
Invent math (2009) 178: 635–654
DOI 10.1007/s00222-009-0208-4

The Alexander-Orbach conjecture holds
in high dimensions

Gady Kozma · Asaf Nachmias

Received: 12 January 2009 / Accepted: 20 June 2009 / Published online: 5 August 2009
© Springer-Verlag 2009

Abstract We examine the incipient infinite cluster (IIC) of critical percolation in regimes
where mean-field behavior has been established, namely when the dimension d is large
enough or when d > 6 and the lattice is sufficiently spread out. We find that random
walk on the IIC exhibits anomalous diffusion with the spectral dimension ds = 4

3 , that is,
pt(x, x) = t−2/3+o(1). This establishes a conjecture of Alexander and Orbach (J. Phys. Lett.
(Paris) 43:625–631, 1982). En route we calculate the one-arm exponent with respect to the
intrinsic distance.

1 Introduction

We study the behavior of the simple random walk on the incipient infinite cluster (IIC) of
critical percolation on Z

d . The IIC is a random infinite connected graph containing the origin
which can be thought of as a critical cluster conditioned to be infinite (see formal definition
in Sect. 1.2 and in particular (1.3)). The spectral dimension ds of an infinite connected graph
G is defined by

ds = ds(G) = −2 lim
n→∞

log p2n(x, x)

logn
(if this limit exists),

where x ∈ G and pn(x, x) is the return probability of the simple random walk on G after
n steps (note that if the limit exists, then it is independent of the choice of x). Alexander
and Orbach [4] conjectured that ds = 4/3 for the IIC in all dimensions d > 1, but their basis
for conjecturing this in low dimensions was mostly rough correspondence with numerical
results and it is now believed that the conjecture is false when d < 6 [30, 7.4]. In this paper
we establish their conjecture in high dimensions.
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Theorem 1.1 Let PIIC be the IIC measure of critical percolation on Z
d with large d (d ≥ 19

suffices) or with d > 6 and sufficiently spread-out lattice and consider the simple random
walk on the IIC. Then PIIC-a.s.

lim
n→∞

log p2n(0,0)

logn
= −2

3
, lim

r→∞
log Eτr

log r
= 3, lim

n→∞
log |Wn|

logn
= 2

3
a.s.,

where τr is the hitting time of distance r from the origin (the expectation E is only over the
randomness of the walk) and Wn is the range of the random walk after n steps.

Our main contribution is the analysis of the geometry of the IIC. The IIC admits fractal
geometry which is dramatically different from the one of the infinite component of super-
critical percolation. The latter behaves in many ways as Z

d after a “renormalization” i.e. ig-
noring the local structure [22] (see also [21] for a comprehensive exposition). In particular,
the random walk on the supercritical infinite cluster has an invariance principle, the spectral
dimension is ds = d and other Z

d -like properties hold, see [5, 13, 14, 18, 38, 48].
Our analysis establishes that balls of radius r in the IIC typically have volume of order r2

and that the effective resistance between the center of the ball and its boundary is of order r .
These facts alone suffice to control the behavior of the random walk and yield Theorem 1.1,
as shown by Barlow, Járai, Kumagai and Slade [11]. The key ingredient of our proofs is
establishing that the critical exponents dealing with the intrinsic metric (i.e., the metric of
the percolated graph) attain their mean-field values. It was demonstrated first in the work of
Nachmias and Peres [40] that these exponents yield analogous statements to the Alexander-
Orbach conjecture in the finite graph setting. In particular, in [40], the diameter and mixing
time of critical clusters in mean-field percolation on finite graphs were analyzed.

In different settings the Alexander-Orbach conjecture was proved by various authors.
When the underlying graph is an infinite regular tree, this was proved by Kesten [32] and
Barlow and Kumagai [9] and in the setting of oriented spread-out percolation with d > 6,
this was proved recently in the aforementioned paper [11].

1.1 Anomalous diffusion

The fact that ds = 4/3 should best be contrasted against another natural definition of dimen-
sion, and that is the volume growth exponent df defined, for any infinite connected graph G

by

df = lim
r→∞

log |BG(x, r)|
log r

(if the limit exists),

where BG(x, r) is the ball, in the shortest-path metric with center x and radius r , and
|BG(x, r)| is its volume, i.e. the number of vertices of the graph in it. The volume growth
exponent is the graph analog of the Hausdorff dimension. For the IIC this limit exists and is
equal to 2 for all x (Theorems 1.2 and 1.3 below). Hence we have two natural notions of di-
mension which give different answers. For comparison, for Z

d we have df = ds = d . More
generally, for any Cayley graph df = ds (indeed, Gromov’s celebrated result [23] shows
that df exists and is integer for any Cayley graph, and then Theorem 5.1 in [28] shows that
df = ds ) and there are other rich families which satisfy this. To understand the discrepancy,
we need to understand anomalous diffusion.

Anomalous diffusion is the phenomenon that for many natural fractals, or more pre-
cisely, graphical analogs of fractals, random walk on the fractal is significantly slower than
in Euclidean space. In particular, while we expect a random walker on Z

d to be at distance
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Fig. 1 A portion of the graphical Sierpinski gasket

t1/2 at time t , on a fractal we find it in distance t1/β where β ≥ 2 and often the inequality
is strict.1 In fact, we now know that any value of β between 2 and df + 1 may appear [6].
This phenomenon was first observed by physicists in the context of disordered media [4,
44] i.e. in our context. Correspondingly, the first mathematical results are Kesten’s [32] who
analyzed random walk on the IIC in Z

2 and on an infinite regular tree. For the IIC on a
tree Kesten’s results are complete and he shows that β = 3. On the IIC in two dimensions,
Kesten showed that the expected distance of the random walk from the origin after t steps is
at most t1/2−ε for some ε > 0, hence β > 2 if it exists. Despite the great progress seen since
on critical two-dimensional percolation, the exact value of β in this case is still unknown.

