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Abstract We give a topological characterization of rational maps with dis-
connected Julia sets. Our results extend Thurston’s characterization of post-
critically finite rational maps. In place of iteration on Teichmüller space, we
use quasiconformal surgery and Thurston’s original result.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
2 Reduction to a restriction near the filled-in Julia set . . . . . . . . . . 458
3 Thurston-like theory for repelling systems . . . . . . . . . . . . . . . 463
4 Admissible restriction . . . . . . . . . . . . . . . . . . . . . . . . . . 470
5 Constant complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
6 Proof of Theorem 5.4 for simple pieces . . . . . . . . . . . . . . . . 485

The first author is supported by the grants no. 10831004 and no. 10721061 of NNSF of
China, and by Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of
Sciences; the second author is supported by the EU Research Training Network on
Conformal Structures and Dynamics.

G. Cui
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing
100190, People’s Republic of China
e-mail: gzcui@math.ac.cn

L. Tan (�)
Laboratoire Angevin de Recherche en Mathématiques, UMR 6093 du CNRS, membre de
la FR 2962 du CNRS, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers
Cedex 01, France
e-mail: tanlei@math.univ-angers.fr

mailto:gzcui@math.ac.cn
mailto:tanlei@math.univ-angers.fr


452 G. Cui, L. Tan

7 Proof of Theorem 5.4 for a cycle of complex pieces . . . . . . . . . 490
8 Proof of Theorem 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 502
9 A combination result . . . . . . . . . . . . . . . . . . . . . . . . . . 507
Appendix A: Non-negative matrices . . . . . . . . . . . . . . . . . . . 508
Appendix B: Reversing Grötzsch’s inequality . . . . . . . . . . . . . . 511
Appendix C: Quasiconformal extensions . . . . . . . . . . . . . . . . . 512
Appendix D: A lemma about isotopy . . . . . . . . . . . . . . . . . . . 513
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

1 Introduction

A rational map f (z) = P(z)/Q(z) acts on the Riemann sphere C as a
branched covering. The iteration of f yields a dynamical system on C. The
degree of f is defined to be the maximum of the degrees of P and Q. It is
also the degree of f as a branched covering of C. We will always assume that
the degree is at least two (a degree one map is a Möbius transformation and
generates an uninteresting dynamical system). Thus the covering feature of
f forces it to be globally expanding, whereas the presence of critical points
(i.e. points z such that f ′(z) = 0) makes it locally strongly contracting. The
overall behavior of f depends therefore very much on the interplay of these
two opposite forces.

The iteration of a rational map f decomposes C naturally into the Fatou set
Ff (the stable locus) and the Julia set Jf (the chaotic locus), with Jf being
defined as the set of initial values z ∈ C such that the iterated sequence {f n}
does not form a normal family on any neighborhood of z.

A rational map f is hyperbolic if it is uniformly expanding near its Julia
set. These are the natural analogs of Smale’s Axiom A maps in this setting. If
in addition the Julia set is connected, the dynamics of f on Jf is equivalent to
the dynamics of a map f0 in which all critical points are eventually periodic
under iteration; such maps are called postcritically finite.

Extending works of Milnor, Sullivan and Thurston on the dynamics of
unimodal interval maps, Thurston gave a complete topological characteri-
zation of postcritically finite rational maps f0 (see [13, 35]), which can be
stated roughly as follows: The set of postcritically finite rational maps (ex-
cept the Lattès examples) are in one-to-one correspondence with the homo-
topy classes of postcritically finite branched self-coverings of the two sphere
with no Thurston obstructions (which will be defined in Sect. 3.1).

Thus in order to build a rational map with desired combinatorial properties
one may first construct a branched covering F as a topological model (this is
a lot more flexible than building holomorphic objects, for example one may
freely cut, paste and interpolate various holomorphic objects), and then check
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whether F has Thurston obstructions (this is not always easy). If not then
Thurston’s theorem ensures the existence of a rational map with the same
combinatorial properties.

There are many applications of Thurston’s theorem. These include
Douady’s proof of monotonicity of entropy for unimodel maps [11], Rees’
descriptions of parameter spaces [30], Kiwi’s characterization of polynomial
laminations [23] (using previous work of Bielefield-Fisher-Hubbard [2] and
Poirier [28]), Rees, Shishikura and Tan’s studies on matings of polynomials
([29, 31, 33, 34]), and Pilgrim and Tan’s cut-and-paste surgery along arcs
([26]). Furthermore, one of the two main outstanding questions in the field,
namely, the density of hyperbolicity in the quadratic polynomial family, can
be reduced to the assertion that every (infinitely renormalizable) quadratic
polynomial p is a limit of certain postcritically finite ones pn obtained via
Thurston’s theorem and McMullen’s quotienting process ([24]). The detailed
knowledge of the combinatorics of the parameter space of quadratic polyno-
mials (which follows from a special case of Thurston’s theorem) was used
by Sørensen ([32]) to construct highly non-hyperbolic quadratic polynomials
with non-locally connected Julia sets, and this in turn was used by Henriksen
([18]) to show that McMullen’s combinatorial rigidity property fails for cubic
polynomials.

We mention here an interesting application of Thurston’s theorem beyond
the field of complex dynamics. Khavinson and Swiatek ([22]) proved that
harmonic polynomials z − p(z), where p is a holomorphic polynomial of
degree n > 1, have at most 3n − 2 roots, and the bound is sharp for n =
2,3. Bshouty and Lyzzaik ([5]) extended the sharpness of the bound to the
cases n = 4,5,6 and 8, using purely algebraic methods. Finally L. Geyer
([16]) settled the sharpness for all n at once, by constructing ‘à la Thurston’
a polynomial p of degree n with real coefficients and with mutually distinct
critical points z1, z2, . . . , zn−1 such that p(zj ) = zj .

There are, however, two drawbacks of Thurston’s theorem.

Problem 1 Up to now it can only be applied to postcritically finite rational
maps. On one hand, these maps all have a connected Julia set; on the other
hand, they form a totally disconnected subset in the parameter space (except
the Lattès examples). Therefore the theorem can not characterize the combi-
natorics of disconnected Julia sets, nor the dynamical bifurcations through
continuous parameter perturbations.

Problem 2 In general it is difficult to apply the theorem effectively, namely
to check whether a specific branched covering has Thurston obstructions or
not. Each successful application is usually a theorem in its own right.

Over the years, Problem 1 has been addressed by several people through
various attempts. For example, David Brown ([4]), supported by previous
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work of Hubbard and Schleicher ([19]), has succeeded in extending the the-
ory to the uni-critical polynomials with an infinite postcritical set (but always
with a connected Julia set), and pushed it even further to the infinite degree
case, namely the exponential maps. We would also like to mention a recent
work of Hubbard-Schleicher-Shishikura ([20]) extending Thurston’s theorem
to postcritically finite exponential maps.

Regarding Problem 2 in the postcritically finite setting, many methods have
been developed (see [31] and the references therein for a rather complete
survey of such techniques), although it remains a difficult problem in general.

In the present work, supported by previous works of Cui, Jiang and Sul-
livan ([7]), as well as unpublished manuscripts of the first author, we ex-
tend Thurston’s theorem to the set of non-postcritically finite hyperbolic or
sub-hyperbolic rational maps (they are conjecturally dense in the parameter
space). In other words we will prove that such maps are in one-to-one corre-
spondence with the isotopy classes of branched coverings with similar prop-
erties and with no Thurston obstructions. To be more accurate we require also
the branched coverings to record both the global combinatorial data and the
local analytic data around the cluster points of the postcritical set.

At the same time, we will provide effective criteria for the absence of ob-
structions. More precisely, we will decompose the dynamics of a candidate
branched covering F into several sub-systems that are postcritically finite,
together with a transition matrix that records the gluing data. We then show
that in order to verify the absence of obstructions for F it suffices to check
the property for the sub-systems (thus reducing the problem to the postcriti-
cally finite case) and for the gluing data, which is only one more eigenvalue
to calculate.

We remark that the decomposition above is in some sense canonical and
presents some interest even for rational maps. The spirit is close to previous
works of Pilgrim-Tan and Cui on the topology of disconnected Julia sets (see
for example [27]).

Our analysis here leads naturally to the concept of repelling systems over
a disjoint union of Riemann surfaces of finite type and allows us to establish
an analog of Thurston’s theorem for such systems as well. This result is of
independent interest.

Our argument leads also to a ready-to-use combination result. We will
show (in Theorem 9.1) that for any finite collection of rational maps fi with
connected Julia set Ji (postcritically finite or not), together with compatible
(unobstructed) gluing data D, one can glue together the fi ’s on neighbor-
hoods of Ji following D in order to obtain a rational map g, so that each
fi appears as a renormalization of g (this should be compared to Pilgrim’s
work [25]).

At first sight one may be surprised how it is possible to achieve such
a degree of freedom in the ‘interpolation’ of objects as rigid as rational
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maps. Here is a quick justification. Alongside Thurston’s theorem, there is
another, equally powerful, tool for constructing rational map dynamical sys-
tems, namely the Measurable Riemann Mapping Theorem. Both results allow
one to perform surgery on holomorphic objects. But they are only applicable
in somewhat transverse settings. The former does not care about the Julia
set, but requires postcritical finiteness. The latter does not care much about
the postcritical set, but often requires the surgery to touch only a very small
part of the Julia set (e.g. finitely many points). There exist also extensions
of both results by simply composing one after the other (such as replacing a
periodic orbit containing a critical point by an attracting periodic orbit). In or-
der to achieve our combination result and at the same time extend Thurston’s
theorem to postcritically infinite maps, we had to merge the power of both
theorems in a more substantial way. Each of them must be applied at the right
place and at the right moment, with just the right estimates for the pieces to
be fitted together.

The flexibility of our combination result is better illustrated in the Ph.D.
thesis of Godillon ([17]), where he uses piecewise linear tree maps to model
the dynamical system of a hyperbolic rational map f on the set of connected
components of its Julia set Jf .

The present work consists of the first step of a long program established
by the first author. This program concerns the study of deformations and bi-
furcations of rational maps ([9]).

In our forthcoming paper [10], we will extend our characterization to the
setting of geometrically finite rational maps (i.e. maps having non-hyperbolic
periodic points with a rational rotation number), and then give a detailed study
of their relations to hyperbolic rational maps. The hyperbolic rational maps
of a given degree form an open set in the parameter space, and maps within a
common connected component have similar dynamics (they are structurally
stable). A geometrically finite map g often sits on the boundary of several
hyperbolic components, and does so in quite a subtle way: if you approach
it algebraically, you may or may not get a different geometric limit, depend-
ing very much upon how you approach it. This subtlety makes the study of
the deformations of g very difficult. However, it is relatively easy to describe
combinatorially all possible bifurcations. Then, equipped with our Thurston-
like realization result, we will be able to prove the existence of such bifurca-
tions. For example we will classify all hyperbolic components H that contain
a path converging to g such that along the path the algebraic and geometric
limits coincide. Conversely, given a hyperbolic component H , we will ap-
ply our technique to determine all geometrically finite maps g that are path
accessible from H with similar dynamical properties.

Statements All branched coverings and homeomorphisms in this paper are
orientation preserving. We will assume that the reader has already some basic
knowledge on holomorphic dynamical systems.
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Let f : C → C be a branched covering with degree degf ≥ 2. Its post-
critical set is defined to be

Pf := closure{f n(c)| n > 0, for all critical points c of f }.
Denote by P ′

f the accumulation set of Pf .
We say that the map f is postcritically finite if every critical point has a

finite orbit (i.e. P ′
f = ∅). We say that the map f is a (sub-hyperbolic) semi-

rational map if P ′
f is finite (or empty); and in case P ′

f �= ∅, the map f is
holomorphic in a neighborhood of P ′

f and every periodic point in P ′
f is either

attracting or super-attracting.
Two semi-rational maps f1 and f2 are called c-equivalent, if there is a pair

(φ,ψ) of homeomorphisms of C and a neighborhood U0 of P ′
f1

such that:

(a) φ ◦ f1 = f2 ◦ ψ ;
(b) φ is holomorphic in U0;
(c) the two maps φ and ψ are equal on Pf1 , thus on a neighborhood of P ′

f1
(by the isolated zero theorem for holomorphic maps);

(d) the two maps φ and ψ are isotopic to each other rel Pf1 ∪ U0 (i.e.
there is a continuous map H : [0,1] × C → C such that H(t, ·) is a
homeomorphism of C for all t ∈ [0,1], H(0, ·) = φ, H(1, ·) = ψ , and
H(t, z) = φ(z) for all t ∈ [0,1] and any z ∈ Pf1 ∪ U0).

Given a semi-rational map f , we consider the problem of whether there is
a rational map c-equivalent to it.

Thurston gave a combinatorial criterion of the same problem for postcrit-
ically finite branched coverings (see Sect. 3.1 and Theorem 3.2 below). We
prove here:

Theorem 1.1 Let f be a semi-rational map with P ′
f �= ∅. Then the map f is

c-equivalent to a rational map R if and only if f has no Thurston obstruc-
tions. In this case the rational map R is unique up to Möbius conjugations.

See the definition of Thurston obstructions in Sect. 3.1. The case P ′
f = ∅

is already addressed by Thurston’s original theorem. The necessity of having
no Thurston obstructions and the unicity of the rational map R are known
for a wider class of maps. See [24] (or Theorem 3.3 below) and [8]. Thus it
remains only to prove the existence part here: i.e. to show that if the map f

has no Thurston obstructions then it is c-equivalent to a rational map.
In the process of proving the theorem, we introduce the concept of

repelling systems with constant complexity. We develop a corresponding
Thurston-like theory, including the notions of c-equivalence, boundary multi-
curve, Thurston obstructions, renormalizations etc., and then a theorem say-
ing that such a system with no obstructions is c-equivalent to a holomorphic
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repelling system (see Theorems 3.5 and 5.4 for detailed statements). This
leads naturally to a combination result for rational maps (Theorem 9.1).

The general strategy of the proof of Theorem 1.1 can then be described as
follows: we define Kf , its filled-in Julia set relative to P ′

f , to be the set of
points not attracted by the cycles in P ′

f , i.e.

Kf :=
{
z ∈ C

∣∣∣∣
⋃
n>0

{f n(z)} ∩ P ′
f = ∅

}
. (1)

Step 0. We show that up to a c-equivalence, we may assume that the map
f is quasiregular (Lemma 2.1).

Now let f : C → C be a quasiregular semi-rational map with no Thurston
obstructions. We will show that:

1. There is a restriction of f to a neighborhood L1 of the filled-in Julia set
Kf so that f |L1 : L1 → f (L1) is a postcritically finite repelling system
with no Thurston obstructions (Lemma 3.6 and Definition 2).

2. There is a further restriction of f near Kf , which is a marked repelling
system with no Thurston obstructions and with constant complexity (Def-
inition 5, Theorem 4.1(2) and Theorem 5.1).

3. This marked repelling system with constant complexity has no bound-
ary obstruction nor renormalization obstructions (Definitions 6 and 7,
Lemma 5.3).

4. Any marked repelling system with constant complexity and being unob-
structed as in Step 3 is c-equivalent to a holomorphic marked repelling
system (Theorem 5.4).

5. f |L1 : L1 → f (L1) is c-equivalent to a holomorphic marked repelling sys-
tem (Theorem 4.1(1)).

6. f : C → C is c-equivalent to a rational map (Proposition 2.4).

Steps 1–3 consist of a detailed study of Thurston obstructions for repelling
systems, as well as combinatorics of puzzle neighborhoods of the filled-in
Julia set Kf .

Step 4 (Theorem 5.4) is the core part of this work. It is proved by Grötzsch
inequality, Thurston’s original theorem, the Measurable Riemann Mapping
theorem, together with a reversed form of Grötzsch inequality.

Steps 5–6 are standard applications of the Measurable Riemann Mapping
Theorem.

Steps 2–5 together lead to a Thurston-like theorem for repelling systems
(see Theorem 3.5 for a precise statement), which is of independent interest.

Remark Theorem 1.1 was already announced in [7], together with a sketch
of the main ideas of the proof. However numerous details were either missing
or erroneous. The presentation here will be totally different. In particular the
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concept of repelling systems and the related Thurston-like theory are new.
This in turn leads to several effective criteria for the absence of obstructions,
as well as an easy-to-use combination result: Theorem 9.1.

While this paper was circulating as an arXiv preprint, another proof of
Theorem 1.1 was posted by Jiang and Zhang ([21]). Their proof is closer to
the original proof of Thurston. But they do not address the problem of verify-
ing absence of obstructions. In particular they do not provide a combination
result, nor a detailed description of the structure of disconnected Julia sets.

Organization The paper is organized as follows: In Sect. 2 we prove Step 0
and Step 6 above. We introduce the concept of a repelling system and show
how it appears as a restriction near Kf of a global map f .

In Sect. 3 we first recall the definition of Thurston obstructions and state
Thurston’s original theorem. We then develop the corresponding concepts for
repelling systems and state a Thurston-like theorem in this setting (Theo-
rem 3.5). Finally we use this result to prove Theorem 1.1 (this amounts to
prove Step 1 above).

In Sects. 4–5 we introduce the concepts of constant complexity repelling
systems and the specific obstructions associated to them. We state our
Thurston-like theorem, Theorem 5.4, in this setting. Assuming this we com-
plete Steps 2–5 above and prove Theorem 3.5.

In Sects. 6–8 we give the proof of Theorem 5.4.
In the final section Sect. 9 we state Theorem 9.1.
Along the way we will provide numerous supporting diagrams and perti-

nent examples.

2 Reduction to a restriction near the filled-in Julia set

Let f : C → C be a semi-rational map with P ′
f �= ∅, i.e. the map f is a

branched covering such that the cluster set P ′
f of its postcritical set is finite

and non-empty, f is holomorphic in a neighborhood of P ′
f , and every pe-

riodic cycle in P ′
f is either attracting or superattracting. We will give some

criteria here for f to be c-equivalent to a rational map.

2.1 Making the map quasiregular

Lemma 2.1 Let f be a semi-rational map with P ′
f �= ∅. Then the map f is

c-equivalent to a quasiregular semi-rational map.

Proof Consider f as a branched covering from C onto C. There is a
unique complex structure X ′ on C such that f : (C, X ′) → C is holomor-
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phic.1 The uniformization theorem provides a conformal homeomorphism
ξ : (C, X ′) → C. Set R := f ◦ ξ−1. Then R : C → C is a branched covering,
holomorphic with respect to the standard complex structure, and therefore a
rational map.

Let U ⊂ C be a finite union of quasidiscs with pairwise disjoint closures,
such that P ′

f ⊂ U , f−1(U) ⊃ U , ∂U does not contain critical points of f ,

and f is holomorphic in a neighborhood of U . Using the relation f = R ◦ ξ

one sees that the homeomorphism ξ is holomorphic in a neighborhood of ∂U
with respect to the standard complex structure. It follows that ξ(∂U) consists
of finitely many pairwise disjoint quasi-circles.

Set L := C�U . Then there is a quasiconformal homeomorphism η : L →
ξ(L) such that η = ξ on ∂L∪(Pf ∩L) and η is isotopic to ξ rel ∂L∪(Pf ∩L)

(see Lemma C.2 in the appendix). Set ζ = η−1 ◦ξ on L and ζ = id on U . Then
ζ is isotopic to the identity rel U ∪ Pf , so f ◦ ζ−1 is c-equivalent to f . But
f ◦ ζ−1 = R ◦ η on L, with η quasiconformal and R holomorphic. One sees
that f ◦ ζ−1 is quasiregular in L. But on C�L = U , the map f ◦ ζ−1 is equal
to f and therefore is holomorphic. Thus f ◦ ζ−1 is quasiregular on the entire
space C. �

2.2 Repelling system as a restriction

Notation For two subsets E1,E2 of C, we write E1 � E2 if the closure of E1
is contained in the interior of E2.

