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Abstract Consider a bounded planar domain D, an instance h of the
Gaussian free field on D, with Dirichlet energy (2π)−1

∫
D

∇h(z) · ∇h(z)dz,
and a constant 0 ≤ γ < 2. The Liouville quantum gravity measure on D is the
weak limit as ε → 0 of the measures

εγ 2/2eγhε(z)dz,

where dz is Lebesgue measure on D and hε(z) denotes the mean value of h

on the circle of radius ε centered at z. Given a random (or deterministic) sub-
set X of D one can define the scaling dimension of X using either Lebesgue
measure or this random measure. We derive a general quadratic relation be-
tween these two dimensions, which we view as a probabilistic formulation
of the Knizhnik, Polyakov, Zamolodchikov (Mod. Phys. Lett. A, 3:819–826,
1988) relation from conformal field theory. We also present a boundary ana-
log of KPZ (for subsets of ∂D). We discuss the connection between discrete
and continuum quantum gravity and provide a framework for understanding
Euclidean scaling exponents via quantum gravity.
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“There are methods and formulae in science, which serve as master-
keys to many apparently different problems. The resources of such things
have to be refilled from time to time. In my opinion at the present time we
have to develop an art of handling sums over random surfaces. These
sums replace the old-fashioned (and extremely useful) sums over ran-
dom paths. The replacement is necessary, because today gauge invari-
ance plays the central role in physics. Elementary excitations in gauge
theories are formed by the flux lines (closed in the absence of charges)
and the time development of these lines forms the world surfaces. All
transition amplitude[s] are given by the sums over all possible surfaces
with fixed boundary.” (A.M. Polyakov, Moscow, 1981) [121]

1 Introduction

1.1 Overview

The study of certain natural probability measures on the space of two dimen-
sional Riemannian manifolds (and singular limits of these manifolds) is of-
ten called “two-dimensional quantum gravity.” These models have been very
thoroughly studied in the physics literature, in part because of connections to
string theory and conformal field theory [7, 11, 13, 42, 43, 49, 64, 71, 79, 90,
93, 121–123, 125, 130], and to random matrix theory and geometrical mod-
els; see, e.g., the references [1, 2, 5, 6, 20, 29–31, 39, 40, 44, 46, 48, 50, 53,
58–63, 65, 67, 68, 73, 77, 86, 88, 89, 91, 92, 94–98, 100, 101, 105, 116]. More
recently, a purely combinatorial approach to discretized quantum gravity has
been successful [12, 15–19, 21–28, 33, 47, 75, 106–108, 113–115, 117, 128],
as well as the so-called topological expansion involving higher-genus random
surfaces [35, 36, 38, 69, 70, 72].

One of the most influential papers in this field is a 1988 work of Knizhnik,
Polyakov, and Zamolodchikov [103]. Building on a 1987 work of Polyakov
[124], the authors derive a relationship (the KPZ formula) between scaling
dimensions of fields defined using Euclidean geometry and analogous di-
mensions defined via Liouville quantum gravity (as described earlier in [121,
122]; see [120] for a recent historical recount). An alternative heuristic deriva-
tion using Liouville field theory in the so-called conformal gauge was pro-
posed shortly after [41, 52] (see also [135]). The original work by KPZ has
been cited roughly a thousand times in a variety of contexts, which we will
not attempt to survey here, though we mention that there have been a number
of explicit calculations in Liouville field theory with matching results in the
random matrix theory approach, e.g., [55, 76, 78, 84, 99, 102, 126, 136–139,
141, 142]; for a review, see [118].
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The relationship in [103] has never been proved or even precisely formu-
lated mathematically. The main goal of this work is to formulate and prove
the KPZ scaling dimension relationship in a probabilistic setting.

1.2 Critical Liouville quantum gravity

The study of two dimensional random surfaces makes frequent use of the
Riemann uniformization theorem, which states that every smooth simply con-
nected Riemannian manifold M can be conformally mapped to either the unit
disc D, the complex plane C, or the complex sphere C ∪ {∞}. (If a manifold
is not simply connected then its universal cover can be conformally mapped
to one of these spaces. See, e.g., Chap. 4 of [74] for more exposition; see also
[54, 80, 81, 87, 140] for approximation algorithms and beautiful computer
illustrations of these maps.) Another way to say this is that M can be para-
meterized by points z = x + iy in one of these spaces in such a way that the
metric takes the form eλ(z)(dx2 + dy2) for some real-valued function λ. The
(x, y) are called isothermal coordinates or isothermal parameters for M. In
most of this paper we let the parameter space be a general simply connected
proper subdomain D of the plane (which, of course, is conformally equivalent
to D).

We remark that the existence of isothermal coordinates does not require
that M be smooth; for example, it can be deduced whenever M can be pa-
rameterized by a simply connected planar domain in which the metric has
the form E(x, y)dx2 + 2F(x, y)dxdy + G(x,y)dy2 where EG − F 2 > 0,
E > 0, and E, F , and G are β-Hölder continuous for some 0 < β < 1 [37].

Length, area, and curvature are easy to express in isothermal coordinates.
The length of a path in M parameterized by a smooth path P in D is given
by

∫

P

eλ(s)/2ds,

where ds is the Euclidean length measure on D. Given a measurable subset
A of D, the integral

∫
A

eλ(z)dz (where dz denotes Lebesgue measure on D) is
the area of the portion of M parameterized by A. The function K = −e−λ�λ

(where �λ = λxx + λyy is the Laplacian operator) is called the Gaussian
curvature of M. If A is a measurable subset of the (x, y) parameter space,
then the integral of the Gaussian curvature with respect to the portion of M
parameterized by A can be written

∫
A

eλ(z)K(z)dz = ∫
A

−�λ(z)dz where dz

denotes Lebesgue measure on D. In other words, −�λ gives the density of
Gaussian curvature in the isothermal coordinate space. In particular, M is flat
if and only if λ is harmonic.

The above suggests that one can study random simply connected Rie-
mannian manifolds by studying random functions λ on C or C ∪ {∞} or any
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fixed simply connected subdomain D of C. In the probabilistic formulation
of the so-called critical Liouville quantum gravity, λ is taken to be a multiple
of the Gaussian free field (GFF), although some care will be required to make
sense of this construction, since the GFF is a distribution and not a function.
(The relationship between our probabilistic formulation and the original for-
mulation of Polyakov will be discussed in Sect. 2.)

For concreteness, let h be an instance of a centered GFF on a bounded
simply connected domain D with zero boundary conditions. This means that
h = ∑

n αnfn where the αn are i.i.d. zero mean unit variance normal random
variables and the fn are an orthonormal basis, with respect to the inner prod-
uct

(f1, f2)∇ := (2π)−1
∫

D

∇f1(z) · ∇f2(z)dz,

of the Hilbert space closure H(D) of the space Hs(D) of C∞ real-valued
functions compactly supported on D. Although this sum diverges pointwise
almost surely, it does converge almost surely in the space of distributions on
D, and one can also make sense of the mean value of h on various sets. (See
[132] for a detailed account of this construction of the GFF; see Sect. 3.1
for a quick overview. Note that the (2π)−1 in the definition above does not
appear, e.g., in [132]; including this factor in the definition, as is common
in the physics literature, is equivalent to multiplying the corresponding h by√

2π . This will simplify some of our formulas later on. In particular, in this
formulation the two point covariance scales like − log(|z − w|) instead of
−(2π)−1 log(|z − w|); see Sect. 3.1.)

Given an instance h of the Gaussian free field on D, let hε(z) denote the
mean value of h on ∂Bε(z), the circle of radius ε centered at z (where h(z)

is defined to be zero for z ∈ C \ D). This is almost surely a locally Hölder
continuous function of (ε, z) on (0,∞) × D (see Sect. 3.1). For each fixed ε,
consider the surface Mε parameterized by D with metric eγhε(z)(dx2 +dy2).
We would like to define a surface M parameterized by D to be some sort of
limit as ε → 0 of these surfaces. Since we would not expect the limit to be a
Riemannian manifold in any classical sense, we have to state carefully what
we mean by this. There are many ways we could attempt to make sense of
this limit, depending on what quantities we focus on. For example, we could
consider

1. The length of the shortest path connecting a fixed pair of points in D.
2. The area of a fixed subset of D.
3. The length of a fixed smooth curve in D.
4. The length of a smooth boundary arc of D (which becomes interesting

when h is an instance of the GFF with free boundary conditions).

Intuitively, we might expect each quantity above to scale like a random con-
stant times a (possibly different) power of ε as ε tends to zero—i.e., we would
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expect that if the Mε were rescaled by the appropriate powers of ε, the above
quantities would have limits as ε → 0. Focusing on lengths of shortest paths,
one might guess that the random surfaces Mε (rescaled by some power of ε)
would almost surely converge (in some natural topology on the set of metric
spaces) to a non-trivial random metric space parameterized by D. However,
this is not something we are currently able to prove. Focusing on areas, one
might expect that for some α the renormalized area measures εαeγhε(z)dz

would almost surely converge weakly to a random measure on D. This is
the limit we will construct and work with in this paper. We will also address
the lengths of fixed curves and boundary curves; see Sect. 6. Although the
constructions are quite similar, we will not use the so-called Wick normal or-
dering terminology in this paper (see e.g., [133]). We present a self-contained
proof of the following (although similar measures have appeared much ear-
lier, and are called the Høegh-Krohn model [82]—see also [8, 9] for a discus-
sion on the level of Schwinger functions, and a more recent survey [10]):

Proposition 1.1 Fix γ ∈ [0,2) and define the zero boundary GFF h and D

as above. Then it is almost surely the case that as ε → 0 along powers of two,
the measures με := εγ 2/2eγhε(z)dz converge weakly inside D to a limiting
measure, which we denote by μ = μh = eγh(z)dz. This remains true if we
replace h with a non-centered GFF on D—i.e., if we set h = h + h0 where h

is the zero boundary GFF on D and h0 is a deterministic, non-zero continuous
function on D.

For each z ∈ D, denote by C(z;D) the conformal radius of D viewed
from z. That is, C(z;D) = |φ′(z)|−1 where φ : D → D is a conformal map
to the unit disc with φ(z) = 0. The following gives an equivalent definition
of μ.

Proposition 1.2 Write h = h + h0 where h is the zero boundary GFF on
D and h0 is a deterministic continuous function on D. Let f1, f2, . . . be
an orthonormal basis for H(D) comprised of continuous functions on D

and let hn be the expectation of h given its projection onto the span of
{f1, f2, . . . , fn}. (In other words, hn is h0 plus the projection of h onto the
span of {f1, f2, . . . , fn}.) Then μ = μh (as defined in Proposition 1.1) is al-
most surely the weak limit for n → +∞ of the measures

μn = exp

(

γ hn(z) − γ 2

2
Varhn(z) + γ 2

2
logC(z;D)

)

dz. (1)

For each measurable A ⊂ D, we have

E[μ(A)|hn] = μn(A). (2)
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In particular,

Eμ(A) =
∫

A

C(z;D)
γ 2

2 eγh0(z)dz.

Intuitively, we interpret the pair (D,μ) as describing a “random surface”
M parameterized conformally by D, with area measure given by μ. In the
physics literature, the more commonly used term is “random metric”; how-
ever, we stress that we have not endowed D with a two point distance func-
tion, so we cannot mathematically interpret “random metric” to mean “ran-
dom metric space.”

In the Liouville quantum gravity literature, the term “metric” is used to
mean alternately a two-point distance function, a measure of areas and lengths
of curves, or a Riemannian metric tensor (usually the latter). The first maps
pairs of points to R

+, the second maps sets/curves to R
+, and the third maps

pairs of tangent vectors to R. A smooth manifold can be equivalently charac-
terized by any one of these objects; however, the relationships between these
notions are less obvious for the limiting (and highly non-smooth) “random
surfaces” M we deal with here. The pair (D,μ) represents a conformal pa-
rameterization of M, with area measure μ. However, further work would be
required to use this structure to construct a two-point distance function on
M, or vice versa. To avoid ambiguity arising from the multiple definitions of
the term “metric”, we will use the term “random surface” instead of “random
metric” in this paper to describe the pair (D,μ).

1.3 Scaling exponents and KPZ

Definition 1.3 For any fixed measure μ on D (which we call the “quantum”
measure), we let Bδ(z) be the Euclidean ball centered at z whose radius is
chosen so that μ(Bδ(z)) = δ. (If there does not exist a unique δ with this
property, take the radius to be sup{ε : μ(Bε(z)) ≤ δ}.) We refer to Bδ(z) as
the isothermal quantum ball of area δ centered at z. In particular, if γ = 0
then μ is Lebesgue measure and Bδ(z) is Bε(z) where δ = πε2.

Given a subset X ⊂ D, we denote the ε neighborhood of X by

Bε(X) = {z : Bε(z) ∩ X �= ∅}.
We also define the isothermal quantum δ neighborhood of X by

Bδ(X) = {z : Bδ(z) ∩ X �= ∅}.
Translated into probability language, the so-called KPZ formula is a

quadratic relationship between the expectation fractal dimension of a random
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subset of D defined in terms of Euclidean measure (which is the Liouville
gravity measure with γ = 0) and the corresponding expectation fractal di-
mension of X defined in terms of Liouville gravity with γ �= 0.

Fix γ ∈ [0,2) and let μ0 denote Lebesgue measure on D. We say that a
(deterministic or random) fractal subset X of D has Euclidean expectation
dimension 2 − 2x and Euclidean scaling exponent x if the expected area of
Bε(X) decays like ε2x = (ε2)x , i.e.,

lim
ε→0

log Eμ0(Bε(X))

log ε2
= x.

We say that X has quantum scaling exponent � if when X and μ (as defined
above) are chosen independently we have

lim
δ→0

log Eμ(Bδ(X))

log δ
= �,

where here E is with respect to both random variables X and μ. (Section 7
will provide some discrete quantum gravity heuristics that motivate the idea
of taking X and μ to be independent of one another, as well as our particular
definition of scaling exponent.)

The following is the KPZ scaling exponent relation. To avoid boundary
technicalities, we restrict attention here to a compact subset of D. The case
of boundary exponents will be dealt with in Sect. 6.

Theorem 1.4 Fix γ ∈ [0,2) and a compact subset D̃ of D. If X ∩ D̃ has
Euclidean scaling exponent x ≥ 0 then it has quantum scaling exponent �,
where � is the non-negative solution to

x = γ 2

4
�2 +

(

1 − γ 2

4

)

�. (3)

It also turns out that Theorem 1.4 admits the following straightforward
generalization:

Theorem 1.5 Let X be any random measurable subset of the set of all balls
of the form Bε(z) for ε > 0 and z in a fixed compact subset D̃ of D. Fix
γ ∈ [0,2). Then if

lim
ε→0

log Eμ0{z : Bε(z) ∈ X }
log ε2

= x,
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then it follows that, when X and μ (as defined above) are chosen indepen-
dently, we have

lim
δ→0

log Eμ{z : Bδ(z) ∈ X }
log δ

= �,

where � is the non-negative solution to

x = γ 2

4
�2 +

(

1 − γ 2

4

)

�.

