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1 Introduction

The so called Burniat surfaces were constructed by Pol Burniat in 1966 [7],
where the method of singular bidouble covers was introduced in order to solve
the geography problem for surfaces of general type.

The special construction of surfaces with geometric genus pg(S) = 0, done
in [7], was brought to attention by [30], which explained Burniat’s calculation
of invariants in the modern language of algebraic geometry, and nowadays the
name of Burniat surfaces is reserved for these surfaces with pg(S) = 0.

Burniat surfaces are especially interesting examples for the nonbirational-
ity of the bicanonical map (see [19]). For all the Burniat surfaces S with
K2

S ≥ 3 the bicanonical map turns out to be a Galois morphism of degree 4.
We refer to our joint paper with Grunewald and Pignatelli [2] for a gen-

eral introduction on the classification and moduli problem for surfaces with
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pg(S) = 0 and its applications: as an example we mention our final corollary
here on the validity of Bloch’s conjecture for all deformations of secondary
Burniat surfaces.

The main achievement of the present series of three articles is to com-
pletely solve the moduli problem for Burniat surfaces, determining the con-
nected components of the moduli space of surfaces of general type containing
the Burniat surfaces, and describing their geometry.

The minimal models S of Burniat surfaces have as invariant the positive
integer K2

S , which can take values K2
S = 6,5,4,3,2.

We get a rationally parametrized family of dimension K2
S − 2 for each

value of K2
S = 6,5,3,2, and two such families for K2

S = 4, one called of
nonnodal type, the other of nodal type. We proposed in [4] to call primary
Burniat surfaces those with K2

S = 6, secondary Burniat surfaces those with
K2

S = 5,4, and tertiary Burniat surfaces those with K2
S = 3. The reason not

to consider the Burniat surface with K2
S = 2 is that it is just one special ele-

ment of the family of standard Campedelli surfaces (i.e., with torsion group
(Z/2Z)3) (see [4, 24]), whose geometry is completely understood (see [26,
32]).

An important result was obtained by Mendes Lopes and Pardini in [25]
who proved that primary Burniat surfaces form a connected component of
the moduli space of surfaces of general type. A stronger result concerning
primary Burniat surfaces was proved in part one [4], namely that any surface
homotopically equivalent to a primary Burniat surface is a primary Burniat
surface. Alexeev and Pardini (cf. [1]) reproved the result of Mendes Lopes
and Pardini by studying more generally the component of the moduli space
of stable surfaces of general type containing primary Burniat surfaces.

Here, we shall prove in one go that each of the 4 families of Burniat sur-
faces with K2

S ≥ 4, i.e., of primary and secondary Burniat surfaces, is a con-
nected component of the moduli space of surfaces of general type.

The case of tertiary Burniat surfaces will be treated in the third one of this
series of papers, and we limit ourselves here to say that the general deforma-
tion of a Burniat surface with K2

S = 3 is not a Burniat surface, but it is always
a bidouble cover (through the bicanonical map) of a cubic surface with three
nodes.

At the moment when we started the redactional work for the present paper
we became aware of the fact that a weaker result was stated in [24], namely
that each family of Burniat surfaces of secondary type yields a dense set in an
irreducible component of the moduli space. The result is derived by Kulikov
from the assertion that the base of the Kuranishi family of deformations is
smooth. This result is definitely false for the Burniat surfaces with K2

S = 4 of
nodal type (Proposition 4.12 and Corollary 4.23(iii) of [24]), as we shall now
see.
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Indeed one of the main technical contributions of this paper is the study of
the deformations of secondary Burniat surfaces, through diverse techniques.

A very surprising and new phenomenon occurs for nodal surfaces, con-
firming Vakil’s ‘Murphy’s law’ philosophy [35].

To explain it, recall that indeed there are two different structures as com-
plex analytic spaces for the moduli spaces of surfaces of general type.

One is the moduli space Mmin
χ,K2 for minimal models S having χ(OS) = χ ,

K2
S = K2, the other is the Gieseker moduli space Mcan

χ,K2 for canonical models

X having χ(OX) = χ , K2
X = K2 (cf. [20]). The Gieseker moduli space is a

quasi projective scheme and there is a natural holomorphic map Mmin
χ,K2 →

Mcan
χ,K2 which is a homeomorphism in the Hausdorff topology. Their local

structure as complex analytic spaces is the respective quotient of the base of
the Kuranishi family by the action of the finite group Aut(S) = Aut(X).

In [14] series of examples were exhibited where Mcan
χ,K2 was smooth, but

Mmin
χ,K2 was everywhere nonreduced.

For nodal Burniat surfaces with K2
S = 4 both spaces are everywhere nonre-

duced, but the nilpotence order is higher for Mmin
χ,K2 ; this is a further pathol-

ogy, which adds to the ones presented in [14] and in [35].
More precisely, this is one of our two main results:

Theorem 1.1 The subset of the Gieseker moduli space Mcan
1,4 of canonical

surfaces of general type X corresponding to Burniat surfaces S with K2
S = 4

and of nodal type is an irreducible connected component of dimension 2,
rational and everywhere nonreduced.

More precisely, there exists an integer m ≥ 2 such that the base Def(X)

of the Kuranishi family of X is locally analytically isomorphic to C
2 ×

Spec(C[t]/(tm)).
The corresponding subset of the moduli space Mmin

1,4 of minimal sur-
faces S of general type is also everywhere nonreduced and the base Def(S)

of the Kuranishi family of S is locally analytically isomorphic to C
2 ×

Spec(C[t]/(t2m)).
For the general such surface Aut(S) = Aut(X) = (Z/2Z)2, and this group

acts trivially on the bases Def(S),Def(X) of the respective Kuranishi fami-
lies.

Whereas for the nonnodal case we get the following second main result:

Theorem 1.2 The three respective subsets of the moduli spaces of mini-
mal surfaces of general type Mmin

1,K2 corresponding to Burniat surfaces with

K2 = 6, resp. with K2 = 5, resp. Burniat surfaces with K2 = 4 of nonnodal
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type, are irreducible connected components, normal, rational of respective
dimensions 4, 3, 2.

Moreover, the base of the Kuranishi family of such surfaces S is smooth.

Theorem 1.1 poses the challenging deformation theoretic question to cal-
culate the number m giving the order of nilpotence of the local moduli space
(and also of the moduli space at the general point).

2 The local moduli spaces of Burniat surfaces

2.1 Definition of the Burniat surfaces

Burniat surfaces are minimal surfaces of general type with K2 = 6,5,4,3,2
and pg = 0, which were constructed in [7] as minimal resolutions of singular
bidouble covers (Galois covers with group (Z/2Z)2) of the projective plane
branched on 9 lines.

We briefly recall their construction: this will also be useful to fix our no-
tation. For more details, and for the proof that Burniat surfaces are exactly
certain Inoue surfaces we refer to [4].

Let P1,P2,P3 ∈ P
2 be three noncollinear points (which we assume to

be the points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1)) and let’s denote by
Y := P̂

2(P1,P2,P3) the Del Pezzo surface of degree 6, blow up of P
2 in

P1,P2,P3.
Y is ‘the’ smooth Del Pezzo surface of degree 6, and it is the closure of the

graph of the rational map

ε : P
2 ��� P

1 × P
1 × P

1

such that

ε(y1 : y2 : y3) = ((y2 : y3)(y3 : y1)(y1 : y2)).

One sees immediately that Y ⊂ P
1 × P

1 × P
1 is the hypersurface of type

(1,1,1):

Y = {((x′
1 : x1), (x

′
2 : x2), (x

′
3 : x3)) | x1x2x3 = x′

1x
′
2x

′
3}.

We denote by L the total transform of a general line in P
2, by Ei the

exceptional curve lying over Pi , and by Di,1 the unique effective divisor in
|L − Ei − Ei+1|, i.e., the proper transform of the line yi−1 = 0, side of the
triangle joining the points Pi,Pi+1.

