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Abstract We use Lee’s work on the Khovanov homology to define a knot
invariant s. We show that s(K) is a concordance invariant and that it provides
a lower bound for the smooth slice genus of K . As a corollary, we give a
purely combinatorial proof of the Milnor conjecture.

1 Introduction

In [8], Khovanov introduced an invariant of knots and links, now widely
known as the Khovanov homology. This invariant takes the form of a graded
homology theory HKh(L), whose graded Euler characteristic is the unnor-
malized Jones polynomial of L. In [11], Lee showed that HKh(L) is naturally
viewed as the E1 term of a spectral sequence which converges to Q ⊕ Q. In
this paper, we use this spectral sequence to define a knot invariant s(K). The
definition of s(K) was motivated by a similar invariant τ(K) which is defined
using knot Floer homology [17, 20]. In fact, the similarities between the two
invariants extend far beyond their manner of definition.

Our main result is that the invariant s gives a lower bound for the slice
genus:
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Theorem 1

|s(K)| ≤ 2g∗(K)

where g∗(K) denotes the smooth slice genus of K ; in other words, the mini-
mal genus of a smoothly embedded, orientable surface in B4 which bounds K .

In fact,

Theorem 2 The map s induces a homomorphism from Conc(S3) to Z, where
Conc(S3) denotes the smooth concordance group of knots in S3.

It is well known that analogous statements in the topological category hold
for the Trotter-Murasugi knot signature σ(K). For alternating knots, s does
not provide any information beyond that given by σ :

Theorem 3 If K is an alternating knot, then s(K) = σ(K).

There is, however, a class of knots for which s(K) gives much better—
indeed, sharp—information. We say that a knot is positive if it admits a planar
diagram with all positive crossings.

Theorem 4 If K is a positive knot,

s(K) = 2g∗(K) = 2g(K)

where g(K) is the ordinary genus of K .

As a corollary, we get a Khovanov homology proof of following result,
which was first proved by Kronheimer and Mrowka using gauge theory [10]:

Corollary 1 (The Milnor Conjecture) The smooth slice genus and unknotting
number of the (p, q) torus knot are both equal to (p − 1)(q − 1)/2.

The invariant s is sensitive to the smooth, rather than just the topological
slice genus. The easiest way to see this is to exhibit a knot K with �K(t) = 1,
but s(K) �= 0. By a theorem of Freedman [5], such a K is topologically slice
but cannot be smoothly slice by Theorem 1. Such knots are not difficult to
find; perhaps the simplest example is the (−3,5,7) pretzel knot. An elegant
proof that this knot has s = 2 may be found in [19] or [23], in which it is
shown that s satisfies a version of Bennequin’s inequality. As Robert Gompf
kindly pointed out to the author, such knots can be used to give a proof of the
existence of an exotic R4 without using gauge theory. (See [7], pp. 377 and
522 for details.)

As the reader familiar with knot Floer homology will have already noted,
the theorems above all hold with 2τ(K) in place of s(K). (See [17] for the
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first three, and [13] and [21] for the final one.) Indeed, the equality s(K) =
2τ(K) holds in all cases for which the author knows the value of τ(K). Based
on these observations, we make the following (perhaps optimistic)

Conjecture For any knot K ⊂ S3, s(K) = 2τ(K).1

Readers familiar with the Khovanov homology may also have observed
that the notation s(K) has already been used by Bar-Natan [1] to describe
an apparent knot invariant which appears in one of his “phenomenological
conjectures.” This is no coincidence. Indeed, the author’s interest in the sub-
ject was first aroused by the observation that Bar-Natan’s s appeared to give
a lower bound for the slice genus. Although we are unable to prove that the
s(K) defined here is the same as that determined by Bar-Natan’s conjecture,
we do give a fairly general condition (at least for small knots) under which
the two agree.

The remainder of the paper is organized as follows. In Sect. 2, we review
the Khovanov complex and Lee’s construction of a spectral sequence from
it. In Sect. 3, we define s and show that it behaves nicely with respect to the
structure of the concordance group. Section 4 is devoted to the proof of The-
orem 1. In Sect. 5, we prove Theorems 3 and 4, and discuss the relationship
between s(K) and τ(K) in more detail. Finally, Sect. 6 contains proofs of
some technical results establishing the invariance of Lee’s spectral sequence,
which are needed in Sect. 2.

Finally, we take this opportunity to fix two conventions which we will use
throughout. First, we will always work with Q coefficients. Although Kho-
vanov’s complex can be defined with coefficients in Z, Lee’s theorem (Theo-
rem 2.2) does not hold in this context. Second, we will often abuse our nota-
tion, letting L refer both to a planar diagram of a link and to the underlying
link itself. The reader should have little trouble determining from context
which meaning is intended.

2 Review of Khovanov homology

In this section, we briefly recall the construction of the Khovanov complex
[8] and Lee’s extension of it [11].

2.1 The cube of resolutions

Given an oriented link diagram L with crossings labeled 1 through k, we can
form the cube of all possible resolutions of L. This is a k-dimensional cube

1The conjecture has been disproved by Hedden and Ording, who showed that s �= 2τ for certain
2-strand cables of the trefoil knot.
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Fig. 1 0- and 1-resolutions
of a crossing

with its vertices and edges decorated by 1-manifolds and cobordisms between
them. More specifically, each crossing of L can be resolved in two different
ways, as illustrated in Fig. 1. To each vertex v of the cube [0,1]k , we associate
the planar diagram Dv obtained by resolving the i-th crossing of L according
to the i-th coordinate of v. Then Dv is a planar diagram without crossings, so
it is a disjoint union of circles.

Let e be an edge of the cube. The coordinates of its two ends differ in one
component—say the l-th. We call the end which has a 0 in this component
the initial end, and denote it by ve(0). The other end is called the terminal
end, written ve(1). We assign to e the cobordism Se : Dve(0) → Dve(1), which
is a product cobordism except in a neighborhood of the l-th crossing, where
it is the obvious saddle cobordism between the 0 and 1-resolutions.