(Again, expectation in the above theorem is with respect to both random
variables, X and μ.) We obtain Theorem 1.4 as a special case of Theorem
1.5 by writing X = {Bε(z) : Bε(z) ∩ X �= ∅}. Theorem 1.5 allows us to con-
sider x that are greater than 1 (in which case the “dimension” 2 − 2x would
be negative). If one considers, for example, a conformal loop ensemble on D

with κ = 6 (corresponding to a scaling limit of the cluster-boundary loops in
site percolation on the triangular lattice) one could let X be the set of balls
contained in D̃ that intersect  distinct “macroscopic” loops (where “macro-
scopic” means that their diameters are greater than some fixed constant). In
this case, the value x depends on  and is called a multi-arm exponent [4, 59,
129, 134] and we may view the corresponding � as a quantum analog of such
an exponent.

As another example, for some integer L fix distinct points z1, z2, . . . , zL

in D \ D̃ and run L independent Brownian motions started at the points
z1, . . . , zL. Then let X be the set of balls Bε(z) contained in D̃ with the
property that the Brownian motions—stopped at the first time they intersect
∂Bε(z)—do not intersect one another.

In this case, the Euclidean scaling exponent x = xL is called a Brown-
ian intersection exponent. It was conjectured in [51] and rigorously derived
in a celebrated series of papers by Lawler, Schramm, and Werner using the
Schramm-Loewner evolution with κ = 6 [109–111]:

xL = 1

24
(4L2 − 1).

Although we will not fully explain this in this paper, there is a close con-
nection between SLEκ and Liouville quantum gravity models with γ =√

min{κ,16/κ} (see Sect. 7), in agreement with the relationship between CFT
central charge c and parameter γ in Liouville quantum gravity [41, 52, 79,
103, 130]. Taking γ = √

16/6 = √
8/3 and xL as above, the KPZ formula

gives

�L = 1

2

(

L − 1

2

)

,
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which is an affine function of L. The first co-author predicted several years
ago, based on an approach via discrete quantum gravity models, that this �

would be an affine function of L (see [58, 60, 61, 63] and the discussion in
Sect. 7). The derivation is based on a simple and general geometric argument
that discrete quantum gravity exponents should be in a certain sense additive
together with a heuristic connection between the discrete and the continuous
models. A direct calculation via discrete graphs appears in [58]. This is related
to the cascade relations given earlier by Lawler and Werner using different
techniques [112].

Three papers that build on our work (as announced and presented in talks
and minicourses beginning in 2007, and later in the Letter [57]) have already
been posted online: Benjamini and Schramm cited the ideas of our paper to
produce an analog of Theorem 1.4 in a one dimensional cascade model; their
proof uses a Frostman measure construction in place of the large deviations
construction used here, and almost sure Hausdorff dimension in place of ex-
pectation dimension [34]. A follow up paper [127] adapts the arguments of
[34] to a class of cascade models, which was expanded to include (in a re-
vised version) a measure based on the exponential of the Gaussian free field,
like the measures we construct here. Another paper provides a heuristic heat
kernel based derivation of the KPZ relation [45].

Intuitively, one reason to expect Hausdorff-like variants of KPZ to be ac-
cessible is that the second moments (and higher moments) of the random
measures are essentially trivial to compute (see Sect. 3.2). It might be inter-
esting to try to derive other variants of KPZ: for example, one could try to
relate the actual Minkowski or Hausdorff measure of a set, in the Euclidean
sense, with some kind of expected Minkowski or Hausdorff measure in the
quantum sense. We will not address these alternative formulations here. How-
ever, we will present below a picturesque formulation of KPZ in terms of box
decompositions.

1.4 Statement of box formulation of KPZ

Define a diadic square to be a closed square (including its interior) of one of
the grids 2−k

Z
2 for some integer k. Let μ be any measure on C. For δ > 0,

we define a (μ, δ) box S to be a diadic square S with μ(S) < δ and μ(S′) ≥ δ

where S′ is the diadic parent of S. Clearly, if a point z ∈ C does not lie on a
boundary of a diadic square—and it satisfies μ({z}) < δ < μ(C)—then there
is a unique (μ, δ) box containing z, which we denote by Sδ(z). Let S δ

μ be the
set of all (μ, δ) boxes. The boxes in S δ

μ do not overlap one another except at
their boundaries. Thus, they form a tiling of R

2 (see Figs. 1, 2, and 3 for an
illustration of this construction on a torus).
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Fig. 1 (μ, δ) boxes of the random measure μ = eγhdz, where γ = .5 and h is the (discrete)
Gaussian free field on a very fine (1024×1024) grid on the torus, dz is counting measure on the
vertices of that grid, and δ is 2−12 times the total mass of μ. (We view μ as an approximation
of the continuum Liouville quantum gravity measure.) One way to construct this figure is to
view the entire torus as a square; then subdivide each square whose μ measure is at least δ

into four smaller squares, and repeat until all squares have μ measure less than δ. The squares
shown have roughly the same μ size—in the sense that each square has μ measure less than δ

but each square’s diadic parent has μ measure greater than δ

We remark that the (μ, δ) boxes should not be confused with the diadic
boxes in the so-called δ-Calderón Zygmund decomposition of μ. Readers fa-
miliar with that decomposition may recall that while the (μ, δ) boxes are di-
adic squares S with μ(S) < δ ≤ μ(S′), the δ-Calderón Zygmund boxes are di-
adic squares S with μ(S)/μ0(S) > δ ≥ μ(S′)/μ0(S

′), where μ0 is Lebesgue
measure. Roughly speaking, the μ measure on each (μ, δ) box approximates
δ, while the μ density on each Calderón Zygmund box approximates δ.



Liouville quantum gravity and KPZ 343

Fig. 2 Analog of Fig. 1 with γ = 1, using the same instance h of the GFF

When ε is a power of 2, analogously define Sε(z) to be the diadic square
containing z with edge length ε. Likewise, define

Sε(X) = {z : Sε(z) ∩ X �= ∅},
Sδ(X) = {z : Sδ(z) ∩ X �= ∅}.

The following gives the equivalence of the scaling dimension definition when
boxes are used instead of balls. (The first half is well known and easy to
verify.)

Proposition 1.6 Fix γ ∈ [0,2) and let X be a random subset of a determin-
istic compact subset D̃ of D. Let N(μ, δ,X) be the number of (μ, δ) boxes
intersected by X and N(ε,X) the number of diadic squares intersecting X

that have edge length ε (a power of 2). Then X has Euclidean scaling expo-
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Fig. 3 Analog of Fig. 1 with γ = 1.5, using the same instance h of the GFF

nent x ≥ 0 if and only if

lim
ε→0

log E[μ0(Sε(X))]
log ε2

= lim
ε→0

log E[ε2N(ε,X)]
log ε2

= x,

or equivalently,

lim
ε→0

log E[N(ε,X)]
log ε2

= x − 1.

Similarly, the following are equivalent

1. X has quantum scaling exponent �.
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2. When X and μ (as defined above) are chosen independently we have

lim
δ→0

log E[μ(Sδ(X))]
log δ

= �. (4)

3. When X and μ (as defined above) are chosen independently we have

lim
δ→0

log E[N(μ, δ,X)]
log δ

= � − 1. (5)

Of course, this immediately implies the following restatement of Theo-
rem 1.4 in terms of boxes instead of balls:

Corollary 1.7 Fix γ ∈ [0,2) and a compact subset D̃ of D and X and μ as
above. Then if

lim
ε→0

log E[N(ε,X)]
log ε2

= x − 1

for some x > 0 then

lim
δ→0

log E[N(μ, δ,X)]
log δ

= � − 1,

where � is the non-negative solution to (3).

One could also phrase Theorem 1.5 in terms of boxes instead of balls, but
for simplicity we will refrain from doing this here.

2 Coordinate changes and the physical Liouville action

Polyakov understood early on that the Liouville quantum gravity action be-
comes a free field action in the conformal gauge, but he did not construct the
random area measure the way we do. In [124], where Polyakov begins the
KPZ derivation, he refers to the Liouville quantum gravity action and writes

“The most simple form this formula takes is in the conformal gauge,
where gab = eϕδab where it becomes a free field action. Unfortunately
this simplicity is an illusion. We have to set a cut-off in quantizing this
theory, such that it is compatible with general covariance. Generally,
it is not clear how to do this. For that reason, we take a different ap-
proach.”

Indeed, the actual derivation given in [124] and subsequently in Knizhnik,
Polyakov, and Zamolodchikov [103] is more complicated than ours and is
not based on the Gaussian free field. It does not give precise mathematical
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meaning to the random surfaces. We feel that the Gaussian free field based
random measure we construct is the correct one, at least in the sense that it
is likely to arise as a scaling limit of the discrete quantum gravity models
mentioned in [103] (see Sect. 7). In a way our approach is more similar to
the work of David [41] and of Distler and Kawai [52], which heuristically
derived KPZ from Liouville field theory in the so-called conformal gauge.

In this section, we describe how the Liouville quantum gravity measure
we construct transforms covariantly under coordinate changes and use this
to explain the connection between the Gaussian free field and the more fa-
miliar and more general curvature-based definition of the Liouville action
that is conventional in the physics literature. The covariance properties of the
random measures in our point of view are very simple and agree with those
postulated in the physics literature.

If φ is a conformal map from D to a domain D̃ and h is a distribution on
D, then we define the pullback h ◦ φ−1 of h to be a distribution on D̃ defined
by (h ◦ φ−1, ρ̃) = (h,ρ) whenever ρ is smooth and compactly supported on
D and ρ̃ = |φ′|−2ρ ◦ φ−1. (Here φ′ is the complex derivative of φ, and (h,ρ)

is the value of the distribution h integrated against ρ.) Note that if h is a con-
tinuous function (viewed as a distribution via the map ρ → ∫

D
ρ(z)h(z)dz),

then the distribution h ◦ φ−1 thus defined is the ordinary composition of h

and φ−1 (viewed as a distribution).
The following transformation rule is a simple consequence of Proposi-

tion 1.2 and the definitions above.

Proposition 2.1 Let h be an instance of the GFF on D and ψ a conformal
map from a domain D̃ to D. Write h̃ for the distribution on D̃ given by h ◦
ψ + Q log |ψ ′| where

Q = 2

γ
+ γ

2
.

Then μh is almost surely the image under ψ of the measure μ
h̃

on D̃. That is,
μ

h̃
(A) = μh(ψ(A)) for each Borel measurable A ⊂ D̃.

Proof Using the notation of Proposition 1.2, if f1, f2, . . . are an orthonor-
mal basis for H(D), then the conformal invariance of (·, ·)∇ implies that
f1 ◦ ψ,f2 ◦ ψ, . . . are an orthonormal basis for H(D̃), and as n → ∞
the functions hn ◦ ψ converge in law to the GFF on D̃, and the functions
h̃n = hn ◦ ψ + Q log |ψ ′| converge in law to h̃. If we define μ̃n analogously
to μn in (1) but with hn replaced by h̃n, then the μ̃n converge weakly to the
random distribution μ̃ := μ

h̃
.

To see that μ is the image of μ̃ under ψ , we will observe that μn is the
image of μ̃n under ψ for each n. To see this, consider the term Q log |ψ ′| =
(2/γ ) log |ψ ′| + (γ /2) log |ψ ′| in the definition of h̃. Adding (2/γ ) log |ψ ′|
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to hn ◦ ψ corresponds to multiplying (1) by a factor of |ψ ′|2. This compen-
sates for the fact that the Radon-Nikodym derivative of a measure on D̃ at a
point z and the Radon-Nikodym derivative of the same measure pushed for-
ward on D at ψ(z) differ by a factor of |ψ ′(z)|2. Adding (γ /2) log |ψ ′(z)| to
hn ◦ ψ compensates the expression (1) for the change in conformal radius:
logC(ψ(z);D) − logC(z; D̃) = log |ψ ′(z)|. �

We interpret Proposition 2.1 as a rule for changing the parametrization of
a “random surface.” For example, consider the random surface one constructs
from the Gaussian free field on a fixed domain D. Then if we are given any
other domain D̃ and a conformal map ψ : D̃ → D, we may wish to consider
the same random surface parameterized by D̃ instead of D. In this case, the
transformation rule tells us that on D̃ we should consider the Liouville quan-
tum gravity measure defined using h̃ = h ◦ψ +Q log |ψ ′|, where h ◦ψ is the
GFF on D̃ with zero boundary conditions.

We remark that one can make a similar argument when D̃ is a curved
simply connected manifold and ψ : D̃ → D a conformal map; the met-
ric on D̃—when parameterized by D using the map ψ−1—takes the form
eλ(z)(dx2 + dy2), for z ∈ D, where we write λ(ψ(w)) = −2 log |ψ ′(w)| for
w ∈ D̃. Although we will not prove it here, the analog of Proposition 1.1
for smooth curved surfaces is straightforward, and the transformation rule
Proposition 2.1 remains the same in this case; as in the flat case, the law
of the Liouville quantum gravity measure on D pulled back to D̃ is that of
h̃ = h ◦ ψ + Q log |ψ ′| where h ◦ ψ is the GFF on D̃ with zero boundary
conditions. (Alternatively, we may take this as a definition of the Liouville
quantum gravity measure on curved D̃ with zero boundary conditions.)

The remainder of this subsection describes the connection between our
notation and the common physics literature Liouville gravity notation. (This
discussion can be skipped, on a first read, by readers with no prior familiarity
with the latter.) What we call the GFF on D (with the 1/2π normalization, as
discussed in the introduction) is often written (sometimes without a rigorous
definition) as the measure e−S(h)dh, where

S(h) = 1

4π

∫

D

∇h(z) · ∇h(z)dz

is called the action and dh is defined heuristically as a “uniform measure
on the space of all functions.” (Of course, the latter makes perfect sense
if one considers only a finite dimensional vector space of functions, such
as real-valued functions defined on the vertices of a lattice, or functions
whose Fourier coefficients beyond a certain frequency threshold are identi-
cally zero—in this case dh would be the Lebesgue measure on the vector
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space.) In this paper, we will write

(h,h)∇ := 1

2π

∫

D

∇h(z) · ∇h(z)dz,

so that the above becomes S(h) = 1
2(h,h)∇ .

In the following, let D be a subdomain of C and D̃ a possibly curved
surface for which there is a conformal map ψ : D̃ → D. Write h̃0 = log |ψ ′|.
Now, if we switch parametrization to D̃, we are adding Qh̃0 deterministically
to h ◦ ψ to get h̃, so we may rewrite the action as

S = 1

2
(h̃ − Qh̃0, h̃ − Qh̃0)∇,

which (at least when h̃0 is smooth and compactly supported) is seen by inte-
grating by parts to be equivalent (up to the additive constant 1

2‖Qh̃0‖2∇ ) to

S = 1

4π

∫

D̃

dw
(
∇h̃(w) · ∇h̃(w) + 2h̃(w)Q�h̃0(w)

)
, (6)

where the pairing ∇h̃(w) ·∇h̃(w) and the Laplacian �h̃0(w) are now defined
using the metric on D̃ and where now dw represents the measure on D̃ instead
of D. This can also be written

S = 1

4π

∫

D̃

dw
(
∇h̃(w) · ∇h̃(w) + Qh̃(w)K(w)

)
, (7)

where K is the Gaussian curvature of D̃ and dw is integration with respect
to the curved metric. (When h̃0 is not compactly supported, the formula can
be modified to include a term for boundary curvature, but we will not discuss
this here.)

