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Abstract We establish a logarithmic-type rate of convergence for the homog-
enization of fully nonlinear uniformly elliptic second-order pde in strongly
mixing media with similar, i.e., logarithmic, decorrelation rate. The proof
consists of two major steps. The first, which is actually the only place in
the paper where probability plays a role, establishes the rate for special
(quadratic) data using the methodology developed by the authors and Wang
to study the homogenization of nonlinear uniformly elliptic pde in general
stationary ergodic random media. The second is a general argument, based
on the new notion of δ-viscosity solutions which is introduced in this paper,
that shows that rates known for quadratic can be extended to general data.
As an application of this we also obtain here rates of convergence for the
homogenization in periodic and almost periodic environments. The former is
algebraic while the latter depends on the particular equation.

1 Introduction

We establish rates of convergence for the homogenization of general uni-
formly elliptic fully nonlinear second-order pde in periodic, almost periodic
and strongly mixing stationary random environments.
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Most of the paper is devoted to the latter setting where we establish a
logarithmic-type rate of convergence for the homogenization of fully nonlin-
ear uniformly elliptic second-order pde in strongly mixing stationary media
with similar, i.e., logarithmic, decorrelation rate. The proof consists of two
major steps. The first, which is actually the only place in the paper where
probability plays a role, yields the rate for special (quadratic) data using the
methodology developed by the authors and Wang [5] to study the homoge-
nization of nonlinear uniformly elliptic pde in general stationary ergodic ran-
dom media. The second is a general argument, based on the new notion of
δ-viscosity solutions which is introduced in this paper, that shows that rates
known for quadratic can be extended to general data. As an application of this
we also obtain here rates of convergence for the homogenization in periodic
and almost periodic environments. The former is algebraic while the latter
depends on the particular equation.

Finding rates for quadratic data, which are uniform for quadratics of the
same size, in the random setting is rather technical. It requires an understand-
ing of the methodology of [5] and a good knowledge of some basic facts from
the theory of fully nonlinear uniformly elliptic equations, both of which are
explained in detail in the paper. Rates for quadratic data in periodic and almost
periodic media are easier to obtain in view of the fact that the corresponding
cell problems have respectively correctors and approximate correctors.

Extending qualitative results known for quadratic data/test functions to
general data/test functions is, of course, the folklore of viscosity solutions
of second-order elliptic equations. It was not known, however, how to extend
this general principle to quantitative statements like, for example, rates. This
was done for the first time for fully nonlinear equations by the authors in [4]
to obtain error estimates for monotone approximations to uniformly elliptic
second order pde. The approach of [4] can be reformulated and extended us-
ing δ-viscosity solutions, which in the sequel we will call simply δ-solutions.
It turns out that δ-solutions are within distance δα from the actual solution
for some uniform α. To extend hence a rate from quadratic to general data,
it suffices to show that the rate for the former yields that the solution of the
general problem is actually a δ-solution for an appropriate choice of δ.

The role of the δ-solutions can be described briefly as follows: If the limit-
ing equations have smooth (C2,α solutions), a fact which is known in general
only for convex/concave nonlinearities, then we can first replace the solutions
by their second-order Taylor’s expansion with a uniform error and then use
the rate we know for the quadratic expansion to find the rate. In general, how-
ever, solutions are not even C1,1. It then becomes necessary to approximate
them from above and below by appropriate C2,α-expansions. This is where
δ-solutions come in.
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Next we describe the results. To keep the Introduction simple, in many
places below we state assumptions without much rigor. The precise state-
ments are given in the main body of the paper.

To this end, we begin with the random setting and we consider the bound-
ary value problem {

F(D2uε,
x
ε
,ω) = 0 in U,

uε = g on ∂U.
(1.1)

Here (�, F ,μ) is the underlying probability space endowed with a measure
preserving transformation (τy)y∈RN , U is an open subset of R

N with regular
boundary, and, for each ω ∈ �, F(·, ·,ω) ∈ C(SN ×R

N) is uniformly elliptic
with ellipticity constants independent of ω, where SN is the space of N × N

symmetric matrices. The nonlinearity F must, of course, satisfy the standard
assumptions guaranteeing the well-posedness of viscosity solutions of (1.1)
for each ε. Since these conditions play no role in the analysis here, we have
chosen to omit them. As far as the randomness goes, i.e., the way F depends
on ω, the key assumptions are (i) the stationarity of F with respect to (y,ω)

(throughout the paper y denotes the fast variable x/ε), and (ii) the strongly
mixing property of the measure preserving transformation with a prescribed
rate of decorrelation.

It turns out (see Papanicolaou and Varadhan [26] and Kozlov [19] in the
linear case and the authors and Wang [5] in the fully-nonlinear case) that (1.1)
homogenizes in stationary ergodic environments. This means that there exists
a unique uniformly elliptic F ∈ C(SN), which is linear when F is linear and
nonlinear when F is nonlinear, such that, if ū ∈ C(U) is the solution of the
homogeneous boundary value problem{

F(D2ū) = 0 in U,

ū = g on ∂U,
(1.2)

then, as ε → 0,

uε → ū in C(U) and a.s. in ω.

Here we obtain a rate for this convergence. To do so, it is necessary to
quantify the assumption of ergodicity. We assume that F is strongly mixing,
which, loosely speaking, means that F(·, y,ω) and F(·, x,ω) decorrelate as
|x − y| → ∞, with a logarithmic-type rate.

The first result is:

Theorem 1.1 Let uε ∈ C(Ū) and ū ∈ C0,1(Ū) be the solutions of (1.1) and
(1.2) respectively. Assume that F is uniformly elliptic (2.7), bounded (2.8),
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stationary in (y,ω) (2.5) and strongly mixing with a logarithmic rate given
by (2.27). There exist positive constants C̄, Ĉ, c̄, ĉ and ε0, depending only on
the constants in (2.7) and (2.8) and the mixing condition, N and ‖ū‖C0,1(Ū)

but not on ε, such that, for all ε ∈ (0, ε0), there exists Aε ⊂ � such that

μ(Aε) � C̄εc̄| ln ε|−1/2
and ‖uε(·,ω) − ū‖C(Ū) � Ĉεĉ| ln ε|−1/2

in � \ Ac
ε.

The proof of Theorem 1.1 is rather long and consists of several steps, the
most important being Theorem 3.1 which yields a decay rate for the “mass”
of the obstacle problems (with quadratic obstacles) that control the homoge-
nization of (1.1) (the precise statements are presented later in the paper). This
is the only part of the paper where the strongly mixing assumption and some
probabilistic arguments play a role. The rate obtained in Theorem 3.1 is then
used to prove, after some technical approximations, Theorem 1.1 for special
quadratic data. Theorem 1.1 follows after we show, using Theorem 3.1, that
solutions of (1.1) are δ = δ(ε)-viscosity solutions of the homogenized equa-
tion for appropriately chosen δ.

As far as rates are concerned nothing was known for the homogenization
of nonlinear elliptic equations in random environments and in the generality
we consider here. Yurinskii [30, 31] assumed an algebraic mixing rate and
obtained a Hölder rate (εα) for linear uniformly elliptic equations. As we will
see later in the paper the obstruction to prove a similar rate in the nonlin-
ear case is the different homogeneity of the ways the equation controls the
solution (Alexander-Bakelman-Pucci estimate) and the solutions control the
equation (Fabes-Stroock estimate).

Several results were known about rates of convergence for the homoge-
nization in the periodic setting for the boundary value problem{

F(D2uε,
x
ε
) = 0 in U,

uε = g on ∂U,
(1.3)

under special structure conditions on F (convexity with respect to the
Hessian). For example, using probabilistic/stochastic control related argu-
ments Ichihara [13] obtained an algebraic (Hölder) rate for nonlinear degen-
erate elliptic equations with convex with respect to the Hessian nonlinearities
of the type arising in the theory of backward stochastic differential equations.
More recently, Camilli and Marchi [6] obtained a rate of convergence in the
periodic setting under the assumption that F is uniformly elliptic and con-
vex. In this case there exist regular (i.e., C2,α) correctors and the rate follows
relatively easily.

Using δ-viscosity solutions and the fact that in the periodic setting there
exist correctors (see Section 6 for the meaning of the corrector) we consider
(1.3) without any convexity assumptions and obtain
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Theorem 1.2 Assume that F ∈ C(SN × R
N) is periodic in y, uniformly el-

liptic (2.7) and bounded (2.8) and let F̄ ∈ C(SN) be the corresponding ho-
mogenized nonlinearity. Let uε ∈ C(Ū) and ū ∈ C0,1(Ū) be the solutions of
(1.3) and (1.2). There exists α ∈ (0,1), C > 0, and ε0 > 0, depending only
on the constants in (2.7) and (2.8), the dimension, the domain, ‖ū‖C0,1(Ū) but
not ε so that, for all ε ∈ (0, ε0)

|uε − ū| � Cεα in Ū .

The rate for the homogenization in the almost periodic setting does not
follow from either of Theorem 1.1 (almost periodic media are not strongly
mixing) and Theorem 1.2 (the corrector equation does not have a solution
in general). Nevertheless using again δ-viscosity solutions together with the
existence of approximate correctors (see Sect. 7 for the precise meaning) it is
possible to obtain a rate.

We have:

Theorem 1.3 Assume that F ∈ C(SN × R
N) is almost periodic in y (in

the sense of (8.2)), uniformly elliptic (2.7) and bounded (2.8) and let F̄ ∈
C(SN) be the corresponding homogenized nonlinearity. Let uε ∈ C(Ū) and
ū ∈ C0,1(Ū) be the solutions of (1.3) and (1.2). There exist a modulus
ρ : [0,∞) → [0,∞) such that ρ(0+) = 0 and ε0 > 0 both depending on F ,
N, ‖ū‖C0,1 and the constants in (2.7) and (2.8), but not ε, such that, for all
ε ∈ (0, ε0),

|uε − ū| � ρ(ε) in Ū .

We conclude the Introduction with a brief discussion of the homogeniza-
tion of nonlinear first- and second-order pde. The homogenization of (1.3) in
the periodic/almost periodic setting is by far simpler than the random environ-
ments. The first result for homogenization for periodic first-order nonlinear
(Hamilton-Jacobi) equations was proved by Lions, Papanicolaou and Varad-
han [23]. The problem was revisited by Evans [9, 10] who introduced the
notion of perturbed test function and considered also second-order equations
like (1.3). Caffarelli [2] put forward a different approach for the homogeniza-
tion of fully nonlinear uniformly elliptic equations. Time-dependent prob-
lems were studied by Majda and Souganidis [24] and Evans and Gomes [11].
Ishii [14] considered the homogenization of almost periodic Hamilton-Jacobi
equations, while Lions and Souganidis [22] analyzed second-order problems,
even for degenerate elliptic equations.

The homogenization of linear, uniformly elliptic equations in both diver-
gence and nondivergence form in random environments was established a
while ago by Papanicolaou and Varadhan [25, 26] and Kozlov [19] (see also
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Jikov, Kozlov and Oleinik [16]). The first nonlinear stochastic homogeniza-
tion result in the variational setting was obtained by Dal Maso and Mod-
ica [8]. The first nonlinear nonvariational result for Hamilton-Jacobi equa-
tions was proved by one of the authors in [29] (see also Rezankhanlou and
Tarver [27]). Lions and Souganidis investigated in [20] the issue of the ex-
istence of correctors for the random Hamilton-Jacobi case. In [21] they also
established the stochastic homogenization of viscous Hamilton-Jacobi equa-
tions. A similar result was obtained independently by Kosygina, Rezankhan-
lou and Varadhan [18]. In spatio-temporal environments, the homogeniza-
tion of (uniformly elliptic) viscous Hamilton-Jacobi was studied by Kosygina
and Varadhan [17], while Schwab [28] considered first-order Hamilton-Jacobi
equations. The only known result for fully nonlinear uniformly elliptic oper-
ators was obtained in [5].

The paper is organized as follows: The first three sections are devoted to
the random setting. In Sect. 1 we state the main assumptions, recall the ho-
mogenization method put forward in [5], and introduce some of the quantities
that lead to the convergence rate. In Sect. 2 we explain and prove the main
decay estimate for the obstacle problem. In Sect. 3 we establish the rate of
convergence for any quadratic data in the unit ball. Moreover, we show that
this rate is uniform for bounded families of quadratics. In Sect. 4 we intro-
duce the notion of δ-viscosity solution and prove a general algebraic estimate
for the difference between δ and “classical” viscosity solutions. In Sect. 5 we
use the result of Sect. 3 to show that solutions of (1.1) are δ(ε)-viscosity so-
lutions of (1.2) a fact which, in view of the results in Sect. 4, completes the
proof of the error estimate in the strongly mixing media. In Sects. 6 and 7
we obtain rates of convergence for the periodic and almost periodic settings
respectively. In Appendix A we review some basic facts from the theory of
fully nonlinear elliptic equations which are used throughout the paper.

2 The general setting, assumptions and review of random
homogenization

Since the section is rather long, for the convenience of the reader, we divide
it into several parts. And begin with

(i) The general setting

Let (�, F ,μ) be a probability space on which R
N acts as a group (τy)y∈RN

of measure-preserving transformations and assume that μ is ergodic under
this action, i.e., all translation invariant subsets of � have probability either 0
or 1.
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We consider processes F̃ : SN × � → R such that, for each ω ∈ �,
F̃ (·,ω) ∈ C(SN) is uniformly elliptic with, independent of ω, ellipticity con-
stants λ,� > 0, i.e., for all X,Y ∈ SN with Y � 0, and ω ∈ �,

λ|Y | � F̃ (X + Y,ω) − F̃ (X,Y,ω) � �|Y |, (2.1)

and bounded uniformly in ω, i.e., there exists � > 0 independent of ω such
that

|D̃F (0,ω)| � �. (2.2)

To keep the notation simple we write | · | for both the Euclidean distance
and the Lebesgue measure in R

N as well as the usual norm in SN . For the
same reason we take the constants in the upper bounds in (2.1) and (2.2) to
be the same.

It follows that there exists some, independent of ω, c̃ > 0 such that, for all
X,Y ∈ SN and a.s. in ω,

|F̃ (X,ω) − F̃ (Y,ω)| � c̃|X − Y | and |F̃ (X,ω)| � c̃(1 + |X|). (2.3)

We further assume that⎧⎪⎪⎨
⎪⎪⎩

y �−→ F̃ (X, τyω) is uniformly continuous in y for bounded X

and uniformly in ω, i.e., for any r > 0,

limδ→0 sup|y|�δ sup|X|�r supω |F̃ (X, τyω) − F̃ (X,ω)| = 0.

(2.4)

Next, given F̃ satisfying (2.1), (2.2) and (2.4), we define, for (X,y) ∈ SN ×
R

N and ω ∈ �,

F(X,y,ω) = F̃ (X, τyω).