We will cover the filled-in Julia set Kf by a surface puzzle L such that
f−1(L) � L, just as in Branner and Hubbard’s study of cubic polynomi-
als with disconnected Julia sets ([3]). The restriction f |f−1(L), considered
as a dynamical system, leads naturally to the concept of repelling systems.
Such dynamical systems can also be considered as a generalization of Douady
and Hubbard’s polynomial-like mappings ([14]) in three aspects: The domain
of definition will have finitely many (instead of just one) connected compo-
nents, every component will have finitely many (instead of just one) bound-
ary curves (this is necessary as we are dealing with rational maps), and the
dynamics will be quasiregular branched coverings (instead of holomorphic
proper maps).

Definition 1 A (quasidisc) bordered surface is the Riemann sphere minus
finitely many (or zero) open quasidiscs whose closures are mutually disjoint.
A surface puzzle L = S1 
 · · · 
 Sk is a finite disjoint union of bordered

1The charts about non critical points are defined using directly f . But to get a chart about a

critical point c say of local degree δ one should take a lift of f−1 to zδ + f (c). See [12],
Sect. 6.1.10 for details.
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surfaces Si . Each Si is also called an L-piece. Note that two L-pieces might
be contained in different copies of the Riemann sphere.

We say that a map F : E → L is a (quasiregular) repelling system, if

(I) The two sets E and L are surface puzzles, and satisfy E � L;
(II) the map F maps every E -piece E properly onto an L-piece S as a qua-

siregular map, i.e. there is a quasiconformal homeomorphism φ : E →
φ(E) ⊂ C such that F ◦ φ−1 : φ(E) → S is a holomorphic proper map;

(III) the orbit {Fn(c)}n>0 of every critical point c of F is disjoint from the
boundary of E .

In this paper, a quasiconformal (quasiregular, holomorphic) map between
a pair of surface puzzles means that it is quasiconformal (quasiregular, holo-
morphic) in the interior. From (III), we see that for any k ≥ 1 and n ≥ 0, the
map Fk : F−n−k(L) → F−n(L) is also a repelling system. Notice that due
to the disconnectedness of the domains the number of preimages #F−1(b)

needs not be constant when we let b vary in L.
A repelling system F : E → L is holomorphic if F is holomorphic in E .

To a repelling system F : E → L we associate its postcritical set PF and its
filled-in Julia set KF as follows:

PF := closure{Fn(c) | for all critical points c of F, n > 0},
KF := {z ∈ E | Fn(z) ∈ E, for all n > 0} =

⋂
n>0

F−n(L).

Note that F has only finitely many critical points. The set PF might be
empty. One may construct examples for which KF is empty (for exam-
ple, L = S1 
 S2, E � S1 and F(E) = S2), although we will be only inter-
ested in the case that KF �= ∅, with either PF empty or not empty. We have
F−1(KF ) = KF = F(KF ), PF � L and F(PF ∩ E) ⊂ PF .

We say furthermore that F : E → L is postcritically finite if PF is finite or
empty. In particular we say that F : E → L is an annuli-covering if every L-
piece is a closed annulus and every E -piece is a closed essential sub-annulus
in L. An essential sub-annulus E in an annulus S means that the sub-annulus
E separates the two boundary components of S. Obviously, PF = ∅ for an
annuli-covering F .

The following restriction principle provides the most fundamental exam-
ples of the above concepts:

Lemma 2.2 Let f be a quasiregular semi-rational map with P ′
f �= ∅. Then

there exists a surface puzzle neighborhood L0 of Kf such that L1 :=
f−1(L0) � L0 and f |L1 : L1 → L0 is a postcritically finite repelling system.
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Proof One can find an open set U0 which is the union of finitely many qua-
sidiscs with the following properties: Each disc contains exactly one point of
P ′
f , the discs have pairwise disjoint closures, the boundary ∂U0 is disjoint

from Pf , the map f is holomorphic in a neighborhood of U0, and finally
f (U0) � U0.

Set L0 = C�U0. Then Kf � f−1(L0) � L0, the intersection Pf ∩ L0 is
finite and Pf is disjoint from the boundary of f−1(L0). This surface puzzle
L0 satisfies the requirement of the lemma. �

Examples of repelling systems

1. Let E � L be two closed quasidiscs in C, and F : E → L a holomorphic
proper map with degree degF > 1. Then F is a polynomial-like map in
the sense of Douady and Hubbard, KF is simply the filled-in Julia set, and
PF is the postcritical set.

2. The set L consists of a single closed quasidisc, the set E is the union of
finitely many disjoint closed quasidiscs contained in the interior of L, and
F maps each E -piece quasiconformally onto the larger disc L. In this case
PF = ∅ and KF is the non-escaping set of F . If F is also holomorphic,
the filled-in Julia set KF is a Cantor set. This happens when F(z) = z2 + c

for large c.
3. By convention we may consider E = L = C and a quasiregular postcriti-

cally finite branched covering f : C → C as a repelling system.

Definition 2 By a marked repelling system F : (E,P ) → (L,P ) (denoted
also by (F,P ) for simplicity) we mean that we have a postcritically finite
repelling system F : E → L, together with a finite marked set P , such that
P � L, PF ⊂ P and F(P ∩ E) ⊂ P .

If it is not explicitly mentioned, we will consider F to be marked by its
postcritical set PF .

Motivated by Thurston’s theory, we say that two marked repelling systems
F : (E,P ) → (L,P ) and G : (B,Q) → (M,Q) are c-equivalent, if there is
a pair of quasiconformal homeomorphisms 	,
 : L → M such that

⎧⎪⎨
⎪⎩


(E) = B and 
(P ) = Q,


 is isotopic to 	 rel ∂L ∪ P,

and 	 ◦ F = G ◦ 
.

(2)

Remark This definition matches with McMullen’s definition of combinatorial
equivalence among Riemann surface self-coverings ([24], p. 288).

Lemma 2.3 A marked repelling system F : (E,P ) → (L,P ) is c-equivalent
to a holomorphic marked repelling system iff there is a pair (�,μ) such that:
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(a) � : L → L is a quasiconformal map isotopic to the identity rel ∂L ∪ P .
(b) μ is a Beltrami differential on L with ‖μ‖∞ < 1 and (F ◦ �−1)∗(μ) =

μ|�(E).

Proof Assume that F : (E,P ) → (L,P ) is c-equivalent to a holomorphic
marked repelling system G : (B,Q) → (M,Q). Let (	,
) be the pair of
quasiconformal maps given by Definition 2. Set � = 	−1 ◦
 and let μ be the
Beltrami coefficient of 	. Then � satisfies (a) and (F ◦ �−1)∗(μ) = μ|�(E).

Conversely, assume the existence of the pair (�,μ). For each L-piece S,
denote by C(S) the Riemann sphere containing S (we consider each such S

to be contained in a distinct copy of the Riemann sphere). By the Measurable
Riemann Mapping Theorem, there is a quasiconformal map 	S : C(S) → C

whose Beltrami coefficient is equal to μ on S and equal to zero elsewhere.
Set M = ⊔

	S(S), B = ⊔
	S(E ∩S) and Q = ⊔

	S(P ∩S). Define 	,
 :
L → M by 	|S = 	S and 
|S = 	S ◦�|S , and G := 	◦F ◦
−1. Then G :
(B,Q) → (M,Q) is a holomorphic marked repelling system c-equivalent to
F : (E,P ) → (L,P ). �

The following result relates repelling systems to our main theorem of in-
terest (Theorem 1.1) through a restriction:

Proposition 2.4 Let f be a quasiregular semi-rational map with P ′
f �= ∅.

Let L be a surface puzzle neighborhood of Kf such that ∂L ∩ Pf = ∅, the
set P := Pf ∩ L is a finite set, and the set E := f−1(L) satisfies E � L. If the
restriction f |E : E → L as a repelling system is c-equivalent to a holomorphic
repelling system, then f is c-equivalent to a rational map.

Proof By Lemma 2.3 there is a pair (�,μ), with � a quasiconformal map of
L isotopic to the identity rel ∂L ∪P , with μ a Beltrami differential on L such
that ‖μ‖∞ < 1 and (f ◦ �−1)∗μ = μ|�(E).

Choose U0, an open neighborhood of P ′
f disjoint from L, so that

f−1(U0) ⊃ U0 and f is holomorphic on f−1(U0). Set L0 = C�U0 and
Ln = f−n(L0), n ≥ 1. The sequence (Ln)n≥1 is decreasing and shrinks down
to Kf . There is therefore an integer N ≥ 0 such that LN ⊂ L and LN+1 ⊂ E .
So every orbit passing through the set L0�E stays there for at most N + 1
times before being trapped by U0.

Extend the map � to a quasiconformal map of C by setting � := id on
C�L, then � is quasiconformal and isotopic to the identity rel Pf . Set f1 =
f ◦ �−1. Then f1 is again quasiregular and is holomorphic on �(U0) = U0.
Clearly, every f1-orbit passes through L0��(E) at most N + 1 times.

Now extend the Beltrami differential μ to C by setting μ = 0 outside L.
Let 	1 : C → C be a global integrating map of this extended μ. Set f2 :=
	1 ◦f1 ◦	−1

1 . Then f2 is again quasiregular and is holomorphic in the interior
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of 	1 ◦ �(E) and in 	1(U0). Every f2-orbit passes through at most N + 1
times C�	1(�(E) ∪ U0).

We can now apply Shishikura’s principle (see [1], Lemma 15, p. 130):
we spread out the Beltrami differential ν0 ≡ 0 using the iterations of f2 to
get an f2-invariant Beltrami differential ν. Note that ν = 0 on 	1(U0), and
‖ν‖∞ < 1. Integrating ν by a quasiconformal map 	2 (necessarily holomor-
phic on 	1(U0)), we get a new map R := 	2 ◦ f2 ◦ 	−1

2 which is a rational
map and is c-equivalent to f2, therefore also to f . �

The above constructions are illustrated by the following commutative dia-
gram:

(C, E)

f

�

C

f1

	1

C

f2

	2

C

R

(C, L)
id

C
	1

C
	2

C

3 Thurston-like theory for repelling systems

Proposition 2.4 leads us to consider whether a given marked repelling system
is c-equivalent to a holomorphic marked repelling system. We will see that,
similar to Thurston’s theory, the answer is yes if the map is unobstructed. And
the obstructions that can arise are very similar to Thurston’s original ones.

3.1 Grötzsch’s inequality and Thurston obstructions

Thurston obstructions are in fact closely related to Grötzsch’s inequality on
moduli of annuli. We will illustrate this by starting from real models.

3.1.1 Slope obstructions

Suppose we want to make a tent map f on the interval [0,1] with folding
point c and with f (c) > 1, with left slope d1 > 0 and right slope −d2 (d2 > 0).
This is possible if and only if d−1

1 + d−1
2 < 1.

More generally, suppose that I and J are two closed subsets of R such that
each of them is a union of finitely many disjoint closed intervals, and J � I .
Let f : J → I be a map such that for each component K of J , the restriction
f |K : K → f (K) is a homeomorphism and f (K) is a component of I . The
question we ask is: given a real number d(K) > 0 for each component K of
J , are there homeomorphisms h : I → I ′ and θ : I → I with θ |∂I = id such
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that for each component K of J , the new map h ◦ f ◦ θ ◦ h−1 is affine on
h(K) with slope (in absolute value) d(K)?

To fix our ideas we may at first assume that f is itself piece-wise affine.
Then |K| = |f (K)|/d(K) (where | · | denotes the length of the interval).
Hence for each interval Ii of I ,

∑
j

(∑ 1

d(K)

)
|Ij | < |Ii |, (3)

where the second sum is taken over the components K of J satisfying K ⊂ Ii
and f (K) = Ij . Denote by aij this second sum. Collecting the aij ’s together
we get the transition matrix W = (aij ). It is a non-negative matrix. Then the
inequality (3) can be reformulated as Wv < v with v := (|Ii |). Note that v is
a vector with strictly positive entries.

It is then conceivable that a necessary and sufficient condition for a pos-
itive answer of the above question could be: The transition matrix W must
admit a vector v with strictly positive entries so that Wv < v. Notice that this
condition on W is equivalent to the one that the leading eigenvalue of W from
Perron-Frobenius theorem is strictly less than 1 (see Lemma A.1).

Rather than proving this statement in detail, we will give a complexified
version of it and provide a complete proof.

3.1.2 Grötzsch obstructions for annuli-coverings

Now we replace the intervals Ij above by thin tubes. More precisely, let
A = A1 
 · · · 
 Ak be a surface puzzle with each piece Ai a closed annulus.
Let E � A be a surface puzzle such that each E -piece is a closed sub-annulus
essentially contained in some Ai . Consider f : E → A as a repelling system
(an annuli covering). The question is: Is f : E → A c-equivalent to a holo-
morphic repelling system?

Define the transition matrix W = (aij ) by

aij =
∑ 1

deg(f : E → Aj)

where the sum is taken over the E -pieces E satisfying E ⊂ Ai and f (E) =
Aj .

Assume that f is already holomorphic. Denote by | · | the modulus of the
interior of an annulus. Then, due to Grötzsch’s inequality, for each piece Ai ,∑

j

aij |Aj | < |Ai |.

Therefore, as above, the leading eigenvalue λ(W) of the transition matrix W

is less than 1. We have, naturally:
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Lemma 3.1 An annuli-covering f : E → A is c-equivalent to a holomorphic
repelling system if and only if λ(W) < 1.

Proof Assume that f : E → A is c-equivalent to a holomorphic repelling sys-
tem. Then the two maps have the same transition matrix W . By the argument
above λ(W) < 1.

The remaining part will be done in Lemma 6.2. �

This lemma is not really needed in the proof of our main result. But it
helps understanding Thurston obstructions, and its proof will shed light on
our more complicated situation.

3.1.3 Thurston obstructions

By a marked branched covering (f,P ) we mean that f : C → C is a
branched covering and the marked set P ⊂ C is a closed set such that
Pf ⊂ P and f (P ) ⊂ P .

A Jordan curve γ in C�P is called null-homotopic (resp. peripheral)
in C�P if one of its complementary components contains zero (resp. one)
points of P ; and is otherwise called non-peripheral in C�P , i.e. if each of
its two complementary components contains at least two points of P .

We say that � = {γ1, . . . , γk} is a multicurve in C�P , if each γi is a
non-peripheral Jordan curve in C�P , these curves are pairwise disjoint and
pairwise non homotopic in C�P . Its (f,P )-transition matrix W� = (aij ) is
defined by:

aij =
∑
α

1

deg(f : α → γj )
,

where the summation is taken over the components α of f−1(γj ) homotopic
to γi in C�P .

We say that a multicurve � in C�P is f -stable if every curve of f−1(γ ),
γ ∈ � is either null-homotopic or peripheral in C�P or is homotopic in C�P

to a curve in �. This implies that for every curve γ ∈ � and any m > 0,
every curve of f−m(γ ) is either null-homotopic or peripheral in C�P or is
homotopic in C�P to a curve in �.

We say that a multicurve � in C�P is a Thurston obstruction for the
marked branched covering (f,P ) if it is f -stable and the leading eigenvalue
of its transition matrix is greater than or equal to 1. In the particular case
P = Pf we say that � is a Thurston obstruction for f .

In the case that P is finite (in particular f is postcritically finite) we say
that two such marked branched coverings (f,P ) and (g,Q) are c-equivalent
if there is a pair of homeomorphisms (φ,ψ) : C → C such that φ is isotopic
to ψ rel P (in particular φ|P = ψ |P ) and φ ◦ f ◦ ψ−1 = g.
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Theorem 3.2 (Marked Thurston’s theorem) Let f be a postcritically finite
branched covering of C with degf ≥ 2. Assume that the signature of its orb-
ifold is not (2,2,2,2) (see the remark below). Let P be a finite set containing
Pf such that f (P ) ⊂ P . If (f,P ) has no Thurston obstructions, then (f,P )

is c-equivalent to a unique marked rational map. More precisely, there are
homeomorphisms (φ,ψ) : C → C such that φ is isotopic to ψ rel P and
R := φ ◦ f ◦ ψ−1 is a rational map. The conformal conjugacy class of the
marked rational map (R,φ(P )) is unique.

Furthermore, when f is quasiregular, both φ and ψ can be taken to be
quasiconformal.

For the definition of orbifolds and their signatures, see [13] or [24]. We
only mention here that if Pf contains periodic critical points or at least 5
points, then the signature of the orbifold of f is not (2,2,2,2). This will be
enough for our purpose here.

Remark Our statement is slightly stronger than Thurston’s original theorem
(see [35] or [13]), where P = Pf . But the arguments in [13] can easily be
adapted to prove this more general form. See for example the survey paper
[6] for details. In the case that f is quasiregular, we may replace φ by a
quasiconformal map φ1 isotopic to φ rel P . This is possible since P is finite
(see Lemma C.2). Lifting this isotopy will give us a quasiconformal map ψ1
isotopic to ψ rel P such that φ ◦ f ◦ ψ−1 = φ1 ◦ f ◦ ψ−1

1 .

Conversely, we have the following result of McMullen [24]:

Theorem 3.3 Let f be a rational map with degf ≥ 2, and let P be a closed
subset such that f (P ) ⊂ P and Pf ⊂ P . Let � be a multicurve in C�P

whose transition matrix is denoted by W . Then λ(W) ≤ 1. If λ(W) = 1, then
either f is a postcritically finite map whose orbifold has signature (2,2,2,2)
or � includes a curve that is contained in a Siegel disc or a Herman ring of f .

Again this form is slightly stronger than McMullen’s original version. But
the proof goes through without any problem.

3.2 Thurston obstructions for repelling systems.

Let F : (E,P ) → (L,P ) be a marked repelling system. In other words F :
E → L is a postcritically finite quasiregular branched covering between a
pair of nested surface puzzles E � L, and P � L is a finite set containing
PF such that F(P ∩ E) ⊂ P . (In the case L = C we are back to Thurston’s
setting.)



A characterization of hyperbolic rational maps 467

Definition 3 Two Jordan curves in L�P are homotopic if they are both con-
tained in a common L-piece S and are homotopic to each other in S�P .

A Jordan curve γ ⊂ L�P is called null-homotopic (resp. peripheral) in
L�P if it bounds an open disc D ⊂ L and D ∩ P = ∅ (resp. #(D ∩ P) = 1);
it is called non-peripheral in L�P otherwise (this is equivalent to say that
γ is contained in S�P for some L-piece S, and if γ bounds a disc D that is
entirely contained in S, then D contains at least two points of P ).

Remark The above definition of peripheral curves is not standard. In the liter-
ature, a boundary curve γ of L is considered to be peripheral. However, in our
definition, the curve γ is non-peripheral if either the L-piece S that contains
γ is not a closed disc or the piece S is a closed disc satisfying #(S ∩ P) ≥ 2.

We say that � = {γ1, . . . , γk} is a multicurve in L�P if each γi is a non-
peripheral Jordan curve in L�P and these curves are pairwise disjoint and
pairwise non homotopic in L�P . Its (F,P )-transition matrix W� = (aij ) is
defined by:

aij =
∑
α

1

deg(F : α → γj )
,

where the summation is taken over the components α of F−1(γj ) homotopic
to γi in L�P .

