to 9. Iterating the
procedure, one can increase n arbitrarily. SinceWμ has an isolated singularity
at the origin, the general finite determinacy theorem from singularity theory
[51] implies that, once n is large enough, there is a formal change of variables
exp(h1) for which

exp(h1) ·W = Wμ.
Recall that A∞-structures on �(V ) � G are invariant under G-equivariant
linear transformations in GL(V ). In our situation they are invariant under
arbitrary invertible linear rescalings of the vi . This brings any polynomial
Wμ of the given form into the shape tv1v2v3+ v5

1 + v5
2 + v5

3 . A further linear
co-ordinate change will bring this into the form−εv1v2v3+ε3(v5

1+v5
2+v5

3),
for some ε ∈C

∗. One now uses the existence of a canonical C
∗-action (again

not by gauge transformations, but nonetheless by A∞-isomorphisms) on the
space of A∞-structures, where ε ∈C

∗ acts by rescaling μj by εj−2, to reduce
to the desired polynomial Q. This completes the argument when g = 2.

The general case, when g > 2, is similar. The polynomial p actually lies
in O(d) for some d > 4, for invariance reasons, and contains no monomial
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terms vji (the only invariant monomial terms of degree < 2g + 2 are v2g+1
i ,

for which p has vanishing coefficients by hypothesis). Therefore, its lowest
degree d piece can be written (not necessarily uniquely) as

pd(v1, v2, v3)= v1v2q3 + v2v3q1 + v3v1q2

for G-invariant homogeneous polynomials qi ∈ O(d − 2) of degree > 2.
There is an infinitesimal gauge transformation

vi �→ v′i = vi − qi = vi + [−qiξi, vi]
associated to the 1-form −∑

qiξi , and since qi ∈O(2), this exponentiates to
a gauge transformation which takes the given W to a polynomial W ′ of the
same shape, but for which the polynomial p has larger degree:

W ′ = λv′1v′2v′3 + p̃(v′1, v′2, v′3)+μ1(v
′
1)

2g+1 +μ2(v
′
2)

2g+1 +μ3(v
′
3)

2g+1

+O(2g + 2)

with deg(p̃) ≥ d + 1, because all the higher order terms in the exponenti-
ated adjoint action (5.9) have larger polynomial degree. Iterating (finitely
often, so there are no convergence issues), one reduces to the case when
p ∈O(2g + 2), so without loss of generality we can take p ≡ 0 in the state-
ment of the Lemma. Now vivj ∈ I +O(2g), and explicit formal changes of
variables as in the g = 2 case iteratively kill theO(2g+2)-part ofW , cf. [24,
Lemma 3.1]. Finally, the coefficients μj are adjusted using GL(V )-invariance
and the canonical C

∗-action on A∞-structures. �

Note that Lemma 5.26 verifies that in the only non-excluded case, the
Hochschild cohomology does have the anticipated rank. Combining our
knowledge of quantum cohomology, Corollary 5.6, with Lemma 5.27, one
finds that the A∞-structure on F(Z) satisfies the conditions of Lemma 5.28.
Since this singles out a unique quasi-isomorphism class, one concludes that
the generalised pentagram spheres in Z define an equivalent structure to the
corresponding curves in the genus g surface. Since on the genus g curve these
Lagrangians split-generate, this proves that

DπF(�g) ↪→DπF(Z).
Lemma 5.5 and Lemma 4.44 together show that this embedding has the same
image, up to quasi-isomorphism, as the embedding DπF(Q0 ∩ Q1;0) ↪→
DπF(Z) of Lemma 4.38.

Corollary 5.29 The embedding of categoriesDπF(�g) ↪→DπF(Z) is com-
patible with the natural weak actions of the pointed hyperelliptic mapping
class group.
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Corollary 5.29 has precisely the same proof as Corollary 4.45, but invok-
ing Lemma 5.5 in place of Lemma 4.44. Together, these results imply Adden-
dum 1.2 from the Introduction.

Remark 5.30 The finite group H 1(�g;Z2) & ξ has a natural weak action on
F(�g), tensoring by flat line bundles ξ , and on F(Q0 ∩ Q1;0), by sym-
plectic involutions ιξ of Remark 4.11, and one can ask if the equivalence
ϒ : DπF(�g) � DπF(Q0 ∩Q1;0) we have constructed also entwines that
action. We shall not prove this, but the relevant cohomological evidence is
provided by Remark 3.22 and Remark 2.5. Presumably, just as ϒ(γ ) � Vγ̄ ,
also ϒ(ξ→ γ )� ιξVγ̄ . If true, one could compute the Hochschild cohomol-
ogy of the autoequivalence ⊗ ξ ∈ Auteq(F(�)) in terms of the fixed point
Floer cohomology HF(ιξ ) on Q0 ∩Q1.
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