The Khovanov complex is constructed by applying a 1 + 1 dimensional
TQFT A to the cube of resolutions. In other words, one replaces each vertex
v by the group A(Dv), and each edge e by the map A(Se). The underlying
group of CKh(L) is the direct sum of the groups A(Dv) for all vertices v, and
the differential on the summand A(Dv) is a sum of the maps A(Se) for all
edges e which have v as their initial end. More precisely, for x ∈ A(Dv)

d(x) =
c0(v)∑

i=1

(−1)s(ei )A(Sei
) (1)

Here c0(v) is the number of crossings in v which have a 0-resolution, and
ei is the edge which corresponds to changing the i-th such crossing to a
1-resolution. The signs (−1)s(ei ) are chosen in such a way that d2 = 0. (There
are many different ways to do this, but it is easy to see that they all give
rise to isomorphic chain complexes.) The homological grading of an element
x ∈ A(Dv) is defined to be gr(v) = |v| − n−, where |v| is the number of 1’s
in the coordinates of v and n− is the number of negative crossings in the di-
agram for L. Note that d increases the homological grading by 1—strictly
speaking, the Khovanov homology is a cohomology theory!

2.2 Khovanov’s TQFT

We now give a more explicit description of the TQFT A. Let V be a vector
space spanned by two elements, v+ and v−. The vector space associated by
A to a single circle is defined to be V , so that if D is a diagram composed of
n disjoint circles, A(D) = V ⊗n. Thus we can think of CKh(L) as being the
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vector space spanned by the space of “states” for L, where a state consists of
a complete resolution of L, together with a labeling of each component of the
resolution by either v+ or v−.

The cobordisms Se come in two forms: either two circles can merge into
one, or one can split into two. In the first case, A(Se) is given by a map
m : V ⊗2 → V , where the two factors in the tensor product correspond to
the labels on the two circles that merge, and the copy of V in the image
corresponds to the label on the single resulting circle. Likewise, in the second
case, A(Se) is given by a map � : V → V ⊗2. The formulas for these maps
are

m(v+ ⊗ v+) = v+ �(v+) = v+ ⊗ v− + v− ⊗ v+
m(v+ ⊗ v−) = m(v− ⊗ v+) = v− �(v−) = v− ⊗ v− (2)

m(v− ⊗ v−) = 0

For reference, we also record two other maps ι and ε used to define A.
These maps are not needed at the moment, but they make an appearance
in Sect. 4 when we study cobordisms. Corresponding to the addition of a
0-handle (the birth of a circle in a diagram), there is a map ι : Q → V , and
corresponding to the addition of a two handle (the death of a circle) there is a
map ε : V → Q. These maps are given by

ε(v−) = 1 ι(1) = v+
ε(v+) = 0

A is especially nice because it is a graded TQFT. We define a grading p on
V by setting p(v±) = ±1 and extend it to V ⊗n by p(v1 ⊗ v2 ⊗ · · · ⊗ vn) =
p(v1) + p(v2) + · · · + p(vn). Then it is easy to see that if v is a homoge-
neous element of V ⊗n, p(Se(v)) = p(v) − 1. Next, we define a grading q

on CKh(L) by q(v) = p(v) + gr(v) + n+ − n−, where n± are the number
of positive and negative crossings in the diagram L. (The term n+ − n− is
included so that the q-grading remains invariant for different diagrams of the
same knot.) Then q(d(v)) = q(v), so CKh(L) splits into a direct sum of com-
plexes, one for each q grading. In fact, its graded Euler characteristic is the
unnormalized Jones polynomial of L, but we will not make use of this here.

In [8], Khovanov proves that the homology of CKh(L) (thought of as a
bigraded group) is an invariant of the underlying link L. We denote this ho-
mology group by HKh(L). We remark that although the definition of CKh(L)

required an oriented link L, the choice of orientation plays a relatively minor
role. Indeed, the only place it is used is in determining n+ and n−. Thus the
operation of global orientation reversal has no effect on HKh(L), and if we
change the orientation on some components but not others, the effect is to
change the homological and q gradings by an overall shift.
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2.3 Lee’s TQFT

In [11], Lee considers a similar construction, but with another TQFT A′ in
place of A. The underlying vector spaces for these two TQFT’s are the same,
but the maps m′ : V ⊗ V → V and �′ : V → V ⊗ V induced by cobordisms
are slightly different. They are given by

m′(v+ ⊗ v+) = m′(v− ⊗ v−) = v+ �′(v+) = v+ ⊗ v− + v− ⊗ v+
(3)

m′(v+ ⊗ v−) = m′(v− ⊗ v+) = v− �′(v−) = v− ⊗ v− + v+ ⊗ v+

(The maps ι and ε corresponding to the addition of 0 and 2-handles are the
same as for A.) We denote the resulting complex by CLee(L) and its homol-
ogy by HLee(L).

Using the obvious identification between the underlying groups of CKh(L)

and CLee(L), we can define a q-grading on the latter group as well. It is clear
from equation 3 that this grading does not behave quite so well with respect to
the differential d ′. Indeed, �′(v−) is not even homogeneous. It is easy to see,
however, that if v ∈ CLee(L) is a homogeneous element, then the q-grading
of every monomial in d ′(v) is greater than or equal to the q-grading of v. In
other words, the q-grading defines a filtration on the complex CLee(L). This
fact leads to the following theorem, which is implicit in [11]:

Theorem 2.1 There is a spectral sequence with E1 term HKh(L) which con-
verges to HLee(L). The E1 and higher terms of this spectral sequence are
invariants of the link L.

The first part of the theorem is more or less immediate from the observa-
tions above. The filtration on CLee gives rise to a spectral sequence converg-
ing to HLee. The differential on its E0 term is the part of d ′ which preserves
(rather than raises) the q-grading. Comparing Eqs. 2 and 3, we see that the
E0 term is the complex CKh.

To prove the second statement, we check that the spectral sequence is
invariant under the Reidemeister moves. Suppose L and L̃ are two dia-
grams related by the i-th Reidemeister move. In [11], Lee defines maps ρ′

i :
CLee(L) → CLee(L̃) which induce isomorphisms on homology. In Sect. 6,
we show that these maps induce isomorphisms on E1 terms of spectral se-
quences, thus completing the proof of the theorem.

2.4 Calculation of HLee

Lee’s second major result is that the homology group HLee(L) is surprisingly
simple. To show this, she introduces a new basis {a,b} for V , where a =
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v− + v+ and b = v− − v+. With respect to this new basis, the maps m′ and
�′ are given by

m′(a ⊗ a) = 2a �′(a) = a ⊗ a

m′(a ⊗ b) = m′(b ⊗ a) = 0 �′(b) = b ⊗ b

m′(b ⊗ b) = −2b

and the maps ε′ and ι′ are given by

ε′(a) = ε′(b) = 1 ι′(1) = (a − b)/2

Using this basis, she proves

Theorem 2.2 (Theorem 5.1 of [11]) HLee(L) has rank 2n, where n is the
number of components of L.