We say that a multicurve � in L�P is F -stable if every curve of F−1(γ ),
γ ∈ � is either null-homotopic or peripheral in L�P or is homotopic in L�P

to a curve in �.
We say that a multicurve � in L�P is a Thurston obstruction for the

marked repelling system F : (E,P ) → (L,P ) if it is F -stable and the leading
eigenvalue of its transition matrix satisfies λ(W�) ≥ 1.

The following principle will be used frequently, and is a direct consequence
of the facts that F(P ∩ E) ⊂ P and F is a covering over L�P :

Basic Pullback Principle.

1. Let D be a Jordan disc contained in L�P with ∂D ∩ P = ∅. Then every
component of F−1(D) is again a disc and is contained in E �P . Each
curve in F−1(∂D) is the boundary of a component of F−1(D).

2. Let A be an annulus contained in L�P . Then every component of F−1(A)

is again an annulus and is contained in E �P .
3. Let D be a Jordan disc contained in L with ∂D ∩P = ∅ and #D ∩P = 1.

Then every component of F−1(D) is again a Jordan disc in E containing
at most one point of P . Each curve in F−1(∂D) is the boundary of a
component of F−1(D).

The following is an easy consequence:
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Lemma 3.4 Let F : (E,P ) → (L,P ) be a marked repelling system. For any
peripheral (resp. null-homotopic) curve γ ⊂ L�P , every curve in F−1(γ ) is
either peripheral or null-homotopic (resp. is null-homotopic) in L�P .

We will prove the following Thurston-like theorem for marked repelling
systems:

Theorem 3.5 Let G : (B,Q) → (M,Q) be a marked repelling system such
that every M-piece has a non-empty boundary. If (G,Q) has no Thurston
obstructions, then it is c-equivalent to a holomorphic marked repelling sys-
tem.

Remark By definition the map G must map the interior of every B-piece E

properly onto the interior of an M-piece S. In particular S = C if and only
if E = C. Therefore if some M-pieces are the whole spheres, the dynamical
system G can be decomposed into two sub-systems as follows:

First we decompose the surface puzzle M into the disjoint union M0 
 M1

so that M0 is the union of the spherical M-pieces. We then decompose the
surface puzzle B into B0 
 B1 
 B01, with B0 the union of the spherical B-
pieces (hence it is contained in M0), B1 the union of the B-pieces that are
contained in M1 (they are necessarily non-spherical), and B01 the union of
the non-spherical B-pieces that are contained in M0. Then G(B0) ⊂ M0 and
G(B1 
 B01) ⊂ M1.

Denote by N the number of M-pieces. One can show that for any point
z ∈ KG, the tail of its forward orbit {Gn(z)}n>N is either totally contained in
B1 or totally contained in B0. Thus the dynamics of G splits into two parts
according to the above two cases. The former case satisfies our assumption. In
the latter case, for each cycle of the spheres, if the degree of the return map is
greater than one, then it is reduced to Thurston’s setting; otherwise the return
map is a homeomorphism and the corresponding problem is to find an invari-
ant complex structure on a punctured sphere for a modular transformation
(this is related to another topic of research, namely Thurston’s classification
of surface homeomorphisms).

3.3 Proof of Theorem 1.1 using Theorem 3.5

Lemma 3.6 Assume that f : C → C is a quasiregular semi-rational map
with P ′

f �= ∅ and with no Thurston obstructions. Then there is a surface puz-

zle L0 ⊂ C such that Kf � L1 := f−1(L0) � L0 and the restriction f |L1 :
L1 → L0 is a postcritically finite repelling system with no Thurston obstruc-
tions.
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Proof As in Lemma 2.2 one can find an open set U0 which is the union of
finitely many quasidiscs with the following properties: Each disc contains ex-
actly one point of P ′

f , the discs have pairwise disjoint closures, the boundary

∂U0 is disjoint from Pf , the map f is holomorphic in a neighborhood of U0,
and finally f (U0) � U0.

Set L0 = C�U0. Topologically L0 is the sphere minus finitely many
(open) holes. Set L1 = f−1(L0), F = f |L1 . Then F : L1 → L0 is a post-
critically finite repelling system. Note that PF = Pf ∩ L0.

We will now show: if f : C → C has no Thurston obstructions, then the
postcritically finite repelling system F : L1 → L0 has none either.

Assume at first that L0 is a closed disc containing at most one point of Pf .
In this case ∂L0 is a single curve and is either null-homotopic or peripheral in
L0�PF , and there is no multicurve in L0�PF . Consequently F : L1 → L0
has no Thurston obstructions.

Next assume that L0 is a closed annulus disjoint from Pf . Then there is
only one homotopy class of non-peripheral Jordan curves in L0, namely that
of a boundary curve γ of L0. Such a γ is necessarily non-peripheral in C�Pf

as well, for each of the two disc-components of C�L0 contains points of P ′
f .

The curves in f−1(γ ) are all contained in L0, and are either null-homotopic
in L0 or homotopic to γ in L0. Therefore {γ } is stable for both f and F , and
the corresponding transition matrices are identical. By the assumption that
f has no Thurston obstructions, the corresponding leading eigenvalue is less
than one. Therefore {γ } is not a Thurston obstruction for F : L1 → L0 either.
And F : L1 → L0 has no obstructions.

In the remaining case, L0 is a connected surface puzzle with

#PF + #{boundary curves of L0} ≥ 3.

In particular each of its boundary curves is non-peripheral in L0�PF .
Let � be a multicurve in L0�PF . In other words,

(a) every curve in � is non-peripheral in L0�PF ;
(b) the curves in � are mutually disjoint;
(c) no two curves in � are homotopic in L0�PF .

We want to show that � is also a multicurve in C�Pf , i.e. � satisfies (a),
(b) and (c) with L0�PF replaced by C�Pf . By (a), for every curve γ in �,
either each of the two disc-components of C�γ contains a component of
C�L0 = U0 (and therefore infinitely many points of Pf ); or one of them is
contained in L0 and contains at least two points of PF ⊂ Pf , while the other
one contains all components of U0 (therefore infinitely many points of Pf ).
In both cases each component of C�γ contains at least two points of Pf , so
γ is non-peripheral in C�Pf .
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By (b) the curves in � are mutually disjoint.
By (c), for any two curves γ and β in �, the open annulus A(γ,β) bounded

by γ and β intersects either U0 or PF (or both). In the former case A(γ,β)

contains a component of U0. Therefore in both cases A(γ,β) intersects Pf ,
so γ and β are not homotopic in C�Pf .

These arguments imply that � is also a multicurve in C�Pf .
Now assume that the multicurve � is F -stable. Then, for any γ ∈ � and

any curve δ in F−1(γ ) = f−1(γ ), either δ bounds a disc that is contained in
L0 and contains at most one point of PF or δ is homotopic in L0�PF to a
curve β in �. Thus either δ bounds a disc that contains at most one point of
Pf or it is homotopic in C�Pf to β . This shows that � is also f -stable. The
two transition matrices (for F and for f ) are identical and therefore have the
same leading eigenvalue λ.

By the assumption that f has no Thurston obstructions, we know that
λ < 1, so � is not a Thurston obstruction for F : L1 → L0. Therefore
F : L1 → L0 has no obstructions. �

Assuming Theorem 3.5, we may now give the

Proof of Theorem 1.1 (the existence part). Let f be a sub-hyperbolic semi-
rational map with P ′

f �= ∅ and with no Thurston obstructions. We may assume
in addition that f is globally quasiregular, up to a change of representatives
in its c-equivalence class (by Lemma 2.1).

We may then apply Lemma 3.6 to f to show that it has a restriction near
Kf which is a postcritically finite repelling system with no Thurston obstruc-
tions and is therefore c-equivalent to a holomorphic repelling system by Theo-
rem 3.5. We may then apply Proposition 2.4 to conclude that f is c-equivalent
to a rational map. �

4 Admissible restriction

In the following two sections we will reduce a marked repelling system to
a restriction of it which is furthermore of constant complexity (we refer to
Definition 5 in Sect. 5). Such a restriction should also satisfy some specific
properties in order to not create extra obstructions.

Definition 4 Let G : (B,Q) → (M,Q) be a marked repelling system such
that every M-piece has a non-empty boundary. Let E and L be a pair of
surface-puzzle-neighborhoods of KG such that

KG � E � L � M, E = G−1(L) and ∂L ∩ Q = ∅.
Then the repelling system F = G|E : E → L marked by P := Q∩ L is called
an admissible restriction of (G,Q).
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Fig. 1 The curve γ is not
peripheral in L�P , but ι(γ )

is peripheral in M�Q since
it bounds a disc D(γ ) that is
contained in M and contains
a unique point of Q, which
is also a point of P

Theorem 4.1 Let G : (B,Q) → (M,Q) be a marked repelling system such
that every M-piece has a non-empty boundary. Let F : (E,P ) → (L,P ) be
an admissible restriction of (G,Q). Then,

(1) If (F,P ) is c-equivalent to a holomorphic marked repelling system, so is
(G,Q).

(2) If (G,Q) has no Thurston obstructions, then neither does (F,P ).

The condition KG � E is necessary for the theorem to be true. See Exam-
ple 4 in Sect. 7.1 for a counter-example.

Consider the inclusion map ι : L�P ↪→ M�Q.
Let � be a multicurve in L�P . When we consider the homotopy class of

ι(γ ) in M�Q for γ ∈ �, the following cases may happen:

• Some ι(γ ) may now become null-homotopic in M�Q. This means that
there are artificial holes in L.

• Some ι(γ ) may now become peripheral in M�Q (Fig. 1 shows how this
may happen).

• Some pair of curves ι(γ1) and ι(γ2) may now become homotopic to each
other in M�Q.

Lemma 4.2 There is a positive integer n0 ≥ 1 such that for every non-
peripheral curve γ in L�P with ι(γ ) null-homotopic in M�Q, every curve
in F−n0(γ ) is null-homotopic in L�P .

Proof We define a hole D to be a connected component of M�L that is a
disc, is disjoint from Q, and so that the boundary ∂D is contained in L.

Let D be a hole. Then there is an L-piece S and an M-piece Ŝ such that
D is a component of Ŝ�S. By Basic Pullback Principle, every component of
G−n(D) for n ≥ 1 is also a disc in M and is disjoint from Q. Since ∂D ⊂ ∂L,
a component Di of G−i (D) and a component Dj of G−j (D) with i > j ≥ 0
are either disjoint or one contains the other.

Denote by n0 ≥ 1 the number of Jordan curves in ∂L. We claim that for
any hole D, its n0-th pullback G−n0(D) is contained in L.
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Assume by contradiction that G−n0(D0) is not contained in L for some
hole D0. Then there is a component Dn0 of G−n0(D0) that is not entirely
contained in L.

Fix any integer k with 1 ≤ k ≤ n0. Set Dk = Gn0−k(Dn0). Then Gk(Dk) =
D0. Since G−(n0−k)(L) ⊂ L, Dn0 ⊂ G−(n0−k)(Dk) and Dn0 �⊂ L, we see that
the disc Dk is not contained in L. But ∂Dk ⊂ G−k(∂D0) ⊂ E � L, so ∂Dk is
contained in the interior of an L-piece. It follows that the disc Dk contains at
least one boundary component of L.

At first we want to show that for any pair of integers i, j with n0 ≥ i >

j ≥ 0, either Di is disjoint from Dj , or Di � Dj . Otherwise we have Dj �
Di ; and hence Gi−j (Di) = Dj � Di . This implies that points in Di never
escape and hence are contained in KG. So are points in D. This contradicts
the facts that KG � L and ∂D ⊂ L.

Since the number of Jordan curves in ∂L is n0, and every disc Dk for
n0 ≥ k ≥ 1 contains a component of ∂L which is not the specific component
∂D0 of ∂L, we see that these discs cannot be pairwise disjoint. There exist
integers n0 ≥ i > j ≥ 1 such that Di � Dj and Dj�Di is disjoint from ∂L.
This implies that the L-piece S′ which contains ∂Dj in its interior must also
contain ∂Di . Hence Dj�Di � S′ ⊂ L, and Di contains a boundary curve γ ′
of S′. Set g = Gi−j |Di

and A = Dj�Di (it is a half open annulus). Then
g : Di → Dj is a homeomorphism, and the set

⋃
m≥0 g

−m(A) is connected
and is contained in L, therefore in S′. Furthermore

γ ′ ⊂ Dj�

⋃
m≥0

g−m(A) ⊂ KG � L .

This leads to a contradiction since γ ′ is a boundary curve of L.
The claim is proved.
Now let γ be a non-peripheral curve in L�P such that for the inclusion

map ι : L�P → M�Q, the image ι(γ ) is null-homotopic in M�Q. Denote
by D(γ ) ⊂ M the disc bounded by ι(γ ). Denote also by S (resp. Ŝ) the L-
piece (resp. the M-piece) containing γ . Then D(γ ) is disjoint from Q and is
entirely contained in Ŝ. Now D(γ ) can be decomposed into D(γ )∩S together
with a union of finitely many holes (it may happen that D(γ ) is itself a hole).
For every hole D inside D(γ ) we have G−n0(D) ⊂ L and

G−n0(D(γ ) ∩ S) ⊂ G−n0(L) ⊂ L,

so G−n0(D(γ )) ⊂ L. Clearly G−n0(D(γ )) is disjoint from Q and hence from
P (as P ⊂ Q). Therefore every curve in F−n0(γ ) = G−n0(D(γ )) is null-
homotopic in L�P . �
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Lemma 4.3 There is an integer n1 ≥ n0 such that for every non-peripheral
curve γ in L�P with ι(γ ) peripheral in M�Q, every curve in F−n1(γ ) is
either null-homotopic or peripheral in L�P .

Proof Since γ = ι(γ ) is peripheral in M�Q, it bounds a disc D(γ ) ⊂ M
which contains a unique point of Q, denoted by a.

Assume that a is not a periodic point for G. Denote by k1 the number
of non-periodic points in Q. Then G−k1(a) is disjoint from Q. Therefore
G−k1(D(γ )) is also disjoint from Q, so the curves in G−k1(γ ) are null-
homotopic in M�Q. It follows by Lemma 4.2 that for k ≥ k1 +n0 the curves
in G−k(γ ) are null-homotopic in L�P .

Now assume that a is a periodic point for G. In particular the orbit of a

does not escape M, so a ∈ KG = KF ⊂ L.
Denote by {η1, . . . , ηm} the set of curves in ∂L which are homotopic to γ

in M�Q, i.e. each ηj bounds a disc D(ηj ) ⊂ M with D(ηj )∩Q = {a}. We
enumerate the ηj ’s so that D(ηj−1) ⊂ D(ηj ). See Fig. 1.

Since there are no Jordan curves in ∂L separating η1 from a ∈ L, we know
that both η1 and a are contained in a common L-piece, denoted by S0. Re-
cursively, for every even number 2 ≤ i < m, the two curves ηi and ηi+1 are
boundary curves of a common L-piece, denoted by Si . Clearly for every even
number 2 ≤ i < m, we have Si �= Si+2, and any L-piece contained in the
annulus between Si and Si+2 does not separate Si from Si+2.

Let p be the period of a. Fix j ∈ {1, . . . ,m}. For any k ≥ 1, the components
of G−kp(D(ηj )) are all discs, with one of them containing a, and with each
of the others containing at most one point of Q (this point is necessarily
non-periodic). Therefore G−kp(ηj ) has a unique component, denoted by βk

j ,

homotopic to γ in M�Q. Denote by D(βk
j ) the disc bounded by βk

j in M.

First, consider j = 1. Since both β1
1 and the point a are contained in a

common E -piece, they must be compactly contained in a common L-piece
as well, that is β1

1 � S0. Hence a ∈ D(β1
1 ) � D(η1). Set then g = Gp|D(β1

1 )
:

D(β1
1 ) → D(η1) and βk

1 = g−k(η1) (k ≥ 1).
Consider the sequence of (half-open) annuli D(βl

1)�D(βl−1
1 ), l ≥ 1 (set-

ting β0
1 = η1). Since the set ∂S0 ∩ D(η1) contains at most n0 − 1 Jor-

dan curves, there must be an integer k ≤ n0, such that the annulus A :=
D(βk

1 )�D(βk−1
1 ) does not contain any boundary point of S0. Therefore

A ⊂ S0 ⊂ L. It follows that for any n ≥ 1, the set g−n(A) as a subset of
G−pn(A), is contained in L. Notice that

⋂
l≥1 D(βl

1) ⊂ KG � L, so

D(β
n0
1 ) ⊂ D(βk

1 ) =
(⋃

n≥0

g−n(A)

)
∪

(⋂
l≥1

D(βl
1)

)
⊂ L.

It follows that βn0
1 is peripheral in L�P .
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We claim that D(β1
j ) ⊂ D(ηj ) for j = 2, . . . ,m.

Assume by contradiction that there is a minimal integer j ≥ 2 such that
β1
j �⊂ D(ηj ). Then ηj ⊂ D(β1

j ) (recall that ηj ⊂ ∂L and β1
j � L so ηj ∩

β1
j = ∅). Denote by A(ηj , ηj−1) the annulus enclosed by ηj and ηj−1. Then

A(ηj , ηj−1) ⊂ D(ηj ) ⊂ M. By Basic Pullback Principle the components of
G−p(A(ηj , ηj−1)) are all annuli. One of them must be A(β1

j , β
1
j−1), the an-

nulus enclosed by β1
j and β1

j−1. Since β1
j−1 ⊂ D(ηj−1) and ηj ⊂ D(β1

j ), we
have

Gp(A(β1
j , β

1
j−1)) = A(ηj , ηj−1) ⊂ A(β1

j , β
1
j−1).

Therefore Gk(A(ηj , ηj−1)), (k = 0, . . . , p − 1) are all contained in B =
G−1(M). Set U = ⋃p−1

k=0 Gk(A(ηj , ηj−1)). Then G(U) ⊂ U . This implies
that U ⊂ KG = KF , contradicting the fact that KF � L since the curve ηj
lies on the boundary of L. The claim is proved.

Let i be an even number with 2 ≤ i < m. Then the two curves ηi and
ηi+1 are both contained in the L-piece Si . And any other L-piece lying in
D(ηi)�D(ηi−1), which is the annulus between Si and Si−2, does not separate
Si from Si−2. Denote by E1

i the G−p(L)-piece containing β1
i . Then E1

i =
E1

i+1 (i.e. both β1
i and β1

i+1 are contained in a common G−p(L)-piece). By
the above claim E1

i is contained in D(ηi). Therefore E1
i+1 ⊂ Si−2t for some

integer t > 0. Inductively, let Ek
i be the G−kp(L)-piece containing βk

i . Then
Ek

i ⊂ S0 for k > i. Thus both βk
i and βk

i+1 are peripheral in L�P for k ≥
n0 + m.

Since γ = ι(γ ) is peripheral around a in M�Q, it must be contained in
an Si for some even number 2 ≤ i < m. Let k2 be the number of periodic
points in Q. Set n1 = k1 + k2n0 (note that m ≤ n0). Combining the above
arguments, we know that for n ≥ n1, every curve in F−n(γ ) = G−n(γ ) is
either null-homotopic or peripheral in L�P . �

Proof of Theorem 4.1 (1) This part can be proved similarly as Proposition 2.4.
We will omit the details here.

