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Abstract Let A be the category of modules over a complex, finite-dimen-
sional algebra. We show that the space of stability conditions on A parame-
trises an isomonodromic family of irregular connections on P

1 with values
in the Hall algebra of A. The residues of these connections are given by the
holomorphic generating function for counting invariants in A constructed by
D. Joyce (in Geom. Topol. 11, 667–725, 2007).
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1 Introduction

1.1

This paper stems from our attempt to understand the recent work of Joyce [13]
on holomorphic generating functions for counting invariants in an abelian
category A. Somewhat unexpectedly, a more conceptual understanding of
Joyce’s formulae can be obtained by viewing them as defining an irregular
connection on P

1 with values in the Ringel–Hall Lie algebra of A. This leads
to a picture whereby stability conditions on A can be naturally interpreted as
defining Stokes data for such connections.

We begin with a leisurely introduction reviewing the salient points of
Joyce’s work and summarising our main results, a more precise formulation
of which may be found in the body of the paper. From 1.6 on, our exposition
assumes a passing knowledge of Stokes phenomena; the reader can find an
introduction to this material in Sect. 2.

1.2

It is a familiar fact from Geometric Invariant Theory that if one wants to
form moduli spaces parameterising algebro-geometric objects such as coher-
ent sheaves or modules over an algebra, one first needs to restrict to some
subclass of (semi)stable ones. The required notion of stability is usually not
given a priori, but rather corresponds to some particular choice of weights.
As these weights vary, the corresponding subclasses of semistable objects un-
dergo discontinuous changes; in many cases the space of all possible weights
has a wall-and-chamber decomposition such that the subclass of semistable
objects is constant in each chamber but jumps as one moves across a wall.

More recently, these spaces of weights, or stability conditions, have been
studied as interesting objects in their own right. Spaces of stability conditions
on triangulated categories were introduced by the first author in [6] follow-
ing earlier work by M. Douglas [9]. Considerations from Mirror Symmetry
suggest that these spaces should have interesting geometric structures closely
related to Frobenius structures [7]; in particular one expects that they should
carry natural families of irregular connections. Recently, progress has been
made towards defining such structures [13, 18] although the picture is still far
from clear.
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In this paper we shall be concerned with stability conditions on an abelian
category A, and in fact with the special case when A is the category of finite-
dimensional modules over a finite-dimensional algebra. We hope that, with
further study these ideas can be applied to more general situations such as
spaces of stability conditions on derived categories of coherent sheaves.

1.3

Suppose then that A is the abelian category of finite-dimensional mod-
ules over a finite-dimensional associative C-algebra R. Let K(A) be the
Grothendieck group of A and K>0(A) ⊂ K(A) the positive cone spanned by
the classes of nonzero modules. Let H ⊂ C denote the upper half-plane. For
our purposes, a stability condition on A is just a homomorphism of abelian
groups Z : K(A) → C such that

Z(K>0(A)) ⊂ H.

In other words, a stability condition is a choice Z(M) ∈ H for each nonzero
module M such that Z is additive on short exact sequences. Given such a
stability condition Z each nonzero module M has a well-defined phase

φ(M) = 1

π
argZ(M) ∈ (0,1),

and a non-zero module M is said to be semistable with respect to Z if every
non-zero submodule A ⊂ M satisfies φ(A) � φ(M).

Since the category A has finite length, the Grothendieck group K(A) ∼=
Z

N is freely generated by the classes of the simple modules, and the space of
all stability conditions Stab(A) can be identified with the complex manifold
H

N . It is easy to see that for each class α ∈ K>0(A), there is a finite collection
of codimension-one real submanifolds of Stab(A) such that in each connected
component of their complement the set of semistable modules of class α is
constant. This is the wall-and-chamber structure referred to above. Moreover,
it follows from results of King [17] that for any stability condition Z and class
α ∈ K>0(A), there is a projective scheme which is a coarse moduli space for
semistable modules of type α. We can thus view this simple-minded example
as a good model for studying wall-crossing phenomena.

1.4

From an algebraic perspective, these wall-crossing phenomena give rise to,
and may be studied as change of bases within the Ringel–Hall algebra H(A)

of A, an idea which has its origins in the work of Reineke [21], and was
greatly developed by Joyce [12, 14]. For a survey of Hall algebras over finite
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fields see [26]. The variant we shall use here was sketched by Kapranov and
Vasserot [16] and described in detail by Joyce [12].

Consider first the vector space H(A) of complex-valued constructible
functions on the moduli stack of all R-modules. This vector space can be
endowed with an associative product ∗ for which

(f1 ∗ · · · ∗ fn)(M) =
∫

f1(M1/M0) · · ·fn(Mn/Mn−1) dχ,

where the Euler characteristic integral is taken over the variety parameterising
flags

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

of submodules of M of length n. The characteristic function 10 of the zero
module is the identity element. The resulting algebra has an obvious grading

H(A) =
⊕

α∈K�0(A)

Hα(A),

where Hα(A) is the space of functions supported on modules of class α.
The algebra H(A) is usually much too big, and one considers instead the

subalgebra C(A) generated by the characteristic functions κα of the sets of
modules of class α as α varies in K>0(A). The rule

�(f )(M,N) = f (M ⊕ N)

defines a coproduct � : C(A) → C(A) ⊗ C(A) on C(A) which endows it
with the structure of a cocommutative bialgebra. The corresponding Lie al-
gebra of primitive elements n(A) coincides with the space of functions sup-
ported on indecomposable objects, and the inclusion n(A) ⊂ C(A) identifies
C(A) with the universal enveloping algebra of n(A).

The grading on H(A) induces gradings on C(A) and n(A). One can use
the grading on n(A) to define an extended Lie algebra b(A) = h(A) � n(A)

by endowing

h(A) = HomZ(K(A),C)

with a trivial bracket, and setting [Z,f ] = Z(α)f for Z ∈ h(A) and f ∈
nα(A).

It will also be necessary in what follows to consider the completions n̂(A)

and b̂(A) of n(A) and b(A) with respect to their gradings. We shall collec-
tively refer to these Lie algebras as Ringel–Hall Lie algebras of A.
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1.5

The original motivation of the present work was to understand Joyce’s re-
markable paper [13], some features of which we now briefly recall.

Given a stability condition Z ∈ Stab(A), the characteristic function of the
set of semistable modules of a given class γ ∈ K>0(A) defines an element
δγ ∈ Cγ (A) which plainly encodes the discontinuous behaviour of that set.
Joyce defines closely related elements εα by the (finite) sum

εα =
∑
n�1

∑
γ1+···+γn=α

Z(γi)∈R>0Z(α)

(−1)n−1

n
δγ1 ∗ · · · ∗ δγn,

and proves that they lie in the Lie algebra n(A). Considered as a function
Stab(A) → nα(A), εα is constant on the chambers in Stab(A) defined by α

and exhibits discontinuous behaviour on their walls.
Joyce then considers, for any α ∈ K>0(A), a generating function fα :

Stab(A) → nα(A) given by a Lie series of the form

fα =
∑
n�1

∑
αi∈K>0(A)

α1+···+αn=α

Fn(Z(α1), . . . ,Z(αn)) εα1 ∗ · · · ∗ εαn, (1)

where Fn : (C∗)n → C is a function on n complex variables, with F1 ≡ 1. He
then proves the following result (see [13, §3] for a more precise statement of
(i)–(ii)).

Theorem (Joyce)

(i) The functions Fn can be chosen to be holomorphic with branchcuts
which precisely balance the discontinuities of the εα , thus resulting in
a continuous, holomorphic function fα , independently of which algebra
R (and hence which abelian category A) one starts with.

(ii) The functions Fn are uniquely characterised by the above requirements
and a few additional mild assumptions.

(iii) The functions Fn satisfy the differential equations

dFn(z1, . . . , zn)

=
n−1∑
i=1

Fi(z1, . . . , zi)Fn−i (zi+1, . . . , zn)d log

(
zi+1 + · · · + zn

z1 + · · · + zi

)
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which implies that the functions fα satisfy

dfα =
∑

β,γ∈K>0(A)
β+γ=α

[fβ,fγ ]d logγ. (2)

The remarkable point is that the specific jumping behaviour of the classes
of semistable objects leads to universal holomorphic functions satisfying an
interesting system of non-linear differential equations.