The attention of the mathematical community then shifted to regular fractals. The first to
be analyzed were finitely ramified fractals, namely fractals that can be disconnected by the
removal of a constant number of points in any scale. For example, arbitrarily large portions
of the Sierpinski gasket (Fig. 1) can be disconnected by the removal of 3 points. In these
cases β can be calculated explicitly, for example for the Sierpinski gasket β = log 5/ log 2
[10]. A significant step forward was done by Barlow and Bass [7, 8] who showed that on any
generalized Sierpinski carpet β is well defined, and the random walk exhibits many regular-
ity properties analogous to those of random walk on Z

d , mutatis mutandis. Unfortunately,
these techniques do not allow to calculate β for many natural examples, and this remains a
significant open problem.

For sufficiently “well-behaved” G we expect that β = 2df /ds . Heuristically this is easy
to understand since if the random walk reaches a distance of ≈ r = t1/β it should see ≈ rdf =
tdf /β points and assuming homogeneity we should have pt (0,0) ≈ t−df /β . This explains the
connection between the various “exponents” in Theorem 1.1. Among the results of Barlow
and Bass [7, 8] is the proof that indeed β = 2df /ds for any generalized Sierpinski carpet.

1.2 Percolation

Bond percolation on a graph G with parameter p ∈ [0,1] is a probability measure Pp on
random subgraph of the G obtained by retaining each edge independently with probability
p and deleting it otherwise. Edges retained are called open and edges deleted are called
closed. The graphs that interest us most are lattices in R

d , in particular Z
d , and regular trees.

1β is sometimes called the “walk dimension” and denoted by dw .
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It is well known that this model exhibits a phase transition, that is, there exists a critical
probability pc(Z

d) ∈ [0,1] such that for all p > pc almost surely there exists an infinite
connected cluster, and for any p < pc almost surely all clusters are finite. Percolation at pc is
called critical percolation. The subcritical and supercritical cases are understood quite well,
and in neither case is it reasonable to call the resulting graphs “fractals”. The subcritical case
consists of finite clusters with exponential tail on their size [2, 39]. The supercritical case, as
mentioned before, behaves in many ways as a perturbed version of Z

d and most interesting
quantities behave the same as on Z

d . For instance, df = d , β = 2, and ds = d . The structure
of the resulting graph in critical percolation, however, is dramatically different.

It is widely believed that critical percolation does not exhibit an infinite cluster almost
surely. This has been established only for the case d = 2 by Kesten [31] and for sufficiently
large d by Hara and Slade [25]. Proving it for all d is considered one of the most challenging
problems in probability theory. Nevertheless, for all d > 1 it is known that in any scale there
are clusters comparable to the scale [1, Theorem 1], and it is conjectured that they have
fractal-like properties. Hence the natural question arises: what is the corresponding spectral
dimension ds? As already mentioned, there is a significant difference between low and high
dimensions. Let us therefore spend a little effort on the difference between “low” and “high”
dimensions in percolation.

Many models in mathematical physics exhibit an upper critical dimension and for per-
colation this happens at d = 6. The picture, as developed by physicists, is that for d > 6
the space is so vast that different pieces of the critical cluster no longer interact. The effect
of this is that the geometry “trivializes” and for most questions the answer would be as for
percolation on an infinite regular tree. This is also known as mean-field behavior. Aspects of
this picture were confirmed rigorously but with one important caveat. The technique used,
lace expansion, is perturbative and hence requires one of the following to hold:

• The dimension d should be large enough (d ≥ 19 seems to be the limit of current tech-
niques).

• The dimension should satisfy d > 6 but the lattice needs to be sufficiently spread out. For
example, one may take some L sufficiently large and put an edge between every x, y ∈ Z

d

with |x − y| ≤ L.

Credit for these remarkable results goes to Hara and Slade [25]. For d < 6 it has been proved
that percolation cannot attain mean-field behavior [17]. Specifically, Hara and Slade proved
the that for these lattices the triangle condition holds. The triangle condition, suggested as
an indicator of mean-field behavior by Aizenman and Newman [3] is

∑

x,y∈Zd

Ppc (0 ↔ x)Ppc (x ↔ y)Ppc (0 ↔ y) < ∞ (1.1)

where x ↔ y denotes the event that x is connected to y by an open path (for simplicity we
assume that the set of vertices of the lattice is always Z

d and denote the set of edges by
E(Zd)). To see how to analyze the behavior of critical and near-critical percolation using
the triangle condition, see [3, 12, 42]

A slightly different approach to mean-field behavior is via the two-point function i.e. the
probability that x is connected to y by an open path. It has the estimate, for all x, y ∈ Z

d ,

Ppc (x ↔ y) ≈ |x − y|2−d , (1.2)

where ≈ means that the ratio of the quantities on the left and on the right is bounded by two
constants depending only on d and L. Here and below we abuse notation by considering
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that 02−d = 1. A simple calculation shows that, when d > 6, (1.2) implies (1.1) hence the
assumption on the two-point function is stronger. It was obtained using the lace expansion
by Hara, van der Hofstad and Slade [27] for the spread-out model and d > 6, and by Hara
[24] for the nearest-neighbor model with d ≥ 19 (in fact, they obtained the right asymptotic
behavior of (1.2), including the constant).

At present there is no known lattice in R
d for which the triangle condition is known and

the two-point function is unknown (or false). Nevertheless, We believe that there is value
in noting which results require the (formally) stronger two-point function estimate (1.2)
and which require only the triangle condition. Reasons to keep this distinction come from
the fields of long-range percolation [12, 29] and of percolation on general transitive graphs
[46, 47]. In both cases the triangle condition makes more sense and was proved in many
interesting examples. We will not dwell on these topics in this paper, but in general we
believe that any result we prove only using the triangle condition should hold (perhaps with
minor modifications) for long-range percolation and for percolation on unimodular transitive
graphs.

Returning to the Alexander-Orbach conjecture, our aim is to study random walk on
a typical large cluster. The term incipient infinite cluster was coined by Kesten, borrow-
ing a vaguely-defined term from the physics literature. His approach in [33] for the two-
dimensional case is to fix some integer n, to condition on the event 0 ↔ ∂[−n,n]2 and then
take n → ∞. In this paper we take the approach suggested by van der Hofstad and Járai
[51], and that is to fix some arbitrary far point x, condition on the event 0 ↔ x, and then
take x → ∞. For both approaches one still needs to show that the limit exists. This was
done in [33] for the case d = 2, in [51] for large d as above and in [52] for the oriented
percolation model with d > 4.

