
DOI: 10.1007/s00222-008-0171-5
Invent. math. 176, 601–616 (2009)

Linearization of conservative toral homeomorphisms

T. Jäger

Collège de France, 3 rue d’Ulm, 75005 Paris, France
(e-mail: tobias.jager@college-de-france.fr)

Oblatum 14-VII-2008 & 19-XI-2008
Published online: 9 December 2008 – © Springer-Verlag 2008

Abstract. We give an equivalent condition for the existence of a semi-
conjugacy to an irrational rotation for conservative homeomorphisms of the
two-torus. This leads to an analogue of Poincaré’s classification of circle
homeomorphisms for conservative toral homeomorphisms with unique ro-
tation vector and a certain bounded mean motion property. For minimal
toral homeomorphisms, the result extends to arbitrary dimensions. Further,
we provide a basic classification for the dynamics of toral homeomorphisms
with all points non-wandering.

1 Introduction

One of the earliest, and still one of the most elegant, results in dynamical
systems is Henri Poincaré’s celebrated classification of the dynamics of
circle homeomorphisms [1].

An orientation-preserving homeomorphism of the circle is semi-
conjugate to an irrational rotation if and only if its rotation number
is irrational, and if only if it has no periodic orbits.

Ever since, the question of linearization has been one of the central themes
of the subject – when can the dynamics of a given system be related to
those of a linear model, as for example periodic or quasiperiodic motion on
a torus? It seems natural to attempt to generalise Poincaré’s result to higher
dimensions. However, so far no results in this direction exist. Partly, this is
explained by the fact that even on the two-torus, the situation which is best
understood, obstructions to linearization other than the existence of periodic
orbits appear. First of all, there does not have to be a uniquely defined
rotation vector. Instead, it is only possible in general to define a rotation set,
which is a compact convex subset of the plane [2] (see also (2.1) below for
the definition). Further, even when this rotation set is reduced to a single,
totally irrational rotation vector, a toral homeo- or diffeomorphism may have
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dynamics which are very different from quasiperiodic ones, for example it
can exhibit weak mixing [3]. This is even true for toral flows. One way
to bypass these problems is to use higher smoothness assumptions on the
system, together with arithmetic conditions on the rotation vector, in order
to guarantee the existence of a smooth conjugacy. This is the content of
KAM-theory. However, in dimension greater than one, the price one has to
pay for this is to restrict to perturbative results, meaning that the considered
toral diffeomorphisms have to be close to the irrational rotation.

Here, we pursue a different direction. We show that whether or not
a conservative1 toral homeomorphism is (topologically) semi-conjugate to
an irrational rotation is completely determined by the convergence proper-
ties of the rotation vector. The method is inspired by the one in [4], where an
analogous result is given for skew products over irrational rotations. How-
ever, in order to overcome the lack of a fibred structure, a quite different
implementation of the ideas is required. The fact that it is possible to carry
these concepts over to the non-fibred setting also provides a new approach
to study the dynamics of periodic point free toral homeomorphisms (see
Theorem D below and also [5]), which are not yet very well understood in
general (see [6–8] for some previous results and [9] for the statement of the
related Franks–Misiurewicz conjecture).

Denote by Homeo0(T
d) the class of homeomorphisms of the d-dimen-

sional torus which are homotopic to the identity. We say f ∈ Homeo0(T
d)

is an irrational pseudo-rotation, if there exists a totally irrational vector
ρ ∈ Rd and a lift F : Rd → R

d of f , such that for all z ∈ Rd there
holds

lim
n→∞(Fn(z) − z)/n = ρ.(1.1)

Similarly, when K ⊆ T is an invariant subset and (1.1) holds for all z ∈ K ,
then we say f is an irrational pseudo-rotation on K .

If f is semi-conjugate to the irrational rotation Rρ : z �→ z + ρ mod 1,
then it is further evident that there must be a certain rate of convergence
in (1.1), namely an a priori error estimate of c/n, for some constant c
independent of z. In order to reformulate this, let

D(n, z) := Fn(z) − z − nρ.(1.2)

We say an irrational pseudo-rotation f (on an invariant set K ⊆ T
d)

has bounded mean motion, with constant c ≥ 0 (on K ), if there holds
‖D(n, z)‖ ≤ c for all n ∈ Z and z ∈ Rd (z ∈ K ).

Now, it is a natural question to ask whether these two obvious necessary
conditions are already sufficient in order to guarantee the existence of a semi-
conjugacy. This is not true in general, counter-examples are given in [5].

1 By conservative, we mean that there exists an invariant probability measure of full
topological support. Due to the Oxtoby–Ulam theorem, we can always assume that this
measure is the Lebesgue measure on T2, but we will actually not make use of this fact.
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However, these examples exhibit wandering open sets, such that one can
still hope to obtain a positive result under additional recurrence assumptions
on the system. A first, quite elementary observation is the following.

Proposition A. Let f ∈ Homeo0(T
d), and suppose K ⊆ Td is a minimal

set and f is an irrational pseudo-rotation with bounded mean motion on K.
Then f|K is regularly semi-conjugate to the irrational rotation on Td.2

In particular, when f has bounded mean motion on all of Td, then its
restriction to any minimal subset is semi-conjugate to Rρ. The analogue
statement holds for toral flows.