(2) Now assume that (G,Q) has no Thurston obstructions. We will prove
that (F,P ) has no obstructions either. Let � be a multicurve in L�P . We
decompose it into � = �1 
�2 with �1 (resp. �2) being the set of γ ∈ � such
that ι(γ ) is null-homotopic or peripheral (resp. non-peripheral) in M�Q.
Clearly, �1 is F -stable. Equivalently, the F -transition matrix W� of � has
the following block decomposition:

W� =
(
W2 O

∗ W1

)
,
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where W1 and W2 denote the F -transition matrices of �1 and �2, respectively.
The symbol O denotes a rectangular zero-matrix of appropriate size.

By Lemmas 4.2 and 4.3, there is a positive integer n ≥ 1 such that (W1)
n =:

O ′ is a square zero-matrix. Notice that

(W�)
n =

(
(W2)

n O

∗ (W1)
n

)
=

(
(W2)

n O

∗ O ′
)
.

By Theorem A.4 in the appendix, we have (λ(W�))
n = λ(((W�)

n)t ) =
λ(((W2)

n)t ) = (λ(W2))
n, where Wt is the transpose of W . Hence λ(W2) =

λ(W�).
Now we decompose �2 into the equivalence classes ϒ1 
 · · · 
ϒk with the

equivalence relation: γ1 ∼ γ2 if ι(γ1) and ι(γ2) are homotopic in M�Q.
Pick one representative γi in each class ϒi and set � := {γ1, . . . , γk} =
{ι(γ1), . . . , ι(γk)}. Clearly � is a G-stable multicurve in M�Q.

Let W� := (bij ) be the G-transition matrix of �. Set W2 = (aδβ), where
W2 is the F -transition matrix of �2. By definition:

bij =
∑
α∈�ij

1

deg(G : α → γj )
and aδβ =

∑
α∈�δβ

1

deg(F : α → β)
,

where �ij is the collection of curves in G−1(γj ) which are homotopic to γi in
M�Q; and �δβ is the collection of curves in F−1(β) which are homotopic
to δ in L�P . We claim that for every pair (i, j) (1 ≤ i, j ≤ k) and every
β ∈ ϒj ,

∑
δ∈ϒi

aδβ ≤ bij .

Assume at first β = γj . We have

⋃
δ∈ϒi

�δγj

= {η ∈ F−1(γj ) | η is homotopic in L�P to a curve δ ∈ ϒi}
⊂ {η ∈ F−1(γj ) | ι(η) is homotopic to ι(δ) in M�Q for a curve δ ∈ ϒi}
= {η ∈ G−1(γj ) | ι(η) is homotopic to ι(δ) in M�Q for a curve δ ∈ ϒi}
= {η ∈ G−1(γj ) | ι(η) and ι(γi) are homotopic in M�Q}
= �ij .
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Therefore

∑
δ∈ϒi

aδγj =
∑
δ∈ϒi

∑
α∈�δγj

1

deg(F : α → γj )
=

∑
α∈⋃

δ∈ϒi
�δγj

1

deg(F : α → γj )

≤
∑
α∈�ij

1

deg(G : α → γj )
= bij .

This implies the claim for β = γj .
If β �= γj , replace γj by β in �. The replacement does not change the

transition matrix W�, so the claim still holds.
Applying Corollary A.7, we see that λ(W2) ≤ λ(W�).
But λ(W�) < 1 as (G,Q) has no Thurston obstructions. Consequently

λ(W�) = λ(W2) < 1, so (F,P ) has no Thurston obstructions. �

Remark One can further show that under the assumption of Theorem 4.1, if
(F,P ) has no Thurston obstructions then (G,Q) has none either. More gen-
erally, one can show that if two marked repelling systems (F,P ) and (G,Q)

satisfy: KF = KG, P ∩ KF = Q ∩ KG and F |KF
= G|KG

, then they are ei-
ther both obstructed or both unobstructed. This statement is not needed for
our purpose here, so we omit the proof.

5 Constant complexity

We introduce here a special class of repelling systems, namely those of con-
stant complexity. We show that such a system appears as an admissible re-
striction of any repelling system. We then introduce two particular types of
obstructions for this class of maps and state a corresponding Thurston-like
theorem, Theorem 5.4. The proof of which will occupy the following three
sections. We conclude the present section with a proof of Theorem 3.5 using
Theorem 5.4.

Definition 5 Let L be a surface puzzle such that every L-piece has a non-
empty boundary. Let P � L be a finite marked set.

(a) Let S be an L-piece, and E a bordered surface with E � S.
• We say that S is a complex piece if

#{curves in ∂S} + #(S ∩ P) ≥ 3. (4)

Otherwise S is a simple piece.
• We say that E is of complex type rel. (L,P ) if

#{comp. of S�E containing comp. of P ∪ ∂S} + #(E ∩ P) ≥ 3. (5)
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Otherwise E is of simple type rel. (L,P ) .
• In the case that S is a complex piece we say that E is parallel to S if
E ∩ P = S ∩ P and the interior of every component M of S�E is either
a disc or an annulus (in the latter case, one of the boundary curves of M

is necessarily in ∂S and the other is in ∂E).2

• In the case that S is a simple piece, we say that it is a disc piece if it
is a closed disc (and containing at most one point of P ) and an annular
piece if it is a closed annulus (and disjoint from P ).

(b) Let F : (E,P ) → (L,P ) be a marked repelling system. We say that it
is of constant complexity if P ⊂ KF and every complex L-piece S (if
any) contains an E -piece E parallel to S. It is easy to see that such an
E -piece for a given S is necessarily unique (see Lemma 5.2 below). For
this reason we will denote it by ES .

5.1 Achieving constant complexity via an admissible restriction

Theorem 5.1 Let G : (B,Q) → (M,Q) be a marked repelling system such
that every M-piece has a non-empty boundary. Then (G,Q) has an admissi-
ble restriction F : (E,P ) → (L,P ) which is of constant complexity.

Recall that a marked repelling system F : (E,P ) → (L,P ) is an admissi-
ble restriction of (G,Q) if KG � E � L � M, E = G−1(L), P = Q ∩ E and
F = G|E . To prove the theorem, we need the following process together with
its two properties:

Hole-filling process Let E � M be a continuum. Let S0 be the M-piece
containing E. Then each component of S0�E is either a disc (which may
contain points of Q) or intersects ∂S0. The filling of E in (M,Q), denoted
by Ê, is defined to be the union of E with the components of S0�E which are
disjoint from ∂S0 ∪Q (and thus they are open discs disjoint from Q). Clearly,
Ê ⊂ S0 and ∂Ê ⊂ ∂E.

Monotonicity For two continua E1,E2 with E1 � E2 � M, we have
Ê1 � Ê2.

Proof This property is easier to understand by looking at the complements.
There is an M-piece S0 containing both E1 and E2. Note that S0�Ê2 is
the union of the components of S0�E2 which intersect ∂S0 ∪ Q. Since

2One way to obtain a parallel subsurface of S is as follows: first thicken the boundary of
S (without touching P ) to reduce S to a sub-surface E′, then dig finitely many open holes
(whose closures are mutually disjoint and contained in the interior of E′

�P ). The result is a
surface E parallel to S.
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S0�E1 ⊃ S0�E2, these components are contained in S0�E1, which can
not be thrown away under hole-filling process of E1 since they intersect
∂S0 ∪ Q. So S0�Ê1 ⊃ S0�Ê2. Combining the fact that ∂Êi ⊂ ∂Ei , we have
Ê1 � Ê2. �

Pullback property Let E � M be a continuum, E1 a component of G−1(E)

and Ĕ1 the component of G−1(Ê) containing E1. Then Ĕ1 ⊂ Ê1.

Proof Denote by Ĕi (1 ≤ i ≤ k) the components of G−1(Ê). Note that
Ê�E is a disjoint union of open discs disjoint from Q. Set V = G−1(Ê)�

G−1(E) = G−1(Ê�E). Then V is also a disjoint union of open discs disjoint
from Q. These discs are contained in G−1(Ê) = ⋃

Ĕi and hence Ĕi�V is
connected for 1 ≤ i ≤ k. Noting that Ĕ1�V ⊂ G−1(Ê)�V = G−1(E) and
Ĕ1�V ⊃ E1, we see that E1 = Ĕ1�V since E1 is a component of G−1(E).
Since Ĕ1 ∩ V is the union of some components of V which are discs disjoint
from Q, we have Ĕ1 = E1 ∪ (Ĕ1 ∩ V ) ⊂ Ê1. �

Proof of Theorem 5.1 Set M0 = M, M1 = B and Mn = G−n(M) for
n > 1.

Choice of the iterate N0 to stabilize the postcritical set. Clearly there
is an integer N0 ≥ 1 such that for all n ≥ N0, we have Mn ∩ Q =
KG ∩ Q. In other words every critical point of G in Mn is actually in KG

and is eventually periodic.
Choice of the iterate N1 to stabilize the homotopy classes of the boundary

curves. For any integer m ≥ 1, we consider the homotopy classes in M�Q

of the Jordan curves in
⋃m

k=0 ∂Mk . The number of these homotopy classes
is weakly increasing with respect to m,but is uniformly bounded from above,
as Q ∪ ∂M has only finitely many connected components. Hence there is an
integer N1 ≥ N0 such that for any n ≥ N1, every boundary curve of Mn is
either null homotopic or homotopic in M�Q to a curve in

⋃N1−1
k=0 ∂Mk .

Hole-filling for Mn. Fix any n ≥ N0. Let S be an Mn-piece. Let E be a
component of G−1(S) and Ĕ the component of G−1(Ŝ) containing E. Then
Ĕ ⊂ Ê by Pullback Property. From E ⊂ Mn+1 � Mn, we know that E � S′
for some Mn-piece S′. By the monotonicity of filling, we have Ĕ ⊂ Ê � Ŝ′.

Set M̂n = ⋃
S an Mn-piece Ŝ.3 Then every M̂n-piece is the filling of an Mn-

piece. Therefore every G−1(M̂n)-component is realized by some Ĕ above. It
follows that

G−1(M̂n) ⊂ M̂n+1 � M̂n.

3The total number of M̂n-pieces might be less than that for Mn, since some Mn-pieces might
be hidden in the holes of others and disappear in the hole-filling process.
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Choice of the iterate N to stabilize the number and the shape of the com-
plex pieces. From now on we assume n ≥ N1.

All homotopies here are within M�Q.
We claim that for k ≥ 1, every non-null-homotopic curve γ on G−k(∂M̂n)

is homotopic to a curve in ∂M̂n. Note that

γ ⊂ G−k(∂M̂n) ⊂ G−k(∂Mn) = ∂Mn+k.

By the choice of N1, the curve γ is homotopic to a curve β in ∂Mm for
some m < N1. Since Mn+k � Mn � Mm, there exists a curve α in ∂Mn

separating β from γ . So α and γ are also homotopic. Let S be the Mn-
piece containing α. Since α is non-null-homotopic (as γ ), the filling Ŝ can
not be hidden in the hole of some other Mn-piece. So Ŝ is an M̂n-piece with
α ⊂ ∂Ŝ. The claim is proved.

Set P = Mn ∩ Q which is equal to M̂n ∩ Q and KG ∩ Q. Consider
(M̂n,P ) as a surface puzzle. Let Ŝ be a complex M̂n-piece in the sense
of (4). The pieces of simple or complex types in what follows are rel. (M,Q),
in the sense of (5).

First we show that Ŝ contains at most one G−1(M̂n)-piece of complex
type. Assume that E1 and E2 are G−1(M̂n)-pieces in Ŝ with E1 of complex
type. There is a boundary curve γ of E1 separating E1�γ from E2. If γ

is null-homotopic, then E2 is of simple type and E2 ∩ Q = ∅. Assume that
γ is non-null-homotopic. From the above claim, there is a curve α in ∂M̂n

homotopic to γ . Moreover, α can be taken in ∂Ŝ since E1 ⊂ Ŝ. Now the
closed annulus enclosed by γ and α, denoted by A(γ,α), is disjoint from
∂M ∪ Q. It must contain either E1 or E2 since γ separates E1�γ from E2.
But it can not contain E1 as E1 is of complex type. So E2 ⊂ A(γ,α). We see
that E2 is of simple type with E2 ∩ Q = ∅.

Next we show that if Ŝ contains a G−1(M̂n)-piece E of complex type then
E is parallel to S. By above the other G−1(M̂n)-pieces in Ŝ are of simple type
and are disjoint from Q. Combining this with the fact that G−1(M̂n) ∩ Q =
M̂n ∩Q, we see that E ∩Q = Ŝ ∩Q and E ∩P = S ∩P . It remains to show
that each component of Ŝ�E contains at most one component of ∂Ŝ.

Let D be a component of Ŝ�E and γ = ∂D ∩ ∂E. If γ is null-homotopic,
then D is disjoint from ∂Ŝ since every closed curve in ∂Ŝ is non-null-
homotopic. Now assume that γ is non-null-homotopic. Then there is a curve
β in ∂Ŝ homotopic to γ . Therefore the closed annulus A(γ,β) is contained
in M�Q.

If β is disjoint from D, then E ⊂ A(γ,β). This contradicts the fact that
E is of complex type, so β ⊂ D. Thus A(γ,β) ⊂ Ŝ since Ŝ is the filling of
an Mn-piece. Therefore no other component of ∂Ŝ is contained in D. This
implies that the interior of every component of Ŝ�E is either a disc or an
annulus. Consequently, E is parallel to Ŝ.
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Now let sn be the number of complex M̂n-pieces and tn+1 the number
of G−1(M̂n)-pieces of complex type. We want to show that tN+1 = sN for
some N .

We have tn+1 ≤ sn since every complex M̂n-piece contains at most one
G−1(M̂n)-piece of complex type.

We will now prove sn+1 ≤ tn+1, by proving that every complex M̂n+1-
piece contains at least one G−1(M̂n)-piece of complex type. Let Ŝ′ be a
complex M̂n+1-piece. It is the filling of an Mn+1-piece S′. The component
S̆′ of G−1(Ĝ(S′)) containing S′ is a G−1(M̂n)-piece. By Pullback Principle
we have S′ ⊂ S̆′ ⊂ Ŝ′. By (4)

#{curves in ∂Ŝ′} + #(Ŝ′ ∩ P) ≥ 3.

On the other hand, for S0 the M-piece containing Ŝ′, every component of
S0�Ŝ′ contains a component of Q ∪ ∂S0. As the number of the components
of S0�Ŝ′ is equal to that of the boundary curves of Ŝ′, we know that Ŝ′ is
also of complex type rel. (M,Q) by (5). It follows that both S′ and S̆′ are of
complex type.

Hence the sequence of non-negative integers (sn)n≥N1 is weakly decreas-
ing, so sn ≡ sN for some N ≥ N1 and for all n ≥ N , in particular tN+1 = sN .

Finally setting L = M̂N , E = G−1(L) and F = G|E , we see that P =
Q∩ L, P ⊂ KF = KG, and F : (E,P ) → (L,P ) is a marked repelling system
of constant complexity and an admissible restriction of (G,Q). �

5.2 Boundary curves and complex pieces

We will now study the properties of constant complexity maps.

Lemma 5.2 Let F : (E,P ) → (L,P ) be a marked repelling system of con-
stant complexity.

(1) For every complex L-piece S, there is a unique E -piece ES parallel to S.
And F(ES) is again a complex L-piece.

(2) For any n ≥ 1, every curve in F−n(∂L) is either null-homotopic or ho-
motopic in L�P to a boundary curve of L.

(3) For every complex L-piece S and any integer m ≥ 1, there is a unique
F−m(L)-piece E in S parallel to S. Moreover, Fm(E) is again a complex
L-piece.

Definition of F∗ By (1), we can define a map F∗ from the set of complex
pieces of L into itself by F∗(S1) = S2 if F(ES1) = S2. Since L has only
finitely many complex pieces, every complex piece is eventually periodic un-
der F∗.
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Proof of Lemma 5.2 (1) The existence of ES is given by the definition of
constant complexity. Its uniqueness follows from the fact that the interior of
every component of S�(ES ∪P) is either an annulus or a disc. We know that
F(ES) is again an L-piece. It must also be a complex piece since ES is of
complex type and every component of the F -preimage of a simple piece is of
simple type.

(2) Let S1 be a complex piece. From (1) we know that every component
M of S1�ES1 is disjoint from P and the interior of M is either a disc or an
annulus, and in the latter case one boundary curve of M is also a boundary
curve of L.

Due to Basic Pullback Principle we just need to prove Point (2) for n = 1.
Let δ be a curve in F−1(∂L), E the E -piece containing δ as a boundary

curve, and S1 the L-piece containing E.
Assume at first that E is an E -piece of simple type. Set M = S1 if S1 is a

simple piece. Otherwise let M be the component of S1�ES1 containing E. In
any case every boundary curve of E, in particular δ, is either null-homotopic
or homotopic to a boundary curve of M therefore to a curve in ∂L.

Now assume that E is an E -piece of complex type. Then S1 is necessarily a
complex piece and E = ES1 . Thus every boundary curve of E, in particular δ,
is homotopic to a curve in ∂S1 ⊂ ∂L.

(3) Set S0 = S and Si+1 = F(S1
i ) (i ≥ 0), where S1

i = ESi is the unique
E -piece parallel to Si . Since the interior of every component of Si�(S1

i ∪ P)

is either a disc or an annulus with one boundary curve in ∂Si , the interior
of every component of F−1(Si+1�(S1

i+1 ∪ P)) in S1
i is either a disc or an

annulus with one boundary curve in ∂S1
i . Hence there is a unique component

of F−1(S1
i+1) contained in S1

i , denoted by S2
i (note that degF |S1

i
= degF |S2

i
).

Moreover, the interior of every component of Si�(S2
i ∪ P) is either a disc or

an annulus with one boundary curve in ∂Si . This shows that as an F−2(L)-
piece, S2

i is parallel to Si .

Define recursively S
j+1
i to be the unique component of F−1(S

j

i+1) con-

tained in S
j
i (j > 1). Then S

j
i is an F−j (L)-piece parallel to Si . �

5.3 The boundary multicurve

Definition 6 The boundary multicurve ϒ of a marked repelling system F :
(E,P ) → (L,P ) is a multicurve in L representing the set of non-peripheral
homotopy classes (in L�P ) of the boundary curves of L. Its transition matrix
Wϒ = (aij ) is defined by

aij =
∑
α

1

deg(F : α → γj )
, (6)
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where the sum is taken over the components of F−1(γj ) homotopic to γi in
L�P .

We will say that (F,P ) has a boundary obstruction if the boundary mul-
ticurve ϒ is not empty and λ(Wϒ) ≥ 1.

In general ϒ is not F -stable. However, if (F,P ) has constant complexity,
then ϒ is F -stable by Lemma 5.2. It can be described more explicitly using
the above classification of L-pieces, as follows:

The boundary curve of a disk piece is either null-homotopic or periph-
eral. The two boundary curves of an annular piece are non-peripheral and
homotopic to each other. Every boundary curve of a complex piece is non-
peripheral and is not homotopic to other boundary curves. Therefore the
boundary multicurve ϒ can be represented by the collection of all boundary
curves of all complex pieces together with one of the two boundary curves of
every annular piece.