Formally, we endow the space of all configurations {0,1}E(Zd ) with the product topol-
ogy (recall that E(Zd) is the set of edges of our lattice). We consider the conditional mea-
sures given 0 ↔ x and finally, the IIC is the limit as x → ∞ in the space of measures
M

({0,1}E(Zd )
)

with the weak topology. Put differently, for any cylinder event F (i.e., an
event that can be determined by observing the status of a finite number of edges) we have

PIIC(F ) = lim
|x|→∞

Ppc (F | 0 ↔ x), (1.3)

where pc = pc(Z
d) is the percolation critical probability. The convergence of the limit in

the right-hand side, independently on how x → ∞, is proved in [51] for d large using the
lace expansion. We note in passing that the existence of the limit is not relevant for our
arguments. Indeed, even if the limit would not exist, subsequence limits would exist due to
compactness, and our results would hold for each one. Thus the conclusions of Theorem 1.1
hold for any lattice in R

d with d > 6 for which the two-point function estimate (1.2) holds,
and for any IIC measure (i.e. any subsequence limit as above).

1.3 Intrinsic metric critical exponents

The key ingredient in our proofs is showing that the intrinsic metric critical exponents de-
fined below assume their mean-field values in high dimensions.

Let G be a graph and write Gp for the result of p-bond percolation on it. Write dGp (x, y)

for the length of the shortest path between x and y in Gp , or ∞ if there is no such path. We
call d the intrinsic metric on Gp—other names in the literature include the graph metric, the
shortest-path metric and even the chemical distance. From this point on, we always perform
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critical percolation with p = pc = pc(Z
d). Define the random sets

B(x, r;G) = {u : dGpc
(x,u) ≤ r},

∂B(x, r;G) = {u : dGpc
(x,u) = r}.

It will be occasionally important to take some G ⊂ E(Zd) and sample pc(Z
d)-percolation

on G. Be careful not to confuse the notation B(x, r;G) which refers to a random ball
in the percolation on G with BG(x, r) which is just the (deterministic) ball in G. In fact
B(x, r;G) = BG

pc(Zd )
(x, r).

We usually take G to be Z
d , and in this case it would be suppressed from the notation.

Our most frequent notation is B(x, r) which stands for B(x, r;Z
d).

Define now the event

H(r;G) = {∂B(0, r;G) 
= ∅},
and finally define

�(r) = sup
G⊂E(Zd )

P(H(r;G)).

Note again that we define � by the maximum over all subgraphs of Z
d , but each one is

“tested” with the pc of Z
d rather than with its own pc .

Theorem 1.2 For any lattice Z
d with d > 6 satisfying the triangle condition (1.1), there

exists a constant C > 0 such that:

(i) E|B(0, r)| ≤ Cr

(ii) �(r) ≤ C
r

.

In particular, P(H(r)) ≤ C/r .

The corresponding lower bounds to Theorem 1.2 are much easier to prove and are not
needed for the proof of Theorem 1.1. We state them for the sake of completeness.

Theorem 1.3 For any lattice Z
d with d > 6 satisfying the two-point function estimate (1.2),

there exists a constant c > 0 such that:

(1) E|B(0, r)| ≥ cr ,
(2) P(H(r)) ≥ c

r
.

The extrinsic metric corresponds to the shortest-path metric in Z
d while the intrinsic

metric corresponds to the (random) shortest-path metric in the percolated graph Z
d
p . The

classical one-arm critical exponent ρ > 0 describes the power law decay of the probability
that the origin is connected to sphere of radius r in the extrinsic metric, that is

P(∃x with |x| = r such that 0 ↔ x) = r−1/ρ+o(1),

where |x| denotes the usual Euclidean norm. This exponent takes the value 48/5 in the two-
dimensional triangular grid, as shown by Lawler, Schramm and Werner [37] and Smirnov
[49]. In the case of an infinite regular tree we have ρ = 1 by a Theorem of Kolmogorov
[34] (here the critical probability is pc = 1

�−1 , where � is the vertex degree of the tree). In
high dimensions it was conjectured that ρ = 1/2 (see [45] and the upcoming paper [35] for
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a proof)—a surprising belief at first, since we expect critical exponents in high dimensions
to take the same value they do on a tree.

Measuring distance with respect to the intrinsic metric offers a simple explanation of
this discrepancy. Indeed, as the extrinsic and intrinsic metrics on the tree are the same, we
have that on a tree P(H(r)) ≈ r−1 and by Theorem 1.2 above we learn that this is the same
order in the high-dimension lattices. Similar results exist for critical Erdős-Rényi random
graphs [20].

1.4 About the proof

From the point of view of analysis of fractals, the IIC is one of the simplest cases to handle
because of its tree-like structure. Indeed, the main difficulty is the proof of Theorem 1.2.
Once that is proved the proof proceeds roughly as follows. Write BIIC(0, r) and ∂BIIC(0, r)

for the corresponding shortest-path metric balls in the IIC. Firstly, since �(r) ≤ r−1 and
E|B(0, r)| ≈ r we learn that |BIIC(0, r)| ≈ r2. Secondly, the intrinsic metric exponents
show that there are ≥ cr “approximately pivotal” edges—λ-lanes in the language of [40]—
between 0 and ∂B(0, r) (Lemma 2.6) and therefore the electric resistance Reff between 0
and ∂BIIC(0, r) is ≈ r . We conclude that BIIC(0, r) is a graph on approximately r2 vertices
with effective resistance between 0 and ∂BIIC(0, r) of order r—the same structure a critical
branching process conditioned to survive to level r has with high probability.