1.6

The main new idea of this paper is that a stability condition Z on A can
naturally be interpreted as defining Stokes data for an irregular connection
on P

1 with values in the Ringel–Hall Lie algebra b̂(A). The discontinuous
nature of the classes of semistables as Z varies corresponds to the discontin-
uous behaviour of the Stokes factors of an isomonodromic family of irregular
connections as the Stokes rays collide and separate. Moreover, Joyce’s holo-
morphic functions fα on Stab(A) can be interpreted as defining the residues
of this family of connections.

1.7

Our starting point was the observation that the differential equation (2) has
the same form as the equation for isomonodromic deformations of irregular
connections on P

1 written down for the group GLn(C) by Jimbo–Miwa–Ueno
[11] and extended to an arbitrary complex, reductive Lie group G by Boalch
[5, Lemma 16].

In more detail, let g be the Lie algebra of G and fix a Cartan subalge-
bra h ⊂ g. Let � ⊂ h∗ be the associated root system and g = h ⊕ god, with
god = ⊕

α∈� gα the corresponding root space decomposition. Define a mero-
morphic connection on the trivial G-bundle over P

1 by

∇ = d −
(

Z

t2
+ f

t

)
dt, (3)

where f = ∑
α∈� fα ∈ god and Z is a regular element of h. The connection

∇ has a pole of order 2 at the origin and a pole of order 1 at infinity.
The gauge equivalence class of such a connection is determined by its

Stokes data. This data consists of a set of Stokes rays, namely the subsets
of C of the form R>0Z(α) for α ∈ � and, for each such ray  a correspond-
ing Stokes factor S ∈ G. As Z varies the Stokes rays move, but if the element
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f ∈ god evolves according to the differential equation

dfα =
∑

β,γ∈�
β+γ=α

[fβ,fγ ]d logγ, (4)

then the Stokes factors are locally constant, and when two rays collide or
separate the product of the corresponding Stokes factors remains constant.
Such deformations of ∇ are called isomonodromic.

1.8

The striking similarity of the differential equations (2) and (4) suggests that
that the classes εα introduced by Joyce should be regarded as logarithms of
Stokes factors for a connection of the form (3).

This interpretation is further corroborated by the following result of
Reineke [21]. Since A has finite length, all stability conditions Z on A have
the Harder–Narasimhan property: any non-zero module M has a unique fil-
tration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M,

where the successive factors Fi = Mi/Mi−1 are Z-semistable and of strictly
descending phases: φ(F1) > · · · > φ(Fn).

Using the product in H(A), this readily translates into the following iden-
tity [21, Proposition 4.8]

κγ =
∑
n�1

∑
γ1+···+γn=γ

φ(γ1)>···>φ(γn)

δγ1 ∗ · · · ∗ δγn, (5)

where κγ and δα are the elements defined in 1.4 and 1.5.
Reineke’s equation (5) can be rewritten in a more suggestive form as fol-

lows. Given a ray  = R>0 exp(iπφ) ⊂ C
∗ with φ ∈ (0,1), let SS be the

characteristic function of all semistable modules of phase φ (here we include
the zero module). Similarly, let 1A be the function which is equal to 1 on all

modules.1 These functions define elements in the completion Ĉ(A) of C(A)

with respect to its K�0(A)-grading, and lie in fact in the pro-unipotent group
N̂(A) of invertible grouplike elements in Ĉ(A) whose Lie algebra is n̂(A).
The relation (5) may then be rewritten as the following identity in N̂(A)

1The function 1A should not be confused with the identity element of the Hall algebra H(A)

which is the characteristic function 10 of the zero module.
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1A =
�∏


SS,

where the product over rays is taken in clockwise order.
The above equation is precisely what expresses the Stokes multiplier of

a connection of the form (3) relative to the upper half-plane H in terms of
its Stokes factors S. The analogy with Stokes phenomena proceeds further:
there is a countable set of rays R>0Z(α) for α ∈ K>0(A), which can collide
or separate as Z varies, and to each such ray  is associated an element SS

of a group with the property that the ordered product of these elements SS

remains constant.

1.9

To make these analogies precise, we study in [8] irregular connections of the
form (3) with structure group an arbitrary complex, affine algebraic group G

so as to encompass the pro-solvable group B̂(A) corresponding to the Ringel–
Hall Lie algebra b̂(A). We also explicitly solve a Riemann–Hilbert problem
for these connections by expressing their residue f at t = 0 in terms of their
Stokes data.

We rely on these results to prove in this paper that the characteristic func-
tions SS of semistable objects of a given phase are the Stokes factors of a
unique connection of the form (3). The residue f of this connection is given
precisely by Joyce’s generating function (1). Moreover, as the stability condi-
tion varies, the connection varies isomonodromically, thus leading to a natural
derivation of Joyce’s PDE as an isomonodromic deformation equation.

More precisely, let P̂ be the holomorphically trivial, principal B̂(A)-
bundle on P

1. Let Z ∈ Stab(A) ⊂ h(A) be a stability condition and consider
connections on P̂ of the form

∇ = d −
(

Z

t2
+ f

t

)
dt, (6)

where f ∈ n̂(A). Our main result is the following

Theorem

(i) There exists a unique connection ∇A,Z of the form (6) with Stokes data
given by either of the following equivalent conditions:
(a) the Stokes factor corresponding to a Stokes ray  = R>0 exp(iπφ)

is the characteristic function SS of Z-semistable modules of phase
φ.

(b) The Stokes multipliers S+, S− relative to the ray r = R>0 are the
function 1A which takes the value 1 on every module, and the iden-
tity element 10 respectively.
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(ii) The components of the residue f = ∑
α∈K>0(A) fα of ∇A,Z at 0 are given

by a Lie series in the elements {εβ} of the form

fα =
∑
n�1

∑
αi∈K>0(A)

α1+···+αn=α

Jn(Z(α1), . . . ,Z(αn)) εα1 ∗ · · · ∗ εαn,

where Jn : (C∗)n → C are holomorphic functions with branchcuts which
coincide with Joyce’s functions Fn on the domain where they are holo-
morphic.

(iii) As Z varies in Stab(A), the family of connections ∇A,Z varies isomon-
odromically. In particular, fα(Z) is a holomorphic function of Z and
satisfies the PDE

dfα =
∑

β+γ=α

[fβ,fγ ]d logγ.

1.10

We conclude with a detailed description of the contents of this paper. In
Sect. 2, we review the definition of the Stokes data of an irregular connection.
In Sect. 3, we state the results of [8] on the computation of the corresponding
Stokes map and the Taylor series of its inverse in terms of multilogarithms.
In Sect. 4, we review the construction of the Ringel–Hall algebra H(A) of an
abelian category A following [12]. In Sect. 5, we explain Joyce’s construction
of H(A)-valued invariants which count semistable objects in A. Section 6
contains our main result. We show that a stability condition A on A defines
Stokes data for an irregular connection on P

1 with values in the Ringel–Hall
Lie algebra of A which varies isomonodromically with Z.

2 Irregular connections and Stokes phenomena

We review in this section the definition of Stokes data for irregular connec-
tions on P

1. Our exposition follows [8] which, in turn, is patterned on [4, 5].
Unlike [4, 5] and earlier treatments however (see, e.g. [2]), we do not restrict
ourselves to connections whose structure group is reductive. We consider in-
stead the case of an arbitrary algebraic group since this larger class encom-
passes the pro-solvable Ringel–Hall groups of abelian categories.

2.1 Algebraic groups

By an algebraic group, we shall always mean an affine algebraic group G

over C. By a finite-dimensional representation of G, we shall mean a ra-
tional representation, that is a morphism G → GL(V ), where V is a finite-
dimensional complex vector space. An algebraic group always possesses a
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faithful finite-dimensional representation and may therefore be regarded as a
linear algebraic group, that is a (Zariski) closed subgroup of some GL(V ),
see e.g. [10].

