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Abstract Recently Lewis Bowen introduced a notion of entropy for measure-
preserving actions of a countable sofic group on a standard probability space
admitting a generating partition with finite entropy. By applying an opera-
tor algebra perspective we develop a more general approach to sofic entropy
which produces both measure and topological dynamical invariants, and we
establish the variational principle in this context. In the case of residually
finite groups we use the variational principle to compute the topological en-
tropy of principal algebraic actions whose defining group ring element is in-
vertible in the full group C∗-algebra.

1 Introduction

Recently Lewis Bowen introduced a collection of entropy invariants for
measure-preserving actions of a countable sofic group on a standard prob-
ability space admitting a generating partition with finite entropy [5]. The ba-
sic idea is to model the dynamics of a measurable partition of the probability
space by means of partitions of a finite space on which the group acts in a local
and approximate way according to the definition of soficity. The cardinality
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of the set of all such model partitions is then used to asymptotically gener-
ate a number along a fixed sequence of sofic approximations. This quantity
is then shown to be invariant over all generating measurable partitions with
finite entropy. It might however depend on the choice of sofic approximation
sequence, yielding in general a collection of invariants. A major application
of this sofic measure entropy was the extension of the Ornstein-Weiss entropy
classification of Bernoulli shifts over countably infinite amenable groups to a
large class of nonamenable groups, including all nontorsion countable sofic
groups [5].

Given Bowen’s work, it is natural to ask whether there exist analogous
invariants for continuous actions of a countable sofic group on a compact
metrizable space, and if so whether they are connected to Bowen’s measure
entropy via a variational principle. One might also wonder whether there ex-
ists an alternative approach to sofic measure entropy that enables one to ex-
tend Bowen’s invariants to actions that are not generated by a partition with
finite entropy. Such a general notion of sofic measure entropy would be not
only valuable from a purely measure-dynamical viewpoint but also necessary
for the formulation of a variational principle for topological systems.

The goal of this paper is to provide affirmative answers to all of these
questions. The key is to view the dynamics at the operator algebra level and
replace the combinatorics of partitions with an analysis of multiplicative or
approximately multiplicative linear maps that are approximately equivariant.
As a consequence our definitions of topological and measure entropy will
not involve the counting of partitions but rather the computation of the maxi-
mal cardinality of ε-separated subsets of certain spaces of linear maps, in the
spirit of Rufus Bowen’s approach to topological entropy for Z-actions [6].
In fact our definitions can be translated into the language of ε-separation be-
tween embedded sofic approximations, which can be viewed as systems of
interlocking approximate partial orbits (see Remark 4.4), but we will adhere
throughout to the linear perspective since it is instrumental to our develop-
ment of measure entropy.

It is instructive to compare the situation of sofic measure entropy with the
origins of entropy for single measure-preserving transformations in the work
of Kolmogorov and Sinai [15, 18]. Kolmogorov showed that all dynamically
generating partitions for a given transformation have the same entropy, and
used this to define the entropy of the system when such a partition exists,
assigning the value ∞ otherwise. Sinai then proposed the now standard def-
inition which takes the supremum of the entropies over all partitions. This
gives reasonable values in the absence of a generating partition, in particu-
lar for the identity transformation, and agrees with Kolmogorov’s definition
when a generating partition exists. Lewis Bowen’s sofic measure entropy is
based, in the spirit of Kolmogorov, on the comparison of generating parti-
tions with finite entropy, and leaves open the problem of assigning a value in
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the absence of such a partition. In this case however one cannot extend the
definition by taking a supremum as Sinai did, since Bowen’s entropy can in-
crease under taking factors, in particular for Bernoulli actions of free groups.
Thus a novel strategy is required, and our idea is to apply the notion of dy-
namical generator in the broader operator-algebraic context of finite sets of
L∞

R
functions and even bounded sequences of such functions. Then every ac-

tion admits a dynamical generator, and we show that the entropy as we define
it takes a common value on such generators, in accord with the approaches
of Kolmogorov and Bowen. Since we are no longer working with partitions,
Bowen’s combinatorial arguments must be replaced by a completely differ-
ent type of analysis that plays off the operator and Hilbert space norms at the
function level. The point in using functions is that a continuous spectrum can
witness dynamical behaviour at arbitrarily fine scales, in contrast to the fixed
scale of a partition. In fact one can in principle compute our sofic measure
entropy by means of a single function, since L∞ over a standard probability
space is itself singly generated as a von Neumann algebra. However, for the
proof of the variational principle it is necessary to work with bounded se-
quences of functions, since not all topological systems are finitely generated
in the C∗-dynamical sense.

We begin in Sect. 2 by setting up our operator-algebraic definition of en-
tropy for measure-preserving actions, which at the local level applies to any
bounded sequence in L∞

R
over the measure space in question. For technical

simplicity we will actually work with sequences in the unit ball of L∞
R

, which
via scaling does not affect the scope of the definition. Theorem 2.6 asserts that
two such sequences that are dynamically generating have the same entropy
relative to a fixed sofic approximation sequence, which enables us to define
the global measure entropy of the system without the assumption of a gen-
erating partition with finite entropy. Section 3 is devoted to establishing the
equality with Bowen’s entropy in the presence of a generating partition with
finite entropy. Extending a computation from [5] in the finite entropy setting,
we show in a separate paper that, for a countable sofic group, a Bernoulli ac-
tion with infinite entropy base has infinite entropy with respect to every sofic
approximation sequence [13]. As a consequence, such Bernoulli actions do
not admit a generating countable partition with finite entropy, which in the
amenable case is well known and in the case that the acting group contains
the free group on two generators was established by Bowen in [5].

Once we have set up the measurable framework we then translate every-
thing into topological terms, with locality now referring to sequences in the
unit ball of the C∗-algebra of continuous functions over the compact space
in question (Sect. 4). The arguments in this case are much simpler since one
can work with unital homomorphisms and does not need to worry about con-
trolling an L2-norm under perturbations, which is the source of considerable
technical complications in the measurable setting (cf. Proposition 2.5). As
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before, two dynamically generating sequences have the same entropy (Theo-
rem 4.5), and since dynamically generating sequences always exist by metriz-
ability we thereby obtain a conjugacy invariant. For a topological Bernoulli
action the value of this invariant is easily computed to be the logarithm of the
cardinality of the base. We also show at the end of Sect. 4 that the restric-
tion of a topological Bernoulli action to a proper closed invariant subset has
strictly smaller entropy. This yields an entropy proof of Gromov’s result that
countable sofic groups are surjunctive [11] (see also [19]) in line with what
Gromov observed in the case of amenable groups using classical entropy.

In order to facilitate the comparison with topological entropy in Sects. 6
and 7, we show in Sect. 5 how to express measure entropy in terms of unital
homomorphisms instead of linear maps which are merely approximately mul-
tiplicative. In Sect. 6 we establish the variational principle, which asserts that,
with respect to a fixed sofic approximation sequence, the topological entropy
of a continuous action on a compact metrizable space is equal to the supre-
mum of the measure entropies over all invariant Borel probability measures.

Finally in Sect. 7 we give an application of the variational principle to the
study of algebraic actions of a residually finite group G that complements a
recent result of Lewis Bowen [4]. Given an element f in the integral group
ring ZG which is invertible in the full group C∗-algebra of G, we show that
the topological entropy of the canonical action of G on ̂ZG/ZGf , with re-
spect to any sofic approximation sequence arising from finite quotients of G,
is equal to the logarithm of the Fuglede-Kadison determinant of f as an el-
ement in the group von Neumann algebra of G. In [4] Bowen established
the same result for measure entropy with respect to the normalized Haar
measure under the assumption that f is invertible in �1(G). In the case of
amenable acting groups and classical entropy these relationships were devel-
oped in [8, 9, 16, 17].

In [3] Bowen showed that, when the acting group is amenable and there
exists a generating finite measurable partition, the sofic measure entropy as
defined in [5] is equal to the classical Kolmogorov-Sinai measure entropy,
independently of the sofic approximation sequence. In [14] we show that, for
any measure-preserving action of a countable amenable group on a standard
probability space, the sofic measure entropy defined in Sect. 2 agrees with
its classical counterpart, independently of the sofic approximation sequence.
It follows by the variational principle of Sect. 6 and the classical variational
principle that, for a continuous action of a countable amenable group on a
compact metrizable space, the sofic topological entropy with respect to any
sofic approximation sequence is equal to the classical topological entropy,
which for Z-actions was introduced in [1]. We will also give in [14] a direct
argument for this equality which sheds some more light on the sofic defini-
tion.
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We round out the introduction with some terminology, conventions, and
notation used in the paper, in particular regarding sofic groups and unital
commutative C∗-algebras. Write Sym(F ) for the group of permutations of
a set F , or simply Sym(d) when F = {1, . . . , d}. Let G be a countable dis-
crete group. We write e for its identity element. We say that G is sofic if there
are a sequence {di}∞i=1 of positive integers and a sequence {σi}∞i=1 of maps
s �→ σi,s from G to Sym(di) which is asymptotically multiplicative and free
in the sense that

lim
i→∞

1

di

∣
∣{k ∈ {1, . . . , di} : σi,st (k) = σi,sσi,t (k)}∣∣ = 1

for all s, t ∈ G and

lim
i→∞

1

di

∣
∣{k ∈ {1, . . . , di} : σi,s(k) �= σi,t (k)}∣∣ = 1

for all distinct s, t ∈ G. Such a sequence {σi}∞i=1 for which limi→∞ di = ∞
will be called a sofic approximation sequence for G. We include the condition
limi→∞ di = ∞ as it is crucial for certain results in the paper (in particular
for the variational principle), and note that it is automatic if G is infinite.
Throughout the paper the notation � = {σi : G → Sym(di)}∞i=1 will be tacitly
understood to refer to a fixed sofic approximation sequence which is arbitrary
unless otherwise indicated.

All function spaces will be over the complex numbers, unless the notation
is tagged with the subscript R, in which case we mean the real subspace of
real-valued functions. The unital commutative C∗-algebras that will be en-
countered in this paper are function spaces of the form L∞(X,μ) for a stan-
dard probability space (X,μ) (these are the commutative von Neumann al-
gebras with separable predual), C(X) for a compact metrizable space X, and
C

d for d ∈ N, which can also be viewed as C(X) where X = {1, . . . , d}. The
norm on these C∗-algebras will be written ‖ · ‖∞. The adjoint in each of these
cases is given by pointwise complex conjugation, and for an element f it will
be denoted by either f̄ or f ∗. A ∗-subalgebra of a C∗-algebra is a subalgebra
which is closed under taking adjoints. A linear subspace of a C∗-algebra is
said to be self-adjoint if it is closed under taking adjoints. A projection in a
C∗-algebra is an element p satisfying p2 = p and p∗ = p. Via characteristic
functions, projections in C(X) correspond to clopen subsets of X while pro-
jections in L∞(X,μ) correspond to measurable subsets of X modulo sets of
measure zero.

Throughout we will be working with unital positive linear maps between
unital commutative C∗-algebras, or unital self-adjoint subspaces thereof.
A linear map ϕ : V → W between unital self-adjoint subspaces of uni-
tal commutative C∗-algebras is said to be positive if ϕ(f ) ≥ 0 whenever
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f ≥ 0 and unital if ϕ(1) = 1. In the case that ϕ is positive its norm ‖ϕ‖ =
sup‖f ‖≤1 ‖ϕ(f )‖ is equal to ‖ϕ(1)‖. In particular ‖ϕ‖ = 1 if ϕ is both uni-
tal and positive. Given unital self-adjoint linear subspaces V1 ⊆ V2 of a uni-
tal commutative C∗-algebra and a d ∈ N, every unital positive linear map
ϕ : V1 → C

d admits a unital linear extension ϕ̃ : V2 → C
d with ‖ϕ̃‖ = 1

by applying the Hahn-Banach theorem to each of the d linear functionals
obtained by composing ϕ with the coordinate projections C

d → C. Since
ϕ̃(1) = 1 such an extension is automatically positive (see Sect. 4.3 of [12]).

A unital linear map ϕ : A → B between unital commutative C∗-algebras
is said to be a homomorphism if ϕ(fg) = ϕ(f )ϕ(g) for all f,g ∈ A. By
Gelfand theory every unital commutative C∗-algebra is of the form C(K) for
some compact Hausdorff space K which is unique up to homeomorphism
(in the case of L∞(X,μ) this space is extremely disconnected), and every
unital homomorphism ϕ : C(K1) → C(K2) where K1 and K2 are compact
Hausdorff spaces is given by composition with a continuous map from K2
to K1. In particular, unital homomorphisms are positive. See [12] for more
background on C∗-algebras.

For a d ∈ N we will invariably use ζ to denote the uniform probability
measure on {1, . . . , d}, which will be regarded as a state (i.e., a unital pos-
itive linear functional) on C

d ∼= C({1, . . . , d}) whenever appropriate. Given
a map σ : G → Sym(d), we will also use σ to denote the induced action on
C

d ∼= C({1, . . . , d}), i.e., for f ∈ C
d and s ∈ G we will write σs(f ) to mean

f ◦ σ−1
s .

Given a state μ on a unital commutative C∗-algebra, we will write ‖ · ‖2
for the associated L2-norm f �→ μ(f ∗f )1/2, with μ being understood from
the context. In the case of L∞(X,μ) this will always be the L2-norm with
respect to μ, and for C

d it will always be the L2-norm with respect to ζ , i.e.,
f �→ (d−1 ∑d

k=1 |f (k)|2)1/2.
Actions of a group G on a space X will invariably be denoted by α, al-

though the actual use of this letter will be reserved for the induced action on
the appropriate space of functions over X. For the action on X we will sim-
ply use the concatenation (s, x) �→ sx. Thus αs(f ) for s ∈ G will mean the
function x �→ f (s−1x).

2 Measure entropy

In this section we will define our notion of entropy for measure-preserving ac-
tions of a countable sofic group, as inspired by Bowen’s entropy from [5]. We
will show in Sect. 3 that the two definitions of measure entropy agree in the
presence of a generating countable measurable partition with finite entropy.

Throughout this section and the next G will be a countable sofic group,
(X,μ) a standard probability space, and α an action of G by measure-
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preserving transformations on X. As explained in the introduction, α will ac-
tually denote the induced action of G on L∞(X,μ) by automorphisms, so that
for f ∈ L∞(X,μ) and s ∈ g the function αs(f ) is given by x �→ f (s−1x).

By taking characteristic functions, a measurable partition of X corre-
sponds, modulo sets of measure zero, to a partition of unity in L∞(X,μ)

consisting of projections. We will abuse notation by using the same symbol
to denote both.

The von Neumann subalgebras of L∞(X,μ) are, by Kaplansky’s den-
sity theorem [12, Theorem 5.3.5], precisely the unital ∗-subalgebras which
are closed in the L2 norm. These correspond, modulo measure algebra iso-
morphism, to the measurable factors of X via composition of functions. So
the G-invariant von Neumann subalgebras of L∞(X,μ) correspond, modulo
measure algebra G-isomorphism, to the dynamical factors of X with respect
to the action of G. A set 	 ⊆ L∞(X,μ) is said to be dynamically generating
if it is not contained in any proper G-invariant von Neumann subalgebra of
L∞(X,μ). When 	 is a partition of unity consisting of projections this is
equivalent to the usual notion of a generating partition.

Our first goal will be to define the entropy h�,μ(S) of a sequence S of
elements in the unit ball of L∞

R
(X,μ). We could similarly define the entropy

of an arbitrary subset of the unit ball of L∞
R

(X,μ), but for the purpose of re-
ducing the number of parameters in the definitions we will use the sequential
formalism (see however the discussion after Definition 2.7). We will show
in Theorem 2.6 that h�,μ(S) depends only on the G-invariant von Neumann
subalgebra of L∞(X,μ) generated by S , so that we can define the global
entropy h�,μ(X,G) as the common value of h�,μ(S) over all dynamically
generating sequences S in the unit ball of L∞

R
(X,μ).

Note that, since (X,μ) is assumed to be a standard probability space, there
always exists a generating finite partition of unity in L∞(X,μ). Indeed we
can identify (X,μ) with a subset of [0,1] consisting of a subinterval with
Lebesgue measure and countably many atoms and take our partition of unity
to consist of the functions x �→ x and x �→ 1 − x. Thus for the purpose of
defining global measure entropy we could instead simply work with finite
partitions of unity in L∞

R
(X,μ). However, the use of sequences is necessary

in order to establish the variational principle (Theorem 6.1) due to the fact
that continuous actions on compact metrizable spaces need not be finitely
generated at the function level.

Let σ be a map from G to Sym(d) for some d ∈ N. Let S = {pn}∞n=1 be a
sequence of elements in the unit ball of L∞

R
(X,μ) (with respect to the L∞-

norm). Let F be a nonempty finite subset of G and m ∈ N. We write SF,m

for the set of all products of the form αs1(f1) · · ·αsj (fj ) where 1 ≤ j ≤ m

and f1, . . . , fj ∈ {p1, . . . , pm} and s1, . . . , sj ∈ F . On the set of unital posi-
tive linear maps from some self-adjoint unital linear subspace of L∞(X,μ)
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containing span(S) to C
d we define the pseudometric

ρS (ϕ,ψ) =
∞
∑

n=1

1

2n
‖ϕ(pn) − ψ(pn)‖2.

In the following definition we consider the collection of unital positive maps
from L∞(X,μ) to C

d which, in a local sense, are approximately multiplica-
tive, approximately pull the uniform probability measure ζ back to μ, and are
approximately equivariant.

Definition 2.1 Let m ∈ N and δ > 0. Define UPμ(S,F,m, δ, σ ) to be the set
of all unital positive linear maps ϕ : L∞(X,μ) → C

d such that

(i) ‖ϕ(αs1(f1) · · ·αsj (fj )) − ϕ(αs1(f1)) · · ·ϕ(αsj (fj ))‖2 < δ for all 1 ≤
j ≤ m, f1, . . . , fj ∈ {p1, . . . , pm} and s1, . . . , sj ∈ F ,

(ii) |ζ ◦ ϕ(f ) − μ(f )| < δ for all f ∈ SF,m,
(iii) ‖ϕ ◦ αs(f ) − σs ◦ ϕ(f )‖2 < δ for all s ∈ F and f ∈ {p1, . . . , pm}.