Adding in one additional term which is a constant μL times the total area
of D̃ (and making the following symbol substitutions: b = γ /2, ϕ = h̃, g is
the underlying metric of D̃, and j and k are summed-over indices ranging
over the two tangent space directions), we obtain the more familiar formula
for the Liouville action:

SL = 1

4π

∫

D̃

dw
√

g
(
gjk∂jϕ∂kϕ + QKϕ + 4πμLe2bϕ

)
,

where Q = b + b−1. The action is defined similarly when free boundary con-
ditions are used instead of zero boundary conditions—or when D̃ is a com-
pact Riemann surface of some genus. (In this case, e−SL(ϕ)dϕ is an infinite
measure, although it can be “localized,” e.g., by requiring the mean value of
ϕ to be zero.)
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This paper will focus exclusively on the case γ ∈ [0,2) (which is said to
correspond to physical models below the central charge c = 1 threshold) and
μL = 0 (the so-called critical Liouville quantum gravity). The string theory
and quantum gravity literatures deal with other parameter choices as well—
including non-zero μL and complex values for γ and Q—but these appear to
be beyond the scope of our methodology, in part because, when SL is complex
valued, the expression e−SL(ϕ)dϕ is no longer a probability measure in even
a heuristic sense.

3 Constructing the random measures

3.1 GFF definition and normalization

Let D be a bounded planar domain and let dz denote Lebesgue measure on D.
We assume the reader is familiar with the Gaussian free field, as defined, e.g.,
in [132], but we briefly review the definition here. As described earlier, to
make our formulas consistent with the physics literature, the definitions of
Green’s function and the Dirichlet form will differ from the ones in [132] by
factors of 2π .

Again, let Hs(D) be the space of C∞ real-valued functions compactly sup-
ported on D. We define the Dirichlet inner product

(f1, f2)∇ := (2π)−1
∫

D

∇f1(z) · ∇f2(z)dz,

on Hs(D). Then an instance h of the Gaussian free field (GFF) may be viewed
as a standard Gaussian on the Hilbert space closure H(D) of Hs(D) (i.e., as
a sum of the form

∑
n αnfn where fn are any orthonormal basis for H(D))—

the sum converges almost surely in the space of distributions on D, see [132].
In fact, we may define (h, f )∇ as random variables for non-smooth f as well;
these are zero mean Gaussian random variables for each f ∈ H(D), and

Cov
(
(h, f1)∇, (h, f2)∇

) = (f1, f2)∇ . (8)

The collection of random variables (h, f )∇ for f ∈ H(D) is thus a Hilbert
space (isomorphic to H(D)) under the covariance inner product.

When x ∈ D is fixed, we let G̃x(y) be the harmonic extension to y ∈ D of
the function of y on ∂D given by − log |y − x|. Then Green’s function in the
domain D is defined by

G(x,y) = − log |y − x| − G̃x(y).

When x ∈ D is fixed, Green’s function may be viewed as a distributional
solution of �G(x, ·) = −2πδx(·) with zero boundary conditions [132]. It is
non-negative for all x, y ∈ D.
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For any function ρ on Hs(D), we define a function �−1ρ on D by

�−1ρ(·) := − 1

2π

∫

D

G(·, y)ρ(y) dy.

This is a C∞ (though not necessarily compactly supported) function in D

whose Laplacian is ρ. We use the same notation for more general measurable
functions ρ, as well as the case that ρ is a measure. (For example, we will
sometimes speak of the inverse Laplacian of uniform measure on a particular
circle or disc contained in D.)

If f1 = −�−1ρ1 and f2 = −�−1ρ2, then integration by parts implies that
(f1, f2)∇ = (2π)−1(ρ1,−�−1ρ2), where (·, ·) denotes the standard inner
product on L2(D). We next observe that every h ∈ H(D) is naturally a dis-
tribution, since we may define the map (h, ·) by (h,ρ) := 2π(h,−�−1ρ)∇ .
(It is not hard to see that −�−1ρ ∈ H(D), since its Dirichlet energy is given
explicitly by (9).) When −�f = ρ, we may write (h,ρ) = 2π(h,f )∇ , and
hence

Cov
(
(h,ρ1), (h,ρ2)

) = (2π)2(f1, f2)∇ .

We claim that the latter expression may be rewritten to give

Cov
(
(h,ρ1), (h,ρ2)

) =
∫

D×D

ρ1(x)G(x, y)ρ2(y) dx dy (9)

where G(x,y) is Green’s function in D. Since �G(x, ·) = −2πδx(·) and
∫

D

G(x, y)ρ2(y) dy = −2π�−1ρ2(x),

we obtain (9) by multiplying each side by −�f1(x) = ρ1(x) and integrating
by parts with respect to x.

Denote by hε(z) the average value of h on the circle of radius ε centered
at z. Similar averages were considered in [14]. (For this definition, we assume
h is identically zero outside of D.) Then hε(z) is a Gaussian process with
covariances defined by

Gε1,ε2(z1, z2) := Cov
(
hε1(z1), hε2(z2)

)
(10)

given by
∫

G(x,y)ρz1
ε1

(x)ρz2
ε2

(y)dxdy

where ρz
ε(x)dx is the uniform measure (of total mass one) on ∂Bε(z). In fact

(like Brownian motion) the process hε(z) determines a random continuous
function (of z and ε):
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Proposition 3.1 The process hε(z) has a modification which is almost surely
locally η-Hölder continuous in the pair (z, ε) ∈ C×(0,∞) for every η < 1/2.

In other words, the Hölder regularity enjoyed by hε(z)—as a function of
the pair (z, ε)—is the same as that of Brownian motion or the Brownian sheet.
In fact, as we observe below (Proposition 3.3), when z is fixed, hε is a Brown-
ian motion with respect to the parameter t = − log ε. We may view hε as an
approximation to h that gets better as ε → 0. Before we prove Proposition 3.1,
let us make some observations about the covariance function Gε1,ε2(z1, z2)

defined in (10). (We will also sometimes write Gε(z1, z2) := Gε,ε(z1, z2).)
First we define the function ξz

ε (y), for y ∈ D, by

ξz
ε (y) = − log max(ε, |z − y|) − G̃z,ε(y), (11)

where G̃z,ε(y) is the harmonic extension to D of the restriction of
− log max(ε, |z − y|) to ∂D. Note that G̃z,ε = G̃z provided that Bε(z) ⊂ D.
Observe that this ξz

ε (y) tends to zero as y → ∂D and that as a distribution
−�ξz

ε (restricted to D) is equal to 2πρz
ε , where as before ρz

ε is a uniform
measure on D ∩ ∂Bε(z). Integrating by parts, we immediately have

hε(z) = (h, ξz
ε )∇,

and from (8) and (10) the following:

Proposition 3.2 The function Gε1,ε2(z1, z2) is equal to the Dirichlet inner
product (ξ

z1
ε1 , ξ

z2
ε2 )∇ and to the mean value of ξ

z1
ε1 on the circle ∂Bε2(z2).

In particular, if Bε1(z1) and Bε2(z2) are disjoint and contained in D then
Gε1,ε2(z1, z2) = G(z1, z2). If Bε1(z) ⊂ D and ε1 ≥ ε2 then

Gε1,ε2(z, z) = − log ε1 + logC(z;D).

It then follows that

Gε,ε(z, z) = Varhε(z) = (ξz
ε , ξ z

ε )∇ = ξz
ε (z) = − log ε + logC(z;D). (12)

Proof of Proposition 3.1 We first claim that for each ε0 and D there exists a
constant K such that

Var
(
hε1(z1) − hε2(z2)

) ≤ K
[|z1 − z2| + |ε1 − ε2|

]

for all z1, z2 ∈ D and ε1, ε2 ∈ [ε0,∞). Since the variance can only increase if
D is replaced with a larger domain, it suffices to show this holds when D is
replaced by a sufficiently large disc D′ (say, centered in D with 10 times the
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diameter r of D), and ε is restricted to values in [ε0,5r]. (For larger values
of ε, the set ∂Bε(z) cannot intersect D when z ∈ D.) Since

Var
(
hε1(z1) − hε2(z2)

) = Gε1,ε1(z1, z1) − 2Gε1,ε2(z1, z2) + Gε2,ε2(z2, z2),

it suffices to show that Gε1,ε2(z1, z2) is a Lipschitz function of (ε1, ε2, z1, z2)

for the range of (ε1, ε2, z1, z2) values indicated above. This follows from
Proposition 3.2 and the fact (whose proof we leave to the reader) that ξz

ε

is a Lipschitz function when z ∈ D and ε > ε0, with a Lipschitz constant that
holds uniformly over these ε and z values.

The claim implies that for all α > 0 there is some K = K(α) > 0 such that

E[|hε1(z1) − hε2(z2)|α] ≤ K
[|z1 − z2| + |ε1 − ε2|

]α/2
.

This puts us in the setting of the multiparameter Kolmogorov-Čentsov the-
orem [104, 119], which states the following: Suppose that the random field
X(a), a ∈ ∏n

i=1[0, ti] satisfies E[|X(a)−X(b)|α] ≤ K|a−b|n+β for all a, b,
for some fixed constants α,β,K . Then there exists an almost surely continu-
ous modification of the random field and this process is η-Hölder continuous
for every η < β/α. Applying this for n = 3 and β = α/2 − 3 and large α

allows us to deduce that hε(z), as a function of ε and z, is locally η-Hölder
continuous for all η < 1/2. �

Proposition 3.3 Write Vt = he−t (z), and tz0 = inf{t : Be−t (z) ⊂ D}. If z ∈ D

is fixed, then the law of

Vt := Vtz0+t − Vtz0

is a standard Brownian motion in t .

Proof Since we already know that the hε(z) are jointly Gaussian random
variables, it is enough to compute the variances of hε(z) and hε′(z) for fixed
ε, ε′, and these are given in Proposition 3.2. �

3.2 Random measure: Liouville quantum gravity

The remainder of the paper makes frequent use of the following simple fact,
which the reader may recall (or verify): if N is a Gaussian random variable
with mean a and variance b then

E eN = ea+b/2. (13)

Since Ehε(z) = 0 when h is an instance of the GFF with zero boundary con-
ditions, we have

Eeγhε(z) = eVar[γ hε(z)]/2.
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Recall

Var(hε(z)) = Gε(z, z) = logC(z;D) − log ε (14)

when Bε(z) ⊂ D. Then we have

Eeγhε (z) = exp
(
γ 2/2 (− log ε + logC(z;D))

)
=

(
C(z;D)

ε

)γ 2/2

. (15)

More general moments of the random variables eγhε(z) are also easy to
calculate. For example, we have

Eeγhε(y)eγ hε(z) = exp
(
Var[γ (hε(y) + hε(z))]/2

)

= exp

(
γ 2

2
(Gε(y, y) + Gε(z, z) + 2Gε(y, z))

)

. (16)

By Proposition 3.2 we have Gε(y, z) = G(y, z) whenever |y − z| ≥ 2ε and
Bε(y) ∪ Bε(z) ⊂ D. In this case we have

Eeγhε(y)eγ hε(z) =
(

C(y;D)C(z;D)

ε2

)γ 2/2

eγ 2G(y,z).

Write

hε := γ hε + γ 2

2
log ε.

Then we have

Eehε(z) = C(z;D)γ
2/2 � 1

and when |y − z| > 2ε we have

Eehε(y)ehε(z) = (C(y;D)C(z;D))γ
2/2 eγ 2G(y,z)

� (C(y;D)C(z;D))γ
2/2 |y − z|−γ 2

� |y − z|−γ 2

where � indicates that equality holds up to a constant factor when y and z

are restricted to any compact subset of D.
Now, for each fixed ε, write με := ehε(z)dz (which in essence corresponds

to the “Wick normal ordering” of the original measure [133]). We now argue
that these converge weakly to a limiting random measure on D.

Proof of Proposition 1.1 Fix γ ∈ [0,2). It is easy to see that if for each di-
adic square S compactly supported in D the random variables μ2−k (S) con-
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verge to a finite limit as k → ∞, almost surely, then μ2−k almost surely con-
verges weakly to a limiting measure. We will prove convergence of μ2−k (S)

by showing that the expectation of |μ2−k (S) − μ2−k−1(S)| decays exponen-
tially in k. (Convergence follows, e.g., by using the Borel-Cantelli lemma to
show that a.s. |μ2−k (S) − μ2−k−1(S)| is greater than some exponentially de-
caying function of k for at most finitely many k.) Without loss of generality,
we may assume S is the unit square [0,1]2, so that με(S) is precisely the
mean value of ehε(z) on S.

As shown above, we have

Eehε(z) = C(z;D)γ
2/2

(which is bounded between positive constants) when z ∈ S and ε is suffi-
ciently small.

For y = (y1, y2) ∈ (0,1)2 and k ≥ 1, let S
y
k be the discrete set of 22k points

(a, b) ∈ S with the property that (2ka − 2ky1,2kb − 2ky2) ∈ Z
2. Let A

y
k be

the mean value of exph2−k−1(z) on the set S
y
k , and B

y
k the mean value of

exph2−k−2(z) over the same set:

A
y
k := 2−2k

∑

z∈S
y
k

exph2−k−1(z), B
y
k := 2−2k

∑

z∈S
y
k

exph2−k−2(z). (17)

Clearly, μ2−k−1(S) is the mean value of A
y
k over y ∈ [0,1]2 and μ2−k−2(S)

the mean value of B
y
k over y ∈ [0,1]2. Applying Jensen’s inequality to the

convex function | · |, it now suffices for us to prove that E|Ay
k − B

y
k | tends

to zero exponentially in k (uniformly in y). Since the balls of radius 2−k−1

centered at points in S
y
k do not overlap, and by the Markov property of the

GFF (see, e.g., [132]), we have that conditioned on the values of h2−k−1(z)

for z ∈ S
y
k , the random variables h2−k−2(z) for z ∈ S

y
k are independent of one

another; thanks to Propositions 3.2 and 3.3, each is a Gaussian of variance
log 2 and mean h2−k−1(z).