Remark The boundary multicurve is canonical in the following sense:
If (F,P ) is an admissible restriction of a marked repelling system G :
(B,Q) → (M,Q) and both of them have constant complexity, then the ho-
motopy class (in (M�Q)) of the boundary multicurve of (F,P ) represents
exactly the boundary multicurve of (G,Q). Let f be a quasiregular semi-
rational map and (F,P ) a marked repelling system of constant complexity
as a restriction of f with KF = Kf . Then the above statement shows that
the homotopy class (in C�Pf ) of the boundary multicurve of (F,P ) is an
f -stable multicurve in C�Pf which is independent of the choice of (F,P ).
This multicurve also describes the combinatorics of the components of the
Julia set when f is a rational map.

5.4 Renormalizations

A marked repelling system of constant complexity has another, somewhat
more important property: It can be decomposed into sub-systems which be-
have like postcritically finite branched coverings of C.

Definition 7 A marked repelling system H : (E,Z) → (S,Z) of constant
complexity is of Thurston type if both E and S are connected and S is a
complex piece, i.e.

#Z + #{boundary curves of S} ≥ 3.

In other words, E,S ⊂ C are bordered surfaces with E � S. The interior of
every component of S�E is either a disc or an annulus. The map H : E → S

is a quasiregular branched covering. The postcritical set PH is contained in E
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(or empty). The set Z ⊂ E is a finite (or empty) set containing PH such that
H(Z) ⊂ Z. And finally #Z + #{boundary curves of S} ≥ 3.

Let F : (E,P ) → (L,P ) be a marked repelling system of constant com-
plexity. Assume that there is at least one complex L-piece. Recall that we
have a map F∗ defined on the set of complex pieces by F∗(S1) = S2 if
F(ES1) = S2. Assume that S is a complex piece that is p-periodic under F∗.
Let E be the unique F−p(L)-piece in S parallel to S. Then Fp(E) = S.

Set H = Fp|E and Z = P ∩ E. By Definition 7 the map H : (E,Z) →
(S,Z) is a Thurston type marked repelling system. We will say that H is a
renormalization of (F,P ). We say that (F,P ) has a renormalization ob-
struction if it has a renormalization which has a Thurston obstruction.

Remark Let f be a sub-hyperbolic rational map, and (F,P ) a marked re-
pelling system as a restriction of f with KF = Kf and with constant com-
plexity. Suppose that H is a renormalization of (F,P ) with period p ≥ 1.
Then there is a pair of connected and finitely-connected domains U,V ⊂ C,
with KH ⊂ U � V , such that f p : U → V is a proper holomorphic map.
This proper map can be considered as a generalized polynomial-like map,
and hence as a generalization of a renormalization in the polynomial setting.

Lemma 5.3 Let F : (E,P ) → (L,P ) be a marked repelling system of con-
stant complexity. If (F,P ) has no Thurston obstructions, then it has no
boundary obstruction nor renormalization obstructions.

Proof As (F,P ) has no Thurston obstructions, we have λ(W�) < 1 for the
transition matrix W� of every F -stable multicurve �, in particular the bound-
ary multicurve. Therefore (F,P ) has no boundary obstruction.

It remains to show that any renormalization H : E → S marked by Z =
P ∩S has no Thurston obstructions. Assume by contradiction that λ(W�) ≥ 1
for the transition matrix W� of some H -stable multicurve �.

Note that � is also a multicurve in L�P . Set �0 = �. For every k ≥ 1, let
�k be a multicurve in L�P representing the set of homotopy classes of the
non-peripheral curves in

⋃
γ∈� F−k(γ ).

Claim For 0 ≤ i < j , pick any pair of curves γi ∈ �i and γj ∈ �j . Then they
are homotopically disjoint, that is, there exists a curve βi in L�P homotopic
to γi and disjoint from γj .

Proof Obviously, if one of γi and γj is homotopic to a boundary curve in
∂L, then they are homotopically disjoint. This implies that if one of them
is contained in an annular piece, or more generally in an F−k(L)-piece of
simple type, then they are homotopically disjoint.
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Now we assume that neither of them is homotopic to a boundary curve. As-
sume by contradiction that they intersect homotopically. Then they are con-
tained in a complex piece S0. If S0 = S, then i, j ≡ 0 (mod p), where p ≥ 1
is the F∗-period of the complex L-piece S. This is due to the fact that F−k(S)

has exactly one piece of complex type contained in S for k ≡ 0 (mod p) and it
has no pieces of complex type contained in S for other cases by Theorem 5.1.
As � is H -stable, both γi and γj are homotopic to a curve in �. This is a
contradiction.

In the case that S0 �= S, both F i(γi) and F i(γj ) are contained in S by
the assumption γi ∩ γj �= ∅. They are homotopically disjoint by the above
argument. Hence γi and γj are homotopically disjoint. The claim is proved. �

By the claim, for every k ≥ 1, there is a multicurve �k in L�P which
represents all non-peripheral curves in F−i(γ ) for all γ ∈ � and 0 ≤ i ≤ k.
Obviously, every curve in �k is homotopic to a curve in �k+1, and every
non-peripheral curve in F−1(γ ) for γ ∈ �k is homotopic to a curve in �k+1.
Since the set L�P has only finitely many boundary components, #�k is
uniformly bounded from above. Hence there is an integer k0 ≥ 1 such that
#�k0 = #�k0+1 since #�k is increasing. This implies that �k0 , denoted also
by � for simplicity, is F -stable.

By definition of �, every curve in � is homotopic to a curve in �. Thus
their transition matrices satisfy the following relations:

(W�)
p ≥

(
W� ∗
∗ ∗

)
≥

(
W� ∗
O1 O2

)
,

where O1 and O2 are zero-matrices of appropriate sizes. Hence their lead-
ing eigenvalues satisfy (λ(W�))

p ≥ λ(W�) ≥ 1 by Theorem A.4 and Corol-
lary A.3. This contradicts the assumption that (F,P ) has no Thurston ob-
structions.

We can now state our Thurston-like result in this setting. Its proof will
occupy Sects. 6–8.

Theorem 5.4 Let F : (E,P ) → (L,P ) be a marked repelling system of
constant complexity. Assume that (F,P ) has no boundary obstruction nor
renormalization obstructions. Then (F,P ) is c-equivalent to a holomorphic
marked repelling system.

5.5 Proof of Theorem 3.5 using Theorem 5.4

Proof of Theorem 3.5 Let G : (B,Q) → (M,Q) be a marked repelling sys-
tem with no Thurston obstructions. We will prove that (G,Q) is c-equivalent
to a holomorphic marked repelling system.
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At first we apply Theorem 5.1 to (G,Q) to show that it has a restriction
F : E → L near KG which, marked by P := Q ∩ L, is a marked repelling
system of constant complexity, and satisfies the conditions in Theorem 4.1.
So we may apply Theorem 4.1(2) to show that (F,P ) has no Thurston ob-
structions, and subsequently apply Lemma 5.3 to show that (F,P ) has no
boundary obstruction nor renormalization obstructions. Now we may apply
Theorem 5.4 to conclude that (F,P ) is c-equivalent to a holomorphic marked
repelling system. Finally we conclude for (G,Q) using Theorem 4.1(1). �

Note that it could be more difficult to check the absence of obstructions
required by Theorems 1.1 and 3.5. Whereas Theorem 5.4 turns the problem
into the one of checking the leading eigenvalue of Wϒ for a single multicurve
ϒ , and then the absence of obstructions for postcritically finite branched cov-
erings (arising from the renormalizations). This form is particularly suitable
for combinations of rational maps, i.e. starting with postcritically finite ratio-
nal maps (thus already holomorphic) as the renormalizations and then gluing
them suitably together. See for example Sect. 9 below, or [17].

6 Proof of Theorem 5.4 for simple pieces

From now on we concentrate on the proof of Theorem 5.4: A marked re-
pelling system of constant complexity having no boundary obstruction nor
renormalization obstructions is c-equivalent to a holomorphic system. In this
section we will prove the theorem in the case that there are no complex pieces.
In this case we only need to apply Grötzsch’s inequality, but not Thurston’s
original theorem.

6.1 A criterion

The following criterion makes it easier to check if two repelling systems are
c-equivalent (note that constant complexity is not needed here).

Lemma 6.1 Let F : (E,P ) → (L,P ) be a marked repelling system. Then
(F,P ) is c-equivalent to a holomorphic marked repelling system if and only
if for every L-piece Si , there is a pair of quasiconformal maps θi : Si → Si

and φi : Si → φi(Si) ⊂ C such that:

(a) θi is isotopic to the identity rel ∂Si ∪ (Si ∩ P);
(b) for every E -piece E contained in an L-piece Si , and for Sj the L-piece

equal to F(E), the composition RE := φj ◦F ◦θ−1
i ◦φ−1

i is holomorphic
in φi ◦ θi(E).
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Proof The proof is a straight forward consequence of Lemma 2.3. One just
needs to set θi = θ |Si and μ|Si = μφi

, the Beltrami differential of φi . �

Strategy to prove Theorem 5.4. According to the above lemma, establishing
the c-equivalence of (F,P ) to a holomorphic system amounts to constructing
the maps φi, θi and RE satisfying (a) and (b) for every L-piece Si and every
E -piece E in Si . In practice the maps φi and RE will be constructed first.
Then we construct θE and finally we glue the various θE’s together to get θi .
See the following schema:

Order of the construction

Si
θi−→
4.

Si
φi−→
1.

φi(Si) ⊂ C

∪ ∪ ∪
E

θE−→
3.

Ẽ
2.

φi−→ R−1
E (φj (Sj ))

F ↓ ↓ 1. RE holomorphic

Sj
id−→ Sj

φj−→
1.

φj (Sj ) ⊂ C

(7)

Example 1 Let S ⊂ C be a closed quasidisc with a marked point b ∈ S. Let
E1 and E2 be two disjoint closed quasidiscs in the interior of S with b ∈ E1.
Let F : E = E1 ∪ E2 → S be a map such that F |Ei

: Ei → S is a quasiregu-
lar branched covering with a unique critical value at b (see Fig. 2). Assume
F(b) = b. Then the marked repelling system F : (E, {b}) → (S, {b}) is al-
ways c-equivalent to a holomorphic marked repelling system by the following
constructions.

1. First construct a holomorphic system R as follows: For i = 1,2, let R|Ei
:

Ei → S be a holomorphic branched covering with the same degree as
F |Ei

, and with a unique critical value at b, such that R(b) = b.
2. Take a lift θ : E → E of the identity map via the branched covering F

and R. Then R ◦ θ = F on E and θ(b) = b.
3. Extend θ to a quasiconformal map of S with θ = id on the boundary ∂S.

It is automatically isotopic to the identity rel ∂S ∪ {b}.

6.2 Annuli-coverings

Example 2 Let S ⊂ C be a closed annulus with quasicircle boundaries. Let
A1 and A2 be two disjoint closed essential sub-annuli contained in the interior
of S. Let F : A1 ∪ A2 → S so that F |Ai

is a quasiregular covering of degree
di ≥ 1, i = 1,2 (see Fig. 2).
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Fig. 2 A repelling system
with only disc pieces, and an
annuli-covering

There is a unique multicurve � in S, up to homotopy, which consists of
a boundary curve of S. Its transition matrix has only one entry d−1

1 + d−1
2 .

Therefore F has a Thurston obstruction if and only if d−1
1 + d−1

2 ≥ 1. In the
following we will establish the c-equivalence of an annuli-covering F to a
holomorphic system, under the assumption d−1

1 + d−1
2 < 1.

1. First construct a round annulus M , say of modulus v > 0. Let φ : S → M

be a quasiconformal homeomorphism.
2. Construct then two disjoint essential closed and round sub-annuli B1 and

B2 in M with respective moduli v/d1 and v/d2. This can be done due to the
inequality d−1

1 + d−1
2 < 1. We also require that the order of displacement

of B1 and B2 in M is so that there is an automorphism H of S preserving
each boundary component and mapping Ai onto φ−1(Bi), i = 1,2.

3. Now fix an i ∈ {1,2}. Choose R|Bi
: Bi → M to be a holomorphic cov-

ering of degree di , so that for a boundary curve γ of Ai , we have
R ◦ φ ◦ H(γ ) = φ ◦ F(γ ). Lift φ to a pair of quasiconformal maps
ψi : Ai → Bi such that R ◦ ψi = φ ◦ F .

4. Set

{
θ |Ai

= φ−1 ◦ ψi : Ai → φ−1(Bi), i = 1,2,
θ |∂S = id.

5. Extend θ to a quasiconformal map of S. Then R ◦ φ ◦ θ |A1∪A2 = φ ◦ F .
6. If necessary modify the extension by postcomposing with a quasiconfor-

mal repeated Dehn twist on S�(A1 ∪A2) so that θ is isotopic to the iden-
tity rel ∂S.

Using the same idea as in the above example, we will show Theorem 5.4
for annuli-coverings.

Let F : E → A be an annuli-covering. More precisely, A = A1 
· · ·
An is
a surface puzzle with every Ai being a closed annulus, E = E1 
· · ·
Em � A
is a surface puzzle in which every Ek is a closed annulus essentially contained
in some Ai , and F : Ek → F(Ek) is a quasiregular covering of degree dk ≥ 1,
with F(Ek) equal to some Aj .

We decompose the index set {1, . . . ,m} into
⊔

(i,j) Iij , with

Iij := {k | Ek ⊂ Ai and F(Ek) = Aj }.
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In this case the transition matrix W = (aij ) takes the following form:

aij =
∑
k∈Iij

1

dk
(with aij = 0 if Iij = ∅).

We will prove the following more concrete form of Lemma 3.1:

Lemma 6.2 For the annuli-covering F : E → A defined as above, assume
that there is a vector v = (v1, . . . , vn) with positive entries such that Wv < v,
i.e. for every 1 ≤ i ≤ n, ∑

j

∑
k∈Iij

vj

dk
< vi . (8)

Then F : E → A is c-equivalent to a holomorphic annuli-covering R : B →
M = M1 
 · · · 
 Mn with mod(Mi) = vi .

Here the modulus of a closed annulus means the modulus of its interior as
an open annulus. Now Lemma A.1 relates λ(W) < 1 to the existence of such
a vector v. And Lemma 3.1 follows.

Proof of Lemma 6.2 1. Definition of φi and Rk . For every i ∈ {1, . . . , n},
choose Mi ⊂ C a closed round annulus with modulus vi . Let φi : Ai → Mi

be a quasiconformal homeomorphism.
For every k ∈ Iij , choose a closed round essential sub-annulus Bk � Mi

such that mod (Bk) = vj/dk and the Bk’s are mutually disjoint (this can be
done due to (8)) and are displaced in the same order as the Ek’s in Ai .

Now choose Rk : Bk → Mj a holomorphic covering of degree dk , so that it
maps the boundary curves in the same way as F : Ek → Aj . This can be done
through boundary labeling: for every Ai choose a labeling by + and − for its
two boundary curves. This induces a labeling by ± on the boundary curves of
each essential sub-annulus Ek so that ∂−Ek separates ∂−Ai from ∂+Ek . Now
use each φi to transport these labellings to ∂Mi which then induce a labeling
on each ∂Bk . The covering F : Ek → Aj maps ∂−Ek to one of ∂±Aj . We
choose Rk so that it sends ∂−Bk to φj (F (∂−Ek)), the corresponding boundary
component of Mj .

2. Definition of Ẽk . For every 1 ≤ k ≤ m, set Ẽk := φ−1
i (Bk) (there are

a priori two ways to label its boundary curves: as an essential sub-annulus
of Ai , or the labeling of ∂Bk transported by φ−1

i , but these two labellings
actually coincide).

3. Definition of θ ′
k . For every 1 ≤ k ≤ m, let ψk : Ek → Bk be a (choice

of a) lift of the quasiconformal map φj : Aj → Mj via the two quasiregu-
lar coverings of the same degree: F |Ek

and Rk . Set θ ′
k = φ−1

i ◦ ψk . It is a
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quasiconformal map that preserves the boundary labeling.

Ek

F

θ ′
k

Ẽk

φi

Bk

Rk

Aj
φj

Mj

4. Definition of θi . For every 1 ≤ i ≤ n, define θi : Ai → Ai to be a quasi-
conformal map such that θi |Ek

= θ ′
k and θi |∂Ai

= id. It always exists, due to
the facts that all boundary curves are quasi-circles and all θ ′

k are quasiconfor-
mal maps preserving the boundary labeling (see Lemma C.2).

The map θi satisfies all required properties, except possibly the one about
its homotopy class.

4′. Adjustment of the homotopy class of θi . We will modify every θi with-
out changing its value on the set E . For every 1 ≤ i ≤ n, choose an arc β � Ai

connecting the two boundary curves of Ai . Then θi(β) is again an arc in Ai

with the same end points. If necessary we postcompose θi with a quasicon-
formal repeated Dehn twist supported in the interior of Ai�E , to ensure that
θi(β) is homotopic to β (rel ∂Ai ). After this adjustment, θi is isotopic to the
identity rel ∂Ai . �

6.3 Proof of Theorem 5.4 for simple pieces

Let F : (E,P ) → (L,P ) be a marked repelling system. An E -piece E is said
to be of disc type if some Jordan curve in ∂E bounds a closed disc �E such
that E ⊂ �E ⊂ L and �E contains at most one point of P . The disc �E is
called the hull of E. Denote by E o the union of the E -pieces of disc type.

Lemma 6.3 If either E �E o = ∅ or F restricted to E �E o is holomorphic,
then the marked repelling system (F,P ) is c-equivalent to a holomorphic
marked repelling system.

Proof Let U be the union of the hulls of all E o-pieces. Then it is a finite
disjoint union of closed quasidiscs each containing at most one point of P .
Define a Beltrami differential μ on U by

μ =
{

the Beltrami differential of F on E o,

0 on U�E o.

By the Measurable Riemann Mapping Theorem and the Riemann Mapping
Theorem, there is a quasiconformal map θ defined on U with Beltrami dif-
ferential μ, such that θ maps every (disk-)component U0 of U onto itself and
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at the same time fixes the eventual point of P in U0. Since U � L and U is
a finite disjoint union of closed quasidiscs, there is an open set V � L which
is a finite disjoint union of open quasidiscs such that U ⊂ V . Therefore we
can extend θ to a quasiconformal automorphism θ0 of L such that θ0 = θ on
U and θ0 = id on L�V . Clearly, θ0 is isotopic to the identity rel ∂L ∪ P and
F ◦ θ−1

0 is holomorphic in θ0(E). �

Proof of Theorem 5.4 for simple pieces Let F : (E,P ) → (L,P ) be a marked
repelling system. Assume that every L-piece is simple, i.e. every L-piece is
either a closed disc containing at most one point of P or a closed annulus
disjoint from P . Then (F,P ) is automatically of constant complexity. The
boundary multicurve is simply the collection of one boundary curve in every
annular piece of L. Now assume that the leading eigenvalue of its transition
matrix W satisfies λ(W) < 1. We want to prove that (F,P ) is c-equivalent to
a holomorphic marked repelling system.

Let A be the union of the annular L-pieces, and O = L�A the union of the
disc pieces. Then P ⊂ O. Recall that E o is the union of the E -pieces of disc
type. Set E a = E �E o. If E a = ∅, then (F,P ) is c-equivalent to a holomorphic
repelling system by Lemma 6.3.

