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Abstract We show that for convex domains in Euclidean space, Cheeger’s isoperimetric
inequality, spectral gap of the Neumann Laplacian, exponential concentration of Lipschitz
functions, and the a-priori weakest requirement that Lipschitz functions have arbitrarily
slow uniform tail-decay, are all quantitatively equivalent (to within universal constants, inde-
pendent of the dimension). This substantially extends previous results of Maz’ya, Cheeger,
Gromov–Milman, Buser and Ledoux. As an application, we conclude a sharp quantitative
stability result for the spectral gap of convex domains under convex perturbations which
preserve volume (up to constants) and under maps which are “on-average” Lipschitz. We
also provide a new characterization (up to constants) of the spectral gap of a convex do-
main, as one over the square of the average distance from the “worst” subset having half the
measure of the domain. In addition, we easily recover and extend many previously known
lower bounds on the spectral gap of convex domains, due to Payne–Weinberger, Li–Yau,
Kannan–Lovász–Simonovits, Bobkov and Sodin. The proof involves estimates on the diffu-
sion semi-group following Bakry–Ledoux and a result from Riemannian Geometry on the
concavity of the isoperimetric profile. Our results extend to the more general setting of Rie-
mannian manifolds with density which satisfy the CD(0,∞) curvature-dimension condition
of Bakry-Émery.

1 Introduction

Let (�,d,μ) denote a metric probability space. More precisely, we assume that (�,d)

is a separable metric space and that μ is a Borel probability measure on (�,d) which is
not a unit mass at a point. Although it is not essential for the ensuing discussion, it will
be more convenient to specialize to the case where � is a smooth complete oriented n-
dimensional Riemannian manifold (M,g), d is the induced geodesic distance, and μ is an
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absolutely continuous measure with respect to the Riemannian volume form volM on M .
A question which goes back at least to the 19th century (motivating the solution to the
isoperimetric problem in R

n), and arguably much before that (e.g. Dido’s problem), pertains
to the interplay between the metric d and the measure μ. There are various different ways to
measure this relationship, which may be typically arranged according to strength, forming a
hierarchy. In this work, we will be primarily concerned with three such different ways.

1.1 The hierarchy

The first way is by means of an isoperimetric inequality. Recall that Minkowski’s (exterior)
boundary measure of a Borel set A ⊂ �, which we denote here by μ+(A), is defined as:

μ+(A) := lim inf
ε→0

μ(Aε,d) − μ(A)

ε
,

where Aε,d := {x ∈ �; ∃y ∈ A d(x, y) < ε} denotes the ε-neighborhood of A with respect
to the metric d . It is clear that the boundary measure is a natural generalization of the notion
of surface area to the metric probability space setting. An isoperimetric inequality measures
the relation between μ+(A) and μ(A) by means of the isoperimetric profile I = I(�,d,μ),
defined as the pointwise maximal function I : [0,1] → R+, so that μ+(A) ≥ I (μ(A)) for
all Borel sets A ⊂ �. A set A for which equality above is attained is called an isoperimetric
minimizer. Since A and � \ A will typically (but not necessarily, consider μ with non-
continuous density) have the same boundary measure, it will be convenient to also define
Ĩ = Ĩ(�,d,μ) as the function Ĩ : [0,1/2] → R+ given by Ĩ (t) := min(I (t), I (1 − t)).

A very useful isoperimetric inequality was considered by Cheeger [27] (and in a more
general form, independently by V. G. Maz’ya [60, 61]):

Definition The space (�,d,μ) is said to satisfy Cheeger’s isoperimetric inequality if:

∃D > 0 such that Ĩ(�,d,μ)(t) ≥ Dt ∀t ∈ [0,1/2].
The best possible constant D above is denoted by DChe = DChe(�,d,μ).

A second way to measure the interplay between d and μ is given by functional inequal-
ities. Let F = F (�,d) denote the space of functions which are Lipschitz on every ball in
(�,d)—we will call such functions “Lipschitz-on-balls”—and let f ∈ F . We will consider
functional inequalities which measure the relation between ‖f ‖Lp(μ) and ‖|∇f |‖Lq(μ), for
0 < p,q ≤ ∞ (more general Orlicz norms will be treated in [64]). Here, the effect of the
metric d is via the Riemannian metric g which is used to measure |∇f | := g(∇f,∇f )1/2,
although more general ways exist to define |∇f | in the non manifold setting. Of course if
f is constant there is no sense to compare against ‖|∇f |‖Lq(μ) = 0, so we will need to ex-
clude these cases. To this end, we will require that either the expectation Eμf or median
Mμf of f are 0. Here Eμf = ∫

f dμ and Mμf is a value so that μ(f ≥ Mμf ) ≥ 1/2 and
μ(f ≤ Mμf ) ≥ 1/2.

A well known example of a functional inequality was studied by Poincaré:

Definition The space (�,d,μ) is said to satisfy Poincaré’s inequality if:

∃D > 0 such that ∀f ∈ F D
∥
∥f − Eμf

∥
∥

L2(μ)
≤ ‖|∇f |‖L2(μ) .

The best possible constant D above is denoted by DPoin = DPoin(�,d,μ).
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It is well known (e.g. [33]) that under appropriate smoothness assumptions, Poincaré’s
inequality is equivalent to the existence of a spectral gap of an appropriate Laplacian op-
erator −�g,μ on (M,g) associated to the measure μ with corresponding boundary condi-
tions on its support. When μ is uniform on a domain � ⊂ (M,g), �g,μ coincides with the
usual Laplace-Beltrami operator �g with Neumann boundary conditions on �. The first
non-trivial eigenvalue of −�g,μ (the “spectral gap”) is then precisely D2

Poin(�,d,μ).
A third way to measure the relation between d and μ is given by concentration inequali-

ties. These measure how tightly 1-Lipschitz functions are concentrated about their mean, by
providing a quantitative estimate on the tail decay μ(|f − Eμf | ≥ t). A typical situation is
given by the following example:

Definition The space (�,d,μ) is said to have exponential concentration if:

∃c,D > 0 such that ∀ 1-Lipschitz f ∀t > 0 μ(|f − Eμf | ≥ t) ≤ c exp(−Dt).

Fixing c = e, the best possible constant D above is denoted by DExp = DExp(�,d,μ). The
best constant for a specific f is denoted by DExp(f ).

It is known that the three examples mentioned above are arranged in a hierarchy. It was
shown by Cheeger [27], and in a more general form, independently by Maz’ya [60–62] (see
also [37]), that Cheeger’s isoperimetric inequality always implies Poincaré’s inequality (or
spectral gap):

Theorem 1.1 (Maz’ya, Cheeger) DPoin ≥ DChe/2 (“Cheeger’s inequality”).

The fact that Poincaré’s inequality implies exponential concentration was first shown by
M. Gromov and V. Milman [40] in the Riemannian setting, and subsequently by other au-
thors in other settings as well (e.g. [3], see [55] and the references therein):

Theorem 1.2 (Gromov–Milman) There exists a universal numeric constant c > 0 such that
DExp ≥ cDPoin.

1.2 Reversing the hierarchy

It is known and easy to show that these implications cannot be reversed in general. For
instance, using ([−1,1], | · |,μα) where dμα = 1+α

2 |x|αdx on [−1,1], clearly μ+
α ([0,1]) =

0 so DChe = 0, whereas one can show that DPoin > 0 for α ∈ (0,1) using a criterion for
the Poincaré inequality on R due to Artola, Talenti and Tomaselli (cf. Muckenhoupt [74]).
In addition, if μ is supported on a set � with diameter bounded by a finite D, trivially
one has DExp ≥ 1/D > 0; but if we choose � to be disconnected, we will always have
DPoin = DChe = 0. In fact, one need not impose such topological obstructions on �, it is
also easy to construct a connected set with arbitrarily narrow “necks”. We conclude that in
order to have any chance of reversing the above implications, we will need to add some
additional assumptions, which will prevent the existence of such narrow necks. Intuitively,
it is clear that some type of convexity assumptions are a natural candidate. We start with two
important examples when (M,g) = (Rn, | · |) and | · | is some fixed Euclidean norm:

• � is an arbitrary bounded convex domain in R
n (n ≥ 2), and μ is the uniform probability

measure on �.
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• � = R
n (n ≥ 1) and μ is an arbitrary absolutely continuous log-concave probability

measure, meaning that dμ = exp(−ψ)dx where ψ : R
n → R ∪ {+∞} is convex (we

refer to the paper [23] of C. Borell for more information).

In both cases, we will say that “our convexity assumptions are fulfilled”. More generally,
we present the following definition:

Definition We will say that our smooth convexity assumptions are fulfilled if:

• (M,g) denotes an n-dimensional (n ≥ 2) smooth complete oriented connected Rie-
mannian manifold or (M,g) = (R, | · |), and � = M .

• d denotes the induced geodesic distance on (M,g).
• dμ = exp(−ψ)dvolM , ψ ∈ C2(M), and as tensor fields on M :

Ricg + Hessgψ ≥ 0. (1.1)

We will say that our convexity assumptions are fulfilled if μ can be approximated in total-
variation by measures {μm} so that (�,d,μm) satisfy our smooth convexity assumptions.

The condition (1.1) is the well-known Curvature-Dimension condition CD(0,∞), intro-
duced by Bakry and Émery in their influential paper [4] (in the more abstract framework
of diffusion generators). Here Ricg denotes the Ricci curvature tensor and Hessg denotes
the second covariant derivative. When the Ricci tensor satisfies a slightly relaxed condition
Ricg ≥ −Kg, K ≥ 0, it was first shown by Buser [26] that the implication in Theorem 1.1
can be reversed. We only quote the K = 0 case, which in our setting reads:

Theorem 1.3 (Buser) If μ is uniform on a closed n-dimensional manifold (M,g) and
Ricg ≥ 0 then DChe ≥ cDPoin, where c > 0 is a universal numeric constant.

The fact that the constant c above does not depend on the dimension n is quite remark-
able. Buser’s theorem was recently further generalized by M. Ledoux [56] (following the
method developed by Bakry–Ledoux [5]) to the Bakry-Émery abstract setting. Again, we
only quote the CD(0,∞) case:

Theorem 1.4 (Ledoux) Under our smooth convexity assumptions DChe ≥ cDPoin, where
c > 0 is a universal numeric constant.

1.3 Main theorem

How about reversing the implication in Theorem 1.2 under our convexity assumptions? This
is one of the statements in our Main Theorem below. A second statement, which is much
more surprising, concerns a very weak type of concentration inequality, which we introduce:

Definition The space (�,d,μ) is said to satisfy First-Moment concentration if:

∃D > 0 such that ∀ 1-Lipschitz f
∥
∥f − Eμf

∥
∥

L1(μ)
≤ 1

D
. (1.2)

The best possible constant D above is denoted by DFM = DFM(�,d,μ).
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Clearly, by the Markov-Chebyshev inequality, First-Moment concentration implies lin-
ear tail-decay:

∀ 1-Lipschitz f ∀t > 0 μ(|f − Eμf | ≥ t) ≤ 1

DFMt
,

and decay slightly faster than linear implies (integrating by parts) First-Moment concen-
tration. The First-Moment concentration is clearly a-priori much weaker than exponential
concentration. Our Main Theorem, first announced in [65], asserts that under our convexity
assumptions, not only is First-Moment concentration equivalent to exponential concentra-
tion, but in fact also to the a-priori stronger inequalities of Poincaré and Cheeger:

Theorem 1.5 Under our convexity assumptions, the following statements are equivalent:

1. Cheeger’s isoperimetric inequality (with DChe).
2. Poincaré’s inequality (with DPoin).
3. Exponential concentration inequality (with DExp).
4. First Moment concentration inequality (with DFM ).

The equivalence is in the sense that the constants above satisfy DChe 
 DPoin 
 DExp 
 DFM .

Here and below, A 
 B means that C1B ≤ A ≤ C2B , with Ci > 0 some universal nu-
merical constants, independent of any other parameter, and in particular the dimension n.
We will see in Sect. 4 that the use of the First-Moment is not essential in Statement (4); we
may have required any arbitrarily slow uniform tail decay, instead of linear decay. In other
words, if:

∃α : R+ → [0,1] α(t) →t→∞ 0 ∀1-Lipschitz f ∀t > 0 μ(|f − Eμf | ≥ t) ≤ α(t),

(1.3)
where α decays to 0 arbitrarily slow, we can deduce under our convexity assumptions that
Lipschitz functions have in fact much faster exponential tail decay (with rate depending
solely on α), and in addition the stronger inequalities of Poincaré and Cheeger, as above. In
this sense, our result extends the well-known Kahane-Khinchine type inequalities in Con-
vexity Theory (e.g. consequences of Borell’s Lemma [23], see [67] for an overview) stating
that linear functionals have comparable moments, ensuring exponential tail decay, to the
same statement for the “worst” 1-Lipschitz function (see Remark 4.4).

The Main Theorem may also be interpreted as stating that under our convexity assump-
tions, there exists a single 1-Lipschitz function f whose level sets on average attain the
minimum (up to constants) in Cheeger’s isoperimetric inequality (see Sect. 4). In fact, one
may choose this function to be of the form f (x) = d(x,A), where A is some set with
μ(A) ≥ 1/2. This is expressed in the following reformulation of the Main Theorem:

Theorem 1.6 Under our convexity assumptions on (�,d,μ):

DChe(�,d,μ) 
 inf

{
1

∫
�

d(x,A)dμ
;A ⊂ �,μ(A) ≥ 1/2

}

.

Equivalently, this is tantamount to saying that under our convexity assumptions, it is only
necessary to use test functions of the form f (x) = d(x,A) when testing (up to a universal
numeric constant) for the spectral gap D2

Poin in Poincaré’s inequality. Clearly, without any
further assumptions, all of the above statements are in general false.
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1.4 Applications to spectral gap of convex domains

In Sect. 5, we deduce from our Main Theorem 1.5 several new results pertaining to the
spectral gap of convex domains, and recover and extend numerous previously known results
as well. We will formulate our results in Euclidean space (Rn, | · |), even though they hold
for the most part under our more general convexity assumptions.