The possibility of restricting to minimal subsets in Proposition A is
particularly interesting in dimension two, since it can be combined with an
old result by Misiurewicz and Ziemian [10] in order to obtain the following
consequence.

Corollary B. Suppose the rotation set of f ∈ Homeo0(T
2) has non-empty

interior. Then for any totally irrational vector ρ in the interior of the rotation
set, there exists a minimal subset Kρ, such that f|Kρ

is regularly semi-
conjugate to Rρ.

This can be seen as a natural analogue of the fact that rational rotation
vectors in the interior of the rotation set are realised by periodic orbits [11].

In order to obtain an analogous result for conservative homeomorphisms
of the two-torus, an important ingredient will be the concept of a circloid,
which is a subset C ⊆ T2 which is (i) compact and connected, (ii) essential
(not contained in any embedded topological disk), (iii) has a connected
complement which contains an essential simple closed curve and (iv) does
not contain any strictly smaller subset with properties (i)–(iii). The semi-
conjugacy in the conservative case will be obtained by constructing a “lamin-
ation” on the torus consisting of pairwise disjoint circloids, on which f acts
in the same way as the irrational rotation on the foliation into horizontal (or
vertical) lines.

Apart from this technical purpose, circloids are also of an indepen-
dent interest, since they may appear as invariant or periodic sets of a toral
homeomorphism. This provides a natural generalisation of the concept of
an invariant essential simple closed curve. Altogether, this leads to the fol-
lowing Poincaré-like classification of conservative pseudo-rotations with
bounded mean motion.

Theorem C. Suppose f ∈ Homeo0(T
2) is a conservative pseudo-rotation

with rotation vector ρ ∈ R2 and bounded mean motion. Then the following
hold.

2 See Sect. 2 for the definition of a regular semi-conjugacy. When K = Td , this just
means that the semi-conjugacy is homotopic to the identity (and therefore, in particular,
preserves the rotation vector and the bounded mean motion property).
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(i) ρ is totally irrational if and only if f is semi-conjugate to Rρ.
(ii) ρ is neither totally irrational nor rational if and only if f has a periodic

circloid.
(iii) ρ is rational if and only if f has a periodic point.

Finally, the same concepts lead to the following trichotomy for the
dynamics of non-wandering toral homeomorphisms. (We say a map f is
non-wandering if there exists no non-empty open set U with f n(U)∩U = ∅
∀n ≥ 1.)

Theorem D. Suppose f ∈ Homeo0(T
2) is non-wandering. Then one of the

following holds.

(i) f is topologically transitive;
(ii) f has two disjoint periodic circloids;
(iii) f has a periodic point.

We note that alternatives (i) and (ii) are mutually exclusive, but may both
coexist with (iii). An equivalent way of expressing (ii) is to say that there
exist two disjoint periodic embedded open annuli, both of which contain an
essential simple closed curve.

The existence of a periodic circloid forces the rotation set to be contained
in a line segment which contains no totally irrational rotation vectors (see
Proposition 3.9 and Remark 3.10 below). Hence, we obtain the following
corollary.

Corollary E. Suppose f ∈ Homeo0(T
2) is a non-wandering irrational

pseudo-rotation. Then f is topologically transitive.

Acknowledgements. I would like to thank an anonymous referee for several thoughtful
remarks. This work was supported by a research fellowship (Ja 1721/1-1) of the German
Science Foundation (DFG).

2 The minimal case

The aim of this section is to prove a slightly more general version of
Proposition A, which also takes into account the situation where the rotation
set is not reduced to a single point, but contained in some lower-dimensional
hyperplane. We define the rotation set of a toral homeomorphism f ∈
Homeo0(T

d), with lift F, on a subset K ⊆ Td as

ρK(F) := {
ρ ∈ Rd

∣∣ ∃ni ↗ ∞, xi ∈ K : lim
i→∞

(
Fni (xi) − xi

)
/ni = ρ

}
.

(2.1)

When K = Td, this coincides with the standard definition (see [2]). Note that
for a different lift F ′ of f , the rotation set ρK (F ′) will be an integer translate
of ρK(F). However, this slight ambiguity will not cause any problems, and
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we will nevertheless call ρK(F) the rotation set of f . Now, suppose ρK(F)
is contained in a d − 1-dimensional hyperplane, that is ρK(F) ⊆ λv + {v}⊥
for some v ∈ Rd \ {0} and λ ∈ R. In this case, we let

Dv(n, z) := 〈Fn(z) − z − nρ, v〉,(2.2)

where ρ ∈ ρK(F) is arbitrary. We say f has bounded mean motion parallel
to v on K if there exists a constant c > 0 such that

|Dv(n, z)| ≤ c ∀n ∈ Z, z ∈ K.(2.3)

By ‖v‖, we denote the Euclidean norm of a vector v ∈ Rd, by πi the
projection to the i-th coordinate (on any product space). π : Rd → T

d =
R

d/Zd will denote the quotient map.
Recall that when ϕ and ψ are endomorphisms of topological spaces X

and Y , respectively, then a continuous and onto map h : X → Y is called
a semi-conjugacy from φ to ψ, if h ◦ φ = ψ ◦ h. In general, the existence
of a semi-conjugacy from f|K to an irrational rotation Rρ does not have
any implications for the rotation set. Therefore, we will use the notion of
a regular semi-conjugacy, which we define as follows.

