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Abstract We prove many cases of a conjecture of Buzzard, Diamond and
Jarvis on the possible weights of mod p Hilbert modular forms, by making
use of modularity lifting theorems and computations in p-adic Hodge theory.
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1 Introduction

If a representation

ρ : GQ → GL2(Fp)

is continuous, odd, and irreducible, then a conjecture of Serre (now a theorem
of Khare-Wintenberger and Kisin) predicts that ρ is modular. More precisely,
Serre predicted a minimal weight k(ρ) and a minimal level N(ρ) for a mod-
ular form giving rise to ρ.

T. Gee (�)
Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston,
IL 60208, USA
e-mail: gee@math.northwestern.edu

mailto:gee@math.northwestern.edu


2 T. Gee

It is natural to try to extend these results to totally real fields F . The natural
generalisation of Serre’s conjecture is to conjecture that if

ρ : GF → GL2(Fp)

is continuous, irreducible and totally odd, then it is modular (in the sense that
it arises from a Hilbert modular form). It is straightforward to generalise the
definition of N(ρ) to this setting, and there has been much progress on “level-
lowering” for Hilbert modular forms. It is, however, much harder to generalise
the definition of k(ρ). For example, there is no longer a total ordering on the
weights, and the p-adic Hodge theory is much more complicated than in the
classical case.

Suppose that p is unramified in F . Recently (see [3]), Buzzard, Diamond
and Jarvis have proposed a conjectural set W(ρ) of weights attached to ρ,
from which in the classical case one can deduce the weight part of Serre’s
conjecture (see [3] for more details). In this paper we prove many cases of
a closely related conjecture (we work with a definite, rather than indefinite
quaternion algebra; as we discuss below, it should be straightforward to prove
the corresponding results in the setting of [3]). To be precise, a weight is
an irreducible Fp-representation of GL2(OF /p), and such a representation
factors as a tensor product

⊗

v|p
σ�a,�b

where �a, �b are [kv : Fp]-tuples indexed by embeddings τ : kv ↪→ Fp , and
0 ≤ aτ ≤ p − 1, 1 ≤ bτ ≤ p. Then we say that a weight is regular if in fact
2 ≤ bτ ≤ p − 2 for all τ . Our main theorem requires a technical condition
which we prefer to define later, that of a weight being partially ordinary of
type I for ρ, I a set of places of F dividing p; see Sect. 2.

Theorem Suppose that ρ is modular, that p ≥ 5, and that ρ|GF(ζp)
is irre-

ducible. Then if σ is a regular weight and ρ is modular of weight σ then
σ ∈ W(ρ). Conversely, if σ ∈ W(ρ) and σ is non-ordinary for ρ, then ρ is
modular of weight σ . If σ is partially ordinary of type I for ρ and ρ has a
partially ordinary modular lift of type I then ρ is modular of weight σ .

Before we discuss the proof, we make some remarks about the assumptions
in the theorem. The assumption that ρ is modular is essential to our methods.
The assumption that p ≥ 5 is needed in order for there to be any regular
weights at all; it is possible that this could be relaxed in future work, as there is
no essential obstruction to the application of the techniques that we employ in
characteristic 3. In characteristic 2 the results from 2-adic Hodge theory that
we would require have not yet been developed in sufficient generality, but this
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too does not appear to be an insurmountable difficulty. The assumption that
ρ|GF(ζp)

is irreducible, and the assumption on partial ordinarity, are needed in
order to apply R = T theorems.

The main idea of our proof is the same as that for our proof of a companion
forms theorem for totally real fields (see [14]), namely that we use a lifting
theorem to construct lifts of ρ satisfying certain local properties at places v|p,
and then use a modularity lifting theorem of Kisin to prove that these repre-
sentations are modular. In fact, Kisin’s theorem is not general enough for our
applications, and we need to use the main theorem of [13]. The arguments are
much more complicated than those in [14] because we need to construct lift-
ings with more delicate local properties; rather than just considering ordinary
lifts, we must consider potentially Barsotti-Tate lifts of specified type.

The other complication which intervenes is that the connection between
being modular of a certain weight and having a lift of a certain type is rather
subtle, and this is the reason for our hypothesis that the weight be regular. One
needs to consider many liftings for each weight, and we have only obtained
the necessary combinatorial results in the case where the weight is regular.
However, while these results appear to hold for most non-regular weights,
there are cases where they do not hold, so it seems that it is not possible to
give a general proof that the list of weights is correct by simply considering
the types of potentially Barsotti-Tate lifts. It is possible to give a complete
proof in the case where p splits completely in F , and we do this in [15].

We now outline the structure of the paper. Rather than working with the
“geometric” conventions of [3], we prefer to work with more “arithmetic”
ones. In particular, we work with automorphic forms on definite quaternion
algebras. We set out our conventions in Sect. 2, and we state the appropriate
reformulation of the conjectures of [3] here. In Sect. 3 we carry out the re-
quired local analysis in the case where the local representation is reducible.
Sections 3.1 and 3.2 use Breuil modules and strongly divisible modules to de-
termine when reducible representations arise as the generic fibres of certain
finite flat group schemes. In Sect. 3.4 we relate these finite flat group schemes
to certain crystalline representations considered in [3], and in Sect. 3.5 we
prove the necessary combinatorial results relating types and regular weights.

We then repeat this analysis in the irreducible case in Sect. 4, and finally in
Sect. 5 we combine these results with the lifting theorems mentioned above
to deduce our main results. Firstly, we use our local results to show that if ρ is
modular of weight σ with σ regular, then σ ∈ W(ρ). For each regular weight
σ ∈ W(ρ) we then produce a modular lift of ρ which is potentially Barsotti-
Tate of a specific type, so that ρ must be modular of some weight occurring
in the mod p reduction of this type. We then check that σ is the only element
of W(ρ) occurring in this reduction, so that ρ is modular of weight σ , as
required. In fact, we do not quite do this; the combinatorics is slightly more
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involved, and we are forced to make use of a notion of a “weakly regular”
weight. See Sect. 5 for the details.

It is a pleasure to thank Fred Diamond for numerous helpful discussions
regarding this work; without his patient advice this paper could never have
been written. We would like to thank David Savitt for pointing out several
errors and omissions in an earlier version of this paper, and for writing [21].
We would like to thank Florian Herzig for pointing out an inconsistency be-
tween our conventions and those of [3], which led to the writing of Sect. 2. We
are extremely grateful to Xavier Caruso and Christophe Breuil for their many
helpful comments and corrections; in particular, the material in Sect. 3.4 owes
a considerable debt to Caruso’s efforts to correct a number of inaccuracies,
and the proof of Lemma 3.6 is based on an argument of his. We would also
like to thank the anonymous referee for a careful reading, and for pointing
out a number of serious errors in an earlier version of the paper.

2 Definitions

2.1

Rather than use the conventions of [3], we choose to state a closely related
variant of their conjectures by working on totally definite quaternion algebras.
This formulation is more suited to applications to modularity lifting theorems,
and indeed to the application of modularity lifting theorems to proving cases
of the conjecture.

We begin by recalling some standard facts from the theory of quaternionic
modular forms; see either [23], Sect. 3 of [17] or Sect. 2 of [18] for more
details, and in particular the proofs of the results claimed below. We will
follow Kisin’s approach closely. We fix throughout this paper an algebraic
closure Q of Q, and regard all algebraic extensions of Q as subfields of Q. For
each prime p we fix an algebraic closure Qp of Qp , and we fix an embedding
Q ↪→ Qp . In this way, if v is a finite place of a number field F , we have a
homomorphism GFv ↪→ GF .

Let F be a totally real field in which p > 2 is unramified, and let D be
a quaternion algebra with center F which is ramified at all infinite places of
F and at a set � of finite places, which contains no places above p. Fix a
maximal order OD of D and for each finite place v /∈ � fix an isomorphism
(OD)v

∼−→ M2(OFv ). For any finite place v let πv denote a uniformiser of
Fv .

Let U = ∏
v Uv ⊂ (D ⊗F A

f
F )× be a compact subgroup, with each Uv ⊂

(OD)×v . Furthermore, assume that Uv = (OD)×v for all v ∈ �, and that Uv =
GL2(OFv ) if v|p.
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Take A a topological Zp-algebra. For each v|p, fix a continuous rep-
resentation σv : Uv → Aut(Wσv) with Wσv a finite free A-module. Write
Wσ = ⊗

v|p,A Wσv and let σ = ∏
v|p σv . We regard σ as a representation

of U in the obvious way (that is, we let Uv act trivially if v � p). Fix also
a character ψ : F×\(Af

F )× → A× such that for any place v of F , σ |Uv∩O×
Fv

is multiplication by ψ−1. Then we can think of Wσ as a U(A
f
F )×-module by

letting (A
f
F )× act via ψ−1.

Let Sσ,ψ(U,A) denote the set of continuous functions

f : D×\(D ⊗F A
f
F )× → Wσ

such that for all g ∈ (D ⊗F A
f
F )× we have

f (gu) = σ(u)−1f (g) for all u ∈ U,

f (gz) = ψ(z)f (g) for all z ∈ (A
f
F )×.

We can write (D ⊗F A
f
F )× = ∐

i∈I D×tiU(A
f
F )× for some finite index set I

and some ti ∈ (D ⊗F A
f
F )×. Then we have

Sσ,ψ(U,A)
∼−→

⊕

i∈I

W
(U(A

f
F )×∩t−1

i D×ti )/F
×

σ ,

the isomorphism being given by the direct sum of the maps f �→ {f (ti)}.
From now on we make the following assumption:

For all t ∈ (D ⊗F A
f
F )× the group (U(A

f
F )× ∩ t−1D×t)/F× = 1.

One can always replace U by a subgroup (obeying the assumptions above)
for which this holds (cf. Sect. 3.1.1 of [19]). Under this assumption, which
we make from now on, Sσ,ψ(U,A) is a finite free A-module, and the functor
Wσ �→ Sσ,ψ(U,A) is exact in Wσ .

We now define some Hecke algebras. Let S be a set of finite places con-
taining �, the places dividing p, and the primes of F such that Uv is not
a maximal compact subgroup of D×

v . Let Tuniv
S,A = A[Tv]v /∈S be the com-

mutative polynomial ring in the formal variables Tv . Consider the left ac-
tion of (D ⊗F A

f
F )× on Wσ -valued functions on (D ⊗F A

f
F )× given by

(gf )(z) = f (zg). For each finite place v of F we fix a uniformiser πv of
Fv . Then we make Sσ,ψ(U,A) a Tuniv

S,A -module by letting Tv act via the dou-

ble coset U
(

πv 0
0 1

)
U . These are independent of the choices of πv . We will

write Tσ,ψ(U,A) or Tσ,ψ(U) for the image of Tuniv
S,A in EndSσ,ψ(U,A).
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Let m be a maximal ideal of Tuniv
S,A . We say that m is in the support of

(σ,ψ) if Sσ,ψ(U,A)m �= 0. Now let O be the ring of integers in Qp , with
residue field F = Fp , and suppose that A = O in the above discussion, and
that σ has open kernel. Consider a maximal ideal m ⊂ Tuniv

S,O which is induced
by a maximal ideal of Tσ,ψ(U, O). Then there is a semisimple Galois rep-
resentation ρm : GF → GL2(F) associated to m which is characterised up to
equivalence by the property that if v /∈ S and Frobv is an arithmetic Frobenius
at v, then the trace of ρm(Frobv) is the image of Tv in F.

We are now in a position to define what it means for a Galois represen-
tation to be modular of some weight. Let v|p be a place of F , let Fv have
ring of integers Ov and residue field kv , and let σ be an irreducible Fp-
representation of G := ∏

v|p GL2(kv). We also denote by σ the representation
of

∏
v|p GL2(Ov) induced by the surjections Ov � kv .

Definition 2.1 We say that an irreducible representation ρ : GF → GL2(Fp)

is modular of weight σ if for some D, S, U , ψ , and m as above we have
Sσ,ψ(U,F)m �= 0 and ρm

∼= ρ.

We now show how one can gain information about the weights associated
to a particular Galois representation by considering lifts to characteristic zero.

Lemma 2.2 Let ψ : F×\(Af
F )× → O× be a continuous character, and write

ψ for the composite of ψ with the projection O× → F×. Fix a representation
σ of

∏
v|p Uv on a finite free O-module Wσ , and an irreducible representa-

tion σ ′ on a finite free F-module Wσ ′ . Suppose that for each v|p we have

σ |Uv∩O×
Fv

= ψ−1|Uv∩O×
Fv

and σ ′|Uv∩O×
Fv

= ψ
−1|Uv∩O×

Fv
.

Let m be a maximal ideal of Tuniv
S,O .

Suppose that Wσ ′ occurs as a
∏

v|p Uv-module subquotient of Wσ :=
Wσ ⊗ F. If m is in the support of (σ ′,ψ), then m is in the support of (σ,ψ).

Conversely, if m is in the support of (σ,ψ), then m is in the support of
(σ ′,ψ) for some irreducible

∏
v|p Uv-module subquotient Wσ ′ of Wσ .