Hence, given the values of h2−k−1(z) for z ∈ S
y
k , the value of the conditional

expectation of |Ay
k − B

y
k |2 is given by

E

(
|Ay

k − B
y
k |2|h2−k−1(z)

)

= 2−4k
∑

z∈S
y
k

E

(
|eh2−k−1 (z) − eh2−k−2 (z)|2|h2−k−1(z)

)

= 2−4kC
∑

z∈S
y
k

(
eh2−k−1 (z)

)2
, (18)
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where

C = E

(
|1 − 2−γ 2/2eγh2−k−2 (z)|2|h2−k−1(z) = 0

)
= 2γ 2 − 1,

is a constant independent on k and z. The unconditional expectation of
|Ay

k − B
y
k |2 is given by the expectation of (18). It is tempting to argue that

this expectation tends to zero exponentially in k (which would in turn imply
that E|Ay

k −B
y
k | tends to zero exponentially in k), but this turns out to be true

only for 0 ≤ γ 2 < 2 and not for 2 ≤ γ 2 < 4. To see this, set ε := 2−k−1, and
note that

E

[
(ε2ehε(z))2

]
= ε4+γ 2

E[e2γ hε ] � ε4+γ 2
e− 4γ 2 logε

2 = ε4−γ 2
. (19)

Summing over the 22k = (2ε)−2 points z in S
y
k in (18), yields for the expec-

tation of the latter (up to an ε-independent constant factor)

E |Ay
k − B

y
k |2 � ε2−γ 2

,

which does not tend to zero when γ 2 ≥ 2.
However, we can deal with the case γ 2 ≥ 2 by breaking the sum over z ∈

S
y
k in (17) defining A

y
k − B

y
k into two parts and dealing with them separately.

The idea is that the estimate in (18) and (19) of the expectation of |Ay
k −B

y
k |2

is dominated (and can only be made large) by rare occurrences at points z

where hε(z) is much larger than typical. Their contribution to the expectations
of A

y
k and B

y
k , hence to E|Ay

k − B
y
k |, is exponentially small in k.

To make this precise, fix some α with γ < α < 2γ and let S̃
y
k denote set

of points z ∈ S
y
k with the property that hε(z) > −α log[ε/C(z;D)], where

ε = 2−k−1. Let Ã
y
k denote the mean value of 1

S̃
y
k

exph2−k−1(z) over S
y
k and

B̃
y
k the mean value of 1

S̃
y
k

exph2−k−2(z) over S
y
k , so that

A
y
k = Ã

y
k + 2−2k

∑

z∈S
y
k \S̃y

k

exph2−k−1(z),

B
y
k = B̃

y
k + 2−2k

∑

z∈S
y
k \S̃y

k

exph2−k−2(z).
(20)

We claim that EÃ
y
k tends to zero exponentially in k. To see this, observe

that for fixed z ∈ S, the random variable hε(z) is a centered Gaussian with
variance σ 2 = − log[ε/C(z;D)]; and the expectation of ehε(z)—which we
know to be constant for all ε small enough so that z is distance at least ε from



356 B. Duplantier, S. Sheffield

the boundary of D—takes the form

Eehε(z) = εγ 2/2

(2π)1/2

∫

R

e
− η2

2σ2 eγηdη = C(z;D)γ
2/2. (21)

We can therefore simply write for points z ∈ S̃
y
k :

E 1
S̃

y
k
ehε(z) =

∫
R

1η>ασ 2e
− η2

2σ2 eγηdη

∫
R

e
− η2

2σ2 eγηdη

× E ehε(z). (22)

The ratio of integrals in (22) is the probability that a normal random variable η

of mean γ σ 2 and variance σ 2 satisfies η > ασ 2, with α > γ , and this clearly
tends to zero exponentially in σ 2 with rate 1

2(α − γ )2, from which the claim
easily follows.

Note that (21) remains unchanged if we replace ε = 2−k−1 with 2−k−2,
which implies that EB̃

y
k = EÃ

y
k , and in particular EB̃

y
k also tends to zero

exponentially in k. Since B̃
y
k and Ã

y
k are non-negative, applying the triangle

inequality shows that E|B̃y
k − Ã

y
k | tends to zero exponentially in k.

For the next step, we wish to bound E|(By
k − B̃

y
k ) − (A

y
k − Ã

y
k )|2, which

requires us to consider the set of points z ∈ S
y
k \ S̃

y
k in (20). Applying formula

(18), we are led to estimate the expectation

ε4
E

[

1
S

y
k \S̃y

k

(
ehε(z)

)2
]

= ε4+γ 2
E

[
1
S

y
k \S̃y

k
e2γ hε(z)

]
. (23)

Using the explicit relation (compare to (22))

E

[
1
S

y
k \S̃y

k
e2γ hε(z)

]
=

∫
R

1η<ασ 2e
− η2

2σ2 e2γ ηdη

∫
R

e
− η2

2σ2 e2γ ηdη

× E e2γ hε(z), (24)

we find that (23) differs from (19) by a factor that represents the probability
that a Gaussian random variable with variance − log ε (plus a constant term)
and mean −2γ log ε is less than −α log ε. Since α < 2γ , this probability de-
cays exponentially in − log ε at rate (2γ − α)2/2. Thus (23) becomes, up to
a constant factor (universal in ε and z ∈ S),

ε4−γ 2
ε(2γ−α)2/2.

Summing over the 22k = (2ε)−2 points z ∈ S
y
k , we obtain the estimate

E|(By
k − B̃

y
k ) − (A

y
k − Ã

y
k )|2 � ε2−γ 2+(2γ−α)2/2.
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To conclude, we only need to make sure we chose α ∈ (γ,2γ ) small enough
so that the sum in the exponent is positive, and this is clearly possible. In fact,

taking α close to γ , the exponent becomes close to 2 − γ 2 + γ 2/2 = 2 − γ 2

2 ,
which is positive when γ < 2. �

3.3 Rooted random measures

Before proving Proposition 1.2, we introduce a notion of rooted random mea-
sure and use it to prove a uniform integrability result for the random variables
με(S) discussed above.

Write �ε := Z−1
ε eγhε(z)dzdh, where Zε is a constant chosen to make

�ε a probability measure. Note that dzdh is a probability measure on a
standard Borel space and that Z−1

ε eγhε(z) is a measurable function on that
space with expectation one. There is therefore no difficulty in defining the
�ε as the measure whose Radon-Nikodym derivative with respect to dzdh

is Z−1
ε eγhε(z). Integrating, we see that the �ε marginal distribution of z is

given by f (z)dz where f (z) = Z−1
ε Ehe

γhε(z). Thus f (z) is proportional to

[C(z;D)]γ 2/2 by (15) (provided Bε(z) ⊂ D). Similarly, the �ε marginal law
of h is Z−1

ε (
∫
D

eγhε(z)dz)dh. Given z, a regular conditional probability dis-
tribution for h is given by (Ehe

γhε(z))−1eγhε(z)dh.
In other words, sampling from �ε may be described as a two step pro-

cedure. First sample z from its marginal distribution. Then sample h from
the distribution of the Gaussian free field weighted by eγhε(z). Since dh is a
Gaussian measure, we find that given z, h has the law of the original GFF
plus γ ξz

ε where ξz
ε satisfies a Dirichlet problem: −�ξz

ε is the multiple of the
uniform measure on ∂Bε(z) with total mass 2π (because h is

√
2π times the

standard GFF; if h were the standard GFF the total mass would be 1). As
noted in Sect. 3.1, this ξz

ε has been computed explicitly:

ξz
ε (y) = − log max{|z − y|, ε} − G̃z(y), (25)

where G̃z is the harmonic interpolation to D of the first term on ∂D, as long
as Bε(z) ⊂ D.

Let � be the limit of the measures �ε as ε → 0: that is, � is the mea-
sure on pairs (z, h) for which the marginal distribution of z is proportional
to [C(z;D)]γ 2/2dz and, given z, the � conditional law of h is that of the
original standard GFF plus the deterministic function γ ξz

0 (viewed as a dis-

tribution). For any D̃ compactly supported on D, we will also write �D̃ for
the measure � conditioned on the event z ∈ D̃. We similarly define �D̃

ε to be
�ε conditioned on z ∈ D̃ (where ε is less than the distance from D̃ to ∂D).
By the above construction and Proposition 3.3, we have that conditioned on
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z, the � law of he−t is essentially that of a Brownian motion plus a drift term
of γ t . This in particular implies the following:

Proposition 3.4 With � probability one, z is a γ -thick point of h by the
definition in [83]. That is,

lim inf
ε→0

hε(z)/log ε−1 ≥ γ.

In fact, the limit exists and equality holds almost surely.

Since the � marginal law of h is absolutely continuous with respect to
the law of h (with Radon-Nikodym derivative μh(D)), this implies that μh is
almost surely supported on γ -thick points. It was shown by Hu, Miller, and

Peres that the set of γ -thick points has Hausdorff dimension 2 − γ 2

2 almost
surely [83].

Proof of Proposition 1.2 The almost sure weak convergence of the μn to a
limit μ̃ is immediate from the martingale convergence theorem. Recall the
expression (1)

μn = exp

(

γ hn(z) − γ 2

2
Varhn(z) + γ 2

2
logC(z;D)

)

dz,

and observe that for each z, the exponential term

exp

(

γ hn(z) − γ 2

2
Varhn(z) + γ 2

2
logC(z;D)

)

is a non-negative martingale with respect to the filtration of hn. (This is a
consequence of (13).) Fubini’s theorem implies that μn(A) is a martingale
for any Borel measurable set A ⊂ D, and the martingale convergence theorem
implies that the limit μ̃(A) := limμn(A) exists almost surely. In particular,
this holds whenever A is a diadic square contained in D and from this easily
follows the desired weak convergence.

We still need to show that μ = μ̃ almost surely, where μ is as constructed
in Proposition 1.1. It is enough to show that μ(S) = μ̃(S) almost surely for
each diadic square S compactly supported on D, and since both μ and μ̃

are functions of h, this is equivalent to showing that E[μ(S)|h] = E[μ̃(S)|h].
This in turn follows if we can show E[μ(S)|hn] = E[μ̃(S)|hn] for all n; the
latter expectation is just μn(S) by definition, so it remains only to show

E[μ(S)|hn] = μn(S). (26)

To this end, let hn
ε denote the mean value of hn on ∂Bε(z). For each par-

ticular choice of z, and ε small enough so that Bε(z) ⊂ D, and for each n,
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we recall from (14) that hε(z) is a Gaussian random variable with variance
logC(z;D) − log ε and that hn

ε(z) is the conditional expectation of hε(z)

given the projection of h to the span of f1, f2, . . . , fn. Hence

E[εγ 2/2eγhε(z)|hn] = exp

(

γ hn
ε(z) − γ 2

2
Varhn

ε(z) + γ 2

2
logC(z;D)

)

.

Taking the limit as ε → 0 and using the continuity of hn(z) and Varhn(z) and
the expression (1), we have

lim
ε→0

E[με(S)|hn] = μn(S) (27)

for each diadic square S. Using (27) we will have established (26) once we
show that

E[μ(S)|hn] := E[ lim
ε→0

με(S)|hn] = lim
ε→0

E[με(S)|hn], (28)

provided that 0 ≤ γ < 2.
We first argue this in the case n = 0 and h0 = 0, that is

E[μ(S)] := E[ lim
ε→0

με(S)] = lim
ε→0

E[με(S)]. (29)

Since Proposition 1.1 implies the existence of the limit of με(S), it is enough
to show that the random variables Mε = με(S) are uniformly integrable as
ε → 0. Let M = EMε for ε small enough so that Bε(S) ⊂ D. (By (15)
this expectation is the same for all sufficiently small ε.) The uniform inte-
grability is equivalent to the statement that the probability measures ηε :=
M−1MεdMε are tight, i.e., for all δ there exists a constant C > 0 such that
ηε([C,∞)) < δ for all ε. (Here M−1MεdMε denotes the probability measure
on R whose Radon-Nikodym derivative with respect to the law of Mε is given
by M−1Mε .) Since Mε is a function of h, this is equivalent to the statement
that with respect to the measure M−1Mε(h)dh the random variables Mε(h)

are tight. Recalling that Mε is (up to a constant factor) the Radon-Nikodym
derivative of the h marginal of �S

ε with respect to dh, this in turn can be
rewritten as the statement that for each δ we can find a C such that

�S
ε {Mε(h) > C} < δ (30)

for all ε.
Throughout the remainder of the proof of (29), all probabilities and expec-

tations will be taken with respect to �S
ε . Let ε0 = sup{ε′ : Bε′(S) ⊂ D}. It

suffices to prove the above statement, that for each δ we can find a C such
that (30) holds, for small S—precisely, for avoiding boundary effects, we may
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restrict attention to S such that ε0 is larger than the diameter of S, in which
case S ⊂ Bε0(z) for any z ∈ S.

In order to obtain (30), we will describe a procedure for sampling from �S
ε

in multiple stages. We will then show that (30) holds when Mε(h) is replaced
by its conditional expectation given the observations from the first two stages,
and the statement we require will follow easily from this.

Precisely, we may sample the pair (z, h) from �S
ε in the following steps.

In the first step, we sample z from its marginal law (which is independent of
ε for ε sufficiently small). Write h̃ = h − γ ξz

ε . Given z, the �S
ε law of h̃ is

that of a GFF on D. In the second step, we sample Bt = h̃e−t ε0(z)− h̃ε0(z) for
all t ∈ [0,− log(ε/ε0)]. By Proposition 3.3, Bt is a Brownian motion on this
interval independent of z. In the third and final step, we choose h conditioned
on the results of the first two steps.

The �S
ε conditional expectation of h̃ given the whole process Bt (which

we have defined only for t ∈ [0,− log(ε/ε0)]) and z is given by the function
(viewed as a distribution)

h̃�(w) := E[h̃(w)|z, Bt ] =
{

Bu(w), (|z − w| < ε0),

0, (|z − w| ≥ ε0),

where

u(w) := − log
|z − w| ∨ ε

ε0
.

(We will discuss similar conditional expectations in detail in Sect. 4.1.) Note
that once z is fixed, for each w the mean value of h̃�(·) on ∂Bε(w) (which
we denote by h̃�

ε(w)) is a weighted average of Bt over values of t between
u1(w) := − log(ε1(w)/ε0) and u2(w) := − log(ε2(w)/ε0), where

ε1(w) := ε0 ∧ (|w − z| + ε), ε2(w) := (|w − z| − ε) ∨ ε,

with, for |z − w| ≤ ε0, ε1(w) ≥ ε2(w), hence u1(w) ≤ u2(w). From this it is
not hard to see that given z the variance of h̃�

ε(w) is between the two values
{u1(w),u2(w)} of t . We claim that each of these bounds differs from the
intermediate value u(w) above, with u1(w) ≤ u(w) ≤ u2(w), by at most an
additive constant log 2. This is equivalent to the statement that ε1(w) and
ε2(w) differ from |z − w| ∨ ε by a multiplicative or inverse factor of at most
two, which is easily checked under the further mild assumption that 2ε ≤ ε0.
Thus the variance of h̃�

ε(w) is within log 2 of the value

u(w) = − log
|z − w|

ε0
∧ − log

ε

ε0
.
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Since E[h̃ε(w)|h̃�
ε(w)] = h̃�

ε(w), we have

Var(h̃ε(w)) = E Var
(
h̃ε(w)|h̃�

ε(w)
) + Var(h̃�

ε(w)). (31)

Since h̃ε(w) and h̃�
ε(w) (both linear functionals of h) are jointly Gaussian,

the quantity Var(h̃ε(w)|h̃�
ε(w)) is in fact independent of h̃�

ε(w). Since (as ob-
served above) |Var(h̃�

ε(w)) − u(w)| < log 2, we conclude that

∣
∣Var(h̃ε(w)|h̃�

ε(w)) − Var(h̃ε(w)) + u(w)
∣
∣ < log 2,

almost surely.
Thus, with respect to �S

ε , we have

E[εγ 2/2eγhε(w)|z, Bt ] � exp
(
γ h̃�

ε(w) + γ 2ξz
ε (w) − γ 2u(w)/2

)

� exp
(
γ h̃�

ε(w) + γ 2u(w)/2
)

,

where we recall that, thanks to (25), ξz
ε (w) = u(w) − log ε0 − G̃z(w), and

where � indicates equality up to a multiplicative factor bounded between
positive constants uniformly in ε and z.