For a bounded domain � ⊂ (Rn, | · |), let λ� denote the uniform probability measure
on �, and denote DPoin(�) := DPoin(�, | · |, λ�). As our main application, we deduce the
following stability result for the spectral gap D2

Poin(�) of the Neumann Laplacian on � under
perturbations of the domain �. Clearly, there can be no stability result without some further
assumptions, which we add in the form of convexity. We formulate the stability in terms
of the Cheeger constant DChe(�) := DChe(�, | · |, λ�) (this is a-priori stronger than using
DPoin(�) by the Maz’ya–Cheeger inequality, but in fact equivalent in the class of convex
domains by the Buser-Ledoux Theorems):

Theorem 1.7 Let K,L denote two bounded convex domains in (Rn, | · |). If:

Vol (K ∩ L) ≥ vKVol (K) , Vol (K ∩ L) ≥ vLVol (L) ,

then:

DChe(K) ≥ c
v2

K

log(1 + 1/vL)
DChe(L), (1.4)

where c > 0 is some universal numeric constant.

Here Vol denotes the Lebesgue measure. In particular, we see that:

Vol (K) 
 Vol (L) 
 Vol (K ∩ L) ⇒ DChe(K, | · |, λK) 
 DChe(L, | · |, λL).

Note that K,L satisfying the above condition can be very different geometrically (consider
for instance a Euclidean ball of radius 1 and its intersection with a centered slab of width
10/

√
n), and yet share essentially the same spectral gap. Also note that our stability result

holds with respect to all possible Euclidean structures | · | simultaneously, since the assump-
tion in the left-hand side above is independent of the Euclidean structure.

We also observe that the quantitative dependence on vK, vL in (1.4) is essentially best
possible: the logarithmic dependence on 1/vL is (up to numeric constants) optimal, and
the quadratic dependence on vK cannot be improved beyond linear (and is in fact optimal
in some restricted range, see Example 5.6). In addition, Theorem 1.7 implies that when
1
a
L ⊂ K ⊂ Lb with a, b ≥ 1, ab ≤ 1 + c

n
, then DChe(K) 
 DChe(L). In fact, when ab ≤

1 + s
n

with 1 ≤ s ≤ n, we obtain in Corollary 5.3 the best possible (up to numeric constants)
quantitative bounds on DChe(K)/DChe(L) as a function of s (see Example 5.7). To the best
of our knowledge, no quantitative bounds on the stability of DChe for convex domains under
convex perturbations were previously known. Completely analogous stability results hold
for log-concave probability measures as well (see Theorem 5.5). Another useful result which
we deduce from our Main Theorem is that Cheeger’s constant is preserved under maps which
are not necessarily Lipschitz, but rather Lipschitz on average (see Theorem 5.9).

An intriguing conjecture of Kannan, Lovász and Simonovits [47] states that under a nat-
ural non-degeneracy condition on a bounded convex domain K in (Rn, | · |), DChe(K) 
 1,
independently of the dimension n. The upper bound follows from standard Convexity The-
ory, but the lower bound is far from being resolved. There are many known lower bounds
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which provide dimension dependent results, and we are able to easily recover many of them,
without appealing to the localization method used by Kannan–Lovász–Simonovits (which
may be traced back to the work of Gromov–Milman [41]). These include results by Payne
and Weinberger [76], Li and Yau [58] and Kannan–Lovász–Simonovits [47]. In fact, our es-
timates generalize to arbitrary Riemannian manifolds satisfying our convexity assumptions,
whereas the localization method is confined to Euclidean space (and a few other special
manifolds). Using our stability result, we are able to give a geometric proof of a recent
lower bound on DChe due to S. Bobkov [17]. We also note that a recent result of Sasha Sodin
[81], implying that DChe is uniformly bounded for the suitably scaled unit-balls of �n

p for
p ∈ [1,2], is now an immediate consequence of our Main Theorem together with a result of
Schechtman and Zinn [79].

1.5 Ingredients in proof of main theorem

All of the four statements in our Main Theorem 1.5 can be equivalently (up to universal con-
stants) rewritten using a single unified framework in terms of (p, q) Poincaré inequalities:

Definition The space (�,d,μ) is said to satisfy a (p, q) Poincaré inequality if:

∃D > 0 such that ∀f ∈ F D
∥
∥f − Mμf

∥
∥

Lp(μ)
≤ ‖|∇f |‖Lq(μ) .

The best possible constant D above is denoted by Dp,q = Dp,q(�,d,μ).

We prefer to use the median Mμ in our definition for reasons which will become apparent
in Sect. 2. It is known and easy to establish that DPoin 
 D2,2, DChe = D1,1, DFM 
 D1,∞,
so our Main Theorem can be restated as the claim that all (p, q) Poincaré inequalities in the
range 1 ≤ p ≤ q ≤ ∞ are equivalent under our convexity assumptions (see Theorem 2.4).

The convexity assumptions are used in an essential way in the proof of the Main Theo-
rem in several separate places. First, we employ the CD(0,∞) condition via the semi-group
gradient estimates used by Ledoux in his proof of Theorem 1.4. Contrary to previous ap-
proaches, which could only deduce isoperimetric information from functional inequalities
with a ‖|∇f |‖Lq(μ) term with q = 2 (see [7, p. 3] and the references therein), we can han-
dle arbitrary q ≥ 1 (and although we do not pursue this direction here, more general Orlicz
norms too). To demonstrate that our estimates are sharp, we remark that the isoperimetric in-
equalities we obtain are in fact equivalent (up to universal constants) to the (p, q) Poincaré
inequalities used to derive them. This is summarized in Theorem 2.9, which generalizes
Theorems 1.1, 1.2, 1.3 and 1.4 above into a single unified framework. Using this, we deduce
from the First-Moment inequality (p = 1, q = ∞ above) that:

Ĩ (t) ≥ cDFMt2 ∀t ∈ [0,1/2]. (1.5)

To deduce Cheeger’s isoperimetric inequality from (1.5), we need to use our convexity as-
sumptions for the second time. We employ the following series of results in Riemannian
Geometry, due to numerous groups of authors [11–13, 16, 34, 51, 70, 73, 82], who proved
them under increasingly general conditions. A detailed survey of these results may be found
in the Appendix. We learned about these results from the PhD Thesis of V. Bayle [12], which
was referenced to us by Sasha Sodin, to whom we are indebted. In the formulation below,
we use a slightly more general notion of smooth convexity assumptions, which is defined in
Sect. 6.
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Theorem 1.8 (Bavard–Pansu, Bérard–Besson–Gallot, Gallot, Morgan–Johnson, Sternberg–
Zumbrun, Kuwert, Bayle–Rosales, Bayle, Morgan, Bobkov) Under our generalized smooth
convexity assumptions, the isoperimetric profile I = I(�,d,μ) is concave on (0,1). Moreover,
when μ is in addition uniform on � ⊂ (M,g), then I n/(n−1) is concave on [0,1], where n is
the dimension of M .

It is not hard to show (see Sect. 6) that the isoperimetric profile I is continuous under very
general assumptions. It then follows by a general argument (e.g. Corollary 6.5) that I must
be symmetric about the point 1/2. Hence, the concavity of I implies that DChe = 2I (1/2)

under our convexity assumptions. It is then immediate to deduce Cheeger’s isoperimetric
inequality from (1.5). In fact, a stronger statement can be deduced when μ is uniform on �

(see Remark 2.11).
A final ingredient in the proof is an approximation argument to handle non-smooth den-

sities, which are typical in applications as well as essential for handling uniform measures
on bounded domains (with possibly non-smooth boundaries). Contrary to many results in
Convexity Theory, where approximation arguments are standard, easy and usually omitted,
the isoperimetric profile and the Cheeger constant are delicate objects, which in general
are not stable under approximation in the natural total-variation metric (see Sect. 6). We
therefore employ our convexity assumptions one last time, and provide in Sect. 6 a careful
argument for deducing the Main Theorem 1.5 without any smoothness assumptions, and a
different approximation procedure for extending Theorem 1.8, which in particular applies
to the entire class of log-concave measures in Euclidean space.

The rest of this work is organized as follows. In Sect. 2, we reformulate the Main Theo-
rem in terms of an equivalence between (p, q) Poincaré inequalities, and using Theorem 1.8,
reduce it to the statement of Theorem 2.9. The semi-group argument for proving Theo-
rem 2.9 is described in Sect. 3. Further interpretations and an extension of the Main Theorem
are described in Sect. 4. Applications for the spectral gap under our convexity assumptions
are described in Sect. 5. We conclude with an approximation argument for disposing of our
smoothness assumptions in Sect. 6, and an Appendix describing in more detail the results
summarized in the statement of Theorem 1.8.

2 (p,q) Poincaré inequalities

We start by rewriting some of the statements of the Main Theorem 1.5.
We will use the following notation. A function N : R+ → R+ will be called a Young

function if N(0) = 0 and N is convex increasing. Besides the classical Young functions
tp (p ≥ 1), we will also frequently use the function 	1(t) = exp(t) − 1. Given a Young
function N , the Orlicz norm N(μ) associated to N is defined as:

‖f ‖N(μ) := inf

{

v > 0;
∫

�

N(|f |/v)dμ ≤ 1

}

.

Lemma 2.1 Let N(μ) denote an Orlicz norm associated to the Young function N . Then:

1

2

∥
∥f − Eμf

∥
∥

N(μ)
≤ ∥

∥f − Mμf
∥
∥

N(μ)
≤ 3

∥
∥f − Eμf

∥
∥

N(μ)
.

Proof Note that ‖1‖N(μ) = 1/N−1(1). First, by Jensen’s inequality (applied twice):
∣
∣Eμf − Mμf

∣
∣ ≤ Eμ(

∣
∣f − Mμf

∣
∣) ≤ N−1(1)

∥
∥f − Mμf

∥
∥

N(μ)
,
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hence:

∥
∥f − Eμf

∥
∥

N(μ)
≤ ∥

∥f − Mμf
∥
∥

N(μ)
+ |Eμf − Mμf |

N−1(1)
≤ 2

∥
∥f − Mμf

∥
∥

N(μ)
.

Next, we may assume that Mμf ≥ Eμf (otherwise exchange f by −f ). By the Markov-
Chebyshev inequality:

1

2
≤ μ(f ≥ Mμf ) ≤ μ(|f − Eμf | ≥ Mμf − Eμf ) ≤ 1/N

(
Mμf − Eμf

∥
∥f − Eμf

∥
∥

N(μ)

)

,

hence:
∣
∣Mμf − Eμf

∣
∣ ≤ N−1(2)

∥
∥f − Eμf

∥
∥

N(μ)
,

and we deduce that:

∥
∥f − Mμf

∥
∥

N(μ)
≤ ∥

∥f − Eμf
∥
∥

N(μ)
+

∣
∣Eμf − Mμf

∣
∣

N−1(1)
≤

(

1 + N−1(2)

N−1(1)

)∥
∥f − Eμf

∥
∥

N(μ)
.

We conclude by noting that N−1(2)

N−1(1)
≤ 2 since N is convex. �

The last lemma implies that we can pass back and forth between using the median Mμ

and the expectation Eμ when excluding constant functions in our functional inequalities,
at the expense of losing a universal constant. We therefore see that Poincaré’s inequality is
equivalent (up to constants) to the inequality:

∀f ∈ F DM
Poin

∥
∥f − Mμf

∥
∥

L2(μ)
≤ ‖|∇f |‖L2(μ) (2.1)

(and in fact in this case one clearly has DPoin ≥ DM
Poin). The next lemma, due to Maz’ya [63]

and Federer and Fleming [32] (see also [19] for a careful derivation), rewrites Cheeger’s
isoperimetric inequality in functional form:

Lemma 2.2 (Maz’ya, Federer–Fleming, Bobkov–Houdré) Cheeger’s isoperimetric in-
equality (with DChe) holds iff:

∀f ∈ F DChe

∥
∥f − Mμf

∥
∥

L1(μ)
≤ ‖|∇f |‖L1(μ) . (2.2)

Sketch of Proof following Bobkov–Houdré [19] It is easy to show that Cheeger’s isoperi-
metric inequality is recovered by applying (2.2) to Lipschitz functions which approximate
χA, the characteristic function of a Borel set A, in an appropriate sense. Conversely, the co-
area formula, which for general metric probability spaces becomes an inequality (see [19]),
implies for f ∈ F with Mμf = 0:

∫
|∇f |dμ ≥

∫ ∞

−∞
μ+ {f > t}dt

≥ DChe

(∫ 0

−∞
(1 − μ {f > t})dt +

∫ ∞

0
μ {f > t}dt

)

= DChe

∫
|f |dμ. �
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Since for a 1-Lipschitz function f , ‖|∇f |‖L∞(μ) ≤ 1, our First-Moment inequality is
clearly equivalent to:

∀f ∈ F DM
FM

∥
∥f − Mμf

∥
∥

L1(μ)
≤ ‖|∇f |‖L∞(μ) , (2.3)

in the sense that DFM 
 DM
FM where DM

FM is the best constant above.

Remark 2.3 The above functional reformulations remain valid for general metric probability
spaces (�,d,μ), in which case we interpret |∇f | for any f ∈ F as the following Borel
function:

|∇f | (x) := lim sup
d(y,x)→0+

|f (y) − f (x)|
d(x, y)

(and we define it as 0 if x is an isolated point—see [19, pp. 184, 189] for more details).

With the above reformulations (2.1), (2.2), (2.3) serving as motivation, the reasons behind
our definition of (p, q) Poincaré inequalities in the Introduction are now clear. Note that
DChe = D1,1, DM

Poin = D2,2 and DM
FM = D1,∞. We can now restate our Main Theorem 1.5 as

follows:

Theorem 2.4 Under our convexity assumptions, all (p, q) Poincaré inequalities are equiv-
alent in the range 1 ≤ p ≤ q ≤ ∞. More precisely, for any other 1 ≤ p′ ≤ q ′ ≤ ∞:

Dp,q ≤ Cp′Dp′,q ′ ,

where C > 0 is a universal constant.

In fact, a more precise dependence on p and p′ may be obtained in some cases. For
instance, clearly Dp′,q ′ ≥ Dp,q if p′ ≤ p and q ′ ≥ q without any further convexity assump-
tions (by Jensen’s inequality), so we see that the First-Moment inequality ((1,∞) case) is
the weakest among all (p, q) Poincaré inequalities in the above range. Another immediate
observation is given by:

Proposition 2.5 Let 0 < p ≤ p′ ≤ ∞ and 0 < q ≤ q ′ ≤ ∞ be such that:

1

p
− 1

q
= 1

p′ − 1

q ′ .

Then without any further convexity assumptions, Dp′,q ′ ≥ p

p′ Dp,q .