Consider on Y , for each i ∈ Z/3Z ∼= {1,2,3}, the following divisors

Di = Di,1 + Di,2 + Di,3 + Ei+2 ∈ |3L − 3Ei − Ei+1 + Ei+2|,
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where Di,j ∈ |L − Ei |, for j = 2,3, is the proper transform of another line
through Pi . Assume further that all the nine corresponding lines in P

2 are
distinct, so that D := ∑

i Di is a reduced divisor.
Note that, if we define the divisor Li := 3L − 2Ei−1 − Ei+1, then

Di−1 + Di+1 ≡ 6L − 4Ei−1 − 2Ei+1 ≡ 2Li ,

and we can consider (cf. [15]) the associated bidouble cover X′ → Y

branched on D := ∑
i Di (but we take a different ordering of the indices of

the fibre coordinates ui , using the same choice as the one made in [4], where
however X′ was denoted by X).

We recall that this precisely means the following: let δi be a section of the
line bundle OY (Di) such that Di = div(δi), and let ui be a fibre coordinate
of the geometric line bundle Li+1, whose sheaf of holomorphic sections is
OY (Li+1).

Then X ⊂ L1 ⊕ L2 ⊕ L3 is given by the equations:

u1u2 = δ1u3, u2
1 = δ3δ1;

u2u3 = δ2u1, u2
2 = δ1δ2;

u3u1 = δ3u2, u2
3 = δ2δ3.

From the birational point of view, as done by Burniat, we are simply

adjoining to the function field of P
2 two square roots, namely

√
�1
�3

and
√

�2
�3

, where �i is the cubic polynomial in C[x0, x1, x2] whose zero set has
Di − Ei+2 as strict transform.

This shows clearly that we have a Galois cover X′ → Y with group
(Z/2Z)2.

The equations above give a biregular model X′ which is nonsingular ex-
actly when the divisor D does not have points of multiplicity 3 (there cannot
be points of higher multiplicities). These points give then quotient singular-
ities of type 1

4(1,1), i.e., isomorphic to the quotient of C
2 by the action of

(Z/4Z) sending (u, v) 
→ (iu, iv) (or, equivalently , the affine cone over the
4-th Veronese embedding of P

1).

Definition 2.1 A primary Burniat surface is a surface constructed as above,
and which is moreover smooth. It is then a minimal surface S with KS ample,
and with K2

S = 6, pg(S) = q(S) = 0.
A secondary Burniat surface is the minimal resolution of a surface X′

constructed as above, and which moreover has 1 ≤ m ≤ 2 singular points
(necessarily of the type described above). Its minimal resolution is then a
minimal surface S with KS nef and big, and with K2

S = 6 − m, pg(S) =
q(S) = 0.
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A tertiary (respectively, quaternary) Burniat surface is the minimal reso-
lution of a surface X′ constructed as above, and which moreover has m = 3
(respectively m = 4) singular points (necessarily of the type described above).
Its minimal resolution is then a minimal surface S with KS nef and big, but
not ample, and with K2

S = 6 − m, pg(S) = q(S) = 0.

Remark 2.2

(1) We remark that for K2
S = 4 there are two possible types of configurations.

The one where there are three collinear points of multiplicity at least 3 for
the plane curve formed by the 9 lines leads to a Burniat surface S which
we call of nodal type, and with KS not ample, since the inverse image of
the line joining the 3 collinear points is a (-2)-curve (a smooth rational
curve of self intersection −2).

In the other cases with K2
S = 4,5,6, instead, KS is ample.

(2) In the nodal case, if we blow up the two (1,1,1) points of D, we obtain a
weak Del Pezzo surface Ỹ , i.e., a surface with nef and big anticanonical
divisor −K

Ỹ
. In fact, −K2

Ỹ
= 4 but −K

Ỹ
contains a (-2)-curve, hence

−K
Ỹ

, which is nef, is not ample.
Its anticanonical model Y ′ has a node (an A1-singularity, correspond-

ing to the contraction of the (-2)-curve). In the nonnodal case, we obtain
a smooth Del Pezzo surface Ỹ = Y ′ of degree 4.

(3) We illustrated the possible configurations of the lines in the plane in
Fig. 1.

We will mostly restrict ourselves in the following to secondary Burniat
surfaces. In this cases the branch divisor D on Y has either one or two singular
points of type (1,1,1). In the case K2

S = 5 there is one point, denoted by P4,
in the case K2

S = 4 there are two such points, denoted by P4,P5; in the nodal
case we shall assume that P1,P4,P5 are collinear.

We finally let Ỹ → Y be the blow up of Y in P4 (in the case K2
S = 5),

respectively in the points P4,P5 (if K2 = 4). We let E4 (resp. E5) be the
exceptional curve lying over P4 (resp. over P5).

We have summarized in Tables 1, 2, 3 the linear equivalence classes of the
divisors Di,j , which are the strict transforms of lines D′

i,j in P
2.

2.2 Local deformations of the Burniat surfaces

In order to get some grip on the local deformations of a Burniat surface, we
show a preliminary result, which, although not used in the sequel, suggests the
main idea, namely that for K2

S ≥ 4 all deformations carry along the (Z/2Z)2-
action.
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Fig. 1 Configurations of lines



566 I. Bauer, F. Catanese

Table 1 K2
S

= 5
(i, j) Di,j

(i,1) L − Ei − Ei+1

(i,2) L − Ei − E4

(i,3) L − Ei

Table 2 K2
S

= 4: nonnodal
(i, j) Di,j

(i,1) L − Ei − Ei+1

(i,2) L − Ei − E4

(i,3) L − Ei − E5

Table 3 K2
S

= 4: nodal
(i, j) Di,j

(i,1) L − Ei − Ei+1

(1,2) L − E1 − E4 − E5

(1,3) L − E1

(2,2) L − E2 − E4

(2,3) L − E2 − E5

(3,2) L − E3 − E4

(3,3) L − E3 − E5

Proposition 2.3 Let S be the minimal model of a Burniat surface, given as
Galois (Z/2Z)2-cover of the (weak) Del Pezzo surface Ỹ . Then all natural
deformations of π : S → Ỹ are Galois (Z/2Z)2-covers of Ỹ .

Proof The natural deformations of a bidouble cover (we refer to [11], Defin-
ition 2.8, p. 494, and to [15], p. 106 for the definition of the family of natural
deformations of a bidouble cover) are parametrized by the direct sum of the
vector spaces H 0(Ỹ , O

Ỹ
(Di)) with the vector spaces H 0(Ỹ , O

Ỹ
(Di − Li)).

The second summand is zero exactly when all the natural deformations are
Galois.

As easily read off from Tables 1, 2, 3, in all cases we have

Di − Li ≡ −3Ei + 3Ei+2, ∀i ∈ {1,2,3}
Assume that there exists an effective divisor C ∈ |Di − Li |. Then C · Ei+2 =
−3, whence C ≥ 3Ei+2. Therefore we can write C = C′ + 3Ei+2, with C′ ∈
|−3Ei |, a contradiction. This implies that |Di − Li | = ∅. �

Remark 2.4 It is easy to see that the respective dimensions of the families of
Burniat surfaces are



Burniat surfaces II: secondary Burniat surfaces 567

– 4 for K2 = 6;
– 3 for K2 = 5;
– 2 for K2 = 4, nonnodal;
– 2 for K2 = 4, nodal;
– 1 for K2 = 3.

An important feature of each family of Burniat surfaces is that the canoni-
cal models do not get worse singularities for special elements of the family.

The minimal model S of a Burniat surface is a smooth bidouble cover of a
smooth weak Del Pezzo surface Ỹ , branched over a normal crossing divisor.
KS is ample for K2

S ≥ 4 unless we are in the nodal case with K2
S = 4.