Suppose f ∈ Homeo0(T
d) leaves K ⊆ Td invariant and Rρ is a rotation

on the k-dimensional torusTk. If B is a k×d matrix with integer entries, then
a semi-conjugacy h : K → T

k from f|K to Rρ is called regular with respect
to B if it has a lift H : π−1(K ) → R

k that semi-conjugates F|π−1(K ) to the
translation Tρ : z �→ z + ρ and satisfies supz∈π−1(K ) ‖H(z) − B(z)‖ ≤ ∞.
Note that in this case ρK(F) ⊆ B−1(ρ) and f has bounded mean motion
orthogonal to B−1(ρ) (that is, parallel to all v ∈ B−1(ρ)⊥). Furthermore, if ρ
is totally irrational, then B is surjective and hence B−1(ρ) is a (d−k)-dimen-
sional hyperplane. When B is just the projection to the first k coordinates,
we simply say that h is regular.

Proposition 2.1. Let f ∈ Homeo0(T
d) and K ⊆ Td be a minimal set of f .

Suppose that there exists an integer vector v ∈ Zd \{0} with gcd(v1, . . . , vd )
= 1 and a number ρ0 ∈ R \Q, such that

ρK (F) ⊆ ρ0

‖v‖2
· v + {v}⊥.

Further, assume that f has bounded mean motion parallel to v on K. Then
f|K is regularly semi-conjugate to the one-dimensional irrational rotation
rρ0 : x �→ x + ρ0 mod 1.

The statement can be obtained as a consequence of the Gottschalk–
Hedlund theorem, but we prefer to give a short direct proof.

Proof. First, assume that v = e1 = (1, 0, . . . , 0). Define H : K → R by

H(z) = π1(z) + sup
n∈Z

De1(n, z) = sup
n∈Z

(
π1 ◦ Fn(z) − nρ0

)
.(2.4)
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Due to the bounded mean motion property H is well-defined, and it is easy
to check that H ◦ F(z) = H(z) + ρ0. Furthermore |H(z) − π1(z)| ≤ c,
where c is the bounded mean motion constant. It remains to show that H is
continuous. In order to do so, note that the function ϕ(z) = supn∈Z De1(n, z)
is lower semi-continuous, and ψ(z) = infn∈Z De1(n, z) is upper semi-
continuous. Therefore ϕ − ψ is lower semi-continuous, and a straight-
forward computation shows that it is furthermore invariant. Since f|K is
minimal, this implies that ϕ − ψ is equal to a constant on K , say c. It
follows that ϕ = c + ψ is also upper semi-continuous, hence continuous,
and thus the same holds for H(z) = π1(z) + ϕ(z). Since H also satisfies
H(z +v) = H(z)+π1(v) ∀v ∈ Zd , its projection h to Td yields the required
regular semi-conjugacy. The surjectivity of h follows from the minimality
of rρ0 .

In order to reduce the general case to the one treated above, let
Conv∗(z1, . . . , zn) := Conv(z1, . . . , zn)\{z1, . . . , zn}, where Conv denotes
the convex hull. Choose a basis w2, . . . , wd ∈ Zd of {v}⊥ with the property
that the Conv∗(w2, . . . , wd) contains no integer vectors. Next, choose some
vector w1, such that Conv∗(w1, . . . , wd) contains no integer vectors either. If
we denote the matrix (w1, . . . , wd) by A, then the latter implies that the lin-
ear toral automorphism f A induced by A is bijective, such that det A = 1.
Furthermore, F̃ = A−1 ◦ F ◦ A is the lift of a toral homeomorphism f̃ .
There holds

ρ f −1
A (K )(F̃) = A−1(ρK(F)) ⊆ ρ0

‖v‖2
· A−1(v) + {e1}⊥

and using (A−1)te1 ∈ (A({e1}⊥))⊥ = Rv it is easy to check that f̃ has
bounded deviations parallel to e1. Thus, it only remains to show that
〈A−1(v), e1〉 = ‖v‖2. Let ṽ be the vector representing the linear func-
tional x �→ det(x, w2, . . . , wd) on Rd , that is det(x, w2, . . . , wd) = 〈x, ṽ〉
∀x ∈ Rd. Then ṽ ⊥wi ∀i = 2, . . . , d, and hence ṽ ∈ Rv. Furthermore,
x �→ det(x, w2, . . . , wd) maps integer vectors to integers, which implies
ṽ ∈ Zd. Finally, the existence of a vector w1 ∈ Zd with 〈w1, ṽ〉 = det A = 1
implies that the coordinates of ṽ are relatively prime, and hence ṽ = ±v. It
follows that | det(v,w2, . . . , wd)| = 〈v, v〉 = ‖v‖2, and since det A = 1 we
obtain

|〈A−1(v), e1〉| = | det(A−1(v), e2, . . . , ed)| = | det(v,w2, . . . , wd)| = ‖v‖2.