Proof The first part is proved just as in Lemma 3.1.4 of [17], and the second
part follows from Proposition 1.2.3 of [1]. �

We note a special case of this result, relating the existence of poten-
tially Barsotti-Tate lifts of a particular tame type to information about Serre
weights. Firstly, we recall some particular representations of GL2(kv). For
any pair of distinct characters χ1, χ2 : k×

v → O× we let I (χ1, χ2) denote the
irreducible (q + 1)-dimensional Qp-representation of GL2(kv) induced from
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the character of B (the upper triangular matrices in GL2(kv)) given by

(
x w

0 y

)
�→ χ1(x)χ2(y).

We let σχ1,χ2 denote the representation of GL2(kv) on an O-lattice in
I (χ1, χ2); we also regard this as a representation of GL2(Ov) via the natural
projection. Let τ(σχ1,χ2) be the inertial type χ1 ⊕ χ2 (regarded as a repre-
sentation of IFv via local class field theory, normalised so that a uniformiser
corresponds to a geometric Frobenius element).

Let k′
v be the quadratic extension of kv . For any character θ : k′×

v → O×
which does not factor through the norm k′×

v → k×
v , there is an irreducible

(q − 1)-dimensional cuspidal representation �(θ) of GL2(kv) (see Sect. 1
of [11] for the definition of �(θ)). Let σ�(θ) denote the representation of
GL2(kv) on an O-lattice in �(θ); we also regard this as a representation of
GL2(Ov) via the natural projection. Let qv be the cardinality of kv , and let
τ(σ�(θ)) be the inertial type θ ⊕ θqv (again regarded as a representation of
IFv via local class field theory).

Definition 2.3 Let τ be an inertial type, and let v|p be a place of F . We
say that a lift ρ of ρ|GFv

is potentially Barsotti-Tate of type τ if ρ is poten-
tially Barsotti-Tate, has determinant a finite order character of order prime to
p times the cyclotomic character, and the corresponding Weil-Deligne repre-
sentation (see Appendix B of [9]), when restricted to IFv , is isomorphic to τ .

Lemma 2.4 For each v|p, fix a representation σv of the type just considered
(that is, isomorphic to σχ1,χ2 or to σ�(θ)). Let τv = τ(σv) be the correspond-
ing inertial type. Suppose that ρ is modular of weight σ , and that σ is a∏

v|p GL2(kv)-subquotient of
⊗

v|p σv ⊗O F. Then ρ lifts to a modular Ga-
lois representation which is potentially Barsotti-Tate of type τv for each v|p.

Conversely, suppose that ρ lifts to a modular Galois representation which
is potentially Barsotti-Tate of type τv for each v|p. Then ρ is modular of
weight σ for some

∏
v|p GL2(kv)-subquotient σ of

⊗
v|p σv ⊗O F.

Proof This follows from Lemma 2.2, the Jacquet-Langlands correspondence,
and the compatibility of the local and global Langlands correspondences at
places dividing p (see [18]). �

We now state a conjecture on Serre weights, following [3]. Note that our
conjecture is only valid for regular weights (a notion which we will define
shortly); there are some additional complications when dealing with non-
regular weights. Let ρ : GF → GL2(Fp) be modular. We propose a conjec-
tural set of regular weights W(ρ) for ρ.
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In fact, for each place v|p we propose a set of weights W(ρ|GFv
), and we

define

W(ρ) :=
{⊗

v|p
σv|σv ∈ W(ρ|GFv

)

}
.

Let Sv be the set of embeddings kv ↪→ Fp . A weight for GL2(kv) is an
isomorphism class of irreducible Fp-representations of GL2(kv), which auto-
matically contains one of the form

σ�a,�b =
⊗

τ∈Sv

det aτ Symbτ −1 k2
v ⊗τ Fp,

with 0 ≤ aτ ≤ p − 1 and 1 ≤ bτ ≤ p for each τ ∈ Sv . We demand further
that some aτ < p − 1, in which case the representations σ�a,�b are pairwise
non-isomorphic.

Definition 2.5 We say that a weight σ�a,�b is regular if 2 ≤ bτ ≤ p − 2 for
all τ . We say that it is weakly regular if 1 ≤ bτ ≤ p − 1 for all τ .

For each τ ∈ Sv we have the fundamental character ωτ of IFv given by
composing τ with the homomorphism IFv → k×

v given by local class field
theory, normalised so that uniformisers correspond to geometric Frobenius
elements. Let k′

v denote the quadratic extension of kv . Let S′
v denote the set

of embeddings σ : k′
v ↪→ Fp , and let ωσ denote the fundamental character

corresponding to σ .
Suppose firstly that ρ|GFv

is irreducible. There is a natural 2 − 1 map π :
S′

v → Sv given by restriction to kv , and we say that a subset J ⊂ S′
v is a full

subset if |J | = |π(J )| = |Sv|. Then we have

Definition 2.6 Let σ�a,�b be a regular weight for GL2(kv). Then σ�a,�b ∈
W(ρ|GFv

) if and only if there exists a full subset J ⊂ S′
v such that

ρ|IFv
∼

∏

τ∈Sv

ωaτ
τ

(∏
σ∈J ω

bσ |kv
σ 0

0
∏

σ /∈J ω
bσ |kv
σ

)
.

Suppose now that ρ|GFv
is reducible, say ρ|GFv

∼ ( ψ1 ∗
0 ψ2

)
. We define the set

W(ρ|GFv
) in two stages. Firstly, define a set W(ρ|GFv

)′ of regular weights as
follows.

Definition 2.7 Let σ�a,�b be a regular weight for GL2(kv). Then σ�a,�b ∈
W(ρ|GFv

)′ if and only if there exists J ⊂ Sv such that ψ1|IFv
= ∏

τ∈Sv
ω

aτ
τ ×

∏
τ∈J ω

bτ
τ and ψ2|IFv

= ∏
τ∈Sv

ω
aτ
τ

∏
τ /∈J ω

bτ
τ . We say that σ�a,�b ∈ W(ρ|GFv

)′
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is ordinary for ρ if furthermore J = Sv or J = ∅ (note that the set J is
uniquely determined, because σ�a,�b is regular).

Suppose that we have a regular weight σ�a,�b ∈ W(ρ|GFv
)′ and a corre-

sponding subset J ⊂ Sv . We now define crystalline lifts ψ̃1, ψ̃2 of ψ1,
ψ2. If ψ : GFv → Qp

×
is a crystalline character, and τ : Fv ↪→ Qp , we

say that the Hodge-Tate weight of ψ with respect to τ is the i for which
gr−i((ψ ⊗Qp

BdR)GFv ⊗Qp⊗QpFv,1⊗τ Qp) �= 0. Then we demand that for

some fixed Frobenius element Frobv of GFv , ψ̃i(Frobv) is the Teichmüller
lift of ψi(Frobv), and that:

• ψ̃1 is crystalline, and the Hodge-Tate weight of ψ̃1 with respect to τ is
aτ + bτ if τ ∈ J , and aτ if τ /∈ J .

• ψ̃2 is crystalline, and the Hodge-Tate weight of ψ̃2 with respect to τ is
aτ + bτ if τ /∈ J , and aτ if τ ∈ J .

The existence and uniqueness (for our fixed choice of Frobv) of ψ̃1, ψ̃2 is
straightforward (see [3]). Then we have

Definition 2.8 σ�a,�b ∈ W(ρ|GFv
) if and only if ρ|GFv

has a lift to a crystalline

representation
( ψ̃1 ∗

0 ψ̃2

)
.

Note that by Remark 3.10 of [3], and the regularity of σ�a,�b, this definition is
independent of the choice of Frobv .

For future reference, we say that a weight σ is partially ordinary of type
I for ρ if I is the set of places v|p for which σv is ordinary for ρ. We say
that ρ has a partially ordinary modular lift of type I if it has a potentially
Barsotti-Tate modular lift which is potentially ordinary at precisely the places
in I .

2.2 Relation to the Buzzard-Diamond-Jarvis conjecture

Our conjectured sets of regular weights are exactly the same as the regular
weights predicted in [3]. However, they work with indefinite quaternion alge-
bras rather than the definite ones of this paper, and in the absence of a mod
p Jacquet-Langlands correspondence our results do not automatically prove
cases of their conjectures. That said, our arguments are for the most part
purely local, with the only global input being in characteristic zero, where
one does have a Jacquet-Langlands correspondence. In particular, given the
analogue of Lemma 2.4 in the setting of [3] (cf. Proposition 2.10 of [3]) our
arguments will go over unchanged to their setting.
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3 Local analysis—the reducible case

3.1 Breuil modules

Let p > 2 be prime, let k be a finite extension of Fp , let K0 = W(k)[1/p], and
let K be a finite Galois totally tamely ramified extension of K0, of degree e.
Fix a subfield M of K0, and assume that there is a uniformiser π of OK such
that πe ∈ M , and fix such a π . Since K/M is tamely ramified (and automat-
ically Galois), the category of Breuil modules with coefficients and descent
data is easy to describe (see [21]). Let k ∈ [2,p − 1] be an integer (there
will never be any ambiguity in our two uses of the symbol k, one being a fi-
nite field and the other a positive integer). Let E be a finite extension field of
Fp . The category BrModk−1

dd,M consists of quintuples (M, Mk−1, φk−1, ĝ,N)

where:

• M is a finitely generated (k ⊗Fp
E)[u]/uep-module, free over k[u]/uep .

• Mk−1 is a (k ⊗Fp
E)[u]/uep-submodule of M containing ue(k−1)M.

• φk−1 : Mk−1 → M is E-linear and φ-semilinear (where φ : k[u]/uep →
k[u]/uep is the p-th power map) with image generating M as a (k ⊗Fp

E)[u]/uep-module.
• N : M → uM is (k ⊗Fp

E)-linear and satisfies N(ux) = uN(x) − ux

for all x ∈ M, ueN(Mk−1) ⊂ Mk−1, and φk−1(u
eN(x)) = (−πe/p) ×

N(φk−1(x)) for all x ∈ Mk−1.
• ĝ : M → M are additive bijections for each g ∈ Gal(K/M), preserving

Mk−1, commuting with the φk−1-, E-, and N -actions, and satisfying ĝ1 ◦
ĝ2 = ĝ1 ◦ g2 for all g1, g2 ∈ Gal(K/M), and 1̂ is the identity. Furthermore,
if a ∈ k ⊗Fp

E, m ∈ M then ĝ(auim) = g(a)((g(π)/π)i ⊗ 1)uiĝ(m).

We will omit M from the notation in the case M = K0. We write
BrModdd,M = BrMod1

dd,M . The category BrModdd,M is equivalent to the
category of finite flat group schemes over OK together with an E-action and
descent data on the generic fibre from K to M (this equivalence depends on
π ). In this case it follows from the other axioms that there is always a unique
N which satisfies the required properties, and we will frequently omit the
details of this operator when we are working in the case k = 2. In Sect. 3.4
we will also use the case k = p − 1, and here we will make the operators N

explicit.
We choose in this paper (except in Sect. 3.4) to adopt the conventions of

[4] and [20], rather than those of [2]; thus rather than working with the usual
contravariant equivalence of categories, we work with a covariant version of
it, so that our formulae for generic fibres will differ by duality and a twist
from those following the conventions of [2]. To be precise, we obtain the
associated GM -representation (which we will refer to as the generic fibre) of
an object of BrModdd via the functor T M

st,2, which is defined in Sect. 4 of [20].
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Let ρ : GK0 → GL2(E) be a continuous representation. We assume from
now on that E contains k. Suppose for the rest of this section that ρ is
reducible but not scalar, say ρ ∼ ( ψ1 ∗

0 ψ2

)
. Fix π = (−p)1/(pr−1), where

r = [k : Fp], and fix K = K0(π), so that π is a uniformiser of OK , the ring
of integers of K . By class field theory ψ1|IK

and ψ2|IK
are trivial.

We fix some general notation for elements of BrModdd . Let S denote the
set of embeddings τ : k ↪→ E. We have an isomorphism k ⊗Fp

E
∼−→ ⊕SEτ ,

where Eτ := k ⊗k,τ E, and we let ετ denote the idempotent corresponding
to the embedding τ . Then any element M of BrModdd can be decomposed
into E[u]/uep-modules Mτ := ετ M, τ ∈ S, so that ĝ : Mτ → Mτ , and
φ1 : Mτ

1 → Mτ◦φ−1
, so that M is free over (k ⊗Fp

E)[u]/uep . We now write
S = {τ1, . . . , τr}, numbered so that τi+1 = τi ◦ φ−1, where we identify τr+1
with τ1. In fact, it will often be useful to consider the indexing set of S to be
Z/rZ, and we will do so without further comment.

Fix J ⊂ S. We wish to single out particular representations ρ depend-
ing on J . Firstly, we need some notation. Recall that (as in Appendix B of
[9]) if ρ′ : GK0 → GL2(OL) is potentially Barsotti-Tate, where L is a fi-
nite extension of W(E)[1/p], then there is a Weil-Deligne representation
WD(ρ′) : WK0 → GL2(Qp) associated to ρ′, and we say that ρ′ has type
WD(ρ′)|IK0

.

Definition 3.1 We say that ρ has a lift of type J if there is a representation ρ′ :
GK0 → GL2(OL) lifting ρ, where L is a finite extension of W(E)[1/p], such
that ρ′ becomes Barsotti-Tate over K , with ε−1 detρ′ equal to the Teichmüller
lift of ε−1 detρ (with ε denoting the cyclotomic character) and ρ′ has type
ψ̃1|IK0

∏
τ∈J ω̃

−p
τ ⊕ ψ̃2|IK0

∏
τ /∈J ω̃

−p
τ . Here a tilde denotes the Teichmüller

lift.

