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Abstract. We prove the complete asymptotic expansion of the integrated
density of states of a two-dimensional Schrödinger operator with a smooth
periodic potential.

1. Introduction

Let H be a Schrödinger operator

H = −∆ + V(1.1)

acting inRd. The potential V is assumed to be infinitely smooth and periodic
with Γ ⊂ Rd being its lattice of periods. We denote by O = R2/Γ the
fundamental quotient of Γ and by v the L∞-norm of V . We also denote by Γ†

a dual lattice to Γ and put O† = R2/Γ†. Denote by Ñ(λ) the (integrated)
density of states of the operator H . The density of states is defined by the
formula

Ñ(λ) = lim
L→∞

N
(
λ; H (L)

D

)

Ld
.(1.2)

Here, H (L)
D is the restriction of H to the cube [0, L]d with the Dirichlet

boundary conditions, and N(λ; A) is the counting function of the discrete
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spectrum of (a bounded below operator with compact resolvent) A. If we
denote by Ñ0(λ) the density of states of the unperturbed operator H0 = −∆,
one can easily see that for positive λ one has

Ñ0(λ) = 1

(2π)d
wdλ

d/2,(1.3)

where

wd = πd/2

Γ(1 + d/2)
(1.4)

is the volume of the unit ball in Rd. There is a long-standing conjecture
that for large λ the density of states of the perturbed operator enjoys the
following asymptotic behaviour as λ → ∞:

Ñ(λ) ∼ Ñ0(λ)
(

1 +
∞∑

j=1

ejλ
− j

)
,(1.5)

meaning that for each K ∈ N one has

Ñ(λ) = Ñ0(λ)
(

1 +
K∑

j=1

ejλ
− j

)
+ RK (λ)(1.6)

with RK (λ) = o(λ
d
2 −K ). In these formulas, ej are real numbers which

depend on the potential V . They can be calculated relatively easily using the
heat kernel invariants (computed in [2]); they are equal to certain integrals
of the potential V and its derivatives. Indeed, in [7], all these coefficients
were computed; in particular, it turned out that if d is even, then ej vanish
whenever j > d/2.

So far, (1.5) has been proved only in the case d = 1 in [11]. In the
multidimensional case, only partial results are known, see [1,4,5,9,12,13].
In particular, in [13] it was shown that when d = 2 formula (1.6) is valid
with K = 2 and R(λ) = O(λ− 6

5 +ε) for any positive ε; in [4] it was shown
that when d ≥ 3 formula (1.6) is valid with K = 1 and R(λ) = O(λ−δ)

with some small δ when d = 3 and R(λ) = O(λ
d−3

2 ln λ) when d > 3.
The aim of this paper is to establish the complete asymptotic for-

mula (1.5) in the 2-dimensional case. Namely, we will prove that if d = 2,
we have:

Ñ(λ) = 1

4π
(λ − b) + O(λ−K )(1.7)

for each K ∈ N as λ → ∞ with

b := 1

vol(O)

∫

O

V(x)dx.(1.8)
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Note that in view of [7], it is enough to establish that (1.6) holds for each K
with some constants ej ; then (1.7) will follow automatically. Moreover,
suppose that we have proved the following asymptotic formula:

Ñ(λ) = Ñ0(λ)
(

1 +
2K∑

j=1

ejλ
− j/2 +

2K∑

j=1

êjλ
− j/2 ln(λ)

)
+ o(λ

d
2 −K ).(1.9)

Then, applying the same arguments as in [7], together with some straight-
forward calculations (one needs to compute the Laplace transform of
λα ln λ), it is easy to show that (1.9) still implies (1.7). Therefore, our
aim will be to prove (1.9). It was quite surprising for us when we were per-
forming the calculations that the terms containing logarithms were actually
‘present’ in the asymptotics of Ñ , although the coefficients êj in front of
these terms turned out to be zero.

Remark 1.1. The coefficients êj in front of logarithmic terms can be non-
zero if one allows non-local pseudo-differential perturbations V . For ex-
ample, suppose, Γ = Z2 and V is a pseudo-differential operator of order
zero with the following symbol:

v(x, ξ) = [cos(2πx1) + cos(2πx2) + cos(2π(x1 − x2))]χ1(|ξ|)χ2(arg(ξ)),
(1.10)

where χ1 is a smooth cut-off to the interval [1,+∞), and χ2 is a smooth
cut-off to [−0.1, π/4]. Then (1.9) is still valid, with ê4 �= 0. This can be
seen by repeating the arguments of our paper for non-local operators and
a careful computation of all coefficients. Since in our paper we do not
consider non-local perturbations, we will not go into more details, but we
may return to this example in a further publication.