Proof Let g ∈ F denote a function with Mμg = 0. Define f = sign(g)|g|p′/p , and apply the
(p, q) Poincaré inequality to f . Clearly Mμf = 0, so we obtain by Hölder’s inequality:

Dp,q ‖g‖p′/p
Lp′ (μ) ≤ p′

p

∥
∥
∥|g|p′/p−1|∇g|

∥
∥
∥

Lq(μ)
≤ p′

p
‖g‖p′/p−1

Lp′ (μ) ‖|∇g|‖Lq′ (μ) ,

from which the assertion follows. �

Corollary 2.6 Maz’ya–Cheeger inequality: DPoin ≥ DChe/2.
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Proof

DPoin ≥ DM
Poin = D2,2 ≥ D1,1/2 = DChe/2. �

Corollary 2.7 Gromov–Milman inequality: DExp ≥ cDPoin.

Proof Since DPoin 
 D2,2, we conclude by Proposition 2.5 that Dp,p ≥ cDPoin/p for every
2 ≤ p ≤ ∞. Let f be a 1-Lipschitz function. It is elementary to show (e.g. [45]) that
1/DExp(f ) is equivalent (to within universal constants) to ‖f −Eμf ‖	1(μ), and that ‖g‖	1(μ)

is in turn equivalent to supp≥1 ‖g‖Lp(μ)/p. Employing Lemma 2.1 and using the (p,p)

Poincaré inequalities:

1

DExp(f )

 ∥

∥f − Eμf
∥
∥

	1(μ)

 ∥

∥f − Mμf
∥
∥

	1(μ)

 sup

p≥1

∥
∥f − Mμf

∥
∥

Lp(μ)

p

≤ sup
p≥1

‖|∇f |‖Lp(μ)

min(D2,2,pDp,p)
≤ C

DPoin
sup
p≥1

‖|∇f |‖Lp(μ) = C

DPoin
,

since f was assumed 1-Lipschitz. Taking supremum on all such functions f , we obtain the
conclusion. �

Remark 2.8 The exact same proof shows that DExp ≥ crDr,r , for arbitrary r ≥ 1.

We have seen that passing from (p, q) to (p′, q ′) is manageable if q ′ ≥ q (perhaps under
some additional assumptions on p,p′) without any convexity assumptions. Unfortunately,
we are interested in the case q ′ < q , for which an analogous statement to Proposition 2.5 is
simply false without any additional assumptions (counter examples are easy to construct, as
in the Introduction). Our first ingredient in the proof of Theorem 2.4 states that our convexity
assumptions already suffice to extend Proposition 2.5 to the case q ′ < q , p′ < p:

Theorem 2.9 Let 0 < p ≤ ∞, 1 ≤ q ≤ ∞, and set r = 1 + 1
p

− 1
q

. Assume that 1
2 ≤ r ≤ 2.

Then under our smooth convexity assumptions, the following statements are equivalent:

1.

∀f ∈ F Dp,q

∥
∥f − Mμf

∥
∥

Lp(μ)
≤ ‖|∇f |‖Lq(μ) ,

2.

Ĩ (t) ≥ D′
r t

r ∀t ∈ [0,1/2],
where the best constants Dp,q and D′

r above satisfy:

c1Dp,q ≤ D′
r ≤ c2pDp,q, (2.4)

for some universal constants c1, c2 > 0.
In fact, the direction (2) ⇒ (1) holds for p ≥ q without any convexity assumptions.

Note that when p = q = 2, the direction (2) ⇒ (1) reduces (up to constants) to The-
orem 1.1 (Maz’ya–Cheeger inequality), and the direction (1) ⇒ (2) to the Buser–Ledoux
Theorems 1.3, 1.4. A generalization of Theorem 2.9 involving general Orlicz norms will be
derived in [64].
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There is essentially no novel content in the direction (2) ⇒ (1), which follows from
the methods of Maz’ya [63, p. 89] and Federer–Fleming [32] (see also [20]). These au-
thors deduced the optimal constant in the Gagliardo inequality (q = 1, p = n

n−1 ), as well
as the Sobolev inequalities (1 < q < n, p = qn

n−q
), from the isoperimetric inequality in R

n

(r = n−1
n

), using the following clever generalization of Lemma 2.2:

Proposition 2.10 (Maz’ya, Federer–Fleming, Bobkov–Houdré) Let 0 < r ≤ 1. Without any
convexity assumptions, the (1/r,1) Poincaré inequality:

∀f ∈ F D
∥
∥f − Mμf

∥
∥

L1/r (μ)
≤ ‖|∇f |‖L1(μ)

is equivalent to the following isoperimetric inequality:

Ĩ (t) ≥ Dtr ∀t ∈ [0,1/2].

Combining Propositions 2.10 and 2.5, the direction (2) ⇒ (1) for p ≥ q (equivalently
r ≤ 1) immediately follows without any further assumptions. For the case p < q , it is almost
possible to avoid using the convexity assumptions, but not completely. Instead, we employ
Theorem 1.8 on the concavity of I under our (smooth) convexity assumptions, and deduce
from (2) that in fact Ĩ (t) ≥ D′

r

2r−1 t . The latter is equivalent by Lemma 2.2 to the statement

D1,1 ≥ D′
r

2r−1 , and by using Proposition 2.5 and Jensen’s inequality, we deduce:

Dp,q ≥ Dp,p ≥ D1,1

p
≥ D′

r

2r−1p
≥ D′

r

2p
.

The proof of (2) ⇒ (1) is thus complete.
Before proceeding to the proof of the direction (1) ⇒ (2) (this will be the focus of the

next section), let us recall how Theorem 2.9 coupled with Theorem 1.8 conclude the proof
of Theorem 2.4 and hence of our Main Theorem 1.5:

Proof of Theorem 2.4 By an approximation argument we develop in Sect. 6, it is enough to
prove the theorem under our smooth convexity assumptions.

By Jensen’s inequality, D1,∞ ≥ Dp,q in the range 1 ≤ p ≤ q ≤ ∞. Employing our
(smooth) convexity assumptions, the direction (1) ⇒ (2) of Theorem 2.9 implies:

Ĩ (t) ≥ cD1,∞t2 ∀t ∈ [0,1/2]. (2.5)

Using our (smooth) convexity assumptions for the second time, Theorem 1.8 asserts that I is
concave on (0,1). Since I is also symmetric about 1/2 (see Corollary 6.5), we immediately
deduce that:

Ĩ (t) ≥ c

2
D1,∞t ∀t ∈ [0,1/2],

which is exactly Cheeger’s isoperimetric inequality, and is identical to stating D1,1 ≥ c
2 D1,∞.

Using Proposition 2.5 and Jensen’s inequality if necessary, we can pass from this to an
arbitrary (p′, q ′) inequality in the range 1 ≤ p′ ≤ q ′ ≤ ∞. �

Remark 2.11 Note that when μ is the uniform measure on �, Theorem 1.8 in fact ensures
that I

n
n−1 is concave, so we may deduce from (2.5) that in fact:

Ĩ (t) ≥ c

2
n+1
n

D1,∞t
n−1
n ∀t ∈ [0,1/2].
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Proposition 2.10 implies that the latter isoperimetric inequality is equivalent to a ( n
n−1 ,1)

Poincaré inequality. Hence, it is clear that in this case, both our Main Theorem 1.5 and
Theorem 2.4 can be strengthened.

3 The semi-group argument

In this section, we prove the direction (1) ⇒ (2) of Theorem 2.9. Our proof closely follows
Ledoux’s proof [56] of Theorem 1.4.

Given a smooth complete oriented connected Riemannian manifold � = (M,g)

equipped with a probability measure μ with density dμ = exp(−ψ)dvolM , ψ ∈ C2(M),
we define the associated Laplacian �(�,μ) by:

�(�,μ) := �� − ∇ψ · ∇, (3.1)

where �� is the usual Laplace-Beltrami operator on �. �(�,μ) acts on B(�), the space of
bounded smooth real-valued functions on �. Let (Pt )t≥0 denote the semi-group associated
to the diffusion process with infinitesimal generator �(�,μ) (cf. [30, 54]), characterized by
the following system of second order differential equations:

d

dt
Pt (f ) = �(�,μ)(Pt (f )) P0(f ) = f ∀f ∈ B(�).

For each t ≥ 0, Pt : B(�) → B(�) is a bounded linear operator and its action naturally
extends to the entire Lp(μ) spaces (p ≥ 1). We collect several elementary properties of
these operators:

• Pt(1) = 1.
• f ≥ 0 ⇒ Pt(f ) ≥ 0.
• ∫

Pt(f )dμ = ∫
f dμ.

• |Pt(f )|p ≤ Pt(|f |p) for all p ≥ 1.

The following crucial dimension-free reverse Poincaré inequality was shown by Bakry
and Ledoux in [5, Lemma 4.2], extending Ledoux’s approach [53] for proving Buser’s The-
orem (see also [5, Lemma 2.4], [56, Lemma 5.1]). It may also be interpreted as a weak,
dimension-free form of the Li–Yau parabolic gradient inequality [59].

Lemma 3.1 (Bakry–Ledoux) Assume that the following Bakry-Émery Curvature-Dimension
condition holds on �:

Ricg + Hessgψ ≥ −Kg, K ≥ 0. (3.2)

Then for any t ≥ 0 and f ∈ B(�), we have:

c(t) |∇Pt(f )|2 ≤ Pt(f
2) − (Pt (f ))2

pointwise, where:

c(t) = 1 − exp(−2Kt)

K
(= 2t if K = 0).
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In fact, the proof of this lemma is very general and extends to the abstract framework of
diffusion generators, as developed by Bakry and Émery [4]. We comment that in the Rie-
mannian setting, it is known [77] (see also [44, 84]) that the gradient estimate of Lemma 3.1
is preserved when restricting to a locally convex domain (as defined in the Appendix)
with smooth boundary; we refer to Sturm [83, Proposition 4.15] for a general statement
about closedness of the Bakry-Émery Curvature-Dimension condition in an arbitrary met-
ric probability space. The above lemma therefore holds under more general conditions,
namely when μ is supported on a locally convex domain � ⊂ (M,g) with C2 boundary,
and dμ|� = exp(−ψ)dvolM |�, ψ ∈ C2(�). In this case, �� in (3.1) denotes the Neumann
Laplacian on �, B(�) denotes the space of bounded smooth real-valued functions on �

satisfying Neumann’s boundary condition on ∂�, and Lemma 3.1 remains valid.
Our convexity assumptions are that K = 0 in Lemma 3.1, and this is what we will hence-

forth assume. It is clear that our results in this section may be extended to the case of K > 0,
but we do not pursue this direction in this work.

From Lemma 3.1, it is immediate that for any 2 ≤ q ≤ ∞:

∀f ∈ B(�) ‖|∇Pt(f )|‖Lq(μ) ≤ 1√
2t

‖f ‖Lq(μ) , (3.3)

and using q = ∞, Ledoux easily deduces the following dual statement [56, (5.5)]:

Corollary 3.2 (Ledoux)

∀f ∈ B(�) ‖f − Pt(f )‖L1(μ) ≤ √
2t ‖|∇f |‖L1(μ) . (3.4)

Proof of (1) ⇒ (2) of Theorem 2.9 First, our assumption on the range of r implies that by
applying Proposition 2.5 if necessary, we may assume that p ≥ 1, q ≥ 2 at the expense of
an additional universal constant appearing in (2.4). An additional universal constant will
appear on account of Lemma 2.1, with which we pass to Eμ instead of Mμ in (1), so our
assumption now reads:

p ≥ 1, q ≥ 2, ∀f ∈ F Dp,q

∥
∥f − Eμf

∥
∥

Lp(μ)
≤ ‖|∇f |‖Lq(μ) . (3.5)

Let A denote an arbitrary Borel set in �, and let χA,ε(x) := (1 − 1
ε
dg(x,A)) ∨ 0 denote

a continuous approximation in � to the characteristic function χA of A. Clearly:

μ(Aε) − μ(A)

ε
≥

∫ ∣
∣∇χA,ε

∣
∣dμ.

Applying Corollary 3.2 to functions in B(�) which approximate χA,ε (in say W 1,1(�,μ))
and passing to the limit inferior as ε → 0, it follows that:

√
2tμ+(A) ≥

∫
|χA − Pt(χA)|dμ.

We start by rewriting the right hand side above as:
∫

A

(1 − Pt(χA))dμ +
∫

�\A
Pt (χA)dμ

= 2

(

μ(A) −
∫

A

Pt (χA)dμ

)
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= 2

(

μ(A)(1 − μ(A)) −
∫

�

(Pt (χA) − μ(A))(χA − μ(A))dμ

)

.

Note that by Hölder’s inequality (recall that p ≥ 1) and our assumption (3.5):

∫

�

(Pt (χA) − μ(A))(χA − μ(A))dμ ≤ ‖Pt(χA) − μ(A)‖Lp(μ) ‖χA − μ(A)‖Lp∗ (μ)

≤ D−1
p,q ‖|∇Pt(χA)|‖Lq(μ) ‖χA − μ(A)‖Lp∗ (μ) .

Using (3.3) (recall that q ≥ 2) to estimate ‖|∇Pt(χA)|‖Lq(μ), we conclude that:

√
2tμ+(A) ≥ 2

(

μ(A)(1 − μ(A)) − 1√
2tDp,q

‖χA − μ(A)‖Lq(μ) ‖χA − μ(A)‖Lp∗ (μ)

)

.

(3.6)
We may now optimize on t . Using the rough estimate:

‖χA − μ(A)‖Ls(μ) ≤ 2 (μ(A)(1 − μ(A)))1/s

for s ≥ 1, we evaluate (3.6) at time:

t = 32

D2
p,q

(μ(A)(1 − μ(A)))2(1/q−1/p)

and deduce:

μ+(A) ≥ Dp,q

8
(μ(A)(1 − μ(A)))2−1/q−1/p∗ ≥ Dp,q

8 · 2r
min(μ(A),1 − μ(A))r ,

where r = 2 − 1/q − 1/p∗ = 1 + 1/p − 1/q . Since r ≤ 2, this concludes the proof. �

Remark 3.3 As evident from the proof, for deducing the direction (1) ⇒ (2) of Theorem 2.9,
the definition of smooth convexity assumptions given in the Introduction may be extended to
encompass the more general case treated in this section. Moreover, it is possible to provide
an approximation argument for deducing this direction without any smoothness assump-
tions. We provide the argument in [64] and omit it here, since it is not required for the
results of this work.