It follows that, for all X ∈ SN , y, y′ ∈ R
N and ω ∈ �,

F(X,y + y′,ω) = F(X,y′, τyω) and F(X,0,ω) = F̃ (X,ω), (2.5){
F(·, ·,ω) ∈ C(SN × R

N) and y �−→ F(X,y,ω)

is uniformly continuous in y uniformly for X bounded and all ω,
(2.6)

λ|Y | ≤ F(X + Y,y,ω) − F(X,y,ω) � �|Y | if Y � 0, (2.7)

|F(0, y,ω)| � �, (2.8)

and

|F(X,y,ω) − F(Y, y,ω)| � c̃|X − Y | and |F(X,y,ω)| � c̃(1 + |X|).
(2.9)
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As discussed in [25], � can be taken to be the set of all continuous func-
tions on SN with the value of ω ∈ � at y ∈ R

N defined by ω(·, y). The
σ -algebra F is then generated by cylinder sets with base points having ratio-
nal coordinates in R

N and range sets spheres in C(SN) with rational centers
and radii. The probability measure μ on (�, F ) is invariant with respect to
the translation group (τy)y∈RN defined, for y, y′ ∈ R

N , by

(τyω)(y′) = ω(y′ − y),

which is assumed to be ergodic, and its support are all the functions in C(SN)

satisfying (2.1), (2.2) and (2.4).
Loosely speaking � can be thought of as the set of all F̃ ’s satisfying (2.7)

and (2.6) and the probability measure as the “frequency” by which particu-
lar F̃ ’s appear. Of course, the probability of selecting some (many) equations
may be zero. Stationarity, which is defined by (2.5), can be described as fol-
lows: Spatial translations of F appear with “the same frequency”, i.e., given
y ∈ R

N , the equation (we use the term equation for F ) F(·, · + y,ω) ap-
pears with the same frequency as F(·, ·,ω). Recall that a stochastic process
f : R

N × � → R is called stationary if, for any positive integer k and all
y1, . . . , yk ∈ R

N and h ∈ R
N , the joint distribution of the random vector

(f (y1 + h, ·), . . . , f (yk + h, ·)) is independent of h.
To shorten statements in the sequel we will say that a process F(·, ·,ω) ∈

C(SN × R
N) is stationary ergodic, if (τy)y∈RN is ergodic and (2.5) holds.

Moreover, we will formulate everything using F and not F̃ .

(ii) The homogenization process for fully nonlinear pde

The result of [5] is:

Theorem 2.1 Assume that F : SN ×R
N ×� → R is stationary ergodic, and,

a.s. in ω, F(·, ·,ω) ∈ C(SN ×R
N) satisfies (2.7), (2.2) and (2.6). There exists

a uniformly elliptic F̄ ∈ C(SN) such that, if uε(·,ω) ∈ C(Ū) and ū ∈ C(Ū)

are the solutions of (1.1) and (1.2) respectively, then, as ε → 0, a.s. in ω and
uniformly in U , uε(·,ω) → u.

The homogenization result of [5] relies on the Crandall-Lions notion of
viscosity solutions. The effective nonlinearity F̄ is identified either implicitly
by finding all P ∈ SN belonging to each level set of F̄ or, equivalently, ex-
plicitly by finding, for each P ∈ SN , the level set F̄ (P ) containing P . Below
we use the latter characterization.

Throughout the paper and depending on the context, we denote by P either
the matrix P ∈ SN or the quadratic polynomial P(x) = 1

2(Px, x). Moreover,
Br(x) (resp. Br ) stands for the ball in R

N centered at x (resp. the origin)
with radius r and Qr(x) (resp. Qr ) stands for the cube in R

N centered at x
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(resp. the origin) with side length r . We say that a constant is universal if
it depends only on λ,�,�′ and c̃ in (2.7), (2.8) and (2.9), the dimension N ,
and, in general, the domain. We will often write c and C for uniform constants
that may change from line to line. Finally, we will consider boundary value
problems in either balls or cubes depending on the type of argument we are
using. The particular choice (ball or cube) is irrelevant for the final result.

To find, for a given P ∈ SN , F̄ (P ), we consider, for each  ∈ R, the a.s. in
ω limiting behavior, as ε → 0, of the solution uε(·,ω) of the boundary value
problem {

F(D2uε,
x
ε
,ω) =  in B1,

uε = P on ∂B1,
(2.10)

where, for notational simplicity, the dependence of uε on  and, whenever
possible, ω is suppressed.

It is shown in [5] that there exists a unique constant F̄ (P ) such that, as
ε → 0, a.s. in ω and uniformly in B1,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
limε→0 uε(·,ω) � P if  � F̄ (P ),

i.e., uε aligns with P from above, and

limε→0 uε(·,ω) � P if  � F̄ (P ),

i.e., uε aligns with P from below,

(2.11)

and, hence, for  = F̄ (P ), a.s. in ω, uε(·,ω) becomes an “approximate cor-
rector” (aligns with P ), i.e., uniformly on B̄1 and a.s. in ω,

lim
ε→0

uε(·,ω) = P. (2.12)

In the course of the analysis it is often more convenient to solve the bound-
ary value problem in B1/ε and, instead of (2.10), to consider the a.s. limiting
behavior of the solution uε(·,ω) of{

F(D2uε, x,ω) =  in B1/ε,

uε = P on ∂B1/ε.
(2.13)

Since uε(x,ω) = ε2uε(x
ε
,ω), the a.s. behavior of uε(·,ω) in B1, as ε → 0,

is equivalent to the asymptotic quadratic behavior of uε(·,ω) at infinity.
The methodology described above lacks “monotonicity” with respect

to ε—if ε1 < ε2 then uε1 has no obvious monotonicity relationship
to uε2—one of the basic concepts of both the ergodic and viscosity theo-
ries and the main technical tool to obtain the above described “alignment”.
To force such a property in the problem, we replace (2.10) and (2.13) by the
corresponding obstacle problems with obstacle P from either above or below.
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The properties of the obstacle problem pertinent to our work can be found
in Caffarelli and Kinderlehrer [3] for the Laplacian and [5] for nonlinear equa-
tions.

(iii) The obstacle problem

We review next the general properties of the obstacle problem which play a
role in our analysis. To simplify the presentation, we omit for now the depen-
dence on ε and ω.

Let V be a bounded open subset of R
N with regular boundary. A function

u+ (resp. u−) ∈ C(V̄ ) is a solution of the obstacle problem for F from above
(resp. below) with obstacle P , if it is the least super-solution (resp. largest
sub-solution) of F = 0 in V above (resp. below) P . When necessary, we
write u±

V to denote the solutions of the obstacle problems in V .
It is an immediate consequence of the definition and the properties of vis-

cosity solutions (see Theorem 2.1 and the discussion in [5]) that

u± = P on ∂V, (2.14)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(D2u+, x) �  and u+ � P in V and

F(D2u+, x) =  in {u+ > P }
(resp. F(D2u−, x) �  and u+ � P in V and

F(D2u−, x) =  in {u− < P }).
(2.15)

Moreover, the Harnack inequality (see Theorem 2.1 of [5]) implies that u±
V

separates uniformly from the obstacle, i.e.,⎧⎨
⎩

there exists c1 > 0, depending only on the ellipticity constants and N,

such that, if x ∈ {u+ = P } (resp. {u− = P }), then, for all y ∈ V ,

0 � (u+ − P)(y) � c1|y − x|2 (resp. 0 � (P − u−)(y) � c1|y − x|2).
(2.16)

The regularity properties of the obstacle problem and, in particular, (2.16)
yield that u+ and u− are respectively the unique solutions of the boundary
value problems{

F(D2u+, x) =  − ( − F(P,x))+1�+ in V,

u+ = P on ∂V,
(2.17)

and {
F(D2u−, x) =  + ( − F(P,x))−1�− in V,

u− = P on ∂V,
(2.18)
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where

�+ = {x ∈ V : u+(x) = P(x)} and �− = {x ∈ V : u−(x) = P(x)}
are the coincidence (contact) sets of u+ and u−, 1A denotes the characteristic
function of the set A and r+ and r− are respectively the positive and negative
parts of r ∈ R. In the sequel we refer to the quantities

( − F(P,x))+1�+ and ( − F(P,x))−1�−

and ∫
V ∩�+

( − F(P,x))N+ dx and
∫

V ∩�−
( − F(P,x))N− dx

as, respectively, the mass densities and total masses of the obstacle problems.
The obstacle problem has a very important monotonicity property with re-

spect to the domain. Indeed, if V1,V2 ⊂ R
N are open bounded subsets of

R
N with regular boundaries such that V1 ⊂ V2, then u+

V2
and u−

V2
qualify re-

spectively as admissible super-solution and sub-solution in V1. It follows that,
in V1, u+

V2
� u+

V1
and u−

V2
� u−

V1
, and thus the coincidence sets are nonincreas-

ing with respect to the domain, i.e.,

if V1 ⊂ V2, then �±
V2

∩ V1 ⊂ �±
V1

. (2.19)

An immediate consequence of this monotonicity as well as the additivity
property of the Lebesgue measure is that both∫

V ∩�±
( − F(P,x))N± dx and |V ∩ �±|

are clearly subadditive with respect to the domain V .

(iv) Two measures of separation

Next we describe two quantitative measurements of the separation between
the solutions of the upper and lower obstacle problems and the solution of the
corresponding boundary value problem with the same quadratic data P .

To this end, take V = Q1, let u be the solution of the “unrestricted” bound-
ary value problem {

F(D2u,x) =  in Q1,

u = P on ∂Q1,
(2.20)

and consider the solutions u+ and u− of the obstacle problems in Q1 with
obstacle P from above and below respectively.



312 L.A. Caffarelli, P.E. Souganidis

Since u+ and u− are respectively super- and sub-solutions of (2.20) in Q1,
the comparison property of viscosity solution yields

u− � u � u+ on Q1. (2.21)

The first measurement is the Alexandrov-Bakelman-Pucci estimate (ABP
for short) (see Theorem 3.2 of [1])) which controls the separation (u± − u)±
from above in terms of the total mass of the obstacle problems. Indeed the
ABP estimate yields a uniform constant c2 such that

‖(u± − u)±‖C(Q̄1)
� c2‖( − F(P, ·))±1�±‖LN(Q1)

in Q̄1. (2.22)

Since, in view of (2.9),

0 � ( − F(P,x))± � ˜̃c(1 + |P | + ||) in Q1,

with

˜̃c = max(1, c̃),

it follows from (2.22) that, for a uniform constant c3 > 0,

(u± − u) � c3(1 + |P | + ||)|�±|1/N in Q̄1. (2.23)

To go in the opposite direction, i.e., to control the separation from be-
low, we note that the right hand sides of (2.17) and (2.18) have a fixed sign.
Hence, the Fabes-Stroock estimate [12] (see also Corollary B.5 in [5] and
Theorem A.2 in Appendix A) gives, for some uniform constants c4 > 0 and
M > N ,

c4(1 + |P | + ||)(1−M)‖( − F(P,x))±1�±‖M
LN(Q1)

� |u± − u| in Q2/3. (2.24)

The lower and upper bounds in (2.22), (2.23) and (2.24) have different
homogeneity. This is the reason we obtain a logarithmic and not an algebraic
rate in the error estimate.

In the linear setting it should be possible to obtain better lower and upper
estimates using the Green’s function and the associated invariant measures.
This will provide a different proof for the error estimates in [30, 31]. We plan
to return to this issue in a future publication.

(v) The methodology for homogenization process

We return now to the homogenization problem. We introduce the relevant ob-
stacle problems in B1, their scaled versions in B1/ε and, for the convenience
of the reader, we present next a brief review of the arguments introduced in
[5] to identify F̄ (P ).
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To this end, fix ω ∈ �, P ∈ SN and  ∈ R, and let u+
ε (·,ω;) (resp.

u−
ε (·,ω;)) be the solution of the obstacle P from above (resp. below), i.e.,

u+
ε (resp. u−

ε ) is the smallest super-solution (resp. largest sub-solution) of
(2.10) above (resp. below) P in B1. In view of the previous discussion u±

ε

solve the boundary value problems{
F(D2u±

ε , x
ε
,ω) =  ∓ ( − F(P, x

ε
,ω))±1�±

ε
in B1,

u±
ε = P on ∂B1.

(2.25)

where �±
ε (ω;) is the coincidence set of u±

ε (·,ω;).
Let uε,±(·,ω;) be the quadratic rescalings of u±

ε (·,ω;) given by

u±
ε (x,ω;) = ε2uε,±

(
x

ε
,ω;

)
,

which solve the obstacle problems{
F(D2uε,±, y,ω) =  ∓ ( − F(P,y,ω))±1�±

ε
in B1/ε,

uε,± = P on ∂B1/ε,

where �ε,±(ω;) are the respective contact sets.
A simple rescaling yields

�±
ε (ω;) = ε−1�ε,±(ω;).

The subadditivity property of |�±
V | with respect to V and the assumptions

of stationarity and ergodicity allows for the use of the subadditive ergodic
theorem (see [5]) to obtain that, a.s. in ω,

lim
ε→0

|�±
ε (ω;)| = lim

ε→0
ε−N |�ε,±(ω;)| = m±().

The monotonicity property of the obstacle problems and (2.8) yield that

⎧⎨
⎩

 → m+() is nonincreasing and
m+() = 0 (resp. m+() = 1)

for  uniformly small negative (resp. large positive),

and, similarly,

⎧⎨
⎩

 → m−() is nondecreasing and
m−() = 1 (resp. m−() = 0),

for  uniformly small negative (resp. large positive),
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If

+ = inf{ ∈ R : m+() = 0} and − = sup{ ∈ R : m−() = 0},
the first separation measurement implies that, as ε → 0, a.s. in ω and uni-
formly on B̄1,

if  > +, then u+
ε (·,ω) − uε(·,ω) → 0,

and

if  < −, then uε(·,ω) − u−
ε (·,ω) → 0.

Moreover, the quadratic separation property of the obstacle problem yields,
again as ε → 0, that a.s. in ω and uniformly on B̄1,

if  < +, then lim
ε→0

(u+
ε (·,ω) − P) = 0,

and

if  > −, then lim
ε→0

(P − u−
ε (·,ω)) = 0.

It then follows from a perturbation argument and the fact that

u−
ε � uε � u+

ε in B1

that (2.12) holds with F̄ (P ) = ±.
We remark that the whole argument works if, instead of |�±

ε (ω, )|, we use
the LN -norms (in B1) of the total masses of the two obstacle problems. Since
the homogenization process is controlled by these norms, it is clear that to
obtain rates of convergence it is enough to find decay rates for these norms.
The argument leading to the rate is based on an iterative estimate on how
these measures decay with respect to ε for strongly mixing configurations.

(vi) The mixing conditions

Mixing conditions are used in probability as a “measurement” of the (roughly
speaking) independence or, better, decorrelation at large distance of measur-
able subsets of �.