Indeed, Lee exhibits an explicit bijection between the set of possible ori-
entations for L and a set of generators of HLee(L), under which the generator
corresponding to an orientation o is a single state in the new basis. This state
lies in the vertex of the cube of resolutions determined by taking the oriented
resolution of L with respect to the orientation o. More precisely, given an
orientation o of L, let Do be the corresponding oriented resolution, and let S

be the state obtained by labeling the circles in Do with a’s and b’s according
to the following rule. To each circle C we assign a mod 2 invariant, which is
the mod 2 number of circles in Do which separate it from infinity. (In other
words, draw a ray in the plane from C to infinity, and take the number of other
times it intersects the other circles, mod 2.) To this number, we add 1 if C has
the standard (counterclockwise) orientation, and 0 if it does not. Label C by
a if the resulting invariant is 0, and by b if it is 1.

We denote the state described above by so, and refer to it as the canonical
generator associated to o. The name is justified by the following result, whose
proof is given in Sect. 6.

Proposition 2.3 Suppose L and L̃ are related by the i-th Reidemeister move.
Then an orientation o on L induces an orientation õ on L̃, and ρ′

i∗([so]) is a
nonzero multiple of [sõ].
Remark Note that orientations on L play two distinct roles in the discussion
above. We must fix an orientation o on L to determine the exact values of the
q and homological gradings. To get the generators of HLee(L), however, we
consider all possible orientations on L, regardless of which orientation we
fixed. The two are related in a small way: if o is the orientation on L used
to determine the gradings, then an easy calculation shows that the homolog-
ical grading of so is equal to 0. (In general, the homological gradings of all
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Fig. 2 Local behavior of the
state so

the other generators are determined by the linking numbers of the various
components of L.)

We end this section with an elementary but important observation.

Lemma 2.4 (Coherent orientations) Suppose there is a region in the state
diagram for so containing exactly two segments, as shown in Fig. 2. Then
either the orientations of the two are the same and the labels are different
(like part a of the figure) or the orientations are different and the labels are
the same (like part b).

Proof We consider three possible cases: either the two segments belong to the
same circle in Do, or they belong to two circles, one of which is contained
inside the other, or they belong to two circles, neither of which is contained
inside the other. In each case, it is easy to verify that the claim holds. �

Corollary 2.5 If two circles in the state diagram for so share a crossing, they
have different labels.

3 Definition and basic properties of the invariant

Let K be a knot in S3. By Theorems 2.1 and 2.2, we know that there is a
spectral sequence associated to K which converges to Q ⊕ Q. This spectral
sequence is a relatively complicated object, but we can extract some simpler
invariants of K from it. Let smax and smin (with smax ≥ smin) be the q-gradings
of the two surviving copies of Q which remain in the E∞ term of the spectral
sequence. Like all q-gradings for a knot, smax and smin are odd integers. Since
the isomorphism type of the spectral sequence is an invariant of K , smax and
smin are invariants as well.

Before making this definition formal, we digress to establish some termi-
nology related to filtrations. Suppose C is a chain complex. A finite length
filtration of C is a sequence of subcomplexes

C = F nC ⊃ F n+1C ⊃ F n+2C ⊃ · · · ⊃ F mC = {0}.
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To such a filtration, we associate a grading defined as follows: x ∈ C has
grading i if and only if x ∈ F iC but x �∈ F i+1C. If f : C → C′ is a map
between two filtered chain complexes, we say that f respects the filtration if
f (Ci) ⊂ C′

i . More generally, we say that f is a filtered map of degree k if
f (Ci) ⊂ C′

i+k.

A filtration {F iC} of C induces a filtration

H∗(C) = F nH∗(C) ⊃ F n+1H∗(C) ⊃ F n+2H∗(C) ⊃ · · · ⊃ F mH∗(C) = {0}
of H∗(C) defined as follows: a class [x] ∈ H∗(C) is in F iH∗(C) if and only
if has a representative which is an element of F iC. If f : C → C′ is a fil-
tered chain map of degree k, then it is easy to see that the induced map
f∗ : H∗(C) → H∗(C′) is also filtered of degree k.

A finite length filtration{F iC} on C induces a spectral sequence which
converges to the associated graded group of the induced filtration on H∗(C).
In other words, the group which survives at filtration grading i in the spectral
sequence is naturally identified with F iH∗(C)/F i+1H∗(C).

Let us denote by s the grading on HLee(K) induced by the q-grading on
CLee(K). Then the informal definition above is equivalent to

Definition 3.1

smin(K) = min{s(x) | x ∈ HLee(K), x �= 0}
smax(K) = max{s(x) | x ∈ HLee(K), x �= 0}

Since HKh of the unknot U has rank two and is supported in q-gradings
±1, we have smax(U) = 1, smin(U) = −1.

If we wanted to, we could have defined smax and smin purely in terms of
the filtration on HLee(K), and avoided any mention of the spectral sequence.
Indeed, the fact that smin and smax are knot invariants follows directly from
the next proposition, whose proof may be found in Sect. 6.

Proposition 3.2 The maps ρ′
i∗ and (ρ′

i∗)
−1 both respect the induced filtration

on HLee.

In practice, however, s is most easily computed using Lee’s spectral sequence,
so we have chosen to retain this fact in the definition.

3.1 The invariant s

Our first task in this section is to prove

Proposition 3.3

smax(K) = smin(K) + 2
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which justifies

Definition 3.4

s(K) = smax(K) − 1 = smin(K) + 1

Since smax and smin are odd, s(K) is always an even integer.

Before proving the proposition, we need some preliminary results.

Lemma 3.5 Let n be the number of components of L. There is a direct sum
decomposition CLee(L) ∼= Co

Lee(L) ⊕ Ce
Lee(L), where Co

Lee(L) is generated
by all states with q-grading congruent to 2 +n mod 4, and Ce

Lee(L) is gener-
ated by all states with q-grading congruent to n mod 4. If o is an orientation
on L and o is the reverse orientation, then so + so is contained in one of the
two summands, and so − so is contained in the other.

Proof Following Lee [11], we write

m′ = m + �m

�′ = � + ��

where m and � preserve the q-grading and �m and �� raise it by 4. This
proves the first statement.