The method we apply to establish (1.9) consists of two parts. The
first part is, essentially, the method used in [8] in order to prove the
Bethe–Sommerfeld conjecture in all dimensions, while the second part
consists of a detailed analysis of the eigenvalues coming from the different
zones (resonance and non-resonance ones); when working in the resonance
regions, we use some arguments from the theory of analytic functions of
several complex variables. Dealing with the resonance regions is the part
of the proof which at the moment we cannot extend to higher dimensions
(more on this later). Now let us discuss the general strategy of the proof in
detail (but still on a not too formal level).

The first step of the proof, as usual, consists of performing the Floquet–
Bloch decomposition to our operator (1.1):

H =
∫

⊕
H(k)dk,(1.11)

where H(k) = H0 + V(x) is the family of ‘twisted’ operators with the same
symbol as H acting in

H := L2(O).
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These auxiliary operators are labelled by the quasi-momentum k ∈ O†;
the domain D(k) of H(k) consists of functions f ∈ H2(O) which are
restrictions of functions f̂ ∈ H2

loc(R
2) satisfying the following condition:

f̂ (γ + x) = eikγ f̂ (x), γ ∈ Γ. We refer the reader to [10] for more details
about this decomposition. Now it would be useful to introduce a different
density of states

N(λ) :=
∫

O†
N(λ, H(k))dk(1.12)

which is more convenient to deal with. It is known (see e.g. [10]) that

Ñ(λ) = 1

4π2
N(λ).(1.13)

Therefore, for our purposes it would be enough to prove (1.9) for N instead
of Ñ .

Note that we can assume without any loss of generality that
∫

O

V(x)dx = 0.

Indeed, otherwise we consider a new operator H1 := H − b (b is defined
in (1.8)). Note that H1 = −∆ + V1 and the constant Fourier coefficient
of V1 := V − b vanishes. Since N(λ; H) = N(λ − b, H1), we see that
asymptotic formulas (1.7) for H and H1 are equivalent. Therefore, we can
(and will) always assume that

∫
O V(x)dx = 0.

Next, instead of trying to prove (1.9) for all values of λ, we will prove it
assuming that λ is inside a fixed interval: λ ∈ [λn, 16λn], where λn = 4nλ0
is a large number, and we will allow the coefficients in (1.9) to depend on n,
although the remainder should be uniform in n. In Sect. 3, we will show that
if we can prove these asymptotic formulae for all n with coefficients growing
not too fast, this would imply the validity (1.9) for all λ. The reason we
require this reduction is the following: on later stages of the proof, we will
decompose the phase space (i.e. the space where the dual variable ξ lives)
into two regions: resonant and non-resonant zones. The resonant zones are,
roughly speaking, the strips of some width a. The value of a cannot be
chosen the same for all values of λ, since we need a to be of order λ1/6.
Thus, when we increase λ, at some stage we will have to increase the value
of a, and this can result in changes of the asymptotic coefficients in (1.9).
However, if λ runs over a fixed interval [λn, 16λn], we can keep a fixed and
thus the coefficients of our asymptotic expansion (1.9) will be fixed as well.
Thus, starting from Sect. 4, we will be assuming that λ ∈ [λn, 16λn] and n
is fixed.

The next step is to assume that the potential V is a finite trigonometric
polynomial whose Fourier coefficients

V̂ (m) := 1√
vol(O)

∫

O

V(x)e−imxdx, m ∈ Γ†(1.14)
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vanish when |m| > R. More precisely, we replace the original potential

V(x) = 1√
vol(O)

∑

m∈Γ†

V̂ (m)e−imx(1.15)

by the truncated potential

V ′(x) = 1√
vol(O)

∑

m∈B(R)∩Γ†

V̂ (m)e−imx,(1.16)

where B(R) is a ball of radius R centered at the origin. Here, R = Rn
is a parameter which grows as a small positive power of λn (for example,
Rn = λ

1/48
n ). It is easy to justify the fact that the error introduced by changing

the potential in such a way is small; this is where we use the fact that the
original potential is infinitely smooth. However, this truncation leaves us
with an additional tedious job of checking how all the important estimates
depend on Rn .