Let g be the Lie algebra of G. If ρ : G → GL(V ) is a finite-dimensional
representation, we denote its differential g → gl(V ) by the same symbol.

2.2

Let G be an algebraic group, H ⊂ G a maximal torus in G and g,h their Lie
algebras. The following are the examples which will be most relevant to us

(i) G = GLn(C) and H is the torus consisting of diagonal, invertible matri-
ces.

(ii) G is a complex, semisimple Lie group and H ⊂ G is a maximal torus.
(iii) G = H � N , where H is a torus acting on a unipotent group N .

As outlined in the Introduction, and further explained in Sect. 4, case (iii)
arises naturally when studying the abelian category A = Mod(R) of finite-
dimensional representations of a finite-dimensional algebra R over C. In
that case, N = N̂(A) is the (pro-)unipotent group whose Lie algebra is the
Ringel–Hall Lie algebra n̂(A) of A and H is the torus whose character lattice
is the Grothendieck group K(A).

2.3

Let X(H) be the group of characters of H and X(H) ∼= � ⊂ h∗ the lattice
spanned by the differentials of elements in X(H). For any λ ∈ � we denote
the unique element of X(H) with differential λ by eλ.

Decompose g as

g = h ⊕ god with god =
⊕
α∈�

gα, (7)

where � ⊂ � \ {0} is a finite subset and H acts on gα via the character eα .
We refer to the elements of � as the roots of G. Since H is a maximal torus,
� is independent of the choice of H .

2.4 The irregular connection ∇
Let P be the holomorphically trivial, principal G-bundle on P

1 and consider
the meromorphic connection on P given by

∇ = d −
(

Z

t2
+ f

t

)
dt, (8)

where Z,f ∈ g.
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The connection ∇ has a pole of order 2 at t = 0 and a pole of order 1 at ∞.
We henceforth make the following assumptions:

(Z) Z ∈ hreg = h \ ⋃
α∈� Ker(α) is a regular element of h.

(f ) f ∈ god ⊂ g.

The reader unfamiliar with algebraic groups may wish to consider the case
when G = GLn(C) and Z is a diagonal matrix with distinct eigenvalues. Con-
dition (f ) is then the statement that the diagonal entries of the matrix f are
zero.

2.5 Stokes rays and sectors

Definition A ray is a subset of C
∗ of the form R>0 exp(iπφ). The Stokes

rays of the connection ∇ are the rays R>0Z(α), α ∈ �. The Stokes sectors
are the open regions of C

∗ bounded by them. A ray is called admissible if it
is not a Stokes ray.

2.6 Canonical fundamental solutions

The Stokes data of the connection ∇ are defined using fundamental solutions
with prescribed asymptotics. We first recall how these are characterised.

Given a ray r in C, we denote by Hr the corresponding half-plane

Hr = {z = uv : u ∈ r,Re(v) > 0} ⊂ C
∗. (9)

The following basic result is well-known for G = GLn(C) and Z regular (see,
e.g. [28, pp. 58–61]) and was extended in [5] to the case of complex reductive
groups. It is proved in [8] for an arbitrary algebraic group.

Theorem Given an admissible ray r , there is a unique holomorphic function
Yr : Hr → G such that

dYr

dt
=

(
Z

t2
+ f

t

)
Yr, (10)

Yr · eZ/t → 1 as t → 0 in Hr . (11)

2.7

The uniqueness part of Theorem 2.6 relies upon the following statement
which is proved in [8] (see [5, Lemma 22] for the case of G reductive).

Proposition Let r, r ′ be two rays such that r = −r ′, and g ∈ G an element
such that

e−Z/t · g · eZ/t → 1 as t → 0 in Hr ∩ Hr ′ .
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Then, g = exp(X) where X lies in

⊕
α:Z(α)∈�(r,r ′)

gα ⊂ g,

with �(r, r ′) ⊂ C
∗ the closed convex sector bounded by r and r ′.

Proposition 2.7 implies in particular that if the rays r, r ′ are admissible
and such that the sector �(r, r ′) does not contain any Stokes rays of ∇ , the
element g ∈ G determined by

Yr(t) = Yr ′(t) · g for t ∈ Hr ∩ Hr ′

is equal to 1.

2.8 Stokes factors

Assume now that  is a Stokes ray. Let r± be small clockwise (resp. anti-
clockwise) perturbations of  such that the convex sector �(r−, r+) does not
contain any Stokes rays of ∇ other than .

Definition The Stokes factor S corresponding to  is the element of G de-
fined by

Yr+(t) = Yr−(t) · S for t ∈ Hr+ ∩ Hr− .

By Proposition 2.7, the definition of S is independent of the choice of r±.

2.9 Stokes multipliers

An alternative but closely related system of invariants are the Stokes multipli-
ers of the connection ∇ . These depend on a choice of a ray r such that both r

and −r are admissible.

Definition The Stokes multipliers of ∇ corresponding to r are the elements
S± ∈ G defined by

Yr,±(t) = Y−r (t) · S±, t ∈ H−r

where Yr,+ and Yr,− are the analytic continuations of Yr to H−r in the anti-
clockwise and clockwise directions respectively.

Note that the multipliers S± remain constant under a perturbation of r so
long as r and −r do not cross any Stokes rays.
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2.10

To relate the Stokes factors and multipliers, set r = R>0 exp(iπθ) and label
the Stokes rays as j = R>0 exp(iπφj ), with j = 1, . . . ,m1 + m2 where

θ < φ1 < · · · < φm1 < θ + 1 < φm1+1 < · · · < φm1+m2 < θ + 2.

The following result is immediate upon drawing a picture

Lemma The following holds

S+ = Sm1
· · ·S1 and S− = S−1

m1+1
· · ·S−1

m1+m2
.

The Stokes factors therefore determine the Stokes multipliers for any ray
r . In fact, conversely, the Stokes multipliers for a single ray r determine all
the Stokes factors, although this is not so easy to see. It will follow from
Proposition 3.9 below.

2.11 Isomonodromic families of connections

We discus below isomonodromic deformations of ∇ . Their main interest from
our point of view, indeed one of the starting points of the present work, is the
isomonodromy equations (12) which bear a striking resemblance to the non–
linear system of PDEs (2) appearing in Joyce’s work [13].

Let U ⊂ hreg be an open set and consider a family of connections of the
form

∇(Z) = d −
(

Z

t2
+ f (Z)

t

)
dt,

where Z varies in U and the dependence of f (Z) ∈ god with respect to Z is
arbitrary.

Definition The family of connections ∇(Z) is isomonodromic if for any Z0 ∈
U , there exists a neighborhood Z0 ∈ U0 ⊂ U and a ray r such that ±r are
admissible for all ∇(Z), Z ∈ U0 and the Stokes multipliers S±(Z) of ∇(Z)

relative to r are constant on U0.

The isomonodromy of the family ∇(Z) may also be defined as the con-
stancy of the Stokes factors. This requires a little more care since, as pointed
out in [3, p. 190] for example, Stokes rays may split into distinct rays under
arbitrarily small deformations of Z.

Call a sector � ⊂ C
∗ admissible if its boundary rays are admissible.
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Proposition The family of connections ∇(Z) is isomonodromic if, and only
if, for any connected open subset U0 ⊂ U and any convex sector � which is
admissible for all ∇(Z), Z ∈ U0, the clockwise product

�∏
⊂�

S(Z)

of Stokes factors corresponding to the Stokes rays contained in � is constant
on U0.

Proof This follows from the fact that Stokes factors and multipliers determine
each other by Lemma 2.10 and Proposition 3.9. �

2.12 Isomonodromy equations

The following characterisation of isomonodromic deformations was obtained
by Jimbo–Miwa–Ueno in the case G = GLn [11] and adapted to the case of
a complex, reductive group by Boalch [3, Appendix]. Its proof carries over
verbatim to the case of a general algebraic group.