Definition 3.2 For any subset H ⊂ S, we say that an element M of BrModdd

is of class H if it is of rank one, and for all τ ∈ S we can choose a basis eτ of
Mτ such that Mτ

1 is generated by ujτ eτ , where

jτ =
{

0 if τ ◦ φ−1 /∈ H,

e if τ ◦ φ−1 ∈ H.

Definition 3.3 We say that an element M of BrModdd is of type J if M is
an extension of an element of class J c by an element of class J , and we say
that ρ has a model of type J if there is an element of BrModdd of type J with
generic fibre ρ.

We will also refer to finite flat group schemes with descent data as being of
class J or of type J if they correspond to Breuil modules with descent data of
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this kind. The notions of having a model of type J and having a lift of type J

are closely related, although not in general equivalent. We will see in Sect. 3.3
that in sufficiently generic cases, if ρ has a model of type J then it has a lift
of type J , and in Sect. 3.5 we prove a partial converse (see Proposition 3.13).

3.2 Strongly divisible modules

In this section we prove that if ρ has a model of type J then it has a lift of
type J . We begin by recalling the definition and basic properties of strongly
divisible modules from [20]. For the purpose of giving these definitions we
return briefly to the general setting of K0 an unramified finite extension of
Qp and K a totally tamely ramified Galois extension of K0 of degree e, with
uniformiser π , satisfying πe ∈ M for some subfield M of K0.

Let L be a finite extension of Qp with ring of integers OL and residue field
E. Let SK be the ring

⎧
⎨

⎩

∞∑

j=0

rj
uj

�j/e�! , rj ∈ W(k), rj → 0 p-adically as j → ∞
⎫
⎬

⎭ ,

and let SK,OL
= SK ⊗Zp

OL. Let Fil1 SK,OL
be the p-adic completion of the

ideal generated by E(u)j /j !, j ≥ 1, where E(u) is the minimal polynomial of
π over K0. Let φ : SK,OL

→ SK,OL
be the unique O-linear, W(k)-semilinear

ring homomorphism with φ(u) = up , and let N be the unique W(k) ⊗ OL-
linear derivation such that N(u) = −u (so that Nφ = pφN ). One can check
that φ(Fil1 SK,OL

) ⊂ pSK,OL
, and we define φ1 : Fil1 SK,OL

→ SK,OL
by

φ1 = (φ|Fil1 SK,OL
)/p. One can check (see Sect. 4 of [20]) that if I is an

ideal of OL, then ISK,OL
∩ Fil1 SK,OL

= I Fil1 SK,OL
. We give SK an ac-

tion of Gal(K/M) via ring isomorphisms via the usual action on W(k), and
by letting ĝ(u) = (g(π)/π)u. We extend this action OL-linearly to SK,OL

.
We now define the category OL − Mod1

cris,dd,M , the category of strongly
divisible OL-modules with descent data from K to M .

Definition 3.4 A strongly divisible OL-module with descent data from K to
M is a finitely generated free SK,OL

-module M, together with a sub-SK,OL
-

module Fil1 M and a map φ : M → M, and additive bijections ĝ : M → M
for each g ∈ Gal(K/M), satisfying the following conditions:

(1) Fil1 M contains (Fil1 SK,OL
)M,

(2) Fil1 M ∩ I M = I Fil1 M for all ideals I in OL,
(3) φ(sx) = φ(s)φ(x) for s ∈ SK,OL

and x ∈ M,
(4) φ(Fil1 M) is contained in pM and generates it over SK,OL

,
(5) ĝ(sx) = ĝ(s)ĝ(x) for all s ∈ SK,OL

, x ∈ M, g ∈ Gal(K/M),
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(6) ĝ1 ◦ ĝ2 = ĝ1 ◦ g2 for all g1, g2 ∈ Gal(K/M),
(7) ĝ(Fil1 M) ⊂ Fil1 M for all g ∈ Gal(K/M), and
(8) φ commutes with ĝ for all g ∈ Gal(K/M).

Note that it is not immediately obvious that this definition is equivalent
to Definition 4.1 of [20], as we have made no mention of the operator N

of loc. cit. However, since OL is finite over Zp , it follows from part (1) of
Proposition 5.1.3 of [7] that any such operator N is unique. The existence
of an operator N satisfying all of the conditions of Definition 4.1 of [20]
except possibly for OL-linearity follows from the argument at the beginning
of Sect. 3.5 of [20]. To check OL-linearity it is enough (by Zp-linearity) to
check that N is compatible with the action of the units in OL, but this is clear
from the uniqueness of N .

By Proposition 4.13 of [20] (and the remarks immediately preceding it),
there is a functor T M

st,2 from the category OL − Mod1
cris,dd,M to the category

of GM -stable OL-lattices in representations of GM which become Barsotti-
Tate on restriction to GK . This functor preserves dimensions in the obvious
sense.

Recall also from Sect. 4.1 of [20] that there is a functor T0, compatible
with T M

st,2, from OL − Mod1
cris,dd,M to BrModdd,M . The functor T0 is given

by M �→ (M/mLM) ⊗SK
k[u]/uep .

3.3 Models of type J

We now wish to discuss the relationships between models of type J and lifts
of type J . With an eye to our future applications, we will often make a sim-
plifying assumption.

Definition 3.5 Say that ρ is J -regular if ψ1ψ
−1
2 |IK0

= ∏
τ∈J ω

bτ
τ

∏
τ∈J c ω

−bτ
τ

for some 2 ≤ bτ ≤ p − 2.

Suppose now that ρ has a model of type J . Recall that this means that,
with the notation of Sect. 3.1, we can write down a Breuil module M with
descent data whose generic fibre is ρ, which is an extension of a Breuil mod-
ule with descent data B by a Breuil module with descent data A, where A is
of class J and B is of class J c. Let ψ ′

i denote ψi |IK0
regarded as a character

of Gal(K/K0). By Theorem 3.5 and Example 3.7 of [21] we see that we can
choose bases for A and B so that they take the following form:

Aτi = E[u]/uep · eτi
,

Aτi

1 = E[u]/uep · ujτi eτi
,

φ1(u
jτi eτi

) = (a−1)ieτi+1,
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ĝ(eτi
) =

((
ψ ′

1

∏

σ∈J

ω−p
σ

)
(g)

)
eτi

,

Bτi = E[u]/uep · f τi
,

Bτi

1 = E[u]/uep · ue−jτi f τi
,

φ1(u
e−jτi f τi

) = (b−1)if τi+1
,

ĝ(f τi
) =

((
ψ ′

2

∏

σ /∈J

ω−p
σ

)
(g)

)
f τi

where a, b ∈ E×, the notation (x)i means x if i = 1 and 1 otherwise, and

jτi
=

{
e if τi+1 ∈ J,

0 if τi+1 /∈ J.

We now seek to choose a basis for M extending the basis {eτ } for A. Such
a basis will be given by lifting the f τ to elements fτ (where we mean lifting
under the map eτ �→ 0).

Lemma 3.6 Assume that ρ is J -regular and has a model M of type J . Then
for some choice of basis, we can write

Mτi = E[u]/uep · eτi
+ E[u]/uep · fτi

,

Mτi

1 = E[u]/uep · ujτi eτi
+ E[u]/uep · (ue−jτi fτi

+ λτi
uiτi eτi

),

φ1(u
jτi eτi

) = (a−1)ieτi+1,

φ1(u
e−jτi fτi

+ λτi
uiτi eτi

) = (b−1)ifτi+1,

ĝ(eτi
) =

((
ψ ′

1

∏

σ∈J

ω−p
σ

)
(g)

)
eτi

,

ĝ(fτi
) =

((
ψ ′

2

∏

σ /∈J

ω−p
σ

)
(g)

)
fτi
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where λτi
∈ E, with λτi

= 0 if τi+1 /∈ J , the iτi
are such that M1 is Galois-

stable and 0 ≤ iτi
≤ e − 1, and

jτi
=

{
e if τi+1 ∈ J,

0 if τi+1 /∈ J.

Proof Assume firstly that J �= S, and choose k so that τk+1 /∈ J . One can lift
f τk

to an element fτk
of φ1(Mτk−1), and in fact one can choose fτk

so that
for all g ∈ Gal(K/K0) we have

ĝ(fτk
) =

((
ψ ′

2

∏

σ /∈J

ω−p
σ

)
(g)

)
fτk

(the obstruction to doing this is easily checked to vanish, as the degree of
K/K0 is prime to p). As τk+1 /∈ J , we have jτk

= 0, so that eτk
and uefτk

must generate Mτk

1 .
Now, suppose inductively that for some i we have chosen fτi

and λτi
so

that Mτi

1 is generated by ujτi eτi
and (ue−jτi fτi

+ λτi
uiτi eτi

). Then we put
fτi+1 = φ1(u

e−jτi fτi
+ λτi

uiτi eτi
)/(b−1)i . Then fτi+1 is a lift of f τi+1

, and
the commutativity of φ1 and the action of Gal(K/K0) ensures that

ĝ(fτi+1) =
((

ψ ′
2

∏

σ /∈J

ω−p
σ

)
(g)

)
fτi+1 .

Then the fact that M1 is Gal(K/K0)-stable ensures that for some λti+1 ∈ E

we must have that u
jτi+1 eτi+1 and (u

e−jτi+1 fτi+1 + λτi+1u
iτi+1 eτi+1) generate

Mτi+1
1 , and of course if τi+2 /∈ J we can take λτi+1 = 0.
So, beginning at k we inductively define fτi

and λτi
for all i, which au-

tomatically satisfy all the required properties, except that we do not know
that

φ1(u
e−jτk−1 fτk−1 + λτk−1u

iτk−1 eτk−1) = (b−1)k−1fτk
.

However, because k + 1 /∈ J , we may replace fτk
with φ1(u

e−jτk−1 fτk−1 +
λτk−1u

iτk−1 eτk−1)/(b
−1)k−1 without altering the fact that

φ1(u
efτk

) = (b−1)kfτk+1,

so we are done.
Suppose now that J = S. Then we may carry out a similar inductive pro-

cedure starting with τ1, and we again define fτi
and λτi

for all i, satisfying all
the required properties, except that we do not know that

φ1(fτr + λτr u
iτr eτr ) = fτ1 .



16 T. Gee

We wish to redefine fτ1 to be φ1(fτr + λτr eτr ), and we claim that doing so
does not affect the relation

φ1(fτ1 + λτ1u
iτ1 eτ1) = b−1fτ2 .

To see this, note that we are modifying fτ1 by a multiple of eτ1 which is in the
image of φ1, which by considering the action of Gal(K/K0) must in fact be
of the form θupiτr eτ1 , with θ ∈ E and piτr ≡ iτ1 mod e. Now, the assumption
that ρ is S-regular means that iτ1 = e −∑r

l=1 pr−l(bτl+1 − 1) ≡ −bτ1 mod p,
with 2 ≤ bτl

≤ p − 2. Now, if we write piτr = iτ1 + me, we see that m ≡
iτ1 ≡ −bτ1 mod p, and since 2 ≤ bτ1 ≤ p − 2 we see that m ≥ 2. But then
φ1(θupiτr eτ1) = φ1(θuiτ1+(m−1)eueeτ1) is divisible by up(m−1)e and is thus 0,
as required. �

Theorem 3.7 Assume that ρ is J -regular and has a model of type J . Then
ρ has a lift of type J , which is potentially ordinary if and only if J = S or
J = ∅.

Proof We will write down an element MJ of W(E) − Modcris,dd,K0 such
that T0(MJ ) = M, where M is as in Lemma 3.6. We can write SK,W(E) as⊕

τ∈S SK , and we then define

Mτi

J = SK,W(E) · eτi
+ SK,W(E) · fτi

,

ĝ(eτi
) =

((
ψ̃ ′

1

∏

σ∈J

ω̃−p
σ

)
(g)

)
eτi

,

ĝ(fτi
) =

((
ψ̃ ′

2

∏

σ /∈J

ω̃−p
σ

)
(g)

)
fτi

.

If τi+1 ∈ J ,

Fil1 Mτi

J = Fil1 SK,W(E) · Mτi

J + SK,W(E) · (fτi
+ λ̃τi

uiτi eτi
),

φ(eτi
) = (ã−1)ieτi+1,

φ(fτi
+ λ̃τi

uiτi eτi
) = (b̃−1)ipfτi+1 .

If τi+1 /∈ J ,

Fil1 Mτi

J = Fil1 SK,W(E) · Mτi

J + SK,W(E) · eτi
,

φ(eτi
) = (ã−1)ipeτi+1,

φ(fτi
) = (b̃−1)ifτi+1 .
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Here a tilde denotes a Teichmüller lift.
Firstly we verify that this really is an element of W(E) − Mod1

cris,dd,K0
.

Of the properties in Definition 3.4, the only non-obvious points are that
Fil1 MJ ∩ I MJ = I Fil1 MJ for all ideals I of OL, and that φ(Fil1 MJ ) is
contained in pMJ and generates it over SK,W(E). But these are both straight-
forward; that Fil1 MJ ∩ I MJ = I Fil1 MJ follows at once from the defini-
tion of Fil1 MJ and the corresponding assertion for SK , and that φ(Fil1 MJ )

is contained in pMJ and generates it over SK,W(E) follows by inspection and
the corresponding assertions for SK .