For the second, let ι : CLee(L) → CLee(L) be the map which acts by the
identity on Ce

Lee and by multiplication by −1 on Co
Lee. We claim that ι(so) =

±so. To see this, we define a new grading on V with respect to which v−
has grading 0 and v+ has grading 2. Let i : V → V be given by i(v−) = v−,
i(v+) = −v+, so that i(a) = b and i(b) = a. Then the induced map i⊗n :
V ⊗n → V ⊗n acts as the identity on elements whose new grading is congruent
to 0 mod 4 and as multiplication by −1 on elements whose new grading is
congruent to 2 mod 4. The new grading differs from the q-grading on Do by
an overall shift, so

ι(so) = ±i⊗n(so) = ±so

It follows that so + ι(so) = so ± so is contained in one summand, while so −
ι(so) = so ∓ so is contained in the other. �

Corollary 3.6

s(so) = s(so) = smin(K)

Corollary 3.7 smax(K) > smin(K).
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Fig. 3 A short exact sequence for CLee(K1#K2)

Proof Since CLee(K) decomposes as a direct sum, its affiliated spectral se-
quence decomposes too. The homology of each summand is Q, so each must
account for one of the surviving terms in the spectral sequence. The two sum-
mands are supported in different q-gradings, so the surviving terms must have
different q-gradings as well. �

Lemma 3.8 Let K1 and K2 be oriented knots. Then there is a short exact
sequence

0 → HLee(K1#K2)
p∗→ HLee(K1) ⊗ HLee(K2)

∂→ HLee(K1#Kr
2) → 0

where Kr
2 denotes the reverse of K2. The maps p∗ and ∂ are filtered of

q-degree −1.

Proof Consider the diagram for K1#K2 shown in Fig. 3. From it, we get a
short exact sequence

0 → CLee(K1#Kr
2){2} i→ CLee(K1#K2)

p→ CLee(K1 � K2){1} → 0

where we use the notation C{a} to indicate the complex C with the q-grading
shifted up by a. With this convention, i and p are filtration preserving maps.
Since HLee(K1#K2) and HLee(K1#Kr

2) have rank two and HLee(K1 �K2) ∼=
HLee(K1) ⊗ HLee(K2) has rank four, i∗ must be the zero map. Thus the long
exact sequence in homology splits to give the short exact sequence of the
statement. Finally, we can remove the shifts in q-degree at the cost of making
p∗ and ∂ filtered maps of degree −1. �

Proof of Proposition 3.3 Consider the exact sequence of the previous lemma
with K1 = K and K2 the unknot. Denote the canonical generators of K by sa

and sb, according to their label near the connected sum point, and the canon-
ical generators of U by a and b. Without loss of generality, we may assume
that s(sa − sb) = smax(K). From Fig. 3, we see that ∂((sa − sb) ⊗ a) = sa .
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Since ∂ is a filtered map of degree −1, we conclude that

s((sa − sb) ⊗ a) ≤ s(sa) + 1

smax(K) − 1 ≤ smin(K) + 1

Since we already know that smax(K) �= smin(K), this gives the desired re-
sult. �

3.2 Properties of s

We check that s behaves nicely with respect to orientation reversal, mirror
image and connected sum.

Lemma 3.9 Let K be an oriented knot, and let Kr denote the same knot with
the reversed orientation. Then s(K) = s(Kr).

Proof As observed in Sect. 2, CKh and CLee are invariant under the operation
of global orientation reversal. �

Proposition 3.10 Let K be the mirror image of K . Then we have

smax(K) = −smin(K)

smin(K) = −smax(K)

s(K) = −s(K)

Proof Suppose that C is a filtered complex with filtration

C = F nC ⊃ F n+1C ⊃ F n+2C ⊃ · · · ⊃ F mC = {0}.
Then the dual complex C∗ has a dual filtration

C∗ = F −mC∗ ⊃ · · · ⊃ F −n+2C∗ ⊃ F −n+1C∗ ⊃ F −nC∗ = {0}
where F −iC∗ = {x ∈ C∗ | 〈x, y〉 = 0,∀y ∈ F iC}.

To prove the proposition, we observe that the filtered complex CLee(K) is
isomorphic to (CLee(K))∗. Indeed, it is easy to see from Eq. 3 that there is an
isomorphism

r : (V ,m′,�′) → (V ∗,�′∗,m′∗)
which sends v± to v∗∓. Then if v is a state of the diagram K , we de-
fine R(v) to be state of K obtained by applying r all the labels of v. It is
straightforward to check that the map R : CLee(K) → (CLee(K))∗ is the de-
sired isomorphism. (Compare with Sect. 7.3 of [8], where it is shown that
CKh(K) ∼= (CKh(K))∗.)
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We now appeal to the following general result, whose proof is left to the
reader:

Lemma 3.11 If C and C′ are dual filtered complexes over a field, then their
associated spectral sequences Ei and E′i are dual, in the sense that Ei ∼=
(E′i )∗.

Thus if the two surviving generators in the spectral sequence for HLee(K)

have filtration gradings smin and smax, the surviving generators in the spectral
sequence for HLee(K) will have gradings −smax and −smin. �

Proposition 3.12

s(K1#K2) = s(K1) + s(K2)

Proof We use the short exact sequence of Lemma 3.8. Denote the canonical
generators of Ki by si

a and si
b, according to their label near the connected sum

point. It is not difficult to see that HLee(K1#K2) has a canonical generator so

which maps to sa ⊗ sb under p∗. Thus

s(so) − 1 ≤ s(s1
a ⊗ s

2
b)

smin(K1#K2) − 1 ≤ smin(K1) + smin(K2)

Applying the same argument to K1 and K2, and using the fact that smin(K) =
−smax(K), we see that

smax(K1#K2) + 1 ≥ smax(K1) + smax(K2)

Substituting smax(K) = smin(K) + 2, we get

smin(K1#K2) + 3 ≥ smin(K1) + smin(K2) + 4

which, when combined with the previous equation, implies that

smin(K1#K2) = smin(K1) + smin(K1) + 1

smax(K1#K2) = smax(K1) + smax(K1) − 1

This proves the claim. �

4 Behavior under cobordisms

Let L0 and L1 be two links in R3. A cobordism from L0 to L1 is a
smooth, oriented, compact, properly embedded surface S ⊂ R3 × [0,1] with
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S ∩ (R3 × {i}) = Li . In this section, we define and study a map φ′
S :

HLee(L0) → HLee(L1) induced by such a cobordism. Our construction fol-
lows Sect. 6.3 of [8], where Khovanov describes a similar map for the homol-
ogy theory HKh.