In this nodal case one has a singular Del Pezzo surface Y ′ with an A1-
singularity obtained contracting the (-2) curve D1,2.

The canonical model X of S is obtained contracting the (-2) curve E which
is the inverse image of D1,2. X is a finite bidouble cover of Y ′.

Our strategy is to preliminarly investigate the tangent space and the ob-
struction space for the Kuranishi family of S as representations of the group
G := (Z/2Z)2, and to later use this information to describe the Kuranishi
family of X, showing in particular that all the deformations preserve the G-
action.

First of all, we determine the several character spaces and their dimension.
Here, V i , for i ∈ 1,2,3 is the character spaces and their respective dimen-
sions.

Proposition 2.5 Let S be the minimal model of a Burniat surface.
Then the dimensions of the eigenspaces of the cohomology groups of the

tangent sheaf �S (for the natural (Z/2Z)2-action) are as follows.

• K2 = 6: h1(S,�S)inv = 4, h2(S,�S)inv = 0,
h1(S,�S)i = 0, h2(S,�S)i = 2, for i ∈ {1,2,3};

• K2 = 5: h1(S,�S)inv = 3, h2(S,�S)inv = 0,
h1(S,�S)i = 0, h2(S,�S)i = 1, for i ∈ {1,2,3};

• K2 = 4 of nonnodal type: h1(S,�S)inv = 2, h2(S,�S)inv = 0,
h1(S,�S)i = h2(S,�S)i = 0, for i ∈ {1,2,3}.

• K2 = 4 of nodal type: h1(S,�S)inv = 2, h2(S,�S)inv = 0,
h1(S,�S)1 = 1 = h2(S,�S)1, hj (S,�S)i = 0, for i ∈ {2,3}.

We shall postpone the proof of the above proposition to the next subsection
and state right away the main result of this subsection.

Recall that for surfaces of general type we have two moduli spaces: one is
the moduli space Mmin

χ,K2 for minimal models S having χ(OS) = χ , K2
S = K2,

the other is the moduli space Mcan
χ,K2 for canonical models X having χ(OX) =

χ , K2
X = K2; the latter is called the Gieseker moduli space. Both are complex

analytic spaces and there is a natural morphism Mmin
χ,K2 → Mcan

χ,K2 which is
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a bijection. Their local analytic structure is the quotient of the base of the
Kuranishi family by the action of the finite group Aut(S) = Aut(X). Usually,
Mmin

χ,K2 tends to be more singular than the one of Mcan
χ,K2 (see e.g. [14]).

Recall moreover that in the following theorem KS is always ample, thus
the minimal and canonical model coincide. Instead, later on, for surfaces with
K2 = 4 of nodal type, S contains exactly one -2 curve E, thus the canonical
model X has always exactly one singular point, an A1-singularity.

Theorem 2.6 The three respective subsets of the moduli spaces of mini-
mal surfaces of general type Mmin

1,K2 corresponding to Burniat surfaces with

K2 = 6, resp. with K2 = 5, resp. Burniat surfaces with K2 = 4 of nonnodal
type, are irreducible open sets, normal, unirational of respective dimensions
4, 3, 2.

Moreover, the base of the Kuranishi family of S is smooth.

Proof By Proposition 2.5 the tangent space to the Kuranishi family of S,
H 1(�S), consists of invariants for the action of the group G := (Z/2Z)2.

It follows then (cf. [13] lecture three, page 23) that all the local deforma-
tions admit the G-action, hence they are bidouble covers of a deformation of
the smooth Del Pezzo surface Ỹ .

Moreover, the dimension of H 1(�S) coincides with the dimension of the
image of the Burniat family containing S in the moduli space Mmin

1,K2
S

, hence

the Kuranishi family of S is smooth, and coincides with the Burniat family
by the above argument.

Alternatively, one could show directly that the Kodaira Spencer map is
bijective, or simply observe that a finite morphism between smooth manifolds
of the same dimension is open.

Observe then that the quotient of a smooth variety by the action of a finite
group is normal.

Finally, the Burniat family is parametrized by a (smooth) rational vari-
ety. �

We shall see in the final section that these irreducible components are not
only unirational, but indeed rational.

2.3 The proof of Proposition 2.5

This subsection is dedicated to the technical details of the proof of Proposi-
tion 2.5.

We see easily from Tables 1, 2, 3 the following formulae which hold uni-
formly for all Burniat surfaces:
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Remark 2.7
(i) Di ≡ −K

Ỹ
− 2Ei + 2Ei+2

(ii) Li
∼= O

Ỹ
(−K

Ỹ
+Ei −Ei−1) since Li

∼= O
Ỹ
(Li), where Li ≡ 1

2(Di−1 +
Di+1).

This yields Li ≡ 3L − Ei+1 − 2Ei−1 − E4 for K2 = 5, and Li =
3L − Ei+1 − 2Ei−1 − E4 − E5, for K2 = 4.

(iii) Di − Li ≡ −3Ei + 3Ei−1.

In order to determine dimH 1(S,�S), we use the following special case of
Theorem 2.16 of [11]:

Proposition 2.8 Let π : S → Ỹ be a Galois (Z/2Z)2-cover of smooth pro-
jective surfaces with branch divisor D := D1 + D2 + D3. Then

π∗(�1
S ⊗ �2

S) = (�1
Ỹ
(logD1, logD2, logD3) ⊗ �2

Ỹ
)

⊕
(

3⊕

i=1

�1
Ỹ
(logDi) ⊗ �2

Ỹ
⊗ O

Ỹ
(Li)

)

,

where �1
Ỹ
(logD1, logD2, logD3) is the subsheaf of the sheaf of rational 1-

forms generated by �1
Ỹ

and by dlog(δ1), dlog(δ2), dlog(δ3), and where Di =
div(δi).

Moreover the first summand is the invariant one, and the other three cor-
respond to the three nontrivial characters of (Z/2Z)2.

We are able to use the above result observing in fact that the sheaf �1
S ⊗

�2
S = �1

S(KS) is the Serre dual of �S , and that for each locally free sheaf
F on S we have (the second formula is duality for a finite map, cf. [21],
Exercise 6.10, p. 239):

(1) Hi(F ) = Hi(π∗(F )),
(2) π∗(F ∨(KS)) ∼= (π∗F )∨(K

Ỹ
),

(3) KS = π∗(K
Ỹ

+ L1 + L2 + L3),
(4) Hi(�S)∨ = H 2−i (π∗(�1

S ⊗ �2
S)).

Moreover, we use the following exact residue sequence

0 → �1
Ỹ

→ �1
Ỹ
(logD1, . . . , logDk) →

k⊕

i=1

ODi
→ 0

holding more generally if the divisors Di are reduced and Ỹ is a factorial
variety (see e.g. Lemma 3, p. 675 of [17]).

We are left with the calculation of the cohomology groups of the sheaves:

�1
Ỹ
(logD1, logD2, logD3)(KỸ

),
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respectively

�1
Ỹ
(logDi)(KỸ

+ Li).

However, the second cohomology groups vanish since S is of general type,
hence H 0(�S) = 0. The Riemann Roch theorem tells us what are the alter-
nating sums of the dimensions, thus in the end it suffices to calculate the H 0

of these sheaves.
Let us look at the invariant part, using the exact sequence

0 → �1
Ỹ
(K

Ỹ
) → �1

Ỹ
(logD1, logD2, logD3)(KỸ

) →
3⊕

i=1

ODi
(K

Ỹ
) → 0.

The space H 0(�1
Ỹ
(K

Ỹ
)) vanishes since H 0(�1

Ỹ
) = 0 and −K

Ỹ
is effective.

Moreover, if Ỹ is a Del Pezzo surface, then −K
Ỹ

is ample and also
H 0(ODi

(K
Ỹ
)) = 0.