4 Interpretations and extensions

In this section, we provide some further interpretations and extensions of our Main Theorem,
which will also be needed for the applications of the next section. We assume throughout
this section that our convexity assumptions on (�,d,μ) are satisfied.

Lemma 2.2 demonstrates that if A is a set with μ(A) ≤ 1/2 on which the minimal ratio
DChe = μ+(A)/μ(A) in Cheeger’s isoperimetric inequality is attained (or nearly attained),
then the function f = χA (or the sequence of Lipschitz functions which approximate it)
attains the same (nearly) minimal ratio

∫
|∇f |dμ/

∫
|f |dμ (4.1)



16 E. Milman

among all functions f ∈ F with Mμf = 0. Clearly χA (or its approximating sequence) is
far from being 1-Lipschitz. If on the other hand we define:

f (x) = d(x,� \ A), (4.2)

which is a 1-Lipschitz function, it is not clear that it will have a small ratio in (4.1). Our
Main Theorem 1.5 (together with Lemma 2.1) states that under our convexity assumptions,
any 1-Lipschitz function f0 on (�,d) with Mμf0 = 0 which is (essentially) optimal in
the First-Moment inequality (say

∫ |f0|dμ ≥ 1/(3DM
FM)), also essentially minimizes the

ratio in (4.1). Moreover, using the co-area formula as in Lemma 2.2 and applying our Main
Theorem, we have:

DChe ≤
∫ ∞

−∞ μ+ {f0 > t}dt
∫ ∞

−∞ min(μ {f0 > t} ,1 − μ {f0 > t})dt
≤

∫ |∇f0|dμ
∫ |f0|dμ

≤ 3DM
FM ≤ CDChe,

from which we also see that the ratio μ+(At )/min(μ(At),1 − μ(At)) for the “average”
level set At of f0 is essentially DChe, the smallest possible.

Theorem 1.6 from the Introduction states that f0 as above may in fact be chosen to be of
the form (4.2).

Proof of Theorem 1.6 Given a Borel set A ⊂ � with μ(A) ≥ 1/2, we denote gA(x) =
d(x,A). Clearly gA is 1-Lipschitz and MμgA = 0, so one direction follows immediately
by Lemma 2.2:

DChe(�,d,μ) ≤
∫ |∇gA|dμ
∫ |gA|dμ

≤ 1/2
∫

d(x,A)dμ
.

For the other direction, we employ our Main Theorem (and Lemma 2.1):

DChe(�,d,μ) ≥ cDM
FM(�,d,μ) = inf

c
∫ |f |dμ

,

where the infimum is over all 1-Lipschitz functions f on (�,d) with Mμf = 0. Denoting
A1 = {f ≤ 0},A2 = {f ≥ 0}, we have μ(Ai) ≥ 1/2, i = 1,2. By continuity of f , f |∂A1 ≡ 0,
f |∂A2 ≡ 0 (even though it is possible that ∂A1 �= ∂A2), and since it is 1-Lipschitz:

∫
|f |dμ ≤

∫

�\A2

d(x, ∂A2)dμ +
∫

�\A1

d(x, ∂A1)dμ =
∫

d(x,A2)dμ +
∫

d(x,A1)dμ.

This concludes the proof. �

The next proposition will prove to be very useful for the applications of the next section.
We start with some notations. Given a Borel function f on a Borel probability space (�,μ)

and δ ∈ [0,1], let us denote by Qδ(f ) = Qμ,δ(f ) the δ-quantile of f :

Qδ(f ) := inf {q ∈ R;μ {f ≤ q} ≥ δ} .

Let us also recall an inequality due to Paley and Zygmund [75] (see also [46, Chap. 2]),
which in its simplest form reads as follows:
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Lemma 4.1 (Paley–Zygmund) Let f denote a Borel function on �, and assume that:

∃D > 0 such that ‖f ‖L2(μ) ≤ D ‖f ‖L1(μ) < ∞.

Then for any θ ∈ (0,1), denoting ε(θ) = (1 − θ)2/D2, one has Q1−ε(θ)(|f |) ≥ θ‖f ‖L1(μ).

Proposition 4.2 Let f0 denote a 1-Lipschitz function with either Mμf0 = 0 and ‖f0‖L1(μ) ≥
1/(2DM

FM) or Eμf0 = 0 and ‖f0‖L1(μ) ≥ 1/(2DFM). Then:

‖f0‖	1(μ) ≤ C0 ‖f0‖L1(μ) , (4.3)

and consequently:

Q1−ε0(|f0|) ≥ ‖f0‖L1(μ) /2, (4.4)

for some universal constants C0 > 0 and 0 < ε0 < 1.

Proof Proceeding as in Corollary 2.7, and using Lemma 2.1 and the Main Theorem:

‖f0‖	1(μ) 
 ∥
∥f0 − Eμf0

∥
∥

	1(μ)

 1

DExp(f0)

≤ 1

DExp
≤ C

max(DFM,DM
FM)

≤ 2C ‖f0‖L1(μ) .

Consequently, it is easy to check that:

‖f0‖L2(μ) ≤ √
2‖f0‖	1(μ) ≤ D0 ‖f0‖L1(μ) ,

for some universal constant D0 > 0, and (4.4) follows by Lemma 4.1 (with θ = 1/2). Note
that our convexity assumptions necessarily imply that ‖f0‖L1(μ) < ∞ (see Lemma 6.13), so
the appeal to Lemma 4.1 is indeed legitimate. �

Corollary 4.3 An arbitrarily slow uniform tail decay condition (1.3) implies any of the
statements of the Main Theorem 1.5, with DChe,DPoin,DExp,DFM depending solely on α.
Moreover, Eμf in (1.3) may be replaced by Mμf .

Proof Given a 1-Lipschitz function f0 satisfying either of the assumptions of Proposi-
tion 4.2, these and (4.4) imply that:

1

2 max(DFM,DM
FM)

≤ ‖f0‖L1(μ) ≤ 2Q1−ε0(|f0|).

Consequently, the tail decay condition (1.3) (whether stated with Eμf or Mμf ) ensures that
max(DFM,DM

FM) ≥ 1/(4α−1(ε0)) > 0, so by Lemma 2.1 the First-Moment concentration
inequality is satisfied, from which the other statements of the Main Theorem follow. �

Remark 4.4 Using standard results in Convexity Theory (e.g. Borell’s Lemma [23]), it is
well known that when μ is a log-concave measure on R

n and f0 is a linear (more generally,
convex homogeneous) functional, then (4.3) is satisfied with some universal constant C > 0.
In this sense, our essentially optimal 1-Lipschitz function f0 behaves like linear functionals.
A conjecture of Kannan, Lovász and Simonovits which will be described in Sect. 5, states
this even more explicitly: linear functionals are essentially optimal in the (1,1) or (2,2)

Poincaré inequalities. Using our Main Theorem, we now see that this conjecture is equiva-
lent to stating that linear functionals are essentially optimal in the exponential concentration



18 E. Milman

and First-Moment inequalities. In this sense, the Main Theorem may be thought of as a
qualitative step towards resolving the conjecture: an essentially optimal function above has
the form f0 = d(x,A) with μ(A) ≥ 1/2, and it remains to show that one can choose A to be
a half-space (so that f0 becomes linear).

5 Applications to spectral gap of convex domains

In this section, we provide several applications of our Main Theorem pertaining to the spec-
tral gap D2

Poin(�,d,μ) of metric probability spaces satisfying our convexity assumptions.
The results will be formulated in terms of the Cheeger constant DChe(�,d,μ), which by the
Maz’ya–Cheeger inequality (Theorem 1.1) and the Buser-Ledoux Theorems (1.3 and 1.4)
is equivalent to DPoin(�,d,μ) under these assumptions (see also the approximation argu-
ments of Sect. 6 to handle non-smooth domains and densities). We will mostly restrict our
attention to the case of R

n with some fixed Euclidean structure | · |, although in some places
we will mention our result in its full generality on Riemannian manifolds.

Given a bounded domain � ⊂ (M,g), we denote the uniform probability measure on �

by λ� := volM |�
volM(�)

. We will write DChe(�), DFM(�), and so on, to denote DChe(�, | · |, λ�),
DFM(�, | · |, λ�) for short. We will say that � is a convex body if � is a convex bounded
domain in (Rn, | · |). We will sometimes not distinguish between � and its closure �.

5.1 Stability of DChe under perturbations

First, we would like to obtain a stability result for DChe(�) (or equivalently DPoin(�)) for
perturbations of �. Clearly, without any further assumptions, there can be no such result
(as seen by adding arbitrarily small “necks” to � as in the Introduction), so we restrict
our attention to convex domains. In this case, our Main Theorem 1.5 asserts that this is
equivalent to obtaining a stability result for DFM(�), which is much easier. To obtain the
best quantitative bounds, we will also employ DExp(�).

Lemma 5.1 Let L ⊂ K ⊂ (Rn, | · |), and assume that L is a convex body. There exists a
universal constant c > 0 such that:

Vol (L) ≥ vVol (K) ⇒ DFM(L) ≥ c

log(1 + 1/v)
DExp(K).

Proof Let f0 denote a 1-Lipschitz function on L with MλL
f0 = 0 so that

∫ |f0|dλL ≥
1/(2DM

FM(L)). Since L is convex, we may clearly extend f0 to a 1-Lipschitz function on K ,
say by defining f1 = f0(ProjL x). Here ProjL x denotes the unique (by convexity) y in L so
that d(x,L) = d(x, y). We may assume that EλK

f1 ≥ 0 (otherwise exchange f0 with −f0).
Note that we can estimate EλK

f1 as follows:

v

2
≤ λK {f1 ≤ 0} ≤ λK

{∣∣f1 − EλK
f1

∣
∣ ≥ EλK

f1
} ≤ e · exp(−DExp(K)EλK

f1). (5.1)

By Proposition 4.2, there exists some universal ε0 > 0 so that ‖f0‖L1(λL) ≤ QλL,1−ε0(|f0|).
Using this, the ratio between the volumes of L and K , the triangle inequality, the Markov-
Chebyshev inequality and the estimate on EλK

f1 in (5.1), we evaluate:

1

2DM
FM(L)

≤ ‖f0‖L1(λL) ≤ QλL,1−ε0(|f0|) ≤ QλK,1−ε0v(|f1|)



On the role of convexity in isoperimetry, spectral gap and concentration 19

≤ QλK,1−ε0v(|f1 − EλK
f1|) + EλK

f1

≤ log

(

1 + 1

ε0v

)∥
∥f1 − EλK

f1

∥
∥

	1(λK )
+ log(2e/v)

DExp(K)
≤ C0

log(1 + 1/v)

DExp(K)
,

where C0 > 0 is some universal constant. Using Lemma 2.1 and (2.3), the assertion fol-
lows. �

Lemma 5.2 Let L ⊂ K ⊂ (Rn, | · |), and assume that L and K are convex bodies. Then:

Vol (L) ≥ vVol (K) ⇒ DChe(K) ≥ v2DChe(L).

Proof Note that for any 1/2 < p ≤ 1 and in fact even without assuming that L is convex:

Vol (L) ≥ pVol (K) ⇒ DChe(K) ≥ (2p − 1)DChe(L). (5.2)

Indeed, since K is convex, by Theorem 1.8 (more precisely, its extension to non-smooth
domains or densities given by Theorem 6.10 and Corollaries 6.11, 6.12) we know that
DChe(K) = 2I(K,|·|,λK )(1/2). Given a Borel set A with λK(A) = 1/2, we have:

λ+
K(A) ≥ pλ+

L(A) ≥ pDChe(L)min(λL(A),1 − λL(A)).

By the assumption in (5.2), 1− 1
2p

≤ λL(A) ≤ 1
2p

, and from this we easily deduce the conclu-
sion in (5.2). Iterating this using a sequence of intermediate convex bodies (here we already
need to use that L is convex) L = L0 ⊂ L1 ⊂ · · · ⊂ Lm = K so that Vol(Li)/Vol(Li+1) ≥
v1/m > 1/2 (for example, assuming 0 ∈ L, choose Li = (1 + ri)L ∩ K for appropriate
ri ≥ 0), we obtain that:

Vol (L) ≥ vVol (K) ⇒ DChe(K) ≥ (2v1/m − 1)mDChe(L).

Taking the limit as m → ∞ yields the claimed power of 2 (even without any additional
numerical constant!). �

We can now immediately deduce Theorem 1.7 from the Introduction. Indeed, if K,L

denote two convex bodies in (Rn, | · |) such that:

Vol (K ∩ L) ≥ vKVol (K) , Vol (K ∩ L) ≥ vLVol (L) ,

then applying Lemma 5.2, the Main Theorem 1.5 and Lemma 5.1, we obtain:

DChe(K) ≥ v2
KDChe(K ∩ L) ≥ c1v

2
KDFM(K ∩ L) ≥ c2

v2
K

log(1 + 1/vL)
DExp(L)

≥ c3
v2

K

log(1 + 1/vL)
DChe(L), (5.3)

for some universal constants ci > 0, concluding the proof of Theorem 1.7. Of course a
similar upper bound on DChe(K) is obtained by interchanging the roles of K,L.

In Convexity Theory, many interesting ways are known to cut a convex body K so that its
volume is preserved up to a constant (e.g. by slabs, parallelepipeds, balls etc.). We see that
all of these preserve (up to a constant) DChe(K) (equivalently, the spectral gap D2

Poin(K)).
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A useful way to measure the distance between two convex bodies is given by the following
variant on the usual geometric distance:

dG(K,L) := inf

{

ab; 1

a
L ⊂ K ⊂ bL,a, b ≥ 1

}

. (5.4)

Clearly in (Rn, | · |):
Vol (L)

Vol (K)
≤ dG(K,L)n,

so by passing from the outer to the inner body (in which case our estimates are logarithmic),
we deduce:

Corollary 5.3 Let K,L denote two convex bodies in (Rn, | · |). If:

dG(K,L) ≤ 1 + s

n

for some 1 ≤ s ≤ C1n, where C1 > 0 is some universal constant, then:

C2sDChe(L) ≥ DChe(K) ≥ 1

C2s
DChe(L),

where C2 > 0 is another universal constant.

