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Abstract We prove that every bounded type Siegel disk of a rational map
must be a quasi-disk with at least one critical point on its boundary. This
verifies Douady-Sullivan’s conjecture in the case of bounded type rotation
numbers.
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37F20

1 Introduction

A Siegel disk of a rational map f is a maximal domain on which f is holo-
morphically conjugate to an irrational rotation. It was conjectured by Douady
and Sullivan in 1980’s that the boundary of every Siegel disk for a rational
map has to be a Jordan curve [6]. This has remained an open problem, even
for quadratic polynomials. The main purpose of this paper is to verify this
conjecture under the condition that the rotation number of the Siegel disk is
of bounded type. Here we say an irrational number 0 < θ < 1 is of bounded
type if sup{ak} < ∞ where θ = [a1, . . . , an, . . .] is the continued fraction of θ .
Before we state the main result of the paper, let us give a brief account of the
previous studies on this problem.

In 1986, Douady observed that quasisymmetric linearization of critical cir-
cle mappings would imply that the boundary of the Siegel disk of a quadratic
polynomial is a quasi-circle. Using work of Swiatek, Herman then proved
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the required quasisymmetric linearization result for analytic circle mappings
with bounded type rotation numbers. This implies that every bounded type
Siegel disk of a quadratic polynomial must be a quasi-disk whose bound-
ary passes through the unique finite critical point of the quadratic polyno-
mial [7]. In 1998, by considering a surgery map defined on certain space of
some degree-5 Blaschke products, Zakeri extended Douady-Herman’s result
to bounded type Siegel disks of all cubic polynomials [15]. Shortly after that,
in his webpage Shishikura announced

Theorem (Shishikura) All bounded type Siegel disks of polynomial maps are
quasi-disks which have at least one critical point on their boundaries.

The main purpose of this paper is to generalize the above result to bounded
type Siegel disks of all rational maps.

Main Theorem Let d ≥ 2 be an integer and 0 < θ < 1 be an irrational num-
ber of bounded type. Then there exists a constant 1 < K(d, θ) < ∞ depend-
ing only on d and θ such that for any rational map f of degree d , if f has
a fixed Siegel disk with rotation number θ , then the boundary of the Siegel
disk is a K(d, θ)-quasi-circle which passes through at least one critical point
of f .

There are two main ingredients in the proof of the Main Theorem. The first
one is due to Shishikura by which he proved that bounded type Siegel disks
of polynomial maps are all quasi-disks. The idea of Shishikura is to prove that
any invariant curve inside a bounded type Siegel disk of a polynomial map
is uniformly quasiconformal. The result then follows by letting the invariant
curve approach the boundary of the Siegel disk. A detailed description of this
strategy will be given in Sect. 3 of this paper.

The second one is an extension of Herman’s uniform quasisymmetric
bound to all analytic circle mappings induced by centered Blaschke products
(for the definition of centered Blaschke products, see Sect. 2). As indicated by
Shishikura, the key tool used in his proof is a uniform quasisymmetric bound
of the linearization maps for a compact family of analytic circle mappings,
which was due to Herman (see Theorem A of Sect. 2). The main obstruction
in generalizing Shishikura’s result to all rational maps is that the family of
Blaschke products involved in constructing Siegel disks of rational maps is
not compact anymore, and Herman’s theorem does not apply directly in this
situation. The core of our proof is an extension of Herman’s theorem to all
centered Blaschke products (see Theorem B of Sect. 2). This is the heart of the
whole paper. One of the key tools used in our proof is the Relative Schwarz
Lemma proved by Buff and Chéritat in [2].

The following is a sketch of the organization of the paper.
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In Sect. 2, we introduce Herman’s theorem and its extension (Theorems A
and B). Since the proof of Theorem B is quite long, we postpone it until the
last section of the paper.

In Sect. 3, we prove the Main Theorem by assuming Theorem B. The proof
is divided into two steps. In the first step, we prove the Main Theorem under
the condition that the post-critical set of the rational map does not intersect
the interior of the Siegel disk (Lemma 3.6). In the second step we prove the
Main Theorem in the general case (Lemma 3.8). The proof of Lemma 3.6 is
based on Theorem B and Shishikura’s strategy. The proof of Lemma 3.8 uses
Lemma 3.6 and a trick of holomorphic motion.

In Sect. 4, we prove Theorem B and thus complete the proof of the Main
Theorem.

2 Herman’s Theorem and its extension

Let m = 2d − 1 with d ≥ 2 being some integer. Let θ = [a1, . . . , an, . . .] be
an irrational number with sup{an} < ∞. We call such θ of bounded type. Let
T denote the unit circle and Rθ : T → T denote the rigid rotation given by
z → e2πiθ z. Let Hm

θ denote the class of all the Blaschke products

B(z) = λzd
d−1∏

i=1

1 − aiz

z − ai

, (1)

such that

1. |ai | < 1 for all 1 ≤ i ≤ d − 1,
2. |λ| = 1,
3. B|T : T → T is a circle homeomorphism of rotation number θ .

In one of his three handwritten manuscripts [9] (see also [3] and [4]), Herman
proved

Theorem A Let m ≥ 3 be an odd integer and 0 < θ < 1 be an irrational
number of bounded type. Then there is a constant 1 < K(m,θ) < ∞ de-
pending only on m and θ such that for any B ∈ Hm

θ , there is a K(m,θ)-
quasi-symmetric homeomorphism hB of the unit circle such that B|T =
h−1

B ◦ Rθ ◦ hB and hB(1) = 1, where Rθ : z �→ e2πiθ z is the rigid rotation
given by θ .

The proof of Theorem A in [9] depends essentially on the fact that the
family Hd

θ is compact in the following sense.

Lemma 2.1 There is an annular neighborhood H of T, such that
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1. all maps in Hm
θ are holomorphic in H , and

2. for any sequence {Bn} ⊂ Hm
θ , there is a subsequence {Bnk

} such that
Bnk

|H converges uniformly to B|H where B ∈ Hl
θ and 1 ≤ l ≤ m is some

odd integer.

Proof By Sect. 15 of [9], there is a 0 < ρ < 1 such that for any B ∈ Hm
θ given

by (1), one has |ai | ≤ ρ. Let

H = {z | (1 + ρ)/2 < |z| < 2}.
Then all the maps in Hm

θ are holomorphic in H . This proves the first assertion.
Let

Bn(z) = λzd
d−1∏

i=1

1 − an,iz

z − an,i

.

Since |an,i | ≤ ρ, there is a subsequence of integers {nk} such that for each
1 ≤ i ≤ d − 1, ank,i → bi with 0 ≤ |bi | ≤ ρ. It follows that as k → ∞,

1 − ank,iz

z − ank,i

→ 1 − biz

z − bi

uniformly on H . Let

B(z) = λzd
d−1∏

i=1

1 − biz

z − bi

.

Then B ∈ Hl
θ with 1 ≤ l ≤ m being some odd integer and Bnk

→ B uniformly
on H . This proves the second assertion and Lemma 2.1 follows. �

Theorem A plays an important role in the study of bounded type Siegel
disks of polynomial maps. Among all of those the most remarkable one is
Shishikura’s result which says that any bounded type Siegel disk of a polyno-
mial map is a quasi-circle with at least one critical point on it.

Let d , m and θ be as above. Let Bm
θ denote the class of all the Blaschke

products

B(z) = λ

d∏

i=1

z − pi

1 − piz

d−1∏

j=1

z − qj

1 − qjz
(2)

such that

1. |pi | < 1 and |qj | > 1 for all 1 ≤ i ≤ d and 1 ≤ j ≤ d − 1,
2. |λ| = 1,
3. B|T : T → T is a circle homeomorphism of rotation number θ .
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For any B ∈ Bm
θ , by Herman’s result in [9] it is known that the analytic

circle mapping

B|T : T → T

is quasisymmetrically conjugate to the rigid rotation Rθ : z �→ e2πiθ . Then
B|T has a unique invariant probability measure on T which has no atoms. Let
us denote it by μB . According to Douady and Earle [8], to such μB , one can
assign a vector field ξμB

on � as follows,

ξμB
(z) = (1 − |z|2)

∫

T

ζ − z

1 − z̄ζ
dμB(ζ ), z ∈ �.

By Proposition 1 of [8], the vector field ξμB
has a unique zero in �, which

is called the conformal barycenter of μB . Let us denote it by zB . From the
above formula it follows that zB = 0 if and only if

∫

T

ζ dμB(ζ ) = 0. (3)

Note that for any Möbius map g which maps the unit circle to itself and
preserves the orientation, g∗μB is the unique invariant probability measure
for the analytic circle mapping (g ◦ B ◦ g−1)|T : T → T. It is clear that g∗μB

has no atoms. According to [8], the assignment of μ �→ ξμ is conformally
natural in the following sense: if g is a Möbius map which maps the unit
circle to itself and preserves the orientation, then

ξg∗
μB

(z) = g′(g−1(z)) · ξμB
(g−1(z)).

It follows that if g maps zB to 0, then the conformal barycenter of g∗μB is 0.

Definition 2.1 We say B is a centered Blaschke product if zB = 0.

From the previous observation, any Blaschke product in Bm
θ is conjugate

to a centered Blaschke product by a Möbius map which maps the unit circle
to itself and preserves the orientation. The core of the proof of our Main
Theorem is the extension of Herman’s theorem to all the centered Blaschke
products in Bm

θ .

Theorem B Let m ≥ 3 be an odd integer and θ = [a1, . . . , an, . . .] be a
bounded type irrational number. Then there is a constant 1 < M(m,θ) < ∞
depending only on m and θ such that for any centered Blaschke product B in
Bm

θ , the map

hB : T → T



426 G. Zhang

is an M(m,θ)-quasisymmetric homeomorphism, where hB : T → T is the
circle homeomorphism such that B|T = h−1

B ◦ Rθ ◦ hB and hB(1) = 1.

Remark 1 We would like to remark that for every odd integer m ≥ 3 and irra-
tional rotation number 0 < θ < 1, the family of centered Blaschke products in
Bm

θ is not compact in the sense of Lemma 2.1. One can show that for any an-
nular neighborhood H of the unit circle, there is a centered Blaschke product
B in Bm

θ such that B is not holomorphic in H .

As an immediate corollary of Theorem B, we have

Corollary 2.1 Let m = 2d −1 ≥ 3 be an odd integer and θ = [a1, . . . , an, . . .]
be a bounded type irrational number. Then there is a constant 1 < K(d, θ) <

∞ depending only on d and θ such that for any Blaschke product B in Bm
θ ,

the map

hB : T → T

can be extended to a K(d, θ)-quasiconformal homeomorphism of the unit
disk to itself, where hB : T → T is the circle homeomorphism such that B|T =
h−1

B ◦ Rθ ◦ hB and hB(1) = 1.

3 Proof of The Main Theorem assuming Theorem B

Let d ≥ 2 and 0 < θ < 1 be an irrational number of bounded type. Suppose
that f is a rational map of degree d and has a fixed Siegel disk D centered
at the origin and with rotation number θ . By a Möbius conjugation, we may
assume that D is contained in a compact set of the complex plane. Let �

denote the unit disk. Let

λ : � → D

be the holomorphic isomorphism such that λ(0) = 0, λ′(0) > 0, and

λ−1 ◦ f ◦ λ(z) = e2πiθ z

for all z ∈ �. For 0 < r < 1, let

	r = {λ(reit ) | 0 ≤ t ≤ 2π}.
Let K > 1 and Ĉ be the Riemann sphere. We call a simple closed curve

	 ⊂ Ĉ a K-quasi-circle if there is a K-quasiconformal homeomorphism

φ : Ĉ → Ĉ

such that 	 = φ(T) where T is the unit circle.
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Lemma 3.1 If there exists a 1 < K < ∞ such that 	r is a K-quasi-circle
for all 0 < r < 1, then ∂D is a K-quasi-circle. In particular, the map f |∂D :
∂D → ∂D is injective, and thus ∂D contains at least one of the critical points
of f .

Proof By assumption, for any integer n > 1, there is a K-quasiconformal
homeomorphism σn : Ĉ → Ĉ such that

σn(T) = 	1−1/n.