It is immediate from the definition of T0 that T0(MJ ) � M. To see that
T

K0
st,2(MJ ) is a lift of ρ of type J , note firstly that the Hodge-Tate weights

of T
K0
st,2(MJ ) can be read off from the form of the filtration, exactly as in the

last two paragraphs of the proof of Theorem 6.1 of [16]. This shows that the
determinant is a finite order character times the cyclotomic character, and it
also shows that the representation is potentially ordinary if and only if J = S

or J = ∅. That the lift is of type J is then immediate from the form of the
Gal(K/K0)-action and Proposition 5.1 of [16]. �

3.4 Breuil modules and Fontaine-Laffaille theory

In this section we relate the notion of having a model of type J to that of
possessing a certain crystalline lift. Suppose as usual that ρ ∼ ( ψ1 ∗

0 ψ2

)
, and

that we can write ψ1|IK0
= ∏

τ∈J ω
bτ
τ , ψ2|IK0

= ∏
τ /∈J ω

bτ
τ with 2 ≤ bτ ≤

p − 2 (note that for a fixed J it is not always possible to do this, even after
twisting - indeed, up to twisting it is equivalent to ρ being J -regular). In
this case we define canonical crystalline lifts ψ1,J , ψ2,J of ψ1, ψ2, as in
Sect. 2. That is, we demand that for some choice of a Frobenius element
FrobK0 ∈ GK0 , ψi,J (FrobK0) is the Teichmüller lift of ψi(FrobK0), and that:

• ψ1,J is crystalline, and the Hodge-Tate weight of ψ1,J with respect to τ is
bτ if τ ∈ J , and 0 if τ /∈ J .

• ψ2,J is crystalline, and the Hodge-Tate weight of ψ2,J with respect to τ is
bτ if τ /∈ J , and 0 if τ ∈ J .

The main result of this section is

Proposition 3.8 Under the above hypotheses, ρ has a model of type J if and
only if ρ has a lift to a crystalline representation

( ψ1,J ∗
0 ψ2,J

)
.

Proof The idea of the proof is to express both the condition of having a model
of type J and the condition of having a crystalline lift of the prescribed type
in terms of conditions on strongly divisible modules. In fact, we already have
a description of the general model of type J in terms of Breuil modules with
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descent data, and it is easy to write down the general crystalline representation( ψ1,J ∗
0 ψ2,J

)
in terms of Fontaine-Laffaille theory. The only difficulty comes in

relating the generic fibres of the Breuil modules to the generic fibres of the
Fontaine-Laffaille modules, as the image of the functors describing passage
to the generic fibre is in general too complicated to describe directly. For-
tunately, it is relatively easy to compare the two generic fibres we obtain,
without explicitly determining either.

Let M ∈ BrModk−1
dd for some k ∈ [2,p − 1]. Let Â be the filtered ring

defined in Sect. 2.1 of [8]. There is a contravariant functor T ∗
st from BrModk−1

dd
to the category of E-representations of GK0 given by

T ∗
st (M) := Homk[u]/uep,φk−1,N,Fil·(M, Â)

(where compatibility with Fil· means that the image of Mk−1 is contained in
Filk−1 Â). The action of GK0 on T ∗

st (M) is given by

(gf )(x) := gf (̂g
−1

(x)),

where g is the image of g in Gal(K/K0), and the action of Gal(K/K0) on
Â = ÂK is defined in Sect. 4.2 of [8]. For the compatibility of this definition
with those used in [6], [10] and [20], see Lemma 3.3.1.2 of [5]. This functor is
exact and faithful, and preserves dimension in the obvious sense. To see these
properties, it is enough to work with the category BrModk−1 without descent
data, and it is also straightforward to see that it suffices to consider the case
E = Fp . In this case, the fact that T ∗

st is faithful is Corollary 2.3.3 of [10], and
exactness follows from Proposition 2.3.1 of [8] and the duality explained in
Sect. 2.1 of [8]. The preservation of dimension is Lemma 2.3.1.2 of [6].

We will see below that by Breuil’s generalisation of Fontaine-Laffaille the-
ory (see [5]) there are objects of BrModp−2

dd which correspond via T ∗
st to the

reductions mod π of crystalline representations with Hodge-Tate weights in
[0,p − 2]. In order to compare the generic fibres of these Breuil modules
to those of finite flat group schemes with descent data, we need to be able
to compare elements of BrMod1

dd and BrModp−2
dd . This is straightforward:

it is easy to check that there is a fully faithful functor from BrMod1
dd to

BrModp−2
dd , given by defining (for M ∈ BrMod1

dd ) Mp−2 := ue(p−3)M1,
φp−2(u

e(p−3)x) = φ1(x) for all x ∈ M1, and leaving the other structures un-
changed. This functor commutes with T ∗

st .
Because we are now using the functor T ∗

st rather than T
K0
st,2, the form of

the Breuil modules (and in particular their descent data) corresponding to
models of type J under T ∗

st is slightly different. We will simultaneously write

it as an element of BrMod1
dd and BrModp−2

dd (making use of the fully faithful
functor of the previous paragraph), by specifying M1, Mp−2, φ1 and φp−2.
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Explicitly, we see (recalling that the operator N is uniquely determined for an
element of BrMod1

dd , so it suffices to check that it satisfies N(M) ⊂ uM and
the commutation relations with φ1 and ĝ, which we will check below) from
Lemma 3.6 that ρ has a model of type J if and only if there are λτi

∈ E with
λτi

= 0 if τi+1 /∈ J , and elements a, b ∈ E× such that ρ ∼= T ∗
st (M), where

Mτi = E[u]/uep · eτi
+ E[u]/uep · fτi

,

Mτi

1 = E[u]/uep · ujτi eτi
+ E[u]/uep · (ue−jτi fτi

+ λτi
uiτi eτi

),

Mτi

p−2 = E[u]/uep · u(p−3)e+jτi eτi

+ E[u]/uep · (u(p−2)e−jτi fτi
+ λτi

u(p−3)e+iτi eτi
),

φ1(u
jτi eτi

) = (a−1)ieτi+1,

φ1(u
e−jτi fτi

+ λτi
uiτi eτi

) = (b−1)ifτi+1,

φp−2(u
(p−3)e+jτi eτi

) = (a−1)ieτi+1,

φp−2(u
(p−2)e−jτi fτi

+ λτi
u(p−3)e+iτi eτi

) = (b−1)ifτi+1,

ĝ(eτi
) =

((
∏

σ /∈J

ωp−bσ
σ

)
(g)

)
eτi

,

ĝ(fτi
) =

((
∏

σ∈J

ωp−bσ
σ

)
(g)

)
fτi

,

N(eτi
) = 0,

N(fτi
) = − (b)i−1

(a)i−1
iτi−1λτi−1u

piτi−1 eτi

where λτi
∈ E, with λτi

= 0 if τi+1 /∈ J , the iτi
are such that Mp−2 is Galois-

stable and 0 ≤ iτi
≤ e − 1, and

jτi
=

{
e if τi+1 ∈ J,

0 if τi+1 /∈ J.

To see that N(M) ⊂ uM, it is enough to check that iτi
> 0 for all i. In fact,

we claim that we have piτi
≥ e for all i. To see this, note that by definition we
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have iτi+1 ≡ piτi
(mod e). If piτi

< e for some i, then this congruence forces
iτi+1 = piτi

. However, it is easy to check that since 2 ≤ bτi
≤ p − 2 for all i,

no iτi
is divisible by p (for example, by (6) below we have

iτi
≡ bτi

(δJ c(τi) − δJ (τi)) − δJ c(τi+1) (mod p),

which is never 0 (mod p)), so the claim follows. The compatibility of N with
ĝ is evident from the definition of iτi

.
To see that ueN(M1) ⊂ M1, and that φ1(u

eN(x)) = N(φ1(x)) for all
x ∈ M1, we compute as follows (recalling that the Leibniz rule implies that
N(uix) = uiN(x) − iuix):

N(ujτi eτi
) = −jτi

ujτi eτi
∈ M1,

so that

φ1(u
eN(ujτi eτi

)) = 0 = N((a−1)ieτi+1) = N(φ1(u
jτi eτi

)).

Similarly, we have

N(ue−jτi fτi
+ λτi

uiτi eτi
) = − (b)i−1

(a)i−1
iτi−1λτi−1u

e−jτi
+piτi−1 eτi

−
(
(e − jτi

)ue−jτi fτi
+ iτi

λτi
uiτi eτi

)
.

Recalling that if y ∈ M1 then φ1(u
ey) = 0, we see that it is enough to com-

pute the right hand side modulo M1. Since piτi−1 ≥ e, the exponent of u in
the first term on the right hand side is at least 2e − jτi

≥ jτi
, so this term is

contained in M1. We thus see that modulo M1, the right hand side is con-
gruent to

(e − jτi
− iτi

)λτi
uiτi eτi

= −iτi
λτi

uiτi eτi

(since if λτi
�= 0, we have τi+1 ∈ J , so that jτi

= e). Then

φ1(−ueiτi
λτi

uiτi eτi
) = φ1(−iτi

λτi
uiτi ujτi eτi

)

= −iτi
λτi

upiτi (a−1)ieτi+1

= (b−1)iN(fτi+1)

= N(φ1(u
e−jτi fτi

+ λτi
uiτi eτi

))

as required.
It is an easy exercise to write down the reductions mod p of the strongly

divisible modules corresponding to crystalline representations
( ψ1,J ∗

0 ψ2,J

)
, as
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we now explain. Firstly, we must recall one of the main results of [12]. Let
L be a finite extension of Qp with residue field E. We say that an admissible
OL-lattice is a finite free (OK0 ⊗Zp

OL)-module M together with a decreas-
ing filtration Fili M by OK0 -direct summands and φ-linear, OL-linear maps
φi : Fili M → M for all 0 ≤ i ≤ p − 2 such that

• Fil0 M = M and Filp−1 M = 0.
• For all 0 ≤ i ≤ p − 3, φi |Fili+1 M = pφi+1.

• ∑p−2
i=0 φi(Fili M) = M .

There is an exact functor T ∗
cris from the category of admissible OL-lattices to

the category of GK0 -representations on free OL-lattices defined by

T ∗
cris(M) = HomOK0 ,Fil·,φ(M,Acris).

This gives an equivalence of categories between the category of admissi-
ble OL-lattices and the category of GK0 -stable OL-lattices in crystalline L-
representations in GK0 with all Hodge-Tate weights in [0,p − 2].

In particular, one can easily write down the form of the rank one OL-
lattices corresponding to the characters ψ1,J and ψ2,J , and we must then
compute the possible form of extensions of these two lattices. As usual, we
decompose M as a direct sum of OL-modules Mτi . We obtain the following
general form:

Mτi = OLEτi
+ OLFτi

,

Fil0 Mτi = Mτi ,

Filbτi
+1 Mτi = 0,

if τi ∈ J, Filj Mτi = OLFτi
for all 1 ≤ j ≤ bτi

,

if τi ∈ J c, Filj Mτi = OLEτi
for all 1 ≤ j ≤ bτi

,

if τi ∈ J, φ0(Eτi
) = (ã−1)iEτi+1 and

φbτi
(Fτi

) = (b̃−1)i(Fτi+1 − λ′
τi
Eτi+1),

if τi /∈ J, φbτi
(Eτi

) = (ã−1)iEτi+1 and

φ0(Fτi
) = (b̃−1)i(Fτi+1 − λ′

τi
Eτi+1)

where ã, b̃ ∈ O×
L , λ′

τi
∈ OL, and λ′

τi
= 0 if τi+1 /∈ J . To see this, note that

the form of the filtration is easily deduced from the relationship between the
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filtration of a Fontaine-Laffaille module, and the Hodge-Tate weights of the
corresponding Galois representation, and the form of the Frobenius action on
the Eτi

is also determined. To see that we can arrange the Frobenius action as
claimed, suppose firstly that J �= ∅, and choose τi ∈ J . Then Fτi

is determined
(by the form of the filtration) up to an element of O×

L , and we fix a choice of
Fτi

. If τi+1 /∈ J , we can simply define Fτi+1 = (b̃)iφbτi
(Fτi

). If τi+1 ∈ J , then
there is a unique λ′

τi
∈ OL such that

Filbτi+1 Mτi+1 = OL((b̃)iφbτi
(Fτi

) + λ′
τi
Eτi+1),

and we set

Fτi+1 = (b̃)iφbτi
(Fτi

) + λ′
τi
Eτi+1 .

We can then continue in the same fashion, defining Fτi+2 and so on, and the
fact that τi ∈ J gives us the freedom to choose λ′

τi−1
so that

φδJ (τi−1)bτi−1
(Fτi−1) = (b̃−1)i−1(Fτi

− λ′
τi−1

Eτi
).