To state the strongly mixing condition we recall that the � is taken to be
the set of all elliptic operators satisfying (2.1) and (2.2) and their translations.
Given a subset K of R

N and A of �, consider the “cylinder set” AK con-
sisting of all F ’s whose traces in K coincide with that of an element in A.
Ergodicity implies that, if for example, K is the unit cube Q1 and yk → ∞,
the intersection of the translations τyk

AQ1 with each other, then, as k → ∞,
μ(

⋂
yk

τyk
AQ1) → 0 unless μ(AQ1) = 1, i.e., each operator defined on R

N is
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composed of a “random” mix of different local pieces. The strongly mixing
condition is a rate for the above limit.

For r > 0, let S and S(r) be the smallest σ -algebras generated by the mea-
surable subsets {F(·, y, ·) : y ∈ Q1} and {F(·, y, ·) : dist(y,Q1) � r} of �.

The probability space (�, F ,μ) is called strongly mixing if

lim
r→∞ sup

A∈S
B∈S(r)

|μ(A ∩ B) − μ(A)μ(B)| = 0. (2.26)

To obtain a rate of convergence for the homogenization, we quantify the
limit in (2.26) assuming the following logarithmic-type rate:{

there exists c > 0 such that, for all δ > 0,

supA∈S,B∈S(r) |μ(A ∩ B) − μ(A)μ(B)| � δ if r > δc(ln δ).
(2.27)

Throughout the proofs in the paper we will be using δ = 3−k , in which
case (2.27) reads

sup
A∈S,B∈S(r)

|μ(A ∩ B) − μ(A)μ(B)| � 3−k if r > 3k2
. (2.28)

Next we present a simple example of strongly mixing media satisfy-
ing (2.28). To this end, begin with a regular checkerboard of cubes Qi of
length size 1 and center at i ∈ Z

N , fix two bounded uniformly elliptic maps
F1,F2 ∈ C(SN), consider a sequence (ωn)n∈ZN with values F1 and F2 and
let

F(·, y,ω) = ωn if y ∈ Qi.

Then � = {F1,F2}Z
N

and the probability measure is the infinite product
of the trivial equidistributed probability measure on {F1,F2}. Since, for each
k ∈ Z

N , and ω̃· = ω·+k ,

F(X,y + k,ω) = F(X,y, ω̃),

it is clear that, if A ∈ S and B ∈ S(r) with r � 1, then A and B are indepen-
dent, and, hence, (2.27) holds.

Another simple example of a random medium satisfying (2.28) is a se-
quence of larger and larger chessboards where, with probability 1/2, we
choose from a medium that decorrelates at length 1, with a probability 1/22,
from a medium that decorrelates at length 3, with probability 2−k , from a
medium that decorrelates at distance 3k2

, etc.
The rate in (2.27), (2.28) is much slower than the power decay used in

[Y1], [Y2]. Note, however, that the rate of convergence for the homogeniza-
tion in Theorem 1.1 is optimal for slow decay rates like (2.26), although it
may not be optimal if, instead of (2.26), we had assumed a power type decay.
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The next observation, which is a direct consequence of (2.28), records the
rate of decorrelation of nonnegative random variables. To this end, let L∞+ (S)

and L∞+ (S(r)) be the spaces of nonnegative bounded random variables which
are S and S(r) measurable respectively.

Finally, given a random variable f : � → R we write E(f ) and V (f ) for
its expectation and variance respectively, i.e.,

E(f ) =
∫

f dμ and V (f ) = E((f − E(f ))2).

We have:

Proposition 2.1 Assume (2.28). Then

sup
f ∈L∞+ (S), g∈L∞+ (S(r))

|E(fg) − Ef Eg| � 3−k‖f ‖∞‖g‖∞ if r ≥ 3k2
.

(2.29)

Proof Without any loss of generality we may assume that ‖f ‖∞ = ‖g‖∞= 1.
Recalling the representation

f (ω) =
∫ 1

0
1{f (·)>t}(ω)dt and g(ω) =

∫ 1

0
1{g(·)>t}(ω)dt,

for r > 3k2
, we have

|E(fg) − Ef Eg| =
∣∣∣∣E

∫ 1

0

∫ 1

0
1{f (·)>t}1{g(·)>s} ds dt

− E

∫ 1

0
1{f (·)>t} dt E

∫ 1

0
1{f (·)>s} ds

∣∣∣∣
=

∣∣∣∣
∫ 1

0

∫ 1

0
[μ({f (·) > t} ∩ {g(·) > s})

− μ({f (·) > t})μ({g(·) > s})]ds dt

∣∣∣∣ � 3−k. �

We conclude with a technical auxiliary lemma that will be used later in
the paper. It concerns the decay of the second moments and the variance of
averages of random variables.

We have:
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Lemma 2.1 Let h1, . . . , hM be a family of random variables such that, for
i, j = 1, . . . ,M and some σij > 0, E(hihj ) − EhiEhj � σij . Then

V

(
1

M

M∑
i=1

hi

)
� 1

M2

M∑
i=1

V (hi) + 1

M2

M∑
i,j=1

σij ,

(2.30)

E

(
1

M

M∑
i=1

hi

)2

�
(

1

M

M∑
i=1

E(hi)

)2

+ 1

M2

M∑
i,j=1

σij + 1

M2

M∑
i=1

V (hi),

and if, for all i = 1, . . . ,M , Ehi = E and V (hi) = V , then

V

(
1

M

M∑
i=1

hi

)
� 1

M
V + 1

M2

M∑
i,j=1

σij .

Proof The first estimate follows from the identity

E

(
1

M

M∑
i=1

hi

)2

= 1

M2

M∑
i,j=1

E(hihj ),

and the observation that, if i = j , then

E(hihj ) = Eh2
i = (E(hi))

2 + V (hi),

while, for i = j , in view of the assumption,

E(hihj ) � E(hi)E(hj ) + σij .

The second inequality follows from (2.30) since

E

(
1

M

M∑
i=1

hi

)2

=
(

E

(
1

M

M∑
i=1

hi

))2

+ V

(
1

M

M∑
i=1

hi

)
,

while the last is immediate. �

3 A decay rate for the total masses of the obstacle problems

We formulate and prove here the result which is the key step of the proof of
Theorem 1.1. In what follows it is more convenient to work in Q1 instead
of B1. We consider the obstacle problem (2.25) for arbitrary P and constant
 ∈ R, which remain fixed throughout the section, and prove a decay rate
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for the total masses. This, in turn, will lead to a rate of convergence for the
homogenization.

To obtain the rate, which is presented below in Theorem 3.1, we work at
scale 1 instead of ε, i.e., we consider all problems in the cubes Q1/ε . The
reason for this choice of scale is that, in this setting, it is possible to com-
pare directly the solutions of the obstacle problems along increasing cubes,
a fact which leads to a monotonicity property for the second moments of the
averaged total masses.

For the fixed P ∈ SN and  ∈ R and each in ω, let u±
m(·,ω) be the solution

of (2.15) with contact sets �±
m(ω) in the cube

Dm = Q3m, (3.1)

and consider their total masses

h±
m(ω) = 1

|Dm|
∫

Dm∩�±(ω)

( − F(P,y,ω))N± dy. (3.2)

The definition of the total mass in the previous section did not include
the factor 1/|Dm|. Indeed in Sect. 1 we introduced the obstacle problems for
a fixed domain V . Here we do the same, i.e., we actually consider the cell
problems in Qε with ε = 3−m. The factor 1/|Dm| appears after rescaling to
work, for the reasons explained above, at scale 1, i.e., in Dm.

Let

H±
m = E(h±

m)2

be the second moments of the total masses. We study the behavior, along a
particular sequence m → ∞, of the product

Hm = H+
m H−

m . (3.3)

Next we explain the choice of (3.2). For notational simplicity we use again
ε as parameter. We are interested in an estimate on

max
B̄1

|u±
ε − uε|.

The Alexandrov-Bakelman-Pucci estimate yields

max
Q1

(u±
ε − uε)

N± � c2

∫
Q1∩�±

ε (ω)

(
 − F

(
P,

x

ε
,ω

))N

±
dx

= c2ε
N

∫
Q1/ε∩�ε,±(ω)

( − F(P,y,ω))N± dy,

with the right hand like (3.2) for ε = 3−m.
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For what follows it is convenient to introduce some additional notation. To
this end, for each m, we write E±

m and V ±
m for the expectation and variance

respectively of h±
m, i.e.,

E±
m = E(h±

m) and V ±
m = V (h±

m) = E[(h±
m − E±

m)2].
Then

H±
m = E[(h±

m)2] = V ±
m + (E±

m)2.

To further simplify the presentation, we denote by ± statements holding
for both the upper and lower obstacle problems, while we write + or − for
statements holding for either the upper or the lower obstacle problem respec-
tively. Finally, whenever possible, we omit the explicit dependence on ω.

The monotonicity property of the obstacle problem with respect to the do-
main (see Proposition 3.3 of [5]) implies that the H±

m ’s and, hence, the Hm’s
are nonincreasing in m (we prove this fact in Lemma 3.12 below). Actually
we remark that, as it follows from the results of [5] the Hm’s always converge
to zero for any choice of P and l, while this is not the case for the H±

m ’s.
In Theorem 3.1 we actually show that, along the sequence mk = k2, there is
a rate of decay.

A decay rate on Hk2 , of course, does not necessarily imply a rate for H±
k2 .

Indeed, although both H+
k2 and H−

k2 are nonincreasing with respect to k, for
different k one may decay strictly while the other stays the same. To overcome
this difficulty, we use the subadditivity property of the obstacle problem and
appropriate (small) perturbations of P and , the latter around the homoge-
nization value F̄ (P ). This is discussed in Sect. 3.

The main result is:

Theorem 3.1 Assume the strongly mixing condition (2.28) and let F : SN ×
R

N × � → R be as in Theorem 1.1. Fix P ∈ SN and  ∈ R and consider
the solutions u±

k2(·,ω) of the obstacle problems (2.15) in Dk2 . There exist
universal constants τ ∈ (0,1), C > 0 and a positive integer k0, depending on
the constants in (2.7) and (2.8), and the dimension, such that, for k � k0,

Hk2 � C(1 + |P | + ||)4N3(k0−k)τ . (3.4)

The proof of (3.4) is rather long and consists of a number of crucial steps
and many technicalities. To explain the main ideas, below we first introduce
the general setting and some simplifications (normalization of constants), we
formulate the several steps as separate lemmas, which we prove at the end of
the section, we describe heuristically the crux of the argument, and, finally,
we prove the Theorem.

We begin with



320 L.A. Caffarelli, P.E. Souganidis

(i) The general setting and some preliminaries

We consider the following geometry: Each cube D(k+1)2 of side length 3(k+1)2

is subdivided into 3(k+1)N cubes Di
k2+k

, with i = 1, . . . ,3(k+1)N , of side

length 3k2+k . In turn each Di
k2+k

is subdivided into 3kN cubes D
ij

k2 , with

j = 1, . . . ,3kN , of side length 3k2
. For each ω ∈ � and i, j as above we con-

sider the obstacle problems in the cubes D(k+1)2 , Di
k2+k

, Dij

k2 , their respective

solutions u±
(k+1)2(·,ω), u

i,±
k2+k

(·,ω), and u
ij,±
k2 (·,ω), contact sets �±

(k+1)2(ω),

�
i,±
k2+k

(ω), and �
ij,±
k2 (ω), total masses h±

(k+1)2(ω), h
i,±
k2+k

(ω) and h
ij,±
k2 (ω),

and the averages

A±
(k+1)2(ω) = 3−(k+1)N

3(k+1)N∑
i=1

h
i,±
k2+k

(ω) (3.5)

and

A
±,i

k2+k
(ω) = 3−kN

3kN∑
j=1

h
ij,±
k2 (ω). (3.6)

The stationarity implies, for i = 1, . . . ,3(k+1)N and j = 1, . . . ,3kN , that

E(h
i,±
k2+k

) = E±
k2+k

and Eh
ij,±
k2 = E±

k2,

and, hence,

EA±
(k+1)2 = E±

k2+k
and EA

i,±
k2+k

= E±
k2 . (3.7)

Below we write Dk2+k , u±
k2+k

, �±
k2+k

, and h±
k2+k

and Dk2 , u±
k2 , �±

k2 and h±
k2

for the cubes, solutions of the obstacle problems and their contact sets and
total masses corresponding the middle cube of the partition (Di

k2+k
)3(k+1)N

i=1

and the middle cube of the partition (D
j

k2)
3kN

j=1 of Dk2+k . Note that such middle
cubes exist since we are using a configuration with side length powers of 3;
actually this is one of the reasons for using 3. Finally we write A±

k2+k
for the

average of the total masses corresponding to the partition of Dk2+k .
We continue with

(ii) A simplification

We use here a scaling argument to reduce to the case that, for all ω and y,

( − F(P,y,ω))± � 1, (3.8)
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which implies, for all m = 1,2, . . . , that

0 � h±
m � 1, (3.9)

and, hence, for all k � 1,

H±
k2 � 1 and H±

k2+k
� 1. (3.10)

To this end, recalling that

( − F(P,y,ω))± � ˜̃c(1 + |P | + ||),
with

˜̃c = max(1, c̃) � 1,

rescale P and  to respectively

P̃ = ( ˜̃c(1 + |P | + ||))−1P and ̃ = ( ˜̃c(1 + |P | + ||))−1

and consider the scaled nonlinearity

F̃ (·, y,ω) = ( ˜̃c(1 + |P | + ||))−1F( ˜̃c(1 + |P | + ||)·, y,ω),

which has the same ellipticity constants as F . It is clear that, for all ω ∈ �

and y ∈ R
N ,(



˜̃c(1 + |P | + ||) − F̃

(
P

˜̃c(1 + |P | + ||) , y,ω

))
±

� 1,

and, hence, if h̃±
m is the total mass corresponding to F̃ , P̃ and ̃, then

0 � h̃±
m � 1.

In the sequel we drop the ∼’s, we assume that (3.8), (3.9) and (3.10) hold
and prove that there exist uniform τ ∈ (0,1) and k0 � 1 such that, for k ≥ k0,

Hk2 � 3(k0−k)τ . (3.11)

We continue with a series of lemmas/steps leading to the proof of Theo-
rem 3.1. All the proofs are presented at the end of the section.

(iii) The monotonicity of H±
k2 and Hk2

The monotonicity properties of the obstacle problem and the choice of the
cubes and the partitions yields
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Lemma 3.1 For all k � 1,

(i) H±
(k+1)2 � H±

k2+k
� H±

k2 and

(ii) H(k+1)2 � Hk2+k � Hk2 .
(3.12)

(iii) A strict decay of the variances

The strong mixing rate (2.28) yields the following strict decay for the vari-
ances of A±

k2+k
and A±

(k+1)2 .