We may assume that σn maps the origin into the inside of 	1−1/n. Let ηn be
a Möbius map which preserves the unit disk and maps the origin to σ−1

n (0).
Let

ωn = σn ◦ ηn.

Then ωn is a K-quasiconformal homeomorphism of the sphere and more-
over, ωn(T) = 	1−1/n and ωn(0) = 0. It follows that any limit map of the se-
quence {ωn} is a K-quasiconformal homeomorphism of the sphere. By taking
a convergent subsequence, we may assume that there is a K-quasi-conformal
homeomorphism

ω : Ĉ → Ĉ

such that ωn converges uniformly to ω with respect to the spherical metric.
We claim that

D = ω(�).

Let us prove the claim now. For r > 0, let �r denote the Euclidean disk
centered at the origin and with radius r . Then for any 1 < n < l we have
λ(�1−1/n) ⊂ λ(�1−1/l). Since ωl(�) = λ(�1−1/l), we have

λ(�1−1/n) ⊂ ωl(�). (4)

Let us first prove that

λ(�1−1/n) ⊂ ω(�). (5)

Suppose (5) were not true. Since λ(�1−1/n) is open and ω(�) is a quasi-
disk, there would be a point z ∈ λ(�1−1/n) such that d(z,ω(�)) = δ > 0.
Here d(·, ·) denotes the distance with respect to the spherical metric. Since
ωl → ω uniformly with respect to the spherical metric, we have

d(z,ωl(�)) > δ/2 > 0

for all l large enough. This is a contradiction with (4). Thus (5) has been
proved. Since D = λ(�), by letting n → ∞ in the left hand of (5), we get

D ⊂ ω(�). (6)
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Note that for any l ≥ 1, we have

ωl(�) = λ(�1−1/l) ⊂ λ(�) = D. (7)

For any z ∈ �, let H = {ζ | |z| < |ζ | < 1}. Since ωl(0) = 0, ωl(H) is an
annulus contained in D which separates {0,ωl(z)} and ∂D. Since ωl is K-
quasiconformal for all l, it follows that

mod(ωl(H)) ≥ 1

K
mod(H) = 1

2Kπ
log

1

|z| .

This implies that there is some δ > 0 independent of l such that

d(ωl(z), ∂D) ≥ δ

for all l. Since ωl(z) ∈ D, it follows that Bδ(wl(z)) ⊂ D for all l. Since
ωl → ω uniformly with respect to the spherical metric, it follows that
w(z) ∈ D. Since z is arbitrary, we have

ω(�) ⊂ D. (8)

From (6) and (8) it follows that D = ω(�) and the claim has been proved.
From the claim we have ∂D = ω(T). Since ω is a K-quasiconformal

homeomorphism of the sphere to itself, it follows that ∂D is a K-quasi-circle
and D is a K-quasi-disk. Since λ : � → D is a holomorphic isomorphism,
one can homeomorphically extended λ to ∂�. So we have

λ−1 ◦ f ◦ λ(z) = e2πiθ z

holds for all z ∈ ∂�. This implies that

f |∂D : ∂D → ∂D

is injective. By a result of Herman (see [10]), it follows that ∂D contains at
least one of the critical points of f . This completes the proof of Lemma 3.1. �

Let 0 < r < 1 and let

Dr = {λ(seit ) | 0 ≤ s < r, 0 ≤ t ≤ 2π}.
Let

φ : Ĉ \ � → Ĉ \ Dr

be the holomorphic isomorphism such that φ(∞) = ∞ and φ′(∞) > 0. Take
r < R < 1. Let

�R = φ−1(	R).
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Then �R is a real-analytic simple closed curve which surrounds the closed
unit disk. Let �∗

R denote the symmetric image of �R about the unit circle.
Let �R denote the bounded component of Ĉ \ �∗

R . It is clear that �R is a
Jordan domain with smooth boundary which lies in the inside of the unit disk
and contains the origin. Let

AR = � \ �R

be the annulus bounded by T and �∗
R .

Take r0 > 0 small enough such that �r0 ⊂ Dr where �r0 = {z | |z| < r0}.
Let η : �R → �r0 be the Riemann isomorphism such that η(0) = 0 and
η′(0) > 0. Since ∂�R , ∂�r0 , ∂� and ∂Dr are all smooth curves, there is a
quasiconformal homeomorphism � : Ĉ → Ĉ such that

1. �(z) = φ(z) in the outside of the unit disk, and
2. �(z) = η(z) in �R , and
3. � is quasiconformal in AR .

For ζ ∈ C ∪ {∞}, let ζ ∗ = 1/ζ̄ be the symmetric image of ζ about the unit
circle. Define

G(z) =
{

�−1 ◦ f ◦ �(z) for |z| ≥ 1,

(�−1 ◦ f ◦ �(z∗))∗ for |z| < 1.
(9)

Let

Hr = �−1{λ(seit ) | r ≤ s < 1,0 ≤ t ≤ 2π}.
Let H ∗

r denote the symmetric image of Hr about the unit circle. Then Hr ∪H ∗
r

is an annular neighborhood of the unit circle. Throughout the following, let
us set

m = 2d − 1.

By the construction, we have

Lemma 3.2 The map G is a degree m branched covering map of the sphere
to itself which is holomorphic in Hr ∪ H ∗

r . Moreover, G is holomorphically
conjugate to the rigid rotation z �→ e2πiθ z in Hr ∪ H ∗

r .

From the construction we see if G is quasiconformal at some point z,
then G(z) lies in Hr ∪ H ∗

r . Let μ0 denote the standard complex structure
in Hr ∪ H ∗

r . Let G0 = G|(Hr ∪ H ∗
r ) denote the restriction of G to Hr ∪ H ∗

r .
By Lemma 3.2 the map

G0 : Hr ∪ H ∗
r → Hr ∪ H ∗

r
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is a holomorphic isomorphism and μ0 is G0-invariant. So one can pull back
μ0 by the iteration of G to get a G-invariant complex structure μ on the
whole sphere Ĉ. It follows from the symmetric property of G and μ0 that μ

is symmetric about the unit circle.
Note that if G is quasiconformal at some point z with |z| > 1, then G(z)

actually belongs to H ∗
r which is contained in the inside of the unit disk. This

implies

Lemma 3.3 For almost every z in the outside of the unit disk, if μ(z) = 0,
then there exists some integer k ≥ 1 such that Gk(z) ∈ �.

Let � denote the quasiconformal homeomorphism which solves the Bel-
trami equation given by μ and fixes 0, 1, and the infinity. Let

B(z) = � ◦ G ◦ �−1(z).

Since μ is symmetric about the unit circle, the map

z �→ (�(z∗))∗

is also a quasiconformal homeomorphism of the sphere to itself which has
Beltrami coefficient μ. Note that it also fixes 0, 1 and the infinity. So �(z) =
(�(z∗))∗ for all z ∈ Ĉ. Since G(z∗) = (G(z))∗ for all z ∈ Ĉ, it follows that
B(z∗) = (B(z))∗ for all z ∈ Ĉ. This implies that

Lemma 3.4 B ∈ Bm
θ .

Lemma 3.5 For almost every z in the outside of the unit disk, if �−1 is not
conformal at z then there is some integer k ≥ 1 such that Bk(z) ∈ �.

Proof Note that �−1 is not conformal at z for some |z| > 1 if and only if �

is not conformal at �−1(z). From Lemma 3.3 it follows that there is some
integer k ≥ 1 such that Gk(�−1(z)) ∈ �. By the symmetric property of � , �

preserves the unit circle and thus maps the unit disk homeomorphically onto
the unit disk. We thus have

Bk(z) = (� ◦ Gk ◦ �−1)(z) ∈ �.

The lemma follows. �

Let hB : T → T be the circle homeomorphism such that hB(1) = 1 and

B|T = h−1
B ◦ Rθ ◦ hB.
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By Corollary 2.1, one can extend hB to a K(d, θ)-quasiconformal homeo-
morphism

HB : � → �

where 1 < K(d, θ) < ∞ is some constant depending only on d and θ . Now
let us define the modified Blaschke product as follows.

B̂(z) =
{

B(z) for |z| ≥ 1,

H−1
B ◦ Rθ ◦ HB(z) for z ∈ �.

From the above construction, we have

Proposition 3.1 Let z ∈ Ĉ \ �. Then

B̂(z) /∈ � ⇐⇒ f (� ◦ �−1(z)) /∈ Dr.

Moreover, if B̂(z) /∈ �, then

� ◦ �−1(B̂(z)) = f (� ◦ �−1(z)).

Let �B̂ and �f denote critical sets of B̂ and f , respectively. Let

PB̂ =
∞⋃

k≥1

�B̂ and Pf =
∞⋃

k≥1

�f

denote the post-critical sets of B̂ and f , respectively.

Lemma 3.6 There is a constant 1 < K(d, θ) < ∞ depending only on d and θ

such that for any 0 < r < 1, if Pf ∩Dr = ∅, then 	r is a K(d, θ)-quasi-circle.

Proof It suffices to prove the lemma under the stronger assumption that Pf ∩
Dr = ∅. This is because Pf ∩ Dr ′ ⊂ Pf ∩ Dr = ∅ for all 0 < r ′ < r , and by
the same reasoning as in the proof of Lemma 3.1, one can show that 	r must
be a K(d, θ)-quasi-circle if 	r ′ is a K(d, θ)-quasi-circle for all 0 < r ′ < r .

Let λr : � → Dr be the holomorphic isomorphism such that

λr(1) = � ◦ �−1(1)

and

λ−1
r ◦ f ◦ λr(z) = e2πiθ z

for all z ∈ �. Define a quasiconformal homeomorphism χ0 : Ĉ → Ĉ by

χ0(z) =
{

� ◦ �−1(z) for |z| ≥ 1,

λr ◦ HB(z) for z ∈ �.
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Let μ0 denote the complex dilatation of χ0 and let

M = 1 + ‖μ0‖∞
1 + ‖μ0‖∞

.

Then χ0 is an M-quasiconformal homeomorphism of the sphere which maps
the unit disk homeomorphically onto Dr . Note that M depends on r and may
go to infinity as r → 1.

Now for every k ≥ 1, we will define an M-quasiconformal homeomor-
phism χk : Ĉ → Ĉ as follows. Note that Pf ∩ Dr = ∅ by the assumption in
the beginning of the proof. Since �◦�−1 is a bijection between �B̂ and �f ,
from Proposition 3.1 it follows that PB̂ ∩ � = ∅ and thus

� ◦ �−1(PB̂) = Pf .

So for every k ≥ 1, if an inverse branch of B̂k maps � to some domain in
the outside of the unit disk, then this inverse branch is univalently defined in
an open neighborhood of the closed unit disk. This implies that each compo-
nent of B̂−k(�) is a Jordan domain with boundary being real analytic, and
moreover, the closures of these Jordan domains are disjoint with each other.

Suppose B̂−k(�) has lk components with lk ≥ 1 being some integer. Let

Ui, 1 ≤ i ≤ lk

denote all the components of B̂−k(�). By the construction of B̂ , it follows
that

� ◦ �−1(Ui), 1 ≤ i ≤ lk

are all the components of f −k(Dr). Let us first define χk on each Ui .
If Ui = �, define

χk|� = λr ◦ HB.

Otherwise, there is a least integer 1 ≤ k0 ≤ k such that B̂k0(Ui) = �. Since
PB̂ ∩ � = Pf ∩ Dr = ∅, the two maps

B̂k0 : Ui → �

and

f k0 : � ◦ �−1(Ui) → Dr

are both holomorphic isomorphisms. So one can lift the quasiconformal
homeomorphism λr ◦ HB : � → Dr to a quasiconformal homeomorphism
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τi : Ui → � ◦ �−1(Ui) such that the following diagram commutes.

Ui
τi−−−→ � ◦ �−1(Ui)

B̂k0

⏐⏐�
⏐⏐�f k0

�
λr◦HB−−−→ Dr

In particular, the dilatation of τi on Ui is equal to that of λr ◦ HB on �.
Since both ∂Ui and � ◦ �−1(∂Ui) are quasi-circles (in fact, both of them

are real analytic curves), τi can be homeomorphically extended to ∂Ui . Note
that B̂k0(∂Ui) = ∂� ⊂ Ĉ \ � and thus B̂k(∂Ui) ⊂ Ĉ \ � for all k ≥ 0, by
Proposition 3.1, the following diagram commutes.