Next, our aim is to construct a good approximation of all the eigen-
values of all operators H(k) simultaneously (to be precise, we will need
to approximate only eigenvalues which are inside the interval [λn − 100v,
16λn + 100v]). In Sect. 4, we discuss what exactly we mean by such a simul-
taneous approximation and prove that, if this approximation satisfies a bunch
of additional properties (in particular, the approximating function needs to
behave in a proper way in a specially chosen coordinate system which
should also satisfy certain properties), then asymptotic formula (1.9) would
follow automatically. This is done in Lemma 4.10. Unfortunately, we will
not be able to use this lemma without modifications further on in the paper,
but at least this lemma (and the proof of it) shows us which properties we
are aiming for.

The main part of the paper, Sects. 5–7, is devoted to the construction
of an approximation of all the eigenvalues of all operators H(k); the exist-
ence of such an approximation was assumed in Sect. 4. The main tool
during this construction will be an abstract result from perturbation the-
ory – Lemma 5.1. This lemma allows us, under certain conditions, to study
the spectrum of an operator PHP instead of the spectrum of an operator H .
Here, H = H0 + V is a bounded below operator with compact resolvent,
V is bounded, and P is a spectral projection of H0. Since the formulation
of this lemma is rather involved, let us illustrate what it says by considering
a special case. Assume that P is a further sum of spectral projections of H0,
P = ∑J

j=0 Pj such that the matrix of V in the basis corresponding to P0,
P1, . . . , PJ , PJ+1 := I − P is block-three-diagonal (i.e. Pj VPt = 0 when-
ever | j − t| > 1). Assume also that λ = λ(H) is an eigenvalue of H and
that the distance from the spectra of Pj H0 Pj ( j = 1, . . . , J + 1) to λ is at
least a, where a is sufficiently large, so that P0 HP0 is ‘essentially respon-
sible’ for the eigenvalue λ. Then the operator PHP has an eigenvalue λ′
such that |λ − λ′| � a−2J . In applications, a will be of order λ1/6, so by
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choosing sufficiently large J , we can make our approximation as precise as
we wish.

We are going to apply Lemma 5.1 by constructing various projections P
such that the operator PHP has an eigenvalue close to an eigenvalue of H .
Roughly speaking, each point ξ from the phase space such that |ξ|2 is close
to λ generates such a projection P = P(ξ). The structure of P(ξ) depends on
the exact location of ξ in the phase space. There are two types of points ξ:
resonant and non-resonant ones. For non-resonant points ξ , the structure
of P(ξ) is relatively simple, the operator PHP has a unique eigenvalue close
to λ, and we can find this eigenvalue using the standard approximating
procedure (for example, the Banach contraction mapping theorem). Having
constructed this approximation, we are ready to start computing N(λ); it
is a relatively straightforward (but slightly tedious) task to compute the
contribution to the density of states coming from the non-resonant regions.
The logarithmic terms appear on this stage (resonant regions do not produce
any logarithms).

In the case of the resonant ξ , the structure of P(ξ) is more complicated,
and therefore it is much more difficult to compute a contribution to the
density of states coming from the resonance zones. The main problem lies
in the fact that the approximation formula for the resonant eigenvalues is
not explicit: it expresses eigenvalues of PHP in terms of the eigenvalues
of an expression A + εB, where A and B are explicitly given symmetric
matrices and ε ∼ |ξ|−1 is a small parameter which also depends on ξ in an
explicit way. Of course, one can expand the eigenvalues of A+εB in powers
of ε, but the coefficients in this expansion will not be uniformly bounded
in ξ , so we will not be able to integrate this expansion in ξ . Thus, we need
to analyse the situation deeper. Let us denote by P̃ the projection onto
the kernel of A. (We are interested in the perturbation of zero eigenvalues
of A.) Then a priori there are two reasons why the coefficients in the
asymptotic expansion of A + εB can be large: either A has eigenvalues
close to zero (not the case in our situation), or the operator P̃BP̃ has
eigenvalues close to each other. The latter possibility is actually occurring
in our problem. However, it turns out that P̃BP̃ is ‘essentially’ unitary
equivalent to a one-dimensional Schrödinger operator with quasi-periodic
boundary conditions on the interval. Therefore, there could be no more
than two eigenvalues of this operator located near each other (at this place
we strongly use the fact that our operator H is two-dimensional). The rest
of the computations is similar to the non-resonance regions, only instead
of solving equation µ + G(µ) = λ1/2 like we did in the non-resonance
region (and where we used implicit function theorem), now we have to
solve the equation µ2 + X1(µ)µ + X2(µ) = 0. The tool for dealing with
equations of this type comes from the theory of functions of several complex
variables and is called the Weierstrass preparation theorem. After using this
theorem, we obtain the expressions for eigenvalues in the non-resonance
regions; these expressions are no longer analytic in λ1/2, but contain square
roots of analytic functions; however, these square roots will cancel after
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integration in ξ to produce an asymptotic formula which contains only
powers of λ1/2.