4.1 Orientations

We begin by fixing some conventions about orientations. Let S be cobordism
from L0 to L1, and let oS be an orientation on S. We say that orientations
o0 on L0 and o1 on L1 are compatible with oS if o1 is the usual orientation
induced by oS and o0 is the reverse of the induced orientation. More generally,
we say that o1 and o2 are compatible if there is some orientation on S with
which they are both compatible. (Thus if S is the product cobordism from
L0 to L0, o0 is compatible with itself.) Given such an S, we seek to define
φ′

S : HLee(L0) → HLee(L1), where L0 and L1 are equipped with orientations
compatible with the given orientation on S.

4.2 Elementary cobordisms

Following Khovanov, we decompose S into a series of elementary cobor-
disms, each represented by a single move from one planar diagram to an-
other. (See [4] for a more detailed treatment of this material.) For i ∈ [0,1],
let Li = S ∩ (R3 × {i}). After a small isotopy of S, we can assume that Li

is a link in R3 for all but finitely many values of i. Next, we fix a projection
p : R3 → R2. After a further small isotopy of S, we can assume that p de-
fines a regular projection of Li for all but finitely many values of i, and that
this set of special values is disjoint from the first set where L failed to be a
link. The isotopy type of the oriented planar diagram p(Li) remains constant
except when L passes through one of the two types of special values, where it
changes by some well-defined local move. Each of these moves corresponds
to an elementary cobordism, so we can write the whole cobordism S as a
composition of elementary cobordisms.

The necessary moves may be subdivided into two types: Reidemeister
moves and Morse moves. There is one Reidemeister-type move for each of
the ordinary Reidemeister moves, as well as one for each of their inverses.
These moves do not change the topology of the surface Si . The Morse moves
correspond to the addition of a 0, 1 or 2-handle to Si . They are illustrated in
Fig. 4.

4.3 Induced maps

Given a cobordism S from L0 to L1, we want to assign to it an induced map
φ′

S : HLee(L0) → HLee(L1). φ′
S should be a filtered map of degree χ(S). In
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Fig. 4 Local pictures for
Morse moves

addition, we would like this assignment to be functorial, in the sense that if
S is the composition of two cobordisms S1 and S2, φS is the composition of
φS1 and φS2 . Thus it suffices to consider the case when S is an elementary
cobordism.

First, suppose that S is an elementary cobordism corresponding to the i-th
Reidemeister move or its inverse. Recall from Sect. 2.3 that there is a map
ρ′

i : CLee(L0) → CLee(L1) which induces an isomorphism on homology. We
define φ′

S to be ρ′
i∗ or its inverse. By Proposition 3.2, this is a filtered map of

degree 0.
Now suppose S is an elementary cobordism associated to a Morse move.

To define φ′
S in this case, recall that CLee(L0) is generated by elements of the

form v ∈ A′(D0,v), where D0,v is a complete resolution of the diagram L0.
D0,v naturally determines a complete resolution D1,v of L1, and the cobor-
dism S induces a cobordism Sv from D0,v to D1,v . Let φ : CLee(L0) →
CLee(L1) be the map given at the chain level by φ(v) = A′(Sv)(v) for
v ∈ D0,v . We define φ′

S to be the induced map on homology. It is easy to
see that φ′

S is a filtered map of degree 1 for a 0- or 2-handle addition and
degree −1 for a 1-handle.

In general, given a cobordism S, we decompose it as a union of elemen-
tary cobordisms: S = S1 ∪ S2 ∪ · · · ∪ Sk and define the induced morphism
φ′

S : HLee(L0) → HLee(L1) to be the composition φ′
Sk

◦ · · · ◦ φ′
S1

. This is a
filtered map of degree χ(S). Although we will not need this fact here, it fol-
lows from [3] that up to sign, the map φ′

S does not depend on the particular
decomposition of S we chose.
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4.4 Canonical generators

The map φ′
S behaves nicely with respect to canonical generators. More pre-

cisely, we have

Proposition 4.1 Let S be a cobordism from L0 to L1 with no closed compo-
nents. If o is an orientation on L0, then

φ′
S([so]) =

∑

oI

aI [soI
] (4)

where the sum runs over all orientations on L1 compatible with o and each
coefficient aI is nonzero.

Remark The hypothesis on the absence of closed components is clearly nec-
essary. For example, if we take S to be the union of a product cobordism and
a trivially embedded sphere, φ′

S is the zero map.

Proof We induct on the number of elementary cobordisms in the composi-
tion. For the base case, we must check that Eq. 4 holds when S is an elemen-
tary cobordism. For the Reidmeister-type moves, this follows directly from
Proposition 2.3. Below, we check that it holds at the chain level for each of
the Morse-type moves.

0-handle move In this case, we have φ(so) = so ⊗ 1
2(a − b), where the sec-

ond factor in the tensor product refers to the labels on the newly created circle.
There are two orientations on L1 compatible with o, and their corresponding
canonical generators are so ⊗ a and so ⊗ b. Thus Eq. 4 holds.

1-handle move Here, we consider several subcases. First, suppose that under
S, one component of L0 splits to form two components of L1. Then there is
a unique orientation o1 on L1 compatible with o, and the two strands in the
neighborhood where the Morse move takes place must be pointing in opposite
directions, as in Fig. 4. We consider the state so. By Lemma 2.4, the two
strands in the neighborhood of the move must have the same label. Since

m′(a ⊗ a) = 2a �′(a) = a ⊗ a

m′(b ⊗ b) = −2b �′(b) = b ⊗ b

the state φ(so) is some nonzero multiple of the state obtained by starting with
so and either merging or splitting the component(s) in the neighborhood of the
move, keeping all the labels the same. We claim this is precisely the state so1 .
Indeed, at each crossing the oriented resolution with respect to o is the same as
the oriented resolution with respect to o1. Moreover, the orientations on each
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component of the resulting diagram are clearly the same, as are the number
of circles separating a given circle from infinity. (Choose a path to infinity
avoiding the neighborhood in which the move takes place.) Thus φ(so) =
aso1 , where a is either 1 or ±2.

Next, suppose that S merges two components of L0 into a single compo-
nent of L1. Here, there are two possibilities. First, suppose that the two strands
in the neighborhood of the move are oriented oppositely under o. Then there is
a unique compatible orientation o1 on L1, and the argument proceeds exactly
as it did in the previous case. The other possibility is that the two strands in
the neighborhood of the move have parallel orientations. In this case, o does
not extend to an orientation on S, so there is no compatible orientation on L1.
Applying Lemma 2.4, we see that the two strands must have opposite labels
in so. Since m′(a⊗b) = 0, we have φ(so) = 0, and both sides of Eq. 4 vanish.

