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Abstract We study microscopic convexity property of fully nonlinear elliptic and par-
abolic partial differential equations. Under certain general structure condition, we estab-
lish that the rank of Hessian ∇2u is of constant rank for any convex solution u of equation
F(∇2u,∇u,u, x) = 0. The similar result is also proved for parabolic equations. Some of
geometric applications are also discussed.

1 Introduction

Caffarelli-Friedman [7] proved a constant rank theorem for convex solutions of semilinear
elliptic equations in R

2; a similar result was also discovered by Yau [28] at about the same
time. Shortly thereafter, the result in [7] was generalized to R

n by Korevaar-Lewis [27].
This type of constant rank theorem is called a microscopic convexity principle. It is a pow-
erful tool in the study of geometric properties of solutions of nonlinear differential equations
and is particularly useful in producing convex solutions of differential equations via homo-
topic deformations. The great advantage of the microscopic convexity principle is that it can
treat geometric nonlinear differential equations involving tensors on general manifolds. The
proof of such a microscopic convexity principle for a σk type equation on the unit sphere
Sn by Guan-Ma [15] is crucial in their study of the Christoffel-Minkowski problem. The
microscopic convexity principle also provides some interesting geometric properties of so-
lutions. For a symmetric Codazzi tensor, the microscopic convexity principle implies that
the distribution of null space of the tensor is of constant dimension and is parallel.
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The microscopic convexity principle has been validated for a variety of fully nonlinear
differential equations involving the second fundamental form of hypersurfaces [9, 15–17].
Understanding under what structural conditions the microscopic convexity principle is valid
is central. Caffarelli-Guan-Ma [9] established such a principle for fully nonlinear equations
of the form:

F(uij (x)) = ϕ(x,u(x),∇u(x)), (1.1)

where F(A) is symmetric and F(A−1) is locally convex in A. Similar results were also
proved for symmetric tensors on manifolds in [9]. Several interesting geometric applica-
tions were also given there. For applications, it is important to consider equations F involv-
ing other variables in addition to the Hessian (uij ). For example, it is desirable to include
linear elliptic equations and quasilinear equations with variable coefficients. In many cases,
a solution v to an equation may not be convex yet some transformation u = h(v) of it may
be convex (see e.g., [6, 7]). If v is a solution of (1.1), then u = h(v) is a solution of equation

F(∇2u,∇u,u, x) = 0. (1.2)

A similar situation also arises in the case of geometric flow for hypersurfaces.
In this paper, we study the microscopic convexity property for an equation of the gen-

eral form (1.2) and related geometric nonlinear equations of elliptic and parabolic type. The
core idea in the proof of a microscopic convexity principle is to establish a strong maximum
principle for an appropriate auxiliary function. There have been significant contributions
in the literature [7, 9, 15–17, 27] developing analytic techniques for this purpose. All of
these methods break down for a general fully nonlinear elliptic equation of the form (1.2).
The main contribution of this paper is the introduction of new analytic techniques involv-
ing quotients of elementary symmetric functions near the null set of det(uij ). The analysis
is delicate as both symmetric functions in the quotient will vanish on the null set. This is a
novel feature of this paper. It is another indication that these quotient functions of elementary
symmetric functions are naturally embedded in the study of fully nonlinear equations. In a
different context, the importance of quotient functions has been demonstrated in the beau-
tiful work of Huisken-Sinestrari [22]. We believe our techniques will be useful in solving
other problems in geometric analysis.

To illustrate our main results, we first consider equations in a flat domain. Let � be a
domain in R

n and denote by S n the space of real symmetric n × n matrices and S n+ the
space of positive definite real symmetric n × n matrices. Let F = F(r,p,u, x) defined in
S n × R

n × R × � be elliptic in the sense that

(
∂F

∂rαβ

(∇2u,∇u,u, x)

)
> 0, ∀x ∈ �. (1.3)

Theorem 1.1 Suppose F = F(r,p,u, x) ∈ C2,1(S n ×R
n ×R ×�) satisfies condition (1.3)

and

F(A−1,p,u, x) is locally convex in (A,u, x) for each p. (1.4)

If u ∈ C2,1(�) is a convex solution of (1.2), then the rank of the Hessian (∇2u(x)) is a
constant l in �. For each x0 ∈ �, there exist a neighborhood U of x0 and (n − l) fixed
directions V1, . . . , Vn−l such that ∇2u(x)Vj = 0 for all 1 ≤ j ≤ n − l and x ∈ U .

There is also a parabolic version.
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Theorem 1.2 Suppose F = F(r,p,u, x, t) ∈ C2,1(S n × R
n × R × � × [0, T )) satisfies

condition (1.3) and

F(A−1,p,u, x, t) is locally convex in (A,u, x) for each pair (p, t) . (1.5)

Suppose u ∈ C2,1(� × [0, T )) is a convex solution of the equation

∂u

∂t
= F(∇2u,∇u,u, x, t). (1.6)

For each t ∈ (0, T ), let l(t) be the minimal rank of (∇2u(x, t)) in �, then the rank of
(∇2u(x, t)) is constant l(t) and l(s) ≤ l(t) for all s ≤ t < T . For each 0 < t ≤ T , x0 ∈ �

there exist a neighborhood U of x0 and (n − l(t)) fixed directions V1, . . . , Vn−l (t) such that
∇2u(x, t)Vj = 0 for all 1 ≤ j ≤ n − l(t) and x ∈ U . Furthermore, for any t0 ∈ [0, T ),
there is a δ > 0, such that the null space of (∇2u(x, t)) is parallel in (x, t) for all
x ∈ �, t ∈ (t0, t0 + δ).

An immediate consequence of Theorem 1.1 is the proof of a conjecture raised by
Korevaar-Lewis in [27] for convex solutions of mean curvature type elliptic equation

∑
i,j

aij (∇2u(x))uij (x) = f (x,u(x),∇u(x)) > 0. (1.7)

Corollary 1.3 Let � ⊂ R
n and suppose u is a convex solution of the elliptic equation (1.7).

If

f (x,u,p) is locally convex in (x,u) for each p, (1.8)

then the Hessian (∇2u(x)) is of constant rank in �.

Korevaar-Lewis [27] proved that the Hessian of any convex solution u of an elliptic equa-
tion (1.7) is of constant rank and u is constant in n − l coordinate directions, provided that

1
f (·,p)

is strictly convex for any p fixed. They conjectured that the constant rank result still

holds if 1
f (·,p)

is only assumed to be convex. They observed that when n = 2, this can be
deduced from the proofs of Caffarelli-Friedman in [7]. Set

F(∇2u,∇u,u, x) = − 1∑
i,j aij (∇2u(x))uij (x)

+ 1

f (x,u(x),∇u(x))
.

Then (1.7) is equivalent to F(∇2u,∇u,u, x) = 0. It is straightforward to check that F sat-
isfies Conditions (1.3) and (1.4) under the assumptions in Corollary 1.3.

We now discuss some geometric equations on general manifolds. Preservation of con-
vexity is an important issue for the geometric flows of hypersurfaces (see e.g., [5, 21] and
the references therein). We have the following general result.

Theorem 1.4 Suppose F(A,X, �n) is elliptic in A and F(A−1,X, �n) is locally convex in
(A,X) for each fixed �n ∈ Sn. Let M(t) ⊂ R

n+1 be a compact hypersurface satisfying the
geometric flow equation

Xt = −F(g−1h,X, �n)�n, t ∈ (0, T ), M(0) = M0, (1.9)
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where X, �n,g,h are, respectively, the position vector, outer normal, induced metric and
the second fundamental form of M(t). If M0 is convex, then M(t) is strictly convex for all
t ∈ (0, T ).

Alexandrov in [1, 3] studied existence and uniqueness of solutions of general nonlinear
curvature equations,

F(g−1h,X, �n(X)) = 0, ∀X ∈ M, (1.10)

where X is the position function of M and �n(X) is the unit normal of M at X. The following
theorem addresses the convexity property of problems studied in [1, 3].

Theorem 1.5 Suppose F(A,X, �n) is elliptic in A and F(A−1,X, �n) is locally convex in
(A,X) for each fixed �n ∈ Sn. Let M be an oriented immersed connected hypersurface in
R

n+1 with a nonnegative definite second fundamental form h satisfying (1.10). Then h is of
constant rank and its null space is parallel. In particular, if M is complete, then there is
0 ≤ l ≤ n such that M = Ml × R

n−l for a strictly convex compact hypersurface Ml in R
l+1

(if l > 0). If in addition M is compact, then M is the boundary of a strongly convex bounded
domain in R

n+1.

Theorem 1.5 has similarities with the classical result of Hartman-Nirenberg in [20].
The microscopic convexity principle also can be used to prove some uniqueness theo-

rems in differential geometry in the large. A surface immersed in R
3 is called a Weingarten

surface if its principle curvatures κ1, κ2 satisfy a relationship F(κ1, κ2) = 0 for some ellip-
tic F (i.e., F satisfies condition (1.3)). Alexandrov [2] and Chern [12] proved that if M is
a closed convex Weingarten surface in R

3, then M is a sphere. In higher dimensions, there
is an extensive literature (see e.g., [11, 13]) devoted to showing immersed hypersurfaces are
spheres. We prove the following sphere theorem.

Theorem 1.6 Suppose (M,g) is a compact connected Riemannian manifold of dimension n

with nonnegative sectional curvature which is positive at one point. Suppose F(A) is elliptic,
and W is a Codazzi tensor on M satisfying the equation

F(g−1W) = 0 on M. (1.11)

If either (1) n = 2, or (2) n ≥ 3, W is semi-positive definite and F(A−1) is locally convex
for A > 0, then W = cg for some constant c ≥ 0.