The rest of the paper is organised as follows: in the next section we
give all necessary definitions and basic facts (the Weierstrass preparation
theorem and corollaries from it). In Sect. 3 we reduce the problem of finding
an asymptotic formula valid for all λ to the problem of finding such a formula
valid only for λ inside a fixed interval. In Sect. 4 we describe what exactly
we mean by a simultaneous approximation of all eigenvalues of all H(k)
and give some idea about the general strategy of the proof. In Sect. 5
we formulate auxiliary results which were proved in [8] and introduce the
partition of the ξ-plane into resonance and non-resonance regions. In Sect. 6
we deal with the non-resonance regions, and, finally, in Sect. 7 (the most
complicated one) we compute the contribution to the density of states from
the resonance zones.
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2. Notation and basic facts

Let Γ be a lattice in R2. We denote by O = R2/Γ the fundamental domain
of Γ, by Γ† the lattice dual to Γ, and by O† = R2/Γ† its fundamental
domain.

For each vector x ∈ R2 we denote by x⊥ the result of rotation of x by −π
2

and n(x) := x
|x| , assuming x �= 0. If x1, x2 ∈ R2 are two non-zero vectors,

we denote by φ(x1, x2) the angle between them (0 ≤ φ ≤ π).
If ξ ∈ R2, there exists unique decomposition ξ = γ + k with γ ∈ Γ†

and k ∈ O†. We call γ =: [ξ] and k =: {ξ} resp. the integer part and the
fractional part of ξ .

If H is a bounded below self-adjoint operator with compact resolvent,
then µj(H) is its j-th eigenvalue (counting multiplicities).

We also assume that the average of V over O is zero.
By C or c we denote positive constants, the exact value of which can be

different each time they occur in the text, possibly even each time they occur
in the same formula. On the other hand, the constants which are labeled
(like C1, c3, etc) have their values being fixed throughout the text. Given
two positive functions f and g, we say that f � g, or g � f , or g = O( f )
if the ratio g

f is bounded. We say f � g if f � g and f � g.
The results in the rest of this section are quoted from [3].

Theorem 2.1. (The Weierstrass preparation theorem). Let F be analytic
and bounded in a neighborhood ω of 0 inCn and assume that F(0, zn)/z p

n is



282 L. Parnovski, R. Shterenberg

analytic and �= 0 at 0. (In other words it means that (∂ j F/∂z j
n)(0, 0) = 0 for

j = 1, . . . , p − 1, and (∂ pF/∂z p
n )(0, 0) �= 0). Then one can find a polydisc

D ⊂ ω such that every G which is analytic and bounded in D can be written
in the form

G = qF + r,(2.1)

where q and r are analytic in D, r is a polynomial in zn of degree < p (with
coefficients depending on z′ = (z1, . . . , zn−1)) and

sup
D

|q| ≤ C sup
D

|G|.(2.2)

The representation is unique.

Remark 2.2. It follows from the proof that polydisc D and constant C can
be chosen to depend only on supω |F|, p and ((∂ pF/∂z p

n )(0, 0))−1.

Now, choose G := z p
n and put W := z p

n − r, h := q−1. We have

Corollary 2.3. If F satisfies the hypothesis of Theorem 2.1, then one can
write F in a unique way in the form

F = hW,(2.3)

where h and W are analytic in a neighborhood ω′ of 0, h(0) �= 0, and W is
a Weierstrass polynomial, that is,

W(z) = z p
n +

p−1∑

j=0

aj(z
′)z j

n,(2.4)

where aj are analytic functions in a neighborhood of 0 vanishing when
z′ = 0.