If the sign of 〈A−1v, e1〉 is negative, then we simply replace w1 by −w1.
Now, as we showed above, there exists a regular semi-conjugacy h from

f̃ to rρ0 . Thus h ◦ A−1 yields the required semi-conjugacy from f to rρ0 ,
which is regular with respect to B = π1 ◦ A−1. ��
Remark 2.2. Even without the minimality assumption, the proof of Prop-
osition A still yields the existence of a ‘measurable semi-conjugacy’, that
is, a measurable map h : K → T

1 that satisfies h ◦ f|K = rρ0 ◦ h. Since h
must map any f|K -invariant measure µ to the Lebesgue measure on T1, this
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is already sufficient to exclude certain exotic behaviour, like weak mixing
(see [3] for examples of this type).

We obtain the following corollary, which in particular implies Prop-
osition A.

Corollary 2.3. Let F be a lift of f ∈ Homeo0(T
d) and suppose there exist

vectors v1, . . . , vk with gcd(vi
1, . . . , v

i
d ) = 1 ∀i = 1, . . . , k and a totally

irrational vector ρ ∈ Rk, such that

ρK(F) ⊆
k⋂

i=1

(
ρi

‖vi‖2
· vi + {vi}⊥

)
.

Then f is regularly semi-conjugate to the k-dimensional irrational rota-
tion Rρ.

Proof. Let hi be the semi-conjugacy between f and rρi , obtained from Prop-
osition 2.1 with v = vi . Then h : Td → T

k, z �→ (h1(z), . . . , hk(z)) yields
the required semi-conjugacy between f and Rρ. Again, the surjectivity of h
follows from the minimality of Rρ, and the regularity is inherited from that
of h1, . . . , hk. ��

The following result is contained in [10].

Theorem 2.4 (Theorem A in [10]). Let F be a lift of f ∈ Homeo0(T
2) and

suppose that ρ(F) has non-empty interior. Then given any ρ ∈ int(ρ(F))
there exists a minimal set Mρ such that ρMρ

(F) = {ρ} and f has bounded
mean motion on Mρ.

The bounded mean motion property is not explicity stated there, but
contained in the proof (see formula (9) in [10]). Together with the preceeding
statement, this yields Corollary B.

3 Invariant circloids

In the following, we collect a number of statements about circloids, both
on the open annulus A = T1 × R and on T2. These results will be crucial
for the proof of Theorem C in the next and of Theorem D at the end of this
section. Before we start, we want to mention a well-known example, namely
the so-called ‘pseudo-circle’ introduced by Bing [12], which shows that the
structure of a circloid may be much more complicated than that of a simple
closed curve. Later Handel [13] and Herman [14] showed that the pseudo-
circle may appear as an invariant set of smooth surface diffeomorphisms.
Nevertheless, we will see below that circloids have many ‘nice’ properties,
which make them an interesting tool in the study of toral and annular
homeomorphisms.
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The definition of a circloid on the annulus is more or less the same as
on the torus. However, for convenience we reformulate it, and introduce
some more terminology. We say a subset E ⊆ A is an annular continuum,
if it is compact and connected, and A \ E consists of exactly two connected
components which are both unbounded. Note that each of the connected
components will be unbounded in one direction (above or below), and
bounded in the other. We say a subset C ⊆ A is a circloid, if it is an annular
continuum and does not contain any strictly smaller annular continuum as
a subset.

We call a set E ⊆ A essential, if its complement does not contain any
connected component which is unbounded in both directions. (For compact
sets, this coincides with the usual definition that E is not contained in
any embedded topological disk). Now, suppose that U ⊆ A is bounded
from below and its closure is essential. We will call such a set an upper
generating set and define its associated lower component L(U) as the
connected component of A \ U which is unbounded from below. Similarly,
we call a set L ⊆ A which is bounded from above and has essential closure
a lower generating set, and define its associated upper component U(L)
as the connected component of A \ L which is unbounded from above.
We call an open set U (respectively L) an upper (lower) hemisphere, if
U∪{+∞} is bounded from below (L∪{−∞} is bounded from above) and
homeomorphic to the open unit disk inC.3 If U , respectively L , is connected,
then L(U), respectively U(L), is a hemisphere in this latter sense. In order
to see this, suppose Γ is a Jordan curve in L(U) ∪ {−∞}. Let D be the
Jordan domain in Ā = A ∪ {−∞,+∞} � C̄ which is bounded by Γ
and does not contain +∞. Since U is connected and essential, D ∩ U = ∅.
Hence D is contractible to a point in L(U)∪{−∞}. This shows that U(L) is
simply connected, and the assertion follows from Riemann’s uniformisation
theorem.

The following remark states a number of elementary properties of the
above objects.

Remark 3.1. (a) If U is an upper generating set, then there exist disjoint
essential simple closed curves Γn ⊆ L(U), such that

⋃
n∈NL(Γn) =

L(U). (For example, the curves Γn may be chosen as the images of the
circles with radius 1−1/n under the homeomorphism from the unit disk
to L(U)∪ {−∞}.) The analogous statement holds for lower generating
sets.

(b) Any annular continuum E is the intersection of a countable nested
sequence of annuli, bounded by essential simple closed curves. (Simply
apply (a) to U = L = E.)

(c) Any upper (lower) hemisphere is an upper (lower) generating set. Hence,
the expressions UL(U), LU(L), LUL(U) etc. make sense.