Theorem 1.6 was proved by Ecker-Huisken in [13] under the assumption F is concave.
Refer to Remark 5.7 for the relationship between concavity of F(A) and the condition on
F in case (2) of Theorem 1.6. Note that when n = 2, only the ellipticity assumption on F is
needed in Theorem 1.6. Refer to [9, 15, 17] for other applications of the microscopic con-
vexity principle in classical and conformal geometry and to [18] for applications in Kähler
geometry.

A vast literature exists devoted to the study of the convexity of solutions of partial dif-
ferential equations. There is a theory of macroscopic nature, where the problem is always
considered in a convex domain in R

n with appropriate boundary conditions. In 1983, Kore-
vaar made breakthroughs in [25, 26] where he obtained concavity maximum principles for a
class of quasilinear elliptic equations. His results were improved by Kennington [24] and by
Kawhol [23]. The theory was further developed to great generality by Alvarez-Lasry-Lions
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[4] in 1997. They established the existence of a convex solution of (1.2) for state constraint
boundary values under conditions (1.3)–(1.4) assuming that F satisfies a comparison prin-
ciple. Microscopic convexity implies macroscopic convexity if there is a deformation path
(e.g., via the method of continuity or parabolic flow). Theorem 1.1 is the microscopic ver-
sion of the macroscopic convexity principle in [4].

The rest of the paper is organized as follows. In Sect. 2, we introduce a key auxiliary

function q(x) = σl+2(∇2u(x))

σl+1(∇2u(x))
which is well defined by the Newton-Maclaurin inequalities. In

Proposition 2.1 we demonstrate a key concavity inequality for q(x) and in Corollary 2.2,
we conclude that q has optimal C1,1 regularity. In Sect. 3, we establish a strong maximum
principle for the function φ(x) = σl+1(∇2u(x)) + q(x) which is the main technical tool
of the paper. In Sect. 4, we discuss condition (1.4) and related results. The last section is
devoted to geometric equations on manifolds.

2 An auxiliary function

∇2u is of constant rank if and only if σl+1(∇2u) ≡ 0, where l is the minimum rank of ∇2u.
It was first shown by Caffarelli-Friedman in [7] that there is a strong maximum principle
for σl+1(∇2u) for any convex solution of �u = f when 1

f
is locally convex (see also sub-

sequential works [15–17, 27]). When F in (1.1) is a general symmetric function, such a
maximum principle for σl+1(∇2u) is difficult to prove. A major achievement in [9] is the
establishment of a maximum principle for function σl+1(∇2u) + Aσl+2(∇2u) when A > 0
is sufficient large. For the general equation (1.2), we do not know how to prove the corre-
sponding maximum principle for the previously known test functions. This lead us to search

for a new auxiliary function. It turns out σl+1(∇2u) + σl+2(∇2u)

σl+1(∇2u)
is the function! The rest of

this section is devoted to the analysis of this function near the null set N = {σl+1(∇2u) = 0}.
With the assumptions of F and u in Theorem 1.1 and Theorem 1.2, u is automati-

cally in C3,1. This will be assumed in the rest of this paper. Let W(x) = ∇2u(x) and
l = minx∈� rank(∇2u(x)). l ≤ n − 1 may also be assumed. Suppose z0 ∈ � is a point where
W is of minimal rank l.

Throughout this paper we assume that σj (W) = 0 if j < 0 or j > n. Define for W =
(uij ) ∈ S n

q(W) =
{

σl+2(W)

σl+1(W)
, if σl+1(W) > 0,

0, if σl+1(W) = 0.
(2.1)

For any symmetric function f (W), we denote

f ij = ∂f (W)

∂uij

, f ij,km = ∂2f (W)

∂uij ∂ukm

.

For each z0 ∈ � where W is of minimal rank l. We pick an open neighborhood O of z0,
for any x ∈ O, let λ1(x) ≤ λ2(x) · · · ≤ λn(x) be the eigenvalues of W at x. There is a positive
constant C > 0 depending only on ‖u‖C3,1 , W(z0) and O, such that λn(x) ≥ λn−1(x) · · · ≥
λn−l+1(x) ≥ C for all x ∈ O. Let G = {n− l + 1, n− l + 2, . . . , n} and B = {1, . . . , n− l} be
the “good” and “bad” sets of indices respectively. Let G = (λn−l+1, . . . , λn) be the “good”
eigenvalues of W at x and B = (λ1, . . . , λn−l ) be the “bad” eigenvalues of W at x. For the
simplicity, write G = G, B = B if there is no confusion. Note that for any δ > 0, we may
choose O small enough such that λi(x) < δ for all i ∈ B and x ∈ O.
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Set

φ = σl+1(W) + q(W) (2.2)

where q defined as in (2.1). Use notation h = O(f ) if |h(x)| ≤ Cf (x) for x ∈ O with the
positive constant C under control. It is clear that λi = O(φ) for all i ∈ B .

To get around σl+1(W) = 0, consider for ε > 0 sufficient small,

qε(W) = σl+2(Wε)

σl+1(Wε)
, φε(W) = σl+1(Wε) + qε(W), (2.3)

where Wε = W + εI . We will also denote Gε = (λn−l+1 + ε, . . . , λn + ε), Bε = (λ1 +
ε, . . . , λn−l + ε).

We will work on qε to obtain a uniform C2 estimate independent of ε. One may also
work directly on q at the points where σl+1(∇2u) �= 0 to obtained the same results in the rest
of this section (with all relative constants independent of chosen point).

Set

vε(x) = u(x) + ε

2
|x|2, (2.4)

then Wε = (∇2vε). To simplify the notation, we will write v for vε , q for qε , W for Wε , G

for Gε and B for Bε with the understanding that all the estimates will be independent of ε.
In this setting, with O is small enough, there is C > 0 independent of ε such that

σl+1(W(x)) ≥ Cε, and σ1(B(x)) ≥ Cε, for all x ∈ O. (2.5)

Similarly write h = O(f ) if |h(x)| ≤ Cf (x) for x ∈ O with positive constant C under
control independent of ε.

The importance of the function q is reflected in the following proposition. Set

Viα = viiασ1(B) − vii

(∑
j∈B

vjjα

)
. (2.6)

Proposition 2.1 For each z ∈ O with W(z) is diagonal, for any α,β ∈ {1, . . . , n},
∑

i,j,k,m

qij,kmvijαvkmβ = O

(
φ +

∑
i,j∈B

|∇vij |
)

− 2
∑

i∈B,j∈G

σ 2
1 (B|i) − σ2(B|i)

σ 2
1 (B)λj

vijαvjiβ

−
∑

i∈B ViαViβ

σ 3
1 (B)

−
∑

i,j∈B,i �=j vijαvjiβ

σ1(B)
. (2.7)

The last two terms in (2.7) will play a key role in estimating linear terms of vijα (i, j ∈ B)
in our proof of Theorem 1.1 in the next section.

Corollary 2.2 Let u ∈ C3,1(�) be a convex function. W(x) = (uij (x)), x ∈ � and l =
minx∈� rank(W(x)). Then the function q(x) = q(W(x)) defined in (2.1) is in C1,1(�).

The rest of this section is devoted to proving Proposition 2.1, and it involves some subtle
analysis of the function q . The proof of Corollary 2.2 will be given at the end of this section.
In preparation, several well known lemmas are listed. For the sake of completeness, proofs
are provided. If W is any n × n diagonal matrix, denote by (W |i) the (n − 1) × (n − 1)

matrix with ith row and ith column deleted, and (W |ij) the (n − 2) × (n − 2) matrix with
i, j th rows and i, j th columns deleted.
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Lemma 2.3 Suppose W is diagonal. Then we have

qij =
{

σl+1(W)σl+1(W |i)−σl+2(W)σl (W |i)
σ 2
l+1(W)

, if i = j,

0, if i �= j.

(a) if i = m,j = k, i �= j , then

qij,km = −σl(W |ij)

σl+1(W)
+ σl+2(W)σl−1(W |ij)

σ 2
l+1(W)

(b) if i = j = k = m, then

qij,km = −2
σl(W |i)
σ 3

l+1(W)
[σl+1(W)σl+1(W |i) − σl(W |i)σl+2(W)]

(c) if i = j, k = m, i �= k, then

qij,km = σl(W |ik)

σl+1(W)
− σl+1(W |i)σl(W |k)

σ 2
l+1(W)

− σl+1(W |k)σl(W |i)
σ 2

l+1(W)

− σl+2(W)σl−1(W |ik)

σ 2
l+1(W)

+ 2
σl+2(W)σl(W |i)σl(W |k)

σ 3
l+1(W)

(d) otherwise

qij,km = 0.