∂Ui
�◦�−1−−−−→ � ◦ �−1(∂Ui)

B̂k0

⏐⏐�
⏐⏐�f k0

∂�
�◦�−1−−−−→ ∂Dr

Since � ◦ �−1|∂� = λr ◦ HB |∂�, from the above two diagrams it follows
that τi |∂Ui = � ◦ �−1|∂Ui . For each such Ui , define χk = τi on Ui .

Finally let us define χk = � ◦ �−1 on the complement of B̂−k(�). Since
all ∂Ui , 1 ≤ i ≤ lk , are quasi-circles which are disjoint with each other, χk is
a quasiconformal homeomorphism of the sphere to itself. In this way we get a
sequence of quasiconformal homeomorphisms χk : Ĉ → Ĉ, k ≥ 0. We claim

1. χk(�) = Dr ,
2. χk is an M-quasiconformal homeomorphism of the sphere to itself, and
3. The following diagram commutes.

Ĉ
χk+1−−−→ Ĉ

B̂

⏐⏐�
⏐⏐�f

Ĉ
χk−−−→ Ĉ

(10)

Let us prove the claim now. The first assertion is obvious since by the
construction of χk , χk|� = λr ◦ HB for all k ≥ 0. Again by the construction
of χk , the dilatation of χk on B̂−k(�) is not greater than the dilatation of
λr ◦ HB on �, and the dilatation of χk on Ĉ \ B̂−k(�) is not greater than
the dilatation of � ◦ �−1 on Ĉ \ B̂−k(�). So for every k ≥ 1, the dilatation
of χk is not greater than the dilatation of χ0 which is M-quasiconformal.
The second assertion then follows. By the construction of χk and χk+1, the
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following diagram commutes.

B̂−(k+1)(�)
χk+1−−−→ f −(k+1)(Dr)

B̂

⏐⏐�
⏐⏐�f

B̂−k(�)
χk−−−→ f −k(Dr)

By Proposition 3.1 the following diagram commutes.

Ĉ \ B̂−(k+1)(�)
�◦�−1−−−−→ Ĉ \ f −(k+1)(Dr)

B̂

⏐⏐�
⏐⏐�f

Ĉ \ B̂−k(�)
�◦�−1−−−−→ Ĉ \ f −k(Dr)

But on Ĉ\ B̂−(k+1)(�), χk+1 = �◦�−1 and on Ĉ\ B̂−k(�), χk = �◦�−1.
This, together with the above two diagrams, implies the third assertion. The
claim has been proved.

Now for k ≥ 0, let μk denote the Beltrami coefficient of χk . It follows that

‖μk‖∞ ≤ M − 1

M + 1
(11)

holds for all k ≥ 0.
Now let ν denote the complex dilatation of λr ◦HB which is defined in the

inside of the unit disk. Since λr is conformal in � = HB(�), it follows that
ν is equal to the complex dilatation of HB . So ν is B̂-invariant. Since HB is
K(d, θ)-quasiconformal, we have

‖ν‖∞ ≤ K(d, θ) − 1

K(d, θ) + 1
.

Now let � ⊂ Ĉ \ � be the set consisting of all the points z such that
B̂k(z) /∈ � for all k ≥ 1. By Lemma 3.5, it follows that for almost every
z ∈ �, �−1 is conformal at z. Since �−1(Ĉ \ �) = Ĉ \ �, and since � is
conformal in the outside of the unit disk, it follows that �◦�−1 is conformal
at almost every z ∈ �. Now let

� =
∞⋃

l=0

B̂−l(∂�).

Then � is the union of countably many real analytic curves and thus is a zero
measure set. It is easy to see that for every z ∈ � \� and every k ≥ 0, there is
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an open neighborhood of such z, say Bz(r), such that Bz(r) ∩ B̂−k(�) = ∅.
By the construction of χk , it follows that

χk|Bz(r) = � ◦ �−1|Bz(r).

This implies that the complex dilatation of χk is equal to that of �◦�−1 at z.
In particular, this implies that for almost every z ∈ �, μk(z) = 0 for all k ≥ 0.

Now suppose z ∈ �. Then there is some integer N ≥ 1 such that

B̂N(z) ∈ �.

By the construction of the maps {χk}, μN(z) is the pull back of ν(B̂N(z)) by
B̂N , and μk(z) = μN(z) for all k > N . Since B̂ is holomorphic in the outside
of the unit disk, we thus have for all k ≥ N ,

|μk(z)| = |μN(z)| = |ν(B̂N(z))| ≤ K(d, θ) − 1

K(d, θ) + 1
.

Now let us define a Beltrami coefficient μ(z) on the whole Riemann sphere
by setting

μ(z) = 0

if z ∈ � and

μ(z) = μN(z)

if B̂N(z) ∈ � for some N ≥ 0. It follows that

‖μ‖∞ ≤ K(d, θ) − 1

K(d, θ) + 1

and μk(z) → μ(z) for almost every z ∈ Ĉ. Now from (11) and the fact
that χk|� = λr ◦ HB for all k ≥ 0, it follows that there is a K(d, θ)-
quasiconformal homeomorphism χ : Ĉ → Ĉ such that χk converges uni-
formly to χ with respect to the spherical metric. In particular, we have

χ |� = χk|� = λr ◦ HB

for all k ≥ 0. Note that the quasiconformal homeomorphism λr ◦ HB : � →
Dr can be homeomorphically extended to ∂� such that (λr ◦HB)(∂�) = 	r .
Since χ : Ĉ → Ĉ is a K(d, θ)-quasiconformal homeomorphism, it follows
that 	r = χ(∂�) is a K(d, θ)-quasi-circle. This completes the proof of
Lemma 3.6. �

To remove the condition that Pf ∩ Dr = ∅ in Lemma 3.6, we need the
following lemma.
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Lemma 3.7 (Lemma 9.8 of [14]) For any C > 0, there is a 1 < K(C) < ∞
depending only on C such that for any simple closed curve γ ⊂ Ĉ if

∣∣∣∣
(w1 − w3)(w2 − w4)

(w1 − w4)(w2 − w3)

∣∣∣∣ > C (12)

holds for any four points {w1,w2,w3,w4} in γ which are listed accord-
ing to anticlockwise order, then γ is a K(C)-quasi-circle. The converse is
also true. That is, for any 1 < K < ∞, there exists a C(K) > 0 depending
only on K such that if γ ⊂ Ĉ is a K-quasi-circle, then for any four points
{w1,w2,w3,w4} in γ which are listed according to anticlockwise order, (12)
holds with the constant in the right hand replaced by C(K).

Let Rd
θ denote the set of all the degree d rational maps which have a fixed

Siegel disk centered at the origin and with rotation number θ .

Lemma 3.8 There is a 0 < C < ∞ depending only on d and θ such that
for any f ∈ Rd

θ , any 0 < r < 1, any four distinct integers k, l,m and n, and
any z ∈ 	r , if f k(z), f l(z), f m(z) and f n(z) are ordered anticlockwise in 	r ,
then

∣∣∣∣
(f k(z) − f m(z))(f l(z) − f n(z))

(f k(z) − f n(z))(f l(z) − f m(z))

∣∣∣∣ > C.

Proof Let f ∈ Rd
θ and D be the Siegel disk of f centered at the origin. Let

w ∈ Ĉ \ D. By considering the rational map f (z)
f (z)−w

, we may assume that
∞ /∈ D. For 0 < r < 1, let

Vf (r;k, l,m,n) = inf
z∈	r

∣∣∣∣
(f k(z) − f m(z))(f l(z) − f n(z))

(f k(z) − f n(z))(f l(z) − f m(z))

∣∣∣∣.

Note that as z → 0, the function

Cf ;k,l,m,n(z) = (f k(z) − f m(z))(f l(z) − f n(z))

(f k(z) − f n(z))(f l(z) − f m(z))

has a non-zero limit. We can thus regard Cf ;k,l,m,n as a holomorphic function
in D which does not vanish. In particular, we have

Vf (r1;k, l,m,n) ≥ Vf (r2;k, l,m,n)

for all 0 ≤ r1 < r2 < 1. It is important to note that Vf (r;k, l,m,n) is pre-
served by an Möbius conjugation.
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Let {fi} be a sequence in Rd
θ such that

lim
i→∞Vfi

(r;k, l,m,n) = inf
f ∈Rd

θ

{Vf (r;k, l,m,n)}.

Let Di denote the Siegel disk of fi centered at the origin. Let 	i
r denote the

	r of Di . For each i, take ai ∈ 	i
r . By considering the sequence of rational

maps 1
ai

fi(aiz) if necessary, we may assume that every 	i
r passes through the

point 1.
For each i, let φi : � → Di be the linearization map such that φ′

i (0) > 0.
Since every 	i

r passes through 1, it follows that φ′
i (0) is bounded away from 0

and the infinity. By Koebe’s 1/4-Theorem, Di = φi(�) contains a Euclidean
disk B0(τ ) for some τ > 0. Since fi(0) = 0 and f ′

i (0) = e2πiθ , it follows that
the sequence {fi} is normal in B0(τ ). By taking a convergent subsequence,
we may assume that fi converges to a univalent function g in B0(τ ). We
claim that g is the restriction of some rational map to B0(τ ) whose degree is
not more than d . Let us prove the claim. To this end, let us write

fi(z) = ciz

∏
k(z − pi

k)∏
j (z − qi

j )

where ci = 0 and all the pi
k and qi

j do not belong to B0(τ ). By taking a

subsequence we may assume that as i → ∞, each of the pi
k and qi

j either
converges to the infinity or converges to some complex number in the outside
of B0(τ ). Let us denote this as pi

k′ → ∞, qi
j ′ → ∞, pi

k′′ → pk′′ , and qi
j ′′ →

qj ′′ where the pk′′ and qj ′′ are complex numbers in the outside of B0(τ ).

Since when restricted to B0(τ ) fi converges to g and
∏

k′′ (z−pi
k′′ )∏

j ′′ (z−qi
j ′′ )

converges

to
∏

k′′ (z−pk′′ )∏
j ′′ (z−qj ′′ ) , it follows that as i → ∞,

ci ·
∏

k′(−pi
k′)∏

j ′(−qi
j ′)

→ α

where α is some nonzero complex number. This implies that in B0(τ ), the
univalent function g is identified with the following rational function whose
degree is clearly not more than d ,

αz

∏
k′′(z − pk′′)∏
j ′′(z − qj ′′)

.

The claim has been proved. In the following let us still use g to denote this
rational function.



438 G. Zhang

By taking a convergent subsequence if necessary, we may assume that
φi → φ uniformly in any compact subset of the unit disk where φ is some
univalent function defined in the unit disk. In particular, in a small neighbor-
hood of the origin, g(z) = (φ ◦ Rθ ◦ φ−1)(z) where Rθ is the rigid rotation
given by θ . Since g is a rational map, it follows that

g(z) = (φ ◦ Rθ ◦ φ−1)(z) for all z ∈ φ(�). (13)

Since φi → φ uniformly in any compact subset of the unit disk, fi converges
uniformly to g in any compact subset of φ(�). There are three cases.

In the first case, g is a Möbius map. Since g(0) = 0 and g′(0) = e2πiθ , it
follows that g has two distinct fixed points {0,p}, and moreover, Ĉ − {0,p}
is foliated by g-invariant Euclidean circles. Since φi → φ uniformly in any
compact subset of the unit disk, it follows that 	i

r converges to a Euclidean
circle 	 which is preserved by g, and moreover, fi uniformly converges to g

in an open neighborhood of 	. Since g is conjugate to the rigid rotation Rθ

through a Möbius map, we thus have

lim
i→∞Vfi

(r;k, l,m,n) = VRθ (r;k, l,m,n).

The Lemma in this case then follows from Lemma 3.7 and the fact that the
Euclidean circle is a quasi-circle.