Moreover,

sup
ω′

(|h| + |h|−1) + sup
ω′

|W | ≤ C1,(2.5)

and ω′ and C1 depend only on supω |F|, p and ((∂ pF/∂z p
n )(0, 0))−1.

Corollary 2.4. Assume that a set of functions F := {F} satisfies the fol-
lowing properties:

1. Functions F are analytic in a neighborhood ω of 0.
2. For some p we have (∂ j F/∂z j

n)(0, 0) = 0 for j = 1, . . . , p − 1, and
(∂ p F/∂z p

n )(0, 0) �= 0.
3. We have the bounds

sup
F∈F

sup
ω

|F| ≤ C, sup
F∈F

∣∣(∂ pF/∂z p
n

)
(0, 0)

∣∣−1 ≤ C.(2.6)

Then there exist a neighborhood ω′ and a constant C1 such that for any
F ∈ F the representation (2.3) and estimate (2.5) hold. Moreover, ω′ and C1
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are uniform with respect to {F} and depend only on ω, p and constant C
from (2.6).

3. Reduction to a finite interval of spectral parameter

The main result of our paper is the following theorem (or, rather, the corol-
lary from it; we put ρ := √

λ):

Theorem 3.1. For each K ∈ N we have:

N(ρ2) = πρ2 +
K∑

j=0

ejρ
− j + ln ρ

K∑

j=2

êjρ
− j + o(ρ−K )(3.1)

as ρ → ∞.

Once the theorem is proved, it immediately implies

Corollary 3.2. For each K ∈ N we have:

Ñ(λ) = 1

4π
λ − 1

4π|O|
∫

O

V(x)dx + O(λ−K )(3.2)

as λ → ∞.

Proof. First of all, we notice that [2] implies that
∫ ∞

0
e−tλ Ñ(λ)dλ ∼ t−(d+2)/2

∞∑

l=0

qj t
j(3.3)

as t → 0+, where qj are constants depending on the potential. Now the
corollary follows from Theorem 3.1, property (1.13), and calculations simi-
lar to that of [7]. Indeed, [7] implies that if all coefficients êj vanish, then
all coefficients ej, j > 0, vanish as well. It remains to show that all co-
efficients êj vanish. Suppose, this is not the case. We consider separately
even and odd values of j. Suppose first that ê2k is the first non-zero even
coefficient with hats. Then we consider the following integral:

I(t) :=
∫ ∞

1
e−λtλ−k ln λdλ(3.4)

and, after elementary calculations, find that the asymptotic expansion of I(t)
as t → 0+ contains a term tk−1 ln2 t with a non-zero coefficient. This term
is absent in the Laplace transform of other terms from the expansion (3.1).
Thus, our assumption that ê2k �= 0 contradicts (3.3).

Suppose now that ê2k+1 is the first non-zero odd coefficient with hats.
Then, similarly to the previous case, we consider the following integral:

I(t) :=
∫ ∞

1
e−λtλ−(2k+1)/2 ln λdλ(3.5)
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and find that the asymptotic expansion of I(t) as t → 0+ contains a term
t(2k−1)/2 ln t with a non-zero coefficient. This term is absent from the Laplace
transform of other terms from the expansion (3.1). Once again, we have
reached a contradiction with (3.3). Thus, all coefficients êm vanish, and our
corollary follows from [7]. ��

The rest of the paper is devoted to proving Theorem 3.1.
To begin with, we choose sufficiently large ρ0 > 1 (to be fixed later on)

and put ρn = 2ρn−1 = 2nρ0; we also define the interval In = [ρn, 4ρn]. The
proof of the main theorem will be based on the following lemma:

Lemma 3.3. For each M ∈ N and ρ ∈ In we have:

N(ρ) = πρ2 +
6M∑

j=0

ej(n)ρ− j + ln ρ

6M∑

j=2

êj(n)ρ− j + O
(
ρ−M

n

)
.(3.6)

Here, ej(n), êj(n) are some real numbers depending on j and n (and M)
satisfying

ej(n) = O
(
ρ

4 j+7
5

n
)
, êj(n) = O

(
ρ

2 j+1
3

n
)
.(3.7)

The constants in the O-terms do not depend on n (but they may depend
on M).

Remark 3.4. Note that (3.6) is not a ‘proper’ asymptotic formula, since the
coefficients ej(n) are allowed to grow with n (and, therefore, with ρ).