Proof Since W is diagonal, it follows from Proposition 2.2 in [15]

∂σγ (W)

∂vij

=
{

σγ−1(W |i), if i = j,

0, if i �= j

and

∂2σγ (W)

∂vij ∂vkm

=
⎧⎨
⎩

σγ−2(W |ik), if i = j, k = m, i �= k,

−σγ−2(W |ij), if i = m,j = k, i �= j,

0, otherwise

for 1 ≤ γ ≤ n. We obtain thus

σ
ij

l+1 = ∂σl+1

∂Wij

=
{

σl(W |i), if i = j,

0, if i �= j

and

σ
ij,km

l+1 = ∂2σl+1

∂Wij ∂Wkm

=
⎧⎨
⎩

σl−1(W |ik), if i = j, k = m, i �= k,

−σl−1(W |ij), if i = m,j = k, i �= j,

0, otherwise.
(2.8)

Direct computation yields

qij = 1

σl+1(W)

∂σl+2(W)

∂vij

− σl+2(W)

σ 2
l+1(W)

∂σl+1(W)

∂vij

(2.9)
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and

qij,km = 1

σl+1(W)

∂2σl+2(W)

∂vij ∂vkm

− 1

σ 2
l+1(W)

∂σl+2(W)

∂vij

∂σl+1(W)

∂vkm

− 1

σ 2
l+1(W)

∂σl+2(W)

∂vkm

∂σl+1(W)

∂vij

− σl+2(W)

σ 2
l+1(W)

∂2σl+1(W)

∂vij ∂vkm

+ 2
σl+2(W)

σ 3
l+1(W)

∂σl+1(W)

∂vij

∂σl+1(W)

∂vkm

. (2.10)

The lemma follows from (2.9) and (2.10). �

Lemma 2.4 Suppose W is diagonal, then

qij =

⎧⎪⎨
⎪⎩

σ 2
1 (B|i)−σ2(B|i)

σ 2
1 (B)

+ O(φ), if i = j ∈ B,

O(φ), if i = j ∈ G,

0, if i �= j.

Furthermore qij,km can be computed as follows:

(1) If i, j, k,m ∈ G,

qij,km = O(φ)

(2) If j ∈ G, i ∈ B ,

qji,ij = qij,j i = −σ 2
1 (B|i) − σ2(B|i)

σ 2
1 (B)vjj

+ O(φ)

(3) If i, j ∈ B, i �= j ,

qij,j i = − 1

σ1(B)
+ O(1)

(4) If i ∈ B ,

qii,ii = − 2

σ 3
1 (B)

(σ1(B)σ1(B|i) − σ2(B)) + O(1)

(5) If i ∈ B,k ∈ G,

qkk,ii = qii,kk = O(1)

(6) If i, k ∈ B, i �= k,

qii,kk = 2σ2(B) − σ 2
1 (B) + (vii + vkk)σ1(B)

σ 3
1 (B)

+ O(1)

(7) Otherwise

qij,km = 0.
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Proof From [15], for W = (G,B) and γ ≥ l,

σγ (W) =
l∑

k=0

σk(G)σγ−k(B),

and

σγ (W |i) =
l∑

k=0

σk(G)σγ−k(B|i), for i ∈ B;

σγ (W |i) =
l−1∑
k=0

σk(G|i)σγ−k(B), for i ∈ G;

σγ (W |ij) =
l−2∑
k=0

σk(G|ij)σγ−k(B), for i, j ∈ G;

σγ (W |ij) =
l−1∑
k=0

σk(G|i)σγ−k(B|j), for i ∈ G,j ∈ B;

σγ (W |ij) =
l∑

k=0

σk(G)σγ−k(B|ij), for i, j ∈ B,

where σγ−k(B) = 0 if γ −k > n− l. The lemma follows directly from Lemma 2.3 and above
formulae. �

Next lemma provides an estimate for third order derivatives of convex functions.

Lemma 2.5 Assume v ∈ C3,1(�) is a convex function. Then there exists a positive constant
C depending only on dist{O, ∂�} and ‖v‖C3,1(�) such that

|vijα(x)| ≤ C
(√

vii(x) + √
vjj (x)

)
(2.11)

for all x ∈ O and 1 ≤ i, j, α ≤ n.

Proof It follows from convexity of v that for any direction η ∈ R
n with |η| = 1

vηη(x) ≥ 0

for all x ∈ �. It’s well known that for any nonnegative C1,1 function h, |∇h(x)| ≤ Ch
1
2 (x)

for all x ∈ O, where C depends only on ‖h‖C1,1(�) and dist{O, ∂�} (e.g., see [29]). Hence

|vηηα(x)| ≤ C
√

vηη(x),

where C is a positive constant depending only on dist{O, ∂�} and ‖vηη‖C1,1(�) (which can
be controlled by ‖u‖C3,1(�)). Now set η = i if i = j and η = 1√

2
(ei + ej ) if i �= j . The proof

of Lemma 2.5 is complete. �
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Proof of Proposition 2.1 Let us divide
∑

i,j,k,mqij,kmvijαvkmβ into three parts according to
Lemma 2.3: ∑

i,j,k,m

qij,km(W(z))vijαvkmβ = Iαβ + IIαβ + IIIαβ, (2.12)

where

Iαβ =
∑
i �=j

qij,j ivijαvjiβ ,

IIαβ =
n∑

i=1

qii,iiviiαviiβ

and

IIIαβ =
∑
i �=k

qii,kkviiαvkkβ .

Lemma 2.4 yields (using Lemma 2.5 and λi = O(φ))

Iαβ =
( ∑

i,j∈G,i �=j

+
∑

i∈B,j∈G

+
∑

j∈B,i∈G

+
∑

i,j∈B,i �=j

)
qij,j ivijαvjiβ

= O(φ) + O

( ∑
i,j∈B

|∇vij |
)

− 1

σ1(B)

∑
i,j∈B,i �=j

vijαvjiβ

− 2
∑

i∈B,j∈G

σ 2
1 (B|i) − σ2(B|i)

σ 2
1 (B)vjj

vijαvjiβ . (2.13)

Again from Lemma 2.4

IIαβ =
(∑

i∈G

+
∑
i∈B

)
qii,iiviiαviiβ

= O(φ) + O

( ∑
i,j∈B

|∇vij |
)

− 2
∑
i∈B

σ1(B)σ1(B|i) − σ2(B)

σ 3
1 (B)

viiαviiβ (2.14)

and

IIIαβ =
( ∑

i,j∈G,i �=j

+
∑

i∈B,j∈G

+
∑

j∈B,i∈G

+
∑

i,j∈B,i �=j

)
qii,jj viiαvjjβ

= O(φ) + O

( ∑
i,j∈B

|∇vij |
)

+
∑

i �=j,i,j∈B

2σ2(B) − σ 2
1 (B) + (vii + vjj )σ1(B)

σ 3
1 (B)

viiαvjjβ . (2.15)

The algebraic identity
∑

i,j∈B,i �=j

[2σ2(B) − σ 2
1 (B) + (vii + vjj )σ1(B)]viiαvjjβ
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− 2
∑
i∈B

[σ1(B)σ1(B|i) − σ2(B|i)]viiαviiβ

= −
∑
i∈B

(
σ1(B)viiα − vii

∑
j∈B

vjjα

)(
σ1(B)viiβ − vii

∑
j∈B

vjjβ

)
(2.16)

implies

IIαβ + IIIαβ = O(φ) + O

( ∑
i,j∈B

|∇vij |
)

−
∑

i∈B ViαViβ

σ 3
1 (B)

, (2.17)

where Viα defined in (2.6). �

Proof of Corollary 2.2 We only need to consider a small neighborhood O of these points
in � where that the minimal rank is attained. For such fixed point z ∈ O, we may assume
W(z) is diagonal by a rotation. Thus, for any fixed α and β

∂2q(z)

∂xα∂xβ

=
∑
i,j

qij (W(z))uijαβ +
∑

i,j,k,m

qij,km(W(z))uijαukmβ. (2.18)

Since 0 ≤ σ 2
1 (B|i)−σ2(B|i)

σ 2
1 (B)

≤ 1, by Lemma 2.4

|qij (W(z))| ≤ C

for some constant C under control. This yields the estimate for the first term in (2.18)

‖qij (W(z))uijαβ‖ ≤ C‖u‖C3,1(�) ≤ C.

Now treat the second term in (2.18). By Lemma 2.5, for i, j ∈ B

|uijα| ≤ C(
√

uii(x) + √
ujj (x)) ≤ C

√
σ1(B). (2.19)

Noting that ujj ≥ C > 0, j ∈ G and 0 ≤ σ 2
1 (B|i)−σ2(B|i)

σ 2
1 (B)

≤ 1. From Proposition 2.1 it now

follows that, ∣∣∣∣∂
2q(W(z))

∂xα∂xβ

∣∣∣∣ ≤ C

for all z ∈ O. �

3 A strong maximum principle

In this section, we prove a strong maximum principle for φ defined in (2.2) for (1.2). The
same result for (1.6) could be proved making Theorem 1.1 a corollary of Theorem 1.2. How-
ever we prefer to work on elliptic case first. With some minor modifications, the parabolic
version will be proved at the end of next section.
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Denote by S n the set of all real symmetric n × n matrices, and denote by S n+ ⊂ S n to be
the set of all positive definite symmetric n × n matrices. Let On be the space consisting all
n × n orthogonal matrices. Define

Sn−1 =
{
Q

(
0 0
0 B

)
QT | ∀Q ∈ On, ∀B ∈ S n−1

}
,

and for given Q ∈ On,

Sn−1(Q) =
{
Q

(
0 0
0 B

)
QT | ∀B ∈ S n−1

}
.

Therefore Sn−1, Sn−1(Q) ⊂ S n. For any function F(r,p,u, x), we denote

Fαβ = ∂F

∂rαβ

, F u = ∂F

∂u
, F xi = ∂F

∂xi

, F αβ,γ η = ∂2F

∂rαβ∂rγ η

,

F αβ,u = ∂2F

∂rαβ∂u
, F αβ,xk = ∂2F

∂rαβ∂xk

, F u,u = ∂2F

∂2u
, (3.1)

Fu,xi = ∂2F

∂u∂xi

, F xi ,xj = ∂2F

∂xi∂xj

.