For a pseudometric space (Y,ρ) and an ε ≥ 0 we write Nε(Y,ρ) for the
maximal cardinality of finite ε-separated subset of Y respect to ρ. In the case
ε = 0 the number N0(Y,ρ) is simply cardinality modulo the relation of zero
distance.

Throughout this section, as elsewhere, � = {σi : G → Sym(di)}∞i=1 is a
fixed sofic approximation sequence.

Note that UPμ(S,F,m, δ, σ ) ⊇ UPμ(S,F ′,m′, δ′, σ ) and hence
Nε(UPμ(S,F,m, δ, σ ), ρS ) ≥ Nε′(UPμ(S,F ′,m′, δ′, σ ), ρS ) whenever
F ⊆ F ′, m ≤ m′, δ ≥ δ′, and ε ≤ ε′.

Definition 2.2 Let S be a sequence in the unit ball of L∞(X,μ), ε > 0, F a
nonempty finite subset of G, m ∈ N, and δ > 0. We define

hε
�,μ(S,F,m, δ) = lim sup

i→∞
1

di

logNε(UPμ(S,F,m, δ, σi), ρS ),

hε
�,μ(S,F,m) = inf

δ>0
hε

�,μ(S,F,m, δ),

hε
�,μ(S,F ) = inf

m∈N

hε
�,μ(S,F,m),

hε
�,μ(S) = inf

F
hε

�,μ(S,F ),

h�,μ(S) = sup
ε>0

hε
�,μ(S)

where the infimum in the second last line is over all nonempty finite sub-
sets of G. If UPμ(S,F,m, δ, σi) is empty for all sufficiently large i, we set
hε

�,μ(S,F,m, δ) = −∞.
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Remark 2.3 If we add 1 to S by setting p′
1 = 1 and p′

j+1 = pj for all
j ∈ N, then for any nonempty finite subset F of G, any m ∈ N, any
δ > 0 and any map σ from G to Sym(d) for some d ∈ N, we have
UPμ(S,F,m, δ, σ ) ⊇ UPμ(S ′,F,m + 1, δ, σ ) ⊇ UPμ(S,F,m + 1, δ, σ ).
Thus h�,μ(S) = h�,μ(S ′).

Notice that the quantity Nε(UPμ(S,F,m, δ, σi), ρS ) in Definition 2.2 is a
purely local one, in the sense that the maps in UPμ(S,F,m, δ, σi) could have
been merely defined on the finite-dimensional unital self-adjoint linear sub-
space of L∞(X,μ) which gives meaning to the conditions in its definition.
Indeed any such map on this subspace can be extended to a unital positive
map on all of L∞(X,μ) by the Hahn-Banach theorem, as discussed in the
introduction. This locality is crucial in the proof of the variational principle
in Sect. 6. On the other hand, in order to carry out the perturbation argument
showing that h�,μ(S) depends only on the G-invariant von Neumann subal-
gebra generated by S (Theorem 2.6) one also needs some L2-norm control
on unital positive maps beyond the finite-dimensional subspace on which the
computation of Nε(UPμ(S,F,m, δ, σi), ρS ) depends. To this end we next
demonstrate that h�,μ(S) can be calculated using unital positive maps which
are uniformly bounded with respect to the L2-norm. Note that if S consists of
projections then this can be accomplished much more easily by simply com-
posing with conditional expectations onto finite-dimensional ∗-subalgebras.

Definition 2.4 Let S be a sequence in the unit ball of L∞(X,μ), λ > 1,
F a nonempty finite subset of G, m ∈ N, δ > 0, and σ a map from G

to Sym(d) for some d ∈ N. Define UPμ,λ(S,F,m, δ, σ ) to be the subset
of UPμ(S,F,m, δ, σ ) consisting of ϕ satisfying ‖ϕ(f )‖2 ≤ λ‖f ‖2 for all
f ∈ L∞(X,μ).

Proposition 2.5 Let S = {pn}∞n=1 be a sequence in the unit ball of L∞(X,μ)

and λ > 1. Then

h�,μ(S) = sup
ε>0

inf
F

inf
m∈N

inf
δ>0

lim sup
i→∞

1

di

logNε(UPμ,λ(S,F,m, δ, σi), ρS ),

where F ranges over all nonempty finite subsets of G.

Proof Replacing L∞(X,μ) by the G-invariant von Neumann subalgebra
generated by S if necessary, we may assume that S is dynamically gener-
ating. Since UPμ(S,F,m, δ, σ ) ⊇ UPμ,λ(S,F,m, δ, σ ), the left side of the
displayed equality is clearly bounded below by the right side.
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To prove the reverse inequality, by Remark 2.3 we may assume that p1 = 1.
It suffices to show that, for any ε > 0, one has

hε
�,μ(S) ≤ inf

F
inf

m∈N

inf
δ>0

lim sup
i→∞

1

di

logNε/2(UPμ,λ(S,F,m, δ, σi), ρS ). (1)

Set λ1 = min(2, λ1/3). Let F be a finite subset of G containing e, m ∈ N with
2−(m−1) < ε/8, and 0 < δ < ε/4.

Take a finite partition of unity Q in L∞(X,μ) consisting of projections
such that ‖f − E(f |Q)‖∞ < (18m)−1δ for every f ∈ SF,m, where E(·|Q)

denotes the conditional expectation from L∞(X,μ) to span(Q).
Let 0 < η < (4|Q|)−1 be a small number which we will determine in a mo-

ment. Since S is dynamically generating and p1 = 1, by Kaplansky’s density
theorem [12, Theorem 5.3.5] there are a finite set E ⊆ G containing F and
an integer � ≥ m such that for each q ∈ Q there exists some q̃ ∈ span(SE,�)

satisfying ‖q̃‖∞ ≤ 1 and ‖q − q̃‖2 < η. Set q ′ = q̃q̃ . Then q ′ ∈ span(SE,2�),
q ′ ≥ 0, ‖q ′‖∞ ≤ 1, and

‖q − q ′‖2 = ‖qq − q̃q̃‖2 ≤ ‖q(q − q̃)‖2 + ‖(q − q̃)q̃‖2 ≤ 2‖q − q̃‖2 < 2η.

Denote by θ the linear map span(Q) → L∞(X,μ) sending q to q ′. Then θ

is positive. When η is small enough, we have ‖θ(f ) − f ‖2 ≤ (18m)−1δ‖f ‖2

and ‖θ(f )‖2 ≤ λ1‖f ‖2 for all f ∈ span(Q).
Take 0 < η′ < δ/3 such that if ϕ is a linear map from span(SE,2�) to some

Hilbert space satisfying |〈f1, f2〉 − 〈ϕ(f1), ϕ(f2)〉| < 4η′ for all f1, f2 ∈
SE,2�, then ‖ϕ(f )‖2 ≤ λ1‖f ‖2 for all f ∈ span(SE,2�).

Given a map σ : G → Sym(d) for some d ∈ N, we will construct a map � :
UPμ(S,E,4�, η′, σ ) → UPμ,λ(S,F,m, δ, σ ) such that ρS (�(ϕ),ϕ) < ε/4
for every ϕ ∈ UPμ(S,E,4�, η′, σ ). Then for any ϕ,ψ ∈ UPμ(S,E,4�, η′, σ )

one has

ρS (ϕ,ψ) ≤ ρS (ϕ,�(ϕ)) + ρS (�(ϕ),�(ψ)) + ρS (�(ψ),ψ)

<
ε

2
+ ρS (�(ϕ),�(ψ)).

Thus for any ε-separated subset L of UPμ(S,E,4�, η′, σ ) with respect
to ρS , �(L) is ε/2-separated. Therefore Nε(UPμ(S,E,4�, η′, σ ), ρS ) ≤
Nε/2(UPμ,λ(S,F,m, δ, σ ), ρS ), and hence hε

�,μ(S,E,4�, η′) ≤
lim supi→∞ 1

di
logNε/2(UPμ,λ(S,F,m, δ, σi), ρS ). Since F can be chosen

to contain an arbitrary finite subset of G, m can be arbitrarily large, and δ can
be arbitrarily small, this implies (1).
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Let ϕ ∈ UPμ(S,E,4�, η′, σ ). For any 1 ≤ j ≤ 2� and (h1, s1), (h2, s2) ∈
{p1, . . . , p2�}j × Ej , since 4� ≥ 2j we have

∣
∣
∣
∣
∣

〈
j

∏

k=1

αs1,k
(h1,k),

j
∏

k=1

αs2,k
(h2,k)

〉

−
〈

ϕ

(
j

∏

k=1

αs1,k
(h1,k)

)

, ϕ

(
j

∏

k=1

αs2,k
(h2,k)

)〉∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
μ

(
j

∏

k=1

αs1,k
(h1,k)αs2,k

(h2,k)

)

− ζ

(

ϕ

(
j

∏

k=1

αs1,k
(h1,k)

)

ϕ

(
j

∏

k=1

αs2,k
(h2,k)

))∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
μ

(
j

∏

k=1

αs1,k
(h1,k)αs2,k

(h2,k)

)

− ζ

(

ϕ

(
j

∏

k=1

αs1,k
(h1,k)αs2,k

(h2,k)

))∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
ζ

(

ϕ

(
j

∏

k=1

αs1,k
(h1,k)αs2,k

(h2,k)

))

− ζ

(

ϕ

(
j

∏

k=1

αs1,k
(h1,k)

)

ϕ

(
j

∏

k=1

αs2,k
(h2,k)

))∣
∣
∣
∣
∣

< η′ +
∥
∥
∥
∥
∥
ϕ

(
j

∏

k=1

αs1,k
(h1,k)αs2,k

(h2,k)

)

− ϕ

(
j

∏

k=1

αs1,k
(h1,k)

)

ϕ

(
j

∏

k=1

αs2,k
(h2,k)

)∥
∥
∥
∥
∥

2

≤ η′ +
∥
∥
∥
∥
∥
ϕ

(
j

∏

k=1

αs1,k
(h1,k)αs2,k

(h2,k)

)

−
j

∏

k=1

ϕ(αs1,k
(h1,k))ϕ(αs2,k

(h2,k))

∥
∥
∥
∥
∥

2
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+
∥
∥
∥
∥
∥

(
j

∏

k=1

ϕ(αs1,k
(h1,k))

)(
j

∏

k=1

ϕ(αs2,k
(h2,k))

)

− ϕ

(
j

∏

k=1

αs1,k
(h1,k)

)

ϕ

(
j

∏

k=1

αs2,k
(h2,k)

)∥
∥
∥
∥
∥

2

< 2η′ +
∥
∥
∥
∥
∥

j
∏

k=1

ϕ(αs1,k
(h1,k)) − ϕ

(
j

∏

k=1

αs1,k
(h1,k)

)∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥

j
∏

k=1

ϕ(αs2,k
(h2,k)) − ϕ

(
j

∏

k=1

αs2,k
(h2,k)

)∥
∥
∥
∥
∥

2

< 4η′.

By the choice of η′, we conclude that ‖ϕ(f )‖2 ≤ λ1‖f ‖2 for all f ∈
span(SE,2�). Thus ‖ϕ ◦ θ(f )‖2 ≤ λ2

1‖f ‖2 for all f ∈ span(Q).
As θ and ϕ are positive,

∑

q∈Q ϕ ◦ θ(q) ≥ 0. Since θ(Q) ⊆ span(SE,2�)

and 1 = p1 ∈ span(SE,2�), we have

∥
∥
∥
∥

∑

q∈Q
ϕ ◦ θ(q) − 1

∥
∥
∥
∥

2
=

∥
∥
∥
∥
ϕ

(
∑

q∈Q
θ(q) − 1

)∥
∥
∥
∥

2
≤ λ1

∥
∥
∥
∥

∑

q∈Q
θ(q) − 1

∥
∥
∥
∥

2

= λ1

∥
∥
∥
∥

∑

q∈Q
(θ(q) − q)

∥
∥
∥
∥

2
≤ λ1

∑

q∈Q
‖θ(q) − q‖2

< 2λ1|Q|η ≤ 4|Q|η.

Then there exists a subset J ⊆ {1, . . . , d} with |J | ≥ d(1 − 4|Q|η) such
that |∑q∈Q ϕ ◦ θ(q)(a) − 1| < (4|Q|η)1/2 for all a ∈ J . Then

∑

q∈Q ϕ ◦
θ(q)(a) > 1 − (4|Q|η)1/2 > 0 for all a ∈ J . Take a unital positive linear
map ϕ̃ : span(Q) → C

d such that ϕ̃(q) = (
∑

q1∈Q ϕ ◦ θ(q1))
−1ϕ ◦ θ(q) on

J for every q ∈ Q. Now we define �(ϕ) : L∞(X,μ) → C
d to be ϕ̃ ◦ E(·|Q).

Clearly �(ϕ) is a unital positive linear map.
Denote by PJ the orthogonal projection C

d → C
J . For any q ∈ Q, we

have

‖ϕ ◦ θ(q) − ϕ̃(q)‖2

≤ ‖(1 − PJ )(ϕ ◦ θ(q) − ϕ̃(q))‖2 + ‖PJ (ϕ ◦ θ(q) − ϕ̃(q))‖2
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≤ ‖ϕ ◦ θ(q) − ϕ̃(q)‖∞
(

d − |J |
d

)1/2

+ (4|Q|η)1/2

1 − (4|Q|η)1/2
‖ϕ ◦ θ(q)‖2

≤ (‖ϕ ◦ θ(q)‖∞ + ‖ϕ̃(q)‖∞)(4|Q|η)1/2 + (4|Q|η)1/2

1 − (4|Q|η)1/2
‖ϕ ◦ θ(q)‖∞

≤ 2(4|Q|η)1/2 + (4|Q|η)1/2

1 − (4|Q|η)1/2
.

When η is small enough, we obtain ‖ϕ ◦ θ(g) − ϕ̃(g)‖2 ≤ (λ − λ2
1)‖g‖2 for

all g ∈ span(Q). Then ‖ϕ̃(g)‖2 ≤ ‖ϕ ◦ θ(g)− ϕ̃(g)‖2 +‖ϕ ◦ θ(g)‖2 ≤ λ‖g‖2

for all g ∈ span(Q), and hence ‖�(ϕ)(f )‖2 ≤ λ‖E(f |Q)‖2 ≤ λ‖f ‖2 for all
f ∈ L∞(X,μ).

Let f ∈ SF,m. Set f ′ = E(f |Q). Then f ′ = ∑

q∈Q
μ(f q)
μ(q)

q , and hence

‖ϕ(θ(f ′)) − ϕ̃(f ′)‖2 =
∥
∥
∥
∥

∑

q∈Q

μ(f q)

μ(q)
(ϕ ◦ θ(q) − ϕ̃(q))

∥
∥
∥
∥

2

≤
∑

q∈Q

|μ(f q)|
μ(q)

‖ϕ ◦ θ(q) − ϕ̃(q)‖2

≤
(

2(4|Q|η)1/2 + (4|Q|η)1/2

1 − (4|Q|η)1/2

)
∑

q∈Q

|μ(f q)|
μ(q)

.

When η is small enough, we get

‖ϕ(θ(f ′)) − ϕ̃(f ′)‖2 <
δ

9m
.

Since f, θ(f ′) ∈ span(SE,2�), we have

‖ϕ(f ) − �(ϕ)(f )‖2 ≤ ‖ϕ(f ) − ϕ(θ(f ′))‖2 + ‖ϕ(θ(f ′)) − �(ϕ)(f )‖2

≤ λ1‖f − θ(f ′)‖2 + ‖ϕ(θ(f ′)) − ϕ̃(f ′)‖2

< λ1‖f − f ′‖2 + λ1‖f ′ − θ(f ′)‖2 + δ

9m

≤ λ1δ

18m
+ λ1δ‖f ′‖2

18m
+ δ

9m

≤ δ

9m
+ δ

9m
+ δ

9m
= δ

3m
. (2)



514 D. Kerr, H. Li

For all 1 ≤ j ≤ m and (h, s) ∈ {p1, . . . , pm}j × Fj we have, since E ⊇ F

and � ≥ m,

∥
∥
∥
∥
∥
�(ϕ)

(
j

∏

k=1

αsk (hk)

)

−
j

∏

k=1

�(ϕ)(αsk (hk))

∥
∥
∥
∥
∥

2

≤
∥
∥
∥
∥
∥
�(ϕ)

(
j

∏

k=1

αsk (hk)

)

− ϕ

(
j

∏

k=1

αsk (hk)

)∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥
ϕ

(
j

∏

k=1

αsk (hk)

)

−
j

∏

k=1

ϕ(αsk (hk))

∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥

j
∏

k=1

ϕ(αsk (hk)) −
j

∏

k=1

�(ϕ)(αsk (hk))

∥
∥
∥
∥
∥

2

(2)
<

δ

3m
+ η′ +

j
∑

k=1

‖ϕ(αsk (hk)) − �(ϕ)(αsk (hk))‖2

(2)
<

δ

3m
+ η′ + δ

3
< δ.

Also, for all f ∈ SF,m we have

|ζ ◦ �(ϕ)(f ) − μ(f )| ≤ |ζ ◦ �(ϕ)(f ) − ζ ◦ ϕ(f )| + |ζ ◦ ϕ(f ) − μ(f )|
< ‖�(ϕ)(f ) − ϕ(f )‖2 + η′
(2)
<

δ

3m
+ η′ < δ.

Furthermore, for all s ∈ F and f ∈ {p1, . . . , pm} we have, since e ∈ F and
F ⊆ E,

‖�(ϕ) ◦ αs(f ) − σs ◦ �(ϕ)(f )‖2 ≤ ‖�(ϕ) ◦ αs(f ) − ϕ ◦ αs(f )‖2

+ ‖ϕ ◦ αs(f ) − σs ◦ ϕ(f )‖2

+ ‖σs ◦ ϕ(f ) − σs ◦ �(ϕ)(f )‖2
(2)
<

δ

3m
+ η′ + δ

3m
< δ.