Let us prove Theorem 3.1 assuming that we have proved Lemma 3.3.
Let M be fixed. Denote

Nn(ρ
2) := πρ2 +

6M∑

j=0

ej(n)ρ− j + ln ρ

6M∑

j=2

êj(n)ρ− j.(3.8)

Then whenever ρ ∈ Jn := In−1 ∩ In = [ρn, 2ρn], we have:

Nn(ρ
2) − Nn−1(ρ

2) =
6M∑

j=0

tj(n)ρ− j + ln ρ

6M∑

j=2

t̂j(n)ρ− j,(3.9)

where

tj(n) := ej(n) − ej(n − 1), t̂j(n) := êj(n) − êj(n − 1).(3.10)

On the other hand, since for ρ ∈ Jn we have both N(ρ) = Nn(ρ) +
O(ρ−M

n ) and N(ρ) = Nn−1(ρ)+O(ρ−M
n ), this implies that

∑6M
j=0 tj(n)ρ− j +

ln ρ
∑6M

j=2 t̂j(n)ρ− j = O(ρ−M
n ).
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Claim 3.5. For each j = 0, . . . , 6M we have: tj(n) = O(ρ
j−M
n ln ρn) and

t̂j(n) = O(ρ
j−M
n ).

Proof. Put x := ρ−1. Then
∑6M

j=0 tj(n)x j − ln x
∑6M

j=2 t̂j(n)x j = O(ρ−M
n )

whenever x ∈ [ρ−1
n
2 , ρ−1

n ]. Put y := xρn, τj(n) := (tj(n) + t̂j(n) ln ρn)ρ
M− j
n ,

and τ̂j(n) := −t̂j(n)ρ
M− j
n . Then

P(y) :=
6M∑

j=0

τj(n)y j +
6M∑

j=2

τ̂j(n)y j ln y = O(1)(3.11)

whenever y ∈ [ 1
2 , 1]. Consider the following 12M functions: y j ( j =

0, . . . , 6M) and y j ln y ( j = 2, . . . , 6M) and label them h1(y), . . . , h12M(y).
These functions are linearly independent on the interval [ 1

2 , 1]. Therefore,
there exist points y1, . . . , y12M ∈ [ 1

2 , 1] such that the determinant of the
matrix (hj(yl))

12M
j,l=1 is non-zero. Now (3.11) and the Cramer’s rule imply that

for each j the values τj(n) and τ̂j(n) are fractions with a bounded expression
in the numerator and a fixed non-zero number in the denominator. Therefore,
τj(n) = O(1) and τ̂j(n) = O(1). This shows first that t̂j(n) = O(ρ

j−M
n ) and

then that tj(n) = O(ρ
j−M
n ln ρn) as claimed. ��

Thus, for j < M, the series
∑∞

m=0 tj(m) is absolutely convergent; more-
over, for such j we have:

ej(n) = ej(0) +
n∑

m=1

tj(m) = ej(0) +
∞∑

m=1

tj(m) + O
(
ρ j−M

n ln ρn
)

=: ej + O
(
ρ j−M

n ln ρn
)
,

(3.12)

where we have denoted ej := ej(0)+∑∞
m=1 tj(m). Similarly, for j < M we

have

êj(n) = êj(0) +
n∑

m=1

t̂j(m) = êj(0) +
∞∑

m=1

t̂j(m) + O
(
ρ j−M

n

)

=: êj + O
(
ρ j−M

n

)
,

(3.13)

where we have denoted êj := êj(0) + ∑∞
m=1 t̂j(m).

Since ej(n) = O(ρ
4 j+7

5
n ) (it was one of the assumptions of lemma), we

have:

6M∑

j=M

|ej(n)|ρ− j
n = O

(
ρ

7
5 − M

5
n

) = O
(
ρ

− M
6

n
)
,(3.14)
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assuming as we can without loss of generality that M is sufficiently large.
The sum with hats on is estimated similarly. Thus, when ρ ∈ In, we have:

N(ρ) = πρ2 +
M−1∑

j=0

ejρ
− j +

M−1∑

j=2

êjρ
− j ln ρ + O(ρ−M ln ρ) + O(ρ− M

6 ).