Now, given any positive constants a and b, there is a positive probability
that a Brownian motion Bt run for an infinite amount of time will satisfy
γ Bt < a + bt for all t ≥ 0. In fact, for each fixed b, this probability can be
made as close to one as possible by taking a sufficiently large. Since 0 ≤
γ < 2 we can choose a value of b with 0 < b < 2 − γ 2/2. Then note that
conditioned on the event A : γ Bt < a + bt for all t , and since the mean value
h̃�

ε(w) is a weighted average of Bt over values of t ∈ [u1(w),u2(w)], we have
γ h̃�

ε(w) < a + b u2(w) ≤ a + b log 2 + b u(w). We therefore have, for some
constant C0

E[εγ 2/2eγhε(w)|z, Bt , A] ≤ C0 ea exp
[
(b + γ 2/2)u(w)

]

≤ C0 ea |z − w|−b−γ 2/2

for |z − w| < ε0. Since S ⊂ Bε0(z) for z ∈ S, this in turn implies that

E[με(S)|z, Bt , A] ≤
∫

Bε0 (z)

C0 ea |z − w|−b−γ 2/2dw,

and since b + γ 2/2 < 2, the right hand side is at most a finite constant C1 =
C1(a) that is independent of ε. Now, given b and a constant δ > 0 we can
choose a large enough so that the probability of the event A (that γ Bt <
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a + bt for all t) is at least 1 − δ/2. Then we take C = C1(a)
δ/2 . If there were

probability at least δ that με(S) > C then there would have to be probability
at least δ/2 that event A and με(S) > C simultaneously happen, which would
contradict our bound on the conditional expectation of με(S) given A. This
implies that the probability measures ηε are tight, which in turn completes the
proof of (29), which is the n = 0 and h0 = 0 case of (28).

As a tool, we used heavily within the proof of (29) the probability measure
�S

ε on (z, h) pairs. Extending (28) to the case n �= 0 does not require this
tool; in the discussion below we will use only the original dzdh measure.
Note that since the random variables με(S) converge dzdh almost surely to a
limit (with expectation limε→0 Eμε(S)), it must be the case that conditioned
on hn (for almost all values of hn), we still have that με(S) converges dzdh

almost surely to a limit. The fact that

E[ lim
ε→0

με(S)|hn] ≤ lim
ε→0

E[με(S)|hn] (32)

for almost all hn is immediate from Fatou’s lemma. From the unconditional
result, we know that equality holds when we integrate over possible values
of hn—hence equality must hold in (32) for almost all hn. The extension
of (28) to non-zero h0 is trivial for functions that are piecewise constant on
diadic squares, and the more general case follows easily by approximation by
piecewise constant functions.

Proposition 1.2 is an immediate consequence of (27) and (28). �

4 KPZ proofs

4.1 Circle average KPZ

For fixed z ∈ D, choose some radius ε0 such that Bε0(z) ⊂ D. As a first step,
we estimate the expectation of the quantum measure μh(Bε(z)), given the
difference of circle averages hε(z)−hε0(z) for ε ≤ ε0. Recalling the notation
of Proposition 1.2, we take h0 = 0, n = 1, and

f1 = (
ξz
ε − ξz

ε0

)
/‖ξz

ε − ξz
ε0

‖∇ . (33)

Recall from (12) that the square Dirichlet norm of function ξz
ε (11) is such that

‖ξz
ε ‖2∇ = (ξz

ε , ξ z
ε )∇ = ξz

ε (z), and from Proposition 3.2 that (ξz
ε , ξ z

ε0
)∇ = ξz

ε0
(z).

One thus finds ‖ξz
ε − ξz

ε0
‖2∇ = − log(ε/ε0) and

(
ξz
ε − ξz

ε0

)
(y) =

⎧
⎪⎨

⎪⎩

− log(ε/ε0), 0 ≤ |y − z| ≤ ε,

− log(|y − z|/ε0), ε ≤ |y − z| ≤ ε0,

0, ε0 ≤ |y − z|.
(34)
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The projection h1 of h onto the span of f1 and its variance are then

h1(y) = [
hε(z) − hε0(z)

](ξz
ε − ξz

ε0
)(y)

− log(ε/ε0)
, (35)

Var h1(y) = (ξz
ε − ξz

ε0
)2(y)

− log(ε/ε0)
, (36)

where we recall that Var [hε(z) − hε0(z)] = − log(ε/ε0).
Recalling the notation of Proposition 1.1, the conditional expectation for-

mula (2) for μ in Proposition 1.2 gives

Eh

[∫

Bε(z)

eγ hdz|hε(z) − hε0(z)

]

= Eh

[
μh(Bε(z))|hε(z) − hε0(z)

] = μ1 (Bε(z)) , (37)

where μ1 is the projected measure (1)

μ1(dy) = exp

(

γ h1(y) − γ 2

2
Var h1(y) + γ 2

2
logC(y;D)

)

dy. (38)

Note that by (34), h1(y) does not depend on y for y ∈ Bε(z)

h1(y) = hε(z) − hε0(z), y ∈ Bε(z),

Var h1(y) = − log(ε/ε0).

We therefore have

μ1(dy) = μ0(dy)

(
ε

ε0

)γ 2/2

exp
[
hε(z) − hε0(z)

]
, y ∈ Bε(z), (39)

μ0(dy) := [
C(y;D)

]γ 2/2
dy. (40)

Define the (γ -dependent) average Cε(z;D) of the conformal radius over the
ball Bε(z) via the average moment

[
Cε(z;D)

]γ 2/2 := μ0(Bε(z))

μ0(Bε(z))
= 1

πε2

∫

Bε(z)

[
C(y;D)

]γ 2/2
dy, (41)

so that for ε → 0

lim
ε→0

Cε(z;D) = C(z;D).
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We then have the simple expression

μ1(Bε(z)
) = πεγQ

(
Cε(z;D)

ε0

)γ 2/2

exp
[
hε(z) − hε0(z)

]
, (42)

where, as above, Q = 2/γ + γ /2.
As an alternative, one may wish to estimate the expectation of the quantum

measure μh(Bε(z)), given only the circle average hε(z). In the notation of
Proposition 1.2, we take in that case h0 = 0, n = 1, and f̃1 = ξz

ε /‖ξz
ε ‖∇ , with

the square Dirichlet norm ‖ξz
ε ‖2∇ = (ξz

ε , ξ z
ε )∇ = ξz

ε (z). The projection h̃1 of h

onto the span of f1 and its variance are then

h̃1(y) = hε(z)
ξz
ε (y)

ξz
ε (z)

, (43)

Var h̃1(y) = Var hε(z)

(
ξz
ε (y)

ξz
ε (z)

)2

= (ξz
ε (y))2

ξz
ε (z)

, (44)

where we recall that Var hε(z) = ξz
ε (z) = − log(ε/C(z;D)).

The conditional expectation formula (2) for μ in Proposition 1.2 gives in
this case

Eh

[∫

Bε(z)

eγ hdz|hε(z)

]

= Eh [μh(Bε(z))|hε(z)] = μ̃1 (Bε(z)) , (45)

where μ̃1 is the projected measure (1)

μ̃1(dy) = exp

(

γ h̃1(y) − γ 2

2
Var h̃1(y) + γ 2

2
logC(y;D)

)

dy. (46)

Note that when y ∈ Bε(z), ξz
ε (y) = − log ε − G̃z(y), so that the difference

ξz
ε (z) − ξz

ε (y) = logC(z;D) + G̃z(y) is harmonic in y and its modulus is
equivalent to ε|G̃′

z(z)| for ε small, where G̃′
z(z) is the derivative at z of

the harmonic extension G̃z. It follows that in ball Bε(z), ξz
ε (y)/ξz

ε (z) =
1 + O(ε/ log ε). Lastly, the function C(y;D) is real analytic. Hence from
(43), (44) and (46) above, it follows from (45) that for ε → 0

E [μ(Bε(z))|hε(z)] = μ̃1 (Bε(z)) � μ� (Bε(z)) , (47)

where μ� is defined as

μ�
(
Bε(z)

) := πεγQeγhε(z), Q = 2/γ + γ /2, (48)

in the sense that the ratio of the two quantities tends to 1 as ε → 0. Note
that μ� is not a measure, but simply a quantity defined on balls of the form
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Bε(z). Notice then that the first conditional measure μ1(Bε(z)) (42) can also
be written as

μ1(Bε(z)
) = πε2

0 Cε(z;D)γ
2/2 μ�(Bε(z))

μ�(Bε0(z))
. (49)

For any ε ≤ ε0 define then

t := − log(ε/ε0), (50)

Vt := hε(z) − hε0(z). (51)

The law of Vt is that of a Brownian motion with V0 = 0 (by Proposition 3.3).
We can then rewrite (42) as

μ1(Bε(z)
) = πε2

0 Cε(z;D)γ
2/2eγVt−γQt . (52)

Similarly, we can rewrite (48) identically as

μ�
(
Bε(z)

) = μ�
(
Bε0(z)

)
eγVt−γQt , (53)

in accordance with (49). In the expression (52) for the measure μ1, the first
non constant factor is the same as (41), which is a slowly varying, deter-
ministic function of z (and of ε), whereas in the expression (53) for μ�, the
first factor is the quantity μ�(Bε0(z)), which is the exponential of a centered
Gaussian variable, hε0(z), whose variance, − log(ε0/C(z;D)), varies slowly
with z. In both expressions, the latter factor is the exponential of a simple
Brownian motion with drift, and is independent of z.

Definition 4.1 Let B̃δ(z) be the largest Euclidean ball in D centered at z for
which eγVt−γQt is equal to δ. The radius of this ball is e−TA where

TA := inf{t : −Vt + Qt = A},
and A := −(log δ)/γ .

As a step towards Theorem 1.5 we prove the following in this section,
which is perhaps the most straightforward form of KPZ to prove:

Theorem 4.2 Theorem 1.5 holds with Bδ(z) replaced with B̃δ(z). That is, in
the setting of Theorem 1.5, if

lim
ε→0

log Eμ0{z : Bε(z) ∈ X }
log ε2

= x,
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then it follows that, when X and μ are chosen independently, we have

lim
δ→0

log Eμ{z : B̃δ(z) ∈ X }
log δ

= �,

where � is the non-negative solution to

x = γ 2

4
�2 +

(

1 − γ 2

4

)

�.

We present two proofs: the first based on exponential martingales, the sec-
ond based on large deviations theory and Schilder’s theorem. (The first proof
is shorter, but readers familiar with large deviations of Brownian motion will
recognize that it is essentially the second proof in the disguise.)

Both proofs use the fact that

Eh μ{z : B̃δ(z) ∈ X }
is proportional to

�{(z, h) : B̃δ(z) ∈ X },
to replace an expectation computation with a probability computation. (Re-
call the definition of � from Sect. 3.3.) While this rephrasing is not strictly
necessary for the expectation computation below, it is conceptually quite nat-
ural.

We use the definitions (50) and (51) of Vt given above, and assume that the
fixed ε0 is smaller than the distance from D̃ (recall that this was the compact
subset of D in Theorem 1.5) to ∂D.

As mentioned in Sect. 3.3, the � conditional law of h given z ∈ D is that
of the original GFF plus the deterministic function −γ log |z − y| − γ G̃z(y).
The � conditional law of the circular average hε(z) is then that of the original
GFF circular average plus −γ log ε + γ logC(z;D). Thus (for z restricted to
points of distance at least ε0 from ∂D) the � conditional law of (51) Vt =
hε0e

−t (z)−hε0(z) given z is that of Bt + γ t , with t = − log(ε/ε0), and where
Bt evolves as a standard Brownian motion—in particular, z is independent of
the process Vt .

Proof The � law of TA is that of

inf{t : Bt + at = A = −(log δ)/γ }, a := Q − γ = 2

γ
− γ

2
> 0, (54)

where (±)Bt is standard Brownian motion with B0 = 0. Let qA be the �

probability that the ball of radius e−TA centered at z is in X . Since z is in-
dependent of TA, the theorem hypothesis implies that conditioned on TA, the
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probability that the ball of radius e−TA centered at z is in X is approximately
exp (−2xTA), in the sense that the ratio of the logs of these two quantities
tends to 1 as TA → ∞. Computing the expectation

E
[
exp (−2xTA)

]
, (55)

with respect to a random TA will give us upper and lower bounds on qA since
it easily follows that

E
[
exp (−2x1TA)

] ≤ qA ≤ E
[
exp (−2x2TA)

]
, (56)

for any fixed 0 < x2 < x < x1 and sufficiently large A.
To compute (55), consider for any β the exponential martingale exp(βBt −

β2t/2). Since a > 0, the stopping time TA is finite a.s. Since Bt + at ≤ A for
t ∈ [0, TA], the argument of the exponential, βBt −β2t/2, stays bounded from
above, for β ≥ 0, by βA − (βa + β2/2)t ≤ βA, hence by a fixed constant.
One can thus apply the exponential martingale at the stopping time TA < ∞

E

[
exp(βBTA

− β2TA/2)
]

= 1.

By definition BTA
= A − aTA. Thus,

E exp[−(βa + β2/2)TA] = exp(−βA).

Setting 2x := βa + β2/2, we obtain

E exp(−2xTA) = exp(−βA) = δβ/γ . (57)

Now if we set � = β/γ , and a = Q − γ = 2
γ

− γ
2 , we find that the equa-

tion 2x := βa + β2/2, with β ≥ 0, is equivalent to the KPZ formula. The
continuity of this expression and (56) together yield the theorem. �

We remark that the above yields the explicit probability distribution PA(t).
The inverse Laplace transform PA(t) of fA(x) := E exp(−2xTA), with
respect to 2x, is the probability density such that PA(t)dt := Prob(TA ∈
[t, t + dt]). Its explicit expression is [32]

PA(t) = (2π)−1/2At−3/2 exp

[

−(1/2)
(
At−1/2 − at1/2

)2
]

, (58)

where as above we have A = −(log δ)/γ , t = − log(ε/ε0) and a = Q − γ .
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4.2 Large deviations proof of circle average KPZ

In this section, we present an alternative proof of Theorem 4.2, using
Schilder’s theorem.