The case J = ∅ is similar, except that one may need to modify the initial
choice of Fτi

; the argument is very similar to that used in the case J = S

in the proof of Lemma 3.6. In this case one also needs to use the fact that
b̃−1 − ã−1p

∑
τ∈S bτ ∈ O×

L , which holds as
∑

τ∈S bτ > 0.
Breuil’s generalisation of Fontaine-Laffaille theory ([5]) allows us to re-

duce these modules mod πL and obtain the corresponding elements of the
category K0 − BrModp−2

dd,K0
of Breuil modules with descent data for the case

K = K0 (so that the descent data is trivial, as the group Gal(K/K0) is trivial).
We find that they are of the form:

Qτi = E[u]/up · Eτi
+ E[u]/up · Fτi

,

Qτi

p−2 = E[u]/up · u(p−2−bτi
δJc (τi ))Eτi

+ E[u]/up · u(p−2−bτi
δJ (τi ))Fτi

,

φp−2(u
(p−2−bτi

δJc (τi ))Eτi
) = (a−1)iEτi+1,

φp−2(u
(p−2−bτi

δJ (τi ))Fτi
) = (b−1)i(Fτi+1 − λ′

τi
Eτi+1),

N(Eτi
) = 0,

N(Fτi
) = 0

where λ′
τi

∈ E, with λ′
τi

= 0 if τi+1 /∈ J .

Of course, we wish to know the corresponding objects of BrModp−2
dd . This

is straightforward: by Proposition 4.2.2 of [8], and the discussion preceding
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and following it, we see that we can obtain the requisite modules by simply
taking the extension of scalars k[u]/up → k[u]/uep given by u �→ ue, and al-
lowing Gal(K/K0) to act via its action on k[u]/uep . We obtain the following
general form:

N τi = E[u]/uep · Eτi
+ E[u]/uep · Fτi

,

N τi

p−2 = E[u]/uep · ue(p−2−bτi
δJc (τi ))Eτi

+ E[u]/uep · ue(p−2−bτi
δJ (τi ))Fτi

,

φp−2(u
e(p−2−bτi

δJc (τi ))Eτi
) = (a−1)iEτi+1,

φp−2(u
e(p−2−bτi

δJ (τi ))Fτi
) = (b−1)i(Fτi+1 − λ′

τi
Eτi+1),

ĝ(Eτi
) = Eτi

,

ĝ(Fτi
) = Fτi

,

N(Eτi
) = 0,

N(Fτi
) = 0

where λ′
τi

∈ E, with λ′
τi

= 0 if τi+1 /∈ J . We claim that if for each i we have

λτi
(b)i = λ′

τi
(a)i (3.1)

then T ∗
st (M) ∼= T ∗

st (N ). This is of course enough to demonstrate the proposi-
tion, as given any set of λτi

(respectively λ′
τi

) such that λτi
= 0 (respectively

λ′
τi

= 0) if τi+1 /∈ J , we may choose a set of λ′
τi

(respectively λτi
) so that (3.1)

holds.
Assume now that (3.1) holds. Note that we may write both M and N as

extensions

0 → M′′ → M → M′ → 0,

0 → N ′′ → N → N ′ → 0

with T ∗
st (M′′) ∼= T ∗

st (N ′′) ∼= ψ2, T ∗
st (M′) ∼= T ∗

st (N ′) ∼= ψ1.
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To prove that T ∗
st (M) ∼= T ∗

st (N ), we will construct a commutative diagram

0 M′′

fM′′

M

fM

M′

fM′

0

0 P ′′ P P ′ 0

0 N ′′

fN ′′

N

fN

N ′

fN ′

0

such that each of T ∗
st (fM′′), T ∗

st (fM′), T ∗
st (fN ′′) and T ∗

st (fN ′) are isomor-
phisms. From the five lemma it then follows that T ∗

st (fM) and T ∗
st (fN ) are

isomorphisms, and we will be done.
In fact, we take

P τi = E[u]/uep · e′
τi

+ E[u]/uep · f ′
τi
,

P τi

p−2 = E[u]/uep · unτi e′
τi

+ E[u]/uep · (un′
τi f ′

τi
+ λτi

u
nτi

−βτi+1 e′
τi
),

φp−2(u
nτi e′

τi
) = (a−1)ie

′
τi+1

,

φp−2(u
n′

τi f ′
τi

+ λτi
u

nτi
−βτi+1 e′

τi
) = (b−1)if

′
τi+1

,

ĝ(e′
τi
) = ν1,τi

(g)e′
τi
,

ĝ(f ′
τi
) = ν2,τi

(g)f ′
τi
,

N(e′
τi
) = 0,

N(f ′
τi
) = − (b)i−1

(a)i−1
iτi−1λτi−1u

piτi−1−pατi e′
τi

where

ατi
=

r−1∑

j=0

pr−1−j
(
bτi+j

δJ c(τi+j ) − δJ c(τi+j+1)
)
,

βτi
=

r−1∑

j=0

pr−1−j
(
bτi+j

δJ (τi+j ) − δJ (τi+j+1)
)
,
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ν1,τi
(g) =

{∏
σ /∈J ω

p−bσ
σ (g) if τi /∈ J,

1 if τi ∈ J,

ν2,τi
(g) =

{∏
σ∈J ω

p−bσ
σ (g) if τi ∈ J,

1 if τi /∈ J,

nτi
= (p − 2 − δJ c(τi)bτi

)e + pδJc(τi)ατi
− δJ c(τi+1)ατi+1,

n′
τi

= (p − 2 − δJ (τi)bτi
)e + pδJ (τi)βτi

− δJ (τi+1)βτi+1 .

We then define fM and fN by

fM(eτi
) = u−pατi

δJ (τi )e′
τi
,

fM(fτi
) = u−pβτi

δJc (τi )f ′
τi
,

fN (Eτi
) = upατi

δJc (τi )e′
τi
,

fN (Fτi
) = upβτi

δJ (τi )f ′
τi
.

We define P ′ to be the submodule generated by the e′
τi

, and P ′′ to be the
quotient obtained by e′

τi
�→ 0. The remaining maps are then defined by the

commutativity of the diagram.
Before we verify that this construction behaves as claimed, we pause to

record a number of useful identities and inequalities.

(1) If τi+1 /∈ J , then λτi
= λ′

τi
= 0 by definition.

(2)

pατi
− ατi+1 = e(bτi

δJ c(τi) − δJ c(τi+1)),

pβτi
− βτi+1 = e(bτi

δJ (τi) − δJ (τi+1)).

These both follow immediately from the definitions of ατi
, βτi

.
(3)

nτi
= ατi+1δJ (τi+1) − pατi

δJ (τi) + e(p − 3) + eδJ (τi+1),

n′
τi

= βτi+1δJ c(τi+1) − pβτi
δJ c(τi) + e(p − 3) + eδJ c(τi+1).

These both follow from the definitions of nτi
, n′

τi
and property (2) above.

(4) We have τi ∈ J if and only if βτi
> 0 if and only if ατi

≤ 0. To see this,
note that from the definition, the sign of ατi

is determined by the sign
of the first non-zero term in the sum (this uses that 2 ≤ bτj

≤ p − 2).
If τi /∈ J then the first term is positive, and thus so is the whole sum.
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If τi ∈ J then either every term in the sum is zero, or the first non-zero
term must be negative. A similar analysis applies to the sign of βτi

.
(5)

−e/(p − 1) < ατi
, βτi

< e(p − 2)/(p − 1).

This is immediate from the definitions, and the fact that 2 ≤ bτj
≤ p − 2

for all j .
(6)

iτi−1 = ατi
− βτi

+ eδJ (τi).

It follows straightforwardly from the forms of the ĝ-actions that the two
side are congruent modulo e, so it suffices to check that the right hand
side is an element of [0, e − 1]. This follows from points (4) and (5).

(7)

(p − 2)e ≥ nτi
, nτi

≥ 0.

We demonstrate these inequalities for nτi
, the argument for n′

τi
being

formally identical after exchanging ατj
and βτj

, J and J c. We examine
4 cases in turn. If τi ∈ J and τi+1 ∈ J , then nτi

= (p − 2)e and there is
nothing to prove. If τi ∈ J and τi+1 /∈ J , then nτi

= (p − 2)e − ατi+1 ,
and the inequalities follow from points (4) and (5) above. If τi /∈ J and
τi+1 ∈ J then by point (3) above we have nτi

= (p − 2)e + ατi+1 , and
the inequalities follow from (4) and (5). Finally, if τi /∈ J and τi+1 /∈ J ,
then nτi

= (p − 2 − bτi
)e + pατi

− ατi+1 = e(p − 3) by (2).
(8) If τi+1 ∈ J , we have

nτi
− βτi+1 = e(p − 3) − pατi

δJ (τi) + iτi
.

This follows from (3) and (6) above.
(9) If τi+1 ∈ J , then

nτi
− βτi+1 ≡ n′

τi
+ iτi

(mod p).

This follows from (3) and (8).
(10) If τi+1 ∈ J , then nτi

≥ βτi+1 . This follows from (4) and (8).
(11) If τi+1 ∈ J , then

n′
τi

+ βτi+1 ≤ e(p − 2).

From (2) and (3), we obtain

n′
τi

+ βτi+1 = e(p − 2) + δJ (τi)(pβτi
− ebτi

),
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so we must check that if τi ∈ J , then pβτi
− ebτi

≤ 0. But by the defini-
tion of βτi

, if τi ∈ J then we have

pβτi
− ebτi

= −pr + bτi
+

r−1∑

j=1

pr−j
(
bτi+j

δJ (τi+j ) − δJ (τi+j+1)
)

and the result follows as 2 ≤ bτj
≤ p − 2 for all j .

(12) If τi ∈ J , then

n′
τi

+ piτi−1 − pατi
≥ nτi

.

To see this, by (2), (3) and (6) we have that if τi+1 ∈ J , then

n′
τi

+ piτi−1 − pατi
− nτi

= (p − 1)e − pβτi

≥
(

(p − 1) − p(p − 2)

p − 1

)
e

≥ 0

by (5). If on the other hand τi+1 /∈ J , we find that

n′
τi

+ piτi−1 − pατi
− nτi

= (p + 1 − bτi
)e + pατi

≥ 3e + pατi

≥
(

3 − p

p − 1

)
e

≥ 0

by (5).

We now verify that P is indeed an object of BrModp−2
dd .

• To see that we have defined a (k ⊗Fp
E)[u])/uep-module, we must check

that all of the exponents of u in the definition are nonnegative; so, we need
to check the inequalities nτi

≥ 0, n′
τi

≥ 0, and if λτi
�= 0 we need to verify

that nτi
≥ βτi+1 . These follow from (1), (7) and (10) above.

• To see that ue(p−2)P ⊂ Pp−2, we need to verify that (p − 2)e ≥ nτi
, that

(p − 2)e ≥ n′
τi

, and if λτi
�= 0 then (p − 2)e ≥ n′

τi
+ βτi+1 . These follow

from (1), (7) and (11).
• To see that N(P) ⊂ uP , we need to check that if λτi−1 �= 0 then iτi−1 > ατi

.
This follows from (1), (5) and (6).

• To see that ueN(Pp−2) ⊂ Pp−2, we note by the Leibniz rule we have

N(unτi e′
τi
) = −nτi

unτi e′
τi

∈ Pp−2
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and

N(u
n′

τi f ′
τi

+ λτi
u

nτi
−βτi+1 e′

τi
)

= − (b)i−1

(a)i−1
iτi−1λτi−1u

n′
τi

+piτi−1−pατi e′
τi

− n′
τi
u

n′
τi f ′

τi
− λτi

(nτi
− βτi+1)u

nτi
−βτi+1 e′

τi
.

By (1) and (12), the first time on the right hand side is contained in Pp−2.
By (9), the remaining terms are equal to

−n′
τi
(u

n′
τi f ′

τi
+ λτi

u
nτi

−βτi+1 e′
τi
) − λτi

iτi
u

nτi
−βτi+1 e′

τi
.

The first term is contained in Pp−2 by definition, and if we multiply the
second term by ue, we obtain

−λτi
iτi

u
nτi

+e−βτi+1 e′
τi
,

which is contained in Pp−2 by (5).
• To see that φp−2(u

eN(x)) = N(φp−2(x)) for all x ∈ Pp−2, we recall that
φp−2(u

ey) = 0 if y ∈ Pp−2. Thus

φp−2(u
eN(unτi e′

τi
)) = 0 = N((a−1)ie

′
τi+1

) = N(φp−2(u
nτi e′

τi
)).

We also have, using (1), (6) and the calculation of the previous bullet point,

φp−2(u
eN(u

n′
τi f ′

τi
+ λτi

u
nτi

−βτi+1 e′
τi
))

= φp−2(−λτi
iτi

u
nτi

+e−βτi+1 e′
τi
)

= −λτi
iτi

up(e−βi+1)(a−1)ie
′
τi+1

= −λτi
iτi

u
p(iτi −ατi+1 )

(a−1)ie
′
τi+1

= (b−1)iN(f ′
τi+1

)

= N(φp−2(u
n′

τi f ′
τi

+ λτi
u

nτi
−βτi+1 e′

τi
)).

• That Pp−2 is ĝ-stable follows directly from the definitions of βτi
, nτi

and
n′

τi
.

• That the action of ĝ commutes with φp−2 follows from the definition of nτi

and n′
τi

.
• That the action of ĝ commutes with N follows from (6).

We now verify the claimed properties of fM and fN .
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• In order that the maps fM and fN be defined, it is necessary that the ex-
ponents of u in their definition be non-negative. This follows from (4).