Theorem Assume that f varies holomorphically in Z. Then, family of con-
nections ∇(Z) is isomonodromic if, and only if f satisfies the PDE

dfα =
∑

β,γ∈�
β+γ=α

[fβ,fγ ]d logγ. (12)

Remark Equations (12) form a first order system of integrable non-linear
PDEs and therefore possess a unique holomorphic solution f (Z) defined
in a neighbourhood of a fixed Z0 ∈ hreg and subject to the initial condition
f (Z0) = f0 ∈ [h,g].

Remark Jimbo–Miwa–Ueno and Boalch also give an alternative characterisa-
tion of isomonodromy in terms of the existence of a flat connection on P

1 ×U

which has a logarithmic singularity on the divisor {t = ∞} and a pole of order
2 on {t = 0}, and restricts to ∇(Z) on each fibre {Z} × P

1. This connection is
given by

∇ = d −
[(

Z

t2
+ f

t

)
dt +

∑
α∈�

fα

dα

α
+ dZ

t

]
.

One can check directly that the flatness of this connection is equivalent
to (12).
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3 The Stokes map

In this section we state the main results of [8]. These express the logarithms
of the Stokes factors of the connection ∇ as explicit, universal Lie series in
the variables fα and, conversely, the fα as Lie series in the logarithms of the
Stokes factors, thus explicitly solving a Riemann–Hilbert problem.

3.1 Completion with respect to finite-dimensional representations

Our formulae are more conveniently expressed inside the completion Ûg of
Ug with respect to the finite-dimensional representations of G. We review
below the definition of Ûg.

Let Vec be the category of finite-dimensional complex vector spaces and
Rep(G) that of finite-dimensional representations of G. Consider the forget-
ful functor

F : Rep(G) → Vec.

By definition, Ûg is the algebra of endomorphisms of F . Concretely, an
element of Ûg is a collection � = {�V }, with �V ∈ EndC(V ) for any
V ∈ Rep(G), such that for any U,V ∈ Rep(G) and T ∈ HomG(U,V ), the
following holds

�V ◦ T = T ◦ �U.

There are natural homomorphisms Ug → Ûg and G → Ûg mapping x ∈
Ug and g ∈ G to the elements �(x), �(g) which act on a finite-dimensional
representation ρ : G → GL(V ) as ρ(x) and ρ(g) respectively. These homo-
morphisms are well-known to be injective (see e.g. [8, Lemma 4.1]) and we

will use them to think of Ug as a subalgebra of Ûg and G as a subgroup of
the group of invertible elements of Ûg respectively.

3.2 Representing Stokes factors

Fix a Stokes ray  of the connection ∇ . We show below how to represent the
corresponding Stokes factor S in two different ways: by elements εα ∈ god
and by elements δγ ∈ Ug.

Consider the subalgebra

n =
⊕

α:Z(α)∈

gα ⊂ g.

The elements of n are nilpotent, that is they act by nilpotent endomor-
phisms on any finite-dimensional representation of G. It follows that the ex-
ponential map exp : n → G is an isomorphism onto the unipotent subgroup
N = exp(n) ⊂ G.
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By Proposition 2.7, the Stokes factor S lies in N. For the first represen-
tation of S, write

S = exp

( ∑
α:Z(α)∈

εα

)
(13)

for uniquely defined elements εα ∈ gα .
For the second, we compute the exponential (13) in Ûg and decompose the

result along the weight spaces

Ûgγ = {x ∈ Ûg| ad(h)x = γ (h)x, ∀h ∈ h}, γ ∈ h
∗

of the adjoint action of h. This yields elements δγ ∈ (Un)γ such that

S = 1 +
∑

γ∈�:Z(γ )∈

δγ , (14)

where � ⊂ h∗ is the lattice generated by the set of roots � and the above
identity is to be understood as holding in any finite-dimensional representa-
tion of G.

These two representations of S are related as follows.

Lemma

(i) Let γ ∈ � be such that Z(γ ) lies on the Stokes ray . Then, δγ is given
by the finite sum

δγ =
∑
n�1

∑
αi∈�

Z(αi)∈,
α1+···+αn=γ

1

n! εα1 · · · εαn. (15)

(ii) Conversely, let α ∈ � be such that Z(α) ∈ . Then, εα is given by the
finite sum

εα =
∑
n�1

∑
γi∈�

Z(γi)∈,
γ1+···+γn=α

(−1)n−1

n
δγ1 · · · δγn. (16)

Proof These are the standard expansions of exp : n → N and log : N →
n. �

3.3 Formula for the Stokes factors

We now give an explicit formula for the Stokes factors of the connection ∇
in terms of iterated integrals.
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Definition Set M1(z1) = 2πi and, for n � 2, define the function Mn :
(C∗)n → C by the iterated integral

Mn(z1, . . . , zn) = 2πi

∫
C

dt

t − s1
◦ · · · ◦ dt

t − sn−1
,

where si = z1 + · · · + zi , 1 � i � n and the path of integration C is the line
segment [0, sn], perturbed if necessary to avoid any point si ∈ [0, sn] by small
clockwise arcs.

Theorem ([8]) The weight components δγ of the Stokes factor S corre-
sponding to the ray  are given by

δγ =
∑
n�1

∑
αi∈�

α1+···+αn=γ

Mn(Z(α1), . . . ,Z(αn))fα1fα2 · · ·fαn, (17)

where the equality is to be understood as holding in any finite-dimensional
representation of G and the sum over n is absolutely convergent.

3.4 The Stokes map

Since the sets {α ∈ � : Z(α) ∈ } partition � as  ranges over the Stokes rays
of ∇ , we may assemble the elements εα corresponding to different Stokes
rays and form the sum

ε =
∑
α∈�

εα ∈
⊕
α∈�

gα.

For fixed Z ∈ h, we shall refer to the map

S :
⊕
α∈�

gα −→
⊕
α∈�

gα

mapping f to ε as the Stokes map.

3.5 Formula for the Stokes map

We next state a formula for the Stokes map giving the element ε in terms of
f . We first define the special functions appearing in this formula.

Definition The function Ln : (C∗)n → C is given by L1(z1) = 2πi and, for
n � 2,

Ln(z1, . . . , zn) =
n∑

k=1

∑
0=i0<···<ik=n

sij −sij−1∈R>0·sn

(−1)

k

k−1 k−1∏
j=0

Mij+1−ij (zij+1, . . . , zij+1),
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where sj = z1 + · · · + zj .

Remark Note that on the open subset

(z1, . . . , zn) ∈ (C∗)n such that si /∈ [0, sn] for 0 < i < n

the inner sum above is empty unless k = 1 and one therefore has

Ln(z1, . . . , zn) = Mn(z1, . . . , zn).

Thus Ln agrees with Mn on the open subset where it is holomorphic and
differs by how it has been extended onto the cutlines.

3.6

The functions Ln are more complicated to define than the functions Mn. Un-
like the latter however, they give rise to Lie series as the following result
shows.

Theorem ([8])

(i) Let x1, . . . , xn be elements in a Lie algebra L. For any (z1, . . . , zn) ∈
(C∗)n, the finite sum

∑
σ∈Symn

Ln(zσ(1), · · · , zσ(n))xσ(1) · · ·xσ(n)

is a Lie polynomial in x1, . . . , xn and therefore lies in L ⊂ U L.
(ii) The element ε = S(f ) is given by a Lie series in the variables {fα}α∈�,

given by

εα =
∑
n�1

∑
αi∈�

α1+···+αn=α

Ln(Z(α1), . . . ,Z(αn))fα1fα2 · · ·fαn. (18)

As a series in n, (18) converges uniformly on compact subsets of god.

3.7 Inverse of the Stokes map

By Theorem 3.6, the Stokes map S : god → god is holomorphic, satisfies
S(0) = 0 and its differential at f = 0 is invertible. By the inverse function
Theorem, S possesses an analytic inverse S −1 defined on a neighborhood of
ε = 0.
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Theorem ([8]) The Taylor series of S −1 at ε = 0 is given by a Lie series in
the variables {εα}α∈� of the form

fα =
∑
n�1

∑
αi∈�

α1+···+αn=α

Jn(Z(α1), . . . ,Z(αn)) εα1εα2 · · · εαn (19)

for some special functions Jn : (C∗)n → C.