Proof Denoting a, b the best constants in (5.4) and applying Lemma 5.1:

DChe(K) ≥ DChe(bL)

C log(1 + dG(K,L)n)
≥ DChe(L)

C ′bs
,

and since b ≤ dG(K,L) ≤ C1 + 1, the assertion follows. �

Completely analogous results hold for absolutely continuous log-concave probability
measures μ on (Rn, | · |). We will write DChe(μ) (and so on) to denote DChe(R

n, | · |,μ)

for short. Lemmas 5.1 and 5.2 were only formulated for uniform distributions λK,λL on
domains K,L, since in that case, the condition:

L ⊂ K with Vol (L) ≥ vVol (K) (5.5)

appearing in the assumptions of both lemmas has a clear and intuitive geometric meaning.

Lemma 5.4 Lemmas 5.1 and 5.2 remain valid for absolutely continuous log-concave prob-
ability measures μK,μL (replacing respectively K,L), if the condition (5.5) in the assump-
tion is replaced by the condition:

dμK

dx
≥ v

dμL

dx
,

and DChe(�),DFM(�),DExp(�) are replaced by DChe(μ�),DFM(μ�),DExp(μ�)

(� = K,L) in the corresponding conclusion.
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Proof Identical to the proof of the original lemmas; the only minor point is the construction
of intermediate measures μLi

in the proof of Lemma 5.2, which may be defined e.g. by

μLi
= ηLi

|ηLi
| ,

dηLi

dx
(x) = min((1 + ri)

dμL

dx
( x

1+ri
),

dμK

dx
(x)), for appropriate ri > 0 (assuming

the origin is in the interior of the support of μL). �

The analogue of Theorem 1.7 may then be conveniently formulated using the total-
variation metric:

dT V (μ1,μ2) := 1

2

∫ ∣
∣
∣
∣
dμ1

dx
(x) − dμ2

dx
(x)

∣
∣
∣
∣dx.

Theorem 5.5 Let μ1,μ2 denote two log-concave probability measures in (Rn, | · |). If:

dT V (μ1,μ2) ≤ 1 − ε < 1,

then:

c(ε)−1DChe(μ2) ≥ DChe(μ1) ≥ c(ε)DChe(μ2),

with c(ε) = c′ε2/ log(1 + 1/ε) and c′ > 0 a universal constant.

Proof Let μ0 denote the measure whose density is min(
dμ1
dx

,
dμ2
dx

), and note that dT V (μ1,μ2)

= 1−|μ0|. Denoting by μ3 the (log-concave) probability measure μ0
|μ0| , since dμi

dx
≥ |μ0| dμ3

dx
,

i = 1,2, we may apply Lemma 5.4 and the Main Theorem to pass from μ1 to μ3 to μ2 as in
(5.3), concluding the proof. �

5.2 Optimality of stability

To the best of our knowledge, no quantitative results on the stability of DChe or DPoin for
convex domains with respect to volume preserving perturbations or geometric distance were
previously known. Moreover, we claim that the bounds obtained in Theorem 1.7 (or (5.3))
are optimal (up to numeric constants) with respect to vL and close to optimal with respect to
vK (note that the dependence is logarithmic in the former yet quadratic in the latter; in other
words, the deterioration in the Cheeger constant when passing from an outer convex body
to an inner one is genuinely different than when passing from the inner one outward). This
is witnessed by the following:

Example 5.6 Let Qk denote a k-dimensional cube of volume 1, and let Bk
1 denote the homo-

thetic copy of the unit-ball of �k
1 having volume 1. For 2 ≤ k ≤ n − 1, set Kk = Qn−k × Bk

1
and Lk = Qn−k × [−c1k, c1k] × c2B

k−1
1 , where 0 < c1, c2 < 1 are universal constants cho-

sen so that Lk ⊂ Kk (it is easy to check that this is possible). Using a tensorization result of
Bobkov and Houdré [19], it follows that:

DChe(Kk) 
 min(DChe(Q
n−k),DChe(B

k
1 )),

DChe(Lk) 
 min(DChe(Q
n−k),DChe(B

k−1
1 ),DChe([−k, k])).

It is known (see Sect. 5.5) that DChe(Q
m) 
 DChe(B

m
1 ) 
 1, so by the −1-homogeneity

of DChe, it follows that DChe(Kk) 
 1 and DChe(Lk) 
 1
k
. Denoting vk = Vol(Lk)

Vol(Kk)
, since

log 1/vk 
 k, we conclude that:

DChe(Lk) 
 1

log(1 + 1/vk)
DChe(Kk),
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uniformly for all k = 2, . . . , n− 1. So one cannot expect better than logarithmic dependence
on 1/v (at least when v ≥ exp(−n)), which coincides with the estimate given by Lemma 5.1.

On the other hand (as is well-known), if we set L = Qn and K = Qn−1 × tQ1 a circum-
scribing box with t > 1, since DChe(K) 
 1/t in that range, it is clear that the quadratic
dependence on v in Lemma 5.2 cannot be improved beyond linear. Although we do not
know whether the optimal bound is, up to a constant, closer to the linear or quadratic as-
ymptotic, we comment that for very small perturbations (i.e. v very close to 1), it is possible
to show that the exact quadratic bound in Lemma 5.2 is optimal (in this range of v, we of
course do not allow any additional numerical constants).

The next example (which is similar yet different from the previous one) shows that the
bounds in Corollary 5.3 are optimal too (up to numeric constants), as a function of s in the
stated range.

Example 5.7 Continuing with the notations of Example 5.6, let us denote by rn half the
diameter of Bn

1 , so that Bn
1 = rnConv(±e1, . . . ,±en), where Conv denotes the convex-hull

operation and {ei} is the standard orthonormal basis of R
n. It is easy to check that rn/n 
 1

uniformly on n. For 1 ≤ s ≤ c1n, where 0 < c1 < rn
2n

is some universal constant, define
Ks = Bn

1 ∩ {|x1| ≤ s}. It is easy to check that in that range of s, Vol(Ks) ≥ c2Vol(Bn
1 ) for

some universal constant c2 > 0, and hence by Theorem 1.7 we deduce that DChe(Ks) 
 1
uniformly on s, n. Now define:

Ls = Conv(Ks ∩ {x1 = s} ,Ks ∩ {x1 = −s}) = [−s, s] ×
(

1 − s

rn

)

(Bn
1 ∩ {x1 = 0}).

It follows as in Example 5.6 that:

DChe(Ls) 
 min

(

DChe([−s, s]), DChe(B
n
1 ∩ {x1 = 0})
1 − s

rn

)


 min

(
1

s
,
rn−1

rn

DChe(B
n−1
1 )

)


 1

s
.

Since clearly Ls ⊂ Ks , it remains to note that (1 − s
rn

)Ks ⊂ Ls , so dG(Ks,Ls) − 1 
 s
n

.
By interchanging the roles of Ks,Ls appropriately, we observe that the estimates on
DChe(K)/DChe(L) in Corollary 5.3 are sharp both from above and from below.

Remark 5.8 It is easy to adapt the proofs of Lemma 5.1 and consequently Corollary 5.3 to
obtain even sharper quantitative bounds (up to universal constants) on the stability of DChe

for specific convex bodies, such as the Euclidean ball Bn
2 . For instance, in the latter case,

one obtains that if dG(K,Bn
2 ) ≤ 1 + s

n
for 1 ≤ s ≤ C1n, then:

DChe(K) ≥ 1

C2
√

s
DChe(B

n
2 ).

This is an improvement over Corollary 5.3 and known to be sharp for s = n (folklore).

5.3 Stability of DChe under Lipschitz maps

It is well known and immediate to see that isoperimetric inequalities are preserved under
1-Lipschitz mappings. Given two metric probability spaces (X,dX,μ) and (Y, dY , ν), re-
call that a Borel map T : (X,dX) → (Y, dY ) is said to push forward μ onto ν, if ν(A) =
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μ(T −1(A)) for every Borel set A ⊂ Y . This is equivalent to requiring that for any Borel
function g on (Y, dY ):

∫

Y

g(y)dν(y) =
∫

X

g(T (x))dμ(x).

This will be denoted by T∗(μ) = ν. The following is then immediate from the definitions:

Fact Assume that T∗(μ) = ν. Then:

I(Y,dY ,ν) ≥ 1

‖T ‖Lip
I(X,dX,μ).

Here as usual:

‖T ‖Lip := sup
x �=y∈X

dY (T (x), T (y))

dX(x, y)
.

The following result states that when our convexity assumptions hold for the target space,
as far as Cheeger’s isoperimetric inequality is concerned, one need not require that T be
Lipschitz on the entire space, but rather just on average. We would like to thank Bo’az
Klartag for a fruitful discussion regarding this point.

Theorem 5.9 Assume that (Y, dY , ν) verifies our convexity assumptions and that T∗(μ) = ν

for some Lipschitz-on-balls map T . Then:

DChe(Y, dY , ν) ≥ c
∫

X
‖DT ‖op (x)dμ(x)

DChe(X,dX,μ),

for some universal constant c > 0.

Here ‖DT ‖op(x) denotes the local Lipschitz constant of T at x:

‖DT ‖op (x) := lim sup
y→x

dY (T (x), T (y))

dX(x, y)
.

When T is smooth and X,Y are linear spaces, this coincides with the operator norm of the
usual derivative matrix DT at x.

Proof First, rewrite Cheeger’s isoperimetric inequality on (X,dX,μ) in functional form
(Lemma 2.2):

∀f ∈ F (X,dX) DChe(X,dX,μ)
∥
∥f − Mμf

∥
∥

L1(X,μ)
≤ ‖|∇Xf |‖L1(X,μ) . (5.6)

Using this, we estimate the First-Moment constant on (Y, dY , ν). Given a 1-Lipschitz func-
tion g on (Y, dY ), clearly g ◦ T is Lipschitz-on-balls on (X,dX), hence in F (X,dX). We
then have by the definition of push-forward and our assumption (5.6):

∫

Y

|g − Mνg|dν =
∫

X

∣
∣g(T x) − Mμ(g ◦ T )

∣
∣dμ

≤ 1

DChe(X,dX,μ)

∫

X

|∇X(g ◦ T )| (x)dμ(x)
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≤ 1

DChe(X,dX,μ)

∫

X

‖DT ‖op (x) |∇Y g| (T x)dμ(x)

≤
∫

X
‖DT ‖op (x)dμ(x)

DChe(X,dX,μ)
.

Hence:

DM
FM(Y,dY , ν) ≥ DChe(X,dX,μ)

∫
X

‖DT (x)‖op dμ(x)
.

We conclude by our Main Theorem (and Lemma 2.1), which imply that DChe(Y, dY , ν) ≥
cDM

FM(Y, dY , ν) under our convexity assumptions on (Y, dY , ν). �

5.4 Estimating DChe

In this subsection, we easily recover some previously known estimates on the Cheeger con-
stant of convex domains in a single framework and extend some results to the Riemannian
setting. We begin with the following stimulating conjecture from [47]:

Conjecture (Kannan–Lovász–Simonovits) There exists a universal constant c > 0 such
that for any convex body K in (Rn, | · |), and more generally, for any log-concave prob-
ability measure μ on (Rn, | · |):

DChe(μ) ≥ c

σ1(μ)
. (5.7)

Here σ1(μ)2 denotes the largest eigenvalue of the symmetric covariance matrix �(μ)

of μ:

�(μ) := Eμ(x ⊗ x) − Eμ(x) ⊗ Eμ(x).

We will write σ1(K) for σ1(λK).
Standard results in Convexity Theory easily imply that the opposite inequality in (5.7)

holds with some universal constant c > 0. The reason for this is that it is easy to analyze
the isoperimetric inequality for sets which are half-spaces in R

n, and when restricting to
these sets, both the upper bound and the conjectured lower bound hold with some (explicitly
known) universal constants. The KLS conjecture is therefore a striking statement on the
nature of isoperimetric minimizing sets for Cheeger’s isoperimetric inequality in the convex
setting: these sets do not minimize boundary-measure much better than just half-spaces. An
explicit description of the isoperimetric minimizers is known only in a few cases, even in the
Euclidean setting (�, | · |, λ�) (see e.g. [78]), so it is extremely important to at least identify
some essentially minimizing sets (up to universal constants).

Although the KLS conjecture is far from being resolved, some general lower bounds on
DChe are known, but these produce dimension-dependent results. We will see that our Main
Theorem easily reproduces these bounds.

The following result in the Euclidean setting is due to Payne and Weinberger [76]. This
was generalized to the Riemannian setting by Li and Yau [58]. We refer to the Appendix for
missing definitions.
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Theorem 5.10 (Payne–Weinberger, Li–Yau) If K ⊂ (M,g) is a locally convex bounded
domain with smooth boundary and Ricg ≥ 0, then:

DPoin(K,dg, λK) ≥ π

2diam(K)
,

where diam denotes the diameter and dg the induced geodesic distance. In fact, when (M,g)

is Euclidean space the constant 2 above may be omitted.

Ledoux’s Theorem 1.4 implies that the same lower bound (up to an additional constant)
holds for DChe(K,dg, λK). In the Euclidean case, this was strengthened in [47]:

Theorem 5.11 (Kannan–Lovász–Simonovits) Let μ be a log-concave probability measure
on (Rn, | · |). Then:

DChe(μ) ≥ sup
x0∈Rn

c
∫ |x − x0|dμ(x)

,

for some universal constant c > 0.

To obtain this result, Kannan, Lovász and Simonovits developed a geometric localization
technique (which in fact can be traced back to the work of M. Gromov and V. Milman [41]).
As pointed out to us by Sasha Sodin, it is interesting to note that this technique uses some
geometric properties of Euclidean space and does not generalize to other Riemannian man-
ifolds (except in special cases, like that of the Euclidean Sphere, as in the work of Gromov–
Milman). Our method, on the other hand, does allow us to state the following generalization
of Theorem 5.11 to the Riemannian setting, which also improves over Theorem 5.10:

Theorem 5.12 Assume that (�,d,μ) satisfies our convexity assumptions. Then:

DChe(�,d,μ) ≥ sup
x0∈�

c
∫

d(x, x0)dμ(x)
,

for some universal constant c > 0.

Proof As usual, we just need to bound DFM(�,d,μ). Let f denote a 1-Lipschitz function
on (�,d). Then for any x0 ∈ �, applying the triangle inequality twice:

∫ ∣
∣f (x) − Eμf

∣
∣dμ(x) ≤

∫
|f (x) − f (x0)|dμ(x) + ∣

∣Eμf − f (x0)
∣
∣

≤ 2
∫

|f (x) − f (x0)|dμ(x) ≤ 2
∫

d(x, x0)dμ(x).