• To see that fM(Mp−2) ⊂ Pp−2 and fN (Np−2) ⊂ Pp−2, we compute as
follows.

fM(u(p−3)e+jτi eτi
) = u(p−3)e+jτi

−nτi
−pατi

δJ (τi )unτi e′
τi

= u
−δJ (τi+1)ατi+1 (unτi e′

τi
)

by (3) and the definition of jτi
. Similarly, by using (1), (3) and (6), we find

that

fM(u(p−2)e−jτi fτi
+ λτi

u(p−3)e+iτi eτi
)

= u
−βτi+1δJc (τi+1)(u

n′
τi f ′

τi
+ λτi

u
nτi

−βτi+1 e′
τi
).

In the same way, using (1) and the definitions of nτi
and n′

τi
,

fN (ue(p−2−bτi
δJc (τi ))Eτi

) = u
δJc (τi+1)ατi+1 (unτi e′

τi
),

fN (ue(p−2−bτi
δJ (τi ))Fτi

)

= u
δJ (τi+1)βτi+1 (u

n′
τi f ′

τi
+ λτi

u
nτi

−βτi+1 e′
τi
) − λτi

unτi e′
τi
.

The result then follows from (4).
• To check that fM and fN commute with φp−2, we again compute directly.

We have

fM(φp−2(u
(p−3)e+jτi eτi

)) = fM((a−1)ieτi+1)

= (a−1)iu
−pατi+1δJ (τi+1)e′

τi+1
,

while

φp−2(fM(u(p−3)e+jτi eτi
)) = φp−2(u

−δJ (τi+1)ατi+1 (unτi e′
τi
))

= (a−1)iu
−pατi+1δJ (τi+1)e′

τi+1
.

Similarly, we find

fM(φp−2(u
(p−2)e−jτi fτi

+ λτi
u(p−3)e+iτi eτi

))

= fM((b−1)ifτi+1)

= (b−1)iu
−pβτi+1δJc (τi+1)f ′

τi+1
,
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φp−2(fM(u(p−2)e−jτi fτi
+ λτi

u(p−3)e+iτi eτi
)))

= φp−2(u
−βτi+1δJc (τi+1)(u

n′
τi f ′

τi
+ λτi

u
nτi

−βτi+1 e′
τi
)))

= (b−1)iu
−pβτi+1δJc (τi+1)f ′

τi+1
,

fN (φp−2(u
e(p−2−bτi

δJc (τi ))Eτi
)) = fN ((a−1)iEτi+1)

= (a−1)iu
pδJc (τi+1)ατi+1 e′

τi+1
,

φp−2(fN (ue(p−2−bτi
δJc (τi ))Eτi

)) = φp−2(u
δJc (τi+1)ατi+1 (unτi e′

τi
)

= (a−1)iu
pδJc (τi+1)ατi+1 e′

τi+1
,

fN (φp−2(u
e(p−2−bτi

δJ (τi ))Fτi
))

= fN ((b−1)i(Fτi+1 − λ′
τi
Eτi+1))

= (b−1)i(u
pδJ (τi+1)βτi+1 f ′

τi+1
− λ′

τi
u

pδJc (τi+1)ατi+1 e′
τi+1

),

φp−2(fN (ue(p−2−bτi
δJ (τi ))Fτi

))

= φp−2(u
δJ (τi+1)βτi+1 (u

n′
τi f ′

τi
+ λτi

u
nτi

−βτi+1 e′
τi
) − λτi

unτi e′
τi
)

= u
pδJ (τi+1)βτi+1 (b−1)if

′
τi+1

− λτi
(a−1)ie

′
τi+1

.

The result follows, because λτi
(a−1)i = λ′

τi
(b−1)i by ((3.1)), and if λτi

�= 0
then δJ c(τi+1) = 0 by (1).

• To check that fM and fN commute with N , we again compute directly.
We have

N(fM(eτi
) = N(u−pατi

δJ (τi )e′
τi
)

= −pατi
δJ (τi)u

−pατi
δJ (τi )e′

τi

= 0

= fM(N(eτi
)).

Similarly,

N(fM(fτi
)) = N(u−pβτi

δJc (τi )f ′
τi
)

= u−pβτi
δJc (τi )N(f ′

τi
)
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= − (b)i−1

(a)i−1
iτi−1λτi−1u

piτi−1−pατi
−pβτi

δJc (τi )e′
τi
,

while

fM(N(fτi
)) = fM

(
− (b)i−1

(a)i−1
iτi−1λτi−1u

piτi−1 eτi

)

= − (b)i−1

(a)i−1
iτi−1λτi−1u

piτi−1−pατi
δJ (τi )e′

τi
,

and these two expressions are equal by (1). In the same fashion, we find
that

N(fN (Eτi
)) = fN (N(Eτi

)) = 0,

while

fN (N(Fτi
)) = fN (0) = 0,

and

N(fN (Fτi
)) = N(upβτi

δJ (τi )f ′
τi
)

= − (b)i−1

(a)i−1
iτi−1λτi−1u

piτi−1−pατi
+pβτi

δJ (τi )e′
τi
.

If τi /∈ J , this expression is 0 by (1). On the other hand, if τi ∈ J , then the
exponent of u in this expression is p(iτi−1 − ατi

+ βτi
) = pe by (6), so the

expression is again 0, as required.
• Finally, that fM and fN commute with ĝ follows directly from the defini-

tions of ατi
and βτi

.

It is clear from the construction that the maps fM′′ , fM′ , fN ′′ and fN ′ are
nonzero. Since T ∗

st is faithful, the maps T ∗
st (fM′′), T ∗

st (fM′), T ∗
st (fN ′′) and

T ∗
st (fN ′) are all nonzero, and are thus isomorphisms (as they are maps be-

tween one-dimensional E-vector spaces). The result follows. �

3.5 Weights and types

We recall some definitions and results from [11]. Fix, as ever, ρ ∼ ( ψ1 ∗
0 ψ2

)
.

We make the following definitions:

Definition 3.9 A weight σ�a,�b is compatible with ρ (via J ) if and only if there
exists a subset J ∈ S so that

ψ1|IK0
=

∏

τ∈S

ωaτ
τ

∏

τ∈J

ωbτ
τ , ψ2|IK0

=
∏

τ∈S

ωaτ
τ

∏

τ /∈J

ωbτ
τ .
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Suppose that these equations hold. We define

cτi
=

{
bτi

− δJ (τi+1) if τi ∈ J,

p − bτi
− δJ (τi+1) if τi /∈ J

where δJ is the characteristic function of J . Define a character χ�a,�b,J
by

χ�a,�b,J
=

∏

τi∈S

ω
aτi
τi

∏

τi /∈J

ω
bτi

−p
τi

.

Suppose that the cτ are not all equal to either 0 or p − 1. Then we define a
representation I�a,�b,J

of GL2(k) and a type τ�a,�b,J
by

I�a,�b,J
= I

(
χ̃�a,�b,J

, χ̃�a,�b,J

∏

τ∈S

ω̃cτ
τ

)
,

τ�a,�b,J
= χ̃�a,�b,J

⊕ χ̃�a,�b,J

∏

τ∈S

ω̃cτ
τ .

Note that if ρ is compatible with σ�a,�b, then a lift of type J is precisely a lift
of type τ�a,�b,J

with specified determinant.

Proposition 3.10 Suppose that σ�a,�b is regular. If ρ is compatible with σ�a,�b
via J , then ρ is compatible with precisely one of the Jordan-Hölder factors
of the reduction mod p of I�a,�b,J

, and that factor is isomorphic to σ�a,�b.

Proof We use the explicit computations of [11]. Firstly, note that reduction
mod p and the notion of compatibility both commute with twisting, so we
may replace ρ by ρ ⊗ χ−1

�a,�b,J
. By Proposition 1.1 of [11], we have I �a,�b,J

∼
⊕

K⊂S σ�aK,�bK
where aK and bK are defined as follows:

aK,τi
=

{
0 if τi ∈ K,

cτi
+ δK(τi+1) if τi /∈ K,

bK,τi
=

{
cτi

+ δK(τi+1) if τi ∈ K,

p − cτi
− δK(τi+1) if τi /∈ K.

By the definition of the cτ , we see at once that σ�aJ ,�bJ
= σ�a,�b, and in fact

ψ1|IK0
=

∏

τ∈S

ω
aJ,τ
τ

∏

τ∈J

ω
bJ,τ
τ , ψ2|IK0

=
∏

τ∈S

ω
aJ,τ
τ

∏

τ /∈J

ω
bJ,τ
τ .
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If ρ is compatible with another Jordan-Hölder factor, there are subsets J ′,
K ′ ⊂ S, J ′ �= J such that

ψ1|IK0
=

∏

τ∈S

ω
aJ,τ
τ

∏

τ∈J

ω
bJ,τ
τ =

∏

τ∈S

ω
aJ ′,τ
τ

∏

τ∈K ′
ω

bJ ′,τ
τ ,

ψ2|IK0
=

∏

τ∈S

ω
aJ,τ
τ

∏

τ /∈J

ω
bJ,τ
τ =

∏

τ∈S

ω
aJ ′,τ
τ

∏

τ /∈K ′
ω

bJ ′,τ
τ .

Using the formulae above, the first equation simplifies to

∏

τi∈S

ω
cτi

+δJ (τi+1)
τi

=
∏

τi∈(J ′∩K ′)∪(J ′c∩K ′c)
ω

cτi
+δJ ′ (τi+1)

τi

∏

τi+1∈K ′∩J ′c
ωτi

.

By the assumption that σ�a,�b is regular, we have 1 ≤ cτi
≤ p − 2 and 2 ≤ cτi

+
δJ (τi+1) ≤ p − 2 for each i. Then we see that we can equate the exponents
of ωτi

on each side of each equation, and we easily obtain (J ′ ∩ K ′) ∪ (J ′c ∩
K ′c) = S, whence J ′ = K ′. But then the equation becomes

∏

τi∈S

ω
δJ (τi+1)
τi

=
∏

τi∈S

ω
δJ ′ (τi+1)
τi

,

whence J = J ′, a contradiction. �

Remark 3.11 Note that it follows from the formulae in the proof of Propo-
sition 3.10 that if σ�a,�b is regular, then all the Jordan-Hölder factors of the
reduction mod p of I�a,�b,J

are weakly regular.

Proposition 3.12 Let θ1, θ2 be two tamely ramified characters of IK0 which
extend to GK0 . If ρ has a potentially Barsotti-Tate lift (with determinant equal
to a finite order character times the p-adic cyclotomic character) of type θ1 ⊕
θ2, then ρ is compatible with some weight occurring in the mod p reduction
of I (θ1, θ2).

Proof This follows easily from consideration of the possible Breuil modules
corresponding to the πL-torsion in the p-divisible group of such a lift (where
the corresponding Galois representation is valued in OL, and πL is a uni-
formiser of OL). The case θ1 = θ2 is easier, so from now on we assume that
θ1 �= θ2. The πL-torsion must contain a closed sub-group-scheme (with de-
scent data) with generic fibre ψ1. Suppose that this group scheme corresponds
to a Breuil module with descent data M. Then we can choose a basis so that
M takes the following form:

Mτi = E[u]/uep · xτi
,



34 T. Gee

Mτi

1 = E[u]/uep · uri xτi
,

φ1(u
ri xτi

) = (a−1)ixτi+1,

ĝ(xτi
) = θi(g)xτi

.

Here 0 ≤ ri ≤ e is an integer, and θi : Gal(K/K0) → E× is a character.
Now, by Corollary 5.2 of [16], because the lift is of type θ1 ⊕ θ2, we must
have θi = θ1 or θ2 for each i (here and below we denote the reduction mod p

of the θi by the same symbol). Define subsets Y , Z by

Y = {τi ∈ S|θi �= θi+1},

Z = {τi ∈ S|θi = θ1}.
Because θ1 �= θ2, if i ∈ Y then the compatibility of the φ1- and Gal(K/K0)-

actions determines ri uniquely, and if i ∈ Y c then we can take either ri = 0 or
ri = e. Having written down all possible M, we now need to determine their
generic fibres. This is a straightforward calculation using Example 3.7 of [21].
Without loss of generality, we may twist and assume that θ1 = ∏

τi∈S ω
ci
τi

,
θ2 = 1, with 0 ≤ ci ≤ p − 1. Then one easily obtains

ψ1|IK0
= ωm1+n1

τ1

∏

τi∈{Y c|ri=e}
ωτi

∏

τi∈Y∩Z

ωτi
,

where

m1 =
{

0 if τ1 /∈ Z,

c1 + pcr + · · · + pr−1c2 if τ1 ∈ Z,

n1 = 1

e

∑

τi∈Y∩Zc

pr−i (pic1 + pi+1cr + · · · + prci + ci+1 + · · · + pi−1c2)

− 1

e

∑

τi∈Y∩Z

pr−i (pic1 + pi+1cr + · · · + prci + ci+1 + · · · + pi−1c2).

Now, consider the coefficient of c1 in n1. The sets Y ∩ Zc and Y ∩ Z have
equal cardinality, so this coefficient is in fact zero. Thus the coefficient of c1
in m1 + n1 is 1 if τ1 ∈ Z, and 0 otherwise. By cyclic symmetry, we obtain

ψ1|IK0
=

∏

τi∈Z

ωci
τi

∏

τi∈X

ωτi
,

where

X = {τi ∈ Y c|ri = e} ∪ (Y ∩ Z).
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We wish to show that ρ is compatible with some weight in the reduction
mod p of I (θ1, θ2). It is easy to check that the determinant of ρ is correct, so
it suffices to examine ψ1; in the notation of Proposition 3.10, we see that ρ is
compatible with σ�aK,�bK

via L if and only if

ψ1|IK0
=

∏

τi∈(Kc∩L)∪(K∩Lc)

ω
ci+δKc (τi+1)
τi

∏

τi∈S

ω
δK∩L(τi+1)
τi

(note that our convention that θ2 = 1 causes Kc to appear in this formula
rather than K).