Remark It follows from Theorem 3.7 that whenever the sum (19) is abso-
lutely convergent over n, it inverts the Stokes map S , in that the connection
(8) determined by f = ∑

α fα has Stokes factors given by (13).

3.8 The functions Jn

The functions Jn appearing in Theorem 3.7 are explicitly described in [8]
as sums of products of the functions Ln indexed by plane rooted trees. For
example

(2πi)3J3(z1, z2, z3)

= L2(z1, z2)L2(z1 + z2, z3) − L3(z1, z2, z3) + L2(z1, z2 + z3)L2(z2, z3)

corresponding to the three distinct plane rooted trees with 3 leaves.

Theorem ([8]) The function Jn : (C∗)n → C is continuous and holomorphic
on the complement of the hyperplanes

Hij = {zi + · · · + zj = 0}, 1 � i < j � n

in the domain

Dn = {(z1, . . . , zn) ∈ (C∗)n| zi/zi+1 /∈ R>0 for 1 � i < n}
Moreover, it satisfies the differential equation

dJn(z1, . . . , zn)

=
n−1∑
i=1

Ji(z1, . . . , zi)Jn−i (zi+1, . . . , zn)d log

(
zi+1 + · · · + zn

z1 + · · · + zi

)

together with the conditions J1(z) = 1/2πi and

Jn(z1, . . . , zn) = 0 if z1 + · · · + zn = 0

for n � 2.
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Remark It follows from Theorem 3.8 that the functions Jn are the same as
the functions Fn appearing in Joyce’s paper [13] and alluded to in the Intro-
duction, at least on the dense open subset where they are holomorphic.

3.9 Representing Stokes multipliers

We next show how to represent the Stokes multipliers S± by an element κ ∈
Ûg.

Let r = R>0e
iπθ be the ray with respect to which S± are defined and ±iHr

the connected components of C \ R eiπθ . These determine a partition of � =
�+ � �− given by

�± = {α ∈ � : Z(α) ∈ ±iHr}.
Let �± ⊂ h∗ \ {0} be the cones spanned by the linear combinations of ele-
ments in �Z± with coefficients in N>0. Similarly to Sect. 3.2, it follows from
Proposition 2.7 that there is a unique element

κ =
∑

γ∈�+��−
κγ ∈ Ûg

such that the Stokes multipliers S± are equal to

S+ = 1 +
∑

γ∈�+
κγ , (S−)−1 = 1 +

∑
γ∈�−

κγ .

Given γ ∈ �+, set

φ(γ ) = 1

π
argZ(γ ) ∈ (θ, θ + 1).

The following result gives the relation between the elements κ and δ.

Proposition

(i) For all γ ∈ �+, there is a finite sum

κγ =
∑
n�1

∑
γ1+···+γn=γ

φ(γ1)>···>φ(γn)

δγ1 · · · δγn, (20)

where the sum is over elements γi ∈ �+.
(ii) Conversely, for γ ∈ �+

δγ =
∑
n�1

∑
γ1+···+γn=γ

φ(γ1+···+γi)>φ(γ )

(−1)n−1κγ1 · · ·κγn. (21)
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Proof (i) follows from substituting (14) into the formula of Lemma 2.10. (ii)
follows from Reineke’s inversion of formula (20) [21, Sect. 5]. �

3.10

The following diagram summarizes the relationships between the elements
δ, ε representing the Stokes factors, the element κ representing the Stokes
multipliers, and the element f ∈ god defining ∇ .

(f )

Stokes
(18)

(ε)

Stokes−1

(19)

exp
(15)

(δ)

log
(16)

clockwise multiplication
(20)

(κ)

Reineke inversion
(21)

These related systems of invariants will appear again in Sect. 5 in the context
of stability conditions on abelian categories.

4 Ringel–Hall algebras

In this section, we review the definition of the Hall algebra of an abelian
category A. We shall in fact restrict ourselves to the case where A =
Mod(R) is the category of finite-dimensional, left modules over a fixed finite-
dimensional, associative C-algebra R. It should be possible to generalize our
main results to include other abelian categories, for example categories of
coherent sheaves, but rather than working in maximal generality we prefer
to focus on a case where the underlying ideas are not clouded by technical
issues.

4.1 The Grothendieck group K(A)

Since the category A = Mod(R) has finite length and finitely many simple
modules S1, . . . , SN , up to isomorphism, the Grothendieck group K(A) is a
free abelian group of finite rank generated by the classes [Si]

K(A) = Z[S1] ⊕ · · · ⊕ Z[SN ].
The positive and non-negative cones K>0(A) ⊂ K�0(A) ⊂ K(A) are defined
by

K>0(A) = {[M] : 0 = M ∈ A} and K�0(A) = K>0(A) � {0}.
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4.2 The Ringel–Hall algebra

There are many variants of the Hall algebra of A, see for example [26] for
a survey of Hall algebras over finite fields. We shall work over C using con-
structible functions, an idea originally due to Schofield [27] and later taken
up by Lusztig [19] and Riedtmann [23]. The precise construction we use was
sketched by Kapranov and Vasserot [16] and described in detail by Joyce [12].

Recall that a complex-valued function f : X → C on a variety X is con-
structible if it is of the form

f =
k∑

i=1

ai1Yi

for complex numbers a1, . . . , ak and locally-closed subvarieties Yi ⊂ X. Such
a function can be integrated by using the Euler characteristic as a measure
[20]. By definition

∫
X

f dχ =
k∑

i=1

aiχ(Yi),

where χ(Z) is the topological Euler characteristic of a complex variety Z

endowed with the analytic topology.
Given an integer d � 0, there is an affine variety Repd parameterising

R-module structures on the vector space C
d . The moduli stack Md of R-

modules of dimension d is the quotient

Md = Repd /GLd(C).

By definition, a constructible function on Md is a GLd(C)-equivariant con-
structible function on the affine variety Repd

We define Hd(A) to be the space of constructible functions on Md and set

H(A) =
⊕
d�0

Hd(A). (22)

Note that elements of H(A) can be thought of as functions on modules that
are constant on isomorphism classes. Given f ∈ H(A), we denote its value
on a module M by f (M). We say that an element of H(A) is supported on a
certain class of modules to mean that its value on all other modules is zero.

Theorem (Kapranov-Vasserot [16], Joyce [12]) There is an associative prod-
uct

∗: H(A) ⊗ H(A) → H(A)
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for which

(f1 ∗ · · · ∗ fn)(M) =
∫

f1(M1/M0) · · ·fn(Mn/Mn−1) dχ,

where the integral is over the variety Flagn(M) parameterising flags

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

of submodules of M of length n. The characteristic function of the zero mod-
ule 10 is a unit for this multiplication.

Proof The case n = 2 is proved in [12, Theorem 4.3]. Joyce considers the
morphism σ({1,2}) from the stack of short exact sequences in A to the stack
of objects of A which on geometric points takes a short exact sequence of
modules

0 −→ A −→ M −→ B −→ 0

to the module M . Note that this morphism induces injections on stabilizer
groups since an isomorphism of short exact sequences is determined by its ac-
tion on the middle term. Thus Joyce’s pushforward map on constructible func-
tions is just given by integrating along the fibres of the morphism σ({1,2})
which are precisely the varieties Flag2(M) of the statement. The extension to
the product of n elements follows by an induction argument. �

Note that the algebra H(A) is graded by K�0(A):

H(A) =
⊕

γ∈K�0(A)

Hγ (A),

where Hγ (A) is the subspace of functions supported on modules of class
γ . This grading is a refinement of the Z�0-grading given by (22) via the
homomorphism K�0(A) → Z�0 mapping γ to the dimension of the modules
of class γ .

4.3 The bialgebra C(A)

If the moduli stack Md has positive dimension, the space Hd(A) of con-
structible functions on it is very large since it contains the characteristic func-
tions of points. It is therefore usual to consider a subalgebra generated by
some natural set of elements.