2-handle move In this case, there is a unique orientation o1 on L1 compat-
ible with o. Since ε′(a) = ε′(b) = 1, φ(so) = so1 . Thus Eq. 4 holds here as
well.

In general, if S is a composition of several elementary cobordisms, we
decompose it into the composition of a cobordism S1 from L0 to L1/2 and a
cobordism S2 from L1/2 to L1. By the induction hypothesis, Eq. 4 holds for
S1 and S2, so

φ′
S([so]) = φ′

S2

(∑

oI

aI [soI
]
)

=
∑

oI

aI

∑

oJ

bJ [soJ
]

=
∑

(oI ,oJ )

aI bJ [soJ
]

where the sum runs over pairs (oI , oJ ) such that oI is an orientation on L1/2
compatible with o and oJ is an orientation on L1 compatible with oI . We
claim that such pairs are in bijective correspondence with the set of orienta-
tions {oK} on L1 compatible with o. Indeed, if (oI , oJ ) is such a pair, it is
easy to see that oJ is compatible with o. Conversely, given oK on L1 com-
patible with o, the fact that S has no closed components implies that there
is a unique orientation oS on S compatible with o and oK . Restricting oS to
L1/2, we see that there is a unique compatible pair (oI , oK), and the claim
is proved. Finally, since all the aI ’s and bJ ’s are nonzero, it follows that S

satisfies Eq. 4. �

Remark Although all our calculations involving the Morse moves were made
at the chain level, the proposition itself only holds at the level of homology.
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This is because the chain level analog of Proposition 2.3 does not hold, as can
be seen from its proof in Sect. 6.

Corollary 4.2 If S is a connected cobordism between knots K0 and K1, then
φ′

S is an isomorphism.

Proof Fix an orientation o on K0. Since S is connected, there is a unique com-
patible orientation o1 on K1. Then {so, so} is a basis for HLee(K0). Its image
under φ′

S is {k1so1, k2so1} (k1, k2 �= 0), which is a basis for HLee(K1). �

4.5 The slice genus

We can now prove the first two theorems from the introduction.

Proof of Theorem 1 Suppose K ⊂ S3 bounds an oriented surface of genus g

in B4. Then there is an orientable connected cobordism of Euler characteristic
−2g between K and the unknot U in R3 × [0,1]. Let x ∈ HLee(K) − {0}
be a class for which s(x) is maximal. Then φ′

S(x) is a nonzero element of
HLee(U). Now φ′

S is a filtered map with filtered degree −2g, so

s(φ′
S(x)) ≥ s(x) − 2g

On the other hand, smax(U) = 1, so

s(φ′
S(x)) ≤ 1

It follows that s(x) ≤ 2g + 1, so smax(K) ≤ 2g + 1 and s(K) ≤ 2g. To show
that s(K) ≥ −2g, we apply the same argument to K (which bounds a surface
S of genus g) and use the fact that s(K) = −s(K). �

Proof of Theorem 2 If K1 and K2 are concordant, then K1#Kr
2 is slice. Then

0 = s(K1#Kr
2) = s(K1) − s(K2)

so s gives a well-defined map from Conc(S3) to Z. That this map is a homo-
morphism is immediate from Propositions 3.10 and 3.12. �

Corollary 4.3 Suppose K+ and K− are knots that differ by a single crossing
change—from a positive crossing in K+ to a negative one in K−. Then

s(K−) ≤ s(K+) ≤ s(K−) + 2

Proof In [13], Livingston shows that this skein inequality holds for any knot
invariant satisfying the properties of Theorems 1 and 2. �
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5 Computations and relations with other invariants

Although the invariant s(K) is algorithmically computable from a diagram
of K , it is impossible to compute by hand for all but the smallest knots. In
this section, we describe some techniques which enable us to efficiently com-
pute s.

5.1 Using HKh

For many knots, it is a simple matter to compute s(K) from the ordinary
Khovanov homology HKh(K). Although HKh(K) is also hard to compute
by hand, there are already a number of computer programs available for this
purpose, including Bar-Natan’s pioneering program [1] and a more recent,
faster program written by Shumakovitch [22].

In [1], Bar-Natan made the following observation, based on his computa-
tions of HKh for knots with 10 and fewer crossings.

Conjecture (Bar-Natan) The graded Poincare polynomial PKh(K) of
HKh(K) has the form

PKh(K) = qs(K)(q + q−1) + (1 + tq4)QKh(K)

where QKh(K) is a polynomial with all positive coefficients.

In [11], Lee observed that this conjecture is related to the convergence of
the spectral sequence. To be precise, recall that if (Ei, di) is the ith term of
spectral sequence, the differential di raises the q-grading by i.

Lemma 5.1 di = 0 unless i is divisible by 4.

Proof As we remarked in the proof of Lemma 3.5, Lee’s differential can be
decomposed as d ′ = d + �, where d preserves the q grading and � raises it
by 4. It is not hard to see that this implies the statement of the lemma. �

Thus after d0, the first non-vanishing differential in the spectral sequence
is d4. It is now easy to see that Bar-Natan’s conjecture holds whenever Lee’s
spectral sequence converges after the E4 term (i.e. di = 0 for i > 4), and that
the invariant s(K) is equal to the exponent s(K) appearing in the conjecture.

To see how widely applicable this condition is, we introduce the notion of
the homological width of a knot.

Definition 5.2 If K is a knot, let μ(K) = {a/2 − b | qatb is a monomial in
PKh(K)}. The width W(K) is one more than the difference between the max-
imum and minimum elements of μ(K).
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Fig. 5 The E1 term of Lee’s
spectral sequence for a knot
of width 3. E1 = HKh(K) is
supported on the shaded
diagonals. Possible
differentials corresponding
to d4 (the lower arrow) and
d8 (the upper one) are shown

In other words, if we arrange HKh(K) along diagonals for which the dif-
ference between the q-grading and twice the homological grading is constant,
W(K) is the number of diagonals spanned by the support of HKh(K).

Proposition 5.3 If W(K) ≤ 3, then the spectral sequence for HLee(K) con-
verges after the E4 term, and our s(K) is the same as Bar-Natan’s.

Proof Suppose K has width ≤ 3. Then as illustrated in Fig. 5, the differential
d4 can (and typically will) be nonvanishing, but d8 and all higher differentials
must vanish for geometrical reasons. �

Theorem 3 follows from this fact, since Lee has shown [12] that if K is an
alternating knot, then it has width two and Bar-Natan’s s is equal to σ(K).