Lemma 3.2 Assume (3.9) and the hypotheses of Theorem 3.1. Then, for all
k � 1,

V (A±
k2+k

) � 3−(k−1)NV ±
k2 + 3−k, (3.13)

and

V (A±
(k+1)2) � 3−kNV ±

k2+k
+ 3−k. (3.14)

(iv) The distribution of h
i,±
k2 and h

i,±
k2+k

It follows from Chebyshev’s inequality that, if the variances of h±
k2+k

and h
j,±
k2 , the latter being the total masses of the subdivision D

j

k2 , j =
1,2, . . . ,3kN , of Dk2+k , are smaller than a (small) multiple of (E±

k2+k
)2 and

(E±
k2)

2 respectively, i.e., if

V ±
k2 � η(E±

k )2 (3.15)

and

V ±
k2+k

� η(E±
k2+k

)2, (3.16)

then, off sets of probability controlled by appropriate multiples of η, h
j,±
k2

and h±
k2+k

are comparable to their averages. The exceptional sets, of course,
depend on the particular j , while we would like to work with a “uniform” set
with probability controlled by η. This is possible but requires justification.

To state the result, we introduce, for j = 1, . . . ,3kN , the random variables

ρ
j,±
k2 (ω) =

{
1 if h

j,±
k2 � 1

2E±
k2 ,

0 otherwise,
(3.17)
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and their average

ρ̄±
k = 3−kN

3kN∑
i=1

ρ
j,±
k2 . (3.18)

Let N±
k (ω) be the number of ρ

j,±
k2 (ω)’s that are zero, which is actually the

same as the number of cubes D
j

k2 where h
j,±
k2 (ω) > 1

2E±
k2 , set

ζN = 1

4

(
2

3

)N

, (3.19)

and consider the sets

B̃±
k2 = {ω ∈ � : ρ̄±

k (ω) > ζN }. (3.20)

We have:

Lemma 3.3 Assume (3.15) and (3.16). Then, for each k, there exist subsets
B±

k2+k
of � such that

h±
k2+k

∈
[

1

2
E±

k2+k
,

3

2
E±

k2+k

]
in � \ B±

k2+k
and μ(B±

k2+k
) ≤ 4η,

(3.21)

and

μ(B̃±
k2) < ζ−1

N η and N±
k > (1 − ζN)3kN in � \ B̃±

k0
. (3.22)

If

Bk = B+
k2+k

∪ B−
k2+k

∪ B̃+
k2 ∪ B̃−

k2,

then both (3.21) and (3.22) hold in � \ Bk and

μ(Bk) ≤ 8(1 + ζ−1
N )η. (3.23)

Having completed the presentation of the technical results needed in the
proof of Theorem 3.1, we continue with a heuristic description of the argu-
ment.

(v) The clearing of contact set at large scales

We present here the most important step of the proof of Theorem 3.1 as a
separate lemma. The basic idea is that, if the solutions u+

m+ and u−
m+ of the
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obstacle problems in the cube Dm+ have, for some ω, total masses h+
m+(ω)

and h−
m+(ω) respectively such that h+

m+(ω)h−
m+(ω) � θ , then, for  suffi-

ciently large compared to θ , the quadratic separation of the obstacle problem
and the Fabes-Stroock lemma yield that either u+

m+(ω) or u−
m+(ω) cannot

have a contact point in the intersection of 2
3Dm+ with any of the cubes of side

length 3m that subdivide Dm+. As a result the contact set of either u+
m+(·,ω)

or u−
m+(·,ω) has cleared at least half the subcubes of side length 3m that are

inside 2
3Dm+.

We have:

Lemma 3.4 Fix ω ∈ � and assume that total masses h±
m+(ω) of the solu-

tion u±
m+(·,ω) of the upper and lower obstacle problems in D+m satisfy

h+
m+(ω)h−

m+(ω) � θ for some θ > 0. If  and θ are such that 32θ
M
2N >

4c1/c7, where c1, c7 and M are the universal constants in the quadratic sep-
aration and Fabes-Stroock results, then it is not possible for both u+

m+(·,ω)

and u−
m+(·,ω) to touch the obstacle in any of the subcubes Di

m that subdivide

Dm+ and are inside 2
3Dm+.

(vi) The basic ideas for the proof of Theorem 3.1

As already mentioned earlier the sequence Hk2 is nonincreasing in k. The
goal here is to show that going from Dk2 to D(k+1)2 , H(k+1)2 is strictly less
(by a fixed amount) from Hk2 . To achieve this, we start observing that, if ei-
ther H+ or −

k2 or H+ or −
k2+k

is already less than a critical level, say 3(k0−k)τ−1,
then there is nothing to prove since they are both nonincreasing in k. If both
H±

k2 and H±
k2+k

are above the critical level 3(k0−k)τ−1 and either V + or −
k2 or

V + or −
k2+k

is bigger than a small multiple of either (E+ or −
k2 )2 or (E+ or −

k2+k
)2 re-

spectively, the decay of the variance due to strongly mixing assumption (see
Lemma 3.2) yields a strict decay for either H+ or −

k2 or H+ or −
k2+k

and we may,
again, conclude.

Therefore the real problem is when both H±
k2 and H±

k2+k
are of order

3(k0−k)τ−1 and both V ±
k2 and V ±

k2+k
are less than small multiples of (E±

k2)
2 and

(E±
k2+k

)2 respectively. Then the averaged masses h
ij,±
k2 and h

i,±
k2+k

are evenly

distributed over D
ij

k2 and Di
k2+k

respectively in the sense that, for most of the

ω’s, hij,±
k2 and h

i,±
k2+k

are of order E±
k2 and E±

k2+k
respectively. Of course, there

are several exceptional sets whose size needs to be controlled—this is where
Lemma 3.3 plays a role.

For those ω’s for which h+ or −
k2+k

have actually decayed strictly with respect

to h
i,j,+ or −
k2 we have nothing to prove. For the ω’s, for which the h±

k2+k
have
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not decayed and, hence, have remained comparable to 3(k0−k)τ−1, we use the
Fabes-Stroock estimate to obtain a strict separation between u+

k2+k
and u−

k2+k

in such a way that in many of the D
j

k2 ’s that subdivide Dk2+k , the contact set

of either u+
k2+k

(·,ω) or u−
k2+k

(·,ω) has disappeared completely forcing again

a strict decay from h
ij,±
k2 to h±

(k+1)2 .

(iv) The main proof

We proceed now with the

Proof of Theorem 3.1 We prove (3.10) by induction. Since, in view of (3.8),
(3.10) holds for k = k0, we assume next that

Hk2 � 3(k0−k)τ ,

and prove that, for appropriate choices of k0 and τ ,

H(k+1)2 � 3(k0−k−1)τ . (3.24)

First we observe that, if

either H+ or −
k2 � 3(k0−k)τ−1 or H+ or −

k2+k
� 3(k0−k)τ−1 or

Hk2+k � 3(k0−k)τ−1,

then, if τ ∈ (0,1), (3.10) yields (3.24).
Hence, in what follows, we assume that

H±
k2 � 3(k0−k)τ−1, H±

k2+k
� 3(k0−k)τ−1 and Hk2+k � 3(k0−k)τ−1.

(3.25)
Assume next that, for some η ∈ (0,1),

either V + or −
k2 � η(E+ or −

k2 )2 or V + or −
k2+k

� η(E+ or −
k2+k

)2. (3.26)

It follows from Lemmas 3.1, 3.2 and (3.26) that

H+ or −
(k+1)2 � H+ or −

k2+k
≤ E[A+ or −

k2+k
]2 = V (A+ or −

k2+k
) + (E+ or −

k2 )2

� 3−(k−1)NV + or −
k2 + 3−k + (E+ or −

k2 )2

� (1 + η)−1(1 + 3−(k−1)Nη)H+ or −
k2 + 3−k−(k0−k)τ+1H+ or −

k2

� 3−τH+ or −
k2 ,
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provided η, k0 and τ are such that, for k � k0,

(1 + η)−1(1 + 3−(k−1)Nη) + 3−k−(k0−k)τ+1 � 3−τ ,

which is possible if η ∈ (0,1), k0 � 1 and τ ∈ (0,1) are chosen so that

(1 + η)−1(1 + 3−(k0−1)Nη) + 31−k0 � 3−τ . (3.27)

Next we assume the opposite of (3.26), i.e., (3.15), and show that, for some
uniform k0 and τ ∈ (0,1) and for all ω in a sufficiently large subset of �,
h+ or −

k2+k
is strictly smaller than A+ or −

k2+k
by a fixed multiple of E+ or −

k2 . This

then suffices to yield that H+ or −
k2+k

is strictly less than H+ or −
k2 by an amount

enough to imply (3.24).
Let Bk be the set defined in Lemma 3.3. The first step is to use Lemma 3.4

to show that

in � \ Bk either u+
k2+k

or u−
k2+k

cannot have a contact point in
2

3
Dk2+k .

(3.28)

It then follows that one of the u+
k2+k

(·,ω) or u−
k2+k

(·,ω), say u+
k2+k

(·,ω),

cannot have a contact point in at least half of the (2
3)N3kN = 4ζN3kN cubes

Di
k2 whose union is 2

3D(k2+k). Note that, for a different ω ∈ � \ Bk , it may be

that u−
k2+k

(·,ω) has this property. But in any case one of them, which here we

take to be u+
k2+k

(·,ω), has the property for at least “half” of the ω’s in �\Bk .
This means that there exists Ck ⊂ � \ Bk such that

μ(Ck) � 1

2
μ(� \ Bk) � 1

2
(1 − 8(1 + ζ−1

N )η) (3.29)

and, for ω ∈ Ck ,

u+
k2+k

(·,ω) does not touch P for at least 2ζN3kN cubes D
j

k2 inside
2

3
Dk2+k.

(3.30)

Of course for (3.28) to be meaningful we need to choose η > 0 so that

η ∈ (0, (8(1 + ζ−1
N ))−1). (3.31)

We postpone the proof of (3.28) till the end of the ongoing one and we use
Lemma 3.3 to show that

h+
k2+k

is strictly smaller than A+
k2+k

by a fixed multiple of E+
k2 in Ck.

(3.32)
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Indeed fix ω ∈ Ck as in (3.28) and recall that Lemma 3.3 yields the ex-

istence of at least (1 − ζN)3kN cubes Di
k2 (recall that Dk2+k = ⋃3kN

i=1 Di
k2 )

where h
i,+
k2 � 1

2E+
k2 . Since there exist (1 − 4ζN)3kN cubes Di

k2 whose union

is Dk2+k \ 2
3Dk2+k , it follows that, in at least 3ζN3kN = (1 − ζN)3kN −

(1 − 4ζN)3kN of the cubes Di
k2 with union 2

3Dk2+k , we have h
i,+
k2 � 1

2E+
k2 .

This last observation combined with (3.28) yields, for ω ∈ Ck , the existence
of at least ζN3kN cubes Di

k2 inside 2
3Dk2+k , where u+

k2+k
(·,ω) does not touch

and h
i,+
k2 (ω) � 1

2E+
k2 . We denote by i ′ the indices of these cubes and by i∗ the

indices of the rest.
We have:

h+
k2+k

(ω) = 3−(k2+k)N

∫
D

k2+k

( − F(P,y,ω))N+1�+
k2+k

(ω) dy

= 3−(k2+k)N
3kN∑
j=1

∫
D

j

k2∩�+
k2+k

(ω)

( − F(P,y,ω))N+ dy

� 3−kN
∑
i∗

h
i∗,+
k2 (ω)

� 3−kN

(∑
i∗

h
i∗,+
k2 (ω) +

∑
i′

(
h

i,+
k2 (ω) − 1

2
E+

k2

))

� A+
k2+k

(ω) − 3−kN

2

(∑
i′

E+
k2

)

� A+
k2+k

(ω) − 1

2
ζNE+

k2 .

Finally recalling that h+
k2+k

� A±
k2+k

and using (3.29) and the previous
estimate we obtain

E+
k2+k

= Eh+
k2+k

=
∫

�\Ck

h+
k2+k

(ω)dμ(ω) +
∫

Ck

h+
k2+k

(ω)dμ(ω)

�
∫

�\Ck

A+
k2+k

(ω)dμ(ω) +
∫

Ck

(
A+

k2+k
(ω) − 1

2
ζNE+

k2

)
dμ(ω)

= EA+
k2+k

− 1

2
ζNμ(Ck)E

+
k2

� E+
k2 − 1

4
(1 − 8(1 + ζ−1

N )η)ζNE+
k2

=
(

1 − 1

4
(1 − 8(1 + ζ−1

N )η)ζN

)
E+

k2 .
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We summarize the above sequence of inequalities as

E+
k2+k

� LNE+
k2 (3.33)

where

LN = 1 − 1

4
ζN + 2(1 + ζN)η. (3.34)

Using that

(E±
k2+k

)2 � H±
k2+k

� (1 + η)(E±
k2+k

)2 and
(3.35)

(E±
k2)

2 � H±
k2 � (1 + η)(E±

k2)
2,

which is a consequence of (3.15), we conclude from (3.33) that

H+
k2+k

� (1 + η)L2
NH+

k2 . (3.36)

It is now clear that it is possible to choose η and τ sufficiently small de-
pending only on N so that

(1 + η)

(
1 − 1

4
ζN + 2(1 + ζN)η

)2

< 3−τ . (3.37)

Combining (3.36), (3.37) and H−
k2+k

� H−
k2 , we get

H(k+1)2 � Hk2+k � 3(k0−k−1)τ .

To conclude the proof we need to prove (3.28) for which it suffices to show
that the assumptions of Lemma 3.4 are satisfied.

To this end recall that, for ω ∈ Bk , we have, in view of (3.21), (3.25) and
(3.35),

h+
k2+k

(ω)h−
k2+k

(ω) � 1

4
E+

k2+k
E−

k2+k
� 1

4(1 + η)
(H+

k2+k
H−

k2+k
)1/2

= 1

4(1 + η)
H

1/2
k2+k

� 1

4(1 + η)
3

(k0−k)τ−1
2 .

Next we apply Lemma 3.4 with m = k2,  = k, and

θ = 1

4(1 + η)
3

(k0−k)τ−1
2 . (3.38)

The conclusion follows if we show that it is possible to choose η ∈ (0,1),
k0 � 1 and τ ∈ (0,1) so that, for k � k0,

32kθ
M
2N > 4c1/c7,
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i.e.,

3(2− M
4N

τ)k+(k0τ−1) M
4N � 4(4(1 + η))

M
2N c1/c7

which holds for all k � k0 and η ∈ (0,1) provided τ and k0 satisfy

0 < τ <
8N

M
and 32k0− M

4N > 2
3M
4N

+2 > 4(4(1 + η))
M
2N c1/c7. (3.39)

To conclude observe that it is possible to choose η ∈ (0,1), k0 � 1 and
τ ∈ (0,1) so that all (3.27), (3.31), (3.37) and (3.39). �

For future reference we restate Theorem 3.1 at the ε-scale, in which case
(3.4) translates to a logarithmic rate.