Thus H 0(�1
Ỹ
(logD1, logD2, logD3)(KỸ

)) = 0 unless we are in the nodal
case. Here there is the (-2) curve D1,2 which is a connected component of
D1, hence in this case H 0(OD1(KỸ

)) ∼= C.

On the other hand the coboundary in the long exact cohomology sequence
is given by cup product with the extension class, which is the direct sum of
the Chern classes of the divisors Di , c1(Di) ∈ H 1(�1

Ỹ
).

Note, in the nodal case, that |−K
Ỹ
| = |3L − ∑5

i=1 Ei | is base point free.
Therefore there is a morphism O

Ỹ
(K

Ỹ
) → O

Ỹ
, which is not identically zero

on any component of the Di ’s.
We get the commutative diagram with exact rows

0 �1
Ỹ
(K

Ỹ
) �1

Ỹ
(logD1, logD2, logD3)(KỸ

)
⊕3

i=1 ODi
(K

Ỹ
) 0

0 �1
Ỹ

�1
Ỹ
(logD1, logD2, logD3)

⊕3
i=1 ODi

0.

(1)
From this we get the commutative diagram

C ∼= H 0(Ỹ ,
⊕3

i=1 ODi
(K

Ỹ
))

ψ2

δ

ϕ

H 1(Ỹ ,�1
Ỹ
(K

Ỹ
))

H 0(Ỹ ,
⊕3

i=1 ODi
)

ψ1
H 1(Ỹ ,�1

Ỹ
).
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Note that by a straightforward extension of the argument given in [11],
Lemma 3.7, the image of the function identically equal to 1 on D1,2 maps
under ψ1 to the first Chern class of D1,2. Therefore ϕ = ψ1 ◦ ψ2 �= 0, hence
also δ is nonzero.

We have thus accomplished the proof of

Lemma 2.9 For a primary or secondary Burniat surface the G := (Z/2Z)2-
invariant part H 0(�1

S ⊗ �2
S)G of H 0(�1

S ⊗ �2
S) vanishes.

Let us now turn to the other characters.
We have then the other exact sequence

0 → �1
Ỹ
(K

Ỹ
+ Li) → �1

Ỹ
(logDi)(KỸ

+ Li) → ODi
(K

Ỹ
+ Li) → 0

and we recall that, by Remark 2.7

�1
Ỹ
(logDi)(KỸ

+ Li) ∼= �1
Ỹ
(logDi)(Ei − Ei+2).

We shall calculate the dimension of the space

H 0(�1
Ỹ
(logDi)(Ei − Ei+2))

taking its direct image sheaf on P
2.

We need a lemma which we state for simplicity in the case of dimension 2:
it shows what the effect is of blowing down a (−1) curve.

Lemma 2.10 Consider a finite set of distinct linear forms

lα := y − cαx, α ∈ A

vanishing at the origin in C
2. Let p : Z → C

2 be the blow up of the origin,
let Dα be the strict transform of the line Lα := {lα = 0}, and let E be the
exceptional divisor.

Let �1
C2((d log lα)α∈A) be the sheaf of rational 1-forms η generated by �1

C2

and by the differential forms d log lα as an OC2 -module and define similarly
�1

Z((logDα)α∈A). Then:

(1) p∗�1
Z(logE)(−E) = �1

C2 ,

(2) p∗�1
Z(logE, (logDα)α∈A) = p∗�1

Z((logDα)α∈A)(E) =
�1

C2((d log lα)α∈A),

(3) p∗�1
Z((logDα)α∈A) = {η ∈ �1

C2((d log lα)α∈A)|η =
∑

α gαd log lα + ω,ω ∈ �1
C2,

∑
α gα(0) = 0}.
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Proof The sheaf �1
C2((d log lα)α∈A) is locally free outside of the origin, and

torsion free in view of the residue sequence, since
⊕

α∈A OLα has no section
with a 0-dimensional support.

Likewise, all other direct image sheaves are torsion free, and those in 2.
and 3. are equal to �1

C2((d log lα)α∈A) outside of the origin.

(1) p∗�1
Z(logE)(−E) ⊂ �1

C2 holds since the left hand side is torsion free

and coincides with the right hand side outside the origin. But �1
C2 is locally

free, hence it enjoys the Hartogs property, so the desired inclusion holds. It
suffices then to show that p∗(�1

C2) ⊂ �1
Z(logE)(−E). This follows since in

the affine chart (x, t) 
→ (x, y = xt) of the blow up, we have dx = xd logx,
dy = x(dt + td logx) (and similarly on the other chart).

(2) It suffices to show the chain of inclusions (where m ≥ 1)

�1
C2((d log lα)α∈A) ⊂ p∗�1

Z(logE, (logDα)α∈A)

⊂ p∗�1
Z((logDα)α∈A)(mE) ⊂ �1

C2((d log lα)α∈A).

The first inclusion follows, the two sheaves being torsion free and equal
outside of the origin, from the assertion that p∗(�1

C2((d log lα)α∈A)) ⊂
�1

Z(logE, (logDα)α∈A).
This assertion is easily verified in each affine chart, since d log lα =

d logx + d log( lα
x
) = d logx + d log(t − cα).

The second inclusion is obvious, while, for the third,

p∗�1
Z((logDα)α∈A)(mE)

consists of rational differential 1-forms ω which, when restricted to C
2 \ {0},

yield sections of �1
C2((d log lα)α∈A).

Therefore in particular ω
∏

α∈A lα is a regular holomorphic 1-form on C
2.

Thus, modulo holomorphic 1-forms, we can write

ω = f
∏

α∈A lα
dx + g

∏
α∈A lα

dy,

where f,g are pseudopolynomials of degree in y less than r := card(A).
By Hermite interpolation we can write f = ∑

α∈A fαl−1
α

∏
β∈A lβ , g =

∑
α∈A gαl−1

α

∏
β∈A lβ , so that finally, up to a holomorphic 1-form,

ω =
∑

α∈A

fαdx + gαdy

lα
.

The condition that ω restricted to C
2 \ {0} yields a section of

�1
C2((d log lα)α∈A) implies that fα = −cαgα .
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Whence, finally, modulo holomorphic 1-forms, we can write ω =∑
α∈A gαd log lα .
To prove the last statement, pull back such a 1-form ω: p∗ω =∑
α∈A p∗(gαd log lα) = (

∑
α∈A gα)d logx + ∑

α∈A gαd log(t − cα).
This form lies in �1

Z((logDα)α∈A) if and only if (
∑

α∈A gα(0)) = 0. �

Corollary 2.11 The dimension of the space H 0(�1
Ỹ
(logDi)(Ei − Ei+2)) is

equal to

• 2 in the case K2
S = 6,

• 1 in the case K2
S = 5,

• 0 in the nonnodal case K2
S = 4,

• 0,1 in the nodal case K2
S = 4, according to i �= 1, i = 1.

Proof The previous lemma shows that, since Di = Di,1 +Di,2 +Di,3 +Ei+2,
which by the way consists of four disjoint curves, then H 0(�1

Ỹ
(logDi)(Ei −

Ei+2)) maps onto H 0(�1
P2(logD′

i,1, logD′
i,2, logD′

i,3)), where D′
i,j is the

line image of the curve Di,j .
By the residue exact sequence

H 0(�1
P2(logD′

i,1, logD′
i,2, logD′

i,3)) =
{

(cj ) ∈ C
3
∣
∣
∣
∣

∑

j

cj = 0

}
∼= C

2.

By 3. we get the subspace of {(cj ) ∈ C
3|∑j cj = 0} such that cj = 0 iff D′

i,j

contains P4 or P5. The rest is a trivial verification. �

We deal now with the first cohomology groups using Riemann Roch, as
already announced.

Lemma 2.12

(i) χ(ODi
(Ei − Ei+2)) = 8,

(ii) χ(�1
Ỹ
(Ei − Ei+2)) = −e(Ỹ ) = K2

Ỹ
− 12.