Now, there are many ways to connect electric resistance and volume estimates to hitting
times, and in fact we simply quote a perfectly-tailored-for-our-needs result from [11] which
concludes the proof of the theorem. However, let us briefly describe a somewhat different
but very natural approach. It starts with the fact [16] that, in any finite graph G, and for any
two vertices x and y,

Hit(x, y) + Hit(y, x) = 2Reff(x, y) · |E(G)|
where Hit(x, y) is the expected hitting time from x to y (or in other words, the left hand side
is the expected commute time between x and y). Since in our case |E(G)| ≈ r2 we get that
the commute time is ≈ r3. Now, in general the commute time only bounds the hitting time
Hit(0, ∂BIIC(0, r)) from above, but in strongly recurrent graphs this turns out to be sharp
[36]. Thus, in time r3 the random walk has walked only in BIIC(0, r) and it can be shown
that the end point is approximately uniformly distributed (the walk has mixed in BIIC(0, r)

in that time). Since |BIIC(0, r)| ≈ r2 we get that pr3(0,0) = r−2, as required. The details of
this approach are described in the setting of finite graphs in [40] and can be adapted to this
case as well.

A natural approach towards the proof of the volume growth exponent (part (i) of
Theorem 1.2) is to show that E|∂B(0,2r)| ≥ c(E|∂B(0, r)|)2 which would show that if
E|∂B(0, r)| is too large for some r , it will start exploding, leading to a contradiction. We
were not able to pull this approach directly—∂B(0, r) is hard to analyze—our substitute is
to show that E|B(0,2r)| ≥ (c/r)(E|B(0, r)|)2. This can be proved using relatively standard
“inverse BK inequalities” and the same argument then applies.

The proof of the one-arm exponent (part (ii) of Theorem 1.2) uses the precise determina-
tion of the exponent δ by Barsky and Aizenman [12], which allows us to use a regeneration
argument to show, roughly, that �(r) ≤ r(�(r/4))2 + C/r (the second term comes from the
results of [12]), from which the estimate follows by induction. The lengths of the proofs of
both pieces are equivalent, which might hide the fact that the proof of the one-arm exponent
was much harder for us to obtain.
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A final note is due about the use of �(r). It would have been more natural to discuss
only P(H(r)) rather than �(r). However, we need to use a regeneration argument. Basically
we claim that, once you reached a certain level r , each vertex v ∈ ∂B(0, r) has probability
≤ �(s) to “reach” to ∂B(0, r + s). Heuristically, one would assume that it would work even
with H(s), because the part of the cluster you already “explored”, B(0, r) only makes it
more difficult to reach the level r + s. The problem is that H(r) is not a monotone event. In
general, if you have a graph G satisfying ∂BG(0, r) = ∅ and you remove an edge, it could
increase the distance to some vertex v, pushing it outside of BG(0, r), and restoring the event
∂BG(0, r) 
= ∅. Hence it is not possible to use the regeneration argument with H(r)—there
is simply no inequality in either direction relating P(H(r)) with the conditional probability
of H(r) given some partial configuration of edges. The use of �(r) helps us circumvent this
problem. See the proofs of Lemma 2.6 and of part (ii) of Theorem 1.2.

1.5 Organization and notation

In Sect. 2 we show how the intrinsic metric critical exponents (Theorem 1.2), together with
(1.2) yield our main result, Theorem 1.1. In Sect. 3 we derive the mean-field estimates of
Theorems 1.2 and 1.3.

For x, y ∈ Z
d we write x ↔ y for the event that x is connected to y by an open path. We

write x
r↔ y if there is an open path of length ≤ r connecting x and y. In order to improve

readability, we denote constants which depend only on d and the lattice by C (to denote
a large constant) and c (to denote a small constant) and as we do not attempt to optimize
these constants we frequently use the same notation to indicate different constants. For two
monotone events of percolation A and B we write A ◦ B for the event that A and B occurs
in disjoint edges and we often use the van den Berg and Kesten inequality (BK for short)
P(A ◦ B) ≤ P(A)P(B) (see [21, 50] or [15] for more details).

2 Deriving the Alexander-Orbach conjecture from Theorem 1.2

In this entire section we assume the two-point function estimate (1.2) and Theorem 1.2. We
will use results of Barlow, Járai, Kumagai and Slade [11] which are stated for random graphs
and hence are perfectly suited for our case. It is interesting to note that log log fluctuations
really do exist, and hence any result for fixed graphs will naturally be somewhat imprecise.
To state the results of [11], we need the following definitions. Given an instance of the IIC
(that is, an infinite connected graph containing the origin) write BIIC(0, r) and ∂BIIC(0, r)

for the ball of radius r around 0 and the boundary of the ball, respectively, in the shortest
path metric on the IIC. Denote by Reff(0, ∂BIIC(0, r)) the effective resistance between 0
and ∂BIIC(0, r) when one considers BIIC(0, r) as an electric network and gives each edge a
resistance of 1—see [19] for a formal definition. For λ > 1 we write J (λ) for the set of r’s
for which the following conditions hold:

(1) λ−1r2 ≤ |BIIC(0, r)| ≤ λr2,
(2) Reff(0, ∂BIIC(0, r)) ≥ λ−1r .

Theorems 1.5 and 1.6 of [11] relate the information of volume and effective resistance
growth to the behavior of random walks. They can be stated as follows.

Theorem 2.1 [11] If there exist some constants K,q > 0 such that for any large enough r

we have

PIIC(r ∈ J (λ)) ≥ 1 − Kλ−q, (2.1)

then the conclusions of Theorem 1.1 hold.
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We begin with some lemmas leading to the fact that condition (2.1) holds in our setting.
We start with some volume estimates.

Lemma 2.2 For any lattice Z
d with d > 6 satisfying (1.2), there exists a constant C > 0

such that for any integer r ≥ 1 and any x ∈ G with |x| sufficiently large we have

E
[|B(0, r)| · 1{0↔x}

] ≤ Cr2|x|2−d .

Here and below “|x| sufficiently large” means essentially that |x| > 4Lr where L is the
length of the longest edge in E(Zd). This point will not play any role, though.

Proof of Lemma 2.2 We have

E
[|B(0, r)| · 1{0↔x}

] =
∑

z∈Zd

P(0
r↔ z, 0 ↔ x).