Lemma 4.3 Fix a constant a > 0. Let Bt be a standard Brownian motion.
For each A > 0, write

TA = inf{t : Bt + at = A}. (59)

Then the family of random variables A−1TA satisfies a large deviations prin-
ciple with speed A and rate function

I (η) = η

2

(
1

η
− a

)2

= η−1

2
− a + a2 η

2
.

Proof Schilder’s Theorem (see Theorem 5.3.2 of [66]) gives an LDP for the
sample path of α−1Bt (where Bt is standard Brownian motion) with speed α2

and rate function given by the Dirichlet energy. The variable A−1TA can be
written as inf{t : Wt + at = 1} where Wt = BAt/A, which has the same law
as

√
A−1Bt . Clearly, among all functions φ ∈ H1([0,∞)) satisfying φ(0) = 0

and inf{t : φ(t)+ at = 1} ≤ η, the one with minimal Dirichlet energy is given
by

φ(t) =
{

( 1
η

− a)t, t < η,

( 1
η

− a)η, t ≥ η.

By the contraction principle (Theorem 4.2.1 of [66]), the rate function de-
sired in Lemma 4.3 is given by this minimal Dirichlet energy, i.e., I (η) =
η( 1

η
− a)2/2. �

Lemma 4.4 Consider the following two part experiment. First choose TA as
above. Then toss a coin that comes up heads with probability

e−2xTA.

Then the probability that the coin comes up heads decays exponentially in A

at rate β where β and x are related by

β = inf
η

{I (η) + 2xη} , (60)

or equivalently by

4x = β2 + 2aβ. (61)
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Proof The exponential decay with the exponent given in (60) is an immediate
consequence of Varadhan’s integral lemma (Theorem 4.3.1 of [66]). To derive
(61) from (60), we set the derivative of I (η)+2xη to zero and find −η−2/2+
a2/2 + 2x = 0. Hence the minimum is achieved at

η0 = (a2 + 4x)−1/2. (62)

We then compute β = I (η0) + 2xη0 to be

(a2 + 4x)1/2/2 − a + a2(a2 + 4x)−1/2/2 + 2x(a2 + 4x)−1/2.

Simplifying, we have β = (a2 + 4x)1/2 − a, which is equivalent to (61). �

Proof of Theorem 4.2 As above, we aim to show that P {B̃δ(z) ∈ X } scales
as e−βA = δβ/γ = δ� where � = β/γ , where δ and ε are related via the
stopping time TA (54). Rescaling TA by A−1 as in (59) puts us in the frame-
work of large deviations Lemma 4.3. As above, to describe the probability
P {B̃δ(z) ∈ X } we can imagine that we first choose the radius ε of B̃δ(z) and
then toss a coin that comes up heads with probability ε2x to decide whether
the ball is in X . This puts us in the framework of the second large deviations
Lemma 4.4. Using (61), we have

4x = β2 + 2aβ = (γ�)2 + 2aγ�,

where a = Q − γ . Plugging in this value of a and simplifying, we obtain the
KPZ relation

x = 1

4

(
γ 2�2 + 2γ (Q − γ )�

)
= γ 2

4
�2 +

(

1 − γ 2

4

)

�.

As in the previous proof, if the probability given ε is not exactly ε2x , but
the ratio of the log of this probability to the log of ε2x tends to 1 as ε → 0,
we obtain the same theorem by using alternate values of x to give upper and
lower bounds. �

The optimum η0 = (a2 + 4x)−1/2 obtained in (62) has a natural inter-
pretation—it suggests that (in the large deviations sense described above)
TA/A is concentrated near η0.

Equivalently, since

� = β

γ
= (a2 + 4x)1/2 − a

γ
,

we can say that A/TA is concentrated near γ� + a = γ� + Q − γ , which
implies that log δ

log ε
is concentrated near γ (γ� + Q − γ ). Note that the same
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Fig. 4 The balls B1(0),
B1/2(0), B1/4(±1/4), and
B± := B1/8(±1/4)

result can also be obtained directly from the explicit probability density (58).
This is the concentration one obtains at an α-thick point of the GFF h, where

α = γ − γ�. (63)

Very informally, this suggests that the quantum support of a quantum fractal
of dimension � is made up of α-thick points of h. This generalizes the idea
of Proposition 3.4, which concerns the case � = 0.

4.3 Tail estimates for quantum measure

Lemma 4.5 Let D = D = B1(0) be the unit disc and fix γ ∈ [0,2) and
take μ = eγh(z)dz as defined previously. Then the random variable A =
logμ(B1/2(0)) satisfies pA(η) := P[A < η] < e−Cη2

for some fixed constant
C > 0 and all sufficiently negative values of η.

Proof Let h′ be the projection of h onto the space of functions in H(D) that
are harmonic inside the two discs B1/4(1/4) and B1/4(−1/4). (See Fig. 4.)
Recall that the orthogonal complement of this space is the space of func-
tions supported on these discs, or more precisely, the space H [B1/4(1/4) ∪
B1/4(−1/4)]. Hence, the law of h − h′ is that of a sum of independent
Gaussian free fields on B1/4(1/4) and B1/4(−1/4) with zero boundary con-
ditions (see, e.g., [132]).

Let h be the infimum of h′ over the union of the two smaller discs
B− := B1/8(−1/4) and B+ := B1/8(1/4). Write A− = logμh−h′(B−) and
A+ = logμh−h′(B+). By Proposition 2.1 the law of each of A+ and A− is
the same as the law of A+ γQ log(1/4) = A− γQ log 4; clearly A+ and A−
are independent of one another. Also, μh(B+) ≥ eγhμh−h′(B+) (and simi-
larly for B−), which implies

A ≥ max{A−,A+} + γ h. (64)
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First we will show that the probability distribution of h has superexponen-
tial decay. Since h′ is harmonic on B+ (with h′(1/4) = h′

1/8(1/4)) this h′ is
the real part of an analytic function on B+. In particular, h′ restricted to B+
can be expanded as h′(1/4) + ∑∞

n=1 Re [an4n(z − 1/4)n] for some complex
an. Since each of the random variables Rean and Iman is a real-valued linear
functional of h′, it is a Gaussian random variable. The variance of the latter
can be estimated as follows.

Under the conformal map ϕ such that ϕ(1/4) = 0 and ϕ(B1/4(1/4)) =
B1(0), the original domain D is mapped onto a new domain D = ϕ(D). Let
us define on C the set of real functions

φn(z) := Re [�n(z)], ψn(z) := Im [�n(z)], (65)

�n(z) :=
{

z̄n/(πn)1/2 (|z| ≤ 1),

z−n/(πn)1/2 (|z| ≥ 1).
(66)

The functions Re zn and Im zn have on D the Dirichlet energy

∫

D

n2|zn−1|2dz = n2
∫ 1

0
r2n−22πrdr = πn, (67)

so that the set {φn,ψn} obeys the orthogonality relations in D

(φm,φn)
D∇ = (ψm,ψn)

D∇ = δm,n; (φm,ψn)
D∇ = 0.

From the conformal invariance of the Dirichlet inner product, and from the
expansion

h′(z) = h′(0) +
∞∑

n=1

Rean φn(z) + Iman ψn(z)

we obtain the explicit form of the coefficients an

Rean = (h′, φn)
D∇ , Iman = (h′,ψn)

D∇ ,

where after the conformal map ϕ, h′ is now understood as the projection on
Harm D of the GFF h with zero boundary conditions on ∂D. This can be
rewritten in the complex form

an = (h′,�n)
D∇ = (h,�n)

D∇,

where use was made of the orthogonality of h−h′ and �n. By inversion with
respect to the unit circle ∂D, this is also (h,�n)

C\D

∇ , so that

an = 1

2
(h,�n)

C∇ ,
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where now the Dirichlet inner product extends to the whole plane. Since h

vanishes outside of D, we can also write

(h,�n)
C∇ = (h, �̃n)

D∇

where �̃n := �n − �H
n , �H

n being the harmonic extension to D of �n re-
stricted to ∂D. Specifying this separately for the real and imaginary parts of
an and �n, we have

Rean = 1

2
(h, φ̃n)

D∇ , Iman = 1

2
(h, ψ̃n)

D∇ ,

where φ̃n := φn −φH
n , with a similar definition for the imaginary component.

Since φ̃n is in H(D), we have

Var Rean = 1

4
Var(h, φ̃n)

D∇ = 1

4
(φ̃n, φ̃n)

D∇ ,

together with an entirely similar expression for Var Iman. We now wish to
argue that

(‖φ̃n‖D∇ )2 ≤ (‖φ̃n‖C∇)2 ≤ (‖φn‖C∇)2 = 2

πn
.

The first inequality is obvious, while the second one is a consequence of the
orthogonal decomposition φn = φ̃n + φH

n on C. We thus conclude that the
variances Var Rean and Var Iman are at most 1/(2πn).

In particular, the variance of |an|rn, for any fixed r < 1, will decay ex-
ponentially in n. Thus, the probability that even one of the an satisfies
|an|rn > c, where c is a fixed constant, decays quadratic-exponentially in c.
It follows that the probability distribution function p of h satisfies p(η) :=
P(h < η) < e−Cη2

for some C > 0 and all sufficiently negative η.
Now, let P1(η) be the probability that h < .1η/γ and A < η. Let P2(η)

be the probability that A < η and h ≥ .1η/γ . Then pA(η) = P[A < η] =
P1 + P2. From the above discussion, we have P1(η) ≤ e−Cη2

for all suffi-
ciently negative values of η. Note from (64) that

P2(η) ≤ [
pA(.9η + γQ log 4)

]2

and

P2(η) ≤ [
P1(.9η + γQ log 4) + P2(.9η + γQ log 4)

]2

≤ [
e−C′η2 + P2(.9η + γQ log 4)

]2
,
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for some C′. Fix a sufficiently negative η0 and inductively determine ηk via
ηk−1 = .9ηk + γQ log 4. The above can be stated as

P2(ηk) ≤
(
e−C′η2

k + P2(ηk−1)
)2

.

If we write pk = P2(ηk)

e
−2C′η2

k

, then this can be restated as pk ≤ (1 +
pk−1e

−C′(2η2
k−1−η2

k))2. It is easy to see that we can have pk > 2 for only
finitely many k, which implies that the lemma holds for C < min{C̄,2C′},
when restricted to the sequence ηk . Because of the monotonicity of pA(η),
this implies the lemma for all η. �

Lemma 4.6 Fix z and ε so that Bε(z) ⊂ D. Then

E[μ(Bε(z))|hε(z)] � πεγQeγhε(z) = μ�(Bε(z)),

where

Q = 2

γ
+ γ

2
,

as in Proposition 2.1. Moreover, conditioned on hε′(z), for all ε′ ≥ ε, we have
that

P

[
μ(Bε(z))

μ�(Bε(z))
< eη

]

≤ C1e
−C2η

2
, (68)

for some positive constants C1 and C2 independent of η ≤ 0, z, D, and the
values hε′(z) for ε′ ≥ ε.

Proof The first sentence is a restatement of (47) and (48). It remains to prove
the second half. For a fixed ε, we want to show that the probability that

A := log
μ(Bε(z))

πεγQeγhε(z)
≤ η, η ≤ 0,

decays quadratic-exponentially in η. Let A be the infimum of γ (h̃(·)−hε(z))

on Bε/2(z), where h̃ is h projected onto HarmBε(z). With these definitions,
one easily sees that

A′ ≤ A − A,

where A′ := log[μ
h−h̃

(Bε/2(z))/πεγQ]. In this proof, we let P
′ denote prob-

ability conditioned on z and on the map χ : [ε, εz
0] → R : χ(ε′) := hε′(z).

One may use the techniques in the proof of Lemma 4.5 to show that
P

′[A < η] (which is a priori a function of χ ) decays quadratic-exponentially
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in η, uniformly in χ (and hence in hε(z)). Then we have by the above con-
struction P

′[A−A < η] ≤ P[A′ < η], so that Lemma 4.5 applied to pA′(η) =
P[A′ < η] implies that P

′[A − A < η] decays quadratic-exponentially in η,
also uniformly in χ . We conclude that the probability that either A < η/2 or
A − A < η/2 decays quadratic-exponentially in η, and the claim follows. �

Roughly speaking, the above lemma says that the total quantum area in
a ball is unlikely to be a lot smaller than the area we would predict given
the average value of h on the boundary of that ball; the following says that
(even when we use the � measure), the total quantum area has some constant
probability to be (at least a little bit) smaller than this prediction.

Lemma 4.7 Let z and h be chosen from �D̃ (as defined in Sect. 3.3) for a
fixed compact subset D̃ of D, and fix a δ > 0, with quantum balls Bδ(z) and
B̃δ(z) defined as in Definitions 1.3 and 4.1. (Definition 4.1 implicitly makes
use of a constant ε0, which we take here to be sup{ε′ : Bε′(D̃) ⊂ D}.)

Conditioned on the radius of B̃δ(z), the conditional probability that
B̃δ(z) ⊂ Bδ(z) is bounded below by a positive constant c independent of D,
D̃, and δ.

Proof Define ε to be the radius of B̃δ(z). Let P
′ be �D̃ probability condi-

tioned on z and on the map χ : [ε, ε0] → R : χ(ε′) := hε′(z). As before we
assume ε is less than the distance ε0 from D̃ to ∂D. It now suffices for us to
show that

P
′ (B̃δ(z) ⊂ Bδ(z)

)
= P

′ (μ(B̃δ(z)) < δ
)

is bounded below independently of χ and z.
Consider now the map χ : (0, ε0] → R given by χ(ε′) = hε′(z) for all

ε′ ∈ (0, ε0]. Let hχ denote the conditional expectation of h (in the standard
GFF probability measure) given χ . Clearly hχ(y) is a.s. radially symmetric,
with center z, and equals zero for ε0 < |y −z|. It corresponds to the projection
of h onto the space of functions with these properties. (We similarly define
hχ , so that hχ is constant in Bε(z) and coincides with hχ outside.) Note that,
given z, the �D̃ law of hχ is that of h̃χ (where h̃ is a standard GFF) plus a
deterministic function with the same properties: the function

ζ(y) := γ [ξz
0 (y) − ξz

ε0
(y)] =

{
−γ log |y−z|

ε0
, y ∈ Bε0(z),

0, otherwise.

Although hχ is a projection onto an infinite dimensional space, it is not hard
to see (e.g., by approximating with finite dimensional spaces) that the obvious
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analog of (2) in Proposition 1.2 still holds, i.e., taking expectation with respect
to �D̃ we have

E[μ(A)|χ ] = μχ(A),

where

μχ := exp

(

γ hχ(y) + γ 2

2
log

|y − z|
ε0

+ γ 2

2
logC(y;D)

)

dy,

for |y − z| ≤ ε0, and in this range we have for some C0 ≥ 1 (depending on D̃

and D) that

C−1
0 μ

χ

0 ≤ μχ ≤ C0 μ
χ

0 , (69)

where

μ
χ
0 := exp

(

γ hχ(y) + γ 2

2
log

|y − z|
ε0

)

dy. (70)

The fact that μχ and hence μ
χ

0 is almost surely finite follows from the fact

that it is a conditional expectation of μ = μh with respect to �D̃ , and μ

is �D̃ almost surely finite. It can also be seen directly from (70), using the
same argument as in the proof of Proposition 1.2: note first that (70) becomes
integrable for γ ∈ [0,2) if hχ(y) is replaced with its expectation ζ(y), and
second that |hχ(y) − ζ(y)| a.s. does not grow too quickly as y → z.