For each γ ∈ K�0(A), let κγ ∈ Hγ (A) be the characteristic function of the
set of modules of class γ

κγ (M) =
{

1 if [M] = γ ,

0 otherwise.
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This is a constructible function because the class of a module in K(A) is
constant in families. Let C(A) ⊂ H(A) be the subalgebra generated by the
elements κγ :

C(A) = 〈
κγ : γ ∈ K�0(A)

〉 ⊂ H(A)

and note that C(A) is a Z�0-graded (and, a fortiori, a K�0(A)-graded) alge-
bra with finite-dimensional homogeneous components.

The algebra C(A) possesses the structure of a bialgebra. To see this, note
first that the tensor product H(A) ⊗ H(A) embeds into H(A × A) by setting

(f ⊗ g)(M,N) = f (M)g(N).

Define a map � : H(A) → H(A × A) by

�(f )(M,N) = f (M ⊕ N).

The image of � need not be contained in H(A) ⊗ H(A) ⊂ H(A × A) in
general. The following result is due to Joyce [12] and builds upon earlier
work of Ringel [25].

Theorem The map � restricts to a coassociative coproduct

� : C(A) → C(A) ⊗ C(A),

preserving the K�0(A) grading. The homomorphism η : C(A) → C given
by evaluation on the zero module η(f ) = f (0) is a counit for �. The data
(∗,1,�,η) endows C(A) with the structure of a cocommutative bialgebra.

Proof This follows from the proof of [12, Theorem 4.20] using the fact that

�(κγ ) =
∑

γ1+γ2=γ

κγ1 ⊗ κγ2,

which is immediately verified by evaluating on a pair of modules (M,N). �

4.4 The Ringel–Hall Lie algebra

Recall that an element f of a bialgebra is primitive if �(f ) = f ⊗ 1 + 1 ⊗f ,
and that the subspace of such elements is a Lie algebra under the commutator
bracket. Recall also that a module M ∈ A is indecomposable if

M = N ⊕ P =⇒ N = 0 or P = 0.

In particular, the zero module is indecomposable.
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Lemma An element f ∈ C(A) is primitive if, and only if it is supported on
nonzero indecomposable modules.

Proof According to the definition of the coproduct the primitive elements
of C(A) are those satisfying f (M ⊕ N) = f (M)10(N) + 10(M)f (N). In
particular if M and N are nonzero then f (M ⊕ N) = 0. Moreover f (0) =
f (0) + f (0) so f (0) = 0. Hence f is supported on nonzero indecomposable
modules. The converse is easily checked. �

We write n(A) for the subspace of C(A) consisting of primitive elements.
Thus n(A) is a Lie algebra which we call the Ringel–Hall Lie algebra of A.
Note that the grading on C(A) induces a grading

n(A) =
⊕

α∈K>0(A)

nα(A).

One can use the grading of n(A) to form a larger Lie algebra b(A) = h(A) ⊕
n(A) by endowing

h(A) = HomZ(K(A),C)

with the trivial bracket, and setting

[Z,f ] = Z(α)f for any Z ∈ h(A), f ∈ nα(A).

We shall refer to b(A) as the extended Ringel–Hall Lie algebra of A.

Example Let Q be a finite quiver and R its path algebra. Assume that Q does
not have oriented cycles, so that R is finite-dimensional. A simple argument
due to Reineke [21, Lemma 4.4] shows that C(A) coincides with the compo-
sition algebra of A, that is the subalgebra of H(A) generated by the charac-
teristic functions κ[Si ] of the simple modules. In this case, n(A) is isomorphic
to the positive part n+ of the Kac–Moody Lie algebra g = n− ⊕h⊕n+ corre-
sponding to the undirected graph underlying Q and b(A) to the correspond-
ing Borel subalgebra h⊕n+. This result was first proved over a finite field by
Ringel [24]. A characteristic zero result was later obtained by Schofield [27].
For the exact statement made above we refer to Joyce [12, Example 4.25] and
in the finite-type case to Riedtmann [23].

4.5 Primitive generation of C(A)

Recall that a non-zero element c in a coalgebra C is grouplike if �(c) = c⊗c.

Lemma The element 1 = 10 is the only grouplike element in C(A).
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Proof If f ∈ C(A) is grouplike, then, for any module M ∈ A and p ∈ N
∗,

f (M⊕p) = f (M)p . Since f lies in H(A) = ⊕
d∈N

Hd(A), it is supported
on modules of dimension � D for large enough D. Choosing p such that
p dimM > D shows that f (M) = 0 unless M = 0. In the latter case we have
f (0) = f (0 ⊕ 0) = f (0)2, whence f = 1 since f = 0 and therefore f =
10. �

Proposition The inclusion n(A) ⊂ C(A) identifies C(A) as a bialgebra with
the universal enveloping algebra Un(A) of n(A).

Proof We claim first that C(A) is connected, that is that its coradical is
one-dimensional. Indeed, since C(A) is cocommutative and defined over
an algebraically closed field, any simple subcoalgebra C′ ⊂ C(A) is one-
dimensional [15, p. 8] and therefore spanned by an element c′ which, up to a
scalar, is necessarily grouplike. By Lemma 4.5, C′ = C1M0 . The proposition
now follows from the Milnor–Moore Theorem (see, e.g. [15, Theorem 21] or
[1, Theorem 2.5.3]). �

4.6 Completion of C(A)

For each d � 1, the subspace C>d(A) ⊂ C(A) of functions supported on
modules of dimension > d is an ideal. Consider the finite-dimensional alge-
bra

C�d(A) = C(A)/C>d(A)

and the corresponding inverse system · · · → C�d(A) → ·· · → C�0(A) = C.

By definition, the completion Ĉ(A) is the limit

Ĉ(A) = lim←− C�d(A) =
∏
d�0

Cd(A).

For any d ∈ N, set

C�d(A)+ = {f ∈ C�d(A)|f (0) = 0} and

C�d(A)× = {f ∈ C�d(A)|f (0) = 1}.
Then, C�d(A)+ is a Lie subalgebra of C�d(A) and C�d(A)× is a subgroup
of the group of invertible elements in C�d(A) since f ∈ C�d(A) is invertible
if, and only if, f (0) = 0. The following is standard.

Lemma The standard exponential and logarithm functions

exp(x) =
∑
n�0

xn

n! and log(y) =
∑
n�1

(−1)n−1

n
(y − 1)n
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yield well-defined maps

exp : C�d(A)+ → C�d(A)× and log : C�d(A)× → C�d(A)+

which are each other’s inverse.

Similarly, one can define a Lie subalgebra Ĉ(A)+ of Ĉ(A) and a sub-
group Ĉ(A)× of the group of invertible elements of Ĉ(A). By Lemma
4.6, the exponential and logarithm functions give mutually inverse maps

Ĉ(A)+ � Ĉ(A)×.

4.7 The pro-unipotent group N̂(A)

The completion Ĉ(A) inherits a bialgebra structure from C(A) since

�(Cd(A)) ⊂
⊕

a+b=d

Ca(A) ⊗ Cb(A).

Set n>d(A) = n(A) ∩ C>d(A) and

n�d(A) = n(A)/n>d(A).

Then, the Lie algebra

n̂(A) = lim←− n�d(A) =
∏
d�0

nd(A)

is the subspace of primitive elements in Ĉ(A) and a Lie subalgebra of Ĉ(A)+
by Lemma 4.4.

Define the Ringel–Hall group N̂(A) of A to be the set of grouplike el-
ements of Ĉ(A). Since any grouplike element f ∈ Ĉ(A) satisfies f (0) =
η(f ) = 1, this is a subset of the set Ĉ(A)× of invertible elements. It is easy
to check using the bialgebra property that it is also a subgroup, i.e. is closed
under multiplication.

Proposition

(i) The exponential and logarithm maps restrict to isomorphisms

exp : n̂(A) → N̂(A) and log : N̂(A) → n̂(A).

(ii) The group N̂(A) is a pro-unipotent group with Lie algebra n̂(A).