In the second case, g ∈ Rd ′
θ for some 2 ≤ d ′ < d . Let Dg denote the Siegel

disk of g centered at the origin. By (13), it follows that Dg always contains
φ(�) and may be strictly larger than φ(�). Again since φi → φ uniformly
in any compact subset of the unit disk, it follows that 	i

r converges to the 	r ′
of Dg for some 0 < r ′ ≤ r , and moreover, fi uniformly converges to g in an
open neighborhood of 	r ′ . This implies that

lim
i→∞Vfi

(r;k, l,m,n) = Vg(r
′;k, l,m,n) ≥ Vg(r;k, l,m,n). (14)

Since g is a rational map with degree less than d , by induction on the degree
of the rational map we have a constant 0 < C < ∞ depending only on d and
θ such that

Vg(r;k, l,m,n) > C.

Thus the Lemma also follows in this case.
In the third case, g ∈ Rd

θ . Then we still have (14). Thus we get

Vg(r;k, l,m,n) = inf
f ∈Rd

θ

{Vf (r;k, l,m,n)}. (15)

Recall that Dg denotes the Siegel disk of g centered at the origin. By a Möbius
conjugation which preserves 0, we may assume that ∞ /∈ Dg and g(∞) = ∞.



Bounded type Siegel disks of rational maps are quasi-disks 439

Let 	
g
r and D

g
r denote the 	r and the Dr of Dg respectively. If Pg ∩ D

g
r = ∅,

then 	
g
r is a K(d, θ)-quasi-circle by Lemma 3.6. The Lemma in this case then

follows from Lemma 3.7. Now suppose

Pg ∩ D
g
r = ∅.

Let V1, . . . , VN denote all the components of g−1(D
g
r ) in the outside of Dg

such that

Vi ∩ (�g ∪ Pg) = ∅, i = 1, . . . ,N.

For each 1 ≤ i ≤ N , let

g(Vi ∩ (�g ∪ Pg)) = {x1, . . . , xki
}

where ki ≥ 1 is some integer. For each i, take ki distinct points in 	
g
r , say

zi
1, . . . , z

i
ki

.
Now take an r ′ such that r < r ′ < 1. For each 1 ≤ i ≤ N , take ki disjoint

Jordan domains with smooth boundaries, say Ui
1, . . . ,U

i
ki

such that Ui
j ⊂ D

g

r ′
and {xi

j , z
i
j } ⊂ Ui

j for all 1 ≤ j ≤ ki , and most importantly,

dUi
j
(xi

j , z
i
j ) ≡ C0

holds for all 1 ≤ i ≤ N and 1 ≤ j ≤ ki , where dUi
j
(·, ·) denotes the distance

with respect to the hyperbolic metric in Ui
j . In fact, when the domain becomes

thinner, the hyperbolic distance between the two points will become bigger.
So it is easy to make all dUi

l
(xi

j , z
i
j ) taking the same large value by making

all the domains Ui
j thin enough. It follows that there is a t0 ∈ � such that for

each Ui
j , there is a Riemann isomorphism

ψi
j : � → Ui

j

such that ψi
j (0) = xi

j and ψi
j (t0) = zi

j . Let φi
j denote the inverse of ψi

j . For
each 1 ≤ i ≤ N , define

�i(·, ·) : Dg

r ′ × � → D
g

r ′

as follows

�i(z, t) =
{

z if z ∈ D
g

r ′ \ ⋃
1≤j≤ki

U i
j ,

ψi
j

(
φi

j (z) + (1 − |φi
j (z)|)t

)
if z ∈ Ui

j for some 1 ≤ j ≤ ki.
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By a direct calculation, we have

(�i)z̄

(�i)z
(z, t) =

⎧
⎪⎨

⎪⎩

0 if z ∈ D
g

r ′ \ ⋃
1≤j≤ki

U i
j ,

(φi
j )′(z)

(φi
j )′(z)

tφi
j (z)

tφi
j (z)−2|φi

j (z)| if z ∈ Ui
j for some 1 ≤ j ≤ ki.

(16)

This implies that for almost every z in D
g

r ′ , the complex dilatation of �i

depends analytically on t when t varies in �. For each 1 ≤ i ≤ N , let V ′
i be

the component of g−1(D
g

r ′) which contains Vi . Since Vi is in the outside of
Dg , we have V ′

i ∩ Dg = ∅ for all 1 ≤ i ≤ N . For each t ∈ �, define

ht (z) =
{

g(z) if z ∈ Ĉ \ ⋃
1≤i≤N V ′

i ,

�i(g(z), t) if z ∈ V ′
i for some 1 ≤ i ≤ N.

(17)

It follows that ht : Ĉ → Ĉ is a branched covering map of degree d . Let

� =
⋃

1≤i≤N

V ′
i ∩

( ⋃

1≤j≤ki

g−1(Ui
j )

)
.

Since all the ∂Ui
j are smooth Jordan curves, ∂� is the union of finitely many

quasi-circles. For each t ∈ �, from (16) and (17) we can easily get

(ht )z̄

(ht )z
(z) =

⎧
⎪⎨

⎪⎩

0 if z ∈ Ĉ \ �,

(φi
j )′(g(z))

(φi
j )′(g(z))

tφi
j (g(z))

tφi
j (g(z))−2|φi

j (g(z))|
g′(z)
g′(z) if z ∈ �.

This implies that for every t ∈ �, the map ht : Ĉ → Ĉ is a quasi-regular
branched covering map of degree d , and moreover, for almost every z, the
complex dilatation of ht at z depends analytically on t when t varies in �.

By the construction of ht , it follows that for each t ∈ �, ht |Dg = g|Dg is
conformal in Dg , and moreover, for almost every z ∈ Ĉ, if ht is quasiconfor-
mal at some point z, then ht (z) ∈ Dg . So for each t ∈ �, by pulling back the
standard complex structure μ0 in the Siegel disk Dg through the iteration of
ht , we can get a ht -invariant complex structure μt in the whole sphere. Again
by a direct calculation we get

μt(z) =
{

(gn)′(z)
(gn)′(z)

(ht )z̄
(ht )z

(gn(z)) if gn(z) ∈ � for some integer n ≥ 0,

0 if otherwise.

From the above formula, it follows that for almost every z ∈ Ĉ, μt(z) depends
analytically on t . Let φt be the quasiconformal homeomorphism of the sphere
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which fixes 0, 1 and the infinity and which solves the Beltrami equation given
by μt . Then φt depends analytically on t . Let

gt (z) = φt ◦ ht ◦ φ−1
t (z).

We claim

1. g0 = g,
2. gt ∈ Rd

θ for each t ∈ �,
3. gt depends analytically on t when t varies in �,
4. The post-critical set of gt0 does not intersect the Dr of gt0 .

Let us prove the claim. The first two assertions follow directly from the
construction. Let us prove the third assertion. (We would like to remark here
that φt depends analytically on t does not imply that φ−1

t depends analyti-
cally on t also.) Note that ∞ /∈ Dg and g(∞) = ∞ by the assumption right
behind (15). Take p ∈ C such that p /∈ Dg and p = g(∞). Let a1, . . . , ad ,
counted by multiplicities, be all the p-value points of g, that is, g(ai) = p for
1 ≤ i ≤ d . Let bi,1 ≤ i ≤ d , be all the poles of g, again counted by multi-
plicities. Since ∞ /∈ Dg and g(∞) = ∞, all the ai and bi are complex num-
bers. Since both p and ∞ do not belong to Dg , by the definition of ht , it
follows that ht (ai) = g(ai) = p and ht (bi) = g(bi) = ∞ for all t ∈ � and
1 ≤ i ≤ d . Then φt (ai),1 ≤ i ≤ d , are all the φt(p)-value points of gt , and
φt(bi),1 ≤ i ≤ d , are all the poles of gt . Since all the ai and bi do not belong
to Dg , it follows that all the φt(ai) and φt (bi) do not belong to the Siegel disk
of gt centered at the origin, and thus are all non-zero complex numbers. Let

c(t) =
d∏

i=1

φt(ai)

φt (bi)
.

Since gt (0) = 0, it follows that

gt (z) = φt(p) − φt(p)

c(t)
·

d∏

i=1

(z − φt (ai))

(z − φt (bi))
.

This implies that gt depends analytically on t . The third assertion follows.
Now let us prove the last assertion. First note that ht0 |Dg = g|Dg , and

(�ht0
∪ Pht0

) − Dg = (�g ∪ Pg) − Dg.

Suppose z ∈ (�ht0
∪ Pht0

) − Dg is a point such that g(z) ∈ Dg . By the pre-

vious construction it follows that z ∈ Vi for some 1 ≤ i ≤ N and g(z) = xi
j

for some 1 ≤ j ≤ ki . So ht0(z) = �i(g(z), t0) = zi
j belongs to the 	r of Dg .
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Note that φt0 : Dg → Dgt0 is a holomorphic isomorphism and is the conjuga-
tion map between g|Dg = ht0 |Dg : Dg → Dg and gt0 |Dgt0 : Dgt0 → Dgt0 . So
φt0 maps the 	r of Dg to the 	r of Dgt0 . In particular, gt0(φt0(z)) = φt0(z

i
j )

belongs to the 	r of Dgt0 . The last assertion of the claim has been proved.
The proof of the claim is completed.

Now take z0 in the 	r of Dg such that

|Cg;k,l,m,n(z0)| = Vg(r;k, l,m,n).

Since for any given z, φt(z) is holomorphic in t for t ∈ �, it follows that for
every integer i ≥ 0, the map gi

t (φt (z0)) = φt(g
i(z0)) is holomorphic in t for

t ∈ �. Thus the map

Cgt ;k,l,m,n(φt (z0)) = (gk
t (φt (z0)) − gm

t (φt (z0)))(g
l
t (φt (z0)) − gn

t (φt (z0)))

(gk
t (φt (z0)) − gn

t (φt (z0)))(g
l
t (φt (z0)) − gm

t (φt (z0)))

is a holomorphic function in t which does not vanish for t ∈ �. Since φt maps
the 	r of Dg to the 	r of Dgt , φt(z0) belong to the 	r of Dgt . We thus have

|Cgt ;k,l,m,n(φt (z0))| ≥ Vgt (r;k, l,m,n) for all t ∈ �.

This, together with (15) and the choice of z0, implies that the modu-
lus of the holomorphic function Cgt ;k,l,m,n(φt (z0)) obtains the minimum at
t = 0. Since Cgt ;k,l,m,n(φt (z0)) does not vanish for t ∈ �, it follows that
Cgt ;k,l,m,n(φt (z0)) is a constant function. In particular, we have

|Cg;k,l,m,n(z0)| = |Cgt0
;k,l,m,n(φt0(z0))| ≥ Vgt0

(r;k, l,m,n).

But by the last assertion of the claim we just proved, the postcritical set of
gt0 does not intersect the Dr of Dgt0 . By Lemma 3.6 there is a 1 < C < ∞
depending only on d and θ such that

Vgt0
(r;k, l,m,n) > C.

This proves the lemma in the third case. The proof of Lemma 3.8 is com-
pleted. �

Now let us prove the Main Theorem. Since the forward orbit of any z

in 	r is dense in 	r , it follows from Lemmas 3.8 and 3.7 that there is a
1 < K(d, θ) < ∞ depending only on d and θ such that every 	r is a K(d, θ)-
quasi-circle. The Main Theorem then follow from Lemma 3.1.
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4 Proof of Theorem B

4.1 From cross ratios to simple closed geodesics

For two distinct points a, b ∈ T, let [a, b] denote the arc segment which con-
nects a and b in anti-clockwise direction. For an arc segment I ⊂ T, let |I |
denote the length of I with respect to the Euclidean metric. We say an arc
segment J is properly contained in I if J ⊂ I and I \ J consists of two non-
trivial arc segments. In this case, we denote it by J � I .

Now for any two arc segments J � I ⊂ T, we define

C(I, J ) = |I ||J |
|R||L|

where R and L denote the two arc components of I − J , respectively. From
the definition, we have

Lemma 4.1 Let 0 < K < ∞. Then for any arc segments J � I ⊂ T, if
C(I, J ) < K , we have

min{|R|, |L|} > |J |/K.