(3.15)

Since constants in O do not depend on n, for all ρ ≥ ρ0 we have:

N(ρ) = πρ2 +
M−1∑

j=0

ejρ
− j +

M−1∑

j=2

êjρ
− j ln ρ + O(ρ− M

6 )

= πρ2 +
[M/6]∑

j=0

ejρ
− j +

[M/6]∑

j=2

êjρ
− j ln ρ + O(ρ− M

6 ).

(3.16)

Taking M = 6K + 1, we obtain (3.1).
The rest of the paper is devoted to proving Lemma 3.3.

4. Description of the approach. Integration in new coordinates

From the previous section it is clear that we can study the density of states
N(ρ) assuming that ρ ∈ In. Throughout the paper we will assume that n
is fixed and sometimes will omit index n from the notation; however, we
will carefully follow how all estimates depend on n. If we need to make
sure that ρn is sufficiently large, we will achieve this by increasing ρ0,
keeping n fixed.

First, we discuss the general strategy. In this section we describe how to
construct the asymptotic formula for N(ρ) using certain objects (mappings f
and g and coordinates (r,Φ) satisfying certain properties); in the next
sections, we will construct these objects.

Let us fix sufficiently large n, λ = ρ2 with ρ ∈ In, and denote

A = A(ρ) := {ξ ∈ R2, |ξ|2 ∈ [λ − 100v, λ + 100v]},(4.1)

where v := ‖V‖∞. Obviously, A is an annulus of width ∼ρ−1. We also
fix a number M ∈ N. Our aim is to construct good approximation of the
eigenvalues lying close to λ. Namely, we will construct two mappings
f, g : R2 → R such that for each ξ , f(ξ) is an eigenvalue of H({ξ});
moreover, f : {ξ ∈ R2, {ξ} = k} → σ(H(k)) is a bijection for each k
(here, we count all eigenvalues of H(k) according to their multiplicities;
the functions f, g depend on n, M and ρ). The difference | f(ξ) − g(ξ)| is
required to be sufficiently small at least when ξ ∈ A, namely, we postulate
that the following two properties hold:

(i) | f(ξ) − g(ξ)| ≤ ρ−M
n for ξ ∈ A;

(ii) | f(ξ) − |ξ2|| ≤ 2v, similarly, |g(ξ) − |ξ2|| ≤ 2v.
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Notice that the second property implies that if ξ /∈ A, then the following
three inequalities are equivalent: f(ξ) < λ if and only if g(ξ) < λ, and this
in turn happens if and only if |ξ| < ρ.

Remark 4.1. Rigorously speaking, the functions we will construct will sat-
isfy property (i) not in the whole annulus A, but in a slightly smaller annulus
{ξ ∈ R2, |ξ|2 ∈ [λ − 90v, λ + 90v]}. Indeed, in the process of construct-
ing f and g we will have to reduce the width of the set A by 2v several
times. One obvious solution to this problem would be to introduce sets
A1 = {ξ ∈ R2, |ξ|2 ∈ [λ − 98v, λ + 98v]}, A2, etc. However, this would
introduce extra notational complexity to a paper which is already over-
burdened with notation. Thus, we will keep calling A all annuli of slightly
smaller width whenever necessary.

Finally, we will construct function g in such a way that it satisfies some
asymptotic formulas. The next lemmas describe why these functions are
going to be useful. Denote

Bf (λ) := f −1((−∞, λ]).

Lemma 4.2. Suppose f : R2 → R is a measurable mapping such that
f : {ξ ∈ R2, {ξ} = k} → σ(H(k)) is a bijection (including multiplicities)
for each k. Then N(λ) = vol(Bf (λ)).

Proof. Denote by χBf (λ) the characteristic function of Bf (λ). By Fubini’s
theorem we have:

vol(Bf (λ)) =
∫

R2
χBf (λ)(ξ)dξ =

∫

O†
#{ξ, {ξ} = k and f(ξ) ≤ λ}dk

=
∫

O†
N(λ, k)dk = N(λ).

(4.2)

��
Our next task is two-fold: to show that under certain conditions we can

replace Bf in Lemma 4.2 by Bg so that the error is not too big and, secondly,
to compute vol(Bg(λ)) (or, at least, to expand this volume in powers of λ).
Unfortunately, assumptions (i) and (ii) on functions f and g made above
are not the only necessary requirements to do this job: we also need to
check that function g behaves in a ‘nice’ way in some suitable coordinates.
Since the complete set of required conditions looks rather nasty, we will
introduce these conditions slowly, one at a time, to show why each particular
condition is required. First, we check that the polar coordinates could do
the trick.