Hence:

DFM(�,d,μ) ≥ sup
x0∈�

1

2
∫

d(x, x0)dμ(x)
,

and the claim follows by our Main Theorem. �

Remark 5.13 An alternative approach to localization for proving isoperimetric inequalities
was developed by Bobkov [18] in the Euclidean setting. Bobkov’s approach was extended
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by Barthe [6] and subsequently by Barthe and Kolesnikov [7]. This approach is based on the
Prékopa–Leindler inequality (e.g. [24]), or equivalently, on optimal transportation, which
have both been recently generalized to the Riemannian-with-density-setting by Cordero-
Erausquin, McCann and Schmuckenschläger [28, 29]. Using these tools we expect that it
should be possible to provide an alternative proof of Theorem 5.12 following Bobkov’s
approach, but as pointed out to us by one of the referees, this has yet to be accomplished.
We would like to thank the referee for his comments regarding our original simpleminded
remark in this direction.

We would like to mention another bound on DChe obtained in [47] using the localization
method.

Theorem 5.14 (Kannan–Lovász–Simonovits) Let μ be a log-concave probability measure
on (Rn, | · |) with bounded support B . Then:

DChe(μ) ≥ c
∫

θB(x)dμ
,

where θB(x) denotes the longest symmetric interval contained in B and centered at x, and
c > 0 is a universal constant.

We have recently managed to derive this result using our Main Theorem, but this will be
described elsewhere. Instead, we would like to show how this bound may be used to recover
a result of Bobkov [17]; in fact, the bound we deduce is formally stronger than Bobkov’s.
Bobkov employs the localization method as well, but then relies on some nice trick involving
moment inequalities for polynomials in the log-concave setting. Our argument, on the other
hand, is more geometric. Independently of our proof, we heard about a similar idea for
bounding the boundary measure of large sets from Santosh Vempala (using localization as
well).

Theorem 5.15 (Bobkov) Let μ be a log-concave probability measure on (Rn, | · |). Then:

DChe(μ) ≥ sup
x0∈Rn

c

(Varμ(|x − x0|2))1/4
,

where Varμ denotes the variance with respect to μ.

Sketch of Proof Without loss of generality, we may assume that x0 = 0; for general x0 the
claimed bound follows by translating μ. Let E := Eμ|x|, S := (Varμ|x|)1/2, and denote:

B := {x ∈ R
n; |x| ≤ E + 2S} .

By Chebyshev’s inequality, μ(B) ≥ 3/4, so if we define μ0 := μ|B/μ(B), it follows that
dT V (μ,μ0) ≤ 1/4. Hence DChe(μ) 
 DChe(μ0) by Theorem 5.5. Assume that E ≥ 2S, oth-
erwise the support of μ0 has diameter bounded by 8S, and one can conclude as in Theo-
rem 5.12. We now employ Theorem 5.14 to bound DChe(μ0):

DChe(μ0) ≥ c
∫

θB(x)dμ0(x)
= cμ(B)

∫
B

θB(x)dμ(x)
. (5.8)
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The crucial geometric observation is that for the Euclidean ball B:

θB(x) = 2
√

(E + 2S)2 − |x|2.
It remains to plug this into (5.8) and evaluate the resulting expression using integration by
parts and Chebyshev’s inequality. We leave it as an exercise to conclude that:

DChe(μ) ≥ c′
√

ES
,

for some universal constant c′ > 0. This bound is in fact formally better than Bobkov’s
bound (by several applications of Hölder’s inequality), but using some standard results in
Convexity Theory, it is in fact equivalent in the interesting situations. �

5.5 DChe for specific families of convex bodies

Embarrassingly, hardly any concrete examples exist of non-degenerate convex bodies K in
R

n for which the asymptotic value of DChe(K) (as a function of the dimension n) is known.
The KLS conjecture stating that DChe(K) 
 1 for such bodies has only been confirmed in
a few special cases. These include the Euclidean ball (see e.g. [25]) and the unit cube K =
[−1/2,1/2]n (Hadwiger [43], see also [8, 21]). By the tensorization results of Bobkov and
Houdré [19], this is in fact true for an arbitrary log-concave product measure (appropriately
normalized). When K = B̃(�n

p), the volume one homothetic copy of the unit-ball of �n
p , for

p ∈ [1,2], the KLS conjecture was only recently confirmed by Sasha Sodin [81] (note that
indeed σ1(B̃(�n

p)) 
 1). Even more recently, the case p ≥ 2 has been confirmed by R. Latała
and J. Wojtaszczyk [52] by an elegant construction of a Lipschitz map pushing forward
the Gaussian measure onto the uniform measure on B̃(�n

p). We are not aware of any other
(sufficiently different) examples.

We comment that our Main Theorem easily implies the result for K = B̃(�n
p), p ∈ [1,2],

due to Sodin [81]. However, Sodin’s result provides a sharp bound on the isoperimetric
profile of these spaces, whereas we only deduce the bound on Cheeger’s constant.

Theorem 5.16 (Sodin) For any n ≥ 1, p ∈ [1,2]:
DChe(B̃(�n

p)) ≥ c > 0,

where c > 0 is a universal constant.

Proof This is immediate from the results of Schechtman and Zinn [79], who showed that
DExp of these bodies is bounded from below by a universal constant. The result then follows
from our Main Theorem (in fact, we only need a bound on DFM ). �

Another family of convex bodies for which the KLS conjecture is almost confirmed, is
that of unconditional convex bodies K , i.e. convex bodies for which (x1, . . . , xn) ∈ K iff
(±x1, . . . ,±xn) ∈ K . It was recently shown by Bo’az Klartag [48] that if K is an uncon-
ditional body with σ1(K) = 1 then DChe(K) ≥ c/ logn, for some universal constant c > 0.
To obtain this result, Klartag employed Theorem 1.7 to pass to an unconditional body con-
tained inside the cube (C logn)[−1,1]n, and then used some symmetry properties of the
Laplacian’s eigenfunctions to conclude his result. In fact, one can just use Theorem 1.8 on
the concavity of the isoperimetric profile (in the form of Lemma 5.2) for this application.
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5.6 Some dimension dependent bounds on DChe

We conclude this section by stating the known dimension dependent bounds on DChe(K) for
non-degenerate convex bodies K (in the sense that σ1(K) = 1).

It is known in this case that diam(K) ≤ cn (by a simple volume estimate). Theo-
rem 5.10 (together with Theorem 1.4) then gives DChe(K) ≥ c/n. The first KLS bound
(Theorem 5.11) improves this to DChe(K) ≥ c/

√
n, since:

∫

K

∣
∣x − Eμx

∣
∣dx ≤

(∫

K

∣
∣x − Eμx

∣
∣2

dx

)1/2

≤ √
nσ1(K).

The second KLS bound (Theorem 5.14) is incomparable to the first bound, since it gives the
right order for the Euclidean ball, but gives c/n for the regular simplex of volume 1 in R

n.
Bobkov’s bound (Theorem 5.15) is always at least as good as the first KLS bound (up to

a constant), since (using the bound derived in the proof together with a standard application
of Borell’s lemma [23]):

Varμ(|x − x0|)1/2 ≤ Eμ(|x − x0|2)1/2 ≤ CEμ(|x − x0|),
for some universal constant C > 0. We see that whenever some non-trivial information on
Varμ(|x − x0|) is known, Bobkov’s bound is strictly better. Such a remarkable result was
proved by Bo’az Klartag [49, 50], allowing him to deduce a Central-Limit type result for
the class of convex bodies (and more generally, log-concave measures). Klartag’s improved
estimate in [50] reads:

Varμ(
∣
∣x − Eμx

∣
∣)1/2 ≤ Cεn

1/2−1/10+εσ1(μ) ∀ε > 0.

Combining this with Bobkov’s bound, one deduces the following result, already noticed
among specialists, for log-concave measures in R

n with σ1(μ) = 1:

DChe(μ) ≥ cε

n1/2−1/20+ε
∀ε > 0.

At the moment, this is the best known bound on Cheeger’s constant for general log-concave
measures (or convex bodies) in R

n.

6 Approximation argument

In this section, we develop an approximation argument for extending the following theorems
to non-necessarily smooth densities (or boundaries) in our convexity assumptions:

• Theorem 1.8 on the concavity of the isoperimetric profile.
• Our Main Theorem 1.5.

We will develop different procedures for extending each of these theorems.

6.1 Stability of the isoperimetric profile

We begin by extending our definition of smooth convexity assumptions (we refer to the
Appendix for the definition of locally convex).
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Definition We will say that our generalized smooth convexity assumptions are fulfilled if:

• (M,g) denotes an n-dimensional (n ≥ 2) smooth complete oriented connected Rie-
mannian manifold or (M,g) = (R, | · |).

• � ⊂ M is a locally convex domain with C2 boundary.
• d denotes the induced geodesic distance on (M,g).
• dμ = exp(−ψ)dvolM |�, ψ ∈ C2(�), and as tensor fields on �:

Ricg + Hessgψ ≥ 0.

This definition was already used in the statement of Theorem 1.8 on the concavity of the
isoperimetric profile. The smoothness assumptions in the above definition are used in an es-
sential way in the proof of this theorem to deduce the existence and regularity of the isoperi-
metric minimizers, which are otherwise false. This permits the use of variational methods
from Riemannian Geometry, consequently obtaining a second-order differential inequality
which the isoperimetric profile must satisfy (see the Appendix for more details). Neverthe-
less, the restriction to smooth densities and domains still seems like a technical artifact of the
proofs. Some authors have suggested various methods to remove these smoothness assump-
tions (see e.g. Morgan [71] and Bayle [12, Chap. 4]), but unfortunately these are not well
suited for our purposes. We therefore attempt to use a different approximation argument for
extending Theorem 1.8 to a more general setting.

At first glance, it is tempting to believe that the isoperimetric profile of (�,d,μ) should
be stable under approximating the measure μ by measures μm in, say, total-variation dis-
tance. However, the profile is in fact not even pointwise continuous under arbitrary approx-
imation in total-variation. To see this, consider the measures μm which are uniform on the
set [0,1] \ [1/2 − 1/m,1/2 + 1/m], and converge to μ, the uniform measure on [0,1].
Clearly Iμm(1/2) = 0 for every m ≥ 3, even though Iμ(1/2) = 1. So one must take care
when specifying the approximation.

Definition We say that a sequence of Borel probability measures {μm} tends to μ from
above if {μm} converges to μ in total-variation and in addition there exists a sequence {cm}
which tends to 1, so that μm(A) ≥ μ(A)/cm for any Borel set A.

Lemma 6.1 Let (�,d) be a metric space and let {μm} be a sequence of Borel probability
measures on (�,d) which tends to μ from above. Then for any t ∈ (0,1):

lim inf
m→∞ I(�,d,μm)(t) ≥ lim inf

s→t
I(�,d,μ)(s).

Proof Denote I = I(�,d,μ) and Im = I(�,d,μm) for short. Let ε > 0. Then there exists m0 such
that for all m ≥ m0, |μ(B) − μm(B)| < ε for any Borel set B . Let δ > 0, then for every
m ≥ m0 there exist a Borel set Bm such that:

Im(t) + δ ≥ μ+
m(Bm) ≥ μ+(Bm)/cm ≥ I (μ(Bm))/cm ≥ inf

|s−t |<ε
I (s)/cm.

Taking the limit as m → ∞ and subsequently ε, δ → 0, we obtain the assertion. �

Definition We say that a sequence of Borel probability measures {μm} tends to μ from
within if μm = μ|Am/μ(Am) for some sequence of Borel sets Am such that μ(Am) → 1, and
in addition μ+(Am) → 0.



30 E. Milman

Lemma 6.2 Let (�,d) be a metric space and let {μm} be a sequence of Borel probability
measures on (�,d) which tends to μ from within. Then for any t ∈ (0,1):

lim inf
m→∞ I(�,d,μm)(t) ≥ lim inf

s→t
I(�,d,μ)(s).

Proof We continue with the same assumptions and notations as in the proof of the previous
lemma and definition. In our case, we may assume that Bm ⊂ Am. Then:

Im(t) + δ ≥ μ+
m(Bm) ≥ μ+(Bm) − μ+(Am)

μ(Am)
≥ I (μ(Bm)) − μ+(Am)

μ(Am)

≥ inf
|s−t |<ε

I (s) − μ+(Am)

μ(Am)
.

Taking the limit as m → ∞ and subsequently ε, δ → 0, we obtain the assertion. �

Remark 6.3 It is quite non-trivial to come up with other conditions which ensure the con-
clusion of Lemmas 6.1 and 6.2. Of course convergence in the L∞ norm of the densities with
respect to the Riemannian volume form would also do, but this seems an impractical as-
sumption since μ may have a non-continuous density. Another interesting possibility which
works is to assume that μm are obtained by pushing μ forward using mappings Tm, so that
‖Tm‖Lip tends to 1. Unfortunately, we do not know how to show that an arbitrary log-concave
measure μ in R

n may be approximated by smooth log-concave measures μm of this type.

Next, we recall the definition of q-capacity (we will only require the case q = 1). Ca-
pacities were introduced in the 1960’s by Maz’ya [60, 61], Federer and Fleming [32], and
were used by Bobkov and Houdré in [19, 20]. We follow a variation on the definition given
in [63] (for general q), which was extended by Barthe, Cattiaux and Roberto (with q = 2) in
[10] (after being introduced in [9]). We conform to the definition implicitly used by Sodin
in [81] and Sodin and the author in [66].

Definition Given a metric probability space (�,d,μ), 0 < q < ∞ and 0 ≤ a ≤ b ≤ 1, we
denote:

Capq(a, b) := inf
{
‖|∇�|‖Lq(μ) ;μ {� = 1} ≥ a,μ {� = 0} ≥ 1 − b

}
,

where the infimum is on all � : � → [0,1] which are Lipschitz-on-balls (recall the definition
of |∇�| given in Remark 2.3).

The following proposition encapsulates the connection between 1-capacity and the
isoperimetric profile I = I(�,d,μ). The proof is very much along the lines of the proof of
Lemma 2.2, so we will omit it here; the reader is referred to Sodin [81, Proposition A] for
an elementary derivation (note the slight difference in our formulation). We only remark that
it suffices to use Lipschitz functions � in the definition of capacity above for the purpose of
this proposition.