Therefore �(ϕ) ∈ UPμ,λ(S,F,m, δ, σ ).
Finally, since e ∈ F , we have

ρS (ϕ,�(ϕ)) =
∞
∑

j=1

1

2j
‖ϕ(pj ) − �(ϕ)(pj )‖2
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≤
m

∑

j=1

‖ϕ(pj ) − �(ϕ)(pj )‖2 + 1

2m−1

(2)
<

δ

3
+ 1

2m−1
<

ε

4
,

as desired. �

We now show that all dynamically generating sequences in the unit ball
of L∞

R
(X,μ) have the same entropy. This is the counterpart of Theorem 2.1

in [5], of which it provides another proof in conjunction with Proposition 3.5
in the next section.

Theorem 2.6 Let S = {pn}∞n=1 and T = {qn}∞n=1 be dynamically generating
sequences in the unit ball of L∞(X,μ). Then h�,μ(T ) = h�,μ(S).

Proof It suffices by symmetry to prove that h�,μ(T ) ≤ h�,μ(S). By Re-
mark 2.3, we may assume that p1 = q1 = 1.

Let ε > 0. Take R ∈ N with 2−(R−1) < ε/3. Since S is dynamically gen-
erating and p1 = 1, by Kaplansky’s density theorem [12, Theorem 5.3.5]
there is a nonempty finite set E ⊆ G and an � ∈ N such that for each
q ∈ {q1, . . . , qR} there exist dq,g ∈ C for g ∈ SE,� such that the function

q ′ =
∑

g∈SE,�

dq,gg

satisfies ‖q − q ′‖2 < (12R)−1ε. Set M = max1≤j≤R maxg∈SE,�
|dqj ,g| and

ε′ = ε/(2�+4MR��+1|E|�). We will show that

inf
F

inf
m∈N

inf
δ>0

lim sup
i→∞

1

di

logNε(UPμ,2(T ,F,m, δ, σi), ρT )

≤ inf
F

inf
m∈N

inf
δ>0

lim sup
i→∞

1

di

logNε′(UPμ,2(S,F,m, δ, σi), ρS ), (3)

where F ranges over all nonempty finite subsets of G. Since ε is an arbitrary
positive number, by Proposition 2.5 this will imply h�,μ(T ) ≤ h�,μ(S).

Let F be a nonempty finite subset of G containing e and E, m a positive
integer with m ≥ �, and δ ∈ (0, ε′].

As T is dynamically generating and q1 = 1, by Kaplansky’s density theo-
rem [12, Theorem 5.3.5] there are a nonempty finite set D ⊆ G and an n ∈ N

such that for each f ∈ SF,m there exist cf,g ∈ C for g ∈ TD,n such that the
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function

f ′ =
∑

g∈TD,n

cf,gg

satisfies ‖f ′‖∞ ≤ 1 and ‖f − f ′‖2 < δ/(6m). Set M1 =
maxf ∈SF,m

maxg∈TD,n
|cf,g|.

Take a δ′ > 0 such that max((m + 1)nmn|D|mnMm
1 δ′,

(2 + 3n)nn|D|nM1δ
′) < δ/3. We will show that

lim sup
i→∞

1

di

logNε(UPμ,2(T ,FD,mn, δ′), ρT )

≤ lim sup
i→∞

1

di

logNε′(UPμ,2(S,F,m, δ), ρS ). (4)

Since F can be chosen to contain an arbitrary finite subset of G, m can be
arbitrarily large, and δ can be arbitrarily small, this implies (3).

Let σ be a map from G to Sym(d) for some d ∈ N, which we assume
to be a good enough sofic approximation for our purposes below. Let ϕ ∈
UPμ,2(T ,FD,mn, δ′, σ ). We will show that ϕ ∈ UPμ,2(S,F,m, δ, σ ).

Let (f, v) ∈ {p1, . . . , pm}m × Fm. Using that ‖ϕ(αvk
(fk))‖∞

≤ ‖αvk
(fk)‖∞ ≤ 1, fk ∈ SF,m, and ‖ϕ(αvk

(f ′
k))‖∞ ≤ ‖αvk

(f ′
k)‖∞ ≤ 1 for

each k = 1, . . . ,m, and that ϕ has norm at most 2 with respect to the L2-
norms, we have

∥
∥
∥
∥
∥
ϕ

(
m

∏

k=1

αvk
(fk)

)

− ϕ

(
m

∏

k=1

αvk
(f ′

k)

)∥
∥
∥
∥
∥

2

≤ 2

∥
∥
∥
∥
∥

m
∏

k=1

αvk
(fk) −

m
∏

k=1

αvk
(f ′

k)

∥
∥
∥
∥
∥

2

≤ 2
m

∑

k=1

‖αvk
(fk) − αvk

(f ′
k)‖2

= 2
m

∑

k=1

‖fk − f ′
k‖2 <

δ

3

and
∥
∥
∥
∥
∥

m
∏

k=1

ϕ(αvk
(f ′

k)) −
m

∏

k=1

ϕ(αvk
(fk))

∥
∥
∥
∥
∥

2

≤
m

∑

k=1

‖ϕ(αvk
(f ′

k)) − ϕ(αvk
(fk))‖2

≤ 2
m

∑

k=1

‖αvk
(f ′

k) − αvk
(fk)‖2



Entropy and the variational principle 517

= 2
m

∑

k=1

‖f ′
k − fk‖2 <

δ

3
.

For any (h1, s1), . . . , (hm, sm) ∈ {q1, . . . , qn}n × Dn we have

∥
∥
∥
∥
∥
ϕ

(
m

∏

k=1

αvk

(
n

∏

j=1

αsk,j
(hk,j )

))

−
m

∏

k=1

ϕ

(

αvk

(
n

∏

j=1

αsk,j
(hk,j )

))∥
∥
∥
∥
∥

2

≤
∥
∥
∥
∥
∥
ϕ

(
m

∏

k=1

n
∏

j=1

αvksk,j
(hk,j )

)

−
m

∏

k=1

n
∏

j=1

ϕ(αvksk,j
(hk,j ))

∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥

m
∏

k=1

n
∏

j=1

ϕ(αvksk,j
(hk,j )) −

m
∏

k=1

ϕ

(
n

∏

j=1

αvksk,j
(hk,j )

)∥
∥
∥
∥
∥

2

≤ δ′ +
m

∑

k=1

∥
∥
∥
∥
∥

n
∏

j=1

ϕ(αvksk,j
(hk,j )) − ϕ

(
n

∏

j=1

αvksk,j
(hk,j )

)∥
∥
∥
∥
∥

2

≤ (m + 1)δ′,

and hence
∥
∥
∥
∥
∥
ϕ

(
m

∏

k=1

αvk
(f ′

k)

)

−
m

∏

k=1

ϕ(αvk
(f ′

k))

∥
∥
∥
∥
∥

2

≤
∑

g1∈TD,n

· · ·
∑

gm∈TD,n

(
m

∏

k=1

|cfk,gk
|
)∥

∥
∥
∥
∥
ϕ

(
m

∏

k=1

αvk
(gk)

)

−
m

∏

k=1

ϕ(αvk
(gk))

∥
∥
∥
∥
∥

2

≤ Mm
1

∑

g1∈TD,n

· · ·
∑

gm∈TD,n

∥
∥
∥
∥
∥
ϕ

(
m

∏

k=1

αvk
(gk)

)

−
m

∏

k=1

ϕ(αvk
(gk))

∥
∥
∥
∥
∥

2

≤ (m + 1)nmn|D|mnMm
1 δ′ ≤ δ

3
.

Therefore
∥
∥
∥
∥
∥
ϕ

(
m

∏

k=1

αvk
(fk)

)

−
m

∏

k=1

ϕ(αvk
(fk))

∥
∥
∥
∥
∥

2

≤
∥
∥
∥
∥
∥
ϕ

(
m

∏

k=1

αvk
(fk)

)

− ϕ

(
m

∏

k=1

αvk
(f ′

k)

)∥
∥
∥
∥
∥

2
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+
∥
∥
∥
∥
∥
ϕ

(
m

∏

k=1

αvk
(f ′

k)

)

−
m

∏

k=1

ϕ(αvk
(f ′

k))

∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥

m
∏

k=1

ϕ(αvk
(f ′

k)) −
m

∏

k=1

ϕ(αvk
(fk))

∥
∥
∥
∥
∥

2

<
δ

3
+ δ

3
+ δ

3
= δ.

Given an f ∈ SF,m, since q1 = 1 and e ∈ F we have

|ζ ◦ ϕ(f ′) − μ(f ′)| ≤
∑

g∈TD,n

|cf,g| · |ζ ◦ ϕ(g) − μ(g)|

≤ M1

∑

g∈TD,n

|ζ ◦ ϕ(g) − μ(g)|

≤ nn|D|nM1δ
′ < δ

2
,

and thus, using that ϕ has norm at most 2 with respect to the L2-norms,

|ζ ◦ ϕ(f ) − μ(f )| ≤ |ζ ◦ ϕ(f ) − ζ ◦ ϕ(f ′)| + |ζ ◦ ϕ(f ′) − μ(f ′)|
+ |μ(f ′) − μ(f )|

< ‖ϕ(f ) − ϕ(f ′)‖2 + δ

2
+ ‖f − f ′‖2

≤ 3‖f − f ′‖2 + δ

2
< δ.

Let t ∈ F . For (h, s) ∈ {q1, . . . , qn}n × Dn we have, using the almost mul-
tiplicativity of ϕ and our assumption that F contains e,

∥
∥
∥
∥
∥
ϕ ◦ αt

(
n

∏

k=1

αsk (hk)

)

− σt ◦ ϕ

(
n

∏

k=1

αsk (hk)

)∥
∥
∥
∥
∥

2

≤
∥
∥
∥
∥
∥
ϕ

(
n

∏

k=1

αtsk (hk)

)

−
n

∏

k=1

ϕ(αtsk (hk))

∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥

n
∏

k=1

ϕ ◦ αt(αsk (hk)) −
n

∏

k=1

σt ◦ ϕ(αsk (hk))

∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥
σt

(
n

∏

k=1

ϕ(αsk (hk))

)

− σt ◦ ϕ

(
n

∏

k=1

αsk (hk)

)∥
∥
∥
∥
∥

2
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≤ δ′ +
n

∑

k=1

‖ϕ ◦ αt(αsk (hk)) − σt ◦ ϕ(αsk (hk))‖2 + δ′

≤ 2δ′ +
n

∑

k=1

(‖ϕ ◦ αtsk (hsk ) − σtsk ◦ ϕ(hsk )‖2

+ ‖(σtsk − σt ◦ σsk )(ϕ(hsk ))‖2

+ ‖σt (σsk ◦ ϕ(hsk ) − ϕ ◦ αsk (hsk ))‖2
)

≤ (2 + 3n)δ′

assuming that σ is a good enough sofic approximation. Thus given a p ∈
{p1, . . . , pm}, since p ∈ SF,m and q1 = 1 we have

‖ϕ ◦ αt(p
′) − σt ◦ ϕ(p′)‖2 ≤

∑

g∈TD,n

|cp,g| · ‖ϕ ◦ αt(g) − σt ◦ ϕ(g)‖2

≤ M1

∑

g∈TD,n

‖ϕ ◦ αt(g) − σt ◦ ϕ(g)‖2

≤ nn|D|nM1(2 + 3n)δ′ < δ

3
,

and hence, using that ϕ has norm at most 2 with respect to the L2-norms,

‖ϕ ◦ αt(p) − σt ◦ ϕ(p)‖2 ≤ ‖ϕ ◦ αt(p − p′)‖2 + ‖ϕ ◦ αt(p
′) − σt ◦ ϕ(p′)‖2

+ ‖σt ◦ ϕ(p′ − p)‖2

< 4‖p − p′‖2 + δ

3

<
2δ

3
+ δ

3
= δ.

Therefore ϕ ∈ UPμ,2(S,F,m, δ, σ ), and so UPμ,2(T ,FD,mn, δ′, σ ) ⊆
UPμ,2(S,F,m, δ, σ ).

Let ϕ and ψ be elements of UPμ,2(T ,FD,mn, δ′, σ ) such that
ρS (ϕ,ψ) ≤ ε′. Then for (h, s) ∈ {p1, . . . , p�}� × F� we have

∥
∥
∥
∥
∥
ϕ

(
�

∏

k=1

αsk (hk)

)

− ψ

(
�

∏

k=1

αsk (hk)

)∥
∥
∥
∥
∥

2

≤
∥
∥
∥
∥
∥
ϕ

(
�

∏

k=1

αsk (hk)

)

−
�

∏

k=1

ϕ(αsk (hsk ))

∥
∥
∥
∥
∥

2
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+
∥
∥
∥
∥
∥

�
∏

k=1

ϕ(αsk (hsk )) −
�

∏

k=1

ψ(αsk (hsk ))

∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥

�
∏

k=1

ψ(αsk (hsk )) − ψ

(
�

∏

k=1

αsk (hk)

)∥
∥
∥
∥
∥

2

≤ δ +
�

∑

k=1

‖ϕ(αsk (hsk )) − ψ(αsk (hsk ))‖2 + δ

≤ 2δ +
�

∑

k=1

(‖ϕ(αsk (hsk )) − σsk (ϕ(hsk ))‖2 + ‖σsk (ϕ(hsk ) − ψ(hsk ))‖2

+ ‖σsk (ψ(hsk )) − ψ(αsk (hsk ))‖2
)

≤ 2δ + (2δ + 2�ε′)� ≤ 2�+2ε′�,

so that for q ∈ {q1, . . . , qR}, using the fact that F ⊇ E and p1 = 1,

‖ϕ(q ′) − ψ(q ′)‖2 ≤
∑

g∈SE,�

|dq,g| · ‖ϕ(g) − ψ(g)‖2

≤ M
∑

g∈SE,�

‖ϕ(g) − ψ(g)‖2

≤ M��|E|�2�+2ε′�

= ε

4R
.

Since ϕ and ψ have norms at most 2 with respect to the L2-norms, we thus
obtain

ρT (ϕ,ψ) =
∞
∑

j=1

1

2j
‖ϕ(qj ) − ψ(qj )‖2

≤
R

∑

j=1

‖ϕ(qj ) − ψ(qj )‖2 + 2−(R−1)

≤
R

∑

j=1

(‖ϕ(qj − q ′
j )‖2 + ‖ϕ(q ′

j ) − ψ(q ′
j )‖2 + ‖ψ(q ′

j − qj )‖2
)

+ 2−(R−1)
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≤ 4
R

∑

j=1

‖qj − q ′
j‖2 + ε

4
+ 2−(R−1)

<
ε

3
+ ε

4
+ ε

3
< ε.

Thus any subset of UPμ,2(T ,FD,mn, δ′, σ ) which is ε-separated with re-
spect to ρT is ε′-separated with respect to ρS , and so

Nε(UPμ,2(T ,FD,mn, δ′, σ ), ρT ) ≤ Nε′(UPμ,2(S,F,m, δ, σ ), ρS ).

Consequently (4) holds, as desired. �

In view of Theorem 2.6 we can define the measure entropy of our system
with respect to � as follows.

Definition 2.7 The measure entropy h�,μ(X,G) of the system (X,μ,G)

with respect to � is defined as the common value of h�,μ(S) over all dy-
namically generating sequences S in the unit ball of L∞

R
(X,μ).

It follows from Theorem 2.6, or even directly from Definition 2.2, that
h�,μ(S) depends only on the image of S as a function on N. We can thus de-
fine the entropy h�,μ(P) of a countable subset P of the unit ball of L∞

R
(X,μ)

as the common value of h�,μ(S) over all sequences S whose image as a func-
tion on N is equal to P . For a finite partition of unity P ⊆ L∞(X,μ), we do
not need the sequential formalism to define h�,μ(P) and can proceed more
simply as follows. For a nonempty finite set F ⊆ G and m ∈ N, we write PF,m

for the set of all products of the form αs1(p1) · · ·αsj (pj ) where 1 ≤ j ≤ m,
p1, . . . , pj ∈ P , and s1, . . . , sj ∈ F . We write PF for the set of all products
of the form

∏

s∈F αs(ps) for p ∈ P F . For a d ∈ N we define on the set of uni-
tal positive maps from some unital self-adjoint linear subspace of L∞(X,μ)

containing span(P) to C
d the pseudometric

ρP (ϕ,ψ) = max
p∈P

‖ϕ(p) − ψ(p)‖2.

Definition 2.8 Let σ be a map from G to Sym(d) for some d ∈ N. Let F be
a nonempty finite subset of G and δ > 0. Let P be a finite partition of unity
in L∞(X,μ). Define UPμ(P,F,m, δ, σ ) to be the set of all unital positive
linear maps ϕ : L∞(X,μ) → C

d such that

(i) ‖ϕ(αs1(f1) · · ·αsm(fm)) − ϕ(αs1(f1)) · · ·ϕ(αsm(fm))‖2 < δ for all
f1, . . . , fm ∈ P and s1, . . . , sm ∈ F ,

(ii) |ζ ◦ ϕ(f ) − μ(f )| < δ for all f ∈ PF,m,
(iii) ‖ϕ ◦ αs(f ) − σs ◦ ϕ(f )‖2 < δ for all f ∈ P and s ∈ F .
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In the case of a finite partition of unity P ⊆ L∞(X,μ) consisting of projec-
tions we define Homμ(P,F, δ, σ ) to be the set of all unital homomorphisms
ϕ : span(PF ) → C

d such that

(i) |ζ ◦ ϕ(f ) − μ(f )| < δ for all f ∈ PF ,
(ii) ‖ϕ ◦ αs(f ) − σs ◦ ϕ(f )‖2 < δ for all f ∈ P and s ∈ F .