Proof (i) readily follows from Lemma 4.6 and the fact that � : Ĉ(A) →
Ĉ(A) ⊗ Ĉ(A) is an algebra homomorphism (see, e.g. [22, Theorem 3.2]).
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(ii) Let π�d be the projection C(A) → C�d(A). As an abstract subgroup
of Ĉ(A), N̂(A) is the inverse limit of the groups N�d(A) = π�d(N̂(A)). By
(i),

N�d(A) = π�d(N̂(A)) = π�d(exp( n̂(A))) = exp(n�d(A)).

Since any element f ∈ C�d(A)+ ⊃ n�d(A) is nilpotent, Lemma 4.6 implies
that

N�d(A) = {f ∈ C�d(A)×| log(f ) ∈ n�d(A)}
is a Zariski closed, unipotent subgroup of C�d(A)× with Lie algebra n�d(A).
The conclusion follows since the projection maps N�d(A) → N�d ′(A), d �
d ′ are clearly regular. �

4.8 The pro-solvable group B̂(A)

Let H(A) = HomZ(K(A),C
∗) be the torus of characters of K(A). H(A)

acts by bialgebra automorphisms on C(A) by

∑
γ∈K�0(A)

Xγ �→
∑

γ∈K�0(A)

ζ(γ )Xγ ,

where ζ ∈ H(A). This action extends to Ĉ(A) and leaves N̂(A) invariant. By
definition, B̂(A) is the semidirect product

B̂(A) = H(A) � N̂(A) = lim←− H(A) � N�d(A). (23)

We refer to B̂(A) as the extended Ringel–Hall group of A. B̂(A) is a pro-
solvable, pro-algebraic group with maximal torus H(A). Its Lie algebra is

b̂(A) = h(A) � n̂(A),

where h(A) = Hom(K(A),C) is the Lie algebra of H(A).

5 Stability conditions and wall-crossing

5.1 Stability conditions

We shall define a stability condition on A to be a group homomorphism

Z : K(A) → C
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such that Z(K>0(A)) ⊂ H, where H ⊂ C is the upper half-plane.2 Let
Stab(A) denote the set of all stability conditions on A. Since the positive
cone K>0(A) is generated by the classes of the simple modules S1, . . . , SN

there is a bijection

Stab(A) ∼= H
N

sending a stability condition Z to the N -tuple (Z(S1), . . . ,Z(SN)). We may
therefore regard Stab(A) as a complex manifold.

Let Z be a stability condition on A. Each nonzero module M ∈ A has a
phase

φ(M) = 1

π
argZ(M) ∈ (0,1).

A module M is said to be Z-semistable if it is nonzero and if

0 = A ⊂ M =⇒ φ(A) � φ(M).

5.2 Wall-crossing

For any pair of classes β,γ ∈ K>0(A) which are not proportional over Q,
consider the real codimension one submanifold Wβ,γ of Stab(A) given by

Wβ,γ = {Z ∈ Stab(A) : Z(β)/Z(γ ) ∈ R>0}.
Wβ,γ is known as a wall.

Fix a class α ∈ K>0(A) and consider the walls Wβ,γ as β,γ ∈ K>0 vary
over the finitely many pairs such that β + γ = α. The connected components
of the complement of these walls in Stab(A) are called chambers. It is clear
that in each chamber the set of semistable objects of type α is constant. How-
ever the set of semistable objects may change as one crosses a wall from one
chamber to a neighbouring one. We refer to this behaviour as wall-crossing.

5.3 The functions δγ

The following result shows that semistability with respect to a given Z ∈
Stab(A) is an open condition. Recall that a family of R-modules over a base
variety S is a vector bundle M on S together with a ring homomorphism
R → EndS(M).

Lemma Given a family of modules over a variety S, the subset of points of S

which correspond to Z-semistable modules is open.

2This does not quite agree with the definition given in [6] where Z is allowed to take K>0(A)

into the half-closed half-plane. The difference will be of no importance in this paper however.
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Proof Fix a class γ ∈ K>0(A). It is immediate from the definitions that a
module M of class γ is Z-semistable if, and only if it is θ -semistable in the
sense of King [17], where θ : K(A) → R is given by

θ(β) = − Im(Z(β)/Z(γ )).

In turn, King shows that θ -semistability coincides with GIT semistability for
the action of a reductive algebraic group on an affine variety [17, Proposi-
tion 3.1]. It follows from this that semistability is an open condition. �

Given Z ∈ Stab(A) and γ ∈ K>0(A) define δγ ∈ Hγ (A) to be the charac-
teristic function of Z-semistable modules of type γ ∈ K(A).

δγ (M) =
{

1 if M is Z-semistable and [M] = γ ,

0 otherwise.

Lemma 5.3 implies that δγ is a constructible function. Clearly δγ depends on
Z ∈ Stab(A) in a discontinuous way because of wall-crossing behaviour.

5.4 Harder–Narasimhan filtrations and Reineke inversion

Since A is a finite length category, the Harder–Narasimhan property holds (in
this context see for example [6, Proposition 2.4]): every nonzero module M

has a unique filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M,

where the successive factors Fi = Mi/Mi−1 are Z-semistable and of strictly
decreasing phases

φ(F1) > · · · > φ(Fn).

The following result is due to Reineke [21].

Theorem For every stability condition Z ∈ Stab(A), and every γ ∈ K>0(A),
the following holds in H(A).

κγ =
∑
n�1

∑
γ1+···+γn=γ

φ(γ1)>···>φ(γn)

δγ1 ∗ · · · ∗ δγn, (24)

δγ =
∑
n�1

∑
γ1+···+γn=γ

φ(γ1+···+γi)>φ(γ )

(−1)n−1κγ1 ∗ · · · ∗ κγn, (25)

where the (finite) sums are over elements γi ∈ K>0(A).
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Proof The first identity follows immediately from the definition of the prod-
uct in H(A) and the existence and uniqueness of Harder–Narasimhan filtra-
tions. The second is proved in [21, Theorem 5.1]. �

The following is a direct consequence of (25)

Corollary The elements δγ lie in the subalgebra C(A) ⊂ H(A) generated
by the elements κγ .

5.5 The elements SS

Let Z ∈ Stab(A) be a stability condition. Given a ray  = R>0e
iπφ , the infi-

nite sum

SS = 1 +
∑

γ∈K>0(A)
Z(γ )∈

δγ

defines an element of Ĉ(A) which has the value 1 on a module M if it is zero
or semistable of phase φ, and has value zero otherwise.

Lemma The element SS is grouplike and therefore lies in N̂(A).

Proof This amounts to the statement that a module M ⊕ N is semistable of
phase φ precisely if M and N are. This is a standard fact but for the reader’s
convenience we sketch the proof. The only non-obvious implication is that if
M and N are semistable of phase φ then so is M ⊕ N . Suppose A ⊂ M ⊕ N

is a subobject with phase φ(A) > φ. We can assume that A is semistable:
otherwise pass to a submodule of larger phase and repeat. The inclusion A ⊂
M ⊕ N gives a nonzero map A → M or A → N . But the image of such a
map has phase larger than φ (because it is a quotient of A which is semistable
of phase > φ) and smaller than φ (because it is a subobject of M or N which
are semistable of phase φ). This gives a contradiction. �

5.6 The element 1A

Let now 1A ∈ Ĉ(A) be the element given by

1A =
∑

γ∈K�0(A)

κγ .

The function 1A takes the value 1 on every module. It is therefore grouplike
and lies in N̂(A).
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5.7 Clockwise product

The Harder–Narasimhan relation (24) can be written more compactly in terms
of the elements SS and 1A as follows

1A =
�∏


SS, (26)

where the product is an infinite product in the group N̂(A) over all rays of
the form  = R>0Z(γ ) for some γ ∈ K>0(A), taken in clockwise order. This
product makes sense in N̂(A) because it is finite when evaluated on modules
M of a fixed type γ ∈ K�0(A).