If 0
r↔ z and 0 ↔ x, then there must exist some y such that the events 0

r↔ y, y
r↔ z and

y ↔ x occur disjointly. So

E
[|B(0, r)| · 1{0↔x}

] =
∑

z

P(0
r↔ z,0 ↔ x)

≤
∑

z,y

P({0 r↔ y} ◦ {y r↔ z} ◦ {y ↔ x})

and applying the BK inequality twice,

≤
∑

z,y

P(0
r↔ y)P(y

r↔ z)P(y ↔ x)

which by (1.2) and the fact that |x − y| ≥ |x|/2 when x is sufficiently large

≤ C|x|2−d
∑

z,y

P(0
r↔ y)P(y

r↔ z).

We now use part (i) of Theorem 1.2 to sum, first over z and then over y. We get

≤ Cr|x|2−d
∑

y

P(0
r↔ y) ≤ Cr2|x|2−d .

�

Lemma 2.3 For any lattice Z
d with d > 6 satisfying (1.2), there exists a constant C > 0

such that for any r ≥ 1, any ε < 1 and any x ∈ Z
d with |x| sufficiently large we have that

P
(|B(0, r)| ≤ εr2, 0 ↔ x

) ≤ Cε|x|2−d .

Proof If |B(0, r)| ≤ εr2 then there must exists a (random) level j ∈ [r/2, r] in which
|∂B(0, j)| ≤ 2εr . Fix the smallest such j . Now, if 0 ↔ x then there must be some ver-
tex y ∈ ∂B(0, j) which is connected to x “off B(0, j − 1)” i.e. with a path that does not
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use any of the vertices in B(0, j − 1). Let therefore A be some subgraph of Z
d which is

“admissible” for being B(0, j) i.e. P(B(0, j) = A) > 0. We get

P(0 ↔ x | B(0, j) = A) ≤
∑

y∈∂A

P(y ↔ x off A \ ∂A | B(0, j) = A)

where ∂A stands for the vertices in the graph A furthest from 0. A moment’s reflection
shows that, for any A and any y ∈ ∂A, the event {y ↔ x off A \ ∂A} is independent of the
event {B(0, j) = A}. Therefore we can write

P(0 ↔ x | B(0, j) = A) ≤
∑

y∈∂A

P(y ↔ x off A \ ∂A)

≤
∑

y∈∂A

P(y ↔ x) ≤ C|∂A||x|2−d

where the last inequality uses the two-point function estimate (1.2) and the fact that |x−y| ≥
|x|/2. By the definition of j we have |∂A| ≤ 2εr and summing over all admissible A gives

P(|B(0, r)| ≤ εr2,0 ↔ x) ≤ Cεr|x|2−d ·
∑

A

P(B(0, j) = A).

However, the events B(0, j) = A1 and B(0, j) = A2 are disjoint and the union of these over
all A imply that ∂B(0, 1

2 r) 
= ∅. Part (ii) of Theorem 1.2 shows that the probability of this
union is ≤ C/r , finishing our lemma. �

We continue with some effective resistance estimates. Recall the following definitions
from [40]:

• An edge e between ∂B(0, j − 1) and ∂B(0, j) is called a lane for r if there is a path with
initial edge e from ∂B(0, j − 1) to ∂B(0, r) that does not return to ∂B(0, j − 1).

• Say that a level j (with 0 < j < r) has λ lanes for r if there are at least λ edges between
∂B(0, j − 1) and ∂B(0, j) which are lanes for r .

• We say that 0 is λ-lane rich for r , if more than half of the levels j ∈ [r/4, r/2] have λ

lanes for r .

Recall also the Nash-Williams [41] inequality (see also [43, Corollary 9.2]).

Lemma 2.4 [41] If {�j }J
j=1 are disjoint cut-sets separating v from U in a graph with unit

conductance for each edge, then the effective resistance from v to U satisfies

Reff(v ↔ U) ≥
J∑

j=1

1

|�j | .

Lemma 2.5 For any lattice Z
d with d > 6 satisfying (1.2), there exists a constant C > 0

such that for any r ≥ 1, for any event E measurable with respect to B(0, r) and for any
x ∈ Z

d with |x| sufficiently large,

P(E ∩ {0 ↔ x}) ≤ C
√

rP(E) |x|2−d .



The Alexander-Orbach conjecture holds in high dimensions 645

Proof We first note that by Lemma 2.2 there exists some j ∈ [r,2r] such that

E
[|∂B(0, j)| · 1{0↔x}

] ≤ Cr|x|2−d . (2.2)

Now fix some M > 0 (which we shall optimize in the end) and write

P(E ∩ {0 ↔ x}) ≤ P(|∂B(0, j)| > M, 0 ↔ x)P(E ∩ {|∂B(0, j)| ≤ M,0 ↔ x}).
Now, for the first term we use (2.2) and Markov’s inequality and get

P(|∂B(0, j)| > M, 0 ↔ x) ≤ Cr|x|2−d

M
.

For the second term we do as in Lemma 2.3. We condition over B(0, j) and note that for
any A we have

P(0 ↔ x | B(0, j) = A) ≤ C|∂A||x|2−d ≤ CM|x|2−d .

Summing over all subgraphs A which satisfy E (here is where we use that E is measurable
with respect to B(0, r)) gives that the second term is ≤ P(E) · CM|x|2−d . Summing both
terms we get

P(E ∩ {0 ↔ x}) ≤ Cr|x|2−d

M
+ CP(E)M|x|2−d .

Taking M = √
r/P(E) proves the lemma. �

Lemma 2.6 For any lattice Z
d with d > 6 satisfying (1.2), there exists a constant C > 0

such for any r ≥ 1, any λ > 1 and any x ∈ Z
d with |x| sufficiently large we have that

P
(
Reff(0, ∂B(0, r)) ≤ λ−1r, 0 ↔ x

) ≤ Cλ−1/2|x|2−d .