3 In order to be absolutely correct, we should say ‘punctured’ hemispheres, but we ignore
this for the sake of brevity.
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(d) If U and U ′ are upper generating sets, then U ′ ⊆ U implies L(U) ⊆
L(U ′). Similarly, if L and L ′ are lower generating sets and L ′ ⊆ L ,
then U(L) ⊆ U(L ′).

(e) If U is an upper separating set, then L(U) ⊆ LUL(U). (Note that
L(U) ⊆ UL(U)c by definition.) Similarly, if L is a lower separating
set, then U(L) ⊆ ULU(L).

(f) Suppose E is both an upper and a lower generating set, for example if E
is an annular continuum. Then L(E) ⊆ LU(E) and U(E) ⊆ UL(E).
(Note that L(E) ⊆ U(E)c and U(E) ⊆ L(E)c.) Using (d), this further
implies ULU(E) ⊆ UL(E) and LUL(E) ⊆ LU(E).

A general way to obtain circloids is the following.

Lemma 3.2. Suppose U is an upper generating set. Then C−(U) := A \
(UL(U) ∪ LUL(U)) is a circloid. Similarly, if L is a lower generating
set, then C+(L) := A \ (LU(L) ∪ ULU(L)) is a circloid.

In particular, every annular continuum E contains a circloid. (Note that
Remark 3.1(e) and (f) imply that E = A \ (U(E) ∪ L(E)) contains both
C+(E) and C−(E).)

Proof of Lemma 3.2. First, note that since the operations L and U always
produce hemispheres, C−(U) and C+(L) are annular continua.

Suppose E is an annular continuum which is contained in C−(U). Then,
by definition of C−(U), there holds UL(U) ⊆ U(E) and LUL(U) ⊆
L(E). Now LUL(U) ⊆ L(E) implies, due to statement (e) in the pre-
ceding remark, L(U) ⊆ L(E). Hence (d) yields UL(E) ⊆ UL(U), and
therefore U(E) ⊆ UL(U) by (f). Thus U(E) = UL(U).

Similarly, UL(U) ⊆ U(E) implies LU(E) ⊆ LUL(U) by (d) and
thus L(E) ⊆ LUL(U) by (f). Hence L(E) = LUL(U). Together, we
obtain

E = A \ (U(E) ∪ L(E)) = A \ (UL(U) ∪ LUL(U)) = C−(U).

Of course, the same argument applies to C+(L). ��
This leads to a nice equivalent characterisation of circloids. We call an

upper hemisphere U or a lower hemisphere L reflexive, if UL(U) = U or
LU(L) = L , respectively. We call (U, L) a reflexive pair of hemispheres,
if U(L) = U and L(U) = L .

Corollary 3.3. An annular continuum C is a circloid if and only if (U(C),
L(C)) is a reflexive pair of hemispheres.

Lemma 3.4. Suppose A is an annular continuum with empty interior. Then

C−(A) = C+(A) = ∂U(A) ∩ ∂L(A),

and this is the only circloid contained in A.
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Proof. Let C := ∂U(A) ∩ ∂L(A). Since U(A) and L(A) are open and
disjoint, we have

C = U(A) ∩ L(A) = (
U(A)

c ∪ L(A)
c)c = A \ (LU(A) ∪ UL(A)).

(3.1)

(The last inequality follows from the fact that int(A) = ∅.) We first show
that C is an annular continuum. Since the sets LU(A) and UL(A) are
hemispheres, it suffices to prove that their union V = Cc is not connected.
Suppose for a contradiction that it is, and fix two points z1 ∈ L(A) ⊆
LU(A) and z2 ∈ U(A) ⊆ UL(A). Then, since V is open and connected,
we can find an arc γ : [0, 1] → V that joins z1 and z2. However, the
sets {t ∈ [0, 1] | γ(t) /∈ U(A)} and {t ∈ [0, 1] | γ(t) /∈ L(A)} are both
open strict subsets of [0, 1] and their union covers the interval, but they are
disjoint (since U(A) ∪ L(A) = A). This contradicts the connectedness of
[0, 1]. We conclude that V cannot be connected, and hence C is an annular
continuum.

Now L(C) = LU(A) and ULU(A) ⊆ UL(A) = U(C) by (3.1)
and Remark 3.1(f). Hence C ⊆ C+(A), and Lemma 3.2 therefore yields
C = C+(A). The same argument shows C = C−(A). In particular, C is
a circloid.

Finally, suppose C′ is another circloid contained in A. Then L(A) ⊆
L(C ′), and thus L(A) ∩ U(C ′) = ∅. Therefore

U(C ′) ⊆ UL(A) = U(C).