Proposition 6.4 (Maz’ya, Federer–Fleming, Bobkov–Houdré) For all 0 < a < b < 1:

inf
a≤t≤b

I (t) ≤ Cap1(a, b) ≤ inf
a≤t<b

I (t). (6.1)
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Since obviously Cap1(a, b) = Cap1(1 − b,1 − a), it follows that:

inf
a≤t≤b

I (t) ≤ inf
1−b≤t<1−a

I (t).

Letting b converge to a, and replacing a, b with 1 − b,1 − a, we obtain:

Corollary 6.5 If I is lower semi-continuous at t and 1 − t , t ∈ (0,1), then I (t) = I (1 − t).

Lemma 6.6 Let (�,d) be a metric space and let {μm} be a sequence of Borel probability
measures on (�,d) which converges in the total-variation norm to μ. Assume in addition
that I(�,d,μm) are concave on (0,1). Then for any t ∈ (0,1):

lim inf
s→t

I(�,d,μ)(s) ≥ lim sup
m→∞

I(�,d,μm)(t).

Proof As usual, denote I = I(�,d,μ) and Im = I(�,d,μm) for short. Let t ∈ (0,1) and small
ε > 0 be given, and let � : (�,d) → [0,1] denote a Lipschitz function so that:

μ {� = 1} ≥ t − ε, μ {� = 0} ≥ 1 − t − ε.

For any small δ > 0, there exists an m0 so that for any m ≥ m0:

μm {� = 1} ≥ t − ε − δ, μm {� = 0} ≥ 1 − t − ε − δ.

We conclude by Proposition 6.4 and the concavity of Im that:

∫
|∇�|dμm ≥ inf

t−ε−δ≤s≤t+ε+δ
Im(s) ≥ min

(
t − ε − δ

t
,

1 − t − ε − δ

1 − t

)

Im(t).

Since � is Lipschitz (hence |∇�| is bounded), and {μm} converge to μ in total-variation,
we can pass to the limit as m → ∞:

∫
|∇�|dμ ≥ min

(
t − ε − δ

t
,

1 − t − ε − δ

1 − t

)

lim sup
m→∞

Im(t).

Taking infimum on all such � as above and using Proposition 6.4 again, we obtain:

inf
t−ε≤s<t+ε

I (s) ≥ min

(
t − ε − δ

t
,

1 − t − ε − δ

1 − t

)

lim sup
m→∞

Im(t).

Taking the limit of ε, δ to 0, we obtain the desired conclusion. �

Remark 6.7 It is clear from the proof that the concavity condition may be seriously relaxed
(e.g. to equicontinuity), and the regularity condition on Im obtained in Lemma 6.9 below
may also be used.

Combining the last three lemmas we immediately obtain:

Proposition 6.8 Let (�,d) be a metric space, let {μm} be a sequence of Borel probability
measures on (�,d) which converges in the total-variation norm to μ, and assume that
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I(�,d,μm) are all concave on (0,1). If in addition {μm} tend to μ from above or from within,
then for any t ∈ (0,1):

lim inf
m→∞ I(�,d,μm)(t) = lim sup

m→∞
I(�,d,μm)(t) = lim inf

s→t
I(�,d,μ)(s).

In particular, if I(�,d,μ) is in addition lower semi-continuous, we have (pointwise):

lim
m→∞ I(�,d,μm) = I(�,d,μ).

The following lemma, which extends the argument given by Gallot in [34, Lemma 6.2]
for compact manifolds with uniform density, provides a sufficient condition for the isoperi-
metric profile to be continuous.

Lemma 6.9 Let � = (M,g) denote an n-dimensional (n ≥ 2) smooth complete oriented
connected Riemannian manifold and let d denote the induced geodesic distance. Let μ de-
note an absolutely continuous measure with respect to volM , such that its density is bounded
from above on every ball (but not necessarily from below, nor do we assume it is continu-
ous). Then I = I(�,d,μ) is absolutely continuous on [0,1], and in fact is locally of Hölder
exponent n−1

n
.

Proof By Lebesgue’s Theorem, we know for almost every x ∈ M (with respect to volM ),

μ(BM(x, ε)) = dμ

dvolM
(x)VolM(BM(x, ε))(1 + o(1)),

and clearly:

μ+(BM(x, ε)) ≤ μ∞(BM(x,2ε))VolM(∂BM(x, ε)), (6.2)

where BM(x,R) denotes the ball in M of radius R around x, VolM denotes the Riemannian
volume on M (and by abuse of notation the induced volume on any submanifold as well),
and μ∞(C) denotes the upper bound on the density of μ on a compact set C ⊂ M . By
Rauch’s Comparison Theorem, for any such compact set C (and in particular a singleton),
there exists a εC < 1/2 so that for any x ∈ C and ε < εC :

3

4
εnVol (Bn) < VolM(BM(x, ε)) <

5

4
εnVol (Bn) , (6.3)

3

4
εn−1Vol

(
Sn−1

)
< VolM(∂BM(x, ε)) <

5

4
εn−1Vol

(
Sn−1

)
, (6.4)

where Bn and Sn−1 denote the Euclidean unit ball and sphere, respectively, and Vol denotes
Euclidean volume. Therefore as t → 0:

I (t), I (1 − t) ≤ Cn,μt(n−1)/n(1 + o(1)),

where Cn,μ depends on n and μ only. Since clearly I (0) = I (1) = 0, this takes care of the
continuity at 0 and 1.

Now fix x0 ∈ M and define g : (0,1) → R+ to be the function:

g(ε) := inf {R > 0;μ(BM(x0,R)) ≥ 1 − ε} .
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Given 0 < θ < 1, set Rθ = g(θ/2)+1, εθ = εBM(x0,Rθ +1), and μ∞(θ) = μ∞(BM(x0,Rθ + 1)).
Let Kθ denote the (possibly negative) lower bound on the sectional curvature of K on
BM(x0,Rθ ). Rauch’s Theorem also implies that:

VolM(BM(x0,Rθ )) ≤ VolMKθ
(BMKθ

(Rθ )), (6.5)

where MK denotes the simply connected model space with constant curvature K , VolMK

denotes the volume on MK and BMK
(R) is any ball in MK of radius R.

Given a set A ⊂ M with θ = μ(A) > 0, note that by Fubini’s Theorem, (6.3) and the
definition of g, for any ε < εθ < 1/2:

∫

BM(x0,Rθ )

μ(A ∩ BM(x, ε))dvolM(x)

=
∫

A

VolM(BM(y, ε) ∩ BM(x0,Rθ ))dμ(y) ≥
∫

A∩BM(x0,Rθ −1)

VolM(BM(y, ε))dμ(y)

≥ 3

4
εnVol (Bn)μ(A ∩ BM(x0, g(μ(A)/2))) ≥ 3

8
εnVol (Bn)μ(A). (6.6)

We conclude from (6.6) and (6.5) that given any A ⊂ M with 0 < θ = μ(A) < 1 and ε < εθ ,
there exists an x ∈ BM(x0,Rθ ) such that:

μ(A ∩ BM(x, ε)) ≥ 3

8

εnVol (Bn)

VolM(BM(x0,Rθ ))
μ(A) ≥ εnVol (Bn)f (μ(A)), (6.7)

where f is defined as:

f (θ) = 3

8

θ

VolMKθ
(BMKθ

(g(θ/2) + 1))
.

Now let 0 < s < t < 1 be close enough such that there exists an ε1 < εt such that:

t − s = εn
1 Vol (Bn)f (t). (6.8)

By definition, for any η > 0, there exists a set A such that μ(A) = t and μ+(A) ≤ I (t) + η.
By (6.7) there exists an x ∈ BM(x0,Rt ) such that μ(A \ BM(x, ε1)) ≤ s, and since μ is
absolutely continuous, it follows that there exists an ε2 ≤ ε1 such that μ(A\BM(x, ε2)) = s.
Therefore:

I (s) ≤ μ+(A\BM(x, ε2)) ≤ μ+(A)+μ+(BM(x, ε2)) ≤ I (t)+η+μ∞(t)
5

4
εn−1

1 Vol
(
Sn−1

)
,

where we have used (6.2) and (6.4) in the last inequality. Sending η to 0 and plugging in
(6.8), we conclude that for some constant Cn which depends on n:

I (s) ≤ I (t) + Cnμ∞(t)

(
t − s

f (t)

) n−1
n

.

To get the inequality in the other direction, we require that 0 < s < t < 1 are close enough
so that ε1 < ε1−s in addition satisfies:

t − s = εn
1 Vol (Bn)f (1 − s).
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Now let A ⊂ M be such that μ(A) = s and μ+(A) ≤ I (s) + η. Applying (6.7) for the set
M \A, we find an x ∈ BM(x0,R1−s) and ε2 ≤ ε1 such that μ(A∪BM(x, ε2)) = t . Repeating
the above argument then gives:

I (t) ≤ I (s) + Cnμ∞(1 − s)

(
t − s

f (1 − s)

) n−1
n

.

Since f is monotone, this concludes the proof. �

Our approximation argument is now clear. Given a measure μ in the setting of
Lemma 6.9, we know that its isoperimetric profile I is continuous. Assume that μ can
be approximated from above or from within by measures {μm} satisfying our generalized
smooth convexity assumptions. By Theorem 1.8, the corresponding profiles {Im} (and when
the densities are uniform, also the renormalized profiles {I n/(n−1)

m }) are concave, and so
applying Proposition 6.8, we deduce the pointwise convergence of Im to I , which clearly
preserves concavity. We therefore deduce:

Theorem 6.10 Let � = (M,g) denote an n-dimensional (n ≥ 2) smooth complete ori-
ented connected Riemannian manifold and let d denote the induced geodesic distance.
For each m ≥ 1, let {μm} denote a sequence of Borel probability measures on �m ⊂ � so
that (�m,d,μm) satisfies our generalized smooth convexity assumptions. Assume that {μm}
tends to an absolutely continuous Borel probability measure μ from above or from within,
and denote Im = I(�m,d,μm) and I = I(�,d,μ). Then Im → I pointwise and consequently I is
concave on [0,1]. Moreover, if each μm is uniform over �m, then I n/(n−1) is also concave
on [0,1].

Proof The argument has already been sketched. We only remark that it is not hard to verify
the validity of the assumptions of Lemma 6.9 on μ, as the limit of {μm} as above (see e.g.
[64, Remark 6.2]). �

Corollary 6.11 Let � denote any (non-smooth) convex bounded domain in R
n (n ≥ 2), let

μ denote the uniform probability measure on � and let d denote the Euclidean metric. Then
our convexity assumptions are satisfied, I = I(�,d,μ) is concave on [0,1], and so is I n/(n−1).

Proof Approximate � from outside by smooth convex domains using standard methods
(see e.g. [80]). Note that �ε will only guarantee C1 smoothness. �

Corollary 6.12 Let � = R
n (n ≥ 1), let μ denote any absolutely continuous log-concave

probability measure (with possibly non-smooth density) and let d = |· | denote the Euclidean
metric. Then our convexity assumptions are satisfied and I = I(�,d,μ) is concave on (0,1)

(and if n ≥ 2, on [0,1]).

Proof The case n = 1 follows from Theorem A.4 in the Appendix. For the case n ≥ 2, we
will need to approximate μ from above and within by a sequence of smooth log-concave
probability measures. Since we did not find a standard reference for this, we outline the
argument.

First, assume that the support B of μ is compact. Approximate μ by smooth log-concave
probability measures {νε} in total-variation distance using standard methods (e.g. convo-
lution with a Gaussian mollifier). Now define ηε,δ to be the dilatation of νε given by
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ηε,δ(A) = νε(x0 + (1 − δ)(A − x0)) for all Borel sets A, where x0 is a point in the inte-
rior of B (another possibility would be to use sup-convolution with a small Gaussian). It is
then not hard to check that for a suitable subsequence, ηε,δ(ε) tends to μ from above, from
which the assertion follows by Theorem 6.10.

In case the support of μ is not compact, we repeat the above argument for the trun-
cated measures μr = μ|rBn

2
/μ(rBn

2 ), where Bn
2 denotes the Euclidean unit-ball. Note that

μ+(rBn
2 ) → 0 as r → ∞ e.g. by the co-area formula:

∫ ∞

0
μ+(rBn

2 )dr =
∫ ∞

0
μ+ {x ∈ R

n; |x| ≥ r}dr =
∫

Rn

|∇| · ||dμ = 1.

Hence {μr} tends to μ from within, and so by Theorem 6.10 the claim now follows for
arbitrary log-concave measures. �

6.2 Stability of first-moment concentration

Up to now, we have only concluded the Main Theorem 1.5 under our smooth convexity
assumptions. We now describe how to extend these assumptions to our general convexity
assumptions.

Indeed, assume that μ can be approximated in total-variation by measures {μm} with
density exp(−ψm) such that ψm ∈ C2(M) and Ricg + Hessgψm ≥ 0 on � = (M,g). We
would like to show that our Main Theorem, stating that DChe(�,d,μ) ≥ cDFM(�,d,μ)

for some universal constant c > 0, still holds. It is immediate to deduce from Lemma 6.6
that:

DChe(�,d,μ) ≥ lim sup
m→∞

DChe(�,d,μm),

and using our Main Theorem for the smooth measures μm (and Lemma 2.1), we deduce
that:

DChe(�,d,μ) ≥ c lim sup
m→∞

DM
FM(�,d,μm),

for some universal constant c > 0. The First Moment constant is particularly easy to han-
dle, since there is no ‖|∇f |‖Lq term which needs to be controlled. The following lemma,
which is an adaptation of a classical lemma of C. Borell [23] from the Euclidean case to the
Riemannian-manifold-with-density setting, enables us to reduce to the case that {μm} are all
supported on some compact set:

Lemma 6.13 Let x0 ∈ M and R > 0 be such that θ = μm(B(x0,R)) > 1/2. Then:

∀t ≥ 1 μm(M \ B(x0, tR)) ≤ θ

(
1 − θ

θ

) t+1
2

.

Given this lemma, it is easy to proceed as follows. Fix x0 ∈ � and R > 0 so that
μ(B(x0,R)) ≥ 3/4. Then for some m0 and all m ≥ m0, we have μm(B(x0,R)) ≥ 2/3, and
hence by the lemma we conclude that:

∀m ≥ m0 ∀t ≥ 1 μm(� \ B(x0, tR)) ≤ 2− t+1
2 .