Note that every E a-piece is a closed essential sub-annulus in A, and
F(E a) ⊂ A. The restriction F |Ea : E a → A is an annular covering with the
same transition matrix W as F and hence λ(W) < 1. By Lemma 6.2, it is
c-equivalent to a holomorphic annuli-covering R : B → M through a pair
of quasiconformal maps (	,
) : A → M, i.e. 
 is isotopic to 	 rel ∂A,

(E a) = B and 	 ◦ F = R ◦ 
 on E a . Set subsequently

M1 = M 
 O, B1 = B ∪ 
(E o ∩ A) 
 (E o ∩ O),

	1 = 
1 = id on O, 	1 = 	 on M, 
1 = 
 on M, and G = 	1 ◦F ◦
−1
1 .

Then (F,P ) is c-equivalent to the marked repelling system G : (B1,P ) →
(M1,P ) through the pair (	1,
1).

Note that G|B = R and hence is already holomorphic. Every piece in
B1�B is of disc type. By Lemma 6.3, we see that (G,P ), and hence (F,P )

is c-equivalent to a holomorphic marked repelling system. �

7 Proof of Theorem 5.4 for a cycle of complex pieces

In this section we assume that (F,P ) is a marked repelling system with only
complex pieces, and furthermore these pieces form a single periodic cycle
under F∗ (see Sect. 5.2 for the definition). We will apply Thurston’s theorem
to prove Theorem 5.4 in this particular setting. Our resulting holomorphic
marked repelling system will also satisfy some prescribed moduli properties.
These properties will ensure crucial Grötzsch’s spaces in the next section.
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We denote by D the unit disc. A marked disc is a pair (�,a) with �

an open hyperbolic disc in C and a ∈ � a marked point. An equipotential
γ of (�,a) is a Jordan curve that is mapped to a round circle with center
zero under a conformal homeomorphism χ : � → D with χ(a) = 0. The
potential of an equipotential γ is defined to be κ(γ ) := mod(A(∂�,γ )), the
modulus of the annulus between ∂� and γ . These definitions do not depend
on the choice of χ . For example in the marked disc (D,0), the equipotential
with potential v > 0 is the circle {|z| = e−v} (we define mod{r < |z| < 1} :=
− log r).

Let f be a postcritically finite rational map with non-empty Fatou set. Then
its Julia set is connected and every Fatou domain � is canonically a marked
disc marked by the unique eventually periodic point a ∈ �. We call (�,a)

a marked Fatou domain of f . An equipotential of a marked Fatou domain
will be called an equipotential of f . Notice that equipotentials in a periodic
Fatou domain correspond to round circles in Böttcher coordinates. We will
also use κ(∗) to denote the potential of such an equipotential.

Let F : (E,P ) → (L,P ) be a marked repelling system of constant com-
plexity having no boundary obstruction nor renormalization obstructions. As-
sume

– L = S1 
 · · · 
 Sp with every Si being a complex piece,
– E = E1 
 · · · 
 Ep with Ei = ESi , i = 1, . . . , p,
– and F(Ei) = Si+1 (Sp+1 := S1) for 1 ≤ i ≤ p.

For every F−p(L)-piece E, the map Fp|E : E �→ Fp(E) marked by E∩P

is a Thurston type system by Definition 7. Note that the boundary multicurve
of L consists of all boundary curves of L.

Denote by C(Si) the Riemann sphere containing Si (we consider each
piece Si to be embedded in a distinct copy of the Riemann sphere). In this
section we will prove the following theorem.

Theorem 7.1 Let W be the transition matrix of the boundary multicurve
of L. Let u > 0 be a positive vector such that Wu < u. Then for every
1 ≤ i ≤ p, there is a pair of quasiconformal maps (φi,ψi) : C(Si) → C and
a holomorphic map Ri : C → C such that:

(a) φi(Si) = ψi(Si) and φi is isotopic to ψi rel ∂Si ∪ (P ∩ Si);
(b) φi+1 ◦ F ◦ ψ−1

i |ψi(Ei) = Ri |ψi(Ei);
(c) the return map fi := Ri−1 ◦ · · · ◦R1 ◦Rp ◦ · · · ◦Ri is a postcritically finite

rational map whose conformal conjugacy class depends only on (F,P );
(d) for every i ∈ {1, . . . , p} and every Jordan curve γ ⊂ ∂Si , let βγ be the

curve in ∂Ei homotopic to γ in Si�P , then both φi(γ ) and ψi(βγ ) are
equipotentials in the same marked Fatou domain of fi with potentials

κ(φi(γ )) = u(γ ) and κ(ψi(βγ )) = u(F (βγ ))

deg(F |βγ )
. (9)
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Fig. 3 A repelling system
with a complex piece

Note that (a) and (b) together assert that (F,P ) is c-equivalent to a holo-
morphic marked repelling system by Lemma 6.1.

7.1 Examples

We begin with some examples to illustrate the ideas of the proof.

Example 3 (See Fig. 3) Let S be the closure of a pair of pants bounded by
quasicircles γ0, γ−1 and γ∗. Let E � S be a bordered surface bounded by
quasicircles β0, β−1, β∗ and β1 such that β1 bounds a disc in S, and A(γi, βi)

(i = 0,−1,∗), the annulus between γi and βi , are components of the interior
of S�E. Let H : E → S be a quasiregular covering of degree 2. Then H is
a Thurston type repelling system with PH = ∅. The boundary multicurve is
ϒ = {γ0, γ−1, γ∗}.

Now we require H : β∗ → γ∗ to be of degree 2, H : β±1 → γ0 of degree 1
and H : β0 → γ−1 of degree 2. Then the H -transition matrix of the boundary
multicurve is

W =
⎛
⎜⎝

0 1
2 0

1 0 0
0 0 1

2

⎞
⎟⎠ .

It is easy to check that λ(W) = 1/
√

2.

Example 4 The bordered surfaces S and E are defined as above. But this time
we require H1 : β∗ → γ∗ to be of degree 2, H1 : β±1 → γ−1 of degree 1 and
H1 : β0 → γ0 of degree 2. The H1-transition matrix of ϒ is

W1 =
⎛
⎜⎝

1
2 0 0

0 1 0
0 0 1

2

⎞
⎟⎠ .

Its leading eigenvalue is λ(W1) = 1.
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The map H1 can be constructed more explicitly as follows (suggested by
X. Buff): Let g(z) = −z2. Let S be C minus a sufficient small round disc of
radius ε (in spherical metric) around each of the three points 0,−1 and ∞.
Let E′ = g−1(S). As −1 is a repelling fixed point of g, E′ is not contained
in S. Now let η : D(−1,2ε) → D(−1,2ε) = {z : |z + 1| ≤ 2ε} be a homeo-
morphism fixing pointwise the boundary and the center, mapping the bound-
ary curve of E′ into the interior of S. Extend η elsewhere by identity. Set
E = η(E′) and H1 = g ◦ η−1 : E → S. Then E � S and H1 satisfies the
above requirement.

Define G = g ◦ η−1 : A(β0, β∗) → A(γ0, γ∗). Then the marked repelling
system (G, {−1}) is c-equivalent to the restriction of (g, {−1}) on A(β0, β∗).
Thus it has no Thurston obstructions. Note that H1 is a restriction of G. This
gives an example of a non-admissible restriction (see Definition 4 in Sect. 4).

Example 5 The bordered surfaces S and E are defined as above. Choose a
closed essential sub-annulus Ê1 (with a quasicircle boundary) in the annu-
lus A(γ0, β0). Let G be a quasiregular covering from Ê1 to the closure of
A(γ−1, γ∗) with degree d ≥ 1. Set E1 = G−1(S). It is Ê1 minus d holes. De-
fine F = H on E and F = G on E1. Then F : E ∪ E1 → S is a repelling
system of constant complexity. The multicurve ϒ is F -stable, with the fol-
lowing transition matrix:

W2 =
⎛
⎜⎝

0 1
2 + 1

d
1
d

1 0 0
0 0 1

2

⎞
⎟⎠ .

Its leading eigenvalue is λ(W2) = √
1/2 + 1/d . Note that λ(W2) < 1 if and

only if d > 2.
Note that every multicurve in S is contained in ϒ (up to homotopy). There-

fore none of H and F (for d > 2) has Thurston obstructions, whereas H1 and
F (for d ≤ 2) both have obstructions.

Now we want to construct the required maps in order to establish the c-
equivalence of the Thurston type repelling system H : E → S in Example 3
to a holomorphic repelling system.

Mark one point in each component of C�S. Denote the marked set by P .
Extend H to a quasiregular branched covering h of C such that the critical
values of h are contained in P and h(P ) ⊂ P . Then the global map h is
postcritically finite.

The fact that #P equals to 3 implies that (h,P ) has no Thurston obstruc-
tions. By Theorem 3.2 there are a pair of quasiconformal maps (	, 
) of C

and a rational map f such that f ◦ 
 = 	 ◦ h and 
 is isotopic to 	 rel P .
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(One may prove that f is in fact z �→ z2 − 1 if 	 is normalized appropriately
so that 	(P ) = {0,−1,∞}.)

Modify the quasiconformal map 	 in its homotopy class such that the set
B := 
(E) = f−1(	(S)) is contained in the interior of M := 	(S). This
can be done by choosing every boundary curve of M to be a suitable Jordan
curve in the corresponding Fatou component of f . Then Ẽ := 	−1(B) is
contained in the interior of S. Set θ1 = 	−1 ◦ 
 . Then θ1 is isotopic to the
identity rel P and θ1(E) = Ẽ. Since both E and Ẽ are contained in S, we
have a quasiconformal map θ of S such that θ |E = θ1|E and θ is isotopic to
the identity rel ∂S.

Set φ = 	|S . Then H is c-equivalent to f : B → M through the pair (φ,
φ ◦ θ ).

Let us consider the map F in Example 5 (for d > 2), with H as a sub-
system. To construct maps realizing a global c-equivalence of F to a holomor-
phic system, we need to find an annulus B̂1 in the corresponding component
of M�B , and a holomorphic covering from B := B̂1�{d holes} to M . There-
fore we have to make an estimate on the moduli of the annular components
of M�B and on the modulus of B̂1. For this purpose, it will be convenient to
choose the boundary curves of M to be equipotentials in the Fatou set of f ,
i.e. round circles in the Böttcher coordinates. See Sect. 8.4 for details.

Note that the map H : E → S in Example 3 is a renormalization of F with
period p = 1. Later on we will consider the more general case with p ≥ 2.
For example, we may have two complex pieces S1 and S2 of some repelling
system F with F∗(S1) = S2 and F∗(S2) = S1. Assume we have constructed
the map φ1 for S1. Then the value of φ2 on ES2 has to be the pullback of φ1.
But we still have to define φ2 on the remaining part S2�ES2 . A good way to
do this is to make an additional requirement for the marked extension h and
for the quasiconformal map φ1 on the free part C�S1, so that the global pull-
back of φ1 automatically satisfies the required properties. This consideration
will be dealt with in the next section.

7.2 Disc-marked extension for complex pieces

Let F : (E,P ) → (L,P ) be a marked repelling system of constant complex-
ity.

Let S be a complex L-piece. Recall that C(S) denotes the copy of the Rie-
mann sphere containing S. Mark one point in each component of C(S)�S.
Set P(S) to be the union of P ∩ S with these marked points. We call
(C(S),P (S)) a marked sphere of S. We use κS to denote the potential func-
tion of the complementary marked discs of S.

For two complex L-pieces S1 and S2 with F(ES1) = S2, there are many
ways to extend F |ES1

to a branched covering from C(S1) to C(S2). We choose
the following one in order to rigidify the extension.
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Lemma 7.2 Let S1 and S2 be complex L-pieces with F(ES1) = S2. Let ρ be
a positive function defined on the set of Jordan curves in ∂S1. Then there is a
quasiregular branched covering h : (C(S1),P (S1)) → (C(S2),P (S2)) as an
extension of F |ES1

such that:

(a) h(C(S1)�ES1) = C(S2)�S2.
(b) h(P (S1)) ⊂ P(S2) and the critical values of h are contained in P(S2).
(c) For any Jordan curve γ ⊂ ∂S1, the curve h(γ ) is an equipotential in a

complementary marked disc of S2, with potential κS2(h(γ )) = ρ(γ ).
(d) h is holomorphic on C(S1)�S1.

Such a map h : (C(S1),P (S1)) → (C(S2),P (S2)) will be called a disc-
marked extension of F |ES1

associated to the function ρ.

Proof Let α be a boundary component of ES1 , bounding a unique com-
plementary component �α of ES1 . Then η := F(α) is a boundary curve
of S2 and bounds a unique complementary marked disc (�η, b) of S2. Set
d := deg(F : α → η).

Note that �α may contain zero or one complementary component of S1.
In the former case, define hα : �α → �η to be a quasiconformal homeomor-
phism if d = 1 or a quasiregular branched covering with a unique critical
value b if d > 1, such that hα|α = F |α .

In the latter case α is homotopic in S1�P to a unique boundary curve γ

of S1 since (F,P ) is of constant complexity. Let �γ be the component of
C(S1)�S1 enclosed by γ . Then �γ � �α , and �γ together with the marked
point a ∈ �γ is a complementary marked disc of S1.

Let η1 be the equipotential in the marked disc (�η, b) with potential
κS2(η1) = ρ(γ ). Denote by �1 the disc enclosed by η1 and contained in �η.
Define hγ : �γ → �1 by hγ (z) = ϕ−1

1 ◦ (ϕ(z))d , where ϕ (resp. ϕ1) is a
conformal map from the marked disc (�γ , a) (resp. (�1, b)) onto the unit
disc D with ϕ(a) = 0 (resp. ϕ1(b) = 0). Then there is a quasiregular covering
hαγ from �α��γ onto �η��1 so that hαγ |α = F |α and hαγ |γ = hγ |γ . Set
hα := hγ on �γ and hα := hαγ on �α��γ . Then hα : �α → �η is quasi-
regular in �α , and is more particularly holomorphic in �γ .

The map F |ES1
together with the collection of hα for all possible α form a

quasiregular branched covering h : C(S1) → C(S2) satisfying the properties
(a)–(d). �

7.3 Applying Thurston’s theorem

Now consider a marked repelling system F : (E,P ) → (L,P ) of constant
complexity, and having no boundary obstruction nor renormalization ob-
structions. Assume L = S1 
 · · · 
 Sp with each Si being a complex piece,
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E = E1 
 · · · 
 Ep with Ei = ESi ∀ i, and F(Ei) = Si+1 (Sp+1 := S1) for
1 ≤ i ≤ p.

Let ρ be a positive function defined on the set of Jordan curves in ∂L.
Let (C(Si),P (Si)) be a marked sphere of Si , and let hi : (C(Si),P (Si)) →
(C(Si+1),P (Si+1)) be a disc-marked extension of F : Ei → Si+1 associated
to the function ρ for each 1 ≤ i ≤ p.

Lemma 7.3 Let σ be a positive function defined on the set of Jordan curves
in ∂S1. Then there are pairs of quasiconformal maps (	i,
i) from C(Si) to
C and holomorphic maps Ri : C → C (i = 1, . . . , p) satisfying the following
properties:

(1) 
i is isotopic to 	i rel P(Si), and 	i is holomorphic on C(Si)�Si (i =
1, . . . , p).

(2) Ri ≡ 	i+1 ◦ hi ◦ 	−1
i for 2 ≤ i ≤ p (with 	p+1 := 	1), and R1 ≡ 	2 ◦

h1 ◦ 
−1
1 .

(3) The return maps fi := Ri−1 ◦ · · · ◦ R1 ◦ Rp ◦ · · · ◦ Ri (i = 1, . . . , p) are
postcritically finite rational maps whose conformal conjugacy classes de-
pend only on (F,P ).

(4) For each Jordan curve γ ⊂ ∂S1, let βγ be the unique curve in ∂E1 ho-
motopic to γ in S1�P ; then both 	1(γ ) and 
1(βγ ) are equipotentials
in the same marked Fatou domain of f1 with potentials

κ(	1(γ )) = σ(γ ) and κ(
1(βγ )) = κ(	2 ◦ F(βγ ))

deg(F |βγ )
. (10)

(5) Fix 2 ≤ i ≤ p. For each Jordan curve γ ⊂ ∂Si , let βγ be the unique
curve in ∂Ei homotopic to γ in Si�P . Then both 	i(γ ) and 	i(βγ ) are
equipotentials in the same marked Fatou domain of fi and their poten-
tials are related as follows:

κ(	i(γ )) = ρ(γ )

deg(F |βγ )
+ κ(	i(βγ )) (11)

and

κ(	i(βγ )) = κ(	i+1 ◦ F(βγ ))

deg(F |βγ )
. (12)
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See the following commutative diagram.

E1 E2 E3 Ep E1

∩ F↘ ∩ F↘ ∩ ∩ F↘ ∩
S1 S2 S3 Sp S1

∩ ∩ ∩ ∩ ∩
C(S1)

h1−→ C(S2)
h2−→ C(S3) −− ��� C(Sp)

hp−→ C(S1)

∗ ↓ 
1 
2 ↓ 	2 
3 ↓ 	3 
p ↓ 	p 
1 ↓ 	1

C
R1−→ C

R2−→ C −− ��� C
Rp−→ C

Proof Denote by H : E → S1 the renormalization of F relative to S1. Set

h := hp ◦ · · · ◦ h2 ◦ h1 : C(S1) → C(S1).

Then h(P (S1)) ⊂ P(S1) and Ph ⊂ P(S1). Clearly, (h,P (S1)) is an extension
of the renormalization H : E → S1.

It is easy to see that the c-equivalence class of (h,P (S1)) does not depend
on the choice of the extensions.

Now, the assumption that (F,P ) has no renormalization obstructions im-
plies that (H,P ∩ S1), as a marked repelling system, has no Thurston ob-
structions. This in turn will imply that the signature of the orbifold of h is not
(2,2,2,2) and (h,P (S1)) has no Thurston obstructions. The argument goes
as follows:

Since the set of marked points in C(S1)�S1 is mapped into itself by h,
these points are eventually h-periodic. Let b be a periodic marked point in
C(S1)�S1 with period k ≥ 1. Denote by �b the component of C(S1)�S1
containing the marked point b and let γb := ∂�b. Then there is a unique
component β of h−k(γ ) homotopic to γ rel P(S1). Note that γ is contained
in the boundary multicurve ϒ of L and β is a component of F−kp(γ ) in S1.
Thus the assumption λ(Wϒ) < 1 implies that

deg(F kp : β → γ ) = deg(hk : β → γ ) = degb h
k > 1.

This implies that h has a periodic critical point (in the cycle of b). There-
fore the signature of the orbifold of h is not (2,2,2,2). Now any multic-
urve in C(S1)�P(S1) can be represented by a multicurve in S1�P(S1) =
S1�(P ∩ S1). So its h-transition matrix and H -transition matrix are equal,
hence have the same leading eigenvalue, which is less than one. This implies
that (h,P (S1)) has no Thurston obstructions.

We can then apply Theorem 3.2 to obtain a pair of quasiconformal maps
(φ,ψ) from C(S1) to C and a rational map f1 on C, whose conformal
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conjugate class depends only on the c-equivalence class of (h,P (S1)) (and
hence depends only on (F,P )), such that ψ is isotopic to φ rel P(S1) and
f1 = φ ◦ h ◦ ψ−1.

As any periodic cycle of the marked points in C(S1)�S1 contains a criti-
cal point of h, its φ-image is a superattracting periodic cycle for f1. Conse-
quently, for every marked point a in C(S1)�S1, the point φ(a) is an eventu-
ally superattracting periodic point of f1.