We define hε
�,μ(P,F,m, δ), hε

�,μ(P,F,m), hε
�,μ(P,F ), hε

�,μ(P), and
h�,μ(P) by formally substituting P for S in Definition 2.2.

It is readily verified that h�,μ(P) as defined above is equal to h�,μ(S) for
any sequence S whose image as a function on N is equal to P , and so the
notation h�,μ(P) is unambiguous.

3 Comparison with Bowen’s measure entropy

Here we show that the measure entropy in Sect. 2 agrees with that defined by
Bowen in [5] when there exists a generating measurable partition with finite
entropy. Recall that the entropy Hμ(P) of a measurable partition P of X is
defined as −∑

p∈P μ(p) logμ(p).
We write AP(P,F, δ, σ ) for the set of approximating ordered partitions as

in [5], and h′
�,μ(P,F, δ), h′

�,μ(P,F ), and h′
�,μ(P), for the entropy quan-

tities in [5]. Bowen proved that the entropy h′
�,μ(P) takes a common value

over all generating measurable partitions P of X with Hμ(P) < +∞. The
entropy of the system with respect to �, which we will denote here by
h′

�,μ(X,G), is defined as this common value in the case that there exists a
generating measurable partition P of X with Hμ(P) < +∞. Other notation
is carried over from the previous section. In particular, for a finite partition of
unity P consisting of projections and a nonempty finite set F ⊆ G, PF de-
notes the set of all products of the form

∏

s∈F αs(ps) where ps ∈ P for each
s ∈ F .

Lemma 3.1 Let P be a finite measurable partition of X and F a finite subset
of G containing e. Then

h′
�,μ(P,F ) = inf

δ>0
lim sup
i→∞

1

di

N0(Homμ(P,F, δ, σi), ρP ).

Proof Let us first show that

h′
�,μ(P,F ) ≥ inf

δ>0
lim sup
i→∞

1

di

N0(Homμ(P,F, δ, σi), ρP ).
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Let σ be a map from G to Sym(d) for some d ∈ N. Let δ > 0 and ϕ ∈
Homμ(P,F, δ, σ ). Write F = {s1, . . . , s�}. Then for every r ∈ P F we have

∣
∣
∣
∣
∣
ζ

(
�

∏

k=1

σsk ◦ ϕ(rsk ) −
�

∏

k=1

ϕ ◦ αsk (rsk )

)∣
∣
∣
∣
∣

≤
∥
∥
∥
∥
∥

�
∏

k=1

σsk ◦ ϕ(rsk ) −
�

∏

k=1

ϕ ◦ αsk (rsk )

∥
∥
∥
∥
∥

2

≤
�

∑

k=1

∥
∥ϕ ◦ αs1(rs1) · · ·ϕ ◦ αsk−1(rsk−1)(σsk ◦ ϕ(rsk ) − ϕ ◦ αsk (rsk ))

× σsk+1 ◦ ϕ(rsk+1) · · ·σsl ◦ ϕ(rs�)
∥
∥

2

≤
�

∑

k=1

‖σsk ◦ ϕ(rsk ) − ϕ ◦ αsk (rsk )‖2

< |F |δ
and hence

∑

r∈P F

∣
∣
∣
∣
∣
ζ

(
�

∏

k=1

σsk (ϕ(rsk ))

)

− μ

(
�

∏

k=1

αsk (rsk )

)∣
∣
∣
∣
∣

≤
∑

r∈P F

(∣
∣
∣
∣
∣
ζ

(
�

∏

k=1

σs ◦ ϕ(rsk ) −
�

∏

k=1

ϕ ◦ αsk (rsk )

)∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
ζ ◦ ϕ

(
�

∏

k=1

αsk (rsk )

)

− μ

(
�

∏

k=1

αsk (rsk )

)∣
∣
∣
∣
∣

)

< |P||F |(|F | + 1)δ,

so that the partition ϕ(P), ordered so as to reflect a fixed ordering of P , lies in
AP(P,F, |P||F |(|F | + 1)δ, σ ). Since for any ϕ,ψ ∈ Homμ(P,F, δ, σ ) with
ρP (ϕ,ψ) > 0 the partitions ϕ(P) and ψ(P) are distinct, it follows that

N0(Homμ(P,F, δ, σ ), ρP ) ≤ |AP(P,F, |P||F |(|F | + 1)δ, σ )|
and hence

lim sup
i→∞

1

di

N0(Homμ(P,F, δ, σi), ρP ) ≤ h′
�,μ(P,F, |P||F |(|F | + 1)δ).

Taking infima over all δ > 0 then yields the desired inequality.
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For the reverse inequality, let δ > 0 and write P = {p1, . . . , pn}. Let σ

be a map from G to Sym(d) for some d ∈ N which is a good enough
sofic approximation for our purposes below. Let δ′ be a positive number
less than δ/3 which will be further specified below as a function of δ.
Let Q = {q1, . . . , qn} ∈ AP(P,F, δ′, σ ). Define a unital homomorphism
ϕ : span(PF ) → C

d as follows. First we set

ϕ

(
�

∏

k=1

αsk (pγ (k))

)

=
�

∏

k=1

σsk (qγ (k))

for all γ ∈ {1, . . . , n}{1,...,�} such that
∏�

k=1 αsk (pγ (k)) �= 0. Write W for
the set of all γ ∈ {1, . . . , n}{1,...,�} such that

∏�
k=1 αsk (pγ (k)) = 0 but

∏�
k=1 σsk (qγ (k)) �= 0. Set r = ∑

γ∈W

∏�
k=1 σsk (qγ (k)). It is easy to see that

by shrinking δ′ if necessary we can arrange that ‖r‖2 < (12�)−1δ. In the
case that W �= ∅ we take a γ0 ∈ {1, . . . , n}{1,...,�} \ W and redefine ϕ on
∏�

k=1 αsk (pγ0(k)) to be r + ∏�
k=1 σsk (qγ (k)). This produces the desired ϕ.

Now let s ∈ F \{e} and 1 ≤ i ≤ n. By relabeling the elements of F we may
assume that s1 = s and s� = e. Then

‖ϕ(pi) − qi‖2 ≤
∥
∥
∥
∥
∥

∑

γ∈{1,...,n}{1,...,�−1}

[

ϕ

(

αe(pi)

�−1
∏

k=1

αsk (pγ (k))

)

− σe(qi)

�−1
∏

k=1

σsk (qγ (k))

]∥
∥
∥
∥
∥

2

+ ‖σe(qi) − qi‖2

≤ ‖r‖2 + δ

6�

assuming that σ is a good enough sofic approximation to ensure that σe is
sufficiently close to the identity permutation, and hence

‖ϕ ◦ αs(pi) − σs ◦ ϕ(pi)‖2

≤ ‖ϕ ◦ αs(pi) − σs(qi)‖2 + ‖σs(qi − ϕ(pi))‖2

≤
∥
∥
∥
∥
∥

∑

γ∈{1,...,n}{2,...,�}

[

ϕ

(

αs(pi)

�
∏

k=2

αsk (pγ (k))

)

− σs(qi)

�
∏

k=2

σsk (qγ (k))

]∥
∥
∥
∥
∥

2

+ ‖r‖2 + δ

6�

≤ 2‖r‖2 + δ

6�
<

δ

3�
.
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Assuming that σ is a good enough sofic approximation, we also have

‖ϕ ◦ αe(pi) − σe ◦ ϕ(pi)‖2 <
δ

3�
.

Moreover, for every γ ∈ {1, . . . , n}{1,...,�},
∣
∣
∣
∣
∣
ζ ◦ ϕ

(
�

∏

k=1

αsk (pγ (k))

)

− μ

(
�

∏

k=1

αsk (pγ (k))

)∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
ζ

(
�

∏

k=1

ϕ ◦ αsk (pγ (k)) −
�

∏

k=1

σsk ◦ ϕ(pγ (k))

)∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
ζ

(
�

∏

k=1

σsk (ϕ(pγ (k))) −
�

∏

k=1

σsk (qγ (k))

)∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
ζ

(
�

∏

k=1

σsk (qγ (k))

)

− μ

(
�

∏

k=1

αsk (pγ (k))

)∣
∣
∣
∣
∣

≤
�

∑

k=1

‖ϕ ◦ αsk (pγ (k)) − σsk ◦ ϕ(pγ (k))‖2 +
�

∑

k=1

‖ϕ(pγ (k)) − qγ (k))‖2 + δ′

<
δ

3
+ �

(

‖r‖2 + δ

6�

)

+ δ

3
< δ.

Thus ϕ ∈ Homμ(P,F, δ, σ ).
We define a map � : AP(P,F, δ′, σ ) → Homμ(P,F, δ, σ ) by declaring

�(Q) to be the element ϕ we constructed above. Given a ϕ ∈ Homμ(P,F,

δ, σ ), we wish to obtain an upper bound on the number of partitions in
AP(P,F, δ′, σ ) whose image under � agrees with ϕ on P . Suppose that
Q = {q1, . . . , qn} and Q′ = {q ′

1, . . . , q
′
n} are two such partitions. Then for each

i = 1, . . . , n we have

‖qi − q ′
i‖2 ≤ ‖qi − ϕ(pi)‖2 + ‖ϕ(pi) − q ′

i‖2 ≤ 2

(

‖r‖2 + δ

6�

)

< δ

so that qi and q ′
i differ at most dδ2 coordinates. It follows that the number

of partitions in AP(P,F, δ′, σ ) whose image under � agrees with ϕ on P is
at most the nth power of

(
d

dδ2

)

2dδ2
. By Stirling’s approximation this number

is bounded above by a exp(κd) for some a, κ > 0 not depending on d with
κ → 0 as δ → 0. Consequently

|AP(P,F, δ′, σ )| ≤ a exp(κd)N0(Homμ(P,F, δ, σ ), ρP )
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and thus

h′
�,μ(P,F, δ′) ≤ lim sup

i→∞
1

di

N0(Homμ(P,F, δ, σi), ρP ) + κ.

Taking an infimum over all δ > 0 then yields

h′
�,μ(P,F ) ≤ inf

δ>0
lim sup
i→∞

1

di

N0(Homμ(P,F, δ, σi), ρP ),

completing the proof. �

Let P be a countable measurable partition of X with Hμ(P) < +∞. We
fix an enumeration p1,p2, . . . of the elements of P and thereby regard P as
a sequence in the unit ball of L∞

R
(X,μ). In the case that P is finite we take

the tail of this enumeration to be constantly zero after we have exhausted the
elements of P . For each n ∈ N, denote by Pn the finite partition of X consist-
ing of p1, . . . , pn−1, and

⋃∞
k=n pk . Then P1 ≤ P2 ≤ · · · and

∨

n∈N
Pn = P .

Thus {Pn}∞n=1 is a chain of P in the sense of [5, Definition 13].

Lemma 3.2 Let P = {pn}∞n=1 be a countable measurable partition of X with
Hμ(P) < +∞. For every κ > 0 there is an ε > 0 such that

lim supn→∞ infδ′>0 lim supi→∞ 1
di

logN0(Homμ(Pn,F, δ′, σi), ρPn)

≤ hε
�,μ(P,F,m, δ) + κ

for all finite sets F ⊆ G containing e, m ∈ N, and δ > 0.

Proof Set ξ(t) = −t log t for all 0 ≤ t ≤ 1. Since Hμ(P) < +∞, we can find
an � ∈ N such that

∑∞
k=�+1 ξ(μ(pk)) + ξ(1 − ∑∞

k=�+1 μ(pk)) < κ/4. Let ε

be a positive number to be determined in a moment. Let F be a finite subset
of G containing e, m ∈ N, and δ > 0.

Let n ∈ N be such that n > max(m, �). Note that span((Pn)F ) ⊇
span(PF,m) and {p1, . . . , pmax(m,�)} ⊆ Pn. Let δ′ ∈ (0, δ] be a small pos-
itive number depending on n which we will determine in a moment. Let
σ be a map from G to Sym(d) for some d ∈ N. Note that for each
ϕ ∈ Homμ(Pn,F, δ′/n|F |, σ ) the map �(ϕ) := ϕ ◦ E(·|span((Pn)F )) is in
UPμ(P,F,m, δ, σ ), where E(·|span((Pn)F )) denotes the conditional expec-
tation from L∞(X,μ) to span((Pn)F ). Thus we have a map
� : Homμ(Pn,F, δ′/n|F |, σ ) → UPμ(P,F,m, δ, σ ) sending ϕ to �(ϕ).

If ϕ and ψ are elements of Homμ(Pn,F, δ′/n|F |, σ ) satisfying ρP (�(ϕ),

�(ψ)) < ε, then for each j = 1, . . . , � we have ‖ϕ(pj ) − ψ(pj )‖2 < 2�ε

so that the projections ϕ(pj ) and ψ(pj ) differ at at most 4�ε2d places. Set
cj = μ(pj ) for � + 1 ≤ j ≤ n − 1 and cn = μ(

⋃∞
k=n pk). Note that for every
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ϕ ∈ Homμ(Pn,F, δ′/n|F |, σ ) one has |ζ ◦ ϕ(pk) − ck| < δ′ for all � + 1 ≤
k ≤ n − 1 and |ζ ◦ ϕ(

⋃∞
k=n pk) − cn| < δ′. Then the (ρP , ε)-neighbourhood

of �(ϕ) for any element ϕ of Homμ(Pn,F, δ′/n|F |, σ ) contains the images
of at most M1M2 elements modulo the relation of zero ρPn -distance, where

M1 =
((

d

4�ε2d

)

24�ε2d

)�

,

and

M2 =
∑

j�+1,...,jn

(
d

j�+1

)(
d − j�+1

j�+2

)

· · ·
(

d − ∑n−1
k=�+1 jk

jn

)

with the sum ranging over all nonnegative integers j�+1, . . . , jn such that
|jk/d − ck| < δ′ for all � + 1 ≤ k ≤ n and

∑n
k=�+1 jk ≤ d . By Stirling’s ap-

proximation, when ε is small enough depending only on κ and �, one has
M1 ≤ a1 exp(κd/2) for some a1 > 0 independent of d . Also, by Stirling’s
approximation, for j�+1, . . . , jn as above one has

(
d

j�+1

)(
d − j�+1

j�+2

)

· · ·
(

d − ∑n−1
k=�+1 jk

jn

)

≤ a2 exp

((
n

∑

k=�+1

ξ(jk/d) + ξ

(

1 −
n

∑

k=�+1

jk/d

)

+ κ/8

)

d

)

for some a2 > 0 independent of d and j�+1, . . . , jn. Since the function ξ is
continuous and ξ(t1 + t2) ≤ ξ(t1)+ ξ(t2) for all t1, t2 ≥ 0 with t1 + t2 ≤ 1, we
have

n
∑

k=�+1

ξ(ck) + ξ

(

1 −
n

∑

k=�+1

ck

)

≤
∞
∑

k=�+1

ξ(μ(pk)) + ξ

(

1 −
∞
∑

k=�+1

μ(pk)

)

< κ/4.

When δ′ is small enough, one has

n
∑

k=�+1

ξ(tk) + ξ

(

1 −
n

∑

k=�+1

tk

)

<

n
∑

k=�+1

ξ(ck) + ξ

(

1 −
n

∑

k=�+1

ck

)

+ κ/8

whenever |tk − ck| < δ′ for all � + 1 ≤ k ≤ n. Then

M2 ≤ a2(2δ′d)n−� exp

((
n

∑

k=�+1

ξ(ck) + ξ

(

1 −
n

∑

k=�+1

ck

)

+ κ/4

)

d

)

≤ a2(2δ′d)n−� exp(κd/2).
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Consequently we obtain

N0(Homμ(Pn,F, δ′/n|F |, σ ), ρPn)

≤ a1a2(2δ′d)n−� exp(κd)Nε(UPμ(P,F,m, δ, σ ), ρP ),

from which the lemma follows. �

Lemma 3.3 Let A be a unital commutative C∗-algebra, 	 a nonempty finite
subset of A, and ε > 0. Then there is a δ > 0 such that whenever d ∈ N and
ϕ : A → C

d is a unital positive linear map satisfying ‖ϕ(f ∗f ) −
ϕ(f )∗ϕ(f )‖2 < δ for all f ∈ 	 there exists a unital homomorphism ϕ̃ : A →
C

d such that ‖ϕ̃(f ) − ϕ(f )‖2 < ε for all f ∈ 	.

Proof First observe that, for every η ∈ (0,1) and every unital positive linear
map ϕ : A → C

d ∼= C({1, . . . , d}) satisfying ‖ϕ(f ∗f ) − ϕ(f )∗ϕ(f )‖2 < η

for all f ∈ 	, there exists J ⊆ {1, . . . , d} with |J | ≥ (1 − |	|η)d such that
|ϕ(f ∗f )(a) − ϕ(f )∗ϕ(f )(a)| <

√
η for all f ∈ 	 and a ∈ J . If η is small

enough then, denoting by PI the canonical projection C
d → C

I for a set
I ⊆ {1, . . . , d}, any unital positive linear map ϕ̃ : A → C

d such that PJ ◦ ϕ̃ =
PJ ◦ ϕ and P{1,...,d}\J ◦ ϕ̃ is a unital homomorphism will satisfy ‖ϕ̃(f ) −
ϕ(f )‖2 < ε/2 for all f ∈ 	. Thus if we redefine ϕ̃ so that for every a ∈ J the
state f �→ ϕ̃(f )(a) on C(X) is multiplicative and |ϕ̃(f )(a)−ϕ(f )(a)| < ε/2
for all f ∈ 	, we will have ‖ϕ̃(f ) − ϕ(f )‖2 < ε for all f ∈ 	, as desired.
This reduces the problem to proving the lemma statement for states, i.e., the
case d = 1.