By the above lemma, it follows that the value C(I, J ) measures the space
around J in I .

Let B ∈ Bm
θ . Let k ≥ 1 be an integer and S,T ⊂ T be two arc segments.

We say S is the pull back of T by Bk if Bk : S → T is a homeomorphism.
Suppose J � I ⊂ T are two arc segments. Let us denote them by I 0

B and J 0
B

respectively. For k ≥ 1, let I k
B and J k

B denote the arc segments in T which are
the pull backs of I 0

B and J 0
B respectively by Bk . The next lemma is the key in

the proof of Theorem B.

Lemma 4.2 Let m = 2d − 1 ≥ 3 be an odd integer and 0 < θ < 1 be a
bounded type irrational number. Then, there exist constants α ∈ (0,∞) and
β ∈ (0,∞) depending only on m and θ , such that for any centered Blaschke
product B ∈ Bm

θ and any disjoint family of arc segments {I k
B | 0 ≤ k ≤ N} and

any family of arc segments {J k
B | 0 ≤ k ≤ N} with J k

B � I k
B for all 0 ≤ k ≤ N ,

we have

C(IN
B ,JN

B ) ≤ β · (1 + C(I 0
B,J 0

B))α.

The main task in the proof of Theorem A in [9] is to prove that the Światek
distortion has a uniform upper bound for all the Blaschke products in Hm

θ .
The difference between the two situations is that Herman’s proof uses real
techniques and relies essentially on the compact property of Hm

θ , which does
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not hold for Bm
θ (see Lemma 2.1 and Remark 1). To solve this problem, we

make use of the complex analytic property of the maps in Bm
θ . Instead of

considering cross ratios, we consider the length of certain simple closed geo-
desics. As a result, we reduce Lemma 4.2 to showing that the length of cer-
tain simple closed geodesics, after disjoint pull backs, can be increased by at
most some factor which is bounded above by a constant depending only on
m (Lemma 4.3). Let us introduce some notations before we expose this idea
further.

Let Ĉ denote the Riemann sphere. Let B ∈ Bm
θ be a centered Blaschke

product. For 0 ≤ k ≤ N , let I k
B and J k

B be the arc segments given in
Lemma 4.2. Let

Xk
B = (Ĉ − T) ∪ (I k

B − J k
B).

Then there exists a unique simple closed geodesic in Xk
B which separates J k

B

and T − I k
B . Let us denote it by γ k

B . Let lXk
B
(γ k

B) denote the length of γ k
B with

respect to the hyperbolic metric in Xk
B . The goal of this section is to reduce

Lemma 4.2 to the following lemma.

Lemma 4.3 Let m = 2d − 1 ≥ 3 be an odd integer and 0 < θ < 1 be a
bounded type irrational number. Then there exists a 1 < C(m) < ∞ which
depends only on m such that for any Blaschke product B ∈ Bm

θ , and any dis-
joint family of arc segments {I k

B | 0 ≤ k ≤ N} and any family of arc segments
{J k

B | 0 ≤ k ≤ N} with J k
B � I k

B for all 0 ≤ k ≤ N , we have

lXN
B
(γ N

B )

lX0
B
(γ 0

B)
≤ C(m).

Proposition 4.1 Lemma 4.3 implies Lemma 4.2.

We need to prove Lemmas 4.4–4.7 before we prove Proposition 4.1. For
T ∈ (0,∞), let �(T ) be the modulus of the annulus C \ ([−1,0] ∪ [T ,∞)).

Lemma 4.4 For all T ∈ (0,∞), we have

�(T ) · �(1/T ) = 1/4 and T < e2π�(T ) ≤ 16(T + 1).

Proof See Chap. III of [1]. �

Lemma 4.5 Let A ⊂ Ĉ be an annulus and γ ⊂ A be its core geodesic. Then

lA(γ ) = π

mod(A)

where lA(γ ) is the length of γ with respect to the hyperbolic metric in A.
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Proof We may assume that A is a Euclidean annulus {z | e−α < |z| < eα} for
some α > 0. It follows that

mod(A) = 1

2π
log

eα

e−α
= α

π
.

To compute the length of the core geodesic γ of A, consider the vertical strip

S = {z = x + iy | −α < x < α,−∞ < y < +∞}.
The map � : z �→ ez is a holomorphic covering map from S to A. Let 	 =
[−πi,πi] be the vertical straight segment. It is clear that lS(	) = lA(γ ). To
compute lS(	), let us consider the map

� : w �→ ei π
2α

w.

The map � maps S isomorphically to the right half plane H . Under this map,
the vertical straight segment 	 is mapped to the horizontal straight segment

	′ = [e− π2
2α , e

π2
2α ]. We thus have

lA(γ ) = lS(	) = lH (	′) =
∫ e

π2
2α

e
− π2

2α

1

x
dx = π2

α
= π

mod(A)
.

This completes the proof of Lemma 4.5. �

Lemma 4.6 For any arc segments J � I ⊂ T, we have

(2π − |I |)2

4π2
· C(I, J ) ≤ elX(γ )/2 ≤ 4π2 · (1 + C(I, J )),

where X = (Ĉ−T)∪ (I −J ) and lX(·) denotes the length with respect to the
hyperbolic in X.

Proof Assume that I = [eiθ1, eiθ4] and J = [eiθ2, eiθ3] and assume that 0 ≤
θ1 < θ2 < θ3 < θ4 ≤ 2π . Let M be the Möbius transformation sending eiθ2 to
0, eiθ3 to −1, and eiθ4 to ∞. Then M(eiθ1) ∈ (0,+∞). Let T = 1/M(eiθ1).
By Lemmas 4.4 and 4.5 it follows that

lX(γ ) = π

�(1/T )
= 4π�(T ).

This, together with the second inequality of Lemma 4.4, implies

T < e2π�(T ) = elX(γ )/2 ≤ 16(T + 1).
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Since the cross ratio is preserved by Möbius transformation, it follows that

T =
∣∣∣∣
(eiθ3 − eiθ2)(eiθ4 − eiθ1)

(eiθ4 − eiθ3)(eiθ1 − eiθ2)

∣∣∣∣.

Since |I | = θ4 − θ1, |J | = θ3 − θ2, |R| = θ4 − θ3 and |L| = θ2 − θ1, we have

T =
∣∣∣∣
(ei|I | − 1)(ei|J | − 1)

(ei|R| − 1)(ei|L| − 1)

∣∣∣∣ =
∣∣∣∣

sin(|I |/2) sin |J |/2)

sin |R|/2) sin(|L|/2)

∣∣∣∣. (18)

Note that for x ∈ (0,2π), we have 4π sin(x/2) ≥ x(2π − x) and 0 ≤
sin(x/2) ≤ x/2. Both the inequalities can be easily proved by calculus and
we shall leave the proofs to the reader. From these two inequalities and (18)
we get

T ≥ 1

4π2

|I |(2π − |I |) · |J |(2π − |J |)
|L| · |R| ≥ 1

4π2
· C(I, J ) · (2π − |I |)2.

Since T < elX(γ )/2, it follows that

(2π − |I |)2

4π2
· C(I, J ) ≤ elX(γ )/2. (19)

Note that for x ∈ [0, π], we have x/π ≤ sin(x/2) ≤ x/2. Again the in-
equality can be easily proved by calculus and we omit the proof here. Thus,
if |L| ≤ π and |R| ≤ π , from this inequality and (18) we get

T ≤ π2

4
C(I, J ).

If π ≤ |L| ≤ |I |, then |R| ≤ π and

T ≤ sin(|J |/2)

sin(|R|/2)
≤ π

2

|J |
|R| ≤ π

2
C(I, J ).

If π ≤ |R| ≤ |I |, then |L| ≤ π and

T ≤ sin(|J |/2)

sin(|L|/2)
≤ π

2

|J |
|L| ≤ π

2
C(I, J ).

In all the cases we have

elX(γ )/2 ≤ 16(T + 1) ≤ 4π2C(I, J ) + 16 < 4π2 · (1 + C(I, J )). (20)

Lemma 4.6 then follows from (19) and (20). �

For any B ∈ Bm
θ , recall that μB is the invariant probability measure of

B|T : T → T.
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Lemma 4.7 Assume that B ∈ Bm
θ is centered and I ⊂ T is an arc segment

such that μB(I) < δ ≤ 1/2. Then

|T − I | ≥ 2 arccos
δ

1 − δ
.

Proof Set η = μB(I). Then η ≤ δ and μB(T − I ) = 1 − η. Set L = |T − I |
and without loss of generality, let us assume that T − I = [e−L/2, eL/2] is
the arc segment in T which connects e−L/2 and eL/2 anticlockwise. Since
0 ≤ L/2 ≤ π and the function x �→ cos(x) is decreasing on [0, π], it follows
that for every z ∈ T − I , one has

�(z) ≥ cos(L/2).

It is clear that �(z) ≥ −1 for all z ∈ I . Since B is centered, by (3) we have∫
T

zdμB(z) = 0. We thus get

∫

T

�(z)dμB(z) = �
(∫

T

zdμB(z)

)
= 0.

Since
∫

T

�(z)dμB(z) =
∫

T−I

�(z)dμB(z) +
∫

I

�(z)dμB(z)

≥ (1 − η) cos(L/2) − η,

we have

(1 − η) cos(L/2) − η ≤ 0.

This implies that

cos(L/2) ≤ η

1 − η
≤ δ

1 − δ

and thus

L ≥ 2 arccos
δ

1 − δ
.

Lemma 4.7 follows. �

Now it is the time to prove Proposition 4.1.

Proof If N = 0, the result is trivial. So let us assume that N ≥ 1. Since IN
B is

disjoint from IN−1
B , we have that

μB(IN
B ) ≤ δ = min{θ,1 − θ} < 1/2.
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According to Lemma 4.7, we have

2π − |IN
B | = |T − IN

B | ≥ ε = 2 arccos
δ

1 − δ
.

According to Lemma 4.6, we have

C(IN
B ,JN

B ) ≤ 4π2

ε2
e
l
XN

B
(γ N

B )/2 ≤ 4π2

ε2
e
α·l

X0
B

(γ 0
B)/2

where α = C(m) is the constant provided by Lemma 4.3. The result then
follows by taking β = ε−2 · (4π2)1+α since by Lemma 4.6, we have

e
α·l

X0
B

(γ 0
B)/2 ≤ (4π2)α(1 + C(I 0

B,J 0
B))α.

This completes the proof of Proposition 4.1. �

4.2 Proof of Lemma 4.3

The proof of Lemma 4.3 is based on Lemmas 4.8–4.13. Before we state and
prove these lemmas, let us introduce some common notations which will be
used in all these lemmas. Let N ≥ 1 be an arbitrary integer. Let J k � I k ⊂ T,
0 ≤ k ≤ N , be arc segments such that all I k,0 ≤ k ≤ N , are disjoint with
each other. Let p ≥ 1 be an integer and Z = {z1, . . . , zp} be a finite subset of
Ĉ containing p points. For 0 ≤ k ≤ N , we set

Uk = (Ĉ − T) ∪ (I k − J k) and Vk = Uk − Z.

We let lk be the length of the core geodesic of the annulus Uk and l′k be the
length of a shortest simple closed geodesic in Vk separating J k and T − I k

(there may be several geodesics with minimal length). Note that lk ≤ l′k .

Lemma 4.8 Let A be an annulus and Z = {z1, . . . , zp} ⊂ A. Then, there is
an annulus B ⊂ A \ Z homotopic to A with

mod(A) ≤ (p + 1)mod(B).

Proof Without loss of generality, we may assume that A is a round annulus
{z | r < |z| < R} for some 0 ≤ r < R. Cutting A along at most p round circles
passing through the points in Z, we find at most p+1 round annuli contained
in A − Z, whose moduli add up to that of A. Let B be one of those subannuli
with maximal modulus. Then mod(A) ≤ (p + 1)mod(B). This completes the
proof of Lemma 4.8. �

Corollary 4.1 For all 0 ≤ k ≤ N , we have l′k ≤ (p + 1) · lk .