For any p fixed and Q ∈ On, (A,u, x) ∈ Sn−1(Q) × R × R
n, we set

X∗
F = ((F αβ(A,p,u, x)),−Fu(A,p,u, x),−Fx1(A,p,u, x), . . . ,−Fxn(A,p,u, x))

as a vector in S n × R × R
n. Set

�⊥
X∗

F
= {X̃ ∈ Sn−1(Q) × R × R

n | 〈X̃,X∗
F 〉 = 0}. (3.2)

Let B ∈ S n−1
+ ,A = B−1 and

B̃ =
(

0 0
0 B

)
, Ã =

(
0 0
0 A

)
.

For any given Q ∈ On and X̃ = ((Xij ), Y,Z1, . . . ,Zn) ∈ Sn−1(Q) × R × R
n, we define a

quadratic form

Q∗(X̃, X̃) =
n∑

i,j,k,l=1

F ij,klXijXkl + 2
n∑

i,j,k,l=1

F ij (QÃQT )klXikXjl +
n∑

i,j=1

Fxi ,xj ZiZj

− 2
n∑

i,j=1

F ij,uXijY − 2
n∑

i,j,k=1

F ij,xkXijZk + 2
n∑

i=1

Fu,xi YZi + Fu,uY 2, (3.3)

where functions F ij,kl, F ij ,F u,u,F ij,u,F ij,xk ,F u,xi ,F xi ,xj are evaluated at (QB̃QT ,p,u, x).
We first state a lemma to be proven in next section (after Corollary 4.2).

Lemma 3.1 If F satisfies condition (1.4), then for each p ∈ R
n,

Q∗(X̃, X̃) ≥ 0, ∀X̃ ∈ �⊥
X∗

F
. (3.4)
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Roughly speaking, the condition Q∗(X̃, X̃) ≥ 0, ∀X̃ ∈ �⊥
X∗

F
is equivalent to the convex-

ity of level set {(A,u, x)| F(A−1,p,u, x) = 0} for each p fixed (implied in the proof of
Lemma 4.1 in the next section). By restricting A ∈ Sn−1(Q), we reduce dimension require-
ment for A. This is useful in some applications, in particular when n = 2. We refer the next
section for further discussions.

The following theorem is the core result of this paper. Theorem 1.1 is a direct conse-
quence of Theorem 3.2 and Lemma 3.1.

Theorem 3.2 Suppose that the function F satisfies conditions (1.3) and (3.4) and let u ∈
C3,1(�) is a convex solution of (1.2). If ∇2u attains its minimum rank l at certain point
x0 ∈ �, then there exist a neighborhood O of x0 and a positive constant C independent of φ

(defined in (2.2)), such that

∑
α,β

F αβφαβ(x) ≤ C(φ(x) + |∇φ(x)|), ∀x ∈ O. (3.5)

In turn, ∇2u is of constant rank in O. Moreover, for each x0 ∈ �, there exist a neighborhood
U of x0 and (n− l) fixed directions V1, . . . , Vn−l such that ∇2u(x)Vj = 0 for all 1 ≤ j ≤ n− l

and x ∈ U .

Proof of Theorem 3.2 Let u ∈ C3,1(�) be a convex solution of (1.2) and W(x) = (uij (x)).
Let z0 ∈ � be a point where W = (∇2u) attains minimal rank l. We may assume l ≤ n − 1,
otherwise there is nothing to prove. As in the previous section, pick an open neighborhood
O of z0, for any x ∈ O, let G = {n − l + 1, n − l + 2, . . . , n} and B = {1, . . . , n − l} be the
“good” and “bad” sets of indices for eigenvalues of ∇2u(x) respectively.

Setting φ as (2.2), then we see from Corollary 2.2 that φ ∈ C1,1(O),

φ(x) ≥ 0, φ(z0) = 0

and there is a constant C > 0 such that for all x ∈ O,

1

C
σ1(B)(x) ≤ φ(x) ≤ Cσ1(B)(x),

1

C
σ1(B)(x) ≤ σl+1(W(x)) ≤ Cσ1(B)(x).

Fix a point z ∈ O and prove (3.5) at z. For each z ∈ O fixed, letting λ1 ≤ λ2 · · · ≤ λn be
the eigenvalues of W(z) = (uij (z)) at z, one may assume W(z) = (uij (z)) is diagonal with
proper choice of orthonormal coordinates, and uii(z) = λi, i = 1, . . . , n.

Again, as in the previous section, we will avoid σl+1(W) = 0 by considering Wε (defined
in (2.3)) for ε > 0 sufficient small, with Wε = W + εI , Gε = (λn−l+1 + ε, . . . , λn + ε),
Bε = (λ1 + ε, . . . , λn−l + ε). Note that Wε is the Hessian of function uε(x) = u(x) + ε

2 |x|2.
This function uε(x) satisfies equation

F(∇2uε,∇uε,uε, x) = Rε, (3.6)

where Rε(x) = F(∇2uε,∇uε,uε, x) − F(∇2u,∇u,u, x). Since u ∈ C3,1, we have

|Rε(x)| ≤ Cε, |∇Rε(x)| ≤ Cε, |∇2Rε(x)| ≤ Cε, ∀x ∈ O. (3.7)

We will work on (3.6) to obtain the differential inequality (3.5) for φε defined in (2.3)
with constant C1,C2 independent of ε. Theorem 3.2 would follow by letting ε → 0.
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Set v = uε , in the rest of this section. Write W for Wε , G for Gε , B for Bε , q for qε and
φ for φε , with the understanding that all the estimates will be independent of ε. Note that
(2.5) implies

ε ≤ Cφ(x), for all x ∈ O, (3.8)

and v satisfies the equation

F(∇2v,∇v, v, x) = R(x), (3.9)

with R(x) under control as follows:

|∇jR(x)| ≤ Cφ(x), for all j = 0,1,2, and for all x ∈ O. (3.10)

Then

φα = ∂φ

∂xα

= φij vijα, φαβ = ∂2φ

∂xα∂xβ

= φij vijαβ + φij,kmvijαvkmβ.

Differentiate (3.9) in xi and then xj and use (3.10) to obtain

∑
αβ

F αβvαβi +
∑

k

F qk vki + Fvvi + Fxi = O(φ), (3.11)

∑
αβ

F αβvαβij +
∑
αβ

vαβi

(∑
γ η

F αβ,γ ηvγ ηj +
∑

k

F αβ,qk vkj + Fαβ,vvj + Fαβ,xj

)

+
∑

k

F qk vkij +
∑

k

vki

(∑
αβ

F qk,αβvαβj +
∑

l

F qk,ql vlj + Fqk,vvj + Fqk,xj

)

+ Fvvij + vi

(∑
αβ

F v,αβvαβj +
∑

l

F v,ql vlj + Fv,vvj + Fv,xj

)

+
∑
αβ

F xi ,αβvαβj +
∑

k

F xi ,qk vkj + Fxi ,vvj + Fxi ,xj = O(φ). (3.12)

As vαβij = vijαβ (this will have to be modified later by a commutator formula when we deal
with symmetric curvature tensors on general manifolds), we get

∑
Fαβφαβ =

∑
Fαβφij vijαβ +

∑
Fαβφij,kmvijαvkmβ

=
∑

Fαβφij,kmvijαvkmβ −
∑

φijF qk vkij −
∑

φij
[
2
∑

Fαβ,qk vαβivkj

+ Fvvij +
∑

Fqk,ql vkivlj + 2
∑

Fqk,vvkivj + 2
∑

Fqk,xj vki

]

−
∑

φij
[
Fαβ,γ ηvαβivγ ηj + 2

∑
Fαβ,vvαβivj + 2

∑
Fαβ,xj vαβi

+
∑

Fv,vvivj +
∑

Fv,xi vj +
∑

Fxixj

]
+ O(φ). (3.13)

We will estimate the terms in the right hand side of (3.13). The analysis will be devoted
to those third order derivatives terms which have with at least two indices in B . Some of
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these are linear. Controlling these linear term is the main challenge. This is the place where
the function q in (2.1) plays key role. The concavity results of q in last section will be used
in crucial way. As for the remaining terms in (3.13), we will sort them out in a way such that
condition (4.3) can be used to obtain appropriate control.