Proof Let j ∈ [r/4, r/2] and denote by Lj the number of lanes between ∂B(0, j − 1)

and ∂B(0, j). Let us condition on B(0, j) and take some edge between ∂B(0, j − 1) and
∂B(0, j). Denote the end vertex of this edge in ∂B(0, j) by v. The event that the edge is a
lane for r implies that we have ∂B(v, r/2;G) 
= ∅ in the graph G that one gets by removing
all edges which are needed to calculate B(0, j), that is, all the edges with at least one vertex
in B(0, j − 1). Thus, conditioned on B(0, j), the event we are interested in is

∂B(v, r/2;G) 
= ∅.

By the definition of � (with the G from the definition of � being our G) and translation
invariance we get that

P(∂B(v, r/2;G) 
= ∅ | B(0, j)) ≤ �(r/2)

which by part (ii) of Theorem 1.2 is ≤ C/r . In total we get

E[Lj | B(0, j)] ≤ C

r
|∂B(0, j)|.

This together with part (i) of Theorem 1.2 implies that the expected number of lanes in
B(0, r/2) \ B(0, r/4) is at most a constant C. We learn that the probability that 0 is λ-lane
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rich is at most Cλ−1r−1. Observe that Lemma 2.4 implies that if 0 is not λ-lane rich, then
Reff(0, ∂B(0, r)) ≥ cλ−1r and hence

P
(
Reff(0, ∂B(0, r)) ≤ λ−1r

) ≤ Cλ−1r−1

(where if ∂B(0, r) = ∅ then we consider the resistance to be ∞). An appeal to Lemma 2.5
and we are done. �

Proof of Theorem 1.1 By Theorem 2.1 it suffices to show that (2.1) holds. Indeed, fix r ≥ 1
and x ∈ Z

d with |x| sufficiently large. Markov’s inequality with Lemma 2.2 and the lower
bound for the two-point function (1.2) shows that

P
(|B(0, r)| ≥ λr2 | 0 ↔ x

) ≤ Cλ−1.

Lemmas 2.3 and 2.6 show that

P
(|B(0, r)| ≤ λ−1r2 | 0 ↔ x

) ≤ Cλ−1,

and

P
(
Reff(0, ∂B(0, r)) ≤ λ−1r | 0 ↔ x

) ≤ Cλ−1/2 .

Taking the limit as |x| → ∞ shows that (2.1) holds with constants K = 3C and q = 1/2,
concluding the proof. �

3 Intrinsic metric critical exponents

In this section we prove Theorem 1.2. Our assumption on the lattice is therefore that it
satisfies the triangle condition (1.1). In effect we will be using a variation known as the open
triangle condition

lim
K→∞

sup
w:|w|≥K

P(0 ↔ x)P(x ↔ y)P(y ↔ w) = 0. (3.1)

For Z
d the triangle condition implies the open triangle condition—see [12, Lemma 2.1].

Hence, from now on we will only use (3.1).

3.1 Intrinsic metric volume exponent

Here we prove part (i) of Theorem 1.2. We use the notation

G(r) = E|B(0, r)|.

The main part of the proof is the following lemma.

Lemma 3.1 Under the setting of Theorem 1.2, there exists a constant c1 > 0 such that for
all r

G(2r) ≥ c1G(r)2

r
.
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Let us first see how to use Lemma 3.1.

Proof of part (i) of Theorem 1.2 Assume without loss of generality that c1 < 1 in Lemma
3.1 and take C1 > max{(2/c1),2d}. Assume by contradiction that there exists r0 such that
G(r0) ≥ C1r0. Under this assumption we prove by induction that for any integer k ≥ 0 we
have G(2kr0) ≥ Ck+1

1 r0. The case k = 0 is our assumption, and Lemma 3.1 gives that

G(2k+1r0) ≥ c1G(2kr0)
2

2kr0
≥ Ck+2

1 r0,

where in the last inequality we used the induction hypothesis and the fact that C1 > 2/c1.
This completes our induction.

Now, since the number of vertices of distance r from the origin is at most Crd for some
constant C which depends on d and on the lattice, but not on r , we get that for any integer
k ≥ 0

C(2kr0)
d ≥ G(2kr0) ≥ Ck+1

1 r0,

and since C1 > 2d we arrive at a contradiction (for some k sufficiently large) which proves
the upper bound on G(r). �

The next lemma is used in the proof of Lemma 3.1.

Lemma 3.2 There exists some constant c > 0 such that
∑

x,y∈Zd

P
({0 r↔ x} ◦ {x r↔ y}) ≥ cG(r)2.

Proof By translation invariance of Z
d it suffices to prove that

∑

x,y∈Zd

P
({0 r↔ x} ◦ {0 r↔ y}) ≥ cG(r)2.

The proof requires that we separate slightly the starting points of the two paths. Hence we
shall prove that there exists some K > 0 such that if u,v ∈ Z

d satisfy |u − v| ≥ K , then

∑

x,y∈Zd

P
({u r−K←→ x} ◦ {v r−K←→ y}) ≥ 1

2
G(r − K)2. (3.2)

Assuming this, we will then take u,v to be antipodal vertices on the sphere of radius K (in
the usual norm) of Z

d so that |u − v| ≥ K . To see that the assertion of the lemma follows

from the above claim, notice that if it occurs that {u r−K←→ x} ◦ {v r−K←→ y}, then by changing
the status of edges from closed to open only in the ball B(0,K) we can make the configu-
ration belong to the event {0 r↔ x} ◦ {0 r↔ y}. We deduce that there exists some c(K) > 0
such that

P
(
{0 r↔ x} ◦ {0 r↔ y}

)
≥ c(K)P

(
{u r−K←→ x} ◦ {v r−K←→ y}

)
,

and so by (3.2)
∑

x,y∈Zd

P
(
{0 r↔ x} ◦ {0 r↔ y}

)
≥ c(K)

2
G(r − K)2.
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And it is clear that G(r) ≤ CKdG(r − K) and the assertion of the lemma follows, if only
K can be chosen independently of r .