Bounded type Siegel disks of rational maps are quasi-disks 449

Proof Apply Lemma 4.8 with A = Uk and obtain an annulus B ⊂ Uk − Z =
Vk homotopic to A such that mod(A) ≤ (p + 1)mod(B). This implies that

mod(Uk) ≤ (p + 1)mod(B).

Let γ ′
k be the core geodesic of B . Then by Lemma 4.5 we have

l′k ≤ lVk
(γ ′) ≤ lB(γ ′

k) = π

mod(B)
≤ (p + 1)

π

mod(Uk)
= (p + 1) · lk. �

Definition 4.1 Let I ⊂ T be an arc segment. Let 	 be the unique Euclidean
circle which passes through the end points of I and is orthogonal to the unit
circle. (In the case that |I | = π , 	 is a straight line.) We use D(I) to denote
the component of Ĉ − 	 which contains the interior of I .

Remark 2 From the definition, it is clear that if |I | < π , D(I) is a Euclidean
disk; if |I | = π , D(I) is a half plane; and if |I | > π , D(I) is the outside of a
Euclidean disk.

Lemma 4.9 Suppose that J � I are two arc segments. Let γ be the core
geodesic of (Ĉ − T) ∪ (I − J ). Then γ is a Euclidean circle orthogonal to
the unit circle. In particular, γ ⊂ D(I).

Proof Let I = [a, d] and J = [b, c]. Let φ be a Möbius map which maps a to
∞, b to −1 and c to 0. Then φ maps d to some point T ∈ (0,+∞) and maps
the unit circle to the real line. Let 	 be the Euclidean circle with center −1
and radius

√
1 + T . Note that C − ([−1,0] ∪ [T ,∞)) is symmetric about 	.

Let � be the disk {z | |z + 1| <
√

1 + T }. Let H = � \ [−1,0]. Let 0 <

r < 1 be the number such that

mod(H) = 1

2π
log

1

r
.

Let ψ : H → {z | r < |z| < 1} be the holomorphic isomorphism such that
the outer boundary component of H is mapped to the unit circle. Then by
Schwarz Reflection Lemma the map ψ can be extended to a holomorphic
isomorphism between C − ([−1,0] ∪ [T ,∞)) and the annulus {z | r < |z| <

r−1}. In particular, ψ maps 	 to the unit circle which is the core geodesic of
the annulus {z | r < |z| < r−1}. This implies that 	 is the core geodesic of
C − ([−1,0] ∪ [T ,∞)). This implies that φ−1(	), which must be a Euclid-
ean circle orthogonal to the unit circle, is the core geodesic of (Ĉ − T) ∪
(I − J ). The proves the first assertion. The second assertion follows directly
from the first assertion and the definition of D(I). This completes the proof
of Lemma 4.9. �
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For z ∈ Ĉ \ T, let φz be a Möbius map sending z to 0 and preserving T. It
is clear that φz is unique up to a post-composition with a rotation. For an arc
segment I ⊂ T, set

μz(I ) = |φz(I )|.
Definition 4.2 Let z ∈ Ĉ and I ⊂ T be an arc segment. We say that z is

in the shadow of I or shadowed by I if either z ∈ I or if z ∈ Ĉ \ T with
μz(I ) ≥ 2π/3.

The following lemma can be directly derived from the definitions and the
reader shall easily provide a proof.

Lemma 4.10 Let z ∈ Ĉ and I ⊂ T be an arc segment. Then the following
three properties hold,

1. z ∈ D(I) if and only if z ∈ I or μz(I ) > π ,
2. if z ∈ D(I), then z is in the shadow of I ,
3. z can be shadowed by at most three disjoint arc segments.

For a hyperbolic Riemann surface X, we use ρX to denote the hyperbolic
metric in X and dx(·, ·) denote the distance with respect to the hyperbolic
metric ρU .

Lemma 4.11 For any d0 > 0, there exists a 0 < C0 < ∞ depending only on
d0 such that for any two distinct points x, y ∈ �, the inequality

ρ
�−{y}(x)

ρ�(x)
≤ 1 + C0e

−2d�(x,y)

holds provided that d�(x, y) > d0.

Proof We need only to show that C0 can be taken to be a fixed constant when
d�(x, y) is large enough. To show this, it is sufficient to consider the case that
y = 0 and x = 1 − δ with 0 < δ < 1 small. By direct calculations, we have

ρ�−{y}(x) = 1

(1 − δ)| ln(1 − δ)| and ρ�(x) = 1

δ(1 − δ/2)
.

Note that for all 0 < δ < 1, we have

(1 − δ)| ln(1 − δ)| > (1 − δ)(δ + δ2/2 + δ3/3) > δ(1 − δ/2 − δ2)

and for all 0 < δ < 1/2, we have

δ/2 + δ2 < 1/2.
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Thus for all 0 < δ < 1/2, we have

ρ
�−{y}(x)

ρ�(x)
< 1 + δ2

1 − δ/2 − δ2
< 1 + 2δ2.

By a direct calculation, we get

d�(x, y) = ln
2 − δ

δ
.

The lemma then follows since

e−2d�(x,y) = δ2

(2 − δ)2
> δ2/4. �

Lemma 4.12 There is a universal constant 0 < C < ∞ such that for any arc
segment I ⊂ T with |I | < 2π/3, we have

ρW−{0}
ρW

≤ eC|I | on D(I)

where W = Ĉ − (T − I ).

Proof For 0 < α < π , let

Dα(I) =
{
z ∈ W | dW(z, I ) < ln cot

α

4

}
. (21)

By transforming the unit circle to the real line through a Möbius map, it fol-
lows that Dα is the hyperbolic neighborhood of I with the exterior angle be-
ing α. More precisely, Dα is a simply connected domain containing I whose
boundary is the union of two arc segments of Euclidean circles which are
symmetric about the unit circle such that the exterior angle between ∂Dα and
the unit circle is α. To learn more details about the hyperbolic neighborhood
in a slit plane, we refer the reader to [12] (Sect. 5 of Chap. VI). By the defin-
ition of D(I), we get

D(I) = Dπ/2(I ) =
{
z ∈ W | dW(z, I ) < ln cot

π

8

}
.

It is not difficult to see that 0 ∈ ∂D|I |/2(I ). So we have

dW(0,D(I)) = ln cot
|I |
8

− ln cot
π

8
.



452 G. Zhang

Since |I | ≤ 2π/3, we have 0 < sin |I |
8 < |I |/8. We thus get

ln cot
|I |
8

> ln
cos π

12
|I |
8

= ln
8 cos π

12

|I | .

So for any z ∈ D(I), we have

dW(0, z) > dW(0,D(I)) ≥ ln
8 cos π

12

|I | − ln cot
π

8
. (22)

Since |I | ≤ 2π/3, we have cot |I |
8 > cot π

12 and thus

dW(0, z) > dW(0,D(I)) ≥ d0 = ln cot
π

12
− ln cot

π

8
> 0. (23)

For such d0, let C0 be the constant provided by Lemma 4.11. Then for any
z ∈ D(I), by Lemma 4.11 and (22), we have

ρW−{0}(z)
ρW (z)

≤ 1 + C0e
−2dW (0,z) < 1 + C0 · cot2 π

8

64 cos2 π
12

|I |2.

Since |I | < 2π/3, we have |I |2 < 2π
3 |I |. Take

C = π · C0 · cot2 π
8

96 cos2 π
12

.

We then have for any z ∈ D(I),

ρW−{0}(z)
ρW (z)

≤ 1 + C|I | < eC|I |.

The proof of Lemma 4.12 is completed. �

Relative Schwarz Lemma [2] Let R and S be two hyperbolic Riemann sur-
faces and f : R → S be a holomorphic map. Then

f ∗ρ
S

ρ
R

≤ f ∗ρ
S′

ρ
R′

≤ 1.

For a detailed proof of the Relative Schwarz Lemma, we refer the reader
to [2].

Lemma 4.13 Let C be the universal constant provided by Lemma 4.12. Let
J � I ⊂ T be two arc segments and Z ⊂ Ĉ be a finite set such that no
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point in Z is shadowed by I . Let γ be the core geodesic of the annulus U =
(Ĉ − T) ∪ (I − J ). Then

lU−Z(γ )

lU (γ )
≤

∏

z∈Z

eCμz(I ).

Proof Let V = Ĉ − (T − I ). Let us label the points in Z by z1, . . . , zp . Let
Z0 = ∅ and for 1 ≤ k ≤ p, let Zk = {z1, . . . , zk}. Note that

ρU−Z

ρU

=
p−1∏

k=0

ρU−Zk+1

ρU−Zk

.

It follows from the Relative Schwarz Lemma that

ρU−Zk+1

ρU−Zk

≤ ρU−{zk+1}
ρU

≤ ρV −{zk+1}
ρV

.

So we finally have

ρU−Z

ρU

≤
∏

z∈Z

ρV −{z}
ρV

. (24)

Let φz be a Möbius map which preserves the unit circle and maps z to 0.
Then φz(D(I)) = D(φz(I )). Since z is not shadowed by I , we have |φz(I )| <
2π/3. Note that φz(V ) = Ĉ − (T − φz(I )). By Lemma 4.12, we have

ρφz(V )−{0}
ρφz(V )

≤ eC|φz(I )| = eCμz(I ) on D(φz(I )) = φz(D(I)).

Since the maps φz : V → φz(V ) and φz : V − {z} → φz(V ) − {0} are holo-
morphic isomorphisms, it follows that

ρV −{z}(w)

ρV (w)
= ρφz(V )−{0}(φz(w))

ρφz(V )(φz(w))
≤ eCμz(I ) for all w ∈ D(I).

This implies that

ρV −{z}
ρV

≤ eCμz(I ) on D(I). (25)

From (24) and (25) we have

ρU−Z

ρU

≤
∏

z∈Z

eCμz(I ) on D(I).
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Note that γ ⊂ D(I) by Lemma 4.9. We thus have

ρU−Z

ρU

≤
∏

z∈Z

eCμz(I ) on γ.

Lemma 4.13 then follows. �

Now let us prove Lemma 4.3.

Proof Let B ∈ Bm
θ . In the beginning of Sect. 4, let I k = I k

B and J k = J k
B

where J k
B � I k

B ⊂ T, 0 ≤ k ≤ N , are the arc segments given in Lemma 4.3.
for 0 ≤ k ≤ N . Let Z be the set of all the critical values of B and p = #Z.
Then

Uk = Xk
B, Vk = Xk

B − Z and lk = lXk
B
(γ k

B) for 0 ≤ k ≤ N.

Since the number of critical values of B is not more than the number of
distinct critical points of B which is not more than 2m − 2, it follows that
p ≤ 2m − 2.

Let

�1 = {0 ≤ k ≤ N − 1 | Ik shadows at least one point of Z}.
By the third assertion of Lemma 4.10, each point in Z is shadowed by at most
three intervals I k . This implies that

|�1| ≤ 3p ≤ 6(m − 1).

Let

�2 = {0 ≤ k ≤ N − 1 | k /∈ �1}.
Then

lXN
B
(γ N

B )

lX0
B
(γ 0

B)
= lN

l0
=

N−1∏

k=0

lk+1

lk
=

( ∏

k∈�1

lk+1

lk

)
·
( ∏

k∈�2

lk+1

lk

)
.

Claim 1
lk+1

lk
≤ m(2m − 1) for every k ∈ �1. (26)

Let us prove the Claim 1. Let k ∈ �1. Let ξk
B be one of the shortest simple

closed geodesics in Vk separating J k and T − I k . By the minimal property of
ξk
B , it follows that ξk

B is symmetric about the unit circle. In particular, the unit
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circle and ξk
B have two intersection points where they cross perpendicularly.