Note that since W = (vij ) is diagonal at z, Lemma 2.3 and Lemma 2.4 imply,

φij (z) =
{

σl(G) + σ 2
1 (B|i)−σ2(B|i)

σ 2
1 (B)

+ O(φ), if i = j ∈ B,

O(φ), otherwise.
(3.14)

Hence at z

∑
i,j

φij
[
Fvvij + 2

∑
Fαβ,qk vαβivkj +

∑
Fqk,ql vkivlj + 2

∑
(F qk,vvkivj + Fqk,xj vki)

]

=
n∑

i=1

φii
[
Fvvii + 2

∑
Fαβ,qi vαβivii + Fqi ,qi viivii + 2Fqi ,vviivi + 2Fqi ,xi vii

]

= O(φ) +
∑
i∈B

φii
[
Fv + 2

∑
Fαβ,qi vαβi + Fqi ,qi vii + 2Fqi ,vvi + 2Fqi ,xi

]
vii

≤ O(φ) + C
∑
i∈B

(
σl(G) + σ 2

1 (B|i) − σ2(B|i)
σ 2

1 (B)

)
vii = O(φ), (3.15)

since λi = O(φ), i ∈ B and σl+1(W) ≥ σl(G)σ1(B). This takes care of the third term on the
right hand side of (3.13). For the second term we have

∑
φijF qk vkij = O(φ) +

∑
i∈B

φiiF qk vkii = O

(
φ +

∑
i,j∈B

|∇vij |
)

. (3.16)

For the third term in (3.13), by (3.14) we have,

φij [Fαβ,γ ηvαβivγ ηj + 2Fαβ,vvαβivj + 2Fαβ,xj vαβi + Fv,vvivj + 2Fv,xi vj + Fxixj ]
= O(φ) +

∑
i∈B

φii
[∑

Fαβ,γ ηvαβivγ ηi + 2
∑

Fαβ,vvαβivi

+ 2
∑

Fαβ,xi vαβi + Fv,vv2
i + 2Fv,xi vi + Fxixi

]

= O

(
φ +

∑
i,j∈B

|∇vij |
)

+
∑
i∈B

(
σl(G) + σ 2

1 (B|i) − σ2(B|i)
σ 2

1 (B)

)

×
[ ∑

α,β,γ,η∈G

Fαβ,γ ηviαβviγ η + 2
∑

α,β∈G

Fαβ,vviαβvi + 2
∑

α,β∈G

Fαβ,xi viαβ

+ Fv,vv2
i + 2Fv,xi vi + Fxixi

]
. (3.17)

Now deal with the term
∑

Fαβφij,kmvijαvkmβ in (3.13). Note that

φij,km = σ
ij,km

l+1 + qij,km.
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Since σl−1(W |ij) = O(φ) for i, j ∈ G, i �= j , for α,β fixed, by (2.8),

∑
σ

ij,km

l+1 vijαvkmβ =
∑
i �=k

σ
ii,kk
l+1 viiαvkkβ +

∑
i �=j

σ
ij,j i

l+1 vijαvjiβ

=
∑
i �=k

σl−1(W |ik)viiαvkkβ −
∑
i �=j

σl−1(W |ij)vijαvjiβ

= O

(
φ +

∑
i,j∈B

|∇vij |
)

− 2
∑

i∈B,j∈G

σl−1(G|j)vijαvijβ .

As σl−1(G|j) = σl (G)

λj
, j ∈ G, we have

σ
ij,km

l+1 vijαvkmβ = O

(
φ +

∑
i,j∈B

|∇vij |
)

− 2σl(G)
∑

i∈B,j∈G

1

λj

vijαvijβ .

By Proposition 2.1,

∑
i,j,k,m

qij,kmvijαvkmβ = O

(
φ +

∑
i,j∈B

|∇vij |
)

− 2
∑

i∈B,j∈G

σ 2
1 (B|i) − σ2(B|i)

σ 2
1 (B)λj

vijαvjiβ

−
∑

i∈B ViαViβ

σ 3
1 (B)

− 1

σ1(B)

∑
i,j∈B,i �=j

vijαvjiβ ,

where Viα is defined in (2.6). We conclude that

∑
Fαβφij,kmvijαvkmβ = O

(
φ +

∑
i,j∈B

|∇vij |
)

−
∑
α,β

F αβ

[∑
i∈B ViαViβ

σ 3
1 (B)

+
∑

i,j∈B,i �=j vijαvjiβ

σ1(B)

+ 2
∑
i∈B

(
σl(G) + σ 2

1 (B|i) − σ2(B|i)
σ 2

1 (B)

)
1

λj

vijαvjiβ

]
. (3.18)

Combining (3.15)–(3.18), one reduces (3.13) to

∑
Fαβφαβ = O

(
φ +

∑
i,j∈B

|∇vij |
)

−
∑
α,β

F αβ

[∑
i∈B ViαViβ

σ 3
1 (B)

+
∑

i,j∈B,i �=j vijαvjiβ

σ1(B)

]

−
∑
i∈B

[
σl(G) + σ 2

1 (B|i) − σ2(B|i)
σ 2

1 (B)

][ ∑
α,β,γ,η∈G

Fαβ,γ η()viαβviγ η

+ 2
∑
αβ∈G

Fαβ
∑
j∈G

1

λj

vijαvijβ + 2
∑

α,β∈G

Fαβ,vviαβvi

+ 2
∑

α,β∈G

Fαβ,xi viαβ + Fv,vv2
i + 2Fv,xi vi + Fxi ,xi

]
. (3.19)
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At this point, we have succeeded in regrouping the terms involving third order derivatives
in terms of “B” and “G”. First consider the last term on the right hand side of (3.19). For
each i ∈ B , let

Ji =
[ ∑

α,β,γ,η∈G

Fαβ,γ ηviαβviγ η + 2
∑

α,β∈G

Fαβ
∑
j∈G

1

λj

vijαvijβ

+ 2
∑

α,β∈G

Fαβ,vviαβvi + 2
∑

α,β∈G

Fαβ,xi viαβ + Fv,vv2
i + 2Fv,xi vi + Fxi ,xi

]
. (3.20)

By Condition (1.3), since v ∈ C3,1(so Fαβ ∈ C0,1) and Ō ⊂ �, there exists a constant
δ0 > 0, such that

(F αβ) ≥ δ0I, ∀y ∈ O. (3.21)

In particular Fnn ≥ δ0. If G �= ∅, so n ∈ G. Since vik = δikλi at z, (3.11) implies, for i ∈ B

∑
α,β∈G

Fαβvαβi + Fvvi + Fxi = O

(
φ +

∑
i,j∈B

|∇vij |
)

.

If G = ∅, (3.11) also yields

Fnnvnni + Fvvi + Fxi = O

(
φ +

∑
i,j∈B

|∇vij |
)

.

In any case, set Xαβ = 0 if either n − 1 ≥ α ∈ B or n − 1 ≥ β ∈ B ,

Xnn = vinn − 1

Fnn

[ ∑
α,β∈G

Fαβvαβi + Fvvi + Fxi

]
, if G �= ∅

Xnn = vinn − 1

Fnn
[Fvvi + Fxi ], if G = ∅,

Xαβ = viαβ otherwise, Y = −vi and Zk = −δki . Thus (Xαβ) ∈ Sn−1 (identity matrix) and
X̃ = ((Xαβ), Y,Z1, . . . ,Zn) ∈ �⊥

X∗
F

. Condition (3.4) implies

Ji ≥ −C

(
φ +

∑
i,j∈B

|∇vij |
)

.

Since C ≥ σl(G) + σ 2
1 (B|i)−σ2(B|i)

σ 2
1 (B)

≥ 0, thus we obtain

∑
α,β

F αβφαβ ≤ C

(
φ +

∑
i,j∈B

|∇vij |
)

−
∑
α,β

F αβ

(∑
i∈B ViαViβ

σ 3
1 (B)

+
∑

i,j∈B,i �=j vijαvjiβ

σ1(B)

)
. (3.22)

The object of the final stage of the proof is to control the term
∑

i,j∈B |∇vij | in (3.22)
using the remaind terms on the right hand side.



324 B. Bian, P. Guan

By (3.21),

∑
α,β

F αβViαViβ ≥ δ0

n∑
α=1

V 2
iα,

∑
α,β

F αβvijαvijβ ≥ δ0

n∑
α=1

v2
ijα.

Inserting above inequalities into (3.22), we then obtain

∑
α,β

F αβφαβ ≤ C

(
φ +

∑
i,j∈B

|∇vij |
)

− δ0

n∑
α=1

[∑
i∈B V 2

iα

σ 3
1 (B)

+
∑

i,j∈B i �=j |vijα|2
σ1(B)

]
. (3.23)

From Lemma 2.4, it follows that

φα = O(φ) +
∑
i∈B

(
σl(G) + σ 2

1 (B|i) − σ2(B|i)
σ 2

1 (B)

)
viiα. (3.24)

The key differential inequality (3.5) is the consequence of (3.23) and the following lemma. �

Lemma 3.3 Suppose M ≥ λi > 0,M ≥ γi ≥ 1
M

,∀i = 1, . . . ,m for some M > 0, and sup-
pose that vijα = vjiα,∀i, j = 1, . . . ,m,α = 1, . . . , n. Then there is a constant C depending
only on n and M , such that for each α, for any D > 0, δ > 0

m∑
i,j=1

|vijα| ≤ C

(
1 + 2D

δ
+ D

)(
σ1(λ) +

∣∣∣∣∣
m∑

i=1

γiviiα

∣∣∣∣∣
)

+ δ

2D

∑m

i �=j |vijα|2
σ1(λ)

+ C

D

∑m

i=1 V 2
iα

σ 3
1 (λ)

,

(3.25)
where Viα = viiασ1(λ) − λi(

∑m

j=1 vjjα).

Proof of Lemma 3.3 Use a trick devised in [14]. For each α = 1, . . . , n fixed,

m∑
i,j=1

|vijα| =
∑
i �=j

|vijα| +
∑

i

|viiα|.

If i �= j , for any D > 0, the Cauchy-Schwarz inequality yields

|vijα| ≤ D

2
δ−1σ1(λ) + δ

2D

|vijα|2
σ1(λ)

. (3.26)

The linear terms involving viiα, i = 1, . . . ,m still need to be controlled. Set

P = {i| viiα > 0}, N = {i| viiα < 0}, R = {i| viiα = 0},

and consider two separate cases.
Case 1. Either P = ∅ or N = ∅. In this case, viiα has the same sign for all i = 1, . . . ,m.

We derive easily

|viiα| ≤ C1

∣∣∣∣∣
m∑

i=1

γiviiα

∣∣∣∣∣, (3.27)

with C1 under control.