Say A = C(X) for some compact Hausdorff space X. Suppose that for
some δ > 0 we have a state ϕ : C(X) → C satisfying |ϕ(f ∗f )−|ϕ(f )|2| < δ

for all f ∈ 	. The state ϕ corresponds to a regular Borel probability measure
μ on X, and the approximate multiplicativity condition is easily seen to imply
the existence of an η > 0 with η → 0 as δ → 0 such that for each f ∈ 	 there
exists a set Af ⊆ C of diameter at most η for which μ(f −1(Af )) ≥ 1 −
η/|	|, in which case μ(

⋂

f ∈	 f −1(Af )) ≥ 1 − η. Thus if η is small enough,
which can ensure by assuming δ to be sufficiently small, any multiplicative
state ϕ̃ : C(X) → C defined by evaluation at some point in

⋂

f ∈	 f −1(Af )

will satisfy |ϕ̃(f ) − ϕ(f )| < ε for all f ∈ 	, as desired. �

Lemma 3.4 Let P = {pn}∞n=1 be a countable measurable partition of X. Let
F be a finite subset of G containing e and let ε > 0. Then

lim inf
n→∞ inf

δ>0
lim sup
i→∞

1

di

logNε/2(Homμ(Pn,F, δ, σi), ρPn) ≥ hε
�,μ(P,F ).
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Proof Let n ∈ N be such that 2−(n−2) < ε/4. Let δ > 0. We will show

lim sup
i→∞

1

di

logNε/2(Homμ(Pn,F, δ, σi), ρPn) ≥ hε
�,μ(P,F ). (5)

Set m = max(|F |, n − 1). Note that (Pn)F ⊆ span(1 ∪ PF,m). Let σ be
a map from G to Sym(d) for some d ∈ N. Given an η > 0, by Lemma 3.3
there is a δ′ > 0 not depending on d and σ such that for every ϕ ∈
UPμ(P,F,m2, δ′, σ ) there is a unital homomorphism ϕ̃ : span((Pn)F ) → C

d

for which ‖ϕ̃(f )−ϕ(f )‖2 < min(η, ε/(8(n−1))) for all f ∈ (Pn)F . By tak-
ing η and δ′ small enough this will imply that ϕ̃ ∈ Homμ(Pn,F, δ, σ ). Define
a map � : UPμ(P,F,m2, δ′, σ ) → Homμ(P,F, δ, σ ) by �(ϕ) = ϕ̃.

For all ϕ,ψ ∈ UPμ(P,F,m2, δ′, σ ) we have

ρP (ϕ,ψ) =
∞
∑

j=1

1

2j
‖ϕ(pj ) − ψ(pj )‖2

≤
n−1
∑

j=1

1

2j
‖ϕ(pj ) − ψ(pj )‖2 + 1

2n−2

≤
n−1
∑

j=1

1

2j

(‖ϕ(pj ) − ϕ̃(pj )‖2

+ ‖ϕ̃(pj ) − ψ̃(pj )‖2 + ‖ψ̃(pj ) − ψ(pj )‖2
) + ε

4

<
ε

2
+ ρPn(�(ϕ),�(ψ)).

Thus for any (ρP , ε)-separated subset L of UPμ(P,F,m2, δ′, σ ), the set
�(L) is (ρPn, ε/2)-separated. Consequently

Nε/2(Homμ(Pn,F, δ, σ ), ρPn) ≥ Nε(UPμ(P,F,m2, δ′, σ ), ρP ).

Therefore (5) holds. �

Proposition 3.5 Let P = {pn}∞n=1 a countable measurable partition of X

with Hμ(P) < +∞. Then

h′
�,μ(P) = h�,μ(P).

Proof By Lemmas 3.2 and 3.1, we have

inf
F

lim sup
n→∞

h′
�,μ(Pn,F ) ≤ h�,μ(P),
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where F ranges over the nonempty finite subsets of G. By Lemmas 3.4
and 3.1, for any finite subset F of G containing e and ε > 0 we have

lim inf
n→∞ h′

�,μ(Pn,F ) ≥ hε
�,μ(P,F ).

Since

h′
�,μ(P) = inf

F
lim

n→∞h′
�,μ(Pn,F )

where F ranges over the nonempty finite subsets of G [5, Proposition 6.2],
we obtain h′

�,μ(P) = h�,μ(P). �

In view of the definitions of h�,μ(X,G) and h′
�,μ(X,G), we obtain the

following from the above local result.

Theorem 3.6 Suppose that there is a generating measurable partition P of
X with Hμ(P) < +∞. Then

h�,μ(X,G) = h′
�,μ(X,G).

Remark 3.7 It follows from Lemmas 3.2 and 3.4 that for a countably mea-
surable partition P = {pn}∞n=1 of X with Hμ(P) < +∞ we can compute
h�,μ(P) by counting unital homomorphisms, i.e.,

h�,μ(P) = inf
F

lim sup
n→∞

inf
δ>0

lim sup
i→∞

1

di

logN0(Homμ(Pn,F, δ, σi), ρPn)

where F ranges over all nonempty finite subsets of G. In particular, when P
is a finite measurable partition of X we have

h�,μ(P) = inf
F

inf
δ>0

lim sup
i→∞

1

di

logN0(Homμ(P,F, δ, σi), ρP )

where F ranges over all nonempty finite subsets of G.

4 Topological entropy

Throughout this section X is a compact metrizable space and α a continuous
action of a countable sofic group G on X.

By the Gelfand theory mentioned in the introduction, the unital C∗-
subalgebras of C(X) (i.e., the unital ∗-subalgebras which are closed in the
supremum norm) correspond to the continuous quotients of X via composi-
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tion of functions. The G-invariant unital C∗-subalgebras of C(X) thus cor-
respond to the dynamical factors of X. A subset of C(X) is said to be dy-
namically generating if it is not contained in any proper G-invariant unital
C∗-subalgebra of C(X).

As in the measurable case, we will begin by defining the entropy h�(S)

of a sequence S = {pn}∞n=1 in the unit ball of CR(X). Given a nonempty
finite set F ⊆ G and an m ∈ N we write SF,m for the set of all products of
the form αs1(f1) · · ·αsj (fj ) where 1 ≤ j ≤ m and f1, . . . , fj ∈ {p1, . . . , pm}
and s1, . . . , sj ∈ F . For a given d ∈ N we define on the set of unital positive
linear maps from some unital self-adjoint linear subspace of C(X) containing
span(S) to C

d the pseudometric

ρS (ϕ,ψ) =
∞
∑

n=1

1

2n
‖ϕ(pn) − ψ(pn)‖2.

Definition 4.1 Let σ be a map from G to Sym(d) for some d ∈ N. Let
S = {pn}∞n=1 be a sequence in the unit ball of CR(X). Let F be a nonempty
finite subset of G, m ∈ N, and δ > 0. Define Hom(S,F, δ, σ ) to be the set of
all unital homomorphisms ϕ : C(X) → C

d such that

∞
∑

n=1

1

2n
‖ϕ ◦ αs(pn) − σs ◦ ϕ(pn)‖2 < δ

for all s ∈ F .

As before Nε(·, ρ) denotes the maximal cardinality of a finite ε-separated
subset with respect to the pseudometric ρ. As in the case of measure en-
tropy, for a sequence S in the unit ball of CR(X) we have Nε(Hom(S,F,

δ, σ ), ρS ) ≥ Nε′(Hom(S,F ′, δ′, σ ), ρS ) whenever F ⊆ F ′, δ ≥ δ′, and
ε ≤ ε′.

As usual � = {σi : G → Sym(di)}∞i=1 is a fixed sofic approximation se-
quence.

Definition 4.2 Let S be a sequence in the unit ball of CR(X), ε > 0, F a
nonempty finite subset of G, and δ > 0. Define

hε
�(S,F, δ) = lim sup

i→∞
1

di

logNε(Hom(S,F, δ, σi), ρS ),

hε
�(S,F ) = inf

δ>0
hε

�(S,F, δ),

hε
�(S) = inf

F
hε

�(S,F ),

h�(S) = sup
ε>0

hε
�(S)
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where the infimum in the second last line is over all nonempty finite sub-
sets of G. If Hom(S,F, δ, σi) is empty for all sufficiently large i, we set
hε

�(S,F, δ) = −∞.

Remark 4.3 As in the measurable case (Remark 2.3), if we add 1 to S by
setting p′

1 = 1 and p′
j+1 = pj for all j ∈ N, then h�(S) = h�(S ′).

Remark 4.4 One can reformulate our definition of topological entropy at the
space level as follows. A unital homomorphism from C(X) to C

d is given by
a set of point evaluations indexed by {1, . . . , d}, and hence corresponds to a
map from {1, . . . , d} to X. Thus in the definition we are measuring the max-
imal cardinality of an ε-separated subset of the set of maps {1, . . . , d} → X

which are approximately equivariant with respect to the sofic approxima-
tion of G on {1, . . . , d}, where distance between these maps is measured
in an �2 sense relative to a fixed continuous pseudometric ρ on X which
is dynamically generating in the sense that for any distinct x, y ∈ X one has
ρ(sx, sy) > 0 for some s ∈ G. This viewpoint also applies in the measure-
theoretic context: in the unital positive linear map framework of Sect. 2 one
is effectively dealing with approximately equivariant copies of a sofic approx-
imation inside the space of probability measures, while in the next section we
will show how to formulate measure entropy via homomorphisms and hence
by tracking points as in the topological case. Approximately equivariant maps
from {1, . . . , d} to X can be regarded as systems of interlocking approximate
partial orbits, and in case of amenable G they approximately decompose into
partial orbits over Følner sets [14].

We also remark that one could equivalently measure the distance between
approximately equivariant maps from {1, . . . , d} to X in an �∞ sense, as
Proposition 4.8 shows, but since sofic approximations are statistical anyway
it is more consistent to think entirely in �2 terms (or some other similar type
of weak approximation) unless forced to do otherwise. See also Sect. 4 of
[16] for the equivalence of these kinds of approximations for the purpose of
expressing classical dynamical entropy in the amenable case.

Theorem 4.5 Let S = {pn}∞n=1 and T = {qn}∞n=1 be dynamically generating
sequences in the unit ball of CR(X). Then h�(T ) = h�(S).

Proof It suffices by symmetry to prove that h�(T ) ≤ h�(S). By Remark 4.3
we may assume that p1 = q1 = 1.

Let ε > 0. Take an R ∈ N with 2−(R−1) < ε/3. Since S is dynamically
generating and p1 = 1, there are a nonempty finite set E ⊆ G and an � ∈ N

such that for each q ∈ {q1, . . . , qR} there exist dq,g ∈ C for g ∈ SE,� such that
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the function

q ′ =
∑

g∈SE,�

dq,gg

satisfies ‖q − q ′‖∞ < (6R)−1ε. Set M = max1≤j≤R maxg∈SE,�
|dqj ,g| and

ε′ = ε/(2�+3��+1|E|�MR). We will show that hε
�(T ) ≤ hε′

�(S). Since ε is an
arbitrary positive number, this implies that h�(T ) ≤ h�(S).

Let F be a finite subset of G containing e and E, and let 0 < δ ≤ ε′/2.
Take an m ∈ N with 2−(m−1) < δ/3.

As T is dynamically generating and q1 = 1, there are a nonempty finite set
D ⊆ G and an n ∈ N such that for each p ∈ {p1, . . . , pm} there exist cp,g ∈ C

for g ∈ TD,n such that the function

p′ =
∑

g∈TD,n

cp,gg

satisfies ‖p − p′‖∞ < (6m)−1δ. Set M1 = max1≤j≤m maxg∈TD,n
|cpj ,g|.

Take a δ′ > 0 such that 3n · 2nnn|D|nM1δ
′ < δ/(3m). We will show that

hε
�(T ,FD, δ′) ≤ hε′

�(S,F, δ). Since F can be chosen so as to contain an
arbitrary finite subset of G and δ can be taken arbitrarily small, this implies
that hε

�(T ) ≤ hε′
�(S).

Let σ be a map from G to Sym(d) for some d ∈ N which we assume to be
a good enough sofic approximation to guarantee an estimate in the following
paragraph, as will be indicated. Let ϕ ∈ Hom(T ,FD, δ′, σ ). We will show
that ϕ ∈ Hom(S,F, δ, σ ).

Let t ∈ F . For (h, s) ∈ {q1, . . . , qn}n × Dn we have, using the multiplica-
tivity of ϕ and our assumption that F contains e,

∥
∥
∥
∥
∥
ϕ ◦ αt

(
n

∏

k=1

αsk (hk)

)

− σt ◦ ϕ

(
n

∏

k=1

αsk (hk)

)∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥
∥

n
∏

k=1

ϕ ◦ αt(αsk (hk)) −
n

∏

k=1

σt ◦ ϕ(αsk (hk))

∥
∥
∥
∥
∥

2

≤
n

∑

k=1

‖ϕ ◦ αt(αsk (hk)) − σt ◦ ϕ(αsk (hk))‖2

≤
n

∑

k=1

(‖ϕ ◦ αtsk (hsk ) − σtsk ◦ ϕ(hsk )‖2

+ ‖(σtsk − σt ◦ σsk )(ϕ(hsk ))‖2
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+ ‖σt (σsk ◦ ϕ(hsk ) − ϕ ◦ αsk (hsk ))‖2
)

≤ 3n · 2nδ′

assuming that σ is a good enough sofic approximation. Thus given a p ∈
{p1, . . . , pm}, since q1 = 1 we have

‖ϕ ◦ αt(p
′) − σt ◦ ϕ(p′)‖2

≤
∑

g∈TD,n

|cp,g| · ‖ϕ ◦ αt(g) − σt ◦ ϕ(g)‖2

≤ M1

∑

g∈TD,n

‖ϕ ◦ αt(g) − σt ◦ ϕ(g)‖2

≤ nn|D|nM13n · 2nδ′ < δ

3m
,

whence

∞
∑

j=1

1

2j
‖ϕ ◦ αt(pj ) − σt ◦ ϕ(pj )‖2

≤
m

∑

j=1

1

2j
‖ϕ ◦ αt(pj ) − σt ◦ ϕ(pj )‖2 + 1

2m−1

≤
m

∑

j=1

(‖ϕ ◦ αt(pj − p′
j )‖2 + ‖ϕ ◦ αt(p

′
j ) − σt ◦ ϕ(p′

j )‖2

+ ‖σt ◦ ϕ(p′
j − pj )‖2

) + 1

2m−1

< 2
m

∑

j=1

‖pj − p′
j‖∞ + δ

3
+ 1

2m−1

<
δ

3
+ δ

3
+ δ

3
= δ.

Therefore ϕ ∈ Hom(S,F, δ, σ ), and so Hom(T ,FD, δ′, σ ) ⊆
Hom(S,F, δ, σ ).

Let ϕ and ψ be elements of Hom(T ,FD, δ′, σ ) such that ρS (ϕ,ψ) ≤ ε′.
Then for (h, s) ∈ {p1, . . . , p�}� × F� we have

∥
∥
∥
∥
∥
ϕ

(
�

∏

k=1

αsk (hk)

)

− ψ

(
�

∏

k=1

αsk (hk)

)∥
∥
∥
∥
∥

2
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=
∥
∥
∥
∥
∥

�
∏

k=1

ϕ(αsk (hsk )) −
�

∏

k=1

ψ(αsk (hsk ))

∥
∥
∥
∥
∥

2

≤
�

∑

k=1

‖ϕ(αsk (hsk )) − ψ(αsk (hsk ))‖2

≤
�

∑

k=1

(‖ϕ(αsk (hsk )) − σsk (ϕ(hsk ))‖2 + ‖σsk (ϕ(hsk ) − ψ(hsk ))‖2

+ ‖σsk (ψ(hsk )) − ψ(αsk (hsk ))‖2
)

≤ (2 · 2�δ + 2�ε′)� ≤ 2�+1ε′�,

so that, for q ∈ {q1, . . . , qR}, since F ⊇ E and p1 = 1,

‖ϕ(q ′) − ψ(q ′)‖2 ≤
∑

g∈SE,�

|dq,g| · ‖ϕ(g) − ψ(g)‖2

≤ M
∑

g∈SE,�

‖ϕ(g) − ψ(g)‖2

≤ M��|E|� · 2�+1ε′�

= ε

4R
,

and hence

ρT (ϕ,ψ) =
∞
∑

j=1

1

2j
‖ϕ(qj ) − ψ(qj )‖2

≤
R

∑

j=1

‖ϕ(qj ) − ψ(qj )‖2 + 1

2R−1

≤
R

∑

j=1

(‖ϕ(qj − q ′
j )‖2 + ‖ϕ(q ′

j ) − ψ(q ′
j )‖2 + ‖ψ(q ′

j − qj )‖2
)

+ 1

2R−1

≤ 2
R

∑

j=1

‖qj − q ′
j‖∞ + ε

4
+ 1

2R−1

<
ε

3
+ ε

4
+ ε

3
< ε.
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Thus any ε-separated subset of Hom(T ,FD, δ′, σ ) with respect to ρT is
ε′-separated with respect to ρS , and so

Nε(Hom(T ,FD, δ′, σ ), ρT ) ≤ Nε′(Hom(S,F, δ, σ ), ρS ).

Consequently hε
�(T ,FD, δ′) ≤ hε′

�(S,F, δ), as desired. �

Note that the above theorem can also be established, less directly, by com-
bining Theorem 2.6 with the local formula established in the proof of the
variational principle in Sect. 6.

Since we are assuming X to be a compact metrizable space, there always
exists a sequence in the unit ball of CR(X) that generates C(X) as a uni-
tal C∗-algebra. In view of Theorem 4.5 we can thus define the topological
entropy of our system with respect to � as follows.

Definition 4.6 The topological entropy h�(X,G) of the system (X,G) with
respect to � is defined as the common value of h�(S) over all dynamically
generating sequences S in the unit ball of CR(X).

Since h�(S) depends only on the image of S by Definition 4.2, we can de-
fine h�(P) for a countable subset P of the unit ball of CR(X) as the common
value of h�(S) over all sequences S whose image is equal to P .

Suppose now that P is a finite partition of unity in C(X). Then, as in the
measurable case, we can proceed more simply as follows. For a d ∈ N we
define on the set of unital positive linear maps from some unital self-adjoint
linear subspace of C(X) containing span(P) to C

d the pseudometric

ρP (ϕ,ψ) = max
p∈P

‖ϕ(p) − ψ(p)‖2.