In the same way, we obtain L(C′) ⊆ L(C), and hence C′ ⊆ C. Since C is
a circloid, we have C′ = C. ��

Next, we turn to study circloids which are invariant sets of non-wandering
annular homeomorphisms. Let Homeo0(A) denote the set of homeomor-
phisms of A which are homotopic to the identity. Given f ∈ Homeo0(A),
an open subset U ⊆ A is called f -wandering, if f n(U) ∩ U = ∅ ∀n ≥ 1.
We call f ∈ Homeo0(A) non-wandering, if it does not admit any non-
empty wandering open set, and let Homeonw

0 (A) := { f ∈ Homeo0(A) |
f is non-wandering}. Similarly, we let Homeonw

0 (T2) := { f ∈ Homeo0(T
2) |

f is non-wandering}. Finally, we call f ∈ Homeo0(A) an irrational pseudo-
rotation, if there exists an irrational number ρ, such that for all z ∈ A there
holds

lim
n→∞ π1(Fn(z) − z)/n = ρ.(3.2)

Let p : R2 → A be the canonical projection. The following lemma will turn
out to be useful several times.

Lemma 3.5. Suppose f ∈ Homeonw
0 (A) or f ∈ Homeonw

0 (T2) has no
periodic points. Then any open f -invariant set contains an essential simple
closed curve.
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Proof. We give the proof for the case of the annulus, the modifications
needed on the torus are minor. Suppose that f ∈ Homeonw

0 (A) has no
periodic points and V ⊆ A is an open f -invariant set. Fix a small open
ball B ⊆ V . Since B is non-wandering, there exists some k ≥ 1 with
f k(B) ∩ B �= ∅. Choose a lift G : R2 → R

2 of f k and a connected
component B̂ of p−1(B), such that G(B̂)∩ B̂ �= ∅. Since G has no periodic
points, a sufficiently small ball D ⊆ B̂ will satisfy G(D)∩ D = ∅. It follows
from a result by Franks [15, Proposition 1.3], that Gn(D) ∩ D = ∅ ∀n ∈ Z.
Thus, as p(D) is non-wandering for f k, the G-orbit of D has to intersect
one of its integer translates. (Note that for any k ≥ 1, f is non-wandering
if and only if f k is non-wandering.) The same then certainly holds for B̂.
Since

⋃
n∈Z Gn(B̂) ⊆ p−1(V ) is connected, this shows that V contains an

essential closed curve, which can be chosen simple. ��
Since essential simple closed curves are circloids themselves, we obtain

the following corollary.

Corollary 3.6. Suppose f ∈ Homeonw
0 (A) or f ∈ Homeonw

0 (T2) has no
periodic points and C is an invariant circloid. Then C has empty inte-
rior.

Now we can prove an important property of invariant circloids.

Proposition 3.7. Suppose f ∈ Homeonw
0 (A) has no periodic points and C1

and C2 are f -invariant circloids. Then either C1 = C2, or C1 ∩ C2 = ∅.

Again, a similar statement holds on the torus, but we will not make use
thereof.

Proof. First, suppose that U(C1) ∩ L(C2) = L(C1) ∩ U(C2) = ∅. Then
U(C1) ⊆ L(C2)

c
and therefore U(C1) ⊆ UL(C2) = U(C2) (the equality

comes from Corollary 3.3). In the same way, we see that U(C2) ⊆ U(C1)
and thus U(C1) = U(C2). The same argument yields L(C1) = L(C2),
such that C1 = C2.

Otherwise, one of the two intersections is nonempty, we may assume
without loss of generality that A = U(C1) ∩ L(C2) �= ∅. Since A is open
and invariant, Lemma 3.5 implies that it contains an essential simple closed
curve Γ. It is now easy to see that Γ separates C1 and C2, that is C1 ⊆ L(Γ)
and C2 ⊆ U(Γ), which implies the disjointness of the two sets. ��

In order to apply these results to toral maps, we need the following basic
lemma, whose simple proof is omitted.

Lemma 3.8. Let f ∈ Homeonw
0 (T2) and suppose ρ(F) ⊆ R × {0} and f

has bounded mean motion parallel to e2 = (0, 1). Let F̃ : A → A be the
(uniquely defined) lift of f , such that supn∈Z,z∈A |π2 ◦ F̃(z)| < ∞. Then
F̃ ∈ Homeonw

0 (A).
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We call f ∈ Homeo0(T
2) rationally bounded, if there exists an integer

vector v and some λ ∈ Q, such that ρ(F) ⊆ λv + {v}⊥ and f has bounded
mean motion parallel to v.

Proposition 3.9. Suppose f ∈ Homeonw
0 (T2) has no periodic points. Then f

is rationally bounded if and only if it has a periodic circloid.

Proof. Suppose f is rationally bounded. Using a linear change of co-
ordinates (as in the proof of Proposition 2.1), we may assume without
loss of generality that v = e2. Suppose λ = p/q with p, q ∈ Z. Let
G̃ : A → A be the non-wandering lift of f q provided by Lemma 3.8.
Then A := ⋃

n∈Z G̃n(T1 × {0}) is invariant, bounded and essential, and
thus C = C+(A) is an F̃-invariant circloid. Furthermore, Proposition 3.7
yields C ∩ (C + (0, 1)) = ∅. This implies that there is a simple closed
curve Γ contained in the region between C and C + (0, 1), whose projection
p(Γ) will consequently be contained in p(C)c. Thus p(C) is the required
f q-invariant circloid.