We proceed to prove (3.2). For any u,v ∈ Z
d and an integer � > 0 (later we put � = r−K)

we have

P
({u �↔ x} ◦ {v �↔ y}) ≥ P

(
u

�↔ x and v
�↔ y and C(u) 
= C(v)

)
,

where C(u) and C(v) denote the connected components containing u and v, respectively. By
conditioning on C(u) we get that the right hand side equals

∑

A⊂E(Zd )

u
�↔x,u�v in A

P(C(u) = A)P
(
v

�↔ y | C(u) = A
)
.

Note that for A such that u � v in A we have P({v �↔ y} | C(u) = A) = P(v
�↔ y off A)

where the event {v �↔ y off A} again means that there exists an open path of length at most �

connecting v to y which avoids the vertices of A. At this point we can remove the condition

that u � v in A since in this case the event {v �↔ y off A} is empty. We get

P
({u �↔ x} ◦ {v �↔ y}) ≥

∑

A⊂E(Zd )

u
�↔x in A

P(C(u) = A)P
(
v

�↔ y off A
)
. (3.3)

Now, since

P(u
�↔ x)P(v

�↔ y) =
∑

A⊂E(Zd )

u
�↔x in A

P(C(u) = A)P({v �↔ y}),

we deduce by (3.3) that

P
({u �↔ x} ◦ {v �↔ y})

≥ P(u
�↔ x)P(v

�↔ y) −
∑

A⊂E(Zd )

u
�↔x in A

P(C(u) = A)P
(
v

�↔ y only on A
)
, (3.4)

where the event {v �↔ y onlyon A} means that there exists an open path between v and y of
length at most � and any such path must have a vertex in A. For any A ⊂ Z

d we have

P
(
v

�↔ y only on A
) ≤

∑

z∈A

P
({v ↔ z} ◦ {z �↔ y}).

Putting this into the second term of the right hand side of (3.4) and changing the order of
summation gives that we can bound this term from above by

∑

z∈Zd

P
(
u

�↔ x, u ↔ z
)
P
({v ↔ z} ◦ {z �↔ y}).
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Fig. 2 The couple (x, y) is
over-counted

If u
�↔ x and u ↔ z then there exists z′ such that the events u ↔ z′ and z′ ↔ z and z′ �↔ x

occur disjointly. Using the BK inequality we bound this sum above by

∑

z,z′∈Zd

P(u ↔ z′)P(z′ ↔ z)P(z′ �↔ x)P(v ↔ z)P(z
�↔ y).

We sum this over x and y and use (3.4) to get that

∑

x,y∈Zd

P
({u �↔ x} ◦ {v �↔ y}) ≥ G(�)2 − G(�)2

∑

z,z′∈Zd

P(u ↔ z′)P(z′ ↔ z)P(z ↔ v).

Since |u − v| ≥ K , by the open triangle condition (3.1) we can take K large enough (inde-
pendently of r) so that

∑

z,z′∈Zd

P(v ↔ z)P(z ↔ z′)P(z′ ↔ u) ≤ 1

2
,

which immediately yields (3.2) and concludes our proof. �

Proof of Lemma 3.1 We start with a definition. For an integer K > 0 we say two vertices
x, y ∈ Z

d are K-over-counted if there exists u,v ∈ Z
d with |u − x| ≥ K and |v − x| ≥ K

such that

{0 r↔ u} ◦ {v ↔ x} ◦ {x ↔ u} ◦ {u ↔ v} ◦ {v r↔ y},
see Fig. 2. Denote by N(K) the quantity

N(K) =
∣∣∣
{
(x, y) : {0 r↔ x} ◦ {x r↔ y} and (x, y) are not K-over-counted

}∣∣∣.

We claim that

N(K) ≤ CKd · 2r|B(0,2r)|. (3.5)

Indeed, this deterministic claim follows by observing that if y ∈ B(0,2r) and γ is an open
simple path of length at most 2r connecting 0 to y, then for any x ∈ Z

d of distance at least K

from γ (i.e., x is of distance at least K from every vertex of γ ) satisfying {0 r↔ x} ◦ {x r↔ y}
the pair (x, y) is K-over-counted. To see this, let γ1 and γ2 be disjoint open simple paths
of length at most r connecting 0 to x and x to y respectively and take u to be the last
point on γ ∩ γ1 and v the first point on γ ∩ γ2 where the ordering is induced by γ1 and γ2



650 G. Kozma, A. Nachmias

respectively. Hence the map (x, y) �→ y from N(K) into B(0,2r) is at most CKd · 2r to 1,
which shows (3.5).

We now estimate EN(K). For any (x, y) the BK inequality and (1.2) implies that the
probability that (x, y) are K-over-counted is at most

∑

u:|u−x|≥K
v:|v−x|≥K

P(0
r↔ u)P(v

r↔ y)P(x ↔ v)P(v ↔ u)P(u ↔ x).

Writing v′ = v − x and u′ = u − x and using translation invariance we get that this sum
equals

∑

u′ :|u′ |≥K

v′ :|v′ |≥K

P(−x
r↔ u′)P(v′ r↔ y − x)P(0 ↔ v′)P(v′ ↔ u′)P(u′ ↔ 0).

We sum this over y and then over x and get that

E

[∣∣{(x, y) are K-over-counted
}∣∣

]
≤ G(r)2

∑
u′ :|u′ |≥K

v′ :|v′ |≥K

P(0 ↔ v′)P(v′ ↔ u′)P(u′ ↔ 0).

This together with the triangle condition (1.1) and Lemma 3.2 gives that for some small
c > 0 we can choose some large K such that EN(K) ≥ cG(r)2. We take expectations in
(3.5) and plug the estimate EN(K) ≥ cG(r)2 in to get the assertion of the lemma. This
concludes the proof of part (i) of Theorem 1.2. �

3.2 Intrinsic metric arm exponent

Here we prove part (ii) of Theorem 1.2. The proof relies on the result of Barsky and Aizen-
man [12] stating that A lattice in R

d satisfying the triangle condition satisfies, as h → 0
that

∞∑

j=1

P(|C(0)| = j)(1 − e−jh) ≈ h1/2.