Let ak and bk be the two intersection points. Let a′
k and b′

k be the two points
in the unit circle such that B(a′

k) = ak and B(b′
k) = bk . Let Wk+1 be the com-

ponent of B−1(Vk) which contains a′
k . It is clear that Wk+1 ⊂ Uk+1 and the

map B : Wk+1 → Vk is a holomorphic covering map. Let ηk+1
B be the simple

closed geodesic in Wk+1 such that a′
k ∈ ηk+1

B and B(ηk+1
B ) = ξk

B . Then ηk+1
B

crosses the unit circle at a′
k perpendicularly. It follows that ηk+1

B and the unit
circle must have at least two intersection points. Since ξk

B intersects the unit
circle at exactly two points ak and bk and the map B|T : T → T is a home-
omorphism, ηk+1

B and the unit circle have exactly two intersection points, a′
k

and b′
k . Since ξk

B crosses the unit circle perpendicularly, ηk+1
B crosses the unit

circle perpendicularly also. In particular, ηk+1
B separates T − I k+1 and J k+1.

Thus we have

l
Xk+1

B
(γ k+1

B ) ≤ l
Xk+1

B
(ηk+1

B ).

Since Wk+1 ⊂ Uk+1 we have ρ
Wk+1

≥ ρ
Uk+1

. So we have

l
Xk+1

B
(ηk+1

B ) ≤ lWk+1(η
k+1
B ).

Since B : Wk+1 → Vk is a holomorphic covering map and the degree of B is
m, it follows that

lWk+1(η
k+1
B ) ≤ m · lVk

(ξk
B).

By the choice of ξk
B and Corollary 4.1, we have

lVk
(ξk

B) = l′k ≤ (p + 1) · lUk
(γ k

B) = (p + 1) · lk ≤ (2m − 1) · lk.
This, together with the above three inequalities, implies that

lk+1 = l
Xk+1

B
(γ k+1

B ) ≤ m(2m − 1) · lk.

This proves (26) and the Claim 1 has been proved.
Let 0 < C < ∞ be the universal constant in Lemma 4.13.

Claim 2
lk+1

lk
≤

∏

z∈Z

eCμz(I
k) for every k ∈ �2. (27)

Let us prove the Claim 2. Let k ∈ �2. By Lemma 4.9, we have γ k
B ⊂ D(Ik).

Since I k does not shadow any point in Z, it follows that D(Ik) does not
intersect Z. This implies that γ k

B does not contain any point in Z. We thus
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have γ k
B ⊂ Vk . Let ξk

B be the unique simple closed geodesic in Vk which is
homotopic to γ k

B in Vk . Then ξk
B separates T − I k and J k , and moreover,

lVk
(ξk

B) ≤ lVk
(γ k

B). (28)

Since γ k
B and Vk are symmetric about the unit circle, ξk

B is symmetric about
the unit circle also. In particular, the unit circle and ξk

B have two intersection
points where they cross perpendicularly. Now let Wk+1 and ηk+1

B be as in the
proof of the Claim 1. By the same argument as before, it follows that ηk+1

B

separates T − I k+1 and J k+1, and the map B : Wk+1 → Vk is a holomorphic
covering map. Let � be the component of Ĉ − γ k

B which contains J k . Since
D(Ik) does not intersect the set Z and since γ k

B ⊂ D(Ik) by Lemma 4.9, it
follows that

� ∩ Z = ∅. (29)

Let �̃ be the component of Ĉ− ξk
B which contains J k . Since ξk

B is homotopic
to γ k

B in Vk , from (29) we get

�̃ ∩ Z = ∅.

This implies that �̃ contains no critical value of B . It follows that the covering
degree of the map

B|ηk+1
B : ηk+1

B → ξk
B

is one. We thus have

lWk+1(η
k+1
B ) = lVk

(ξk
B). (30)

Since Wk+1 ⊂ Uk+1 = Xk+1
B we have ρ

Wk+1
≥ ρ

Uk+1
= ρ

Xk+1
B

, and thus

l
Xk+1

B
(ηk+1

B ) ≤ lWk+1(η
k+1
B ).

This, together with (28) and (30), implies that l
Xk+1

B
(ηk+1

B ) ≤ lVk
(γ k

B). Since

l
Xk+1

B
(γ k+1

B ) ≤ l
Xk+1

B
(ηk+1

B ), we thus have

lk+1 = l
Xk+1

B
(γ k+1

B ) ≤ l
Xk+1

B
(ηk+1

B ) ≤ lVk
(γ k

B). (31)

By Lemma 4.13, we have

lVk
(γ k

B)

lk
= lVk

(γ k
B)

lUk
(γ k

B)
≤

∏

z∈Z

eCμz(I
k). (32)
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From (31) and (32) we have

lk+1

lk
≤

∏

z∈Z

eCμz(I
k).

This proves the Claim 2.
From Claims 1 and 2 we have

lXN
B
(γ N

B )

lX0
B
(γ 0

B)
=

( ∏

k∈�1

lk+1

lk

)
·
( ∏

k∈�2

lk+1

lk

)

≤ (
m(2m − 1)

)6(m−1)
∏

z∈Z

( ∏

k∈�2

eCμz(I
k)

)
.

Since #Z = p ≤ 2m − 2 and
∑

k∈�2

μz(I
k) ≤ 2π,

we finally have

lXN
B
(γ N

B )

lX0
B
(γ 0

B)
≤ e2πC(2m−2)

(
m(2m − 1)

)6(m−1)
.

This completes the proof of Lemma 4.3. �

4.3 Proof of Theorem B

All the arguments used in this section are standard. The readers may find them
in several previous literatures, for instance, see [5, 9], and [13].

Let B ∈ Bm
θ be a centered Blaschke product. Recall that hB : T → T is the

circle homeomorphism such that B|T = h−1
B ◦Rθ ◦hB and hB(1) = 1. Now it

is sufficient to prove that there exists an 1 < M(m,θ) < ∞ depending only on
m and θ such that hB : T → T is an M(m,θ)-quasisymmetric circle home-
omorphism. Before that let us introduce some notations and terminologies
first.

Let I1 and I2 be two arc segments in T. Let L > 1. We say I1 and I2 are
L-comparable if

|I2|/L < |I1| < L|I2|.
Let a, b ∈ T be two distinct points. Recall that we use [a, b] to denote the
arc segment in T which connects a and b anticlockwise and |[a, b]| to denote
the Euclidean length of [a, b]. For an arc segment [a, b] with |hB([a, b])| =



458 G. Zhang

π , let us use 〈a, b〉 to denote [a, b] if |hB([a, b])| < π , and denote [b, a] if
|hB([a, b])| > π .

Let θ = [a1, . . . , an, . . .]. Let q0 = 1, q1 = a1, and qn+1 = qn−1 + an+1qn

for all n ≥ 1. For x > 0, let {x} denote the fraction part of x. For n ≥ 0, let
〈qnθ〉 denote {qnθ} if n is even and 1 − {qnθ} if n is odd.

Lemma 4.14 There exists an L0 ≥ 2 independent of θ , such that for all n ≥
L0, the following inequality holds,

〈qnθ〉 < 1/6. (33)

Proof For n ≥ 0, let pn/qn be the nth continued fraction. Let

δn = pn

qn

− θ.

It follows that |δn| < 1/qnqn+1 (for instance, see [11]). This implies that

〈qnθ〉 = |qnδn| < 1/qn+1.

Note that q0 = 1, q1 ≥ 1 and qn+2 ≥ qn + qn+1 for all n ≥ 0. The lemma then
follows by taking L0 = 5. �

As an immediate consequence of Lemma 4.14, we have

Corollary 4.2 Let L0 be the constant in Lemma 4.14. Then for any n ≥ L0
and any z ∈ T, we have

〈Rθ
−qn(z),Rθ

2qn(z)〉 = 〈Rθ
−qn(z), z〉 ∪ 〈z,Rθ

qn(z)〉 ∪ 〈Rθ
qn(z),Rθ

2qn(z)〉.
Lemma 4.15 Suppose that n ≥ L0. Let z ∈ T. Then the following two asser-
tions hold.

1. Let I = 〈R−qn

θ (z),R
2qn

θ (z)〉. Then {R−k
θ (I ) | 0 ≤ k ≤ qn−2 −1} is a disjoint

family.
2. Let I = 〈z,Rqn

θ (z)〉. Then T ⊂ ⋃qn+qn+1−1
k=0 R−k

θ (I ).

Proof The second assertion is standard, for instance, see [5, 9], and [13]. Let
us prove the first assertion only. Let us prove it by contradiction. Suppose it
were not true. Then there exists a 0 < k < qn−2 such that

R−k
θ (z) ∈ 〈R−3qn

θ (z),R
3qn

θ (z)〉.

It is clear that R−k
θ (z) /∈ 〈R−qn

θ (z),R
qn

θ (z)〉 by the property of the closest re-
turns. Then we have the following four cases.
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In the first case, R−k
θ (z) ∈ 〈R−3qn

θ (z),R
−2qn

θ (z)〉. Let ξ = R
−3qn

θ (z). Then

R
3qn−k
θ (ξ) ∈ 〈ξ,R

qn

θ (ξ)〉. We then must have 3qn − k = qn + qn+1. Since
qn+1 = qn−1 + an+1qn, it follows that an+1 = 1. So k = qn − qn−1 ≥ qn−2.
This is a contradiction.

In the second case, R−k
θ (z) ∈ 〈R−2qn

θ (z),R
−qn

θ (z)〉. Let ξ = R
−qn

θ (z). Then

R
qn−k
θ (ξ) ∈ 〈R−qn

θ (ξ), ξ〉. Since 0 < qn − k < qn, this is impossible.

In the third case, R−k
θ (z) ∈ 〈Rqn

θ (z),R
2qn

θ (z)〉. Let ξ = R−k
θ (z). Then

R
2qn+k
θ (ξ) ∈ 〈ξ,R

qn

θ (ξ)〉. Since qn < 2qn + k = qn + qn + k < qn + qn+1,
this is impossible.

In the last case, R−k
θ (z) ∈ 〈R2qn

θ (z),R
3qn

θ (z)〉. Let ξ = R−k
θ (z). Then

R
3qn+k
θ (ξ) ∈ 〈ξ,R

qn

θ (ξ)〉. Since 0 < k < qn−2, we must have qn < 3qn + k <

qn + 2qn+1. We claim that 3qn + k = qn + qn+1. Let us prove the claim.
Assume that the claim were not true. There are two cases. In the first case,
we have 3qn + k = qn + l with 2qn < l < qn+1. Then by the property of the
closest returns, we have |〈Rqn

θ (ξ),R
qn+l
θ (ξ)〉| = |〈ξ,Rl

θ (ξ)〉| > |〈ξ,R
qn

θ (ξ)〉|.
This is a contradiction with R

qn+l
θ (ξ) = R

3qn+k
θ (ξ) ∈ 〈ξ,R

qn

θ (ξ)〉. In the
second case, we have 3qn + k = qn + qn+1 + l′ with some l′ > 0. Since
0 < k < qn−2, it follows that l′ = 2qn + k − qn+1 < 2qn + qn−2 − qn+1 < qn.
Since both R

qn+qn+1
θ (ξ) and R

3qn+k
θ (ξ) belong to 〈ξ,R

qn

θ (ξ)〉, it follows that

|〈ξ,Rl′
θ (ξ)〉| = |〈Rqn+qn+1

θ (ξ),R
3qn+k
θ (ξ)〉| < |〈ξ,R

qn

θ (ξ)〉|. This is again im-
possible. Thus the claim has been proved and we must have 3qn + k =
qn + qn+1.

By the claim we just proved, we have qn+1 = 2qn+k. Since qn+1 = qn−2 +
an+1qn and 0 < k < qn−2, we get an+1 = 1. This implies that qn−2 = qn + k.
This is impossible. The proof of the lemma is completed. �

Let L0 > 0 be the universal constant provided in Lemma 4.14.