Let fm denote the 1-Lipschitz functions on � so that Mμmfm = 0 and 1/DM
FM(�,d,μm) =∫ |fm|dμm (we assume without loss of generality that the supremum is achieved). Since fm
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are continuous, Mμmfm = 0 and μm(B(x0,R)) > 1/2, there must exist a xm ∈ B(x0,R) so
that fm(xm) = 0. Since fm are 1-Lipschitz, it follows that for any t ≥ 1:

∫

�\B(x0,tR)

|fm|dμm ≤
∫

�\B(x0,tR)

d(x, xm)dμm(x)

≤ d(xm, x0)μm(� \ B(x0, tR)) +
∫

�\B(x0,tR)

d(x, x0)dμm(x)

≤ R

(

2− t+1
2 +

∫ ∞

t

2− s+1
2 ds

)

.

Hence, given ε > 0, there exists a t ≥ 1 so that:

sup
m≥m0

∣
∣
∣
∣

1

DM
FM(�,d,μm)

−
∫

B(x0,tR)

|fm|dμm

∣
∣
∣
∣ ≤ ε.

But since our Lipschitz functions fm are uniformly bounded on B(x0, tR) by (t + 1)R (by
passing through xm as before), the convergence of {μm} to μ in total-variation implies:

lim
m→∞ sup

m1≥m0

∣
∣
∣
∣

∫

B(x0,tR)

|fm1 |dμm −
∫

B(x0,tR)

|fm1 |dμ

∣
∣
∣
∣ = 0.

Finally, we note that for m large enough, by the Markov-Chebyshev inequality (we assume
here without loss of generality that Mμfm ≥ 0):

1

2
− 1

6
≤ μm {fm ≤ 0} − 1

6
≤ μ {fm ≤ 0} ≤ μ

{∣∣fm − Mμfm

∣
∣ ≥ Mμfm

}

≤ 1

DM
FM(�,d,μ)Mμfm

,

so |Mμfm| ≤ 3/DM
FM(�,d,μ). Combining everything together, we deduce that for m large

enough:

1

DM
FM(�,d,μm)

≤ ε +
∫

B(x0,tR)

|fm|dμm ≤ 2ε +
∫

B(x0,tR)

|fm|dμ

≤ 2ε + ∣
∣Mμfm

∣
∣ +

∫

�

|fm − Mμfm|dμ ≤ 2ε + 4

DM
FM(�,d,μ)

.

Since ε > 0 was arbitrary, we conclude that:

DChe(�,d,μ) ≥ c lim sup
m→∞

DM
FM(�,d,μm) ≥ c

4
DM

FM(�,d,μ).

This concludes the proof, since as usual, we may pass from DM
FM to DFM using Lemma 2.1.

For completeness, we provide a proof of Lemma 6.13, using the following remarkable
generalization of the Prékopa-Leindler inequality (e.g. [24]) due to Cordero-Erausquin,
McCann and Schmuckenschläger [29] (generalizing their own result from [28]). Given
x, y ∈ M and s ∈ [0,1], define:

Zs(x, y) := {z ∈ M;d(x, z) = sd(x, y) and d(z, y) = (1 − s)d(x, y)} .
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Theorem 6.14 (Cordero-Erausquin–McCann–Schmuckenschläger) Assume that dμ =
exp(−ψ)dvolM with ψ ∈ C2(M) and Ricg + Hessgψ ≥ 0 on M . Let s ∈ [0,1] and
f,g,h : M → R+ be such that:

∀x, y ∈ M ∀z ∈ Zs(x, y) h(z) ≥ f 1−s(x)gs(y).

Then:
∫

M

hdμ ≥
(∫

M

f dμ

)1−s (∫

M

gdμ

)s

.

Proof of Lemma 6.13 Let t ≥ 1, and observe that:

∀x ∈ B(x0,R),∀y ∈ M \ B(x0, tR) Z 2
t+1

(x, y) ∩ B(x0,R) = ∅. (6.9)

Indeed, if this is not so, there would exist a z ∈ M so that:

d(x, z) = 2

t + 1
d(x, y), d(z, y) = t − 1

t + 1
d(x, y), d(z, x0) < R.

But then:

d(y, x0) ≤ d(y, z) + d(z, x0) <
t − 1

t + 1
(d(x, x0) + d(x0, y)) + R <

t − 1

t + 1
d(y, x0) + 2t

t + 1
R,

which would imply that d(y, x0) < tR, a contradiction. Hence, (6.9) implies that the func-
tions f = χB(x0,R), g = χM\B(x0,tR) and h = χM\B(x0,R) satisfy the assumption of Theo-
rem 6.14 with s = 2

t+1 . Theorem 6.14 then implies that:

1 − θ ≥ θ
t−1
t+1 μm(M \ B(x0, tR))

2
t+1 ,

and the conclusion of the lemma follows. �
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Appendix

In the Appendix, we provide more details regarding the statement and ideas underlying the
proof of Theorem 1.8 from the Introduction, as it plays an essential role in our argument.
In the statement of this theorem, we have summarized a series of results in Riemannian
Geometry concerning the concavity of the isoperimetric profile, which were proved under
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increasingly general convexity assumptions. An essential ingredient in the proofs of these
results is provided by Geometric Measure Theory, which guarantees the existence and reg-
ularity of the isoperimetric minimizers, and permits the use of a variational argument to
deduce the concavity of the profile.

A.1 Manifolds with uniform densities

First, we survey the case where the metric space (�,d) is given by a bounded domain (con-
nected open set) with C2 boundary in a smooth complete oriented connected n-dimensional
(n ≥ 2) Riemannian manifold (M,g) along with the induced geodesic distance d in M ,
and the probability measure μ is given by the restriction to � of the Riemannian volume
form volM on M , normalized so that μ(�) = 1. We summarize for completeness some re-
markable results provided by Geometric Measure Theory about the existence and regularity
of isoperimetric minimizers in the case we are considering, and refer to the books of Fed-
erer [31], Morgan [68], Giusti [35] and Burago and Zalgaller [25] for further information.

Theorem (Almgren [1, 2], Bombieri [22], Gonzales–Massari–Tamanini [36], Grüter [42],
Morgan [69]) For any t ∈ (0,1), there exists an open isoperimetric minimizer A of measure
t for the isoperimetric problem on (�,d,μ) as above. The boundary � = ∂A ∩ � can be
written as a disjoint union of a regular part �r and a set of singularities �s , with the
following properties:

• �r ∩ � is a smooth, embedded hypersurface of constant mean curvature.
• �r meets ∂� orthogonally.
• �s is a closed set of Hausdorff co-dimension not smaller than 8. This result is sharp.

For all the results to be described, it is essential that the Hausdorff co-dimension of the
singular part of the boundary is large (although typically knowing that it is greater than 3
is sufficient). This approach was used by M. Gromov in his influential generalization of
P. Lévy’s isoperimetric inequality [38], [39, Appendix C]. The negligible singular part per-
mits to consider a normal variation of the regular part, and from there on one may continue
by using the readily available tools from Riemannian Geometry to calculate the first and sec-
ond variations of volume and area. Before proceeding, we remark that most results we will
mention deduce that the isoperimetric profile satisfies a second order differential inequality
under more general convexity assumptions than stated (e.g. a negative lower bound on the
Ricci curvature), and provide a characterization of the equality case as well.

The first convexity assumption which we add is that the Ricci curvature tensor Ricg of
(M,g) be non-negative. When M is a closed manifold and � = M , and under the additional
assumption that all isoperimetric minimizers are smooth submanifolds (this is always the
case when n ≤ 7), it was shown by Bavard and Pansu [11] that I is concave on [0,1]. In
fact, these authors attribute the same statement without the assumption on the smoothness of
the isoperimetric minimizers to Bérard, Besson and Gallot. This was also formally verified
by Morgan and Johnson [73, Sect. 2.1 and Proposition 3.3]. Gallot in [34, Corollary 6.6]
showed that in fact the renormalized profile I n/(n−1) is concave in this case. This result
captures the right dependence of the dimension in the exponent.

For our applications, the case where � is a proper subset of M is of most interest. In
that case, to deduce the concavity of the isoperimetric profile, clearly one has to add some
additional assumptions on �. When (M,g) is the Euclidean space (Rn, | · |), it was first
shown by Sternberg and Zumbrun [82] that a natural condition is that � be convex, in which
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case they showed that the profile I is indeed concave. This result was further strengthened
by Kuwert [51], who showed that the renormalized profile I n/(n−1) is also concave. This
was then generalized by Bayle and Rosales [13] to the case of a Riemannian manifold with
non-negative Ricci curvature, under the assumption that � is locally convex:

Definition A domain � ⊂ (M,g) is said to be locally convex, if all geodesics in M tangent
to ∂� are locally outside of �. By a result of Bishop [15], in case that � has C2 boundary,
this is equivalent to requiring that the second fundamental form of ∂� with respect to the
normal pointing into � be positive semi-definite on all of ∂�.

We summarize the above results in the following:

Theorem A.1 (Bavard–Pansu, Bérard–Besson–Gallot, Gallot, Morgan–Johnson, Sternberg–
Zumbrun, Kuwert, Bayle–Rosales) Let (M,g) be a smooth complete oriented connected
Riemannian manifold of dimension n ≥ 2 with non-negative Ricci curvature, and let � de-
note a locally convex bounded domain in (M,g). Let d denote the induced geodesic distance
in (M,g) and μ the restriction to � of the canonical volume form volM on M , normalized so
that μ(�) = 1. Assume in addition that � has C2 smooth boundary. Then the isoperimetric
profile I = I(�,d,μ) is a concave function on [0,1]. Moreover, so is I n/(n−1).

A.2 Manifolds with densities

As before, let (M,g) denote an n-dimensional (n ≥ 2) smooth complete oriented connected
Riemannian manifold with induced geodesic distance d . In addition, let ψ ∈ C2(M) be
such that dμ = exp(−ψ)dvolM is a probability measure on M . Since the influential work of
Bakry and Émery [4] in the abstract framework of diffusion generators, it is known that a nat-
ural convexity condition on a manifold with density, which replaces the condition Ricg ≥ 0
in the uniform density case, is to require the following CD(0,∞) Curvature-Dimension
condition:

Ricg + Hessgψ ≥ 0 as 2-tensor fields. (A.1)

Theorem A.2 (Bayle [12], Morgan [70, 72]) Let � = (M,g) and d,μ as above. Assume
that (A.1) holds on �. Then I = I(�,d,μ) is a concave function on [0,1].

This theorem was proved by Bayle in [12] under the assumption that M is a closed man-
ifold. It was noted (without explanation) by Morgan [70, Corollary 9] that the same proof
applies for a general complete manifold, as long as it has finite μ-measure. Indeed, Bayle’s
argument remains exactly the same; the only point one needs to check is the existence and
regularity of isoperimetric minimizers in the manifold with density setting. The argument
goes as follows: it was shown by Morgan in [69, Remark 3.10] that given a complete smooth
Riemannian manifold with positive density ρ ∈ Ck(M) (k ≥ 0), if there exists an area min-
imizing current then its boundary is necessarily Ck regular outside a set of Hausdorff codi-
mension at least 8. As explained e.g. in [57, 69, 70], the existence of an area minimizing
current is guaranteed by the local compactness Theorem for currents (see [68]), as soon as
the μ-measure of M is finite, which is always the case in our setting. Since the minimizing
current is regular by the previous result, it follows that the usual notion of weighted area
(i.e. Minkowski boundary measure) and the weighted area of a current coincide, and hence
there exists a regular minimizer of Minkowski boundary measure.
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The assumption that M has finite mass is essential for the existence of minimizers, other-
wise one may construct counterexamples (see [14] or [12, p. 51]). It is also essential that the
density be continuous, otherwise minimizers need not necessarily exist (consider the density
1
4χ[0,1]×[0,1] + χ[ 1

4 ,1]×[0,1] on [0,1] × [0,1]).
We remark that the same existence and regularity argument works for manifolds with

a smooth boundary. Let � ⊂ (M,g) be a domain (connected open set) with C2 boundary,
let d be the geodesic distance induced by (M,g), and let dμ = exp(−ψ)dvolM |� with
ψ ∈ C2(�) so that μ(�) = 1. One can easily check that the argument of Grüter [42] on the
constant curvature of the regular part of the boundary and the orthogonality still applies,
with a minor change in the conclusion. We summarize this in the following:

Theorem (Morgan [68, 69, 72], Grüter [42]) For any t ∈ (0,1), there exists an open isoperi-
metric minimizer A of measure t for the isoperimetric problem on (�,d,μ) as above. The
boundary � = ∂A ∩ � can be written as a disjoint union of a regular part �r and a set of
singularities �s , with the following properties:

• �r ∩ � is a C2 smooth, embedded hypersurface of constant generalized mean curvature,
defined as:

H�r,ψ(x) := H�r (x) + 1

n − 1
gx(∇xψ, ν�r (x)),

where H�r (x) denotes the usual mean curvature of �r in the direction of the unit normal
ν�r (x) pointing into A (i.e. the trace of the second fundamental form divided by (n − 1)),
for x ∈ �r ∩ �.

• �r meets ∂� orthogonally (even in the presence of a density).
• �s is a closed set of Hausdorff co-dimension not smaller than 8.

It is then a (tedious) exercise to follow the proof of Sternberg and Zumbrun [82] and
Bayle [12] (see also [13]) and to deduce the following extension of Theorem A.2:

Theorem A.3 (after Sternberg and Zumbrun [82] and Bayle [12]) Let � ⊂ (M,g) be a
locally convex domain with C2 boundary, and let d ,μ as above. Assume that (A.1) holds
on �. Then I = I(�,d,μ) is a concave function on [0,1].

In the one-dimensional case n = 1, it was shown by S. Bobkov [16] that all of the above
theorems hold as well (here there is no point to consider a general manifold):

Theorem A.4 (Bobkov) Let (�,d) = (R, | · |) and let μ be an arbitrary absolutely contin-
uous log-concave measure on �. Then I = I(�,d,μ) is a concave function on (0,1).

Remark A.5 Bobkov showed that in this case, the minimizing sets are always given by half-
lines, from which it is immediate that I (t) = min(F ′ ◦ F−1(t),F ′ ◦ F−1(1 − t)), where
F(s) = μ(−∞, s). Using that μ is log-concave, direct differentiation reveals that I is con-
cave. Note that the case n = 1 is special since I may be discontinuous at 0 and 1, but this
has absolutely no consequences to our applications.
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