In particular, it follows that χ(�1
Ỹ
(logDi)(Ei − Ei+2)) = 8 − e(Ỹ ) =

K2
Ỹ

− 4.

Proof The third assertion follows from the first two in view of the exact se-
quence of locally free sheaves on Ỹ :

0 → �1
Ỹ
(Ei − Ei+2) → �1

Ỹ
(logDi)(Ei − Ei+2) → ODi

(Ei − Ei+2) → 0.

(i) Observe that for 1 ≤ i, j ≤ 3, we have (Ei − Ei+2) · Di,j = 1 = (Ei −
Ei+2) · Ei+2, whence χ(ODi

(Ei − Ei+2)) = 4 · χ(OP1(1)) = 8.
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(ii) In order to calculate χ(�1
Ỹ
(Ei − Ei+2)) we use the splitting princi-

ple and write formally �1
Ỹ

= O
Ỹ
(A1) ⊕ O

Ỹ
(A2), where A1, A2 are ‘di-

visors’ such that A1 + A2 ≡ K
Ỹ

, A1 · A2 = e(Ỹ ) = 12 − K2
Ỹ

. Using that

(Ei − Ei+2)
2 = −2, K

Ỹ
· (Ei − Ei+2) = 0, we obtain

χ(�1
Ỹ
(Ei − Ei+2))

= χ(O
Ỹ
(A1 + Ei − Ei+2)) + χ(O

Ỹ
(A2 + Ei − Ei+2))

= 2 + 1

2
((A1 + Ei − Ei+2)(Ei − Ei+2 − A2)

+ (A2 + Ei − Ei+2)(Ei − Ei+2 − A1))

= 2 + 1

2
(−2 − 2 − 2A1 · A2) = −e(Ỹ ). �

Now Proposition 2.5 follows immediately:

Proof of Proposition 2.5 It is a straightforward consequence of Corol-
lary 2.11, of Lemma 2.12, and of the Enriques-Kuranishi formula χ(�S) =
−10χ(OS) + 2K2

S . �

2.4 The component of nodal Burniat surfaces is everywhere nonreduced

This section is dedicated to the proof of one of our main results:

Theorem 2.13
The subset of the Gieseker moduli space Mcan

1,4 of canonical surfaces of

general type X corresponding to Burniat surfaces S with K2
S = 4 and of nodal

type is an irreducible open set of dimension 2, unirational and everywhere
nonreduced.

More precisely, there exists an integer m ≥ 2 such that the base Def(X)

of the Kuranishi family of X is locally analytically isomorphic to C
2 ×

Spec(C[t]/(tm)).
The corresponding subset of the moduli space Mmin

1,4 of minimal sur-
faces S of general type is also everywhere non reduced and the base
Def(S) of the Kuranishi family of S is locally analytically isomorphic to
C

2 × Spec(C[t]/(t2m)).
For the general such surface Aut(S) = Aut(X) = (Z/2Z)2, and this group

acts trivially on the bases Def(S),Def(X) of the respective Kuranishi fami-
lies.

Since there are some technicalities in the proof of Theorem 2.13, let us first
explain the structure of our proof.
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Let S be the minimal model of a Burniat surface with K2
S = 4 and of nodal

type, let X be its canonical model, and denote by π : S → X the blow down
of the unique (−2)-curve E of S (lying over D1,2).

We have the following G- equivariant diagram.

Def(S) T 1
S = H 1(S,�S)

β

κS

T 2
S = H 2(S,�S) ∼= C

∼=

Def(X) T 1
X = Ext1OX

(�1
X, OX)

κX

T 2
X = H 2(X,�X).

(2)

Its rows express the fact that the Kuranishi base is the zero set of the Ku-
ranishi function (which has order ≥ 2), the left vertical maps express that each
deformation (respectively infinitesimal deformation) of S induces a deforma-
tion of X. The diagram is indeed commutative as we shall show using the
results of Burns and Wahl and Pinkham [8, 31].

By [8] we know that π∗�S = �X and that H 1
E(�S) has dimension 1. It

follows then from the Leray spectral sequence for π∗:

– H 2(S,�S) = H 2(X,�X),
– H 1(S,�S) = H 1(X,�X) ⊕ R1π∗�S = H 1(�X) ⊕ H 1

E(�S).

In particular h1(�X) = 2.
The maps κS , κX are the Kuranishi obstruction maps and we shall prove

that the derivative dκX (whence also dκS ) vanishes identically on Def(X) (cf.
Corollary 2.15).

We have that H 1
E(�S) ∼= C is the space of infinitesimal smoothings of the

node. Since we shall show that all deformations of X are equisingular (i.e.,
preserve the node), we obtain that κS |H 1

E(�S) vanishes only at the origin. On
the other hand κS |H 1(�X) ≡ 0, and we get that set theoretically Def(X) =
H 1(�X).

Choosing coordinates (t1, t2, t3) for Ext1OX
(�1

X, OX) such that {t3 = 0} is

the hyperplane H 1(�X), we see that the Kuranishi equation is a power of t3,
say tm3 . Since the Kuranishi equation has differential vanishing at the origin,
it follows that m ≥ 2.

Now, the local map H 1(�S) → Ext1OX
(�1

X, OX) (cf. Theorem 2.6 of [8],

see also [14]) is given by (s1, s2, s3) 
→ (s1, s2, s
2
3), and Def(S) is the pull

back of Def(X). Hence Def(S) is the subscheme s2m
3 = 0.

In the sequel, we shall provide more details for the above scheme of proof.
By the local to global Ext-spectral sequence, we have the “five term exact

sequence”:



576 I. Bauer, F. Catanese

0 → H 1(X,�X) → Ext1OX
(�1

X, OX) → H 0(X, E xt1
OX

(�1
X, OX))

→ H 2(X,�X) → Ext2OX
(�1

X, OX) → 0. (3)

Note that the above exact sequence is a G = (Z/2Z)2-equivariant sequence
of C-vector spaces, since all sheaves have a natural G-linearization. More-
over, observe that the map H 0(X, E xt1

OX
(�1

X, OX)) → H 2(X,�X) is just
the first infinitesimal obstruction map to deforming the singularity.

We proceed now to calculate the decomposition in character spaces of the
single terms appearing in the exact sequence.

Lemma 2.14 The 1-dimensional space H 0(X, E xt1
OX

(�1
X, OX)) is a space

of invariants for the G-action.

Proof Recall that D1,2 is a (−2)-curve on Ỹ and X is a bidouble cover of the
nodal Del Pezzo surface Y ′ of degree 4 obtained contracting D1,2.

Moreover, the curve D1,2 intersects exactly two other irreducible compo-
nents of the branch locus, namely, D2,1 and E1, which is also a component of
D2.

We want to describe the structure of the morphism f : X → Y ′ locally
around the A1-singular point P ′.

Locally around P ′ we can assume that Y ′ = {z2 = xy}.
Then, locally around the node P of X, X = {w2 = uv}, and the bidouble

covering f : X → Y ′ is given by the equations: w2 = z, u2 = x, v2 = y.
In fact, the intermediate double cover branched only on D1,2 corresponds

to the double cover branched only on P ′, and given by � : C
2 → Y ′, such

that �(u,v) = (u2, v2, uv) := (x, y, z), while X is the double cover w2 = uv

branched on the inverse images of the lines x = z = 0 and y = z = 0 (observe
that for A1 the two G actions listed in Table 3 of [12], page 93 are conjugate
to each other).

The local deformation of the A1-singularity on X is given by

Xt = {w2 = uv + t}.
Then t ∈ C is a trivial representation of G and therefore Xt yields a family
of G-coverings of Y ′ described by the equations w2 = z + t , u2 = x, v2 = y.
This proves the claim. �

Corollary 2.15 The first infinitesimal obstruction map to deforming the sin-
gularity

ob : H 0(X, E xt1
OX

(�1
X, OX)) → H 2(X,�X)

is identically zero.
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Proof Recall that ob is a G-equivariant homomorphism. Since H 0(X,

E xt1
OX

(�1
X, OX)) is a trivial G-representation, while H 2(X,�X) = H 2(S,�S)

is a nontrivial G-representation (cf. Proposition 2.5), it follows that ob ≡ 0. �

Corollary 2.16 Ext2OX
(�1

X, OX) = Ext2OX
(�1

X, OX)1.