This implies an estimate of P(|C(0)|) > n. Just fix h = 1/n and get

P
(|C(0)| > n

) ≤ C1

n1/2
. (3.6)

We remark that Hara and Slade achieved a significantly stronger estimate [26].
Since the event {|C(0)| > n} is monotone, we get

P
(|CG(0)| > n

) ≤ C1

n1/2
for all G ⊂ E(Zd) (3.7)

where CG(0) is the component containing 0 in percolation on G with p = pc(Z
d) (and as in

the definition of �, not in the critical p of G itself).

Proof of part (ii) of Theorem 1.2 Let A ≥ 1 be a large number such that

33A2/3 + C1A
2/3 ≤ A,



The Alexander-Orbach conjecture holds in high dimensions 651

where C1 is from (3.7). We will now prove that �(r) ≤ 3Ar−1. This will follow by showing
inductively that for any integer k > 0 we have

�(3k) ≤ A

3k
.

This is trivial for k = 0 since A ≥ 1. Assume the claim for all j < k and we prove for k. Let
ε = ε(C1) > 0 be a small constant to be chosen later and for any G ⊂ E(Zd) write

P(H(3k;G))

≤ P
(
∂B(0,3k;G) 
= ∅ and |CG(0)| ≤ ε9k

) + P
(|CG(0)| > ε9k

)

≤ P
(
∂B(0,3k;G) 
= ∅ and |CG(0)| ≤ ε9k

) + C1√
ε3k

, (3.8)

where the last inequality is due to (3.7). To estimate the first term on the right-hand side we
claim that

P
(
∂B(0,3k;G) 
= ∅ and |CG(0)| ≤ ε9k

) ≤ ε3k+1(�(3k−1))2. (3.9)

To see this observe that if |CG(0)| ≤ ε9k then there must be some level j ∈ [ 1
3 3k, 2

3 3k] such
that |∂B(0, j ;G)| ≤ ε3k+1. Denote by j the first such level. If, in addition, ∂B(0,3k;G) 
= ∅
then at least one vertex v of the ε3k+1 vertices of level j “reaches level 3k−1”. Formally we
do as in the proof of lemma 2.6, i.e. define G2 to be G with all edges needed to calculate
B(0, j ;G) removed and get that

∂B(v,3k−1;G2) 
= ∅
which, by the definition of � (with G2) has probability ≤ �(3k−1). Applying Markov’s
inequality gives

P
(
∂B(0,3k;G) 
= ∅ and |CG(0)| ≤ ε9k | B(0, j ;G)

) ≤ ε3k+1�(3k−1).

As in the proof of Lemma 2.6, we now sum over possible values of B(0, j ;G) and get an
extra term of P(H(0,3k−1;G)) because we need to reach level 3k−1 to begin with. We can
definitely bound P(H(0,3k−1;G)) ≤ �(3k−1) and this gives the assertion of (3.9).

We put this into (3.8) and get that

P(H(3k;G)) ≤ ε3k+1(�(3k−1))2 + C1√
ε3k

≤ ε33A2 + C1ε
−1/2

3k
,

where in the last inequality we used the induction hypothesis. Put now ε = A−4/3. Since the
last inequality holds for any G ⊂ E(Zd) we have

�(3k) ≤ 33A2/3 + C1A
2/3

3k
≤ A

3k
,

where the last inequality is by our choice of A. This completes our inductive proof that
�(3k) ≤ A3−k . Now, for any r choose k such that 3k−1 ≤ r < 3k then we have

�(r) ≤ �(3k−1) ≤ A

3k−1
<

3A

r
. �
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3.3 Corresponding lower bounds

In the following we provide the corresponding lower bounds to the estimates of Theo-
rem 1.2.

Proof of part (i) of Theorem 1.3 Let x ∈ Z
d and write |x| for the Euclidean distance of x

from 0. We estimate the quantity E[d
Z

d
p
(0, x) | 0 ↔ x]. If 0 ↔ x then we have that d

Z
d
p
(0, x)

is no more than the number of y ∈ Z
d such that the events 0 ↔ y and y ↔ x occur disjointly.

By the BK inequality and the two-point function estimate (1.2) we learn that

E[d
Z

d
p
(0, x)1{0↔x}] ≤ C

∑

y∈Zd

|y|2−d |x − y|2−d ≤ C|x|4−d ,

where the last inequality is a straightforward calculation. Hence E[d
Z

d
p
(0, x) | 0 ↔ x] ≤

C|x|2. We learn that if x is such that |x| ≤ √
r/2C, then Markov’s inequality implies that

P(d
Z

d
p
(0, x) ≤ r | 0 ↔ x) ≥ 1/2. By this and (1.2) we conclude that

E|B(0, r;Z
d)| ≥

∑

x:|x|≤√
r/2C

P(0 ↔ x and d
Z

d
p
(0, x) ≤ r) ≥ 1

2

∑

x:|x|≤√
r/2C

|x|2−d ≥ cr,

where c > 0 is a small constant. �

Proof of part (ii) of Theorem 1.3 We use a second moment argument. Fix some λ > 1 to be
chosen later. By part (i) of Theorem 1.2 we have that

E|B(0, r)| ≤ C1r,

and by part (i) of Theorem 1.3 we have

E|B(0, λr)| ≥ c1λr.

Put λ = 2C1/c1 to get that

E|B(0, λr) \ B(0, r)| ≥ c1λr − C1r = C1r.

We now estimate the second moment of |B(0, λr)|. Indeed, if 0
λr↔ x and 0

λr↔ y then there

must exist z ∈ Z
d such that the events 0

λr↔ z, z
λr↔ x and z

λr↔ y occur disjointly. Hence, the
BK inequality gives

E|B(0, λr)|2 ≤
∑

x,y,z

P(0
λr↔ z)P(z

λr↔ x)P(z
λr↔ y) =

[ ∑

x∈Zd

P(0
λr↔ x)

]3

≤ Cr3,

where the last inequality is by part (i) of Theorem 1.2. The estimate P(Z > 0) ≥ (EZ)2/EZ2

valid for any non-negative random variable Z yields that

P
(|B(0, λr) \ B(0, r)| > 0

) ≥ C2
1r

2

Cr3
≥ c

r
,

which concludes our proof since the event above implies H(r). �
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