Lemma 4.16 There exists a 1 < J(m, θ) < ∞ depending only on m and θ

such that for every centered Blaschke B ∈ Bm
θ , any n ≥ L0, and any z ∈ T,

the following two inequalities hold,

1/J (m, θ) ≤ |〈B−qn(z), z〉|
|〈z,Bqn(z)〉| ≤ J (m, θ) (34)

and

1/J (m, θ) ≤ |〈Bqn+1(z), z〉|
|〈z,Bqn(z)〉| ≤ J (m, θ). (35)

Proof Let n ≥ L0. Take z0 ∈ T such that
∣∣〈z0,B

qn(z0)〉
∣∣ = min

z∈T

∣∣〈z,Bqn(z)〉∣∣.
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It follows that

C(〈B−qn(z0),B
2qn(z0)〉, 〈z0,B

qn(z0)〉) < 3. (36)

Since θ is of bounded type, there is an integer 0 < τ(θ) < ∞ depending only
on θ such that

qn < τ(θ)qn−2 (37)

for all n ≥ 2. By the first assertion of Lemma 4.15, it follows that for any
integer 0 < N ≤ 5qn, the family

{〈B−qn−k(z0),B
2qn−k(z0)〉 | 0 ≤ k ≤ N}

can be divided into at most 5τ(θ) disjoint sub-families. By (36) and by
applying Lemma 4.2 successively at most 5τ(θ) times, we get a constant
0 < P1(m, θ) < ∞ depending only on m and θ such that the following in-
equality

C(〈B−(l+1)qn(z0),B
(2−l)qn(z0)〉, 〈B−lqn(z0),B

(1−l)qn(z0)〉) < P1(m, θ)

(38)
holds for 0 ≤ l ≤ 5.

We claim that there exists a 0 < P2(m, θ) < ∞ depending only on m and
θ such that any two of the following six arc segments

〈B−lqn(z0),B
(1−l)qn(z0)〉, 0 ≤ l ≤ 5, (39)

are P2(m, θ)-comparable. Let us prove the claim. It suffices to prove
that among these six arc segments, any two adjacent ones are P1(m, θ)-
comparable. Let us prove this only for the pair of adjacent arc segments

〈z0,B
qn(z0)〉 and 〈B−qn(z0), z0〉.

The same way can be used for the other four pairs of adjacent arc segments.
By taking l = 0 in (38) we get

C(〈B−qn(z0),B
2qn(z0)〉, 〈z0,B

qn(z0)〉) < P1(m, θ).

This implies that

|〈z0,B
qn(z0)〉|

|〈B−qn(z0), z0〉| < P1(m, θ). (40)

By taking l = 1 in (38) we get

C(〈B−2qn(z0),B
qn(z0)〉, 〈B−qn(z0), z0〉) < P1(m, θ).
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This implies that

|〈B−qn(z0), z0〉|
|〈z0,Bqn(z0)〉| < P1(m, θ). (41)

From (40) and (41) it follows that the two adjacent arc segments 〈z0,B
qn(z0)〉

and 〈B−qn(z0), z0〉 are P1(m, θ)-comparable. The same way can be used to
prove the other four adjacent arc segments are also P1(m, θ)-comparable. The
claim then follows by taking P2(m, θ) = P 5

1 (m, θ).
Let

l0 = ∣∣〈z0,B
qn(z0)〉

∣∣.
By the choice of z0, it follows that l0 is the minimum of the length of the six
intervals in (39). By the Claim we proved above, we have

P2(m, θ)−1 ·l0 ≤ |〈B−lqn(z0),B
(1−l)qn(z0)〉| ≤ P2(m, θ) ·l0, 0 ≤ l ≤ 5.

(42)
For any z ∈ T, it follows from the second assertion of Lemma 4.15 that

there is an 0 ≤ i < qn + qn+1 such that Bi(z) ∈ 〈B−5qn(z0),B
−4qn(z0)〉. We

then have the following two cases.
In the first case, there is some 1 ≤ j ≤ 3 such that

∣∣〈Bi+jqn(z),Bi+(j+1)qn(z)〉∣∣ < l0/2.

This implies

C(〈Bi+(j−1)qn(z),Bi+(j+2)qn(z)〉, 〈Bi+jqn(z),Bi+(j+1)qn(z)〉) < 3. (43)

Since 0 ≤ i < qn + qn+1 and 1 ≤ j ≤ 3, by (37) we have

0 < i + jqn < 4qn + qn+1 < (4τ(θ) + τ(θ)2)qn−2.

By (43) and the first assertion of Lemma 4.15, and by applying Lemma 4.2
successively at most (4τ(θ) + τ(θ)2) times, we get a constant P3(m, θ) > 0
depending only on m and θ such that

C(〈B−qn(z),B2qn(z)〉, 〈z,Bqn(z)〉) < P3(m, θ). (44)

In the second case, we have
∣∣〈Bi+jqn(z),Bi+(j+1)qn(z)〉∣∣ ≥ l0/2

for each j = 1,2,3. This, together with (42), implies that there exists a 0 <

P4(m, θ) < ∞ depending only on m and θ such that

C(〈Bi+qn(z),Bi+4qn(z)〉, 〈Bi+2qn(z),Bi+3qn(z)〉) < P4(m, θ). (45)
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Since 0 < i + 2qn < 3qn +qn+1 < (3τ(θ)+ τ(θ)2)qn−2. By (45) and the first
assertion of Lemma 4.15, and by applying Lemma 4.2 successively at most
(3τ(θ) + τ(θ)2) times, we get a constant 0 < P5(m, θ) < ∞ depending only
on m and θ such that

C(〈B−qn(z),B2qn(z)〉, 〈z,Bqn(z)〉) < P5(m, θ). (46)

Let P6(m, θ) = max{P3(m, θ),P5(m, θ)}. From (44) and (46) it follows that
in both the cases, the following inequality holds,

C(〈B−qn(z),B2qn(z)〉, 〈z,Bqn(z)〉) < P6(m, θ). (47)

Since (47) holds for an arbitrary z ∈ T, by considering the point B−qn(z), we
get

C(〈B−2qn(z),Bqn(z)〉, 〈B−qn(z), z〉) < P6(m, θ). (48)

From (47) we have |〈z,Bqn(z)〉| < P6(m, θ)|〈B−qn(z), z〉|. From (48) we
have |〈B−qn(z), z〉| < P6(m, θ)|〈z,Bqn(z)〉|. This implies that for any z ∈ T,
the inequality

1/P6(m, θ) ≤ |〈B−qn(z), z〉|
|〈z,Bqn(z)〉| ≤ P6(m, θ) (49)

holds for all n ≥ L0. This proves the first assertion of Lemma 4.16 by taking
J (m, θ) = P6(m, θ).

Now let us prove the second assertion of Lemma 4.16. Note that

〈z,B−qn+1(z)〉 ⊂ 〈z,Bqn(z)〉,
so from (34), we have

∣∣〈Bqn+1(z), z〉∣∣ ≤ J (m, θ)
∣∣〈z,B−qn+1(z)〉∣∣ < J(m, θ)

∣∣〈z,Bqn(z)〉∣∣,
and this implies the right hand of (35). To prove the left hand, Note that

〈z,Bqn(z)〉 ⊂
⋃

0≤i≤b(θ)

〈B−iqn+1(z),B−(i+1)qn+1(z)〉,

where b(θ) = sup{an}. This implies that

∣∣〈z,Bqn(z)〉∣∣ ≤
∑

0≤i≤b(θ)

∣∣〈B−iqn+1(z),B−(i+1)qn+1(z)〉∣∣.

For 0 ≤ i ≤ b(θ), by applying (34), we have
∣∣〈B−iqn+1(z),B−(i+1)qn+1(z)〉∣∣ ≤ J (m, θ)i+1

∣∣〈Bqn+1(z), z〉∣∣.
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Therefore, we get

|〈z,Bqn(z)〉|
|〈Bqn+1(z), z〉| ≤

∑

0≤i≤b(θ)

J (m, θ)i+1.

This proves the second assertion of the Lemma by modifying J (m, θ). This
completes the proof of Lemma 4.16. �

Now let us prove Theorem B. Let L0 > 0 be the integer in Lemma 4.14.
Take an arbitrary z ∈ T and an arbitrary 0 < δ < 2π .

First let us assume that one of 〈z,Bq
L0 (z)〉 and 〈z,Bq

L0+1 (z)〉 is contained
either in [e−iδz, z] or in [z, eiδz]. With this assumption let us show that there
exists an 1 < M1(m, θ) depending on only on m and θ such that

M1(m, θ)−1 <
|hB([z, eiδz])|
|hB([e−iδz, z])| < M1(m, θ). (50)

Without loss of generality, let us assume that

〈z,Bq
L0 (z)〉 = [z,Bq

L0 (z)] ⊂ [z, eiδz]. (51)

Since θ is of bounded type, by Lemma 4.16, there is an integer N1(m, θ)

depending only on m and θ such that
∣∣〈BqL0+1+2N1(m,θ)(z), z〉∣∣ ≤ ∣∣〈z,BqL0 (z)〉∣∣.

We thus have

〈BqL0+1+2N1(m,θ)(z), z〉 ⊂ [e−iδz, z]. (52)

From (51) we have

〈qL0θ〉 · 2π ≤ hB([z, eiδz]) < 2π. (53)

From (52), we have

〈qL0+1+2N1(m,θ)θ〉 · 2π < hB([e−iδz, z]) < 2π. (54)

We thus have (50) in this case by taking

M1(m, θ) = min

{
1

〈qL0θ〉 ,
1

〈qL0+1+2N1(m,θ)θ〉
}
.

Now assume that neither of 〈z,Bq
L0 (z)〉 and 〈z,Bq

L0+1 (z)〉 is contained
in [e−iδz, z] or [z, eiδz]. Let k ≥ L0 + 2 be the least integer such that either
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[e−iδz, z] or [z, eiδz] contains 〈z,Bqk (z)〉. Suppose that

〈z,Bqk (z)〉 = [z,Bqk (z)] ⊂ [z, eiδz]. (55)

The other cases can be treated in the same way. Then by the assumption and
the definition of k, we have

[z,Bqk (z)] ⊂ [z, eiδz] ⊂ [z,Bqk−2(z)] (56)

and

[e−iδz, z] ⊂ [Bqk−1(z), z]. (57)

Let J (m, θ) be the constant in Lemma 4.16. By (56) and Lemma 4.16, it
follows that

∣∣[Bqk−1(z), z]∣∣ ≤ J (m, θ)
∣∣[z,Bqk (z)]∣∣ ≤ J (m, θ)δ. (58)

Note that for n ≥ L0,

〈Bqn+2−qn+1(z),Bqn+2(z)〉 ∪ 〈Bqn+2(z), z〉 ⊂ 〈Bqn(z), z〉. (59)

By the first assertion of Lemma 4.16 we have

|〈Bqn+2−qn+1(z),Bqn+2(z)〉| ≥ J (m, θ)−1|〈Bqn+2(z),Bqn+2+qn+1(z)〉| (60)

and

|〈B2qn+2(z),Bqn+2(z)〉| ≥ J (m, θ)−1|〈Bqn+2(z), z〉|. (61)

By the second assertion of Lemma 4.16, we have

|〈Bqn+2(z),Bqn+2+qn+1(z)〉| ≥ J (m, θ)−1|〈B2qn+2(z),Bqn+2(z)〉|. (62)

From (60)–(62), we have

|〈Bqn+2−qn+1(z),Bqn+2(z)〉| > J(m, θ)−3|〈Bqn+2(z), z〉|. (63)

From (59) and (63) we have
∣∣〈Bqn(z), z〉∣∣ ≥ (1 + J (m, θ)−3)

∣∣〈Bqn+2(z), z〉∣∣ (64)

holds for all n ≥ L0. Let N2(m, θ) > 0 be the least positive integer such that

(
1 + J (m, θ)−3)N2(m,θ)

> J (m, θ).

From (58) and (64), it follows that

[Bqk−1+2N2(m,θ)(z), z] ⊂ [e−iδ, z]. (65)
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From (56) we have

〈qkθ〉 · 2π ≤ hB([z, eiδz]) ≤ 〈qk−2θ〉 · 2π. (66)

From (57) and (65), we have

〈qk−1+2N2(m,θ)θ〉 · 2π < hB([e−iδz, z]) < 〈qk−1θ〉 · 2π. (67)

Since θ is of bounded type, from (66) and (67), it follows that there exists an
1 < M2(m, θ) < ∞ depending only on m and θ such that in this case

M2(m, θ)−1 <
|hB([z, eiδz])|
|hB([e−iδz, z])| < M2(m, θ).

Theorem B then follows by taking M(m,θ) = max{M1(m, θ),M2(m, θ)}.
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