The result now follows upon taking, for example,

K = {τi |τi−1 ∈ (Xc ∩ Y c ∩ Z) ∪ (X ∩ Y c ∩ Zc)}
and

L = (Kc ∩ Z) ∪ (K ∩ Zc).
�

Proposition 3.13 Suppose that σ�a,�b is regular. If ρ is compatible with σ�a,�b
via J , and ρ has a lift of type J , then ρ has a model of type J .

Proof This follows from similar considerations to those involved in the proof
of Proposition 3.12. Consider the πL-torsion in the p-divisible group corre-
sponding to the lift of type J . It contains a closed sub-group-scheme (with
descent data) with generic fibre ψ1. Suppose that this group scheme corre-
sponds to a Breuil module with descent data M. Then we can choose a basis
so that M takes the following form:

Mτi = E[u]/uep · xτi
,

Mτi

1 = E[u]/uep · uri xτi
,

φ1(u
ri xτi

) = (a−1)ixτi+1,

ĝ(xτi
) = θi(g)xτi

.

Again, by Corollary 5.2 of [16] and the definition of a lift of type J , for each
i we must have θi = θ1 or θi = θ2 where

θ1 =
∏

τ∈S

ωaτ
τ

∏

τ∈J

ωbτ −p
τ ,

θ2 =
∏

τ∈S

ωaτ
τ

∏

τ∈J c

ωbτ −p
τ .
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Note that ψ1|IK0
= θ1

∏
τi∈S ω

δJ (τi+1)
τi

. Without loss of generality, we can twist

so that θ1 = ∏
τi∈S ω

ci
τi

, θ2 = 1, with 0 ≤ ci ≤ p − 1. Then we obtain

θ1 = θ1θ
−1
2 =

∏

τi∈J

ω
bτj

−δJ (τi+1)

τi

∏

τi∈J c

ω
p−bτi

−δJ (τi+1)
τi

.

Since 0 ≤ ci ≤ p − 1 and 2 ≤ bτi
≤ p − 2, we obtain

ci =
{

bτi
− δJ (τi+1) if τi ∈ J,

p − bτi
− δJ (τi+1) if τi /∈ J.

Note that this implies that 2 ≤ ci + δJ (τi+1) ≤ p − 2. Now, using the same
definitions of X, Y and Z as in the proof of Proposition 3.12, we can compare
the two expressions we have for ψ1|IK0

to obtain

∏

τi∈S

ω
ci+δJ (τi+1)
τi

=
∏

τi∈Z

ωci
τi

∏

τi∈X

ωτi
.

Since 2 ≤ ci + δJ (τi+1) ≤ p − 2, this gives Z = S, and X = {τi |τi+1 ∈ J }.
Since Z = S, we have Y = ∅, and thus the fact that X = {τi |τi+1 ∈ J } means
that M is in fact of class J . It is then clear that the πL-torsion is a model of
ρ of type J , as required. �

4 Local analysis—the irreducible case

4.1

We now prove the analogues of some of the results of Sect. 3 in the case
where ρ is irreducible.

We assume that ρ is irreducible from now on. In addition to the assump-
tions made at the beginning of Sect. 3, we now also assume that Fp2 ⊂ E,
where ρ : GK0 → GL2(E). Let k′ be the (unique) quadratic extension of k.

Label the embeddings k′ ↪→ Fp as S′ = {σi}, 0 ≤ i ≤ 2r −1, so that σi+1 =
σi ◦φ−1, and σi |k = τπ(i), where π : Z/2rZ → Z/rZ is the natural surjection.
For simplicity of notation we will sometimes refer to the elements of S′ as
elements of Z/2rZ, and the elements of S as elements of Z/rZ.

Recall that we say that a subset H ⊂ S′ is a full subset if |H | = |π(H)| = r .

Definition 4.1 We say that ρ is compatible with a weight σ�a,�b (via J ) if there
exists a full subset J ⊂ S′ such that

ρ|IK′
0
∼

∏

σ∈S′
ωaσ

σ

(∏
σ∈J ω

bσ
σ 0

0
∏

σ /∈J ω
bσ
σ

)
,
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where we write aσ , bσ for aπ(σ), bπ(σ) respectively.

Note that the predicted set of weights W(ρ) is just the set of compatible
weights; this is one way in which the irreducible case is simpler than the
reducible one.

Given a regular weight σ�a,�b and a full subset J ⊂ S′, we wish to define a
representation and a type. Let KJ = π(J ∩ {1, . . . , r}). Then let

ci =

⎧
⎪⎪⎨

⎪⎪⎩

bi + δKJ
(1) − 1 if 0 = i ∈ KJ ,

p − bi + δKJ
(1) − 1 if 0 = i /∈ KJ ,

bi − δKJ
(i + 1) if 0 �= i ∈ KJ ,

p − bi − δKJ
(i + 1) if 0 �= i /∈ KJ .

Define a character

ψ�a,�b,J
= ω

−δKJ
(1)

τ0

∏

τ∈S

ωaτ
τ

∏

τ /∈KJ

ωbτ −p
τ .

Then we define

I ′
�a,�b,J

= �

(
ψ̃�a,�b,J

ω̃σr

r∏

i=1

ω̃ci
σi

)
,

τ ′
�a,�b,J

= ψ̃�a,�b,J
ω̃σr

r∏

i=1

ω̃ci
σi

⊕
(

ψ̃�a,�b,J
ω̃σr

r∏

i=1

ω̃ci
σi

)pr

.

Proposition 4.2 Recall that σ�a,�b is regular. If ρ is compatible with σ�a,�b via
J , then ρ is compatible with precisely one of the Jordan-Hölder factors of the
reduction mod p of I ′

�a,�b,J
, and that factor is isomorphic to σ�a,�b.

Proof We may twist and assume without loss of generality that ψ�a,�b,J
= 1.

Then by Proposition 1.3 of [11] (note here that Diamond’s conventions on
the numbering of the elements of S′ are the opposite of ours, so that his σi

is our σ−i ), the Jordan-Hölder factors of the reduction mod p of I ′
�a,�b,J

are

{σ�aK,�bK
}K⊂S , where

aK,τi
=

⎧
⎪⎪⎨

⎪⎪⎩

δK(1) if 0 = i ∈ K,

ci + 1 if 0 = i /∈ K,

0 if 0 �= i ∈ K,

ci + δK(i + 1) if 0 �= i /∈ K,
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bK,τi
=

⎧
⎪⎪⎨

⎪⎪⎩

ci + 1 − δK(1) if 0 = i ∈ K,

p − ci + δK(1) − 1 if 0 = i /∈ K,

ci + δK(i + 1) if 0 �= i ∈ K,

p − ci − δK(i + 1) if 0 �= i /∈ K.

From the definition of the ci and of ψ�a,�b,J
, we have σ�aKJ

,�bKJ
= σ�a,�b. Sup-

pose that ρ is compatible with σ�aK′ ,�bK′ via J ′. Then, replacing J ′ by (J ′)c if
necessary, we must have

∏

i∈S′
ω

aKJ ,i

σi

∏

i∈J

ω
bKJ ,i

σi
=

∏

i∈S′
ω

aK′,i
σi

∏

i∈J ′
ω

bK′,i
σi

.

Using the formulae above, this becomes

ω
δJ ′,K′ (1)
σ0 ω

δJ ′,K′ (r+1)
σr

∏

i∈T ′
ω

ci+δK′ (i+1)
σi

∏

i∈S′
ω

δ
J ′∩π−1((K′)c)

(i+1)

σi

= ω
δJ,KJ

(1)
σ0 ω

δJ,KJ
(r+1)

σr

∏

i∈T

ω
ci+δKJ

(i+1)
σi

∏

i∈S′
ω

δ
J∩π−1(Kc

J
)
(i+1)

σi
, (4.1)

where

T = (J ∩ π−1(KJ )) ∪ (J c ∩ π−1(Kc
J )) = {1, . . . , r},

T ′ = (J ′ ∩ π−1(K ′)) ∪ ((J ′)c ∩ π−1((K ′)c)),

δJ,KJ
(i + 1) =

{
1 − δKJ

(i + 1) if i ∈ T ,

δKJ
(i + 1) if i /∈ T ,

δJ ′,K ′(i + 1) =
{

1 − δK ′(i + 1) if i ∈ T ′,
δK ′(i + 1) if i /∈ T ′.

Note that (since σ�a,�b is regular) all the exponents on the right hand side of
(4.1) are in the range [0,p − 1]. On the left hand side, this is true except
possibly for the exponents of ωσ0 , ωσr . Since T = {1, . . . , r}, it is easy to see
that the only opportunity for this not to hold is for the exponent of ωσ0 to be
p on the left hand side and 0 on the right hand side. However, in order for the
exponent of ωσ0 to be p on the left hand side we require c0 = p − 2, which
requires that 1 ∈ KJ . But then the exponent of ωσ0 on the right hand side is
1, a contradiction.

Thus we may equate exponents on each side of (4.1). In particular, if i �= 0,
we have (again because σ�a,�b is regular) ci + δKJ

(i + 1) ∈ [2,p − 2], so that
we must have {1, . . . , r − 1} ⊂ T ′. We also have c0 ∈ [1,p − 2]. If 0 ∈ T ′,
we see that the exponent of ωσ0 on the left hand side of (4.1) is c0 + 1 +
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δJ ′∩π−1((K ′)c)(1) = c0 + 1 (because 1 ∈ T ′), which is at least 2. However the
exponent of ωσ0 on the right hand side of (4.1) is 0 or 1, as 0 /∈ T , which is a
contradiction. Thus T ′ = T = {1, . . . , r}.

Then (4.1) simplifies to

r−1∏

i=0

ω
δK′ (i+1)
σi

2r−1∏

i=r

ω
δ(K′)c (i+1)
σi

=
r−1∏

i=0

ω
δKJ

(i+1)
σi

2r−1∏

i=r

ω
δKc

J
(i+1)

σi
,

whence K ′ = KJ , as required. �

Remark 4.3 Note that it follows easily from the formulae in the proof of
Proposition 4.2 that if σ�a,�b is regular, then all the Jordan-Hölder factors of the
reduction mod p of I ′

�a,�b,J
are weakly regular.

Theorem 4.4 Assume that σ�a,�b is regular and that ρ is compatible with σ�a,�b
via J . Then ρ has a lift of type τ ′

�a,�b,J
which is not potentially ordinary.

Proof A simple computation shows that we in fact have

τ ′
�a,�b,J

=
∏

τ∈S

ωaτ
τ

∏

σ∈J

ωbσ −p
σ ⊕

∏

τ∈S

ωaτ
τ

∏

σ /∈J

ωbσ −p
σ .

This means that we only need to make a very minor modification to the proof
of Theorem 3.7. Let K ′

0 = W(k′)[1/p]. Fix π ′ = (−p)1/(p2r−1), and let K ′ =
K ′

0(π
′). Let gφ be the nontrivial element of Gal(K ′/K0) which fixes π ′. It is

clear from the proof of Theorem 3.7 that for some choice of a ∈ W(E)× the
following object of W(E) − Mod1

cris,dd,K0
provides us with the required lift.

Mσi

J = SK · eσi
+ SK · fσi

,

ĝφ(eσi
) = fσi+r

,

ĝφ(fσi
) = eσi+r

.

If g ∈ Gal(K ′/K ′
0),

ĝ(eσi
) =

((
∏

τ∈S

ω̃aτ
τ

∏

σ∈J

ω̃bσ −p
σ

)
(g)

)
eσi

,

ĝ(fσi
) =

((
∏

τ∈S

ω̃aτ
τ

∏

σ /∈J

ω̃bσ −p
σ

)
(g)

)
fσi

.
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If σi+1 ∈ J ,

Fil1 Mσi

J = Fil1 SK · Mσi

J + SK · fσi
,

φ(eσi
) = (a−1)ieσi+1,

φ(fσi
) = (a−1)′ipfσi+1 .

If σi+1 /∈ J ,

Fil1 Mσi

J = Fil1 SK · Mσi

J + SK · eσi
,

φ(eσi
) = (a−1)ipeσi+1,

φ(fσi
) = (a−1)′ifσi+1 .

Here the notation (x)′i means x if i = r + 1 and 1 otherwise. �

5 Global results

5.1

We now show how the local results obtained in the previous sections can be
combined with lifting theorems to prove results about the possible weights
of mod p Hilbert modular forms. Firstly, we show that if ρ is modular of
some regular weight, then ρ is compatible with that weight, by making use of
Lemma 2.4 and Proposition 3.12. We then turn this analysis around. We take
a conjectural regular weight σ for ρ, and using modularity lifting theorems
we produce a modular lift of ρ of a specific type, which is enough to prove
that ρ is modular of weight σ by Propositions 3.10 and 4.2.

Assume now that F is a totally real field in which p > 2 is unramified, and
that ρ : GF → GL2(E) is a continuous representation, known to be modular,
where E is a finite extension of Fp .