Note that h
χ
ε (z) = h

χ
ε (z) = hχ(z) = hε(z) − hε0(z). From definition (48)

and from (53) and the definition (4.1) of B̃δ(z) = Bε(z), we have that

(
ε

ε0

)2

exp

(

γ hχ
ε (z) + γ 2

2
log

ε

ε0

)

= δ

and that

δ−1μ
χ̄
0 (B̃δ(z)) (71)

is a random variable independent of ε and χ . (It depends only on the Brown-
ian process given by B̃s := Bs+t − Bt defined for s ≥ 0, where Bs′ :=
h

χ

e−s′ (z) − γ s′ and t = − log(ε/ε0). Note that B̃s is a standard Brownian mo-
tion in s ≥ 0, independent of ε, z, and χ .)

It is not hard to see that this random variable is not bounded below by any
number greater than zero; thus there is an event—call it A—independent of
χ , and occurring with a probability P

′(A) bounded below by some c′ > 0, on
which (71) is less than a small number, say 1/100 (indeed, we may assume the
same holds with μχ replacing μ

χ
0 , because of (69)). Given this claim, it fol-

lows that on the event A, one has E[μ(B̃δ(z))|χ ] = μχ(B̃δ(z)) < δ/100, so
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that the conditional probability that μ(B̃δ(z)) < δ is at least .99. The lemma
follows using the constant c = .99c′. �

4.4 Proof of interior KPZ

In this section we derive Theorem 1.5 as a consequence of Lemmas 4.6, 4.7,
and the arguments in Theorem 4.2.

Proof of Theorem 1.5 We use the same notation as in Theorem 4.2, but we
write T A = − log(ε/ε0) where ε is the radius of Bδ(z). In this proof, we use
the probability measure �D̃ and E denotes expectation with respect to �D̃ .
The proof of Theorem 4.2 carries through exactly once we show that (when
h is chosen from �D̃)

lim
A→∞

log E[exp (−2xT A)]
log E[exp (−2xTA)] = 1, (72)

since this implies the analog of (57) with TA replaced by T A.
Note that the numerator of (68) is related to T A while the denominator is

related to TA; if the numerator and denominator were precisely equal for all
ε, we would have T A = TA.

For any a, 0 < a < 1, let εa be the value for which Bεa (z) = B̃δa
(z).

Then μ�(Bεa (z)) = δaμ�(Bε0(z)). This corresponds to a stopping time
TaA = − log(εa/ε0).

On the event T A < TaA, we have εa < ε so that μ(Bεa (z)) ≤ μ(Bε(z)) = δ.
It follows that

μ
(
Bεa (z)

)
/μ�

(
Bεa (z)

) ≤ δ1−a/μ�
(
Bε0(z)

)
.

Thanks to definition (48), the probability that μ�(Bε0(z)) ≤ δ(1−a)/2 decays
quadratic-exponentially in A = − log(δ/γ ) when δ → 0. On the event of
the contrary, μ�(Bε0(z)) > δ(1−a)/2, one then has μ(Bεa (z))/μ�(Bεa (z)) <

δ(1−a)/2, whose probability, by Lemma 4.6 applied for Bεa (z) and η =
−γA(1 − a)/2, also decays quadratic-exponentially in A. This implies that
the probability that T A < TaA decays superexponentially in A. This implies
that

lim
A→∞

log E[exp (−2xT A)]
log E[exp (−2xTaA)] ≤ 1.

Since this holds for all a < 1, it follows immediately from the continuity of
the coefficient of A in the exponent in (57) that

lim
A→∞

log E[exp (−2xT A)]
log E[exp (−2xTA)] ≤ 1.
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From Lemma 4.7, it follows that, conditioned on TA, the �D̃ probability that
T A < TA is at least c > 0, which implies

c E
[
exp (−2xTA)

] ≤ E
[
exp (−2xT A)

]

for any x ≥ 0, which in turn implies the equivalence of logarithms in (72). �

5 Box formulation of KPZ

In this section we prove Proposition 1.6.

Proof of Proposition 1.6 The first fact is standard; simply observe that if ε is
a power of 2 then Sε(X) ⊂ B2ε(X), hence μ0(Sε(X)) ≤ μ0(B2ε(X)), since
the ball of radius 2ε about a point contains any diadic box of width ε that
contains the same point. Similarly, B2ε(z) is contained in the union of a di-
adic box—of width 2ε, containing z—with the eight diadic boxes of the same
size whose boundaries touch its boundary. This implies that B2ε(X) is con-
tained in the union of S2ε(X) and corresponding 8 translations of S2ε(X), so
μ0(B2ε(X)) ≤ 9μ0(S2ε(X)).

For the second part, we first argue that X has quantum scaling exponent
� if and only if (4) holds. We use the notation in the proof Theorem 4.2
but set T̃A to be − log(ε̃/ε0), where ε̃ is the largest value of ε for which the
diadic box Sε(z) with edge length ε has μ area at most δ. The remainder of
the argument is essentially the same as the proof of Theorem 1.5. Just as (72)
was sufficient in that case, it is enough for us to verify that when h is chosen
from �D̃ and X is chosen independently, we have the following analog of
(72) (where T A is replaced by T̃A):

lim
A→∞

log E[exp (−2xT̃A)]
log E[exp (−2xTA)] = 1. (73)

The proof is essentially the same as the proof of (72), but we will sketch
the differences here. As in the proof of (72) one argues first that the proba-
bility that T̃A < TaA, with 0 < a < 1, decays superexponentially in A and by
continuity when a → 1 concludes that

lim
A→∞

log E[exp (−2xT̃A)]
log E[exp (−2xTA)] ≤ 1.

The only difference is that one has to first obtain a modified Lemma 4.6, in
which the μ(Bε(z)) in (68) is replaced with μ(Sε/2(z)); this straightforward
exercise is left to the reader. Then, using the same notation as in the proof of
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Theorem 1.5, one chooses εa so that Bεa (z) = B̃δa
(z). Then μ�(Bεa (z)) =

δaμ�(Bε0(z)). On the event T̃A < TaA, one has εa < ε̃, so that μ(Sεa/2(z)) ≤
μ(Sεa (z)) ≤ μ(Sε̃(z)) < δ, from which it follows that

μ
(
Sεa/2(z)

)
/μ�

(
Bεa (z)

) ≤ δ1−a/μ�
(
Bε0(z)

)
.

The discussion then continues identically, depending on whether
μ�(Bε0(z)) ≤ δ(1−a)/2 holds, the probability of which has superexponential
decay in A = −(log δ)/γ , or the contrary, which also has superexponential
decay by application of the modified Lemma 4.6 to the resulting inequality

μ
(
Sεa/2(z)

)
/μ�

(
Bεa (z)

) ≤ δ(1−a)/2.

Next, as in the proof of (72), one argues that P
′[T̃A < TA + logρ] ≥ c > 0,

for some fixed constant ρ ≥ 4, which implies

c ρ−2x
E

[
exp (−2xTA)

] ≤ E

[
exp (−2xT̃A)

]

for any x ≥ 0, which in turn implies (73). The difference here is that one
must first obtain a modified version of Lemma 4.7 in which the event
B̃δ(z) ⊂ Bδ(z) is replaced with the event that Sδ(z) = Sε̃(z) has a width
ε̃ larger than a fixed constant ρ−1 times the radius ε of B̃δ(z) = Bε(z),
which can be easily proven as follows. First, recall that by definition of ε̃,
μ(Sε̃(z)) < δ ≤ μ(S2ε̃(z)). We thus have

μ(Bε(z)) = δ ≤ μ(S2ε̃(z)) ≤ μ(B4ε̃(z)) ,

hence ε ≤ 4ε̃. From Lemma 4.7 there is a finite probability c that B̃δ(z) ⊂
Bδ(z), i.e., that ε ≤ ε, hence that ε ≤ 4ε̃, which proves the modified version
of Lemma 4.7 for ρ ≥ 4.

Next, we observe that the above arguments still work if we replace the
Sδ(z) in (4) with Ŝδ(z), defined to be the diadic parent of Sδ(z)—this only
changes T̃A by an additive constant. Thus (4) is equivalent to the analog of
(4) in which Sδ(z) is replaced with Ŝδ(z). Now define N̂ analogously to N

(counting Ŝδ(z) squares instead of Sδ(z) squares). We obtain the equivalence
of (4) and (5) by observing that

lim
δ→0

log E[μ(Sδ(X))]
log δ

≤ lim
δ→0

log E[δN(μ, δ,X)]
log δ

≤ lim
δ→0

log E[δN̂(μ, δ,X)]
log δ

≤ lim
δ→0

log E[μ(Ŝδ(X))]
log δ

.



Liouville quantum gravity and KPZ 379

The first and last inequalities are true because, by definition, μ(Sδ(z)) ≤ δ

and μ(Ŝδ(z)) ≥ δ. The middle inequality is true because N(μ, δ,X) ≤
4N̂(μ, δ,X). �

6 Boundary KPZ

6.1 Boundary semi-circle average

Most of the results in this paper about random measures on D have straight-
forward analogs about random measures on ∂D. The proofs are essentially
identical, but we will sketch the differences in the arguments here.

Suppose that D is a domain with piecewise linear boundary or a domain
with a smooth boundary containing a linear piece ∂D ⊂ ∂D and that h is an
instance of the GFF on D with free boundary conditions, normalized to have
mean zero.

This means that h = ∑
n αnfn where the αn are i.i.d. zero mean unit vari-

ance normal random variables and the fn are an orthonormal basis, with re-
spect to the inner product

(f1, f2)∇ := (2π)−1
∫

D

∇f1(z) · ∇f2(z)dz,

of the Hilbert space closure H(D) of the space of C∞ bounded real-valued
(but not necessarily compactly supported) functions on D with mean zero.

Note that if f is a compactly supported smooth function on D for which
−�f = ρ, then integration by parts implies that the variance of (h,ρ)

is the Dirichlet energy of f —same as in the zero boundary case. Similarly,
suppose that f is a smooth function that is not compactly supported but
has a gradient that vanishes in the normal direction to ∂D, and we write
ρ = −�f . Then integration by parts implies that the variance of (h,ρ) is
2π(f,f )∇ .

We can also make sense of hε(z), for a point z on a linear part ∂D of
the boundary of D, to be the mean value of h on the semicircle of radius ε

centered at z and contained in the domain D. For z fixed, let ε0 be chosen
small enough so that Bε0(z) ∩ ∂D ⊂ ∂D and exactly one semi-disc of Bε0(z)

lies in D. Define for any ε ≤ ε0

hε(z) = (h, ρ̂z
ε),

where ρ̂z
ε (y)dy is the uniform measure (of total mass one) localized on

the semicircle ∂Bε(z) ∩ D. Let us introduce the function ξ̂ z
ε (y), for y ∈ D,
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such that

−�ξ̂z
ε = 2π

(
ρ̂z

ε − 1/|D|) , (74)

n · ∇ ξ̂ z
ε |∂D = 0,

∫

D

ξ̂z
ε dy = 0, (75)

with n the current normal to ∂D, and |D| := ∫
D

dy the area of D. Hence, ξ̂ z
ε

satisfies Neumann boundary conditions and has zero mean, and integration
by parts shows that

hε(z) = (
h, ξ̂ z

ε

)
∇ .

Let us introduce the auxiliary function

ζ z
ε (y) := −2 log(|y − z| ∨ ε) + π

2|D|
(
|y − z|2 + ε2

)
, (76)

such that −�ζz
ε (·) = 2π(ρ̂z

ε(·) − 1/|D|). The 2 log(| · −z| ∨ ε) in place of
log(| · −z| ∨ ε) comes from the fact that ρ̂z

ε is a unit mass measure over half
a circle.

The solution ξ̂ z
ε to (74) and (75) is then given by

ξ̂ z
ε = ζ z

ε − Ĝz, (77)

where Ĝz is the harmonic function in D, solution to the Neumann problem
(75) on ∂D. Note that the function ζ z

ε (76) has been chosen such that both the
boundary normal derivative n · ∇ζ z

ε |∂D and the integral
∫
D

ζ z
ε dy are actually

independent of ε for ε ≤ ε0. The normal derivative vanishes on the linear
boundary component ∂D: n · ∇ζ z

ε |∂D = 0. Therefore Ĝz is independent of ε,
and satisfies the Neumann condition on ∂D: n · ∇Ĝz|∂D = 0. By the Schwarz
reflection principle, this allows extending Ĝz to a harmonic function in the
domain D̄, complex conjugate and symmetrical of D with respect to ∂D ⊂ R,
through Ĝz(ȳ) = Ĝz(y).

When considering the reference radius ε0, we then have that

hε(z) − hε0(z) = (
h, ξ̂ z

ε − ξ̂ z
ε0

)
∇ = (

h, ζ z
ε − ζ z

ε0

)
∇ . (78)

Thus hε(z)−hε0(z) is equal to (h, ζ̂ )∇ , where ζ̂ := ζ z
ε −ζ z

ε0
(up to a constant)

is the continuous function to −2 log | · −z| on the half-annulus H∩{y : ε ≤
|y − z| ≤ ε0} and is constant outside of the half-annulus. The variance of
hε(z) − hε0(z) is then given by the Dirichlet energy (ζ̂ , ζ̂ )∇ = −2 log(ε/ε0).
We thus have that the Gaussian random variable hε(z) − hε0(z) is a standard
Brownian motion B2t in time 2t = −2 log(ε/ε0), with boundary condition
B0 = 0, as in Proposition 3.3.
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Thanks to (74) to (77), the set of functions ξ̂ z
ε has Dirichlet inner products

(
ξ̂ z
ε , ξ̂ z

ε′
)
∇ = −2 log(ε ∨ ε′) + π

2|D|
(
ε2 + ε′2) − Ĝz(z); (79)

one finds in particular for ε′ = 0 that
(
ξ̂ z
ε , ξ̂ z

0

)
∇ = ξ̂ z

ε (z). At a boundary point
z ∈ ∂D, the variance of hε(z) is

Var hε(z) = (
ξ̂ z
ε , ξ̂ z

ε

)
∇ = −2 log ε + π

|D|ε
2 − Ĝz(z); (80)

this variance thus scales for ε small like −2 log ε instead of − log ε, because
of the free boundary conditions on ∂D.