Definition 4.7 Let σ be a map from G to Sym(d) for some d ∈ N. Let P
be a finite partition of unity in C(X), F a nonempty finite subset of G, and
δ > 0. Define Hom(P,F, δ, σ ) to be the set of all unital homomorphisms
ϕ : C(X) → C

d such that

‖ϕ ◦ αs(p) − σs ◦ ϕ(p)‖2 < δ

for all p ∈ P and s ∈ F . We then define hε
�(P,F, δ), hε

�(P,F ), hε
�(P), and

h�(P) by formally substituting P for S in Definition 4.2.

It is easily seen that h�(P) as defined above is equal to h�(S) for any
sequence S whose image as a function on N is equal to P , and so the notation
h�(P) is unambiguous.

We next observe that, for the purpose of defining h�(P), as well as the
prior sequential and measure versions of it, it is possible to substitute the
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∞-norm for the 2-norm in the definition of ρP . This will be used to estimate
h�(P) in the proof of Lemma 7.5, which is the motivation for explaining this
substitution here in the present topological context. So for a given d ∈ N we
define on the set of unital positive linear maps from some unital self-adjoint
linear subspace of C(X) containing span(P) to C

d the pseudometric

ρP,∞(ϕ,ψ) = max
p∈P

‖ϕ(p) − ψ(p)‖∞.

and record the following.

Proposition 4.8 Let P be a finite partition of unity in C(X). Then

h�(P) = sup
ε>0

inf
F

inf
δ>0

lim sup
i→∞

1

di

logNε(Hom(P,F, δ, σi), ρP,∞)

where F ranges over the nonempty finite subsets of G.

Proof Since ‖ · ‖∞ dominates ‖ · ‖2 in C
d , the right side of the equality dom-

inates the left side.
For the reverse inequality, observe that, given a ϕ ∈ Hom(P,F, δ, σ ) for

some nonempty finite set F ⊆ G, δ > 0, and σ : G → Sym(d), every element
of Hom(P,F, δ, σ ) in the (ρP , ε)-neighbourhood of ϕ agrees with ϕ on P to
within

√
ε on a subset of {1, . . . , d} of cardinality at least (1 − |P|ε)d . Since

ψ(p)(a) ∈ [0,1] for all ψ ∈ Hom(P,F, δ, σ ), p ∈ P , and a ∈ {1, . . . , d}, it
follows that the maximal cardinality of a (ρP,∞,2

√
ε)-separated subset of

the (ρP , ε)-neighbourhood of ϕ is at most
∑�|P|εd�

k=0

(
d
k

)

ε−|P|k/2, and by Stir-

ling’s approximation this number is bounded above by a exp(βd)ε−|P|2εd/2

for some a,β > 0 not depending on d with β → 0 as ε → 0. Consequently

N2
√

ε(Hom(P,F, δ, σ ), ρP,∞)

≤ a exp(βd)ε−|P|2εd/2Nε(Hom(P,F, δ, σ ), ρP ).

and hence

lim sup
i→∞

1

di

logN2
√

ε(Hom(P,F, δ, σi), ρP,∞)

≤ hε
�(P,F, δ) + β − |P|2ε log

√
ε.

Since β − |P|2ε log
√

ε → 0 as ε → 0, we obtain the desired inequality. �

In the case that P is a partition of unity in C(X) consisting of projections,
we can also express h�(P) by dispensing with the ε and simply counting uni-
tal homomorphisms, as we record below in Proposition 4.10 (cf. Remark 3.7).
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First we state the following topological version of Lemma 3.2, which can be
established by a similar argument.

Lemma 4.9 For every κ > 0 and n ∈ N there is an ε > 0 such that every
partition of unity P ⊆ C(X) consisting of at most n projections satisfies

lim sup
i→∞

1

di

logN0(Hom(P,F, δ, σi), ρP ) ≤ hε
�(P,F, δ) + κ

for all nonempty finite sets F ⊆ G and δ > 0.

Lemma 4.9 readily yields the desired formula:

Proposition 4.10 Let P be a finite partition of unity in C(X) consisting of
projections. Then

h�(P) = inf
F

inf
δ>0

lim sup
i→∞

1

di

logN0(Hom(P,F, δ, σi), ρP )

where F ranges over all nonempty finite subsets of G.

Example 4.11 Consider the Bernoulli action of G on X = {1, . . . , k}G by left
translation for some k ∈ N. Then h�(X,G) = log k for any sofic approxima-
tion sequence �, which can be seen as follows. Set P = {p1, . . . , pk} where
pi is the characteristic function of the set of all (xs)s∈G such that xe = i.
Then P is a dynamically generating partition of unity in C(X) consisting of
projections. Let σ be a map from G to Sym(d) for some d ∈ N. Let F be a
nonempty finite subset of G containing e and let δ > 0. Note that there are kd

unital homomorphisms from span(P) ∼= C
k to C

d . Let ϕ be such a homomor-
phism. For every ω ∈ {1, . . . , k}F the projection

∏

s∈F αs(pω(s)) is nonzero
and so we can set

ϕ̃

(
∏

s∈F

αs(pω(s))

)

=
∏

s∈F

σs(ϕ(pω(s)))

and extend linearly to define a unital homomorphism ϕ̃ from the unital C∗-
subalgebra span(PF ) of C(X) into C

d , where PF denotes the set of all prod-
ucts of the form

∏

s∈F αs(pω(s)) for ω ∈ {1, . . . , k}F . We furthermore ex-
tend ϕ̃ arbitrarily to a unital homomorphism C(X) → C

d , which we again
denote by ϕ̃ (this can be done using the Gelfand theory of commutative
C∗-algebras mentioned in the introduction). It is then readily checked that
‖ϕ̃ ◦ αs(f ) − σs ◦ ϕ̃(f )‖2 < δ for all f ∈ span(P) when σ is a good enough
sofic approximation, in which case N0(Hom(P,F, δ, σ ), ρP ) = kd . We con-
clude in view of Proposition 4.10 that h�(X,G) = h�(P) = logk.
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A problem of Gottschalk asks which countable groups G are surjunctive,
i.e., have the property that for every finite nonempty set A the action of G

on AG by left translation is surjunctive, which means that every injective
G-equivariant continuous map AG → AG is surjective [10]. As observed
by Gromov [11, Sect. 5.M′′′] (see also Sect. 1 of [19]), the surjunctivity of
amenable G follows from the fact that the classical topological entropy of a
proper subshift is strictly less than that of the full shift. Using different means,
Gromov showed more generally in [11] that all countable sofic groups are
surjunctive (see also Sect. 3 of [19]). In fact it is in [11] that the concept of
a sofic group originates, with the terminology being coined by Weiss in [19].
Now that we have a definition of topological entropy for actions of any count-
able sofic group, we can give an entropy proof of Gromov’s result like in the
amenable case. In view of Example 4.11, it suffices to observe the following.

Theorem 4.12 Let G be a countable sofic group and let � = {σi : G →
Sym(di)}∞i=1 be a sofic approximation sequence for G. Let A be a nonempty
finite set and let α be the restriction of the left shift action of G on AG to some
closed G-invariant proper subset X. Then h�(X,G) < log |A|.

Proof For each a ∈ A, denote the characteristic function of {x ∈ X : xe = a}
by pa . Then P = {pa : a ∈ A} is a dynamically generating finite partition of
unity in C(X). We may assume that pa �= 0 for each a ∈ A by discarding
all elements of A which do not appear in the coordinate description of any
element of X.

Since X is a proper subset of AG, there exists some nonempty finite sub-
set F of G such that XF �= AF , where XF denotes the set of restrictions of
elements of X to F . To establish the theorem it enough to show that

inf
δ>0

lim sup
i→∞

1

di

logN0(Hom(P,F, δ, σi), ρP )

≤ log |A| + (1/|F |2) log

( |A||F | − 1

|A||F |

)

.

Fix an f ∈ AF \ XF . Then
∏

s∈F αs(pf (s)) = 0.
Let δ > 0 be such that (δ|F |)2 < 1/(4|F |2). Let σ be a map from G to

Sym(d) for some d ∈ N. Let W be a set of elements in Hom(P,F, δ, σ )

which pairwise are nonzero distance apart under ρP . Then the restrictions to
CP of any two distinct elements of W are different. Denote by W ′ the set
of restrictions of elements in W to CP . Then |W | = |W ′|. Note that there
is a natural bijection between the set of unital homomorphisms from CP to
C

d and the set of partitions of {1, . . . , d} indexed by A, as we are assuming
that pa �= 0 for all a ∈ A. For each partition Q = {qa : a ∈ A} of {1, . . . , d}
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indexed by A, the corresponding unital homomorphism CP → C
d sends pa

for a ∈ A to the characteristic function of qa .
Let ϕ ∈ W , and let ϕ′ ∈ W ′ be the restriction of ϕ to CP . Then
∥
∥
∥
∥

∏

s∈F

σs(ϕ(pf (s)))

∥
∥
∥
∥

2

≤
∥
∥
∥
∥

∏

s∈F

ϕ(αs(pf (s)))

∥
∥
∥
∥

2
+

∥
∥
∥
∥

∏

s∈F

σs(ϕ(pf (s))) −
∏

s∈F

ϕ(αs(pf (s)))

∥
∥
∥
∥

2

≤
∥
∥
∥
∥
ϕ

(
∏

s∈F

αs(pf (s))

)∥
∥
∥
∥

2
+

∑

s∈F

∥
∥
∥
∥
σs(ϕ(pf (s))) − ϕ(αs(pf (s)))

∥
∥
∥
∥

2

< δ|F |.
Let Q = {qa : a ∈ A} be the partition of {1, . . . , d} indexed by A which cor-
responds to ϕ′. Note that

∏

s∈F σs(ϕ(pf (s))) is the characteristic function of
⋂

s∈F σs(qf (s)). Thus |⋂s∈F σs(qf (s))| < (δ|F |)2d .
Denote by Z the set of all n ∈ {1, . . . , d} such that σ−1

s (n) �= σ−1
t (n) for

all distinct s, t ∈ F . Let 0 < τ < 1/2. When σ is a good enough sofic approx-
imation of G, we have |Z| ≥ d(1 − τ).

For each n ∈ Z, denote by Vn the set {σ−1
s (n) : s ∈ F }. Then |Vn| = |F |.

Take a maximal subset Z′ of Z subject to the condition that for any distinct
m,n ∈ Z′ the sets Vn and Vm are disjoint. Then Z ⊆ ⋃

s,t∈F σsσ
−1
t (Z′), and

hence |Z′| ≥ |Z|/|F |2 ≥ (1 − τ)d/|F |2.
Denote by S the set of all partitions Q′ = {q ′

a : a ∈ A} of {1, . . . , d} in-
dexed by A for which there is some Z′′ ⊆ Z′ satisfying |Z′′| > (δ|F |)2d

and σ−1
s (n) ∈ q ′

f (s) for all n ∈ Z′′ and s ∈ F . For any such Q′ one has
⋂

s∈F σs(q
′
f (s)) ⊇ Z′′, and hence |⋂s∈F σs(q

′
f (s))| > (δ|F |)2d . Therefore

Q �∈ S.
Define the function ξ on [0,1] by ξ(t) = −t log t . The number |W | is

bounded above by the number of partitions of {1, . . . , d} indexed by A which
do not belong to S, which is bounded above by

( |Z′|
|Z′| − �(δ|F |)2d�

)

(|A||F | − 1)|Z′|−�(δ|F |)2d�|A|d−(|Z′|−�(δ|F |)2d�)|F |,

which in turn by Stirling’s approximation is bounded above by

C exp(|Z′|ξ(1 − δ2|F |2d/|Z′|)

+ |Z′|ξ(δ2|F |2d/|Z′|))|A|d
( |A||F | − 1

|A||F |

)|Z′|−δ2|F |2d
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for some constant C > 0 not depending on d or |Z′|. Since |Z′| ≥ (1 −
τ)d/|F |2 > 2δ2|F |2d and the function ξ is concave, we have

ξ(1 − δ2|F |2d/|Z′|) + ξ(δ2|F |2d/|Z′|)
≤ ξ(1 − δ2|F |4/(1 − τ)) + ξ(δ2|F |4/(1 − τ)).

It follows that

lim sup
i→∞

1

di

logN0(Hom(P,F, δ, σi), ρP )

≤ ξ(1 − δ2|F |4/(1 − τ)) + ξ(δ2|F |4/(1 − τ))

+ log |A| + ((1 − τ)/|F |2 − δ2|F |2) log

( |A||F | − 1

|A||F |

)

.

Letting τ → 0, we get

lim sup
i→∞

1

di

logN0(Hom(P,F, δ, σi), ρP )

≤ ξ(1 − δ2|F |4) + ξ(δ2|F |4) + log |A|

+ (1/|F |2 − δ2|F |2) log

( |A||F | − 1

|A||F |

)

.

Then

inf
δ>0

lim sup
i→∞

1

di

logN0(Hom(P,F, δ, σi), ρP )

≤ log |A| + (1/|F |2) log

( |A||F | − 1

|A||F |

)

,

as desired. �

We point out that for certain G it can happen that for some subshift action
as in the above theorem we have h�(X,G) = −∞ for every sofic approxi-
mation sequence �. For this to occur it suffices that X admit no G-invariant
Borel probability measure, as a weak∗ limit argument demonstrates (see
also Theorem 6.1), and there are topological Markov chains over the free
group F2 that do not admit an invariant Borel probability measure. Con-
sider for example the left shift action of F2 on {0,1,2}F2 , and then take the
closed G-invariant subset X consisting of elements whose allowable transi-
tions in the directions of the two generators are described by 0 � 1 � 2 and
0 → 1 → 2 → 0. If X had an invariant Borel probability measure then by the
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first arrow diagram the measure of the set A1 of all x ∈ X for which xe = 1
would be the sum of the measure of the set A0 of all x ∈ X for which xe = 0
and the measure of the set A2 of all x ∈ X for which xe = 2, but each of the
sets A0, A1, and A2 must have measure 1/3 by the second arrow diagram,
producing a contradiction.

5 Measure entropy via homomorphisms

Let α be a continuous action of a sofic countable group G on a compact
metrizable space X. When considering G-invariant Borel probability mea-
sures on X, as will be the case in Sects. 6 and 7, we wish to have a way of
expressing measure entropy in terms of unital homomorphisms from C(X)

into C
d for the purpose of comparison with topological entropy. This is es-

pecially convenient when the invariant measure μ in question does not have
full support, in which case C(X) does not naturally embed into L∞(X,μ).
We therefore make the following definitions in analogy with Definitions 2.1
and 2.2, and then show in Proposition 5.4 that we recover the measure entropy
as originally defined in Sect. 2.

Let S = {pn}∞n=1 be a sequence in the unit ball of CR(X). The notation
SF,m and ρS is as introduced in Sect. 2.

Definition 5.1 Suppose that μ is a Borel probability measure on X. Let σ be
a map from G to Sym(d) for some d ∈ N. Let F be a nonempty finite subset
of G, m ∈ N, and δ > 0. We write HomX

μ(S,F,m, δ, σ ) for the set of unital
homomorphisms ϕ : C(X) → C

d such that

(i) |ζ ◦ ϕ(f ) − μ(f )| < δ for all f ∈ SF,m,
(ii) ‖ϕ ◦ αs(f ) − σs ◦ ϕ(f )‖2 < δ for all s ∈ F and f ∈ {p1, . . . , pm}.
Definition 5.2 Suppose that μ is a Borel probability measure on X. Let
ε > 0. Let F be a nonempty finite subset of G, m ∈ N, and δ > 0. We set

h̄ε
�,μ(S,F,m, δ) = lim sup

i→∞
1

di

logNε(HomX
μ(S,F,m, δ, σi), ρS ),

h̄ε
�,μ(S,F,m) = inf

δ>0
h̄ε

�,μ(S,F,m, δ),

h̄ε
�,μ(S,F ) = inf

m∈N

h̄ε
�,μ(S,F,m),

h̄ε
�,μ(S) = inf

F
h̄ε

�,μ(S,F ),

where the infimum in the last line is over all nonempty finite subsets of G.

The proof of the following lemma is similar to that of Lemma 3.4.
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Lemma 5.3 Suppose that μ is a G-invariant Borel probability measure on X.
Let S = {pn}∞n=1 be a sequence in the unit ball of CR(X). Let ε > 0. Let F

be a finite subset of G containing e, m a positive integer with 2−(m−1) < ε/3,
and δ > 0. Then there is a δ′ > 0 such that

Nε(UPμ(S,F,m2, δ′, σ ), ρS ) ≤ Nε/3(HomX
μ(S,F,m, δ, σ ), ρS )

for every σ that maps G to Sym(d) for some d ∈ N.

Proof Write B for the closed subset of X supporting μ. Then we can view
C(B) as a unital C∗-subalgebra of L∞(X,μ), i.e., a ∗-subalgebra which is
closed in the L∞ norm. Given an η > 0, by Lemma 3.3 there is a δ′ > 0
such that for every map σ from G to Sym(d) for some d ∈ N and every
ϕ ∈ UPμ(S,F,m2, δ′, σ ) there is a unital homomorphism ϕ̌ : C(B) → C

d

for which maxf ∈SF,m
‖ϕ̌(f |B) − ϕ(f )‖2 < min(η, ε/(6m)). By taking η and

δ′ small enough this will imply that ϕ̌ ◦ λ ∈ HomX
μ(S,F,m, δ, σ ) where

λ is the restriction map f �→ f |B from C(X) to C(B). Define a map
� : UPμ(S,F,m, δ′, σ ) → HomX

μ(S,F,m, δ, σ ) by �(ϕ) = ϕ̌ ◦ λ.
For any ϕ,ψ ∈ UPμ(S,F,m2, δ′, σ ), we have

ρS (ϕ,ψ) =
∞
∑

n=1

1

2n
‖ϕ(pn) − ψ(pn)‖2

≤
m

∑

n=1

1

2n
‖ϕ(pn) − ψ(pn)‖2 + 1

2m−1

≤
m

∑

n=1

1

2n

(‖ϕ(pn) − �(ϕ)(pn)‖2 + ‖�(ϕ)(pn) − �(ψ)(pn)‖2

+ ‖�(ψ)(pn) − ψ(pn)‖2
) + 1

2m−1

≤ 2

3
ε + ρS (�(ϕ),�(ψ)).