Let W(ρ) be the conjectural set of Serre weights for ρ, as defined in Sect. 2.
Recall that the elements of W(ρ) are just the tensor products of elements of
Wv(ρ), for v|p, and that such elements are of the form σ�a,�b, as described
above. We say that a weight is (weakly) regular if and only if it is a tensor
product of (weakly) regular weights.

The following argument is based on an argument of Michael Schein (cf.
Proposition 5.11 of [22]), and is due to him in the case that ρ|GFv

is irre-
ducible.

Lemma 5.1 Suppose that p ≥ 3, that ρ is modular of weight σ = ⊗
v σ v

�a,�b,

and that σ is weakly regular. Then for each v, either ρ|GFv
is compatible
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with σv

�a,�b, or σv

�a,�b is not regular and ρ|GFv
is not compatible with any regular

weight.

Proof Suppose firstly that ρ|GFv
is reducible. We will assume for the rest of

this proof that Fv �= Qp; the argument needed when Fv = Qp is slightly dif-
ferent, although much simpler, and the result follows from Lemma 4.4.6 of
[15]. We will also assume that there is at least one bτi

�= 1; the case where
all bτi

= 1 is much easier, and we leave it to the reader. Then for any type
τ = χ1 ⊕χ2 (with χ1 �= χ2 tame characters of IFv which extend to GFv ) such
that σv

�a,�b occurs in the reduction of I (χ1, χ2), it follows from Lemma 2.4

and Proposition 3.12 that there must be a weight σv
�a′, �b′ in the reduction of

I (χ1, χ2) which is compatible with ρ|GFv
. Since we are working purely lo-

cally, we return to the notation of Sect. 3.5.
Twisting, we may without loss of generality suppose that aτ = 0 for all τ .

By Proposition 1.1 of [11] (and the fact that σ is weakly regular, with at least
one bτi

�= 1) there is for each J ⊂ S a unique pair of characters
∏

τ∈S ω̃cJ
τ ,∏

τ∈S ω̃dJ
τ (with 0 ≤ cJ

τ , dJ
τ ≤ p − 1) such that if we define

σJ = I

(
1,

∏

τ∈S

ω̃dJ
τ

)
⊗

∏

τ∈S

ω̃
cJ
τ

τ ◦ det

then, with the same notation for reductions as in [11], extended to be com-
patible with twisting, σJ

J ∼ σ�a,�b. Then there must (by the argument above) be

some subset KJ ⊂ S, such that σJ
KJ

is compatible with ρ. If σJ
KJ

∼ σ �mJ
KJ

,�nJ
KJ

this means that there must be a subset LJ ⊂ S such that

ψ1|IK0
=

∏

τ∈S

ω
mJ

KJ ,τ

τ

∏

τ∈LJ

ω
nJ

KJ ,τ

τ .

By Proposition 1.1 of [11], this is equal to

∏

τi∈S

ω
cJ
τi

τi

∏

τi∈LJ ∩Kc
J

ωp
τi

∏

τi∈(LJ ∩KJ )∪(Lc
J ∩Kc

J )

ω
dJ
τi

+δKJ
(τi+1)

τi
.

Now, since σJ
J ∼ σ�a,�b, we have

∏

τi∈S

ω
cJ
τi

τi

∏

τi /∈J

ω
dJ
τi

+δJ (τi+1)

τi
=

∏

τi∈S

ω
aτi
τi

= 1,
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by the assumption that aτ = 0 for all τ , so that in fact

ψ1|IK0
=

∏

τi∈J c

ω
−(dJ

τi
+δJ (τi+1))

τi

∏

τi∈LJ ∩Kc
J

ωp
τi

×
∏

τi∈(LJ ∩KJ )∪(Lc
J ∩Kc

J )

ω
dJ
τi

+δKJ
(τi+1)

τi
.

Since σJ
J ∼ σ�a,�b, we have

dJ
τi

=
{

bτi
− δJ (τi+1) if τi ∈ J,

p − bτi
− δJ (τi+1) if τi /∈ J.

Substituting, we see that

ψ1|IK0
=

∏

τi∈(TJ ∩J )∪(T c
J ∩J c)

ω
bτi
τi

∏

τi∈S

ω
δLJ ∩Kc

J
(τi+1)−δT c

J
∩Jc (τi+1)

τi

×
∏

τi∈TJ

ω
δKJ

(τi+1)−δJ (τi+1)
τi

,

where we write TJ = (KJ ∩ LJ ) ∪ (Kc
J ∩ Lc

J ).
Putting J = S, we obtain

ψ1|IK0
=

∏

τi∈TS

ω
bτi
τi

∏

τi∈S

ω
δLS∩Kc

S
(τi+1)

τi

∏

τi∈TS

ω
δKS

(τi+1)−1
τi

=
∏

τi∈TS

ω
bτi

−δKc
S

∩Lc
S
(τi+1)

τi

∏

τi∈T c
S

ω
δLS∩Kc

S
(τi+1)

τi
. (5.1)

Now, suppose that σ�a,�b is not compatible with ρ, so that for all J we have
KJ �= J . We can uniquely write

ψ1|IK0
=

∏

τi∈S

ω
cτi
τi

with 0 ≤ cτi
≤ p − 1 not all equal to p − 1 (in fact, an examination of the

product just written shows that the exponents are already in this range). Ex-
amining the formula just established, we see that after possibly exchanging
ψ1 and ψ2 (which we can do, as the definition of “compatible” is unchanged
by this exchange), there must be some j such that bτj

�= 1, cτj
= bτj

− 1,
τj ∈ TS , and τj+1 ∈ Kc

S ∩ Lc
S ⊂ TS (else ρ would be compatible with σ�a,�b).
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Now take J = {τj }, so that

ψ1|IK0
=

∏

τi∈(T{τj }∩{τj })∪(T c{τj }∩{τj }c)
ω

bτi
τi

×
∏

τi∈S

ω

δL{τj }∩Kc{τj } (τi+1)−δT c{τj }∩{τj }c (τi+1)

τi

×
∏

τi∈T{τj }
ω

δK{τj } (τi+1)−δ{τj }(τi+1)

τi
. (5.2)

It is easy to see that the exponent of ωτi
in this product is always between

0 and p − 1, unless i = j − 1 or i = j . If the exponent is always between
0 and p − 1, then we have a contradiction, because we already know that
cτj

= bτj
− 1, but from (5.2) we see that the exponent of ωτj

can only be 0,
bτj

or bτj
+ 1.

So, at least one of the exponents of ωτj−1 and ωτj
must be −1 or p. We

now analyse when this can occur. It’s easy to see that the exponent of ωτj
is

−1 if and only if τj /∈ T{τj } and τj+1 ∈ Lc{τj } ∩ K{τj }, and it is p if and only
if bτj

= p − 1, τj ∈ T{τj } and τj+1 ∈ L{τj } ∩ K{τj }. Similarly, the exponent
of ωτj−1 is −1 if and only if τj−1 ∈ T{τj } and τj ∈ Lc{τj } ∩ Kc{τj }, and it is p

if and only if bτj−1 = p − 1, τj−1 ∈ T c{τj } and τj ∈ L{τj } ∩ Kc{τj }. Thus it is
impossible for both exponents to be p, or both to be −1.

Suppose now that the exponent of ωτj
in (5.2) is −1. If we multiply each of

the expressions (5.1), (5.2) by ωτj
, write each side as a product

∏
τ ω

nτ
τ with

0 ≤ nτ ≤ p − 1 and equate coefficients of ωτj
in the resulting expression, we

obtain bτj
= 0 or 1 (the second case only a possibility when the exponent of

ωτj−1 in (5.2) is p), a contradiction.
Suppose that the exponent of ωτj

in (5.2) is p. Then we again easily see that
p − 2 = bτj

− 1 = 0 or 1. Thus p − 2 = 1, and we additionally need to have
(T{τj } ∩ {τj } ∪ (T c{τj } ∩ {τj }c = S, so that T{τj } = {τj }. But for the exponent of
ωτj

to be p we need that τj+1 ∈ L{τj
} ∩ K{τj } ⊂ T{τj }, a contradiction.

Suppose that the exponent of ωτj−1 in (5.2) is p. Then in the same fashion
we obtain bτj

− 1=0, or 1. The only possibility is that bτj
= 2, when we

in addition (in order that the necessary carrying should occur) require that
bτi

= p − 1 for all i �= j .
Finally, suppose that the exponent of ωτj−1 in (5.2) is −1. Multiply each

of (5.1), (5.2) by ωτj−1 . Then we see that the only way for equality to hold is
again if bτi

= p − 1 for all i �= j .
So, we have deduced that bτi

= p − 1 for all i �= j , so that σ�a,�b is certainly
not regular. It now remains to show that ρ is not compatible with any regular



44 T. Gee

weight. Examining the above argument, we see that we have in fact deduced
that (again, after possibly exchanging ψ1, ψ2)

ψ1|IK
= ω

bτj
−1

τj

∏

i �=j

ωp−1
τi

,

ψ2|IK
= ωτj

,

with 2 ≤ bτj
≤ p − 1.

If ρ is compatible with some regular weight, then we have by definition
that

ψ1|IK
ψ2|−1

IK
=

∏

τ∈J

ωnτ
τ

∏

τ∈J c

ω−nτ
τ

for some J ⊂ S and 2 ≤ nτ ≤ p − 2. Substituting, we obtain

ωτj−1

∏

τ∈J

ωnτ
τ = ω

bτj
−1

τj

∏

τ∈J c

ωnτ
τ .

If τj ∈ J then we can immediately equate coefficients of ωτj−1 and deduce
a contradiction. If not, then because nτj

+ bτj
< 2p we see that we can still

equate coefficients of ωτj−1 to obtain a contradiction.
The proof in the irreducible case is very similar, and rather simpler, as

less “carrying” is possible. In fact, the argument gives the stronger result that
ρ|GFv

is compatible with σv

�a,�b for all v. A proof is given in the proof of Propo-

sition 5.11 of [22]; note that [22] works in the setting of [3] (using indefinite
quaternion algebras), but the proof of Proposition 5.11 is purely local (using
Raynaud’s theory of finite flat group schemes of type (p, . . . , p) in place of
the Breuil module calculations used in this paper), and applies equally well
in our setting. �

The following theorem is due to Michael Schein in the case that ρ|GFv
is

irreducible for all places v|p (see [22]).

Theorem 5.2 If ρ is modular of weight σ , and σ is regular, then σ ∈ W(ρ).

Proof Suppose that σ = ⊗
v σ v

�a,�b, so that we need to show that σv

�a,�b ∈ Wv(ρ)

for all v|p. By Lemma 5.1, σv

�a,�b is compatible with ρ|GFv
, via J , say. If ρ|GFv

is irreducible, we are done, so assume that it is reducible. By Lemma 2.4,
ρ|GFv

has a lift to a potentially Barsotti-Tate representation of type τ�a,�b,J
. By

definition, this is, up to an unramified twist, a lift of type J . By Proposition
3.13, ρ|GFv

has a model of type J . Twisting, we may without loss of gener-
ality suppose that each aτ = 0. Then by Proposition 3.8, and the definition of
Wv(ρ), we see that σv

�a,�b ∈ Wv(ρ), as required. �
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Theorem 5.3 If σ ∈ W(ρ) is a regular weight, and σ is non-ordinary, then ρ

is modular of weight σ . If σ ∈ W(ρ) is regular, and σ is partially ordinary of
type I and ρ has a partially ordinary modular lift of type I then ρ is modular
of weight σ .

Proof Suppose that σ = ⊗
v σ v

�a,�b, so that σv

�a,�b ∈ Wv(ρ) for all v|p. Firstly,

we note that (by the definition of Wv(ρ)) σv

�a,�b is compatible with ρ|GFv
, via

Jv , say.
Consider firstly the case where ρ|GFv

is reducible. We claim that ρ|GFv

has a model of type Jv . To see this, we may twist, and without loss of
generality suppose that aτ = 0 for all τ , so that ρ|GFv

∼ ( ψ1 ∗
0 ψ2

)
, with

ψ1|IFv
= ∏

τ∈Jv
ω

bτ
τ , ψ2|IFv

= ∏
τ /∈Jv

ω
bτ
τ . Now, by Proposition 3.8 (and the

definition of W(ρv)) ρ|GFv
has a model of type Jv , as required. Then Theo-

rem 3.7 shows that ρ|GFv
has a potentially Barsotti-Tate deformation of type

τ�a,�b,Jv
.

If ρ|GFv
is irreducible, then Theorem 4.4 shows that shows that ρ|GFv

has
a potentially Barsotti-Tate deformation of type τ ′

�a,�b,Jv
.

By Corollary 3.1.7 of [15] there is a modular lift ρ : GF → GL2(Qp) of ρ

which is potentially Barsotti-Tate of type τ�a,�b,Jv
for each v|p for which ρ|GFv

is reducible, and of type τ ′
�a,�b,Jv

for each v|p for which ρ|GFv
is irreducible.

Then by Lemma 2.4, ρ is modular of weight σ ′ for some Jordan-Hölder con-
stituent σ ′ of the reduction modulo p of ⊗vIv , where Iv = I�a,�b,Jv

if ρ|GFv
is

reducible, and Iv = I ′
�a,�b,Jv

otherwise. The result then follows from Proposi-

tions 3.10 and 4.2, Remarks 3.11 and 4.3, and Lemma 5.1. �
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