Conversely, suppose that there exists a q-periodic circloid C. Then
π−1(C) ⊆ R consists of a countable number of connected components,
separated by the lifts of the essential simple closed curve Γ contained in
the complement of C. A suitable lift G of f q will leave these connected
components invariant, and it is easy to see that this implies ρ(G) ⊆ Rv,
where v ∈ Z2 \ {0} is the homotopy vector of Γ. ��
Remark 3.10. Note that in the above proof, the non-existence of periodic
points and wandering open sets is only used to ensure that the invariant
circloid inA projects down to a circloid inT2, via Proposition 3.7. However,
this can equally be ensured by projecting down only to a sufficiently large
finite cover of T2. Hence, even if these assumptions are omitted, we obtain
that f ∈ Homeo0(T

2) is rationally bounded if and only if there exists a lift f̃
of f to a finite cover of T2, such that f̃ has a periodic circloid.

Theorem D now follows quite easily from the above results.

Proof of Theorem D. Suppose that f ∈ Homeo0(T
2) has no wandering open

sets. Further, assume that f has no periodic points and is not topologically
transitive. Then there exist two open sets U1, U2 with disjoint orbit, that is
Ũ1 ∩ Ũ2 = ∅, where Ũi = ⋃

n∈Z f n(Ui). By Lemma 3.5, both Ũ1 and Ũ2
contain an essential simple closed curve, which we denote by Γ1 and Γ2,
respectively. By means of a linear change of coordinates, we may assume
that the homotopy type of these curves is (1, 0) (note that since Γ1 and
Γ2 are disjoint, they have the same homotopy vector). Hence, they lift to
essential simple closed curves inA. Furthermore, any connected component
Û1 of π−1(Ũ1) will be contained between two successive lifts of Γ2, and
consequently be bounded. A suitable lift G of a suitable iterate of f will
leave Û1 invariant. Hence, using Lemma 3.2 we obtain the existence of



Linearization of conservative toral homeomorphisms 613

two G-invariant circloids C+(Û1) and C−(Û1). These project to invariant
or periodic circloids of f . They cannot project down to the same circloid,
because they are both contained in the region between two successive lifts
of Γ2. ��

4 The conservative case: Proof of Theorem C

Suppose that f ∈ Homeo0(T
2) is a conservative pseudo-rotation with

bounded mean motion. Then the existence of a periodic orbit forces the
unique rotation vector to be rational. Conversely, if the unique rotation vec-
tor is rational then the existence of a periodic orbit follows from a result of
Franks [16, Theorem 3.5]. This yields the equivalence in (iii). (In fact, this
holds for pseudo-rotations in general, even without the conservativity and
bounded mean motion hypotheses.) The equivalence in (ii) follows from
Proposition 3.9 above. Further, if f is semi-conjugate to a totally irrational
rotation on T2, then the rotation vector evidently has to be totally irrational.
Hence, it remains to prove the existence of a semi-conjugacy in (i).

Let τ : A → T
2 denote the canonical projection and let T : A → A,

(x, y) �→ (x, y + 1). When A is an annular continuum and B is an arbitrary
subset of A, we will use the notation

A � B :⇔ B ∩ L(A) = ∅;
A ≺ B :⇔ B ⊆ U(A).

The reverse inequalities are defined analogously. If both A and B are annular
continua and A � B, then we let

(A, B) := U(A) ∩ L(B);
[A, B] := A \ (L(A) ∪ U(B)).

(Thus (A, B) is the open region strictly between A and B and [A, B] =
(A, B) ∪ A ∪ B. One may think of these sets as open and closed ‘intervals’
with ‘endpoints’ A and B.) Now, suppose f ∈ Homeo0(T

2) is an irrational
pseudo-rotation with rotation vector ρ and bounded mean motion with
constant c. Let f̂ be the lift of f to Awith average vertical displacement ρ2,
such that |π2 ◦ f̂ n(z) − π2(z) − nρ2| ≤ c ∀n ∈ Z, z ∈ A. We define

Ar :=
⋃

n∈Z
f̂ n

(
T

1 × {r − nρ2}
)

(4.1)

and

Cr := C+(Ar).(4.2)

Note that due to the bounded mean motion property,

Ar ⊆ T1 × [r − c, r + c].(4.3)
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Since Ar is also essential, it is a lower generating set, and hence the definition
of Cr makes sense. Further, Lemma 3.2 implies that the sets Cr are all
circloids. The following properties hold and are easy to verify.

Cr+1 = T(Cr)(4.4)
f̂ (Cr) = Cr+ρ2(4.5)

Cr � Cs if r < s.(4.6)

We claim that the circloids Cr are also disjoint, such that

Cr ≺ Cs if r < s.(4.7)

This is in fact the crucial point in the proof, and also the part which strongly
relies on the existence of the f -invariant measure µ of full topological
support. In fact, the argument can be seen as a metric version of the one
used in the proof of Lemma 3.5. Once we have established this assertion,
the required semi-conjugacy can be constructed quite easily.

Disjointness of the circloids Cr. Note that by going over to a finite cover
of T2 and rescaling, we may assume c < 1/4. This implies that Cr ≺
Cr+1 ∀r ∈ R, such that the Cr project down to circloids onT2. Let r < s, and
suppose first that A = [Cr, Cs] has empty interior. In this case Lemma 3.4
shows that A contains only one circloid, and thus Cr = Cs. It follows that
Cr′ = Cs′ ∀r ′, s′ ∈ [r, s]. Choosing r ′, s′ ∈ [r, s] with s′ = r ′ + nρ2 mod 1
we obtain Fn(Cr′−k) = Cr′ for some k ∈ Z. This implies that f has
an invariant or periodic circloid, and is therefore rationally bounded by
Proposition 3.9, contradicting the irrationality of ρ.