5.8 Joyce’s elements εα

Given a class α ∈ K>0(A), Joyce defines an element εα ∈ Cα(A) by the finite
sum [13]

εα =
∑
n�1

∑
γ1+···+γn=α

Z(γi)∈R>0Z(α)

(−1)n−1

n
δγ1 ∗ · · · ∗ δγn. (27)

He then shows that εα is supported on indecomposable modules and hence
defines an element εα ∈ nα(A). From our Hopf algebraic perspective, this is
clear: just as in formula (16), (27) expresses the grouplike element SS as an
exponential

SS = exp

( ∑
α∈K>0(A)

Z(α)∈

εα

)
. (28)

Thus, the elements εα are primitive and, by Lemma 4.4 are supported on non-
zero indecomposable objects.

5.9

The relations between the elements ε, δ and κ are summarised in the follow-
ing diagram.

(ε)

exp
(15)

(δ)

log
(27)

Harder-Narasimhan
(24)

(κ)

Reineke inversion
(25)

Note that it is identical to the right-hand part of the diagram of Sect. 3.10.
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6 Stability conditions and Stokes data

We show in this section that a stability condition Z on A defines Stokes data
for an irregular connection on P

1 with values in the Ringel–Hall Lie alge-
bra of A. We show moreover that this connection varies isomonodromically
with Z.

6.1 Irregular B̂A-connections on P
1

We begin by adapting the definition of Stokes data to irregular connections
with values in the pro-solvable group B̂(A) defined in Sect. 4.

Let

� = {α ∈ K>0(A)|nα(A) = 0} ⊂ h(A)∗

be the set of roots of B̂(A) relative to the torus H(A) and set

h(A)reg = h(A) \
⋃
α∈�

Ker(α).

Let P̂ be the holomorphically trivial, principal B̂(A)-bundle on P
1. By this

we mean the following: the group B̂(A) is the inverse limit of the solvable
algebraic groups B�d(A) and P̂ is the limit of the corresponding principal
bundles P�d . In particular, a section of P is holomorphic if the induced sec-
tion of each P�d is.

Fix Z ∈ h(A)reg and consider a connection on P̂ of the form

∇ = d −
(

Z

t2
+ f

t

)
dt,

where f ∈ n̂(A). ∇ is the inverse limit of the connections

∇�d = d −
(

Z

t2
+ π�d(f )

t

)
dt

on P�d , where π�d : n̂(A) → n�d(A) is the projection, and each ∇�d satis-
fies the assumptions of Sect. 2.4. Indeed, H(A) is a maximal torus in B�d(A)

with corresponding root space decomposition (7) given by

b�d(A) = h(A)
⊕
α∈�

dimα�d

nα(A),

Z ∈ h(A) is a regular element and the projection of π�d(f ) onto h(A) is
zero.
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6.2 Canonical fundamental solutions

As in Sect. 2.8, we define a Stokes ray of ∇ to be a ray of the form  =
R>0Z(α) for α ∈ �. Note that there may be an infinite number of such rays.
A ray is admissible if it is not a Stokes ray. Since n(A) is isomorphic to
n�d(A) ⊕ n>d(A) as H(A)-module, an admissible ray for ∇ is admissible
for each ∇�d . One can therefore use the existence and uniqueness statement
of Theorem 2.6 to deduce the following

Theorem Given an admissible ray r , there is a unique holomorphic funda-
mental solution

Yr : Hr → B̂(A)

of ∇ such that Yr(t) · exp(Z/t) → 1 as t → 0 in Hr .

6.3 Stokes factors

The definition of the Stokes factors of ∇ requires a little care since the set
of Stokes rays of ∇ need not be discrete. If r1 = −r2 are two admissible rays
however, ordered so that the closed sector �(r1, r2) ⊂ C

∗ swept by clockwise
rotation from r1 to r2 is convex, there is a unique element S�(r1,r2)

∈ B̂(A)

such that

Yr2 = Yr1 · S�(r1,r2)

on Hr1 ∩ Hr2 . By Proposition 2.7, S�(r1,r2)
is of the form exp(X) where

X ∈
∏
α∈�

Z(α)∈�(r1,r2)

nα(A).

Definition ∇ admits a Stokes factor S ∈ B̂(A) along the Stokes ray  if the
elements S�(r1,r2)

tend to S as the admissible rays r1, r2 tend to  in such a

way that  ∈ �(r1, r2).

Proposition

(i) The connection ∇ admits a Stokes factor S along any Stokes ray .
(ii) Given two admissible rays r1, r2 as above, one has

S�(r1,r2)
=

�∏
⊂�(r1,r2)

S.

Proof Both statements hold for each solvable quotient B�d(A) of B̂(A). �
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6.4 Stokes multipliers

Unlike the definition of the Stokes factors, that of the Stokes multipliers S±
of ∇ relative to the choice of a ray r such that ±r are admissible is straight-
forward and given, as in Sect. 2.9 by

Yr,±(t) = Y−r (t) · S±, t ∈ H−r ,

where Yr,+ and Yr,− are the analytic continuations of Yr to H−r in the an-
ticlockwise and clockwise directions respectively. By Lemma 2.10, S± are
given by the clockwise products over Stokes factors

S+ =
�∏

∈Hir

S and (S−)−1 =
�∏

∈H−ir

S. (29)

6.5 Stability conditions

Assume now that Z ∈ Stab(A) ⊂ h(A) is a stability condition. Note that Z ∈
h(A)reg since Z(α) ∈ H for any α ∈ K>0(A).

For any ray  = R>0e
iπφ , let SS be the characteristic function of

semistable objects of phase φ defined in Sect. 5.5. By (28),

SS = exp

( ∑
α:Z(α)∈

εα

)
,

where εα ∈ n(A)α . This shows in particular the following

Lemma If  is not a Stokes ray of ∇ , then SS = 1.

Thus, only the elements SS corresponding to Stokes rays of ∇ are non-
trivial.

6.6

The following is the main result of this paper.

Theorem

(i) There exists a unique connection ∇A,Z of the form

∇A,Z = d −
(

Z

t2
+ f

t

)
dt (30)

whose Stokes data is given by either of the following equivalent condi-
tions:
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(a) The Stokes factor corresponding to a Stokes ray  = R>0 exp(iπφ)

is the characteristic function SS of Z-semistable modules of phase
φ.

(b) The Stokes multipliers S+, S− relative to the ray r = R>0 are the
function 1A which takes the value 1 on every module, and the iden-
tity element 10 respectively.

(ii) The components of f = ∑
α∈K>0(A) fα are given by the Lie series

fα =
∑
n�1

∑
αi∈K>0(A)

α1+···+αn=α

Jn(Z(α1), . . . ,Z(αn)) εα1 ∗ · · · ∗ εαn,

where the Jn are the functions appearing in Theorem 3.7.
(iii) As Z varies in Stab(A), the family of connections ∇A,Z varies isomon-

odromically. In particular, fα(Z) is a holomorphic function of Z and
satisfies the PDE

dfα =
∑

β+γ=α

[fβ,fγ ]d logγ.

Proof (i) We first show the equivalence of (a) and (b). Note that since Z ∈
Stab(A), the Stokes rays of a connection ∇ of the form (30) are contained
in the upper half plane H. In particular the ray r = R>0 is such that ±r are
admissible and the corresponding Stokes multiplier S− is trivial by (29).

Assume that (a) holds and let R be the set of Stokes rays of ∇ . By (29)

S+ =
�∏

∈R:⊂H

S =
�∏

∈R:⊂H

SS =
�∏

⊂H

SS = 1A,

where the third identity follows from Lemma 6.5 and the last one from the
Harder–Narasimhan relation (26).

The implication (b) ⇒ (a) follows from (29), (26) and the fact that the
relations (24) can be inverted.

The existence and uniqueness of f , and the fact that it is given by the Lie
series (ii) follows from Theorem 3.7 (note that the series (19) is finite since
any α ∈ K>0(A) can only be decomposed as the sum of elements of K>0(A)

in finitely many ways. Thus, the Taylor series of S −1 yields a global inverse
of the Stokes map in this case).

(iii) The first assertion follows from the fact that, by condition (b), the
Stokes multipliers S± are constant functions of Z. The second follows from
Theorem 2.12. Indeed, since the Stokes map has a global inverse, f = f (Z)

varies holomorphically in Z by Remark 2.12 and satisfies the isomonodromy
equations (12). �
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