6.2 Mixed boundary conditions

Notice that one can also consider other types of boundary conditions for the
Gaussian free field h, like mixed boundary conditions in domain D, with
free boundary conditions on a linear component ∂D ⊂ R, and Dirichlet ones
on its complement ∂D \ ∂D. In this case, one uses a reflection principle and
considers the whole domain D† := D ∪ D̄, where D̄ is the complex conjugate
of D, symmetrical of D with respect to the real axis, and takes Dirichlet
boundary conditions on ∂D†. The Hilbert space closure H(D†) of the space
of C∞ real-valued functions compactly supported on D† can be written as the
direct sum He(D

†) ⊕ Ho(D
†) of the Hilbert space closures corresponding to

even and odd functions on D† with respect to the real line supporting ∂D. The
Gaussian free field h in D, with mixed boundary conditions on ∂D, is then
simply obtained by projecting the GFF in D† onto the even space He(D

†),
and restricting the result to D.

It is not hard to see that the semi-circle average hε(z) of h, for z ∈ ∂D and
ε ≤ ε0, is then given by (h, ξ̃ z

ε )∇ , where ξ̃ z
ε (y) = −2 log(|y − z|∨ ε)− G̃z(y),

with now G̃z(y) the harmonic extension to D† (here restricted to y ∈ D) of
the restriction of the function −2 log |y −z| to y ∈ ∂D†. These functions have
Dirichlet inner products

(
ξ̃ z
ε , ξ̃ z

ε′
)
∇ = −2 log(ε ∨ ε′) − G̃z(z), (81)

in place of (79). Similarly, at a boundary point z ∈ ∂D, the variance of hε(z)

is

Var hε(z) = (
ξ̃ z
ε , ξ̃ z

ε

)
∇ = −2 log ε − G̃z(z), (82)

instead of (80). Lastly, exactly as in the case of free boundary conditions, the
Gaussian random variable hε(z) − hε0(z) has variance −2 log(ε/ε0), and is a
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standard Brownian motion B2t in time 2t = −2 log(ε/ε0), with initial value
B0 = 0.

In the following section, we shall consider equally well free or mixed
boundary conditions, up to some minor differences that are mentioned in each
case.

6.3 Boundary measure and KPZ

We define the boundary measure μB
ε := εγ 2/4eγhε(z)/2dz, where in this case

dz is Lebesgue measure on the boundary component ∂D. Here we use
eγhε(z)/2 instead of eγhε(z) because we are integrating a length instead of an
area; as before, the power of ε that we chose makes the expectation of the
factor preceding dz, εγ 2/4

Eeγhε(z)/2 = εγ 2/4eγ 2 Var hε(z)/8, have a finite limit
when ε → 0.

We define μB to be the weak limit as ε → 0 of the measures μB
ε (see the

theorem below for existence of this limit when 0 ≤ γ < 2). For z ∈ ∂D we
write B̂ε(z) := Bε(z) ∩ ∂D and we define B̂δ(z) to be the (largest) set B̂ε(z)

whose μB measure is δ.
Likewise define

B̂ε(X) = {z ∈ ∂D : B̂ε(z) ∩ X �= ∅}
and

B̂δ(X) = {z ∈ ∂D : B̂δ(z) ∩ X �= ∅}.
We say that a (deterministic or random) fractal subset X of the boundary
component ∂D has Euclidean expectation dimension 1 − x̃ and Euclidean
scaling exponent x̃ in the boundary sense if the expected measure of B̂ε(X)

decays like εx̃ , i.e.,

lim
ε→0

log Eμ0(B̂ε(X))

log ε
= x̃.

We say that X has boundary quantum scaling exponent �̃ if when X and μB

(as defined above) are chosen independently we have

lim
δ→0

log EμB(B̂δ(X))

log δ
= �̃.

Theorem 6.1 Given the assumptions above, Proposition 1.1 and Theo-
rems 1.5 and 4.2 hold, precisely as stated, when με is replaced by μB

ε , μ

is replaced by μB ; μ0 (Lebesgue measure on D) is replaced by Lebesgue
measure on one of the boundary line segments ∂D of D; Bε and Bδ are re-
placed with B̂ε and B̂δ , respectively; and the compact subset of D is replaced
with a closed subinterval of ∂D.
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Proof The proofs in the boundary case proceed exactly the same as in the
interior point case, up to factors of 2 in various places. We sketch the proof of
an analog of Theorem 4.2 in order to indicate where those factors of 2 appear.

Write t := − log(ε/ε0), and let Vt := hε(z) − hε0(z). It is not hard to see
that the expectation of the boundary line integral

Eh

[∫

B̂ε(z)

eγ h/2dy|Vt

]

= Eh

[
μB

h (B̂ε(z))|hε(z) − hε0(z)
]

has approximately the form (which replaces (37) and (52))

exp
(γ

2
Vt − γ

2
Qt

)
, (83)

in the sense that the ratio of the logarithms of the two quantities tends to 1
when ε → 0 and t → ∞. Let B̃δ(z) now be the largest Euclidean ball Bε(z)

in D centered at z ∈ ∂D for which (83) is equal to the quantum length δ, and
B̃δ(X) := {z ∈ ∂D : B̃δ(z) ∩ X �= ∅}.

As before, we use the fact that Ehμ
B
h (B̃δ(X)) is proportional to �̂{(z, h) :

z ∈ ∂D, B̃δ(z) ∩ X �= ∅}, where �̂ is the boundary rooted measure such that,
given z ∈ ∂D, h is sampled from the Gaussian free field distribution weighted
by eγh(z)/2. For free boundary conditions, the �̂ conditional law of h is
then that of the original GFF plus the deterministic function γ

2 ξ̂ z
0 (·) =

−γ log | · −z| + γπ
4|D| | · −z|2. Then given z ∈ ∂D, the �̂ conditional law of

the semi-circular average hε(z) = (h, ξ̂ z
ε )∇ is that of the original GFF semi-

circular average, plus the Dirichlet inner product γ
2 (ξ̂ z

0 , ξ̂ z
ε )∇ = γ

2 ξ̂ z
ε (z).

Then given z ∈ ∂D, the �̂ conditional law of Vt = hε(z)−hε0(z) is that of

B2t + γ

2

(
ξ̂ z
ε (z) − ξ̂ z

ε0
(z)

) = B2t − γ log(ε/ε0) + bε − bε0

= B2t + γ t + bε0e
−t − bε0,

where bε := γ
2

πε2

2|D| ; thus Vt evolves independently of z, as a Brownian motion
B2t with twice the variance of standard Brownian motion, because of the free
boundary conditions on ∂D, plus a drift term γ t , and up to a constant and an
exponentially small term when t → ∞.

In the case of mixed boundary conditions, the same line of arguments (re-
call (81)) shows that the �̂ conditional law of Vt = hε(z) − hε0(z) is simply
that of

B2t + γ

2

(
ξ̃ z
ε (z) − ξ̃ z

ε0
(z)

) = B2t + γ t.
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Using (83), we have both for free and mixed boundary conditions

E

[∫

B̂ε(z)

eγ h/2dy|Vt

]

� exp

(
γ

2
B2t + 1

2
γ 2t − γ

2
Qt

)

. (84)

This will be equal to the quantum boundary length δ at the smallest t for
which γ B2t + γ 2t − γQt = 2 log δ, with B0 = 0. If we set A := −(log δ)/γ ,
this smallest time is a stopping time TA such that

TA = inf{t : B2t + at = 2A = −2(log δ)/γ },
a = Q − γ = 2

γ
− γ

2
> 0. (85)

As above, we consider the two part experiment in which we first sample TA

and then sample z and check to see whether the ball of radius ε = ε0 e−TA

intersects X on the boundary. Given TA, the ratio of the logarithms of this
probability and

E
[
exp (−x̃TA)

]

tends to 1 as A → ∞.
Consider next for any β the exponential martingale exp(

β
2 B2t − β2

4 t), such
that

E

[

exp

(
β

2
B2t − β2

4
t

)]

= E

[

exp

(
β

2
B0

)]

= 1.

As before, for β ≥ 0, the martingale stays bounded from above by a fixed
constant for t ∈ [0, TA] with TA < ∞ a.s. One thus applies this exponential
martingale at the stopping time TA:

E

[

exp

(
β

2
B2TA

− β2

4
TA

)]

= 1.

By definition B2TA
= 2A − aTA. One thus gets the identity

E exp[−(βa/2 + β2/4)TA] = exp(−βA),

and it now suffices to identify 2x̃ := βa + β2/2, with β ≥ 0, to obtain the
boundary KPZ with �̃ := β/γ , and

E exp(−x̃TA) = δ�̃ = exp(−βA) = exp
{
−A[(a2 + 4x̃)1/2 − a]

}
,

in complete analogy to (57). �

The reader may observe that the boundary measures described above are
preserved under the transformations described in Proposition 2.1. One can use
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this to define the boundary measure on more general domains, which may not
have piecewise linear boundary conditions.

We also remark that a similar procedure to that above allows us to make
sense of measure restricted to lines in the interior of the domain.

7 Discrete random surface dimensions and heuristics

Historically, one of the uses of the KPZ formula has been to make heuristic
predictions about the scaling exponents of random fractal subsets of the plane
(see, e.g., [48, 60, 62–64], and the references surveyed therein for much more
detail).

In this subsection, we give a very rough and very brief sketch of what such
a heuristic might entail in a simple example. Readers familiar with discrete
quantum gravity models (a.k.a. random planar map models, random quadran-
gulation models, etc.) should note that these models have natural interpre-
tations as continuum random metric spaces as well. For example, a random
planar quadrangulation Mn on the sphere—chosen uniformly from the set of
all simply connected planar quadrangulations with n quadrilaterals—can be
viewed as a manifold by endowing each quadrilateral with the metric of a
unit square. (Of course, the resulting manifold will have singularities: nega-
tive curvature point masses at vertices where more than four unit squares co-
incide and positive curvature point masses at vertices where fewer than four
unit squares coincide.) We may then choose a uniform square from among
this set. Taking an “infinite volume limit” (as n → ∞) one obtains an infinite
random quadrangulation M∞ with a distinguished square. (See, e.g., [12] for
a precise description of this construction for triangulations.) This infinite ran-
dom surface can be conformally mapped to the plane in such a way that the
center of the distinguished square is mapped to the origin and the volume of
the image of the distinguished square is a constant δ (with a rotation chosen
uniformly at random). The images of the unit squares of M∞ form a tiling of
C by “conformally distorted” unit squares. Different squares have different
sizes with respect to the Euclidean metric on the plane; intuitively, one would
expect such a tiling to look something vaguely like the tilings in Figs. 1, 2,
and 3 except that the “squares” would be randomly oriented and distorted.
The pullback of the intrinsic metric of M∞ to the plane via this map takes
the form eλ(dx2 + dy2) for some function random λ (which has logarithmic
singularities at the images of the vertices of the squares). Although the equiv-
alence of Liouville quantum gravity and discrete quantum gravity is taken as
an Ansatz throughout much of the literature, to our knowledge the follow-
ing is the first precise conjecture for the complete scaling limit of a discrete
quantum gravity model:
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Conjecture 7.1 As δ → 0, the function λ converges in law (e.g., w.r.t. to the
weak topology on the space of distributions on the plane modulo additive
constants) to γ (h(·) − γ log | · |) where h is an instance of the whole plane
Gaussian free field (defined up to additive constants) and γ 2 = κ = 8/3.

We further conjecture that other values of γ are obtained by choosing a ran-
dom quadrangulation together with a statistical physical model on the quad-
rangulation (FK cluster model, percolation, O(N) model, uniform spanning
tree); in this case, the probability of a given quadrangulation is proportional
to the partition function of the statistical physics model on that quadrangu-
lation. (See the references on random matrix theory and geometrical models
cited in the introduction for much more detail; see [64] for a review with ad-
ditional references.) One can also consider scaling limits on spheres or higher
genus surfaces, as well as different kinds of marked points (corresponding to
different logarithmic singularities in the scaling limit); however, these are a
bit more complicated to describe, so we limit attention to the infinite volume
case for now.

By the usual conformal invariance Ansatz, it is natural to expect that if one
conditions on the infinite quadrangulation, and then samples the loops or trees
in these models (as mapped into the plane), their law (in the scaling limit) will
be independent of the metric.

Now suppose that for each n we define a random subset Xn of Mn (for ex-
ample, Xn could be the set of the squares hit by a simple random walk started
at the root square and stopped the first time that the walk hits a square on
the boundary of the quadrangulation). Then one can define a discrete scaling
exponent (analogous to the box counting exponent in (4), with δ replaced by
n−1) as follows:

�D = lim
n→∞

log E(n−1|Xn|)
logn−1

.

Identifying Xn with its image in a conformal map to, say, D, one might guess
that the random pair (Xn,λn)—where eλn(z)dz is uniform measure on the dis-
crete surface, mapped to D—has a scaling limit (X,λ), where X is a random
subset of D (in our example, it might be a Brownian motion) and λ is some
form of the Gaussian free field.

If this is the case, then on a heuristic level, one would expect that the
quantum scaling exponent of X is � = �D , since, in the notation of Corol-
lary 1.7, if we write δ = n−1, we would expect that E[δN(μ, δ,X)] scales
like E(n−1|Xn|).

In discrete quantum gravity models, it is often possible to compute �D

explicitly (and rigorously) using random matrix techniques or tree bijections;
it is also often possible to compute γ directly using discrete quantum gravity
machinery and so heuristically obtain its value in the continuum limit.
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Assuming values for �D and γ —and assuming � = �D—the KPZ for-
mula gives the Euclidean scaling dimension of X. In many interesting exam-
ples, X is a random fractal (a Schramm-Loewner evolution, for example, or
the outer boundary of a planar Brownian motion) whose Euclidean scaling
dimension might not be immediately obvious otherwise.

Finally, we mention that, in the standard realm of conformal field theory,
there exists a precise relation between the central charge c ≤ 1 of the statisti-
cal model coupled to quantum gravity and the value of Liouville parameter,
γ = (

√
25 − c − √

1 − c)/
√

6, [41, 52, 79, 103, 130], as well as a corre-
sponding connection between SLEκ and Liouville quantum gravity models
with γ = √

min{κ,16/κ}.
Our result extends the validity of the KPZ relation outside that CFT frame-

work to any value of Liouville parameter γ < 2, with the Ansatz that the
fractal set X and the GFF are sampled independently. A possible interpreta-
tion of the KPZ relation in that case would be that it describes the quantum
geometry of the given fractal in the quenched random surface generated by
random graphs, equilibrated with a conformally invariant system with a value
of c or κ corresponding to the chosen value of γ . For example, one could
first choose a random graph weighted by the critical Ising model partition
function; and then perform a loop erased random walk on that graph, ignor-
ing Ising clusters. In this case, one would expect the Euclidean dimension of
the path to be that of SLE2 (which corresponds to loop erased random walk),
while the value of γ describing the metric would be

√
3 (which corresponds

to the critical Ising model), and one could use KPZ to predict the quantum
scaling dimension.

Similar ideas appeared in previous numerical work [3, 85], but the data so
far appear as inconclusive.

Finally, we remark that the original (still accessible) arXiv version of this
paper contained an additional section: a three-page sketch of some work in
progress, including some results about the conformal welding of quantum
random surfaces and about the scaling limits of discrete quantum gravity
models. Many of these results will appear in [56, 131].
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