From (φ,ψ) to (	1,
1). For every marked point a in C(S1)�S1, de-
note by �a the component of C(S1)�S1 that contains the point a and set
γa = ∂�a . Denote by ηa the equipotential in the marked Fatou domain of f1
containing φ(a) (with φ(a) as a marked point) with potential κ(ηa) = σ(γa).
Then there is a quasiconformal map 	1 in the isotopy class (rel P(S1)) of
φ such that 	1(γa) = ηa for every marked point a in C(S1)�S1 (this is
because γa , resp. ηa , is peripheral around the point a ∈ P(S1), resp. the
point φ(a) ∈ φ(P (S1))). Moreover, 	1 can be taken to be holomorphic on⋃

a �a = C(S1)�S1.
As 	1 is isotopic to φ rel P(S1), there is a quasiconformal map 
1 :

C(S1) → C such that it is isotopic to ψ rel P(S1) and 	1 ◦ h ◦ 
−1
1 = f1.

Getting (in order) 	p,Rp,	p−1,Rp−1, . . . ,	2,R2 and then R1. This is
illustrated in the following diagrams:

C(S2)
h2

	2

C(S3)

	3

C(Sp)
hp

	p

C(S1)

	1

C
R2

C C
Rp

C

(13)

and

C(S1)
h1


1

C(S2)

	2

C
R1

C

(14)

More precisely we pullback the complex structure of C to C(Sp) by 	1 ◦ hp

and then integrate it to obtain a quasiconformal map 	p : C(Sp) → C such
that Rp := 	1 ◦ hp ◦ 	−1

p is holomorphic.

As a disc-marked extension, we know that hp is holomorphic in C(Sp)�Sp

whose hp-image is contained in C(S1)�S1. Combining with the result that
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	1 is holomorphic in C(S1)�S1 and the equation Rp ◦	p = 	1 ◦hp , we see
that 	p is holomorphic in C(Sp)�Sp .

Inductively, for i = p − 1, . . . ,2, we have a quasiconformal map 	i :
C(Si) → C such that Ri := 	i+1 ◦ hi ◦ 	−1

i is holomorphic and 	i is holo-
morphic in C(Si)�Si .

Finally, set R1 := 	2 ◦ h1 ◦
−1
1 . Then Rp ◦ · · · ◦R2 ◦R1 = f1. Therefore

R1 is also holomorphic and 
1 is holomorphic in C(S1)�S1.
Getting 
i and fi . As a disc-marked extension, we know that the criti-

cal values of hi are contained in P(Si+1) and hi(P (Si)) ⊂ P(Si+1) for 1 ≤
i ≤ p. Since 
1 is isotopic to 	1 rel P(S1), there is a quasiconformal map

p : C(Sp) → C such that 
p is isotopic to 	p rel P(Sp) and 
1 ◦ hp =
Rp ◦ 
p . Inductively, there is a quasiconformal map 
i : C(Si) → C for i =
p−1, . . . ,2, such that 
i is isotopic to 	i rel P(Si) and 
i+1 ◦hi = Ri ◦
i .
Set then fi := Ri−1 ◦ · · · ◦R1 ◦Rp ◦ · · · ◦Ri . Now we have the following com-
mutative diagrams:

C(Si)


i

hi


p

hp

C(S1)


1

h1

C(S2)

	2

hi−1

C(Si)

	i

C
Ri Rp

C
R1

C
Ri−1

C

and

C(Si)
∗


i

C(Si)

	i

C
fi

C

It is easy to see that fi is c-equivalent to hi−1 ◦ · · · ◦ h1 ◦ hp ◦ · · · ◦ hi , which
is postcritically finite, so fi is also postcritically finite. Clearly its conformal
conjugate class depends only on (F,P ).

Potentials. Notice that fi+1 ◦Ri = Ri ◦fi , i.e. Ri is a holomorphic (semi-
)conjugacy from fi to fi+1 (set fp+1 = f1). It is a classical result that their
Julia sets are related by J (fi) = R−1

i (J (fi+1)). Note that the critical values
of Ri are contained in 	i+1(P (Si+1)), which is eventually periodic under
fi+1. We see that Ri maps equipotentials of fi to equipotentials of fi+1.

As a disc-marked extension, for each Jordan curve γ ⊂ ∂Sp , the curve
hp(γ ) lies on an equipotential in a complementary marked disc of S1. Since
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every Jordan curve in ∂	1(S1) lies on an equipotential of f1 and 	1 is holo-
morphic in C(S1)�S1, the curve hp(γ ) goes to an equipotential of f1 by 	1.
This equipotential of f1 is pulled back by Rp to some equipotentials of fp .
Thus 	p(γ ) lies on an equipotential of fp . Inductively, we have that each
Jordan curve in ∂	i(Si) lies on an equipotential of fi for i = 1, . . . , p.

Similarly, each curve in 	i(∂Ei) lies on an equipotential of fi for i ≥ 2
and each curve in 
1(∂E1) lies on an equipotential of f1.

Fix i ∈ {1, . . . , p}. For each Jordan curve γ ⊂ ∂Si , and for βγ the curve
in ∂Ei homotopic to γ in Si�P , we have that hi(βγ ) = F(βγ ) is a curve in
∂Si+1. Note that 	i+1 ◦hi(βγ ) = Ri ◦	i(βγ ) if i �= 1 (with 	p+1 = 	1) and
	2 ◦ h1(βγ ) = R1 ◦ 
1(βγ ) if i = 1. Their potentials are related by:

κ(	i(βγ )) = κ(	i+1 ◦ F(βγ ))

deg(F |βγ )
if i �= 1

or

κ(
1(βγ )) = κ(	2 ◦ F(βγ ))

deg(F |βγ )
if i = 1.

Now fix 2 ≤ i ≤ p. By the construction of hi in Lemma 7.2, the curve
hi(γ ) is an equipotential with potential ρ(γ ) in a complementary marked disc
of Si+1. We have mod(hi(A(γ,βγ ))) = ρ(γ ), where A(γ,βγ ) is the annulus
between them. Notice that 	i+1 is conformal in C(Si+1)�Si+1. We also have
mod(	i+1 ◦ hi(A(γ,βγ ))) = ρ(γ ). From the equation Ri ◦ 	i = 	i+1 ◦ hi ,
we get

κ(	i(γ )) − κ(	i(βγ )) = mod(	i(A(γ,βγ ))) = ρ(γ )

deg(F |βγ )
. �

Remark 1 For every i, if we make a normalization by requiring that three
given distinct points in P(Si) (note that #P(Si) ≥ 3 since Si is a complex
piece) go to (0,−1,∞) under the action of 	i , then fi and the homotopy
class (rel P(Si)) of 	i are uniquely determined.

Remark 2 For a F∗-periodic cycle (S1, . . . , Sp), we have p renormalizations
(one for each Si ). Lemma 7.3 shows that none of them has a Thurston ob-
struction if at least one of them has no Thurston obstructions.

7.4 Proof of Theorem 7.1

Now fix the positive functions σ and ρ as follows:

∀γ ⊂ ∂S1, σ (γ ) := u(γ );
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∀γ ⊂
p⋃

i=1

∂Si, ρ(γ ) :=
(
u(γ ) − u(F (βγ ))

deg(F |βγ )

)
deg(F |βγ ), (15)

where βγ is the curve in
⋃p

i=1 ∂Ei homotopic to γ in L�P . Note that
ρ(γ ) > 0 for every γ by the assumption Wu< u.

Let (	i,
i,Ri, fi)i=1,...,p be the collection of maps derived from Lem-
ma 7.3 with the functions ρ and σ defined above.

Let γ be a Jordan curve in ∂S1. Then κ(	1(γ )) = σ(γ ) = u(γ ) by
Lemma 7.3(4).

Let γ be a Jordan curve in ∂Sp and βγ the curve in ∂Ep homotopic to γ

in Sp�P . By (15) and Lemma 7.3(4)–(5) we have

κ(	p(γ )) = ρ(γ )

deg(F |βγ )
+ κ(	1 ◦ F(βγ ))

deg(F |βγ )

= ρ(γ )

deg(F |βγ )
+ u(F (βγ ))

deg(F |βγ )
= u(γ ).

Inductively, for i = p − 1, . . . ,2, we have κ(	i(γ )) = u(γ ) for any Jordan
curve γ ⊂ ∂Si . Therefore κ(	i(γ )) = u(γ ) for any i and any γ ⊂ ∂Si .

Fix any i ∈ {1, . . . , p}. Let β be a curve in ∂Ei which is non-peripheral in
Si�P . By (11) and (10), we have

κ(	i(β)) = κ(	i+1 ◦ F(β))

deg(F |β) = u(F (β))

deg(F |β) if i �= 1

and

κ(
1(β)) = u(F (β))

deg(F |β) if i = 1.

Let γ be a Jordan curve in ∂S1 and βγ the Jordan curve in ∂E1 homotopic
to γ in S1�P . From the above formula and the fact that Wu< u, we deduce
that κ(
1(βγ )) < κ(	1(γ )). This implies that 
1(E1) � 	1(S1).

For i = 2, . . . , p, set φi = ψi = 	i . Set also φ1 = 	1. Obviously, (a)–(d)
hold for i ≥ 2 by the above computation. Now we want to define ψ1.

Notice that 
1(E1) � φ1(S1) and 
1 is isotopic to φ1 rel P(S1). Set
θ = 
1 ◦ φ−1

1 . Then θ is isotopic to the identity rel φ1(P (S1)). Both φ1(E1)

and θ ◦ φ1(E1) = 
1(E1) are disjoint from the closure of φ1(C(S1)�S1). By
Corollary D.2, there is a homeomorphism ξ of C isotopic to the identity rel
φ1(P (S1))∪φ1(C(S1)�S1), such that ξ |φ1(E1) = θ . Set ψ1 = ξ ◦φ1. Then ψ1

is isotopic to φ1 rel P(S1) ∪ (C(S1)�S1), and ψ |E1 = 
|E1 . �
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8 Proof of Theorem 5.4

Now let F : (E,P ) → (L,P ) be a marked repelling system of constant com-
plexity having no boundary obstruction no renormalization obstructions. We
prove in this section that (F,P ) is c-equivalent to a holomorphic marked re-
pelling system.

8.1 Choice of the positive vector v, and the constants C and M

Let ϒ be the boundary multicurve of (F,P ). By assumption, λ(Wϒ) < 1 for
its transition matrix Wϒ . Applying Lemma A.1, we have a positive vector
v ∈ R

ϒ so that Wϒv < v, i.e. there is a positive function v : ϒ → R
+ such

that

(Wϒv)γ =
∑
β∈ϒ

∑
α∼γ

v(β)

deg(F : α → β)
< v(γ ), (16)

where the last sum is taken over the curves α in F−1(β) homotopic to γ in
L�P . Let C > 0 be a constant to be determined later (Sect. 8.3.2). Denote by
1 the vector whose every entry is 1. Choose M > 0 to be a large number so
that Wϒ(Mv) + C1 <Mv, i.e. for each γ ∈ ϒ ,

∑
β∈ϒ

∑
α∼γ

Mv(β)

deg(F : α → β)
+ C <Mv(γ ). (17)

For any γ ∈ ϒ , the quantity Mv(γ ) will be the prescribed potential for φS(γ ),
with S the L-piece admitting γ as a boundary curve.

8.2 Definition of (φS,ψS) and RS for complex pieces

Let (C(S),P (S)) be a marked sphere for each complex L-piece S. Let
hS : (C(S),P (S)) → (C(F (ES)),P (F (ES))) be a disc-marked extension,
associated to the function

ρ(γ ) :=
(
Mv(γ ) − Mv(F(βγ ))

deg(F |βγ )

)
deg(F |βγ ),

where γ is a Jordan curve in ∂S and βγ is the curve in ∂ES homotopic to γ

in S�P .
For each F∗-cycle of complex L-pieces S1, . . . , Sp , set L0 = ⊔p

i=1 Si ,
E0 = ⊔p

i=1 ESi , P0 = P ∩ L0 and F0 = F |E0 . Then the marked repelling sub-
system F0 : (E0,P0) → (L0,P0) satisfies the conditions of Theorem 7.1. Let
ϒ0 be the boundary multicurve of L0. It consists of Jordan curves in ∂L0.
Denote by W0 the F0-transition matrix of ϒ0. Set u(γ ) := Mv(γ ) for every
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γ ∈ ϒ0. It is easy to check that W0u < u. We construct φSi ,ψSi ,RSi and fSi

according to Theorem 7.1 for i = 1, . . . , p.
Now assume that S is a complex L-piece and is not F∗-periodic. Then

there are complex L-pieces S−k := S,S−k+1, . . . , S0 (k > 0) such that Si is
not F∗-periodic for i < 0 but S0 is F∗-periodic. Since S0 is F∗-periodic, we
have already constructed a quasiconformal map φS0 : C(S0) → C and a post-
critically finite rational map fS0 .

As before, there are quasiconformal maps φSi : C(Si) → C and holomor-
phic maps RSi : C → C such that the following diagram commutes:

C(S−k)

hS−k

	S−k

C(S−k+1)

	S−k+1

hS−k+1 hS−1

C(S0)

	S0

C
RS−k

C
RS−k+1 RS−1

C

Since hSi (P (Si)) ⊂ P(Si+1) and every critical value (if any) of hSi lies in
P(Si+1), we have Ri(φSi (P (Si))) ⊂ φSi+1(P (Si+1)), and every critical value
of RS−1 ◦ · · · ◦ RSi lies in φS0(P (S0)).

Set fSi := RS−1 ◦ · · · ◦ RSi . Let b ∈ C(Si)�Si be a marked point. Then
fSi ◦ φi(b) is the center of a marked Fatou domain � of fS0 . The component
�φi(b) of f−1

Si
(�) that contains φi(b) is a disc. We will call (�φi(b), φi(b)) a

canonical marked disc.
The name ‘canonical’ means that up to a Möbius transformation, the con-

figuration formed by these marked discs is uniquely determined. Note that
when a disc-marked extension hSi is chosen, the map φSi is uniquely deter-
mined by φSi−1 up to a Möbius transformation. As φSi−1 varies in its homo-
topy class, φSi varies simultaneously in its homotopy class while RSi remains
unchanged. On the other hand various choices of disc-marked extensions are
related by quasiconformal maps. More precisely, if h̃Si is another choice of
the disc-marked extension, then there is a quasiconformal map ξ of C(Si)

such that h̃Si = hSi ◦ ξ . Setting φ̃Si = φSi ◦ ξ , we get the same holomorphic
map RSi as before. This implies that the maps fSi are independent of the
extensions. In particular, the canonical marked discs are independent of the
large number M involved in the function ρ (therefore involved in the exten-
sions hSi ).

Lemma 8.1 With the assumption above, for any i = −k, . . . ,−1, there are
quasiconformal maps ψSi = φSi : CSi → C such that:

(1) RSi := φSi+1 ◦ hSi ◦ φ−1
Si

is holomorphic and depends only on (F,P ).
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Fig. 4 The L-piece Sj is
bounded by the thick curves.
The light grey piece Ej is an
Ec-piece. The darker-grey
pieces are Ea -pieces

(2) For any marked point b ∈ P(Si)�Si , denote by γb the component of ∂Si

that separates b from Si�γb and by βb the component of ∂ESi that sep-
arates b from ESi�βb. Then both φSi (γb) and φSi (βb) are equipotentials
in the canonical marked disc (�φSi

(b), φSi (b)) with potentials

κ(φSi (γb)) = Mv(γb),
(18)

κ(φSi (βb)) = κ(ψSi (βb)) = Mv(F(βb))

deg(F |αb
)
.

Proof (1) is obvious. The proof of (2) is quite easy by following the same
argument as before. �

8.3 Definition of φS for simple L-pieces

For each disc L-piece S, define φS to be a quasiconformal map from S onto a
closed quasidisc in C. Assume that S is an annular piece. Then it is a closed
annulus and one of its boundary curves, say γ , is contained in the boundary
multicurve ϒ . We define φS to be a quasiconformal map from S onto a closed
round annulus in C with modulus

mod φS(S) = Mv(γ ). (19)

8.4 Definition of ψS for E -pieces of simple type

Decompose E into E c 
 E a 
 E o as follows (see Fig. 4):

• E c is the union of the E -pieces of complex type;
• E o is the union of the E -pieces of disc type (see Sect. 6.3);
• E a is the union of the remaining E -pieces.

Clearly, the above three sets are mutually disjoint. Each E a-piece E is con-
tained essentially in either an annular L-piece or an annular component of
L�E c.
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8.4.1 Definition of an auxiliary map ϕE for E a-pieces

Let E be an E a-piece, S the L-piece containing E, and S0 = F(E).
Then S0 is either an annular or a complex L-piece. We say E ∈ E (a,a) in

the former case and E ∈ E (a,c) in the latter. This decomposes E a into E (a,a) 

E (a,c).

If S0 is an annular piece, then there is a quasiconformal map ϕE from E

onto a closed round annulus in C such that φS0 ◦ F ◦ ϕ−1
E is holomorphic in

the interior of ϕE(E).
Let γ be one of the two boundary curves in ∂S0 with γ ∈ ϒ . Then there is

a Jordan curve β in ∂E so that F(β) = γ . From (19), we have:

modϕE(E) = mod(φS0(S0))

degF |E = Mv(F(β))

deg(F |β) . (20)

Now assume S0 is a complex piece. Then there is a quasiregular branched
covering hE : C → (C(S0),P (S0)) such that hE|E = F |E , deghE = degF |E
and every critical value of hE is contained in P(S0). As before, we have a
quasiconformal map ϕE of C such that RE := φS0 ◦hE ◦ϕ−1

E is a holomorphic
map, which depends only on (F,P ) (up to a Möbius transformation) since
φS0 depends only on (F,P ).

C

hE

⊃ E

F

ϕE

ϕE(E) ⊂ C

RE

C(S0) ⊃ S0
φS0

M0 ⊂ C

α,β

F

ϕE ⊂ �1,�2

RE

φS0

⊂ �a,�b

Note that ∂E has exactly two boundary curves α and β which are non-
peripheral and homotopic to each other in S�P .

We apply Theorem 7.1 and Lemma 8.1 to the curve φS0 ◦F(α) (resp. φS0 ◦
F(β)):

– if S0 is F∗-periodic, the curve is an equipotential in a marked disc (�a, a)

(resp. (�b, b)) of the postcritically finite rational map fS0 ;
– if S0 is not F∗-periodic, the curve is an equipotential in a canonical marked

disc, denoted also by (�a, a) (resp. (�b, b)).

The respective potentials of these curves are

κ(φS0 ◦ F(α)) = Mv(F(α)), κ(φS0 ◦ F(β)) = Mv(F(β)).

Let �1 and �2 be the component of R−1
E (�a) and R−1

E (�b) that con-
tains ϕE(α) and ϕE(β), respectively. Then they are disjoint discs since neither
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�a�{a} nor �b�{b} contains critical values of RE . Set z1 := �1 ∩ R−1
E (a)

and z2 := �2 ∩R−1
E (b). Then (�1, z1) and (�2, z2) are disjoint marked discs

in C. Moreover they are independent of the choice of M , since (�a, a) and
(�b, b) are independent of the choice of M .

Clearly, ϕE(α) and ϕE(β) are equipotentials with potentials

κ(ϕE(α)) = Mv(F(α))

degF |α and κ(ϕE(β)) = Mv(F(β))

degF |β .