Microscopic convexity 325

Case 2. P �= ∅, N �= ∅. We may assume
∑

i∈P vii ≥ ∑
j∈N vjj (changing vijα to −vijα if

necessary). For i ∈ P ,

viiα ≤
∑
k∈P

vkkα ≤ C2

(∣∣∣∣∣
m∑

i=1

γiviiα

∣∣∣∣∣ −
∑
j∈N

vjjα

)
, (3.28)

for some positive constant C2 under control. At this point, we have reduced the estimation
of viiα, i ∈ P to the estimation of −vjjα, j ∈ N .

Claim If P �= ∅, N �= ∅,
∑

i∈P vii ≥ ∑
j∈N vjj , then

(∑
j∈N

vjjα

)2

≤ 4n2

σ 2
1 (λ)

∑
i∈B

V 2
iα.

Assuming the Claim is true, we get for all k ∈ N ,

−vkkα ≤ −
∑
j∈N

vjjα ≤ Dσ1(λ) +
(∑

j∈N vjjα

)2

Dσ1(λ)
≤ Dσ1(λ) + 4n2

∑
i∈B V 2

iα

Dσ 3
1 (λ)

. (3.29)

Consequently we also control terms involving viiα, i ∈ P by (3.28).
We now validate the Claim.

Proof of Claim First, by the Cauchy-Schwarz inequality

(∑
i∈N

Viα

)2

≤ n2
∑
i∈N

V 2
iα ≤ n2

m∑
i=1

V 2
iα.

It follows from the definitions of the sets P,N,R and Viα that

−
∑
i∈N

Viα =
∑
i∈N

(
λi

(∑
j∈N

vjjα +
∑
k∈P

vkkα

)
− viiα

(∑
j∈N

λj +
∑
j∈R

λj +
∑
k∈P

λk

))

=
(∑

i∈N

λi

)(∑
k∈P

vkkα

)
−

( ∑
k∈P∪R

λk

)(∑
i∈N

viiα

)
. (3.30)

Since in this case

∑
i∈N

λi > 0,
∑
k∈P

vkkα > 0,
∑
j∈N

vjjα ≤ 0,

all the terms on the right hand side of (3.30) are nonnegative, hence

(∑
i∈N

Viα

)2

≥
( ∑

k∈P∪R

λk

)2(∑
i∈N

viiα

)2

≥
(

1

2
σ1(λ)

)2(∑
i∈N

viiα

)2

= σ 2
1 (λ)

4

(∑
i∈N

viiα

)2

.

The lemma is proved. �
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By Lemma 3.3 and (3.23), there exist positive constants C1,C2 independent of ε, such
that

∑
α,β

F αβφαβ ≤ C1(φ + |∇φ|) − C2

∑
i,j∈B

|∇vij |. (3.31)

Taking ε → 0, (3.31) is proven with v replaced by u. By the Strong Maximum Principle,
φ ≡ 0 in O. Since � is flat, following the arguments in [7, 27], for any x0 ∈ �, there is a
neighborhood U and (n − l) fixed directions V1, . . . , Vn−l such that ∇2u(x)Vj = 0 for all
1 ≤ j ≤ n − l and x ∈ U . The proof of Theorem 3.2 is complete. �

Remark 3.4 The main step in the above proof is to control linear terms of vijα, i, j ∈ B .
If F is symmetric in (1.1), all terms involving vijα (i, j ∈ B) are quadratic. In [9], a test
function φ(x) = σl+1(∇2u(x)) + Aσl+2(∇2u(x)) was introduced. For q̃ = Aσl+2(∇2u(x)),
it was proved in [9] that

∑
i,j,k,m

q̃ij,kmvijαvkmβ = O(φ) − A
∑
ij∈B

vijαvijβ . (3.32)

The terms on the right hand side of (3.32) was used there to overcome quadratic terms of
vijα (i, j ∈ B). For general F in (1.2), we encounter linear terms of vijα, i, j ∈ B . (3.32) is
not good enough. The function q introduced in (2.1) produces (2.7) in Proposition 2.1 which
was used in a crucial way in the proof here. It should also be noted that, with Lemma 2.5,
the quadratic terms of vijα, i, j ∈ B can in fact be controlled by σl+1(∇2u(x)). Therefore,
all the arguments in [9] can carry through for simpler test function φ(x) = σl+1(∇2u(x)).

4 Condition (1.4) and discussions

We discuss the convexity condition (1.4) in this section. Write A−1 = (Aij ) for the inverse
matrix A−1 of positive definite matrix A.

Lemma 4.1 F satisfies Condition (1.4) if and only if

n∑
i,j,k,l=1

F ij,kl(A,p,u, x)XijXkl + 2
n∑

i,j,k,l=1

F ij (A,p,u, x)AklXikXjl + Fu,uY 2

− 2
n∑

i,j=1

F ij,uXijY − 2
n∑

i,j,k=1

F ij,xkXijZk + 2
n∑

i=1

Fu,xi YZi +
n∑

i,j=1

Fxi ,xj ZiZj ≥ 0 (4.1)

for every X = (Xij ) ∈ S n, Y ∈ R and Z = (Zi) ∈ R
n.

Proof From the convexity of F̃ (B,u, x) = F(B−1,p,u, x) (for each p fixed),

n∑
α,β,γ,η=1

F̃ αβ,γ η(B,u, x)X̃αβX̃γ η + 2
n∑

α,β=1

F̃ αβ,uX̃αβY + F̃ u,uY 2

+ 2
n∑

α,β,k=1

F̃ αβ,xk X̃αβZk + 2
n∑

k=1

F̃ u,xk YZk +
n∑

i,j=1

F̃ xi ,xj ZiZj ≥ 0 (4.2)
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for every X̃ ∈ S n, Y ∈ R, Z = (Zi) ∈ R
n and B ∈ S n+. A direct computation yields

F̃ αβ(B,u, x) = −F ij (B−1,p,u, x)BiαBjβ,

F̃ αβ,u(B,u, x) = −F ij,u(B−1,p,u, x)BiαBjβ,

F̃ αβ,γ η(B,u, x) = F ij,kl(B−1,p,u, x)BiαBjβBkγ Blη

+ F ij (B−1,p,u, x)(Biγ BjβBηα + BiαBjηBβγ ).

Other derivatives can be calculated in a similar way. Substituting these into (4.2), (4.1)
follows directly. �

Let Q ∈ On, define

F̃Q(A,u, x) = F

(
Q

(
0 0
0 A−1

)
QT ,p,u, x

)

for (A,u, x) ∈ S n−1
+ × R × � and fixed p. Condition (1.4) implies the following condition

F̃Q(A,u, x) is locally convex (4.3)

in S n−1
+ × R × � for any fixed n × n orthogonal matrix Q.

The approximation Lemma 4.1 yields

Corollary 4.2 Let Q ∈ On. Assume F satisfies condition (4.3), then

Q∗(X̃, X̃) ≥ 0, (4.4)

for every X̃ = ((Xij ), Y,Z1, . . . ,Zn) ∈ Sn−1(Q) × R × R
n, where Q∗ is defined in (3.3).

In particular, by Corollary 4.2, condition (4.3) implies (3.4). Since condition (1.4) implies
(4.3), Lemma 3.1 is a consequence of Corollary 4.2.

Condition (4.3) is weaker than condition (1.4). In particular condition (4.3) is empty
when n = 1. There is a wide class of functions which satisfy (4.4). The most important
examples are σk and σl

σk
(l > k). The study of fully nonlinear equations related to these form

of elementary symmetric functions was initiated in [10]. If g is non-decreasing and convex,
F1, . . . ,Fm are in this class, then F = g(F1, . . . ,Fm) is also in this class. In particular, if
F1 > 0 and F2 > 0 are in the class, so is F = Fα

1 + F
β

2 for any α ≥ 1, β ≥ 1. Another
property of condition (4.3) is the following.

Corollary 4.3 If F satisfies (4.4), then so does the function G(A) = F(A + E) for any
nonnegative definite matrix E.

We also have the following lemma.

Lemma 4.4 Suppose n = 2 and F(A) ≥ 0 is symmetric and homogeneous of degree k. If
either k ≤ 0 or k ≥ 1, then F satisfies (4.4).

Proof Since n = 2, condition (4.4) is equivalent to Fλ2,λ2 ≥ 0. By homogeneity, we have
n∑

i,j=1

Fλi ,λj λiλj = k(k − 1)F.

n = 2 and λ1 = 0 yields Fλ2,λ2λ2
2 = k(k − 1)F (0, λ2) ≥ 0. �
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The simple example u = ∑n

i=1 x4
i , F(A) = σ1(A) indicates that some condition is needed

in Theorem 1.1. If F is independent of x,u, one may ask if the convexity assumption of
F(A−1,p) for A in condition (1.4) (or condition (3.4)) is necessary for Theorem 1.1. As
remarked earlier, when n = 1, this assumption is not necessary. For general n ≥ 2, there is
the following theorem.

Theorem 4.5 Suppose F(A,p) is elliptic and u is a convex solution of

F(∇2u,∇u) = 0, (4.5)

then W = (∇2u) is either of constant rank, or its minimal rank is at least 2. In particular, if
n = 2, then W is of constant rank.

Proof The proof follows the same lines of proof as Theorem 3.2 with the following observa-
tions: condition (4.3) was only used to control Ji as defined in (3.20). Let l be the minimum
rank of W . If l = 0, that is G = ∅, the proof of Theorem 3.2 works without any change since
F is independent of (u, x) in our case. This leaves the case l = 1 i.e. |G| = 1 and we may
assume α = n ∈ G. Note that (3.19) still holds. Since F(∇2u,∇u) = 0, and

0 = ∇iF (∇2u,∇u) = Fnnunni + O

(
φ +

∑
i,j∈B

|∇uij |
)

.