Proof Follows immediately from the exact sequence (3) and the above corol-
lary. �

Lemma 2.17 H 0(X, R1π∗�S) = H 1
E(�S) is a nontrivial character of G.

Proof By the theorem of Brieskorn-Tjurina [5, 34], the simultaneous resolu-
tion of the node on X is given by w−τ

u
= v

w+τ
where one has made the base

change τ 2 = t , using the notation of the proof of Lemma 2.14. The action
of G lifts in a unique way to the simultaneous resolution of the family since
τ must be an eigenvector with character equal to the same character of w

(observe that both w − τ,w + τ are eigenvectors).
Since Cτ ∼= H 1

E(�S) as G-representation, we have proven that H 1
E(�S) is

an eigenspace corresponding to a nontrivial character of G. �

Since H 1(S,�S) = H 1(�X) ⊕ H 1
E(�S), the above lemma and Proposi-

tion 2.5 immediately imply the following

Corollary 2.18 H 1(X,�X) is a trivial G-representation, hence also
Ext1OX

(�1
X, OX).

Now we are ready to prove the following

Proposition 2.19 Let X be the canonical model of a Burniat surface with
K2

S = 4 of nodal type. Then all deformations of X are deformations of the
pair (X,G).

Proof Since, by the above considerations, G acts trivially on the base of the
Kuranishi family of X, it follows that Def(X) = Def(X)G = Def(X,G).

�

The consequence is then that also all deformations of S are deformations
of the pair (S,G).

Now we can conclude the

Proof of Theorem 2.13 Let S be the minimal model of a Burniat surface with
K2

S = 4 of nodal type. Then S/G = Ỹ , where Ỹ is a weak Del Pezzo surface.
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Now, by Proposition 2.19, any small deformation St of S is in fact a de-
formation of (S,G). It suffices to show that St/G is again a weak Del Pezzo
surface, i.e., the (−2)-curve remains under a small deformation.

We remark that the (−2)-curve on Ỹ is D1,2, which is a connected compo-
nent of D2, hence E is a connected component of the fixed point set Fix(σ2)

of an element σ2 ∈ G.
Let now S → T be a one parameter family of minimal models, such that

G acts on S → T , with trivial action on T and the given action on the central
fibre. Then the component of Fix(σ2) in S has dimension 2, whence all the
deformations St of S carry a -2 curve Et deformation of E. It follows that the
quotient of Et yields a -2 curve on Ỹ .

In other words, we have shown that all deformations of X are equisingular,
therefore Def(X) ⊂ H 1(�X). The Burniat family shows that dim(Def(X)) ≥
2, whence set theoretically Def(X) = H 1(�X).

Choosing coordinates (t1, t2, t3) for Ext1OX
(�1

X, OX) such that {t3 = 0} is

the hyperplane H 1(�X), we see that the Kuranishi equation is a power of t3,
say tm3 . Since the Kuranishi equation has differential vanishing at the origin,
it follows that m ≥ 2.

Now, the local map H 1(�S) → Ext1OX
(�1

X, OX) (cf. Theorem 2.6 of [8],

see also [14]) is given by (s1, s2, s3) 
→ (s1, s2, s
2
3), and Def(S) is the pull

back of Def(X). Hence Def(S) is the subscheme s2m
3 = 0.

The last assertion Aut(S) = G = (Z/2Z)2 will be shown in Sect. 4, cf.
Remark 4.2. �

3 One parameter limits of secondary Burniat surfaces

In this section we shall show that Burniat surfaces with K2 ≥ 4 form a closed
set of the moduli space.

In fact, we shall prove the following:

Theorem 3.1 Each family of Burniat surfaces with K2 = 4,5,6 yields a
closed subset of the moduli space.

This will be accomplished through the study of limits of one parameter
families of such Burniat surfaces.

Note that for K2 = 6, the above was already shown in [25], in [1] and in
part I [4].

Let Y ′ be a normal Q- Gorenstein surface and denote the dualizing sheaf
of Y ′ by ωY ′ .

Then there is a minimal natural number m such that the reflexive power
ω�m

Y ′ := i∗(ω⊗m
U ) (where U := Y ′ \ Sing(Y ′)) is an invertible sheaf and it

makes sense to define ωY ′ to be ample, respectively anti-ample; Y ′ is Goren-
stein iff m = 1.
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We shall need the following

Proposition 3.2 Let Y ′ be a normal Q-Gorenstein Del Pezzo surface (i.e.,
ωY ′ is anti-ample) with K2

Y ′ ≥ 4. Then Y ′ is in fact Gorenstein.

Proof Assume that m ≥ 2. Then (cf. [33], Proposition on p. 362), there is a
Z/mZ-Galois covering p : W → Y ′ such that W is Gorenstein and such that
KW = p∗KY ′ , where ωY ′ is the sheaf associated to the Weil divisor KY ′ . p is
only branched on the singular points of Y ′ which are not Gorenstein.

Since ωY ′ is anti-ample, it follows that KW is anti-ample, hence W is a
normal Gorenstein Del Pezzo surface. As it is well known (cf. e.g. [18], The-
orem 4.3) W is smoothable and in particular K2

W ≤ 9, indeed K2
W ≤ 8 if W is

singular.
On the other hand: K2

W = mK2
Y ′ ≥ 4m and this implies that m = 2,

K2
Y ′ = 4.
Therefore K2

W = 8, whence either W is the blow up of the plane in one
point, or W = Q a quadric in P

3.
If W is smooth then Y ′ = W/(Z/2Z) has only A1-singularities and is

Gorenstein.
It remains therefore to exclude the case that W is the quadric cone.
In this case Y ′ = Q/i, where i is an involution on Q: since the quotient

is not Gorenstein (see [12],Table 2 and Theorem 2.2, page 90) it acts on the
tangent space at the node of Q as − Id.

The involution i on Q acts linearly on the anticanonical model of Q, thus
i extends to a linear involution I on P

3.
The vertex v ∈ Q is an isolated fixed point of I , and I acts as − Id on the

tangent space of v. Therefore H 0(Q, OQ(1)) splits into two eigenspaces of
respective dimensions 3,1.

In particular there is a pointwise fixed hyperplane H ⊂ P
3 for I . Since then

C := Q ∩ H is pointwise fixed by I , we contradict the fact that I has only
isolated fixed points on Q.

This implies that Y ′ is Gorenstein. �

Proposition 3.3 Let T be a smooth affine curve, t0 ∈ T , and let f : X → T

be a flat family of canonical surfaces. Suppose that Xt is the canonical model
of a Burniat surface with 4 ≤ K2

Xt
for t �= t0 ∈ T . Then there is an action of

G := (Z/2Z)2 on X yielding a one parameter family of finite (Z/2Z)2-covers

X

f

Y

T ,
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(i.e., Xt → Yt is a finite (Z/2Z)2-cover), such that Yt is a Gorenstein Del
Pezzo surface for each t ∈ T .

Proof Note that X is Gorenstein, since T is smooth and the fibres have hy-
persurface singularities.

Since X \ f −1(t0) → T \ {t0} is a family of canonical models of Burniat
surfaces, we have a (Z/2Z)2-action on X \ f −1(t0) (this is the Galois group
action for the bicanonical map).

By [9], thm. 1.8, the (Z/2Z)2-action extends to X .
We set Y := X /(Z/2Z)2 and we denote by � the finite morphism X → Y .
We have for all t ∈ T :

• KYt = KY |Yt ;• KXt = KX |Xt .