Thus, we may assume that A has non-empty interior. We claim that
int(A) contains an essential simple closed curve, which certainly implies
the disjointness of Cr and Cs. In order to prove our claim, let t = (r + s)/2
and note that, without loss of generality, we may assume int(A′) �= ∅,
where A′ = [Cr, Ct] (otherwise, we work with [Ct, Cs]; one of the two
sets always has non-empty interior by Baire’s theorem.) Fix some open ball
V ⊆ int(A′) of diameter diam(V ) ≤ 1/8 and let V0 = τ(V ). Choose some
integer

M1 ≥ max

{
2µ(int(τ(A)))

µ(V0)
, 16(c + 1)

}
.

Further, choose some integer m, such that (ρ′
1, ρ

′
2) = mρ mod 1 satisfies

ρ′
2 ∈ (0, t−r

2M3
1
) and ρ′

1 ∈ (Sρ′
2, 2Sρ′

2), where

S = 4M1(c + 1)

t − r
.

The fact that such an m exists follows simply from the minimality of the
irrational rotation Rρ.
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Let G0 : A → A be the lift of f m with rotation vector (ρ′
1, ρ

′
2), and

note that for all i ≤ t−r
ρ′

2
there holds Gi

0(A′) = [Cr+iρ′
2
, Ct+iρ′

2
] ⊆ A.

Consequently f im(τ(A′)) ⊆ τ(A), and thus f im(V0) ⊆ int(τ(A)). Since f m

preserves µ, it follows that there exists some k ≤ M1, such that f km(V0) ∩
V0 �= ∅. If (ρ′′

1, ρ
′′
2) = k(ρ′

1, ρ
′
2), then ρ′′

2 ∈ (0, t−r
2M2

1
) and ρ′′

1 ∈ (Sρ′′
2, 2Sρ′′

2).

Fix a connected component V̂0 ⊆ R2 of π−1(V0) and let G1 : R2 → R
2

be the lift of f km with G1(V̂0) ∩ V̂0 �= ∅. Then the bounded mean mo-
tion property with constant c ≤ 1/4, which G1 inherits from f , im-
plies that ρ(G1) = (ρ′′′

1 , ρ′′′
2 ) ∈ R2 satisfies ρ′′′

2 = ρ′′
2 ∈ (0, t−r

2M2
1
) and

ρ′′′
1 ∈ (Sρ′′′

2 , 2Sρ′′′
2 ).4 Now, choose n ∈ N with n ∈ [ t−r

4kM1ρ′
2
, t−r

2kM1ρ′
2
]. Then

nρ′′′
2 ∈ [ t−r

4M1
, t−r

2M1
] and |ρ′′′

1 | ≥ Snρ′′′
2 ≥ c + 1. The bounded mean motion of

Gn
1 therefore implies G jn

1 (V̂0) ∩ V̂0 = ∅ ∀ j ∈ N. However, by the same ar-
gument as before there must be some l ≤ M1, such that f lnkm(V0)∩V0 �= ∅.
This implies that Gln

1 (V̂0) has to intersect some integer translate of V̂0. Since
the set W := ⋃ln

j=1 G j
1(V̂0) is open and connected and π(W ) ⊆ τ(int(A)),

this proves our claim.

Construction of the semi-conjugacy. We now define

H2(z) := sup{r ∈ R | z � Cr}.(4.8)

Using (4.4) and (4.5), it can easily be checked that

H2 ◦ T(z) = H(z) + 1;(4.9)

H2 ◦ f̂ (z) = H(z) + ρ2.(4.10)

In order to see that H2 is continuous, suppose (a, b) ⊆ R is an open
interval and z ∈ H−1

2 (a, b). Let c = H2(z), and choose s ∈ (a, c) and
t ∈ (c, b). Then z is contained in the open set (Cs, Ct). (z � Cs is obvious,
and z�Ct would imply z � Ct ′ for all t′ < t by (4.7), hence H2(z) ≥ t.)
However, H2(Cs, Ct) ⊆ [s, t] ⊆ (a, b), such that H−1

2 (a, b) contains the
open neighbourhood (Cs, Ct) of z. Since z was arbitrary, this proves that
H−1

2 (a, b) is open, and as a, b were arbitrary we obtain the continuity
of H2.

Due to (4.9) and (4.10), H2 projects to a semi-conjugacy h2 between f
and the irrational rotation rρ2 : x �→ x + ρ2 mod 1. In the same way, we
can construct a semi-conjugacy h1 between f and the irrational rotation rρ1 ,
and h = (h1, h2) then yields the required semi-conjugacy between f and
Rρ on T2. ��

4 It is here were we use diam(V ) ≤ 1/8 and M1 ≥ 16(c + 1). Otherwise (ρ′′′
1 , ρ′′′

2 ) could
also be a different lift of (ρ′′

1 , ρ′′
2). (Note that ρ′′

1 is only defined mod1.)
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