This gives

|unni | ≤ C

(
φ +

∑
i,j∈B

|∇uij |
)

.

Of course, the treatment of terms involving uijβ for i, j ∈ B follows the same way as in the
proof of Theorem 3.2. One may deduce that W is of constant rank. Finally, if n = 2, the only
other case is l = 2. In this case, W is of full rank everywhere. �

Remark 4.6 The above proof of Theorem 4.5 indicates that if the minimal rank of W is
either 0 or 1, then the rank of (∇2u) is the same everywhere. There is no structure condition
imposed on F except the ellipticity condition (1.3). This observation will be used in the
proof of Theorem 1.6 in the next section. In general, for a nonlinear eigenvalue problem
F(∇2v) = λv, the function u = − logv satisfies (4.5) if F is of homogeneous degree of
one. This is useful in the study of the log-concavity property (c.f. [6, 8, 28]) of nonlinear
eigenvalue problem.

We conclude this section with the proof of Theorem 1.2. We have the following.

Proposition 4.7 Let F and u as in Theorem 1.2. For each 0 < t0 ≤ T , if ∇2u attains mini-
mum rank l at certain point x0 ∈ �, then there exist a neighborhood O of x0 and a positive
constant C independent of φ (defined in (2.2)), such that for t close to t0, σl(uij (x, t)) > 0
for x ∈ O, and

∑
α,β

F αβφαβ(x, t) − φt (x, t) ≤ C(φ(x, t) + |∇φ(x, t)|), ∀x ∈ O. (4.6)
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Proof of Proposition 4.7 The proof is similar to the proof of Theorem 3.2. Since u ∈ C3,
the assumptions on F automatically imply u ∈ C4. Suppose (∇2u(x, t0)) attains its min-
imal rank l at some point x0 ∈ �. We may assume l ≤ n − 1, otherwise there is noth-
ing to prove. By continuity, σl(uij (x, t)) > 0 in a neighborhood of (x0, t0). With ut =
F(∇2u,∇u,u, x, t), using the same notations as in the proof of Theorem 3.2, (3.12) be-
comes

∑
αβ

F αβvαβij +
∑
αβ

vαβi

(∑
γ η

F αβ,γ ηvγ ηj +
∑

k

F αβ,qk vkj + Fαβ,vvj + Fαβ,xj

)

+
∑

k

F qk vkij +
∑

k

vki

(∑
αβ

F qk,αβvαβj +
∑

l

F qk,ql vlj + Fqk,vvj + Fqk,xj

)

+ Fvvij + vi

(∑
αβ

F v,αβvαβj +
∑

l

F v,ql vlj + Fv,vvj + Fv,xj

)

+
∑
αβ

F xi ,αβvαβj +
∑

k

F xi ,qk vkj + Fxi ,vvj + Fxi ,xj

= O(φ) + vij,t , (4.7)

and accordingly, (3.13) becomes
∑

Fαβφαβ =
∑

Fαβφij vijαβ +
∑

Fαβφij,kmvijαvkmβ

=
∑

Fαβφij,kmvijαvkmβ −
∑

φijF qk vkij −
∑

φij
[
2
∑

Fαβ,qk vαβivkj

+ Fvvij +
∑

Fqk,ql vkivlj + 2
∑

Fqk,vvkivj + 2
∑

Fqk,xj vki

]

−
∑

φij
[
Fαβ,γ ηvαβivγ ηj + 2

∑
Fαβ,vvαβivj + 2

∑
Fαβ,xj vαβi

+
∑

Fv,vvivj +
∑

Fv,xi vj +
∑

Fxixj

]
+ O(φ) +

∑
φij vij,t . (4.8)

Note that since φt = ∑
φij vij,t , (4.8) can be written as

∑
Fαβφαβ − φt =

∑
Fαβφij,kmvijαvkmβ −

∑
φijF qk vkij

−
∑

φij
[
Fvvij + 2

∑
Fαβ,qk vαβivkj +

∑
Fqk,ql vkivlj

+ 2
∑

Fqk,vvkivj + 2
∑

Fqk,xj vki

]

−
∑

φij
[
Fαβ,γ ηvαβivγ ηj + 2

∑
Fαβ,vvαβivj + 2

∑
Fαβ,xj vαβi

+
∑

Fv,vvivj +
∑

Fv,xi vj +
∑

Fxixj

]
+ O(φ). (4.9)

The right hand side of (4.9) is the same as the right hand side of (3.13). Using Corollary 4.2
in place of Lemma 3.1 in the proof of Theorem 3.2, the same analysis yields

∑
Fαβφαβ(x, t) − φt (x, t) ≤ C1(φ(x, t) + |∇φ(x, t)|) − C2

∑
i,j∈B

|∇vij |. (4.10)

�
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Proof of Theorem 1.2 It follows from Proposition 4.7 and the Strong Maximum Principle
for parabolic equations that φ ≡ 0 locally. That is ∇2u(x, t) is of constant rank l(t) for each
t > 0. Since � is flat, by the arguments in [7, 27], for each 0 < t ≤ T , x0 ∈ �, there exist a
neighborhood U of x0 and (n− l(t)) fixed directions V1, . . . , Vn−l(t) such that ∇2u(x, t)Vj =
0 for all 1 ≤ j ≤ n − l(t) and x ∈ U . Going back to (4.10), we have

∑
i,j∈B |∇uij (x, t)| ≡ 0

and therefore the null space of ∇2u is parallel. �

Remark 4.8 Examining the proof of Theorem 1.1 shows that the local convexity condition
in (1.4) is only needed near the set N = {det(∇2u) = 0}. ∀x ∈ N , we let

Du(x) = {r diagonal| r = Q(∇2u(x))QT for some Q ∈ O(n)}. (4.11)

For each δ > 0, set I δ
u(x) = {s| |s − u(x)| ≤ δ}, and

D̃δ
u(x) = {A| ‖A−1 − r‖ ≤ δ, for some r ∈ Du(x)}.

The condition (1.4) in Theorem 1.1 can be replaced by: there is δ > 0 and for p = Q∇u(x)

(Q ∈ O(n)),

F(A−1,p,u, x) is locally convex in (A,u, x) in D̃δ
u(x) × I δ

u(x) × O. (4.12)

Similarly, condition (1.5) and condition (4.3) only need to be valid for (A,u, x) in D̃δ
u(x) ×

I δ
u(x) × O for each t . Note that the regularity assumptions on u and F in Theorem 1.2 and

Theorem 4.7 can be reduced to C2.

5 Geometric applications

We discuss geometric nonlinear differential equations in this section.

Proposition 5.1 Suppose F(A,X, �n, t) is elliptic in A and satisfies condition (4.4) for each
fixed �n ∈ S

n, t ∈ [0, T ] for some T > 0. Let M(t) be an oriented immersed connected hyper-
surface in R

n+1 with a nonnegative definite second fundamental form h(t) satisfying (1.9).
Then h(t) is of constant rank l(t) for each t ∈ (0, T ] and l(s) ≤ l(t) for all 0 < s ≤ t ≤ T .
Moreover the null space of h is parallel for each t .

Proof For ε > 0, let W = (gimhmj + εδij ), where h = (hij ) is the second fundamental form
of M(t). Let l(t) be the minimal rank of h(t). For a fixed t0 ∈ (0, T ), let x0 ∈ M such that
h(t0) attains minimal rank at x0. Set φ(x, t) = σl+1(W(x, t))+ σl+2

σl+1
(W(x, t)). By the results

of Sect. 2, φ is in C1,1. The proposition will follow if we can establish that there are constants
C1,C2 independent of ε such that

F ijφij − φt ≤ C1φ + C2|∇φ|, near (x0, t0). (5.1)

X = (X1, . . . ,Xn+1) be the position vector and let h2 = (hi
lh

l
j ). We note that under (1.9),

the Weingarten form hi
j = gimhmj satisfies the equation

∂th
i
j = ∇ i∇jF + F(h2)i

j . (5.2)
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The same arguments used in the proof of Theorem 3.2 carry through with some mod-
ifications to prove a parabolic version of (3.12) using (5.2). In this case, Wijkm and Wkmij

may be different. But as W is Codazzi, the commutator term can be controlled using the
Ricci identity. Here �n replaces p and the Gauss equation will be used. All these terms are
controlled by CWii . Notice that Wii ≤ φ for all i ∈ B , so we have the following formula
corresponding to (3.19):

∑
Fαβφαβ − φt

= O

(
φ +

∑
i,j∈B

|∇Wij |
)

− 1

σ1(B)

∑
α,β

∑
i,j∈B,i �=j

F αβWijαWijβ

− 1

σ 3
1 (B)

∑
α,β

∑
i∈B

Fαβ

(
Wiiασ1(B) − Wii

∑
j∈B

Wjjα

)(
Wiiβσ1(B) − Wii

∑
j∈B

Wjjβ

)

−
∑
i∈B

[
σl(G) + σ 2

1 (B|i) − σ2(B|i)
σ 2

1 (B)

][ ∑
α,β,γ,η∈G

Fαβ,γ η()WiαβWiγ η +
∑

α

FXα

Xα
ii

+ 2
∑
αβ∈G

Fαβ
∑
j∈G

1

λj

WijαWijβ + 2
∑

α,β∈G

n+1∑
γ=1

Fαβ,Xγ

WiαβX
γ

i +
n+1∑

γ,η=1

FXγ ,Xη

X
γ

i X
η

i

]
.