To this end, for  ∈ R and P ∈ SN , let uε(·,ω), u+
ε (·,ω) and u−

ε (·,ω) be
respectively the solutions of{

F(D2uε,
x
ε
,ω) =  in D0,

uε = P on ∂D0,
(3.40)

and the upper and lower obstacle problems in D0 with constant  and obsta-
cle P . Finally denote by h+

ε (ω) and h−
ε (ω) the total masses, i.e.,

h±
ε (ω) =

∫
D0

(
 − F

(
P,

x

ε
,ω

))N

±
1{u±

ε (·,ω)=P }(x) dx. (3.41)

Let

Hε = E(h+
ε )2E(h−

ε )2. (3.42)

We have:

Theorem 3.2 Assume the hypotheses of Theorem 3.1. Fix P ∈ SN and  ∈ R.
There exist universal positive constants C, c and ε0 such that, for all ε � ε0,

Hε � C(1 + |P | + ||)4Nεc| ln ε|−1/2
. (3.43)

Proof The conclusion follows from (3.4). Indeed let k be such that ε ∼= 3−k2
.

Then

3−τk ∼= εc| ln ε|−1/2
and the claim holds with

c = τ(ln 3)1/2, C = 3τk0 and ε0 ∼= 3−k2
0 . �

We conclude the section with the proofs of the lemmas stated earlier.
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Proof of Lemma 3.1 Since the monotonicity of Hk2 follows immediately from
the monotonicity of H±

k2 , here we concentrate on the latter. Moreover, since

the two inequalities for H±
k2 are proved in a similar manner, below we present

the argument for H±
(k+1)2 � H±

k2+k
.

The definition of the solution of the upper and lower obstacle problems
(smallest super-solution above P for the upper problem and largest sub-
solution below P for the lower problem) yields that u+

(k+1)2 (resp. u−
(k+1)2 )

is a super-solution (resp. sub-solution) of the upper (resp. lower) obstacle
problem in Di

k2+k
, for i = 1, . . . ,3(k+1)N .

Hence, for all ω and i = 1, . . . ,3(k+1)N , we have

�±
(k+1)2(ω) ∩ Di

k2+k
⊆ �

i,±
k2+k

(ω).

It follows that

|D(k+1)2 |h±
(k+1)2(ω) =

∫
D

(k+1)2∩�±
(k+1)2

( − F(P,y,ω))N±dy

=
3(k+1)N∑

i=1

∫
Di

k2+k
∩�±

(k+1)2

( − F(P,y,ω))±dy

�
3(k+1)N∑

i=1

∫
Di

k2+k
∩�

i,±
k2+k

( − F(P,y,ω))N±dy

= |Dk2+k|
3(k+1)N∑

i=1

h
i,±
k2+k

(ω),

and, therefore,

h±
(k+1)2(ω) � |Dk2+k|

|D(k+1)2 |
3(k+1)N∑

i=1

h
i,±
k2+k

(ω) = A±
(k+1)2(ω).

Thus

H±
(k+1)2 = E±

(k+1)2 � E(A±
(k+1)2)

2.

Finally, in view of the stationarity and Cauchy-Schwartz inequality,

E(A±
(k+1)2)

2 = 1

32(k+1)N
E

(
3(k+1)N∑

i=1

h
i,±
k2+k

)2
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= 1

32(k+1)N

3(k+1)N∑
i,j=1

E(h
i,±
k2+k

h
j,±
k2+k

)

� 1

3(2(k+1)N

3(k+1)N∑
i,j=1

(E(h
i,±
k2+k

)2)1/2(E(h
j,±
k2+k

)2)1/2

= E(h±
k2+k

)2 = H±
k2+k

. �

Proof of Lemma 3.2 We only prove (3.13), since (3.14) follows similarly.
The difference on the decay between (3.13) and (3.14) is due to the fact that
A±

(k+1)2 is an average over 3(k+1)N cubes Di
k2+k

while A±
k2+k

is the average

over 3kN cubes Di
k2 .

Let zi be the center of the cube Di
k2 and note that, for each zi , there exist

at most 3N distinct cubes D
j

k2 (Di
k2 included) with |zi − zj | � 2 · 3k2

.
It follows from (2.28) and (2.29) that

Eh
i,±
k2 h

j,±
k2 � (E±

k2)
2 + 3−k if |zi − zj | > 3k2

,

while, for all i, j , Hölder inequality yields

E(h
i,±
k2 h

j,±
k2 ) − (E±

k )2 � V ±
k2 .

We have:

V (A±
k2+k

) = 3−2kNE

[
3kN∑
i=1

(h
i,±
k2 − E±

k2)

]2

= 3−2kN
3kN∑

i,j=1

E[(hi,±
k2 − E±

k2)(h
j,±
k2 − E±

k2)]

= 3−2kN

3kN∑
i,j=1

[E(h
i,±
k2 h

j,±
k2 ) − (E±

k2)
2]

= 3−2kN
3kN∑

i,j=1

|zi−zj |<2·3k2

[E(h
i,±
k2 h

j,±
k2 ) − (E±

k2)
2]



332 L.A. Caffarelli, P.E. Souganidis

+ 3−2kN
3kN∑

i,j=1

|zi−zj |≥2·3k2

[Eh
i,±
k2 h

j,±
k2 − (E±

k2)
2]

� 3−2kN(3kN3NV ±
k2 + 3kN(3kN − 3N)3−k)

= 3−(k−1)NV ±
k2 + 3−kN(3kN − 3N)3−k

� 3−(k−1)NV ±
k2 + 3−k. �

Proof of Lemma 3.3 The first claim (3.21) follows immediately from (3.16)
with

B±
k2+k

=
{
ω : |h±

k2+k
− E±

k2+k
| � 1

2
E±

k2+k

}
.

The definition of N±
k gives

ρ̄±
k = 3−kN(3kN − N±

k ). (3.44)

Moreover, for each i = 1, . . . ,3kN ,

E(ρ
i,±
k2 ) = μ

({
ω ∈ � : hi,±

k2 (ω) � 1

2
E±

k2

})

and

V ±
k2 = E[hi,±

k2 − E(h±
k2)]2 � 1

4
(E±

k )2μ

({
ω ∈ � : hi,±

k2 (ω) � 1

2
E±

k2

})
.

Hence

E(ρ
i,±
k2 ) �

4V ±
k2

(E±
k )2

,

and, in view of (3.15),

E(ρ
i,±
k2 ) � 4η.

The stationarity assumption then gives

E(ρ̄±
k ()) � 4η,

and, hence, again from Chebyshev’s inequality,

μ(B̃±
k ) � 4ζ−1

N η,
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while, in view of (3.44),

N±
k � (1 − ζN)3kN in � \ B̃±

k2 .

Finally,

μ(Bk) � μ(B+
k2+k

) + μ(B−
k2+k

) + μ(B̃+
k2) + μ(B̃−

k2) � 8η(1 + ζ−1
N ). �

Proof of Lemma 3.4 Since ω is a fixed parameter throughout the proof, for
notational simplicity we do not display it here.

Let

wm+ = u+
m+ − u−

m+.

The linearization argument, which was developed in [1] and is described
in Appendix A, implies that there exists a linear uniformly elliptic operator L
(the “linearization” of F ) with the same ellipticity constants as F such that{

Lwm+ = (( − F(P, ·))+1�+
m+

+ ( − F(P, ·))−1�−
m+

) in Dm+,

wm+ = 0 on ∂Dm+.

The Fabes-Stroock estimate (Theorem A.2 in Appendix A) yields

wm+ � c7 3(2−M)(m+)‖f ‖1−M‖f ‖M
LN(Dm+)

in
2

3
Dm+, (3.45)

with c7 the uniform positive constant from (A.4) and

f (y) = ( − F(P,y))+1�+
m+

+ ( − F(P,y))−1�−
m+

.

Since ( − F(P,y))+( − F(P,y))− = 0, we get

‖f ‖N
LN(Dm+)

=
∫

Dm+

[( − F(P,y))+1�+
m+

+ ( − F(P,y))−1�−
m+

]Ndy

=
∫

Dm+

( − F(P,y))N+1�+
m+

+ ( − F(P,y))N−1�−
m+

dy

= |Dm+|(h+
m+ + h−

m+) � |Dm+| θ1/2.

Moreover, in view of (3.8), we have ‖f ‖ = 1, and, hence, (3.45) yields

wm+ � c73(2−M)(m+)|Dm+|M/NθM/2N

= c732(m+)θM/2N in
2

3
Dm+, (3.46)
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and, therefore,

u+
m+ − P + P − u−

m+ = wm+ � c7 32(m+) M
2N θM/2N. (3.47)

Since u+
m+ − P � 0 and P − u−

m+ � 0, it follows that, for every x ∈
2
3Dm+,

either u+
m+ − P � (1/2)c732(m+)θM/2N or

P − u−
m+ � (1/2)c732(m+)θM/2N.

(3.48)

If there is a contact point for both u+
m+ and u−

m+ in the intersection of
2
3Dm+ with any of the cubes Di

m of side length 3m that subdivide Dm+ and
2
3Dm+, the quadratic separation property of the obstacle problems yields

max
Di

m

(u+
m+(·,ω) − u−

m+(·,ω)) � max
Di

m

(u+
m+ − P) + max

Di
m

(u−
m+ − P)

� 2c132M. (3.49)

Combining (3.47) and (3.49) we find

2c132m � c732(m+)θM/2N,

and, hence,

4c1(c7)
−1 � 32θM/2N,

which is impossible in view of the assumption of Lemma 2.5.
The claim now follows. �

We remark that at this point the probabilistic content of the paper is com-
plete.

4 Uniform rate of convergence for bounded families of quadratic data
in cubes

We show here that the rate of convergence obtained in the previous section
for each quadratic yields a similar rate for the distance ‖uε − ū‖ between the
solution uε of the boundary value problem{

F(D2uε,
x
ε
,ω) = F̄ (P ) in B1,

uε = P on ∂B1.
(4.1)
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and ū = P , which, in view of the uniqueness of viscosity solutions, is the
solution of {

F̄ (D2ū) = F̄ (P ) in B1,

ū = P on ∂B1,
(4.2)

off an “exceptional” set that depends on |P | and not P .
The way that the exceptional set depends on P is a consequence of the

strong stability properties of the solution of the obstacle problems with re-
spect to the obstacle. As a matter of fact it is very important for the proof of
the general rate because it implies that, for each ε > 0 and R > 0, there exists
the same negligible set of bad configurations for all quadratics P such that
|P | ≤ R.

The first step is

Proposition 4.1 Assume (2.5), (2.7), (2.8) and (2.27). There exist positive
constants C̄, Ĉ, c̄, ĉ and ε0 depending on the constants in (2.7) and (2.8)
and the dimension such that, for each P ∈ SN and all ε ∈ (0, ε0), there exists
Aε ⊂ � which may depend on P such that, if uε(·,ω) ∈ C(B̄1), is the solution
of (4.1), then

μ(Aε) � C̄(1 + |P |)2Nεc̄| ln ε|−1/2
and

‖uε(·,ω) − P‖ � Ĉεĉ| ln ε|−1/2
δ2 for ω in � \ Ac

ε.
(4.3)

Proof To prove (4.3) we compare uε(·,ω) to the solutions of the upper and
lower obstacle problems with obstacle P and  = F̄ (P ) and we use (3.43).
There is, however, a slight difficulty due to the fact that the decay of Hε

does not yield immediately a decay for H+
ε = E(h+

ε )2 and H−
ε = E(h−

ε )2.
Recall that although both H+

ε and H−
ε are monotone in ε, along subsequences

either one can be constant for a while. To circumvent this difficulty, we work
instead with slightly perturbed ’s, namely with  = F̄ (P )±γ . Adding (resp.
subtracting) γ “makes” u+

ε (resp. u−
ε ) a “subsolution” (resp. “supersolution”)

of the expected homogenized equation and forces u+
ε (resp. u−

ε ) to “stick”
(converge) to P . That is we show that the second moment H

γ,+
ε (resp. H

γ,−
ε )

corresponding to  = F̄ (P )+γ (resp.  = F̄ (P )−γ ) is bounded from below
(resp. below) away from zero by a uniform O(γ 2N). Hence the decay of the
product Hε in this case yields a decay for H

γ,−
ε (resp. H

γ,+
ε ).

Here we only show the upper bound on uε(·,ω)−P , since the lower bound
follows similarly.

To this end, fix γ > 0 and let uε,γ (·,ω), u+
ε,γ (·,ω) and u−

ε,γ (·,ω) be re-
spectively the solutions of (4.1) and the upper and lower obstacle problems in
D0 with obstacle P and all with right hand side the constant  = F̄ (P ) + γ .
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The stability properties of viscosity solutions imply that, for some uniform
c′ > 0,

‖uε,γ (·,ω) − uε(·,ω)‖ � c′γ. (4.4)

Moreover,

u−
ε,γ (·,ω) � P in D0. (4.5)

It follows that

uε(·,ω) − P � uε,γ (·,ω) − u−
ε,γ (·,ω) + c′η. (4.6)

We need the following lemma. Its proof is presented at the end of the sec-
tion.

Lemma 4.1 Let h+
ε,γ (ω) be the total mass of the solutions of the upper obsta-

cle problem in D0 with  = F̄ (P )+γ and quadratic P . There exist a uniform
constant c11 > 0 such that

E(h+
ε,γ )2 � c11γ

2N. (4.7)

With (4.7) at hand, we find now an exceptional set Aε and obtain upper
bounds as in (4.3). Indeed (4.7) and (3.43) imply, for some uniform c12 > 0,
that

E(h−
ε,γ )2 � c12(1 + |P |)4Nγ −2Nεc| ln ε|−1/2

. (4.8)

Note that in deriving (4.8) we used that γ ∈ (0,1) and the fact that, for
some uniform c13 > 0,

|F̄ (P )| � c13(1 + |P |), (4.9)

which is a consequence of (2.9).
Hence

Eh−
ε,γ � c

1/2
12 (1 + |P |)2Nγ −Nεc′| ln ε|−1/2

with c′ = c/2.

Finally, in view of (2.22), for yet another uniform constant c14 > 0, we
have

E(‖uε,γ − u−
ε,γ ‖N

C(D̄0)
) � c14(1 + |P |)2Nγ −Nεc′| ln ε|−1/2

.

For θ > 0 let A
γ
θ ⊂ � be given by

A
γ
δ = {ω ∈ � : ‖uε,γ (·,ω) − u−

ε,γ (·,ω)‖C(D̄0)
> θ}. (4.10)
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Chebyshev’s inequality yields

μ(A
γ
θ ) � c

1/2
14 (1 + |P |)2Nεc′| ln ε|−1/2

(θγ )−N. (4.11)

Combining (4.4), (4.5), (4.6) and (4.10) we find

max
D̄0

(uε(·,ω) − P) � θ + c′γ in � \ A
γ
θ . (4.12)

To conclude we need to show that it is possible to choose θ and γ suffi-
ciently small depending on ε so that (4.3) hold.

Let

θ = γ = εc′′| ln ε|−1/2
with c′′ < c′/2N.