Let A(E) = A(α,β) denote the annulus bounded by α and β . Applying
Lemma B.1, there is a constant C(E) > 0 which is independent of the choice
of M , such that

Mv(F(α))

degF |α + Mv(F(β))

degF |β
≤ modϕE(A(α,β))

≤ Mv(F(α))

degF |α + Mv(F(β))

degF |β + C(E). (21)

8.4.2 The constant C

The set E (a,c) has only finitely many pieces E with C(E) independent of the
choice of the number M . Set C := ∑

E C(E). It is also independent of M .

8.4.3 Embedding of ϕE(E) and construction of ψA

Every E a-piece E is contained in either an annular piece S or an annular
component A of S�ES for some complex piece S.

Assume that S is an annular piece. Let γ be a boundary curve of S with
γ ∈ ϒ . From (20) and (21), we have

∑
E⊂S∩E(a,a)

modϕE(E) +
∑

E⊂S∩E(a,c)

modϕE(A(E)) ≤
∑
β

Mv(F (β))

deg(F |β) + C,

where the last sum is taken over the curves β in
⋃

η∈ϒ F−1(η) homotopic to
γ in S�P .

The right hand side term is less than Mv(γ ) = mod(φS(S)) by (17). There-
fore, as in Sect. 6, one can embed holomorphically ϕE(E) essentially into the
interior of φS(S) for every E a-piece E ⊂ S according to the original order
of their non-peripheral boundary curves so that the embedded ϕE(E)’s are
mutually disjoint. In other words, we have a quasiconformal map ψS from S

onto φS(S) such that
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• ψS |∂S = φS |∂S and ψS is isotopic to φS rel ∂S;
• for every E a-piece E ⊂ S, the map ϕE ◦ ψ−1

S is holomorphic in ψS(E).

Consequently,

• for every E a-piece E ⊂ S and for S0 := F(E) the map φS0 ◦ F ◦ ψ−1
S =

φS0 ◦ F ◦ ϕ−1
E ◦ ϕE ◦ ψ−1

S is holomorphic in ψS(E).

Now assume that S is a complex piece and A is an annular component of
S�ES . Following an argument similar to the one above, we have a quasicon-
formal map ψA from A onto ψS(A), such that

• ψA|∂A = ψS |∂A and ψA is isotopic to ψS |A rel ∂A;
• for every E a-piece E ⊂ A and for S0 := F(E) the map φS0 ◦ F ◦ ψ−1

A is
holomorphic in ψA(E).

8.4.4 Definition of θS

Define θS = φ−1
S ◦ ψS for every annular piece S. If S is a complex piece,

define

θS =
{
φ−1
S ◦ ψA on every annular component A of S�E c;

φ−1
S ◦ ψS otherwise.

Then θS |∂S = id and θS is isotopic to the identity rel ∂S ∪ (S ∩ P). Moreover,
for every E a ∪ E c-piece E ⊂ S and for S0 = F(E), the map φS0 ◦F ◦θ−1

S ◦φ−1
S

is holomorphic in φSθS(E).
Now if E o = ∅, the proof of Theorem 5.4 is already completed. Otherwise,

as in Sect. 6.3, we can define a new marked repelling system G : (B,Q) →
(M,Q) c-equivalent to (F,P ) and holomorphic everywhere except on the
B-pieces of disc type. Now applying Lemma 6.3, we see that (G,Q), and
hence (F,P ), is c-equivalent to a holomorphic marked repelling system. This
ends the proof of Theorem 5.4.

9 A combination result

A regular open set is the complement of a surface puzzle in C. Let U,V

be regular open sets in C with V � U . Let G : U → V be a quasiregular
branched covering. We say that (G,U,V ) is a locally holomorphic attract-
ing system if there is a finite set P ′ ⊂ U such that:

• G(P ′) = P ′;
• G is holomorphic in a neighborhood of P ′ and each cycle in P ′ is (su-

per)attracting;
• for any z ∈ V the limit set of {Gn(z)} is contained in P ′.
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Let F : E → L be a quasiregular repelling system of constant complexity,
in the sense that for every L-piece S with

#(S ∩ PF ) + #{boundary components of S} ≥ 3,

there is an E -piece ES ⊂ S such that ES ∩ PF = S ∩ PF and the interior of
each component of S�ES is either a disc or an annulus.

We say that H : E → S is a renormalization of F , if S is a complex L-
piece, E is a component of F−p(S) (for some integer p ≥ 1) that is con-
tained S and is parallel to S, and H = Fp|E . Note that H needs not to be
postcritically finite.

We say that F is unobstructed if it has no boundary obstruction and, for
each renormalization H : E → S, either
(1) #(PF ∩ S) < ∞ and (H,PF ∩ S) as a marked repelling system has no
Thurston obstructions; or
(2) for the integer p ≥ 1 such that H = Fp|E , each step of the composition

E
F−→ F(E)

F−→ F 2(E)
F−→ · · · F−→ Fp−1(E)

F−→ S

is holomorphic.
What we have proved in this paper can be reformulated in the following

stronger form:

Theorem 9.1 Let G be a quasiregular branched covering of C of degree at
least 2. Assume that C = V 
 L is a splitting with L a surface puzzle such
that:

(a) G−1(V ) � V ;
(b) (G,G−1(V ),V ) is a locally holomorphic attracting system;
(c) G : G−1(L) → L is a repelling system of constant complexity and is un-

obstructed.

Let K be the union of the filled-in Julia set KH of all renormalizations
H satisfying the condition (2). Then there is a rational map g and a pair of
qc-homeomorphisms φ,ψ of C such that

• φ ◦ G = g ◦ ψ ;
• ψ is isotopic to φ rel PG ∪ K ;
• the Beltrami coefficient of φ is equal to 0 almost everywhere on K .

Appendix A: Non-negative matrices

We say that a square matrix A is non-negative if every entry of it is a non-
negative real number. By Perron-Frobenius theory (refer to [15]), the spectral
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radius of A is an eigenvalue of A, named the leading eigenvalue. Moreover
this eigenvalue has a non-negative eigenvector. Clearly, the norm of any other
eigenvalue of A is at most equal to the leading eigenvalue.

For a vector v = (vi) ∈ R
n we write v > 0 if every coordinate vi is strictly

positive.

Lemma A.1 Let A = (aij ) be a non-negative square matrix. Denote by λ its
leading eigenvalue. Then λ < 1 iff there is a vector v > 0 such that Av < v.

Proof The following proof is provided by H.H. Rugh. Necessity: Assume
v > 0 and Av < v. Then Av ≤ av for some 0 ≤ a < 1. Define a norm on
the underlying vector space by ‖x‖ = ∑

i (vi · |xi |). Then, writing |x| as the
vector whose i-th entry is |xi |, we have

‖Atx‖ = vtAt |x| = (Av)t |x| ≤ avt |x| = a‖x‖,
where At and vt denote the transposes. Therefore, λ = ‖At‖ ≤ a < 1.

Sufficiency: Now assume λ < 1. By the continuity of the spectral radius,
there is ε > 0 such that the spectral radius λε of A + ε := (aij + ε) satisfies
λε < 1. Now the Perron-Frobenius Theorem assures that λε is the leading
eigenvalue and it has a strictly positive eigenvector v > 0. So Av ≤ (A +
ε)v = λεv < v. �

Lemma A.1 actually gives an equivalent definition of the leading eigen-
value.

Corollary A.2 Let λ(A) be the leading eigenvalue of a non-negative square
matrix A. Then

λ(A) = inf{λ| ∃ v > 0 such that Av < λv}.

Corollary A.3 Assume that A and B are non-negative square matrices with
A ≤ B (i.e. every entry of A is less than or equal to the corresponding entry
of B), then λ(A) ≤ λ(B).

Proof From Lemma A.1, we see that for any λ0 > λ(B), there is a vector
v > 0 so that Bv < λ0v. Thus Av ≤ Bv < λ0v. Again by Lemma A.1, we
have λ(A) < λ0. So λ(A) ≤ λ(B). �

Theorem A.4 Let A be a non-negative n × n matrix with a block decompo-
sition

A =
(

B ∗
O1 O2

)
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where B is a square k × k matrix, and O1 and O2 are zero-matrices of ap-
propriate sizes. Then λ(A) = λ(B).

Proof Either k = n or the set of eigenvalues of A is equal to the set of eigen-
values of B union {0}. The theorem follows. �

Let A be an n × n matrix with a block decomposition
⎛
⎜⎝

A11 · · · A1k
...

...

Ak1 · · · Akk

⎞
⎟⎠

where Aij is an ni × nj matrix (in particular each Aii is a square matrix).
We say that the block decomposition is projected if for each Aij , there is a
number bij such that the summation of each column of Aij is equal to bij .

This property could be understood as the following: An n × n matrix can
be considered as a linear map of R

n defined by the left action:
⎛
⎜⎝

v1
...

vn

⎞
⎟⎠ �→ A

⎛
⎜⎝

v1
...

vn

⎞
⎟⎠ .

According to the block decomposition of A, there is a corresponding decom-
position of the index set I = {1, . . . , n} by I = I1 
 · · · 
 Ik with #Ii = ni .
Define a linear projection π : R

n → R
k by (πv)i = ∑

δ∈Ii vδ.

Lemma A.5 There is a k × k matrix B such that π ◦ A = B ◦ π if and only
if the block decomposition A = (Aij ) is projected. In this case, B = (bij ).

R
n

A

π

R
n

π

R
k

B
R

k

Proof Set A = (aδβ). For any v ∈ R
n,

(π ◦ Av)i =
∑
j

∑
β∈Ij

(∑
δ∈Ii

aδβ

)
vβ, and (B ◦ π(v))i =

∑
j

∑
β∈Ij

bij vβ .

If the block decomposition is projected, then for β ∈ Ij ,
∑

δ∈Ii aδβ = bij .
Therefore π ◦ Av = B ◦ π(v). Conversely, assume that π ◦ A = B ◦ π . For
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β ∈ Ij , let eβ ∈ R
n be a vector whose βth entry is 1 and whose other entries

are all 0. Then (π ◦Aeβ)i = bij , and (B ◦π(eβ))i = ∑
δ∈Ii aδβ . So for β ∈ Ij ,∑

δ∈Ii aδβ = bij , i.e. the block decomposition is projected. �

Theorem A.6 Assume that A is a non-negative square matrix with a pro-
jected block decomposition A = (Aij ), i.e. the summation of each column of
Aij is equal to bij . Set B = (bij ). Then λ(A) = λ(B).

Proof Let v �= 0 be an eigenvector of A for the leading eigenvalue λ(A), i.e.
Av = λ(A)v. Set u = π(v). Then Bu = π ◦ Av = π(λ(A)v) = λ(A)π(v) =
λ(A)u by the above lemma. So λ(A) is an eigenvalue of B and hence λ(A) ≤
λ(B) since the leading eigenvalue is the maximum of the eigenvalues.

Conversely, let u �= 0 be an eigenvector of Bt , the transpose of B , for the
leading eigenvalue λ(B) (note that B and Bt have the same leading eigen-
value), i.e. Btu = λ(B)u. Set v = (vβ) ∈ R

n by vβ := uj for β ∈ Ij . Then for
δ ∈ Ii ,

(Atv)δ =
∑
j

∑
β∈Ij

aβδvβ =
∑
j

bjivj = (Btu)i = λ(B)ui = λ(B)vδ.

So λ(B) is an eigenvalue of At . We again have λ(B) ≤ λ(A). �

Corollary A.7 Let A′ be a non-negative square matrix with a block decom-
position (A′

ij ). Assume that the summation of each column of A′
ij is less than

or equal to bij . Set B = (bij ). Then λ(A′) ≤ λ(B).

Proof For each pair (i, j), we just need to replace one entry of each column of
A′

ij by a larger number so that the summation of the column becomes exactly
bij . Denote by Aij the modified matrix. Set A = (Aij ). Then λ(A) = λ(B) by
Theorem A.6 and λ(A′) ≤ λ(A) by Corollary A.3. �

Appendix B: Reversing Grötzsch’s inequality

Let � ⊂ C be a hyperbolic disc with a marked point a ∈ �. Then there is
a conformal homeomorphism ϕ : � → {z : |z| < r} for some r > 0, with
ϕ(a) = 0 and ϕ′(a) = 1 if a ∈ C or (ϕ(1/w))′|w=0 = 1 if a = ∞. The con-
formal radius of the marked disc (�,a) is defined to be the radius r . Recall
that an equipotential γ in the marked disc (�,a) is a curve mapped onto a
round circle with center 0 under the conformal map ϕ, and the potential of
γ is defined to be the modulus of the annulus between ∂� and γ (we define
mod({z : t < |z| < 1}) = | log t |).
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Lemma B.1 Let (�i, ai), i = 1,2 be a pair of disjoint marked hyperbolic
discs. Then there is a constant C > 0 which depends only on the conformal
radii of the marked discs (�i, ai), such that for any v1 > 0, v2 > 0,

v1 + v2 ≤ mod(A(v1, v2)) ≤ v1 + v2 + C,

where A(v1, v2) is the annulus bounded by the equipotential in �1 of poten-
tial v1 and the equipotential in �2 of potential v2.

Proof The left hand side is just Grötzsch’s inequality.
Let ξ be a Möbius transformation of C with ξ(a1) = 0 and ξ(a2) = ∞. Any

two such maps differ by a multiplicative constant. So the product of the con-
formal radius R1 of (ξ(�1),0) and the conformal radius R2 of (ξ(�2),∞) is
equal to the product of the conformal radii of (�1, a1) and (�2, a2). De-
note by Wi the component of C�A(v1, v2) containing ai (i = 1,2). By
Koebe’s 1/4-Theorem, ξ(W1) contains {z : |z| ≤ R1r1/4} and ξ(W2) contains
{z : |z| ≥ 4/(R2r2)}, where ri = exp(−vi). Therefore by Grötzsch’s inequal-
ity,

mod(A(v1, v2)) ≤ log

(
4

R2r2
· 4

R1r1

)
= log

16

R1R2
+ v1 + v2. �

Appendix C: Quasiconformal extensions

We state here several results about quasiconformal maps that have been fre-
quently used in the paper. For the general theory, we refer to [1].

Lemma C.1 Let h : γ1 → γ2 be a homeomorphism between two quasicircles
γ1 and γ2 in C. If h can be extended to a quasiconformal map on a one-
side neighborhood of γ1, then h can be extended to a global quasiconformal
map of C. Moreover the extension can be chosen to be a diffeomorphism from
C�γ1 onto C�γ2.

Lemma C.2 Let Ui ⊂ C (i = 1,2) be a pair of domains such that each of
∂Ui , i = 1,2 consists of p ≥ 0 disjoint quasicircles. Let P ⊂ U1 be a finite (or
empty) set. Let f : U1 → U2 be an orientation preserving homeomorphism. If
f |∂U1 can be extended to a quasiconformal map on a one-side neighborhood
of each curve of ∂U1 (or p = 0), then there is a quasiconformal map in the
isotopy class of f rel ∂U1 ∪ P .

Lemma C.3 Let h : S1 → S1 be an orientation preserving homeomorphism
of the unit circle. Assume that h can be extended to a quasiconformal map f

on an inner neighborhood B of S1 (i.e. B ⊃ {z : 1 − ε < |z| < 1} for some
ε > 0), then h is quasisymmetric.



A characterization of hyperbolic rational maps 513

Proof Denote by μ the Beltrami coefficient of f . Denote by D the unit disc.
Let ν = μ on B and ν = 0 on D�B . By the Measurable Riemann Mapping
Theorem, there is a quasiconformal map g of D whose Beltrami differential
is ν. So g|S1 is quasisymmetric. On the other hand, f ◦g−1 is holomorphic on
g(B). Therefore f ◦ g−1 is real-analytic on S1, in particular quasisymmetric.
So h = (f ◦ g−1) ◦ g|S1 is also quasisymmetric. �

Proof of Lemma C.1 Fix i = 1,2. By the definition of quasicircles, there is
a quasiconformal map φi of C such that φi(γi) = S1. Furthermore φi can be
chosen to be a diffeomorphism on C�γi as follows: Set � = φ−1

i (D). Let
ψ : � → D be a conformal map. Then φi ◦ψ−1 : D → D is a quasiconformal
map. Thus its boundary map is quasisymmetric. Let η be the Beurling-Ahlfors
extension of this boundary map, it is a diffeomorphism of D. Now η ◦ψ |� is
again a diffeomorphism, whose boundary map is φi |S1 .

Set h1 = φ2 ◦ h ◦ φ−1
1 . Then h1 is quasisymmetric by Lemma C.3, and

thus having a quasiconformal extension to C. Moreover its extension can be
chosen to be a diffeomorphism outside S1. Thus h = φ−1

2 ◦ h1 ◦ φ1 can be
extended to a quasiconformal map of C and a diffeomorphism outside γ1. �

Proof of Lemma C.2 By Lemma C.1, f |∂U1 can be extended to a quasiconfor-
mal map g on a small neighborhood W of ∂U1 such that g is differentiable on
W�∂U1. Let V1 ⊂ U1 be a domain such that its boundary consists of disjoint
smooth quasicircles in W and U�V ⊂ W . Then g|∂V1 is a diffeomorphism
and hence can be extended to a diffeomorphism such that g|U1 is isotopic to
f rel ∂U1 ∪ P . �

Appendix D: A lemma about isotopy

Let P ⊂ C be a finite set. We say U is a disc neighborhood of P if U is
the union of Jordan domains which have disjoint closures and each of them
contains exactly one point of P .

Lemma D.1 Let P ⊂ P0 ⊂ C be two finite sets. Let E ⊂ C be a compact set
disjoint from P . Assume that h : I × C → C (I = [0,1]) is an isotopy rel P0
with h(0, ·) = id, i.e. h is continuous and h(t, ·) is a homeomorphism of C

with every point in P0 fixed for all t ∈ I . Then there is an isotopy (rel P0)
H : I × C → C with H(0, ·) = id such that:

(1) H(·, z) = h(·, z) for z ∈ E; and
(2) there is a disc neighborhood U of P such that H(t, ·) = id on U for all

t ∈ I .
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Proof Pick a disc neighborhood V of P such that its closure is disjoint
from E. Set K = C�V . The compact set h(I × K) is disjoint from P . Thus
the spherical distance d(h(I × K),P ) =: ε is strictly positive. Let U be an-
other disc neighborhood of P such that the radius of each disc is less than
ε/2. Then U � h(t,V ) for all t ∈ I . In particular, d(h(I × ∂V ),U) > ε/2.
Set

H(·, z) =

⎧⎪⎨
⎪⎩

h(·, z) for z ∈ C�V,

interpolation for z ∈ V�U,

id for z ∈ U.

It satisfies (1) and (2). �

Corollary D.2 With the assumption as in Lemma D.1, suppose furthermore
that W is a disc neighborhood of P such that both E and h(1,E) are disjoint
from the closure of W . Then there is an isotopy (rel P0) H : I × C → C with
H(0, ·) = id such that:

(a) H(1, ·) = h(1, ·) on E; and
(b) H(t, ·) = id on W for all t ∈ I .

Proof By Lemma D.1, there is a disc neighborhood V of P with V � W

such that H(·, z) = h(·, z) for z ∈ E and H(t, ·) = id on V . Pick another disc
neighborhood U0 of P such that W � U0 and both E and h(1,E) are disjoint
from U0. Then there is a homeomorphism φ : C → C such that φ(V ) = W

and φ = id on P0 ∪ (C�U0). In particular φ = id on E∪h(1,E). The isotopy
φ ◦ Ht ◦ φ−1 (where Ht = H(t, ·)) satisfies the properties (a) and (b). �
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