(5.3)

The term involving Xii is controlled by Chii (and in turn by CWii ) using the Weingarten
formula. We obtain∑

F αβφαβ − φt

= O

(
φ +

∑
i,j∈B

|∇Wij |
)

− 1

σ1(B)

∑
α,β

∑
i,j∈B,i �=j

F αβWijαWijβ

− 1

σ 3
1 (B)

∑
α,β

∑
i∈B

Fαβ

(
Wiiασ1(B) − Wii

∑
j∈B

Wjjα

)(
Wiiβσ1(B) − Wii

∑
j∈B

Wjjβ

)

−
∑
i∈B

[
σl(G) + σ 2

1 (B|i) − σ2(B|i)
σ 2

1 (B)

][ ∑
α,β,γ,η∈G

Fαβ,γ η()WiαβWiγ η

+ 2
∑
αβ∈G

Fαβ
∑
j∈G

1

λj

WijαWijβ + 2
∑

α,β∈G

n+1∑
γ=1

Fαβ,Xγ

WiαβX
γ

i +
n+1∑

γ,η=1

FXγ ,Xη

X
γ

i X
η

i

]
.

(5.4)

The right hand side of (5.4) is the same as in (3.19) and the analysis in the proof of
Theorem 3.2 can be used to show the right hand side of (5.4) can be controlled by
φ + |∇φ| − C

∑
i,j∈B |∇Wij |. The theorem follows by the same argument as in the end

of the proof of Theorem 4.7. �

Note that Theorem 1.5 follows directly from Proposition 5.1 (since (1.10) is a special case
of (1.9) by making M independent of t ) and a splitting theorem for complete hypersurfaces
in R

n+1. We now prove Theorem 1.4. In fact, the local convexity condition on F in that
theorem can be weakened to condition (4.4).
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Theorem 5.2 Suppose F(A,X, �n, t) is elliptic in A and satisfies condition (4.4) for each
fixed �n ∈ S

n, t ∈ [0, T ] for some T > 0. Let M(t) ⊂ R
n+1 be a compact hypersurface satis-

fying (1.9). If M0 is convex, then M(t) is strictly convex for all t ∈ (0, T ).

Proof of Theorem 5.2 First, M0 may be approximated by a strictly convex Mε
0 . By conti-

nuity, there is δ > 0 (independent of ε), such that there is a solution Mε(t) to (1.9) with
Mε(0) = Mε

0 for t ∈ [0, δ]. We argue that Mε(t) is strictly convex for t ∈ [0, δ]. If not, there
is t0 > 0 so that Mε(t) is strictly convex for 0 ≤ t < t0. But there is one point x0 such that
(hij (x0, t0)) is not of full rank, contradicting Proposition 5.1. Taking ε → 0, we conclude
that M(t) is convex for all t ∈ [0, δ]. This implies that the set t where M(t) is convex is
open. It is obviously closed. Therefore, M(t) is convex for all t ∈ [0, T ]. Again, by Propo-
sition 5.1, M(t) is strictly convex for all t ∈ (0, T ]. �

Remark 5.3 If n = 2, by Lemma 4.4, if F(A) is homogeneous of degree k for either k ≥ 1
or k ≤ 0, then F satisfies condition (4.4) automatically.

Let (M,g) be a Riemannian manifold (not necessary compact). A symmetric 2-tensor
W is called a Codazzi tensor if wijk is symmetric with respect to indices i, j, k in local
orthonormal frames. One of the important examples of the Codazzi tensor is the second
fundamental form of hypersurfaces.

Theorem 5.4 Let F(A,x) is elliptic and F(A−1, x) is locally convex in (A,x). Suppose
(M,g) is a connected Riemannian manifold with nonnegative sectional curvature, and W is
a semi-positive definite Codazzi tensor on M satisfying equation

F(g−1W,x) = 0 on M , (5.5)

then W is of constant rank and its null space is parallel.

Proof Since the proof is similar to the proof of Theorem 1.1 and we only indicate some
necessary modifications.

We use the same notations as in the proof of Theorem 1.1. As before, we set φ(x) =
σl+1(W(x)) + σl+2(W(x))

σl+1(W(x))
as in (2.2). As before, we want to establish corresponding differen-

tial inequality (3.5) in this case for the Codazzi tensor W . We note that all the analysis in
Sect. 3 carries through without any change if we use local orthonormal frames, except for the
commutators of derivatives. Since W is Codazzi, we only need to take care of commutators
of the form Wαα,ββ − Wββ,αα . The Ricci identity states

Wαα,ββ = Wββ,αα + Rαβαβ(Wαα − Wββ), (5.6)

where Rαβαβ are the sectional curvatures of (M,g). Following the same lines of the proof of
Theorem 3.2, we have the corresponding differential inequality

∑
αβ

F αβφαβ(x) ≤ C1(φ(x) + |∇φ(x)|) − σl(G)
∑

α∈G,β∈B

FααRαβαβWαα − C2

∑
i,j∈B

|∇Wij |.

(5.7)

Since Rαβαβ ≥ 0, the strong maximum principle implies φ ≡ 0 in M . Therefore W is of
constant rank l. Again, by (5.7),

∑
i,j∈B |∇Wij | ≡ 0, so the null space of W is parallel. �
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Proof of Theorem 1.6 Deal with case (2) of the theorem first. Let c = minx∈M Ws(x), where
Ws(x) is smallest eigenvalue of W at x. Set W̃ = g−1(W − cg). Then W̃ is also a Codazzi
tensor, it’s rank is strictly less than n at some point, and it satisfies

F̃ (W̃ ) = F(g−1W̃ + cI) = constant. (5.8)

By our assumption, c ≥ 0, it follows from Corollary 4.3 that F̃ satisfies condition (1.4).

For φ(x) = σl+1(W̃ (x)) + σl+2(W̃ )

σl+1(W̃ (x))
, inequality (5.7) is valid. It follows from the proof of

Theorem 3.2 that φ ≡ 0 in M . This implies that the left hand side of (5.7) is identically 0,
so is the right hand side. By assumption, Rαβαβ > 0 at some point. It follows that G must be
empty, that is W̃ ≡ 0.

In case (1) we follow the arguments in the proof of Theorem 4.5 and Remark 4.6. Let W̃

defined as before (c may not be nonnegative in this case). Then W̃ is a semi-positive definite
Codazzi tensor with minimal rank strictly less than 2 at some point, satisfying F̃ (W̃ ) =
F(g−1W̃ + cI) = 0, F̃ is elliptic. If l = 0, the proof for case (2) carries through without
change. Assume l = 1, |G| = 1. At the given point, we may assume W̃ is diagonal and
n ∈ G. Differentiate equation F̃ (W̃ ) = 0, as in the proof of Theorem 4.5, to obtain

∇W̃nn = O

( ∑
i,j∈B

∇W̃ij

)
.

Therefore, ∇W̃nn can be controlled. It follows from the proof of Theorem 3.2 that inequality
(5.7) is valid. In turn, we get φ ≡ 0 in M . As in case (2), Rαβαβ > 0 forces W̃ ≡ 0. �

Remark 5.5 In spirit, our results are similar to Hamilton’s strong maximum principle [19]
for the tensor equation

Wt = �W + �(W), (5.9)

under the assumption that V T �(W)V ≥ 0 for any null direction of W . In our situation,
the tensor equation for W is more complicated. For example, in the case of Theorem 4.7,
W = (∇2u) satisfies

Wt = F ij∇i∇jW + �(∇W,W,∇u,u, x, t), (5.10)

where � involves ∇W,W,∇u,u, x, t . Our main aim is to show that � is controlled by
φ + |∇φ| near the null set of φ.

Remark 5.6 Assume F in (1.9) is nonnegative and depends only on A. Set

λmin(t) = min
x∈M(t)

{smallest eigenvalue of h(x, t)}, W = (hi
j (x, t)) − λmin(s)I.

If W has zero eigenvalue at some time t > s, using Corollary 4.3 and (5.2), the above argu-
ment above can be used to show that

∑
αβ

F αβφαβ(x) − φt ≤ C1φ(x) + C2|∇φ(x)| − σl(G)
∑

α∈G,β∈B

FααRαβαβWαα. (5.11)

By Theorem 1.4, the sectional curvature of M(t) is strictly positive and therefore the last
term in (5.11) must vanish, that is W ≡ 0. In turn, Theorem 1.4 can be strengthened as



334 B. Bian, P. Guan

follow:

λmin(t) ≥ λmin(s), ∀0 ≤ s ≤ t ≤ T ,

and if equality holds for some s < t0, then (hi
j (x, t)) = λmin(s)I is constant for all s ≤ t and

for all x, that is M(t) is a sphere for all t ≥ s.

Remark 5.7 Applying the same argument as in Remark 4.8, we can weaken the local con-
vexity condition on F in Theorem 1.6 and Theorem 5.4. Let

DW(x) = {r diagonal| r = Qg−1(x)W(x)QT for some Q ∈ O(n)},

D̃δ
W(x) = {A| ‖A−1 − r‖ ≤ δ, for some r ∈ Du(x)}.

In this case, we only need the condition: there is δ > 0,

F(A−1, x) is locally convex in D̃δ
W(x) × O. (5.12)

Note that when M is compact, for given Codazzi tensor W on M , there exists λ > 0 such that
W̃ = λg−W ≥ 0 everywhere. If F(W) is concave in W , then F̃ (g−1W̃ ) = −F(λI −g−1W̃ )

satisfies condition (5.12).
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