Then (4.3) follows with

Ĉ = 2, ĉ = c′′, C̄ = c14 and c̄ = c′ − 2Nc′′. �

The exceptional set Aε = A
γ
θ defined in the previous proof may depend, of

course, on the specific P . To obtain the rate of convergence for the general
problem, we must show that, for all R > 0 and for all P ∈ SN such that
|P | � R, it is possible to choose the same exceptional set which now may
depend on R. As already stated earlier, this follows again from the stability
properties of the obstacle problem and the uniformity already built in (3.4)
and (3.43).

The first step is to show that it is possible to have the same exceptional
set and rate for quadratics not far from each other. Throughout the discussion
below we denote by uε,P (·,ω) the solution of (4.1) with data P .

We have:

Proposition 4.2 There exist uniform positive constants C̄, Ĉ, c̄, ĉ and ε0 such
that, for all P0 ∈ SN and ε ∈ (0, ε0), there exists Aε ⊂ �, which may depend
on P0, such that μ(Aε) � C̄(1 + |P0|)2Nεc̄| ln ε|−1/2

and

sup
|P−P0|�εĉ| ln ε|−1/2

‖uε,P (·,ω) − P‖C(D̄0)
� Ĉεĉ| ln ε|−1/2

in � \ Aε.

Proof The stability properties of the viscosity solutions and the Lipschitz
continuity of F̄ with respect to P (a direct consequence of the uniform el-
lipticity) imply, for some uniform constant c15 > 0,

sup
|P−P0|�r

‖u±
ε,P (·,ω) − P‖C(D̄0)

� c15r + ‖u±
ε,P0

(·,ω) − P0‖C(D̄0)
.
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Moreover the previous proof yield constants C̄, Ĉ, c̄, ĉ and ε0 and, for each
ε ∈ (0, ε0), Aε ⊂ � such that

‖u±
ε,P0

(·,ω) − P0‖C(D̄0)
� Cεĉ| ln ε|−1/2

in � \ Aε and

μ(Aε) � C̄(1 + |P0|)2Nεc̄| ln ε|−1/2
.

The claim now follows provided that r is chosen so that

c15r � εĉ| ln ε|−1/2
. �

Next we use Proposition 4.2 and the arguments in its proof to obtain a result
yielding a common exceptional set (with the desired upper bound) for all
quadratic polynomials of size R. The exceptional set may, of course, depend
on R.

We have:

Proposition 4.3 Fix R > 0. There exist uniform positive constants C̄, Ĉ, c̄, ĉ

and ε0 such that, for all P ∈ SN such that |P | � R and all ε ∈ (0, ε0), there
exists Aε ⊂ �, which may depend on R, such that

sup
|P |�R

‖uε,P (·,ω) − P‖C(D̄0)
� Ĉεĉ| ln ε|−1/2

in � \ Aε

and

μ(Aε) � C̄(RN(1 + R)2)Nεc̄| ln ε|−1/2
.

Proof Consider a cover of {P ∈ SN : |P | � R} by M ≈ (r−1R)N
2

balls of
radius r > 0 centered at Pi ∈ SN such that |Pi | � R.

Proposition 4.2 gives, for each i = 1, . . . ,M , an exceptional set Ai
ε such

that

μ(Ai
ε) � C̄(1 + R)2Nεc̄| ln ε|−1/2

and

‖u±
ε,Pi

(·,ω) − Pi‖ � Ĉεĉ| ln ε|−1/2
in � \ Ai

ε.

Let Aε = ⋃
Ai

ε . Then

sup
|P |�R

‖u±
ε,P (·,ω) − P‖C(D̄0)

� Ĉεĉ| ln ε|−1/2
in � \ Aε,

and

μ(Aε) �
M∑
i=1

μ(Ai
ε) � C̄M(1 + R)2Nεc̄| ln ε|−1/2

.
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Choose r = ε(c̄/2N2)| ln ε|−1/2
. Then M ≈ RN2

ε−(c̃/2)| ln ε|−1/2
and we have

μ(Aε) � C̄(RN(1 + R)2)Nε(c̄/2)| ln ε|−1/2
. �

We conclude with the proof of Lemma 4.1. Before we get into it, we remark
that, since F̄ is uniformly elliptic, if

Pt(x) = P(x) + t (|x|2 − 1),

there exist 0 < λ̄ ≤ �̄ such that

λ̄t � F̄ (D2Pt) − F̄ (P ) � �̄t. (4.13)

Proof of Lemma 4.1 Let uε,γ the solution of{
F(D2uε,γ , x

ε
,ω) = F̄ (P ) + γ in D0,

uε,γ = P on ∂D0.

The homogenization result of [5] yields that, as ε → 0 and a.s. in ω,
uε,γ (·,ω) → ūγ in C(D̄0) where ūγ is the solution of{

F(D2ūγ ) = F̄ (P ) + γ in D0,

ūγ = P on ∂D0.
(4.14)

The uniqueness of solutions to (4.14) and (4.13) yields, for some universal
constant c16 > 0, that

ūγ = P − c16γ (1 − |x|2). (4.15)

Let u+
ε,γ be the solution of the upper obstacle problem with obstacle P and

constant  = F̄ (P ) + γ . Since u+
ε,γ (·,ω) � P , in the limit ε → 0 we have,

a.s. in ω,

lim
ε→0

(u+
ε,γ (x,ω) − ūγ (x)) � c16γ (1 − |x|2),

while the ABP-estimate (2.22) yields

sup
D̄0

(u+
ε,γ − uε,γ )N(·,ω) � cN

2 h+
ε, γ (ω).

Combining (4.15) and the last two inequalities we find

(c16γ )N � (u+
ε,γ (0,ω) − uε,γ (0,ω))N � cN

2 h+
ε,γ (ω).

Since, in view of the subadditivity (see the proof of Lemma 3.16
of [5]), Eh+

ε,γ converges decreasingly, the claim now follows with c11 =
(c16/c2)

N . �
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5 δ-Viscosity solutions

To obtain the rate of convergence for general (not necessarily quadratic) data
we introduce a class of suitable approximations to viscosity solutions, which
we call δ-viscosity solutions and, for short, δ-solutions. We believe that this
is of independent interest and it will have applications in other contexts in-
volving rates of convergence.

As already mentioned in the Introduction, we show that δ-solutions are
within a uniform distance from the solution of the given problem. To obtain a
rate of convergence for a given approximation, it then suffices to show that the
solution of the approximate problem is a δ-solution for an appropriate choice
of δ.

To state the definition of the δ-solution in what follows we consider the
equation

F(D2u) = 0 in U, (5.1)

where U is an open subset of R
N and F ∈ C(SN) is uniformly elliptic.

We have:

Definition 5.1 Fix δ > 0. v ∈ C( Ū ) is a δ-supersolution (resp. δ-subsolution)
of (5.1) in U if, for all x0 ∈ U such that Bδ(x0) ⊂ U , a quadratic poly-
nomial P such that |P | � Cδ−σ , for some universal C,σ > 0, and P � v

(resp. P � v) in Bδ(x0) can touch v from below (resp. above) at x0, i.e.,
P(x0) = v(x0), only if F(D2P) � 0 (resp. F(D2P) � 0). Finally, v ∈ C(U)

is a δ-solution if it is both δ-supersolution and δ-subsolution.

The difference with the viscosity solution is the condition on the size of the
polynomial and, more importantly, the requirement that for a δ-supersolution
(resp. δ-subsolution) v the “test” polynomial P must be smaller (resp. larger)
than v in all of Bδ(x0). It is immediate that a viscosity supersolution (resp.
subsolution) is actually a δ-supersolution (resp. δ-subsolution). On the other
hand a δ-subsolution (resp. δ-supersolution) may not necessarily be a viscos-
ity subsolution (resp. supersolution) unless it is a δ-subsolution (resp. super-
solution) for all δ.

Our main result concerning δ-solutions is:

Theorem 5.1 Let U be an open subset of R
N with regular boundary and

consider a solution u ∈ C0,1( Ū ) of (5.1). Assume that v+ ∈ C0,η( Ū ) (resp.
v− ∈ C0,η( Ū )) is a δ-subsolution (resp. δ-supersolution) of (5.1) for some
fixed η ∈ (0,1). If v+ � u+cδα (resp. u � v− +cδα) on ∂U for some positive
constants c and α, then there exist uniform constants c > 0 and α ∈ (0, α)

such that, for δ sufficiently small,

v+ � u + cδα (resp. u � v− + cδα) in Ū . (5.2)
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The assumption that v± ∈ C0,η( Ū ) is used only to compare u and v± in a
neighborhood of the boundary. As such it can be replaced by other conditions
like, for example, requiring that v+ � u + cδα (resp. u � v− + cδα) in an
appropriate neighborhood of ∂U .

The proof of Theorem 5.1 is long. It involves the choice of appropriate
approximations and perturbations to u and v±. Such arguments were al-
ready presented by the authors in [4] where they studied error estimates for
monotone numerical approximations to solutions of uniformly elliptic pde.
Again we divide the argument into several steps.

Step 1: Strong differentiability properties of solutions

We begin recalling two important elements of the regularity theory for solu-
tions of linear, uniformly elliptic pde of the form

trAD2w = 0 in B1, (5.3)

with A bounded measurable and uniformly elliptic. We refer to [1] for the
proofs.

The first result provides some Lp-integrability for D2w. We have:

Proposition 5.1 Let w ∈ C(B1) be a bounded solution of (5.3). There exists
a universal constant p ∈ (0,1) such that D2w ∈ Lp(B1).

The solution also satisfies the following maximal-type estimate.

Proposition 5.2 Let w ∈ C(B1) be a bounded solution of (5.3). For λ > 0, let
Aλ be the subset of B1/2 at which w admits global (in B1) tangent paraboloids
from above and below with opening λ, i.e.,

Aλ = {x ∈ B1/2 : w(x) + (y − x) − λ|y − x|2
� w(y) � w(x) + (y − x) + λ|y − x|2 in B1},

where  denotes a linear function. There exists c, σ > 0 depending on the
ellipticity constants and the dimension such that, if Dλ = B1/2 \ Aλ, then
|Dλ| � cλ−σ .

A straightforward rescaling argument yields

Corollary 5.1 Let w ∈ C(B1) be a bounded solution of (5.3) in B1. If Aλ

is the subset of B1−δθ where w is touched from above and below in B1 by
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quadratics of opening λ and Dλ = B1−δθ \ Aλ, then, for some universal con-
stants σ and c > 0,

|Dλ| � c(λδ2θ )−σ .

We look again at the solution u of (5.1). The next theorem, which was
proved in [4], shows that Lipschitz continuous solutions of (5.1) have in fact
a controlled quadratic behavior in large subsets of B1.

Theorem 5.2 Let u ∈ C0,1(B̄1) be a solution of (5.1) in B1. For all λ > 0,
there exists a subset Aλ of B1−δθ such that:

(i) For each x0 ∈ Aλ, there exists a quadratic polynomial Px0 of opening λ

such that F(D2Px0) = 0, and, for all x ∈ B1 and a universal constant
C > 0,

|u(x) − [u(x0) + Px0(x − x0)]| � Cλ|x − x0|3.
(ii) There exists σ > 0 depending only on the ellipticity constants and the

dimension such that, if Dλ = B1−δθ \ Aλ, then, for a constant c > 0 de-
pending on ‖u‖C0,1 and F ,

|Dλ| � c(λδ2θ )−σ .

An immediate consequence is that, for any x0 ∈ Aλ, u behaves like a “test
polynomial” up to a controlled error of order λδ2 in Bδ(x0).

Step 2: One sided smoothing by sup- and inf-convolutions

Next we recall the sup- and inf-convolution regularization of u ∈ C0,η( Ū ),
for some η ∈ (0,1], given respectively, for θ > 0, by

u+
θ (x) = sup

Ū

[
u(y) − 1

2θ
|x − y|2

]
and

(5.4)

u−
θ (x) = inf

Ū

[
u(y) + 1

2θ
|x − y|2

]
.

Sup- and inf-convolutions as well as a similar type regularizations using
“parallel” surfaces are important tools in the theory of viscosity solutions.
The main reason is that, in addition to regularizing a given function, they also
preserve the notions of sub- and super-solution.

Let

Uθ = {x ∈ U : d(x, ∂U) � (2[u]0,ηθ)
1

2−η },
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where [u]0,η denotes the η-Hölder seminorm, and, for f ∈ C0,1( Ū ) and
x ∈ Ū θ , define

f −
θ (x) = sup

|y−x|�(2[u]0,ηθ)
1

2−η

f (y) and f +
θ (x) = inf

|y−x|�(2[u]0,ηθ)
1

2−η

f (y).

The following technical proposition summarizing the essential properties
of u±

θ is classical in the theory of viscosity solutions. We refer to Jensen,
Lions and Souganidis [15], Crandall, Ishii and Lions [7], Cabre and Caf-
farelli [1], etc., for its proof.

Proposition 5.3 Assume u ∈ C0,η( Ū ). Then:

(i) u±
θ ∈ C0,η( Ū ), u+

θ ↘ u, u−
θ ↗ u, as θ → 0, and 0 � u+

θ − u �
[u0,η]

2
2−η (2θ)

η
2−η and 0 � u − u−

θ � [u0,η]
2

2−η (2θ)
η

2−η .
(ii) For all x ∈ Uθ , there exist concave (resp. convex) paraboloids of opening

θ−1 that touch u+
θ (resp. u−

θ ) from below (resp. above), and, in the sense
of distributions, D2u+

θ � −θ−1 and D2u−
θ � θ−1. Moreover, u±

θ is twice
differentiable a.e. in Uθ , u±

θ ∈ C0,1( Ū θ ) and ‖Du±
θ ‖ � [‖u‖(2θ)−1]1/2.

(iii) If u is a viscosity solution of F(D2u) = f in U , then u+
θ (resp. u−

θ ) is a
subsolution (resp. supersolution) of

F(D2w) = f +
θ (resp. F(D2w) = f −

θ ) in Uθ .

Proposition 5.3 is very general and the last property holds for all degen-
erate second-order equations. Claims (i), (iii), and the first and last parts of
claim (ii) are a direct consequence of the definition, while the a.e. twice dif-
ferentiability requires some real analysis.

It turns out, however, that, when the equation is uniformly elliptic, the
inf- and sup-convolutions enjoy more regularity. In particular, the regularity
claimed in Theorem 5.2 carries over to u±

θ .
To state the result, given x ∈ Uθ we denote by y±

θ (x) one of the points in
U where the sup (inf) in (5.4) is achieved.