The proposition also applies to many non-alternating knots. Indeed, using
Shumakovitch’s tables and a computer, it is straightforward to check that there
are only four knots with 13 or fewer crossings whose width is greater than
three. Inspecting HKh of these four exceptions, one sees that in each case, the
spectral sequence must converge after the E4 term. Thus for all knots with
13 or fewer crossings, the value of s(K) agrees with the value of Bar-Natan’s
s tabulated in [1] and [22]. In Table 1 we list those knots of 11 crossings or
fewer for which s(K) �= σ(K). There are 22 such knots, and |s(K)| > |σ(K)|
(and thus provides a better bound on the slice genus) for precisely half of
them.

Knots with 10 or fewer crossings are labeled according to their numbering
in Rolfsen, while those with 11 crossings use the Knotscape numbering. The
values of the signature are taken from [2]. All of the knots in Table 1 have a
homological width of 3, which raises the following question: if K has homo-
logical width 2 (i.e. is H-thin in the terminology of [9]), must s(K) = σ(K)?
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Table 1 Knots with ≤ 1 crossings and s �= σ

K s(K) σ(K) K s(K) σ(K) K s(K) σ(K)

942 0 2 11n9 6 4 11n70 2 4

10132 −2 0 11n12 2 0 11n77 8 6

10136 0 2 11n19 −2 −4 11n79 0 2

10139 8 6 11n20 0 −2 11n92 0 −2

10145 −4 −2 11n24 0 2 11n96 0 2

10152 −8 −6 11n31 4 2 11n138 0 2

10154 6 4 11n38 0 2 11n183 6 4

10161 −6 −4

5.2 Positive knots

If K is a positive knot, s(K) can be computed directly from the definition. To
see this, consider a canonical generator so for a positive diagram of K . Since
each crossing of K is positive, its oriented resolution is the 0-resolution. Thus
the state so lives in the extreme corner of the cube of resolutions: it has homo-
logical grading 0, and there are no generators in CLee(K) with homological
grading −1. It follows that the only class homologous to so is so itself, so

smin(K) = s([so]) = q(so)

To compute q(so), we change back to the basis {v−,v+}. In the expansion
of so with respect to this basis, there is a unique state with minimal q-grading,
namely, the state in which every circle of the oriented resolution is labeled
with a v−. If the positive diagram of K has n crossings, and its oriented
resolution has k circles, then

q(so) = p(so) + gr(so) + n+ − n−
= −k + 0 + n − 0

so

s(K) = −k + n + 1

On the other hand, Seifert’s algorithm gives a Seifert surface S for K with
Euler characteristic k − n, so

2g(K) ≤ 2g(S) = n − k + 1 = s(K) ≤ 2g∗(K)

Since g∗(K) ≤ g(K), the inequalities above must all be equalities. This com-
pletes the proof of Theorem 4.
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5.3 Comparison with τ

We end this section by commenting on the conjecture relating s and τ which
was stated in the introduction. In addition to the fact that the two invariants
share the properties of Theorems 1 through 4, there is a good deal of numer-
ical evidence supporting the conjecture. Recently, a fair amount of work has
been done on the problem of computing τ for knots with 10 and fewer cross-
ings. Combining the results of [6, 13, 15, 16], and [17] with some unpublished
computations of the author, it appears that the value of τ has been determined
for all but two knots of 10 crossings and fewer. (The exceptions are 10141 and
10150.) For all of these knots, s = 2τ . The equality can also be checked on
certain special classes of knots, such as the pretzel knots of [18]. If the con-
jecture were true, it would make many computations in knot Floer homology
easier. (For example, with our current technology, it seems like quite a labo-
rious project to compute τ for all 11-crossing non-alternating knots.) Even if
it is not true, we hope that the remarkable similarity between the two theories
will have an enlightening explanation.

6 Reidemeister moves

In this section, we prove the results involving Reidemeister moves which were
stated in Sects. 2 and 3.

Proof of Theorem 2.1 The proof that the desired spectral sequence exists was
sketched in Sect. 2. To prove its invariance, we use the following basic lemma,
whose proof may be found in [14], Proposition 3.2.

Lemma 6.1 Suppose f : C → C′ is a map of filtered complexes which re-
spects the filtrations. Then f induces maps of spectral sequences f n : En →
E′n, and if f n is an isomorphism, f m is an isomorphism for all m ≥ n.

In Sect. 4 of [11], Lee proves the invariance of HLee by checking its invari-
ance under the three Reidemeister moves. For each move, she exhibits a chain
map between the complexes associated to the link diagram before and after
the move. To prove the theorem, it suffices to check that these maps respect
the q-filtration, and that they induce isomorphisms on the E1 terms. The latter
claim is straightforward, since in each case the induced maps on the E0 terms
are identical to the maps used in Sect. 5 of [8] to prove invariance of HKh.
Below, we sketch the proof of invariance for each move and explain why the
maps in question respect the filtrations. For full details, we refer the reader to
[8] and [11].
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Fig. 6 The Reidemeister I
move and the map ρ′

1

Reidemeister I move Let L̃ be the diagram L with an additional left-hand
curl added in. Then CLee(L̃) can be decomposed as a direct sum X1 ⊕ X2,
where X2 is acyclic and X1 is isomorphic to CLee(L) via the map ρ′

1 :
CLee(L) → X1 illustrated in Fig. 6. In terms of the basis {v±}, we have

ρ′
1(v−) = v− ⊗ v− − v+ ⊗ v+

ρ′
1(v+) = v+ ⊗ v− − v− ⊗ v+

The corresponding map ρ1 in [8] is given by

ρ1(v−) = v− ⊗ v−
ρ1(v+) = v+ ⊗ v− − v− ⊗ v+

so ρ′
1 is filtration non-decreasing, and its induced map on E0 terms is ρ1.

Remark There is another version of the first Reidemeister move, correspond-
ing to the addition of a right-hand curl. Although it is not difficult to define an
appropriate map ρ′

1′ for this move directly, for the sake of brevity we adopt
the solution of [1] and [11] and define it to be the composition of maps in-
duced by an appropriate Reidemeister II move followed by a Reidemeister I
move.

Reidemeister II move Let L and L̃ be as shown in Fig. 7. In this case,
CLee(L̃) can be decomposed as a direct sum X1 ⊕X2 ⊕X3, where X2 and X3
are acyclic and there is an isomorphism ρ′

2 : CLee(L) → X1, which is given
by

ρ′
2(z) = (−1)gr(z)(z + ι(d ′

01→11(z)))
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Fig. 7 The Reidemeister II move and the maps ι and d ′
01→11

The maps ι and d ′
01→11 are shown in the figure. The isomorphism ρ2 in [8]

has the same form, but with d01→11 in place of d ′
01→11. Since d −d ′ is strictly

filtration increasing, it follows that ρ′
2 is filtration non-decreasing, and its in-

duced map on E0 terms is ρ2.