Thus for every subset L of UPμ(S,F,m2, δ′, σ ) which is ε-separated with re-
spect to ρS , the set �(L) is (ε/3)-separated with respect to ρS . Consequently

Nε(UPμ(S,F,m2, δ′, σ ), ρS ) ≤ Nε/3(HomX
μ(S,F,m, δ, σ ), ρS ),

yielding the lemma. �

Proposition 5.4 Suppose that μ is a G-invariant Borel probability measure
on X. Let S = {pn}∞n=1 be a dynamically generating sequence in the unit ball
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of CR(X). Then

h�,μ(S) = sup
ε>0

h̄ε
�,μ(S).

Proof By Remark 2.3 we may assume that p1 = 1. That the left side of the
displayed equality is bounded above by the right side follows easily from
Lemma 5.3.

For the reverse inequality, it suffices to show that h
ε/2
�,μ(S) ≥ h̄ε

�,μ(S) for
every ε > 0. Fix a compatible metric ρ on X. Denote by B the closed subset
of X supporting μ. Regard C(B) as a unital C∗-subalgebra of L∞(X,μ) as
in the proof of Proposition 5.3. For each unital homomorphism ϕ1 : C(B) →
C

d , fix an extension of ϕ1 to a unital positive linear map L∞(X,μ) → C
d ,

which we denote by θ(ϕ1). Such extensions exist by the Hahn-Banach theo-
rem, as discussed in the introduction.

Let F be a finite subset of G containing e, m a positive integer with
2−(m−1) < ε/8, and δ > 0.

For τ > 0 denote by Wτ the set of all g ∈ C(X) satisfying g > 0 on X, g <

τ on X \Bτ , and g < 1 + τ on Bτ , and g > 1 − τ on B , where Bτ is the open
τ -neighbourhood {x ∈ X : infy∈B ρ(x, y) < τ } of B . Note that the regularity
of μ implies that, given an η > 0, if τ is small enough then for every g ∈ Wτ

and every Borel probability measure ν on X satisfying |ν(g)−μ(g)| < τ one
has ν(Bτ ) > 1 − η.

Let τ be a positive number to be determined in a moment. Since Wτ is a
nonempty open subset of C(X), S dynamically generates C(X), and p1 = 1,
we can find a finite set F ′ ⊆ G containing F and an m′ ∈ N no less than m

such that there exists a function g in the intersection span(SF ′,m′) ∩ Wτ . Let
δ′ be a positive number to be determined in a moment. Let σ be a map from G

to Sym(d) for some d ∈ N. Given a ϕ ∈ HomX
μ(S,F ′,m′, δ′, σ ) we construct

a unital homomorphism ϕ̌ : C(B) → C
d as follows. For each a ∈ {1, . . . , d}

the homomorphism f �→ ϕ(f )(a) on C(X) is given by evaluation at some
point xa ∈ X, and we require that the homomorphism f �→ ϕ̌(f )(a) on C(B)

is given by some point y ∈ B which minimizes the distance from xa to points
of B with respect to ρ. Write λ for the restriction map f �→ f |B from C(X)

to C(B). In view of the uniform continuity of the functions in SF,m and the
fact that |ζ ◦ϕ(g)−μ(g)| < τ when δ′ is small enough, one can readily verify
that if δ′ and τ are assumed to be small enough independently of d , σ and ϕ

then we can ensure that ρS (ϕ̌ ◦ λ,ϕ) < ε/4 and θ(ϕ̌) ∈ UPμ(S,F,m, δ, σ ).
Write � for the map ϕ �→ θ(ϕ̌) from HomX

μ(S,F ′,m′, δ′, σ ) to UPμ(S,F,

m, δ, σ ). For any ϕ,ψ ∈ HomX
μ(S,F ′,m′, δ′, σ ) one has

ρS (ϕ,ψ) ≤ ρS (ϕ, ϕ̌ ◦ λ) + ρS (ϕ̌ ◦ λ, ψ̌ ◦ λ) + ρS (ψ̌ ◦ λ,ψ)

< ε/2 + ρS (ϕ̌ ◦ λ, ψ̌ ◦ λ) = ε/2 + ρS (�(ϕ),�(ψ)).
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Thus for any subset L of HomX
μ(S,F ′,m′, δ′, σ ) which is ε-separated with

respect to ρS , the set �(L) is (ε/2)-separated with respect to ρS . It follows
that

Nε/2(UPμ(S,F,m, δ, σ ), ρS ) ≥ Nε(HomX
μ(S,F ′,m′, δ′, σ ), ρS ),

and hence

h
ε/2
�,μ(S,F,m, δ) ≥ h̄ε

�,μ(S,F ′,m′, δ′).

Since F was an arbitrary finite subset of G containing e, m an arbitrary
large positive integer, and δ an arbitrary positive number, we conclude that
h

ε/2
�,μ(S) ≥ h̄ε

�,μ(S). �

In the case of a finite subset P of the unit ball of CR(X), we can avoid the
sequential formalism (cf. Definitions 2.8 and 4.7) by considering on the set
of unital positive linear maps from some unital self-adjoint linear subspace of
C(X) containing span(P) to C

d the pseudometric

ρP (ϕ,ψ) = max
p∈P

‖ϕ(p) − ψ(p)‖2.

and making the following definitions.

Definition 5.5 Let σ be a map from G to Sym(d) for some d ∈ N. Let P be
a finite partition of unity in C(X). Let F be a nonempty finite subset of G,
m ∈ N, and δ > 0. Define HomX

μ(P,F,m, δ, σ ) to be the set of all unital
homomorphisms ϕ : C(X) → C

d such that

(i) |ζ ◦ ϕ(f ) − μ(f )| < δ for all f ∈ PF,m,
(ii) ‖ϕ ◦ αs(f ) − σs ◦ ϕ(f )‖2 < δ for all f ∈ P and s ∈ F ,

where PF,m as before denotes the set of all products of the form αs1(p1) · · ·
αsj (pj ) where 1 ≤ j ≤ m, p1, . . . , pj ∈ P , and s1, . . . , sj ∈ F . Then define
h̄ε

�,μ(S,F,m, δ), h̄ε
�,μ(S,F,m), h̄ε

�,μ(S,F ), and h̄ε
�,μ(P) by formally sub-

stituting S for P in Definition 5.2.

One can easily check that for any sequence S whose image is equal to P
we have

sup
ε>0

h̄ε
�,μ(P) = sup

ε>0
h̄ε

�,μ(S),

and it follows from Proposition 5.4 that this common value is equal to
h�,μ(P) as in Definition 2.8. We will use these facts in Sect. 7.
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6 The variational principle

Throughout this section α is a continuous action of a sofic countable group
G on a compact metrizable space X. We write M(X) for the convex set of
Borel probability measures on X equipped with the weak∗ topology, under
which it is compact. Write MG(X) for the set of G-invariant Borel probability
measures on X, which is a closed convex subset of M(X). In the proof below
we will use the formulation of measure entropy for measures in MG(X) as
given in Sect. 5. See Sects. 2 and 4 for other notation.

Theorem 6.1 Let α be a continuous action of a sofic countable group G on
a compact metrizable space X. Then

h�(X,G) = sup
μ∈MG(X)

h�,μ(X,G).

In particular, if h�(X,G) �= −∞ then MG(X) is nonempty.

Proof Fix a dynamically generating sequence S = {pn}∞n=1 in the unit
ball of CR(X) with p1 = 1. Let ε > 0. We will prove that hε

�(S) =
maxμ∈MG(X) h̄

ε
�,μ(S), from which the theorem will follow in view of Propo-

sition 5.4.
Let μ ∈ MG(X). Denote by B the closed subset of X supporting μ, which

is G-invariant. For every nonempty finite set F ⊆ G, m ∈ N, δ > 0, and any
map σ from G to Sym(d) for some d ∈ N, we have

HomX
μ(S,F,m, δ, σ ) ⊆ Hom(S,F, δ + 2−(m−1), σ ),

and so, for every ε > 0,

Nε(HomX
μ(S,F,m, δ, σ ), ρS ) ≤ Nε(Hom(S,F, δ + 2−(m−1), σ ), ρS ).

Consequently hε
�(S) ≥ supμ∈MG(X) h̄

ε
�,μ(S).

Now let us prove the reverse inequality. We may assume that
h�(X,G) �= −∞. Let ε > 0. Take a sequence e ∈ F1 ⊆ F2 ⊆ · · · of finite
subsets of G whose union is equal to G. Let n ∈ N. We aim to produce
a μn ∈ M(X) such that h̄ε

�,μn
(S,Fn, n,1/n) ≥ hε

�(S) and |μn(αt (f )) −
μn(f )| < 1/n for all t ∈ Fn and f ∈ SFn,n. By weak∗ compactness we can
find a finite set D ⊆ M(X) such that for every map σ : G → Sym(d) for
some d ∈ N and every ϕ ∈ Hom(S,Fn,1/n,σ ) there is a μϕ ∈ D such that
|μϕ(αt (f )) − ζ ◦ ϕ(αt (f ))| < (3n)−1 for all t ∈ Fn and f ∈ SFn,n, where as
usual ζ is the uniform probability measure on {1, . . . , d} viewed as a state
on C

d . Let σ be a map from G to Sym(d) for some d ∈ N. Note that for all
ϕ ∈ Hom(S,F 2

n , (3n)−22−n, σ ), s1, . . . , sn ∈ Fn, f1, . . . , fn ∈ {p1, . . . , pn},
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and t ∈ Fn we have, setting f = αs1(f1) · · ·αsn(fn) ∈ SFn,n and assuming
that σ is a good enough sofic approximation,

|ζ(ϕ ◦ αt(f ) − σt ◦ ϕ(f ))|
≤ ‖ϕ ◦ αt(f ) − σt ◦ ϕ(f )‖2

≤
n

∑

i=1

∥
∥σt ◦ ϕ(αs1(f1) · · ·αsi−1(fi−1))

× (ϕ ◦ αt(αsi (fi)) − σt ◦ ϕ(αsi (fi)))ϕ ◦ αt(αsi+1(fi+1) · · ·αsn(fn))
∥
∥

2

≤
n

∑

i=1

‖ϕ ◦ αt(αsi (fi)) − σt ◦ ϕ(αsi (fi))‖2

≤
n

∑

i=1

(‖ϕ ◦ αtsi (fi) − σtsi ◦ ϕ(fi)‖2 + ‖(σtsi − σt ◦ σsi )(ϕ(fi))‖2

+ ‖σt (σsi ◦ ϕ(fi) − ϕ ◦ αsi (fi))‖2
)

< n

(
1

9n2
+ 1

9n2
+ 1

9n2

)

= 1

3n

so that

|μϕ(αt (f )) − μϕ(f )| ≤ |μϕ(αt (f )) − ζ ◦ ϕ(αt (f ))|
+ |ζ(ϕ ◦ αt(f ) − σt ◦ ϕ(f ))| + |ζ ◦ ϕ(f ) − μϕ(f )|

<
1

3n
+ 1

3n
+ 1

3n
= 1

n
.

Take a maximal ε-separated subset L of Hom(S,F 2
n , (3n)−22−n, σ ). By the

pigeonhole principle there exists a ν ∈ D such that the set

W(σ, ν) = {ϕ ∈ L : μϕ = ν}

satisfies |W(σ, ν)| ≥ |L|/|D|. Note that W(σ, ν) ⊆ HomX
ν (S,Fn, n,1/n,σ )

as Fn ⊆ F 2
n and p1 = 1. Since W(σ, ν) is ε-separated, we obtain

Nε(HomX
ν (S,Fn, n,1/n,σ ), ρS )

≥ |W(σ, ν)|

≥ |L|
|D| = 1

|D|Nε(Hom(S,F 2
n , (3n)−22−n, σ ), ρS ).
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Letting σ now run through the terms of the sofic approximation se-
quence �, we infer by the pigeonhole principle that there exist a μn ∈ D

and a sequence i1 < i2 < · · · in N with

hε
�(S,F 2

n , (3n)−22−n) = lim
k→∞

1

dik

logNε(Hom(S,F 2
n , (3n)−22−n, σik ), ρS )

such that |W(σik ,μn)| ≥ |D|−1Nε(Hom(S,F 2
n , (3n)−22−n, σik ), ρS ) for all

k ∈ N. Then

h̄ε
�,μn

(S,Fn, n,1/n)

≥ lim
k→∞

1

dik

log
1

|D|Nε(Hom(S,F 2
n , (3n)−22−n, σik ), ρS )

= hε
�(S,F 2

n , (3n)−22−n)

≥ hε
�(S)

and |μn(αt (f )) − μn(f )| < 1/n for all t ∈ Fn and f ∈ SFn,n. So μn satisfies
the required properties.

Having constructed a μn for each n ∈ N, take a weak∗ limit point μ

of the sequence {μn}∞n=1. Given a t ∈ G and an f ∈ C(X) of the form
αs1(f1) · · ·αsk (fk) where s1, . . . , sk ∈ G and f1, . . . , fk ∈ S , we have

|μ(αt (f )) − μ(f )| ≤ |μ(αt (f )) − μn(αt (f ))| + |μn(αt (f )) − μn(f )|
+ |μn(f ) − μ(f )|

and the infimum of the right-hand side over all n ∈ N is zero. Since S is gen-
erating and p1 = 1, every element of C(X) can be approximated arbitrarily
well by linear combinations of functions of the above form, and so we deduce
that μ is G-invariant.

Let F be a nonempty finite subset of G, m ∈ N, and δ > 0. Take an integer
n such that F ⊆ Fn, m ≤ n, δ ≥ 2/n, and maxf ∈SF,m

|μn(f ) − μ(f )| < δ/2.
Then, for every map σ from G to Sym(d) for some d ∈ N, every ϕ in
HomX

μn
(S,Fn, n,1/n,σ ), and every f ∈ SF,m we have

|ζ ◦ ϕ(f ) − μ(f )| ≤ |ζ ◦ ϕ(f ) − μn(f )| + |μn(f ) − μ(f )|

<
1

n
+ δ

2
≤ δ,

and hence ϕ ∈ HomX
μ(S,F,m, δ, σ ). Thus

HomX
μn

(S,Fn, n,1/n,σ ) ⊆ HomX
μ(S,F,m, δ, σ )
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and so h̄ε
�,μ(S,F,m, δ) ≥ h̄ε

�,μn
(S,Fn, n,1/n) ≥ hε

�(S). Since F was an
arbitrary nonempty finite subset of G, m an arbitrary positive integer, and δ

an arbitrary positive number, we obtain h̄ε
�,μ(S) ≥ hε

�(S). We conclude that

hε
�(S) ≤ supμ∈MG(X) h̄

ε
�,μ(S), as desired. �

7 Algebraic actions of residually finite groups

Let G be a countable infinite residually finite discrete group, and {Gn}∞n=1
be a sequence of finite index normal subgroups with limn→∞ Gn = {e} in
the sense that, for any s ∈ G \ {e}, s �∈ Gn when n is sufficiently large.
Let � = {σi : G → Sym(G/Gi)} be the corresponding sofic approxima-
tion sequence, i.e., σi is the action of left translation via the quotient map
G → G/Gi . We denote by C∗(G) the universal group C∗-algebra of G, and
by LG the left group von Neumann algebra of G (see Sect. 2.5 of [7]). The
Fuglede-Kadison determinant of an invertible element a ∈ LG is given by
detLG a = exp trLG log |a| where |a| = (a∗a)1/2 and trLG is the canonical tra-
cial state on LG (see Sect. 2.2 of [16] for more details and references).

For an element f in the integral group ring ZG, the ZG-module struc-
ture of ZG/ZGf corresponds to an action of G on ZG/ZGf . This induces
an action αf of G on the Pontryagin dual Xf := ̂ZG/ZGf via continuous
automorphisms. We may write

Xf = {

h ∈ (R/Z)G : f h = 0
}

,

and under this identification αf is the restriction of the right shift action of G

on (R/Z)G to Xf (see Sect. 3 of [16]).
In the case that f ∈ ZG is invertible in �1(G), Bowen showed in [4] that

the sofic measure entropy with respect to � and the normalized Haar mea-
sure on Xf is equal to log detLG f . The goal of this section is to establish
the topological counterpart of Bowen’s result, stated below as Theorem 7.1.
In addition we only assume the invertibility of f in C∗(G). In general this is
strictly weaker than the invertibility of f in �1(G), for instance when G con-
tains a copy of the free group on two generators, as discussed in Appendix
of [16]. Note that when G is amenable the full and reduced group C∗-algebras
coincide, in which case LG is the weak operator closure of C∗(G), so that
the invertibility of f in C∗(G) is the same as the invertibility of f in LG

(cf. [16]). The invertibility of f in �1(G) implies the existence of a finite gen-
erating measurable partition, a fact which is used in [4]. It is not clear though
whether this is the case if f is merely assumed to be invertible in C∗(G), and
so it is essential that we use our more general definition of measure entropy
here.
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Theorem 7.1 Let f ∈ ZG be invertible in C∗(G). Then

h�(Xf ,G) = log detLG f.

Denote by π the homomorphism C∗(G) → LG. For each n ∈ N denote
by πn the homomorphism C∗(G) → L(G/Gn). The following lemma was
proved by Deninger and Schmidt [9, Lemma 6.2] in the case f ∈ �1(G).

Lemma 7.2 For every f ∈ C∗(G) one has

trLG π(f ) = lim
n→∞ trL(G/Gn) πn(f ).