We have:

Proposition 5.4 Assume that F is uniformly elliptic and let u ∈ C0,1( Ū ) be
a solution of F(D2u) = f in B(x̂0,2r) ⊂ U . Then:

(i) Let P be a paraboloid touching u+
θ (resp. u−

θ ) form above (resp. below)
at x0 ∈ Bθ

2r (x̂) = B(x̂,2r − θ‖Du‖). Then u is touched at y+
θ (x0) (resp.

y−
θ (x0)) from above (resp. below) by a paraboloid P

+,θ
x0 (resp. P

−,θ
x0 )

and, for a uniform constant C > 0, in the viscosity sense,

D2u+
θ (x) � D2u(y+

θ (x)) + Cθ2|D2u(y+
θ (x))|2

(resp. D2u−
θ (x) � D2u(y−

θ (x)) + Cθ2|D2u(y−
θ (x))|2).
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(ii) There exists a uniform C > 0 such that, for all x1, x2 ∈ Bθ
2r (x̂),

|x1 − x2| � C|y±
θ (x1) − y±

θ (x2)|.
In particular, if, for some A ⊂ U , A±

θ = {x : y±
θ (x) ∈ A}, then |A±

θ | �
C|A|.

(iii) There exist universal positive constants t0 and σ such that, for every
t > t0, there exist open sets A

θ,±
t ⊂ Bθ

2r (x̂) such that, for every x0 ∈
A

θ,±
t ∩ B

θ/2
r (x̂), there exist paraboloids P

t,θ,±
x0 of opening t such that,

for a uniform C > 0 and for x ∈ Bθ
2r (x̂),

u+
θ (x) � u+

θ (x0) + P t,θ,+
x0

(x − x0) + Cr−1t |x − x0|3,
u−

θ (x) � u−
θ (x0) + P t,θ,−

x0
(x − x0) − Cr−1t |x − x0|3,

and

|(Bθ
2r (x̂) \A

θ,±
t )∩B

θ/2
r (x̂)| � CrN−1(‖Du‖∞ +‖Df ‖LN(B(x̂,2r)))t

−σ .

Proposition 5.4 is Proposition 2.1 in [4] where we refer to for the details.
The key step is the observation that the (Krylov-Safonov) Harnack inequality
yields that, at any point where u is touched from above (resp. below) by a
paraboloid of opening θ−1 (resp. −θ−1), it is also touched from below (resp.
above) by a paraboloid of opening Cθ−1 (resp. −Cθ−1) with C > 0 depend-
ing only on the ellipticity constants and the dimension. This implies that at
the points y±

θ , u has C1-contact from above and below with respectively the
convex and concave envelops of paraboloids with opening Cθ−1.

Step 3: Sup- and inf-convolutions of δ-solutions

Next we investigate how δ-sub- and supersolutions behave with respect to
the sup- and inf-convolutions. To this end, we assume that we are given a
δ-subsolution (resp. δ-supersolution) v ∈ C0,η( Ū ) and we define Uθ,δ by

Uθ,δ = {x ∈ U : dist(x, ∂U) � (2[v]0,ηθ)
1

2−η + δ}.
We have:

Proposition 5.5 Let v ∈ C0,η( Ū ) be a δ-subsolution (resp. δ-supersolution)
of (5.1). The θ -sup-convolution (resp. θ -inf-convolution) v+

θ (resp. v−
θ ) of v

is a δ-subsolution (resp. δ-subsolution) of (5.1) in Uθ,δ .

Proof We only present the argument about the δ-subsolution; the claim for
δ-supersolutions is proved similarly.
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Let x0 ∈ Uδ,θ . It is an elementary calculation to check that

|x0 − y+
θ (x0)| � (2[v]0,ηθ)

1
2−η .

Assume that a quadratic P is such that

|P | � Cδ−β, v+
θ � P in B(x0, δ) and v+

θ (x0) = P(x0).

Then, for all x ∈ B(x0, δ) and y ∈ U ,

v(y) − |x − y|2
2θ

� P(x) (5.5)

and

v(y+
θ (x0)) − |x0 − y+

θ (x0)|2
2θ

= P(x0).

Let x = y + x0 − y+
θ (x0) in (5.5). Then

v(·) � P(· + x0 − y+
θ (x0)) + |x0 − y+

θ (x0)|2
2θ

in Bδ(y0) ⊂ U

and, since v is a δ-subsolution of (5.1), we must have

F(D2P) ≤ 0. �

Step 4: The main comparison theorem

We proceed now with the proof of Theorem 5.1. Since it involves several
steps and approximations, we present first the general plan.

We begin by moving away from the boundary and changing the right hand
side of (5.1) by δβ to have some room in our calculations to absorb small
perturbations. Then we regularize u and the given δ-sub- and supersolution
by sup- and inf-convolution. As already discussed these approximations are
semi-convex or concave in the right direction, provide appropriate bounds for
the Hessian, and have second-order expansions (with controlled error) outside
small sets with measure estimated by the size of the quadratics in the expan-
sion. The approximations are clearly δ-sub- and super-solutions around points
of second-differentiability. To control what happens on the small exceptional
sets, we use the Alexandrov-Bakelman-Pucci (ABP)-method by construction
the convex envelope �(w) of the difference w of u and the approximations.
The control on the sizes of the Hessians and the exceptional sets force the
contact set {�(w) = w}, where the support of detD2�(w) is concentrated
to be small. The estimate on the Hessian of the approximations then yields
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that, even in this exceptional case, the quantity detD2�(w)|{�(w) = w}| falls
within the δα margin of error.

Proof of Theorem 5.1 Here we only prove that, for some appropriate α ∈
(0,1),

sup
U

(u − v−) � Cδα,

since the estimate for v+ − u follows in a similar way.
We begin by introducing the several layers of the approximations we dis-

cussed earlier for u, v− and U .
The first step is to create some “room” in the equation for u by considering,

for some β ∈ (0,1) to be chosen later, the boundary value problem{
F(D2uδ) = δβ in U,

uδ = g on ∂U.
(5.6)

The comparison and regularity properties of viscosity solutions (ABP-
estimate and Lipschitz continuity) as well the assumptions on F and u yield,
for some uniform C > 0, the estimates

0 � u − uδ � δβ and |Duδ| � C in U and
(5.7)

uδ � v− + cδα on ∂U.

In the sequel we estimate the difference uδ − v−. To this end, we consider
the sup-convolution u

δ,+
θ and the inf-convolution v

−,−
θ regularizations of uδ

and v− respectively. At the expense of perhaps some greater generality, here
we set

θ = δ2ζ with ζ ∈ (0,1/2) and γ = min

(
α,

2ζη

2 − η

)
, (5.8)

and we write

uδ,+ = u
δ,+
δ2ζ , v−

δ = v
−,−
δ2ζ and

Ũδ = Uδ2ζ ,δγ = {x ∈ U : dist(x, ∂U) � (2[v−]0,ηδ
2ζ )

1
2−η + δγ }.

The Lipschitz continuity of u, the Hölder continuity of v−, the fact that
uδ � v− + cδα on ∂U , and the choice of Ũδ yield,

sup
U

(uδ − v−) = max
(

sup
U\Ũδ

(uδ − v−), sup
Ũδ

(uδ − v−)
)
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� max
(
C′δγ , sup

Ũδ

(uδ − v−)
)
, (5.9)

where C′ is a constant depending on ‖Du‖ and [v]0,η.
Moreover,

sup
Ũδ

(uδ − v−) � sup
Ũδ

(uδ,+ − v−
δ ). (5.10)

The Lipschitz continuity of uδ,+ and uδ , the Hölder continuity of v− and
v−
δ , the assumption about the upper bound of u − v− on ∂U , and the choice

of Ũδ , also yield, for some other positive constant C, that

uδ,+ − v−
δ � Cδγ on ∂Ũδ. (5.11)

Assume next that

β < γ. (5.12)

We summarize all the previous estimates in the inequality

sup
U

(u − v−) � Cδγ + sup
Ũδ

(uδ,+ − v−
δ ), (5.13)

where C is a positive constant depending only on ‖Du‖ and [v]0,η.
We concentrate next on the sup in the right hand side of (5.13). To this end,

recall that v−
δ is a δ-supersolution of (5.1) while uδ,+ is a subsolution of (5.6).

Let

w = uδ,+ − v−
δ − Cδγ

and consider the concave envelope �w of w in B2R for some R > 0 such that
U ⊂ BR .

On the contact set {w = �w} we always have

D2�w � 0.

Since uδ,+ is semiconvex and v−
δ is semiconcave (recall that D2uδ,+ �

−δ−2ζ I and D2v−
δ � δ−2ζ I ), it follows that, on the contact set,

−2δ−2ζ I � D2�w � 0. (5.14)

The ABP-estimate yields, for some uniform constant C depending on the
ellipticity, the dimension and the domain U , the estimate

sup
Ũδ

w � C

[∫
{�w=w}

detD2�w

]1/N

� C δ−2ζ |{�w = w}|1/N . (5.15)
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Assume next that, for some c > 0 and α̃ ∈ (0,1),

cδα̃ � sup
Ũδ

w. (5.16)

It follows from the last three inequalities that, for yet another C > 0,

δ(α̃+2ζ )N � C|{�w = w}|. (5.17)

Since Ũδ is compact, there exist M ≈ δ−Nγ balls (B(xi,
1
2δγ ))1�i�M

covering Ũδ and, in view of the definition of Ũδ , B(xi, δ
γ ) ⊂ Uδ2ζ

for all
i = 1, . . . ,M .

It then follows from (5.17) that there must exist i ∈ {1, . . . ,M} such that,
for some other uniform c > 0,∣∣∣∣B

(
xi,

1

2
δγ

)
∩ {�w = w}

∣∣∣∣ � CM−1δ(α̃+2ζ )N � Cδ(α̃+2ζ+γ )N . (5.18)

Next we apply Proposition 5.5 to B(xi, δ
γ ) with t such that

({�w = w} ∩ B(xi, δ
γ )) ∩ At = ∅.

It suffices to choose, for an appropriate C > 0,

t = Cδ− 1
σ

(α̃+2ζ+γ )N .

Hence the contact set {�w = w} contains points where uδ,+ has a second
order expansion P of opening t with error of order tδ−γ .

At any such point, if P denotes the tangent quadratic, we have

F(D2P) � δβ, (5.19)

while v−
δ satisfies, for δ sufficiently small,

v−
δ � P̃ in B(xi, δ) ⊂ B

(
xi,

1

2
δγ

)
⊂ Ũδ and v−

δ (xi) = P̃ (xi),

where, for some C > 0,

P̃ (x) = P(x) − Ctδ

2
|x|2 and |D2P̃ | � Ct.

Since v−
δ is a δ-supersolution, we have

F(D2P − Ctδ) � 0,
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and, hence,

δβ � F(D2P) − F(D2P − Ctδ) � C�tδ = C�δ1− 1
σ

(α̃+2ζ+γ )N . (5.20)

If α̃, β and γ are chosen sufficiently small so that (recall that ζ can be
small in (5.8))

σ(1 − β) > (α̃ + 2ζ + γ )N

then (5.20) and, hence, (5.16) cannot hold.
Therefore, for some universal c,

sup
Ũδ

w � cδα̃.

The definition of w then yields, for some universal positive constant C

which also depends on the Lipschitz and Hölder constants of u and u− re-
spectively,

sup
Ũδ

(uδ,+ − v−
δ ) � C(δα̃ + δγ ). (5.21)

The claim now follows combining (5.13) and (5.21), for α = min(α̃, γ ). �

6 The general rate

If the solution ū of (1.2) were known to have C2,α estimates, something which
is, for instance, true when F̄ is convex or concave, then proving the rate of
convergence would be simple. Indeed, around any point x0 ∈ U , ū would
behave as a quadratic polynomial P̄ with a uniform error, i.e.,

ū(x) = ū(x0) + P̄ (x − x0) + O(|x − x0|2+α),

in which case it would be possible to use the rate we already proved for
quadratic data to conclude. For general F̄ ’s, however, it is known that so-
lutions may not even be C1,1. Then it becomes necessary to come up with
special C2,α approximations from above and below. This is where δ-solutions
come in the picture.

In this section we show that solutions of (1.1) are for an appropriate choice
of δ, actually δ-solutions of suitable approximations of (1.2).

We have:

Theorem 6.1 There exist uniform positive constants ¯̄C, ˆ̂C, ¯̄c and ˆ̂c and α ∈
(0,1) such that any solution uε of (1.1) is a δ-subsolution of F̄ (D2w) = −δα

and a δ-supersolution of F̄ (D2w) = δα , for δ =ˆ̂Cε̂̂c| ln ε|−1/2
, off a subset Aε

of � such that μ(Aε) � ¯̄Cε
¯̄c| ln ε|−1/2

.



350 L.A. Caffarelli, P.E. Souganidis

Before we present the proof of Theorem 6.1, we give the proof of Theo-
rem 1.1 which is, actually, immediate.

Proof of Theorem 1.1 Theorems 5.1 and 6.1 yield that, for appropriately cho-
sen δ = δ(ε), off an exceptional set, uε is within distance δα from the viscosity
solutions of F̄ (D2ū±

δ ) = ±δα , which, in turn, are δα away from the solution
of (1.2).

Of course Theorem 5.1 requires certain regularity (uniform in ε Hölder
continuity) and boundary behavior for the uε’s. Both are consequences of
the regularity theory of uniformly elliptic pde (Harnack inequality) and the
existence of appropriate barriers. We leave it up to the interested reader to fill
in the technical details. �

We continue with the

Proof of Theorem 6.1 We only show the proof for the δ-subsolution. The
argument for the δ-supersolution follows along the same lines.

To this end, fix x0 ∈ U such that B(x0, δ) ⊂ U and a quadratic P such that

|D2P | � Cδ−σ , (6.1)

where C and σ are universal constants, and

uε � P in B(x0, δ) and uε(x0) = P(x0). (6.2)

We argue by contradiction assuming that

F̄ (D2P) < −δα. (6.3)

For η > 0, consider the quadratic

Pδ(x) = P(x) − ηδα(δ2 − |x − x0|2).
It is immediate from the ellipticity of F that, for an appropriate universal

positive η,

F̄ (D2Pδ) < 0.

Moreover,

Pδ(x0) − uε(x0) = P(x0) − uε(x0) − ηδ2+α = −ηδ2+α.

Consider next the solution uε,δ of{
F(D2uε,δ,

x
ε
,ω) = F̄ (D2Pδ) in Bδ(x0),

uε,δ = Pδ on ∂Bδ(x0).
(6.4)
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A rescaling argument, Proposition 4.3, and (6.1) yield that there exist pos-
itive constants C̄′, Ĉ, c̄′, ĉ and ε0 such that, for all ε ∈ (0, δε0), there exists a
set Aδ,ε ⊂ � of bad configurations such that

⎧⎨
⎩‖uε,δ − Pδ‖C(Bδ(x0))

� Ĉδ2εδ−1−ĉ| ln(εδ−1)|−1/2

in � \ Aδ,ε and

μ(Aδ,ε) � C̄′(δσN(1 + δ−σ )2)N(εδ−1)c̄
′| ln(εδ−1)|−1/2

.