Moreover,

2KX = 2�∗(KY ) + �∗(B),

where B is the branch divisor of � : X → Y .
Since for t �= t0 we have 2KXt = −�∗(KYt ), it follows that

2KX + �∗(KY ) ≡ 0 on X \ Xt0 .

Since however Xt0 = f −1(t0) is irreducible, we obtain (after possibly re-
stricting T ) that 2KX + �∗(KY ) ≡ 0 on X .

In particular, 2KXt = −�∗(KYt ) for all t ∈ T , which implies that −KYt is
ample for all t ∈ T .

Moreover, K2
Xt

= K2
Yt

for all t ∈ T .
By construction, Yt is a Gorenstein Del Pezzo surface for t �= t0, and Yt0 is

a normal Q-Gorenstein Del Pezzo surface, whence it is Gorenstein by Propo-
sition 3.2. �

This implies immediately the following:

Corollary 3.4 Consider a one parameter family of bidouble covers X → Y
as in Proposition 3.3. Then the branch locus of Xt0 → Yt0 is the limit of the
branch locus of Xt → Yt , and it is reduced.

Note that the limit of a line on the Del Pezzo surfaces Yt is a line on the
Del Pezzo surface Yt0 , and, as a consequence of the above assertion, two lines
in the branch locus in Yt cannot tend to the same line in Yt0 .

Remark 3.5 Let X be the canonical model of a Burniat surface with 4 ≤
K2

X ≤ 6. Recall once more that X is smooth for K2
X = 6,5, and for K2

X = 4 in
the nonnodal case. For K2

X = 4 and the nodal case, X has one ordinary node.
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In all three cases the branch locus consists of the union of 3 hyperplane
sections, containing ν lines and 1

2(3K2
X − ν) conics, where

(a) ν = 6 for K2
X = 6,

(b) ν = 9 for K2
X = 5,

(c) ν = 12 for K2
X = 4 nonnodal,

(d) ν = 10 for K2
X = 4 nodal.

In fact, in case (a) the 6 lines contained in the branch locus are: Di,1, 1 ≤
i ≤ 3, E1, E2, E3. In case (b) the 9 lines contained in the branch locus are:
Di,j , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, E1, E2, E3.

In case (c) the 12 lines in the branch locus of the bidouble cover are: Di,j ,
1 ≤ i, j ≤ 3, E1, E2, E3, and finally in case (d) the 10 lines are: Di,1, 1 ≤
i ≤ 3, D2,2, D2,3, D3,2, D3,3, E1, E2, E3.

We shall use the following:

Proposition 3.6 [10, Propostion 1.7] A weak Del Pezzo surface W , i.e., a
smooth projective surface with nef and big anticanonical divisor −KW , is
either

– P
1 × P

1, or
– F2, or
– the blow up P̂

2(P1, . . . ,Pr), r ≤ 8,

at r distinct points P1, . . . ,Pr satisfying the following three conditions:

(i) no more than 3 Pi’s are collinear;
(ii) no more than 6 Pi’s lie on a conic;

(iii) the set {P1, . . . ,Pr} can be partitioned into subsets {Pi1, . . . ,Pik } with
Pi1 ∈ P

2, Pi(j+1)
infinitely near to Pij , but not lying on the proper trans-

form of Pi(j−1)
.

Since weak Del Pezzo surfaces W are exactly the minimal resolutions of
singularities of normal Gorenstein Del Pezzo surfaces Z, we use the above
result to show the following technical, possibly well known result:

Proposition 3.7 Let Z be a normal Gorenstein Del Pezzo surface of degree d .
Then Z contains no line for d = 9,8 unless Z = F1, which contains one

line.
For d = 7 Z contains 2 or 3 lines, and is smooth in the latter case.
If d = 6,5,4, Z contains at most 6, respectively 10, respectively 16 lines.

If Z contains at least 6, respectively 9, respectively 13 lines (i.e., irreducible
curves C with C · KZ = −1), then Z is smooth.

Assume that d = 4 and that Z contains at least 10 lines.
Then we have the following possibilities:
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(i) Z is smooth and has 16 lines;
(ii) Z has exactly one singular point, of type A1, Z has 12 lines and Z is the

anticanonical model of the weak Del Pezzo surface obtained blowing up
the plane in 5 distinct points such that three of them are collinear.

We postpone the proof of the above result to the Appendix, and conclude
instead the proof of the main result of this section.

Proof of Theorem 3.1 Consider a one parameter family of bidouble covers
X → Y as in Proposition 3.3, such that Xt → Yt is the bicanonical map of
a Burniat surface for t �= t0. Then Xt0 → Yt0 is a bidouble cover of a normal
Gorenstein Del Pezzo surface of degree K2

Xt
and Xt0 has canonical singulari-

ties.
Moreover, the branch locus of Xt0 → Yt0 is the limit of the branch locus

of Xt → Yt , hence it contains at least 3(8 − K2
Xt

) lines in the nonnodal case,
and 10 in the nodal case.

Then by Proposition 3.7 Yt0 is smooth for K2
Xt

≥ 5, while for K2
Xt

= 4 it
has at most one node.

Thus, for K2
Xt

≥ 5, Xt0 is again a Burniat surface.

Assume that K2
Xt

= 4 and that we are in the nonnodal case. We are done
unless Yt0 has a node.

In this case every line of Yt0 is a component of the branch locus.
Note that through the node of Yt0 pass 4 lines. By [12], Table 3, p. 93, a

bidouble cover of a node branched in 4 lines is no longer a rational double
point, and we have reached a contradiction.

Finally, in the nodal case, we have seen that the family Yt is equisingular.
By Proposition 3.7 the minimal resolution of Yt0 is the blow up of P

2 in 5
distinct points, none infinitely near, with P1,P4,P5 collinear.

A similar representation holds for the minimal resolution Wt of Yt ; by the
above argument two of the lines passing through the node cannot be part of
the branch locus. Thus the branch locus for each Wt consists of the -2 curve,
of 10 (Del Pezzo) lines and a (Del Pezzo) conic. Thus the configuration of
the branch locus remains of the same type and the central fibre Xt0 is again a
nodal Burniat surface. �

4 Proof of the main theorems and corollaries

All the statements (except the one concerning rationality) of the two main
theorems follow combining the two Theorems 2.6 and 2.13, showing that the
Burniat families for K2

S ≥ 4 form open sets, with Theorem 3.1, showing that
they form closed sets.



Burniat surfaces II: secondary Burniat surfaces 583

There remains to prove the rationality of the four connected components C
of the moduli space constituted by Burniat surfaces with K2

S ≥ 4. This is au-
tomatical for K2

S = 4 since C has dimension 2, and by Castelnuovo’s criterion
every unirational surface (over C) is rational.

We deal next with the case K2
S = 5.

Theorem 4.1 Let C be the connected component of the moduli space consti-
tuted by Burniat surfaces with K2

S = 5.
Then C is a rational 3-fold.

Proof The bicanonical map of S yields a bidouble cover �2 : S → Ỹ , where
Ỹ is the Del Pezzo of degree 5 obtained blowing up the plane in the 4 refer-
ence points.

As we saw, the branch locus consists of nine Del Pezzo lines and of 3
Del Pezzo conics. Thus there is exactly one line which is not contained in
the branch locus, and we can contract it, obtaining a Del Pezzo surface Y of
degree 6. The branch locus contains now the six lines of Y .

Let us fix an identification of the Galois group of �2 with G = (Z/2Z)2.
Then these 6 lines, which form a hexagon, are such that each pair of opposite
sides is labelled by an element in G \ {0}.

There are two ways to contract three such lines (one for each pair) and
obtain the projective plane P

2, and they are related by the standard Cremona
transformation (x1 : x2 : x3) 
→ (x−1

1 : x−1
2 : x−1

3 ) associated to the linear sys-
tem |2L − E1 − E2 − E3|.