Reidemeister III move Let L and L̃ be as shown in Fig. 8. Then there are
direct sum decompositions

CLee(L) ∼= X1 ⊕ X2 ⊕ X3

CLee(L̃) ∼= X̃1 ⊕ X̃2 ⊕ X̃3

where X2,X3, X̃2, and X̃3 are acyclic and there is an isomorphism
ρ′

3 : X1 → X̃1. To describe X1 and X̃1, we first define maps

β ′ :CLee(L(∗100)) → CLee(L(∗010))

β̃ ′ :CLee(L̃(∗010)) → CLee(L̃(∗100))

by

β ′ = ι ◦ d ′
100→110
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Fig. 8 The Reidemeister III move. The relevant components of the differentials (d ′
100→110

and d ′
010→110) are marked in bold

β̃ ′ = ι ◦ d ′
010→110

Then

X1 = {x + β ′(x) + y | x ∈ CLee(L(∗100)), y ∈ C′
Kh(L(∗1))}

X̃1 = {x + β̃ ′(x) + y | x ∈ CLee(L̃(∗010)), y ∈ CLee(L̃(∗1))}
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and

ρ′
3(x + β ′(x) + y) = x + β̃ ′(x) + y.

The isomorphism ρ3 in [8] is defined similarly, except that it uses d instead
of d ′ to define maps β and β ′. Since d ′ does not increase the q-grading, we
clearly have q(β ′(x)) ≥ q(x). From this, it follows that ρ′

3 does not decrease
the q-grading. Since d − d ′ strictly increases the q-grading, the map induced
on E0 terms by ρ′

3 is equal to ρ3. To finish the proof, we apply Lemma 6.1
three times: first to the inclusions X1 ↪→ CLee(L) and X̃1 ↪→ CLee(L̃), and
then to the map ρ′

3. �

Proof of Proposition 2.3 We check the claim directly for each Reidemeister
move:

Reidemeister I move In this case, it is easy to see that ρ′
1(so) = sõ.

Reidemeister II move Suppose that the two strands in L point in the same
direction. Then by Lemma 2.4, they have different labels, so d ′

01→11(so) = 0.
The oriented resolution of L̃ is contained in CLee(L̃(∗01)) ∼= CLee(L), so
ρ′

2(so) = (−1)0(sõ) = sõ.
Now suppose the two strands point in different directions, so that they have

the same label. Let us assume for the moment that this label is a. Then we
define s

ĩj
∈ HLee(L̃(∗ij)) be the state which is identical to so outside the

area where the move takes place and has all components inside the area of the
move labeled with an a. Then a direct computation shows that either

ρ′
2(so) = s0̃1 + 1

2
(s1̃0 − sõ)

= −1

2
(sõ + d ′(s0̃0))

if the two strands belong to the same component, or

ρ′
2(so) = s0̃1 + (s1̃0 − sõ)

= −(sõ + d ′(s0̃0))

if they belong to different components. This proves the claim in the case
where both strands are labeled with an a. We leave it to the reader to check
that a similar argument applies when they are both labeled with a b.

Reidemeister III move Here there are three cases to consider. First, suppose
that the two overlying strands in L are oriented as shown in Fig. 9a. Then
so ∈ CLee(L(∗1)), and it is easy to see that ρ′

3(so) = sõ.
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Fig. 9 Possible orientations
for L and their respective
canonical generators

Next, suppose that the three strands are oriented as shown in Fig. 9b. Then
so ∈ CLee(L(∗100)) and sõ ∈ CLee(L̃(∗010)). Clearly β ′(so) = β̃ ′(sõ) = 0,
so so ∈ X1 and sõ ∈ X̃1. Again, it follows that ρ′

3(so) = sõ.
Finally, suppose the strands are oriented as shown in Fig. 9c. In this case,

the oriented resolution of L is in L(∗010), and the oriented resolution of L̃ is
in L̃(∗100). Inside the region under consideration, so looks like the state of
Fig. 9c (perhaps with a’s and b’s reversed.) Our first step is to exhibit some
t ∈ X1 which is homologous to so. As before, we denote by sijk the unique
state of L(∗ijk) which is the same as so outside the area of the Reidemeister
move and has all its components inside this area labeled by a’s.

Assume for the moment that all three strands shown in L(∗000) belong to
different components. In this case, we can take

t = so − 2s100 − s010 − 2s001 = so − d ′(s000).

Indeed, β ′(−2s100) = so − s010 and s001 ∈ CLee(L(∗1)), so t ∈ X1. Then

ρ′
3(t) = −2s0̃10 − 2β̃ ′(s0̃10) − 2s0̃01

= −2s0̃10 − 2s1̃00 + 2sõ − 2s0̃01

= 2sõ − d ′(s0̃00)

which proves the claim.
We leave it to the reader to check that a similar argument applies to each

of the four other ways in which the segments outside the area of the move can
be connected, as well as when the roles of a and b are reversed. In each case,
it is not difficult to verify that ρ′

3∗([s0]) is one of ±[sõ],±2[sõ], or ±1
2 [sõ]. �
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Proof of Proposition 3.2 In the case of ρ′
1∗ and ρ′

2∗, the claim is immediate,
since these maps are induced by filtered chain maps. For the others, we use
the following

Lemma 6.2 Suppose f : C → C′ is a map of filtered chain complexes with
the property that the induced map of spectral sequences f 1 : E1 → E′1 is an
isomorphism. Then f −1∗ is a filtered map with respect to the induced filtra-
tions on H∗(C) and H∗(C′).

Proof Since f 1 is an isomorphism, f ∞ (the induced map on filtered gradeds)
is as well. It follows that f∗ is an isomorphism. Suppose f −1∗ does not respect
the filtration. Then there must be some v ∈ H∗(C) whose filtration is strictly
increased by f∗. But this contradicts the fact that f ∞ is an isomorphism. �

The remaining cases now follow easily from the results used in the proof
of Theorem 2.1. Indeed, ρ′

1 and ρ′
2 both induce isomorphisms of E1 terms,

and ρ′
3∗ = ι1∗ ◦ ψ∗ ◦ ι−1

2∗ , where ι1, ι2, and ψ all induce isomorphisms of E1

terms. �
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