(6.5)

Indeed, without loss of generality we may take x0 = 0, in which case

uδ
ε(x,ω) = δ−2uδ,ε(δx,ω)

solves {
F(D2uδ,ε,

x

εδ−1 ,ω) = F̄ (P ) in B1,

uδ,ε = P on ∂B1,

and then (6.1) follows from Proposition 4.3.
Since

uε,δ = Pδ = P � uε on ∂Bδ(x0),

the comparison result of viscosity solutions yield

uε ≤ uε,δ in Bδ(x0).

In particular, we have

0 < uε,δ(x0) − uε(x0) � Ĉδ2(εδ−1)ĉ| ln(εδ−1)|−1/2 − ηδα+2

and, therefore,

ηδα � Ĉ(εδ−1)ĉ| ln(εδ−1)|−1/2
.

But the last inequality gives a contradiction, for δ as in the assumption after

appropriate choices of ˆ̂C, ˆ̂c and α > 0.
Finally, for δ as in the assumption, we also have, for appropriately chosen

ˆ̂C, C̄′, ˆ̂c and c̄′,

C̄δ2[δ−σN(1 + δ−σ )2]N(εδ−1)c̄| ln(εδ−1)|−1/2 � ¯̄Cε
¯̄c| ln ε|−1/2

. �
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7 Rates for periodic homogenization

We obtain here error estimates for the homogenization of the general bound-
ary value problem {

F(D2uε,
x
ε
) = 0 in U,

uε = g on ∂U,
(7.1)

with F ∈ C(SN × R
N) satisfying (2.7), (2.8) and

F is periodic with respect to y in the unit cube Q1. (7.2)

The periodic homogenization is easier to study since the associated cell
problem has bounded (periodic solutions), i.e., it is possible to show that, if
F satisfies (2.7), (2.8) and (7.2), then⎧⎪⎨
⎪⎩

for each P ∈ SN there exists a unique constant F̄ (P ) such that the equation

F(P + D2v, y) = F̄ (P ) in R
N

has a periodic (bounded) viscosity solution v.
(7.3)

Let ū be the solution of (1.2) with the F̄ given by (7.3). It is proved in [10]
and [2] that, as ε → 0, uε → ū in C(Ū).

Before we present the proof of Theorem 1.2, we explain how the cell prob-
lem is solved and record some key properties. To find F̄ (P ) and a solution v

of (7.3), we solve the auxiliary problem

−λvλ + F(D2vλ + P,y) = 0 in R
N. (7.4)

and prove that, if

v̂λ = vλ − vλ(0), (7.5)

then, as λ → 0, λvλ → F̄ (p) and v̂λ → v.
We have:

Lemma 7.1 Assume that F satisfies (2.7), (2.8) and (7.2) and fix P ∈ SN .
Then, for each λ > 0, (7.4) admits a bounded, uniformly continuous and pe-
riodic solution vλ. Moreover, there exist a uniform constant c > 0 such that,
for all λ ∈ (0,1),

‖λvλ‖ � c(1 + |P |), ‖λv̂λ‖ � c(1 + |P |)λ and
(7.6)

|λvλ(0) − F̄ (P )| � C(1 + |P |)λ
and, along subsequences λ → 0, v̂λ → v in C(RN) where v is a solution of
(7.3) satisfying |v| � c(1 + |P |).
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We refer to [10], among other places, for the proof of Lemma 7.1 and
continue with the preparation for the proof of Theorem 1.2.

As in the proof of Theorem 1.1, the crucial step is to prove it with quadratic
data in balls, i.e., to consider the problem{

F(D2uε,
x
ε
) = F̄ (P ) in Bδ,

uε = P on ∂Bδ,
(7.7)

and to establish a rate for ‖uε − P‖.
We formulate and prove this fact in

Proposition 7.1 Assume that F satisfies the assumptions of Theorem 1.2 and
consider, for fixed δ > 0 and P ∈ SN , (7.7). There exists a uniform constant
c > 0 that depends on F and the dimension but not δ, P and ε, such that

‖uε − P‖ � c(1 + |P |)ε2 in B̄δ. (7.8)

Proof Let vε be the solution of (7.4) with λ = ε2 and define v̂ε by (7.5).
Recall that Lemma 7.1 yields a uniform constant c > 0 such that

‖v̂ε‖ � c(1 + |P |)ε2 and ‖ε2vε(0) − F̄ (P )‖ � c(1 + |P |)ε2. (7.9)

It follows that the function

V ε(x) = P(x) + ε2vε

(
x

ε

)
(7.10)

solves

F

(
D2V ε,

x

ε

)
= ε2vε(0) in R

N.

and, hence, it is a supersolution of

F

(
D2V ε,

x

ε

)
= F̄ (P ) + c(1 + |P |)ε2 in Bδ.

The comparison principle for viscosity solutions yields the estimate

max
B̄δ

(uε − V ε) � c(1 + |P |)ε2 + max
∂Bδ

(uε − V ε),

and, hence,

max
B̄δ

(uε − P) � c(1 + |P |)ε2 + max
B̄δ

∣∣∣∣ε2vε

(
x

ε

)∣∣∣∣ � 2c(1 + |P |)ε2.

The other inequality follows similarly. �
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With Proposition 7.1 on hand we proceed now with the

Proof of Theorem 1.2 We follow the proof of Theorem 1.1 without, however,
having to worry about ω’s. As before the key step is to show that, for an
appropriate choice of δ = δ(ε), the solution uε of (7.1) is a δ-subsolution
(resp. δ-supersolution) of

F̄ (D2w) = −δα (resp. F̄ (D2w) = δα).

We concentrate on the first claim and observe that, as the proof of The-
orem 0.1, the conclusion follows as long as we establish the analogue of
Theorem 5.1. For this it suffices to find δ = δ(ε) and α ∈ (0,1) such that,
as ε → 0,

δ−α(δ−σN((1 + δ−σ )2)Nε2 → 0,

which is, of course, clearly possible, if

δ = εβ with β ∈ (0, (2/α + σN(N + 2))). �

8 Rates of the homogenization in almost periodic media

We obtain here a rate for the homogenization of the boundary value problem
(7.1) with F ∈ C(SN × R

N) satisfying (2.7), (2.8) and

F is almost periodic with respect to y. (8.1)

There are several definitions for almost periodicity. Here by (8.1) we mean
that, for each R > 0,

{F(·, · + ζ ) : ζ ∈ R
N } is precompact, as |ζ | → ∞, in C(SN ∩ BR,R

N)

(8.2)
Almost periodic environments are not strongly mixing. Moreover, it is not

known (see [22] for a related discussion) whether the cell problem (7.3) has
a solution. Note that, in the context of almost periodic functions, to have a
unique F̄ (p) in the cell problem (7.3), the solutions v must be (see [5]) strictly
subquadratic at infinity. Whether such solutions exist in general is an open
problem.

The possible lack of subquadratically growing solutions to (7.3) can be
circumvented in the almost periodic setting by showing that there exist ap-
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proximate correctors (see, for example, [14, 22]), i.e.,⎧⎪⎪⎨
⎪⎪⎩

for each P ∈ SN there exists a unique constant F̄ (P ) such that,

for each η > 0, there exists bounded viscosity solutions v±
η of

F(D2v+
η + P,y) � F̄ (P ) + η and F(D2v−

η + P,y) � F̄ (P ) − η.

(8.3)
It is then follows (see [22] and [14] for such arguments) that, as ε → 0,

uε → ū where ū is the solution of (1.2) with F̄ given by (8.3).
To obtain a rate of convergence it is necessary to look more carefully

to the issue of the existence of approximate correctors and the analogue of
Lemma 7.1.

We have:

Lemma 8.1 Assume that F satisfies (2.7), (2.8) and (8.1). Fix P ∈ SN and
consider vλ and v̂λ as in (7.4) and (7.5). There exist a uniform constant c > 0
and a modulus ρ̄ : [0,∞) → [0,∞) such that ρ̄(0+) = 0, that depend only
on F and the dimension, such that, for all λ ∈ (0,1),

‖λvλ‖ � c(1 + |P |), (8.4)

and

‖λv̂λ‖ � c(1 + |P |)ρ̄(λ), and ‖F̄ (P ) − λvλ(0)‖ � c(1 + |P |)ρ̄(λ).

(8.5)

Proof The existence of a solution vλ of (7.4), which is actually itself almost
periodic, as well as (8.4) are standard facts in the theory of viscosity solutions.

The fact that, as λ → 0, λv̂λ → 0 uniformly in R
N and, hence, v̂λ is an

approximate corrector, follows similarly to the analogous statements in [22]
and [14], the only difference being that there are no, uniform in λ, Lipschitz
bounds for the vλ’s. This difficulty can be overcome using the facts that, in
view of (8.4), the functions wλ = λvλ are actually uniformly Hölder continu-
ous (write the equation satisfied by wλ and apply the Krylov-Safonov result
about Hölder continuity of solutions to uniformly elliptic pde (see [1])) and,
as λ → 0, ŵλ = λv̂λ → 0 uniformly on compact subsets of R

N . Indeed, in
view of the Hölder continuity, (8.4) and the fact that wλ(0) = 0, the ŵλ’s con-
verge, along subsequences, to bounded solutions of a uniformly elliptic pde
which admits only constants as bounded solutions in the whole space. We
leave the rest of the details to the reader.

Next we discuss (8.5) and the existence of ρ̄. To this end, we remark that,
if v1

λ and v2
λ are the solutions of (8.2) for quadratics P1 and P2 respectively,

then, since F satisfies (2.9), the comparison of viscosity solutions yields

‖λv1
λ − λv2

λ‖ � c̃|P1 − P2|. (8.6)
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The compactness of viscosity solutions and (2.7) and (2.8) imply that the
convergence, as λ → 0, of λv̂λ and λvλ(0) is uniform for |P | � 1. This defines
the modulus ρ̄. Then (8.5) follows by a scaling argument similar to the one
used already in Sect. 2. �

Following the reasoning of the previous section we state

Proposition 8.1 Assume that F satisfies (2.7), (2.8) and (8.1). There exists
a uniform constant δ > 0 and a modulus ρ̄ such that, if uε is the solution of
(7.7) for δ > 0 and P ∈ SN , then

‖uε − P‖ � c(1 + |P |)ρ̄(ε2) in B̄δ(x0). (8.7)

Since (8.7) follows exactly as (7.8), provided we use Lemma 8.1 in place
of Lemma 7.1, we omit the proof and proceed with the

Proof of Theorem 1.3 Looking at the proofs of Theorems 1.1 and 1.2 we see
that it suffices to find δ = δ(ε) → 0 such that, as ε → 0,

δ → 0 and δ−α(δ−σN(1 + δ−σ )2)N ρ̄(ε2) → 0,

a fact which follows for δ = ρ̄β and β ∈ (0,2/α + σN(N + 2)).
The result now follows. �
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Appendix A: Brief review of some basic facts about viscosity solutions
of fully nonlinear elliptic pde

We summarize here (without proofs) a few very basic results about viscosity
solutions of uniformly elliptic equations

F(D2u,x) = 0 in U (A.1)

with F satisfying (2.7) and (2.8) and U a bounded subset of R
N . For proofs

as well as more information we refer to the book by Caffarelli and Cabre [1].
Let M±(P,λ,�) denote the Pucci extremal operators associated with the

uniform ellipticity constants λ and � in (2.7). They are given by

M−(P,λ,�) = M−(P ) = λ
∑
ei>0

ei + �
∑
ei<0

ei
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and

M+(P,λ,�) = M+(P ) = �
∑
i0>0

ei + λ
∑
ei<0

ei,

where ei = ei(P ) are the eigenvalues of P ∈ SN .
Moreover, for f ∈ C(U), let S(λ,�,f ) and S(λ,�,f ) denote the sets of

continuous viscosity subsolutions and supersolutions of M+(D2u,λ,�) �
f in U and M−(D2u,λ,�) � f in U respectively. Also let S(λ,�,f ) =
S(λ,�,f ) ∩ S(λ,�,f ).

It was shown (Proposition 2.13 in [1]) that, if u is a viscosity subsolution
(resp. supersolution) of F(D2u,x) � f in U (resp. F(D2u,x) � f in U ),
then

u ∈ S

(
λ

N
,�,f − F(0, ·)

) (
resp. S

(
λ

N
,�,f − F(0, ·)

))
.

It turns out (see the discussion after the proof of Proposition 2.13 in [1])
that S(λ,�,f ) ∩ C2(U) is the set of C2(U)-functions u for which, for any
x ∈ U , there exists a symmetric A(x) ∈ SN , which may not be continuous
in x, with eigenvalues in [λ,�] such that trA(x)D2u = f . Therefore, roughly
speaking, S(λ,�,f ) is the class of all weak solutions to all uniformly elliptic,
with ellipticity constants λ and �, operators in the nondivergence form

trAD2u = f. (A.2)

Moreover a viscosity solution of F(D2u,x) = f belongs to S( λ
N

,λ,f −
F(0, ·)) and, hence, any results for functions in the classes S is also valid for
fully nonlinear uniformly elliptic equations.

We proceed now with the results we use in this paper. The first concerns
viscosity solutions u1 and u2 of

F(D2u1, x) = f1 in U and F(D2u2, x) = f2 in U.

It is proved in Theorem 5.3 of [1] that

u1 − u2 ∈ S

(
λ

N
,�,f1 − f2

)
,

which, in view of the previous discussion, can be understood as saying that
w = u1 − u2 is a weak solution of

trA(x)D2w = f1 − f2 on U

for some bounded measurable A(·) ∈ SN with ellipticity constants λ and �.
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Next we recall the classical Alexandrov-Bakelman-Pucci estimate proved
in Theorem 3.2 of [1]. Let BR denote an open ball of radius R in R

N . We
have

Theorem A.1 Let u ∈ S(λ,�,f )∩C(BR) with f ∈ C(B̄R), and assume that
u � 0 in ∂BR . Then there exists a universal constant C > 0 such that

sup
BR

u− � CR

(∫
BR∩{u=�u}

(f+)N
)1/N

, (A.3)

where �u is the convex envelop in B2R of u− which is obtained by extending
u to be zero outside BR .

In view of the previous discussion, (A.3) also holds for all nonnegative
continuous supersolutions of (A.1) in U = BR .

The final result we want to recall here is a consequence of the so-called
Fabes-Stroock estimate [12] (see also Corollary B.5 in [5] for another proof).
It was proved originally for solutions of the linear nondivergence form equa-
tion (A.2) with bounded, measurable, uniformly elliptic A ∈ SN . In view of
the previous discussion, however, about linearization it clearly applies also to
solutions of (A.1).

We have:

Theorem A.2 Let u ∈ C(BR) solve (A.2) win BR with u = 0 on ∂BR and
f ∈ C(BR) such that f ∈ [−‖f ‖,0]. There exists uniform constants on C > 0
and M > N such that

u � CR2−M‖f ‖1−M

(∫
BR

|f |N
)M

N

in B 2
3 R

. (A.4)

We conclude remarking although stated for balls, (A.3) and (A.4) also hold
for cubes.
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