Proof Consider first the case f ∈ CG. Say, f = ∑

s∈G fss for fs ∈ C. Then

trLG π(f ) = fe and trL(G/Gn) πn(f ) =
∑

s∈Gn

fs.

When n is sufficiently large, Gn∩supp(f ) ⊆ {e} and hence trL(G/Gn) πn(f ) =
fe = trLG π(f ).

Now consider a general f ∈ C∗(G). Let ε > 0. Take a g ∈ CG with
‖f − g‖ < ε. Since both trLG ◦π and trL(G/Gn) ◦πn are states on C∗(G),
we have

| trLG π(f ) − trLG π(g)| ≤ ‖f − g‖ < ε, and

| trL(G/Gn) πn(f ) − trL(G/Gn) πn(g)| ≤ ‖f − g‖ < ε.

Therefore, when n is sufficiently large one has

| trLG π(f ) − trL(G/Gn) πn(f )| ≤ | trLG π(f ) − trLG π(g)|
+ | trL(G/Gn) πn(f ) − trL(G/Gn) πn(g)|

< 2ε. �

The following theorem was proved by Deninger and Schmidt [9, Theo-
rem 6.1] in the case of invertible f ∈ �1(G).

Theorem 7.3 For every invertible f ∈ C∗(G) one has

detLG π(f ) = lim
n→∞ detL(G/Gn) πn(f ).

Proof Given that 0 is not in the spectrum of |f |, by the functional calculus
we have κ(log |f |) = log |κ(f )| for every unital ∗-homomorphism κ from
C∗(G) to another unital C∗-algebra. We thus obtain the result by applying
Lemma 7.2 to log |f |. �
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For each n ∈ N denote by FixGn(Xf ) the set of points in Xf fixed by Gn.
Note that Xf is a compact group and FixGn(Xf ) is a subgroup of Xf . Since
πn(f ) ∈ Z(G/Gn), we can define Xπn(f ) similarly. Namely,

Xπn(f ) = {

h ∈ (R/Z)G/Gn : πn(f )h = 0
}

.

Note that Xπn(f ) is a compact group.

Lemma 7.4 Let f ∈ ZG and n ∈ N. Then there is a natural group iso-
morphism �n : Xπn(f ) → FixGn(Xf ) given by (�n(h))s = hsGn for all h ∈
Xπn(f ) and s ∈ G.

Proof It is clear that the formula (�n(h))s = hsGn for h ∈ (R/Z)G/Gn and
s ∈ G defines a group isomorphism �n from (R/Z)G/Gn to the set of Gn-
fixed points in (R/Z)G. Taking a set Rn ⊆ G of coset representatives for
G/Gn and writing ρn : G → G/Gn for the quotient map, we have, for every
h ∈ (R/Z)G/Gn and s ∈ G,

(πn(f )h)ρn(s) =
∑

r∈Rn

(
∑

t∈Gn

frt

)

hρn(r−1s)

=
∑

r∈Rn

∑

t∈Gn

frthρn(t−1r−1s) = (f �n(h))s,

so that f �n(h) = 0 if and only if πn(f )h = 0. Consequently we obtain the
desired isomorphism �n by restricting �n. �

Take a finite partition of unity P in C(R/Z) which generates C(R/Z) as a
unital C∗-algebra. Via the coordinate map Xf → R/Z which evaluates at e,
we will think of P as a partition of unity in C(Xf ). Clearly P dynamically
generates C(Xf ), and so h�(Xf ,G) = h�(P) and h�,μ(Xf ,G) = h�,μ(P)

for every G-invariant Borel probability measure μ on Xf (see Definitions 2.8
and 4.7). Consider the compatible metric ρ on R/Z defined by ρ(x, y) =
maxp∈P |p(x) − p(y)| for x, y ∈ R/Z. Again, via the coordinate map Xf →
R/Z which evaluates at e, we will think of ρ as a continuous pseudometric
on Xf .

For each x ∈ FixGn(Xf ), we have a unital homomorphism ϕx : C(Xf ) →
C

G/Gn determined by (ϕx(g))(tGn) = g(tx) for all g ∈ C(Xf ) and t ∈ G.
For any g ∈ C(Xf ) and s, t ∈ G, we have

ϕx(αf,s(g))(tGn) = αf,s(g)(tx) = g(s−1tx)

= (ϕx(g))(s−1tGn) = (σn,s ◦ ϕx(g))(tGn).
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Thus ϕx ◦ αf,s = σn,s ◦ ϕx for all x ∈ FixGn(Xf ) and s ∈ G, and hence
ϕx ∈ Hom(P,F, δ, σn) for every nonempty finite subset F of G and every
δ > 0.

Let ϑ be the compatible metric on R/Z defined by

ϑ(t1 mod Z, t2 mod Z) = min
m∈Z

|t1 − t2 − m|

for all t1, t2 ∈ R.

Lemma 7.5 Let f ∈ ZG be invertible in C∗(G). Then

h�(P) ≥ lim sup
n→∞

1

|G/Gn| log |FixGn(Xf )|.

Proof Since both ρ and ϑ are compatible metrics on R/Z, there exists an
ε > 0 such that ϑ(t1, t2) < 1/‖f ‖1 for all t1, t2 ∈ R/Z with ρ(t1, t2) ≤ ε. Let
F be a nonempty finite subset of G and δ > 0. Let n ∈ N. We will show that
Nε(Hom(P,F, δ, σn), ρP,∞) ≥ |FixGn(Xf )|, which by Proposition 4.8 will
imply the result.

By Lemma 7.4 the map �n : Xπn(f ) → FixGn(Xf ) given by (�n(h))s =
hsGn is an isomorphism. Let x, y ∈ FixGn(Xf ). Set x̃ = �−1

n (x) and ỹ =
�−1

n (y). Then

ρP,∞(ϕx,ϕy) = max
p∈P

‖ϕx(p) − ϕy(p)‖∞ = max
p∈P

max
s∈G

|p(sx) − p(sy)|

= max
s∈G

ρ(sx, sy) = max
s∈G

ρ(xs, ys) = max
s∈G

ρ(x̃sGn, ỹsGn).

Suppose that ρP,∞(ϕx,ϕy) ≤ ε. Then

max
s∈G

ϑ(x̃sGn − ỹsGn,0 mod Z) = max
s∈G

ϑ(x̃sGn, ỹsGn) < 1/‖f ‖1.

Take z ∈ [−1,1]G/Gn with x̃sGn − ỹsGn = zsGn mod Z and |zsGn | = ϑ(x̃sG −
ỹsGn,0 modZ) for all s ∈ G. Then πn(f )z ∈ Z

G/Gn and

‖πn(f )z‖∞ ≤ ‖πn(f )‖1‖z‖∞ ≤ ‖f ‖1‖z‖∞ < 1.

Thus πn(f )z = 0. Since πn(f ) is invertible in L(G/Gn), we get z = 0 and
hence x̃ = ỹ. Consequently, x = y. Therefore the set {ϕx : x ∈ FixGn(Xf )} is
an (ρP,∞, ε)-separated subset of Hom(P,F, δ, σn), and hence
Nε(Hom(P,F, δ, σn), ρP,∞) ≥ |FixGn(Xf )|. �
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Lemma 7.6 Let f ∈ ZG be invertible in C∗(G) and let μ be a G-invariant
Borel probability measure on Xf . Then

h�,μ(P) ≤ lim inf
n→∞

1

|G/Gn| log |FixGn(Xf )|.

Proof Using Definition 5.5 and the observation following it, it suffices to
show that h̄2ε

�,μ(P) ≤ lim infn→∞ |G/Gn|−1 log |FixGn(Xf )| for every ε > 0.
So let ε > 0. Since both ρ and ϑ are compatible metrics on R/Z, there

exists an η′ > 0 such that η′ < ε2/2 and ρ(t1, t2) < ε/2 for all t1, t2 ∈ R/Z

satisfying ϑ(t1, t2) ≤ √
η′.

Denote by F the union of {e} and the support of f in G. Denote
by ω the coordinate map Xf �→ R/Z sending x to xe. Then ω∗(μ) is
a Borel probability measure on R/Z. Thus there exists a ξ ∈ (0,1) with
ω∗(μ)({ξ mod Z}) = 0. Take an η > 0 such that 48|F |η‖f ‖2

1 <

(η′/(2‖f −1‖))2. Take a κ > 0 with κ < η′/(2‖f ‖1‖f −1‖) such that the
closed (ϑ, κ)-neighborhood Y of ξ mod Z in R/Z has ω∗(μ)-measure at
most η/2. Take a g ∈ C(R/Z) with 0 ≤ g ≤ 1 on R/Z, g = 1 on Y , and
ω∗(μ)(g) < η. Via ω we will also think of g as a function on Xf .

Since P generates C(R/Z) as a unital C∗-algebra, there exist an m ∈ N

and a g̃ in the linear span of the set P{e},m of products of the form p1 · · ·pj

where 1 ≤ j ≤ m and p1, . . . , pj ∈ P such that ‖g̃ − g‖∞ < η. Denote by M

the sum of the absolute values of the coefficients of g̃ as a linear combination
of elements in P{e},m.

Take a δ > 0 with 16|F |(|P| + M)δ‖f ‖2
1 < (η′/(2‖f −1‖))2 such that

ϑ(t1, t2) < κ for all t1, t2 ∈ R/Z satisfying ρ(t1, t2) ≤ √
δ. Let n ∈ N. It suf-

fices to show, in the notation of Definition 5.5, that

N2ε(Hom
Xf
μ (P,F,m, δ, σn), ρP ) ≤ |FixGn(Xf )|.

In turn it suffices to show that for every ψ ∈ Hom
Xf
μ (P,F,m, δ, σn) there

exists an x ∈ FixGn(Xf ) such that ρP (ψ,ϕx) < ε.

Let ψ ∈ Hom
Xf
μ (P,F,m, δ, σn). Let a ∈ G/Gn. The unital homomor-

phism f �→ ψ(f )(a) on C(Xf ) is given by evaluation at some point ya of
Xf . Take ỹa ∈ [ξ,1 + ξ)G such that (ya)s = (ỹa)s mod Z for all s ∈ G. Then
f ỹa ∈ Z

G with ‖f ỹa‖∞ ≤ ‖f ‖1‖ỹa‖∞ ≤ 2‖f ‖1. Write z for the element
of Z

G/Gn given by za = (f ỹa)e for all a ∈ G/Gn. Define z′ ∈ (R/Z)G/Gn

by z′
a = (πn(f )−1z)a mod Z for all a ∈ G/Gn. Then z′ ∈ Xπn(f ). Set x =

�n(z
′) where �n is the isomorphism Xπn(f ) → FixGn(Xf ) from Lemma 7.4.

We claim that ρP (ψ,ϕx) < ε.
Define u ∈ (R/Z)G/Gn and ũ ∈ [ξ, ξ + 1)G/Gn by ua = (ya)e and ũa =

(ỹa)e for all a ∈ G/Gn. Also, set v = πn(f )ũ ∈ [−2‖f ‖1,2‖f ‖1]G/Gn .
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Let p ∈ P and s ∈ F . Then

‖σs ◦ ψ(p) − ψ ◦ αf,s(p)‖2

=
(

1

|G/Gn|
∑

a∈G/Gn

|ψ(p)(s−1a) − αf,s(p)(ya)|2
)1/2

=
(

1

|G/Gn|
∑

a∈G/Gn

|p(ys−1a) − p(s−1ya)|2
)1/2

=
(

1

|G/Gn|
∑

a∈G/Gn

|p(us−1a) − p((ya)s−1)|2
)1/2

.

Since ‖σs ◦ ψ(p) − ψ ◦ αf,s(p)‖2 < δ, the set of all a ∈ G/Gn satisfying
|p(us−1a) − p((ya)s−1)| ≥ √

δ has cardinality at most δ|G/Gn|. Thus the set
W of all a ∈ G/Gn satisfying |p(us−1a) − p((ya)s−1)| <

√
δ for all p ∈ P

and s ∈ F has cardinality at least |G/Gn| − δ|P||F ||G/Gn|.
We have

ζ ◦ ψ(g) − μ(g) = 1

|G/Gn|
∑

a∈G/Gn

g(ya) − μ(g)

= 1

|G/Gn|
∑

a∈G/Gn

g(ua) − ω∗(μ)(g)

≥ 1

|G/Gn|
∑

a∈G/Gn

g(ua) − η,

and

|ζ ◦ ψ(g) − μ(g)| ≤ |ζ ◦ ψ(g) − ζ ◦ ψ(g̃)| + |ζ ◦ ψ(g̃) − μ(g̃)|
+ |μ(g̃) − μ(g)|

≤ ‖g − g̃‖∞ + Mδ + ‖g − g̃‖∞ < 2η + Mδ.

Then the set of all a ∈ G/Gn satisfying ua ∈ Y has cardinality at most (3η +
Mδ)|G/Gn|. Thus the set V of all a ∈ G/Gn satisfying us−1a �∈ Y for all
s ∈ F has cardinality at least |G/Gn| − |F |(3η + Mδ)|G/Gn|.

Let a ∈ W ∩ V and s ∈ F . Since a ∈ V , one has ϑ(us−1a, ξ mod Z) > κ ,
and hence ũs−1a ∈ (ξ + κ,1 + ξ − κ). As a ∈ W , one has ρ(us−1a, (ya)s−1) =
maxp∈P |p(us−1a) − p((ya)s−1)| <

√
δ, and hence ϑ(us−1a, (ya)s−1) < κ . It
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follows that |ũs−1a − (ỹa)s−1 | = ϑ(us−1a, (ya)s−1) < κ . Then

|va − za| =
∣
∣
∣
∣

∑

s∈F

fsũs−1a −
∑

s∈F

fs(ỹa)s−1

∣
∣
∣
∣
≤

∑

s∈F

|fs | · |ũs−1a − (ỹa)s−1 |

< ‖f ‖1κ <
η′

2‖f −1‖ .

Now we have

‖v − z‖2 =
(

1

|G/Gn|
∑

a∈W∩V

|va − za|2

+ 1

|G/Gn|
∑

a∈(G/Gn)\(W∩V )

|va − za|2
)1/2

≤
((

η′

2‖f −1‖
)2

+ |(G/Gn) \ (W ∩ V )|
|G/Gn| · 16‖f ‖2

1

)1/2

≤
((

η′

2‖f −1‖
)2

+ 16|F |(3η + (|P| + M)δ)‖f ‖2
1

)1/2

<
η′

‖f −1‖ ,

and hence

‖ũ − πn(f )−1z‖2 ≤ ‖πn(f )−1‖ · ‖v − z‖2 ≤ ‖f −1‖ · η′

‖f −1‖ = η′.

Then the set W ′ of all a ∈ G/Gn satisfying |ũa − (πn(f )−1z)a| <
√

η′ has
cardinality at least |G/Gn|(1 − η′) ≥ |G/Gn|(1 − ε2/2). For every a ∈ W ′,
one has ϑ(ua, z

′
a) ≤ |ũa − (πn(f )−1z)a| < √

η′, and hence ρ(ua, z
′
a) < ε/2.

For each a ∈ G/Gn take an sa ∈ G such that a = saGn. For every p ∈ P
we have

‖ψ(p) − ϕx(p)‖2 =
(

1

|G/Gn|
∑

a∈G/Gn

|p(ya) − p(sax)|2
)1/2

=
(

1

|G/Gn|
∑

a∈G/Gn

|p(ua) − p(xsa )|2
)1/2

=
(

1

|G/Gn|
∑

a∈G/Gn

|p(ua) − p(z′
saGn

)|2
)1/2
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=
(

1

|G/Gn|
∑

a∈G/Gn

|p(ua) − p(z′
a)|2

)1/2

=
(

1

|G/Gn|
∑

a∈W ′
|p(ua) − p(z′

a)|2

+ 1

|G/Gn|
∑

a∈(G/Gn)\W ′
|p(ua) − p(z′

a)|2
)1/2

≤
(

1

|G/Gn|
∑

a∈W ′
ρ(ua, z

′
a)

2 + 1

|G/Gn|
∑

a∈(G/Gn)\W ′
1

)1/2

≤
(

ε2

4
+ ε2

2

)1/2

< ε.

Therefore ρP (ψ,ϕx) = maxp∈P ‖ψ(p) − ϕx(p)‖2 < ε. �

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1 By [16, Theorem 3.2], for each n ∈ N we have

log detL(G/Gn) πn(f ) = 1

|G/Gn| log |Xπn(f )|.

It follows by Theorem 7.3 and Lemma 7.4 that

log detLG f = lim
n→∞ log detL(G/Gn) πn(f )

= lim
n→∞

1

|G/Gn| log |Xπn(f )|

= lim
n→∞

1

|G/Gn| log |FixGn(Xf )|.

The theorem now follows from Lemmas 7.5 and 7.6 and Theorem 6.1. �

Note that if we take f to be k times the unit in ZG for some k ∈ N, then
the action of G on Xf is the Bernoulli shift on k symbols, whose entropy was
computed more generally in Example 4.11 to be logk for any countable sofic
G and sofic approximation sequence �.

In the case of a countable discrete amenable group G acting by auto-
morphisms on a compact metrizable group K , one can show directly that
the topological entropy is equal to the measure entropy with respect to the
normalized Haar measure (this is done in [2] for G = Z by an argument
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that works more generally, and in [8]). In our present context, it follows
from Theorem 7.1 and [4] that when f is invertible in �1(G) we also have
h�,μ(Xf ,G) = h�(Xf ,G) where μ is the normalized Haar measure on Xf .
However we do not see how to prove this in a more direct and general way.
We thus ask the following.

Problem 7.7 Let G be a countable sofic group acting by automorphisms on a
compact metrizable group K . Let � be a sofic approximation sequence for G.
Is it true in general that h�,μ(K,G) = h�(K,G) where μ is the normalized
Haar measure on K? What if G is residually finite and � is assumed to arise
from a sequence of finite quotients? Does equality hold for the type of actions
studied in this section without the assumption that G is residually finite or
that � arises from a sequence of finite quotients?
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