We chose the points P1,P2,P3,P4 as the reference points (P4 =
(1 : 1 : 1)), and we consider now the triples of lines corresponding to Di,3,
which have necessarily an equation of type xi+2 = aixi+1.

The Cremona transformation acts by ai 
→ a−1
i , the cyclical permutation of

coordinates cyclically permutes the three numbers a1, a2, a3, while the trans-
position exchanging 1 with 2 sends

(a1, a2, a3) 
→ (a−1
2 , a−1

1 , a−1
3 ).

Composing the action of such a transposition with the action of the Cremona
transformation we get the transposition of a1 and a2.

We conclude that there is a subgroup of index two, isomorphic to S3, act-
ing on the three numbers a1, a2, a3 via the standard permutation action of the
symmetric group S3.

The full group by which we want to divide is generated by this subgroup
and by the Cremona transformation. The invariants for the permutation repre-
sentation of S3 are the three elementary symmetric functions σ1, σ2, σ3. The
Cremona transformation acts on the field K of S3-invariants by

σ3 
→ σ−1
3 , σ1 
→ σ2σ

−1
3 , σ2 
→ σ1σ

−1
3 .
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Obvious invariants are

σ1 + σ2σ
−1
3 := y1, σ2 + σ1σ

−1
3 := y2, σ3 + σ−1

3 := y3.

Let F be the field C(y1, y2, y3): to show that F is the whole field of invari-
ants it will suffice to show that [K : F ] = 2.

Now, F(σ3) is a quadratic extension of F , and the two linear equations in
σ2, σ1

σ1 + σ2σ
−1
3 = y1, σ2 + σ1σ

−1
3 = y2

have determinant 1 − σ−2
3 , thus σ2, σ1 ∈ F(σ3) hence F(σ3) = K . �

Remark 4.2 The group Aut(S) = Aut(X) operates on the bicanonical model,
with kernel G. Hence G is normal and Aut(X)/G operates on the normal Del
Pezzo surface Z of degree 4 through a linear action. This action preserves the
set of lines, and also the set of lines contained in the branch locus. Thus
E4,E5 are left invariant and the quotient group acts on the Del Pezzo sur-
face Y of degree 6 leaving the branch locus D invariant. As in the previous
theorem, we have only two ways of representing the pair (Y,D) as a Bur-
niat configuration, and the corresponding involution on the parameter space
is nontrivial.

Hence the general surface has Aut(X) = G.

We only recall the following

Theorem 4.3 Let C be the connected component of the moduli space consti-
tuted by the primary Burniat surfaces (K2

S = 6).
Then C is a rational 4-fold.

For a proof we refer to [4].
We derive now some easy consequences of the main theorems:

Corollary 4.4 All surfaces S which are deformations of Burniat surfaces
with K2

S ≥ 4 are again Burniat surfaces, and the bicanonical map of their
canonical model is a finite morphism �2 : X → Y ′, Galois with group G =
(Z/2Z)2, and with image a Del Pezzo surface Y ′ of degree K2

S . Y ′ is singular
exactly for the nodal familys with K2

S = 4 (it has precisely one A1 singularity
then). In particular, Bloch’s conjecture A0(S) = Z holds for all the surfaces
in these 4 connected components of the moduli space.

Proof The last statement follows from our main theorems and the work of
Inose and Mizukami [22].
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In fact Inose and Mizukami show that Bloch’s conjecture holds for certain
classes of Inoue surfaces, which we have shown in part one [4] to coincide
with the classes of Burniat surfaces. �
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Appendix: Proof of Proposition 3.7

If W is F0 = P
1 × P

1, F2 or P
2, then obviously W contains no line.

Thus we may assume that W is the blow up of the plane at P1, . . . Pr , with
r = 9 − d . For r = 1 there is only the line E1, where we denote as customary
by Ei the full transform of the point Pi .

Any line C is in particular an effective divisor such that C2 = CKW =
−1, and in particular it is contained in some anticanonical divisor H = 3L −∑

j Ej , where L is the nef and big divisor pull back of a line of P
2.

Thus C ≡ aL − ∑
j bjEj and since LC ≥ 0, L(H − C) ≥ 0, one gets

0 ≤ a ≤ 3.
As usual C2 = CKW = −1 implies

a2 + 1 =
∑

j

b2
j ,

∑

j

bj = 3a − 1 ⇒
∑

j

bj (bj − 1) = (a − 1)(a − 2).

The right hand side vanishes for a = 1,2 and equals 2 for a = 0,3 while
each summand on the left side of the last equality is at least 2 unless bj = 0
or bj = 1.

Not considering the bj ’s equal to zero, for a = 0 one has one bj = −1, for
a = 1 one has two bj = 1, for a = 2 one has five bj = 1.

While a = 3 can only occur for r ≥ 7, with one bj equal to 2, and six equal
to 1.

This gives the a priori bound that the number of lines is at most

N(r) := r +
(

r

2

)

+
(

r

5

)

.

This gives the number of lines in the case where −KW is ample, namely,
for d = 7,6,5,4 we get r = 2,3,4,5 and N = 3,6,10,16.
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Since, if −KW is ample, each such divisor is linearly equivalent to an
unique effective one which is irreducible.

If −KW is not ample but nef, then there are -2 curves D, i.e., irreducible
divisors D with D ≡ aL − ∑

j bjEj , 0 ≤ a ≤ 3, and D2 = −2,DKW = 0.
These conditions are equivalent to

a2 + 2 =
∑

j

b2
j ,

∑

j

bj = 3a ⇒
∑

j

bj (bj − 1) = (a − 1)(a − 2).

By the same token a = 1,2 implies bj = 1,0 and we get for a = 1 three
bj = 1, for a = 2 six bj = 1. For a = 0 we get a divisor of the form Ei − Ej ,
for a = 3 must be r ≥ 8 and one bj = 2, seven bj = 1.

What is left is to show that each -2 curve D makes the number of lines
diminish sufficiently.

For a = 2, we must have r ≥ 6 (and then we lose 6 lines); for a = 1,
D = L − Ei − Ej − Ek , we lose 3 lines, since L − Ei − Ej = D + Ek . We
also lose, if r ≥ 5, C(r − 3,2) lines of the form D + (L − Eh − El).

Since we assume r ≤ 7, let us see what happens if D = Ei −Ej is effective.
This means that Pj is infinitely near to Pi , so we have a string of infinitely
near points as in (iii) of Proposition 3.6.

Assume that this string is Pi1, . . . ,Pik . Then each Eih is not irreducible for
h = 1, . . . , k − 1. Also the effective divisor L − Ej − Eih is not irreducible
for h = 2, . . . , k, and for Pj not infinitely near to Pi1 . Moreover L−Ei1 −Ei2

is effective, and contained in L − Eih − Eil whenever h ≤ l are not equal to
1,2.

The loss is therefore at least

(k − 1) + (k − 1)(r − k) + 1

2
(k + 1)(k − 2)

= (k − 1)[r − (k − 1)] + 1

2
(k + 1)(k − 2).

For k = 2 we get a loss of r − 1 lines, otherwise a bigger loss.
We want to finally show that the case r = 5 and k = 2 yields the same sur-

face which is encountered for r = 5, no infinitely near points, but 3 collinear
points.

Consider then, as in the nodal case, 5 points such that P1,P4,P5 are
collinear, and let � : P

2 ��� P
2 be the birational standard Cremona transfor-

mation based on the points P1,P2,P5. On the Del Pezzo Ỹ obtained blowing
up the 5 points � corresponds to the linear system 2L − E1 − E2 − E5.
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This system contracts the -2 curve to a point, as well as the lines E4,E3,
L − E1 − E2, L − E2 − E5.

Since the -2 curve intersects E4, we get also a representation of Ỹ as the
blow up of the plane in five points, of which one infinitely near to the other.
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