Lemma 4.3. Let λ = ρ2 be fixed and let N be a fixed natural number.
Suppose f : R2 → R is a measurable mapping such that f : {ξ ∈ R2,
{ξ} = k} → σ(H(k)) is a bijection for each k (counting multiplicities).
Suppose, g : R2 → R is a measurable mapping and that f, g satisfy
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properties (i) and (ii) above. Suppose also that ∂g
∂r (reiφ) � ρ whenever

ξ = reiφ ∈ A. Then N(λ) = vol(Bg(λ)) + O(ρ−M).

Proof. Assumptions of lemma (namely, property (ii) above) imply that the
symmetric difference Bf (λ)�Bg(λ) ⊂ A. The boundary of the ‘ball’ Bg(λ)
is a subset of A; since the function g = g(r, φ) is increasing in r, for any
fixed φ0 the intersection of Bg(λ) with any semi-infinite interval {reiφ0 ,

r ∈ [0,∞)} is an interval {reiφ0 , r ∈ [0, Z]}, where Z = Z(φ0) is a well-
defined function. Since ∂g

∂r ≥ C1ρ, we also have that if r < Z(φ) −
C−1

1 ρ−M−1, then λ − g(reiφ) > ρ−M , and so f(reiφ) < λ and ξ = reiφ ∈
Bf (λ). Similarly, if r > Z(φ) + C−1

1 ρ−M−1, then g(reiφ) − λ > ρ−M ,
and so f(reiφ) > λ and ξ = reiφ /∈ Bf (λ). Thus, the symmetric differ-
ence Bf (λ)�Bg(λ) ⊂ {ξ = reiφ ∈ R2, |r − Z(φ)| ≤ C−1

1 ρ−M−1} and thus
vol(Bf (λ)�Bg(λ)) � ρ−M . Together with Lemma 4.2, this finishes the
proof. ��

Later on, we will apply Lemma 4.3 in a more general situation, when r
is not precisely the radial coordinate, but ‘close’ to the radial coordinate in
a certain sense; more precisely, we will need the following statement (with
proof being exactly the same as proof of Lemma 4.3):

Corollary 4.4. Let S be a curve of length � 1, and let (r,Φ) (r ∈ R+,
Φ ∈ S) be coordinates in A(ρ) such that the Jacobian | ∂(x,y)

∂(r,Φ)
| � ρ.

Suppose, f : R2 → R is a measurable mapping such that f : {ξ ∈ R2,
{ξ} = k} → σ(H(k)) is a bijection for each k (counting multiplicities).
Suppose, g : R2 → R is a measurable mapping and that f, g satisfy
properties (i) and (ii) above. Suppose also that ∂g

∂r (r,Φ) � ρ. Then N(λ) =
vol(Bg(λ)) + O(ρ−M).

Remark 4.5. Obviously, Lemma 4.3 is a special case of Corollary 4.4 with
S = S1 being a circle of radius 1 centered at the origin and (r,Φ) being the
usual polar coordinates.

Remark 4.6. Suppose that another set of coordinates (r̃, Φ̃) satisfy slightly
different conditions: Φ̃ ∈ S̃, where S̃ is a curse of length � ρ, but the
Jacobian | ∂(x,y)

∂(r̃,Φ̃)
| � 1. Then the coordinates (r,Φ) := (r̃, Φ̃

ρ
) satisfy all

assumptions of Corollary 4.4, so the conclusion of this corollary will also
be valid for such coordinates. We will be using both types of coordinates,
depending upon convenience.

Remark 4.7. The coordinates (r,Φ) which we will introduce in further
sections will be defined simultaneously for all ρ ∈ In, i.e. they will be
defined for all points

ξ ∈ A(n) :=
⋃

ρ∈In

A(ρ).(4.3)
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Unfortunately, we need to make our assumptions about the coordinate sys-
tem (r,Φ) even more complicated. First of all, we will need to use different
coordinates systems in different parts of A(n), so we assume that we have
a decomposition of A(n) as a disjoint union:

A(n) =
L⊔

l=1

A(n)
l ;(4.4)

for simplicity, we assume that all sets A(n)
l are open, and treat (4.4) mod-

ulo points on the boundaries of these sets. We also assume that there is
a coordinate system (r,Φ) in each A(n)

l (r(ξ) ∈ R+, Φ(ξ) ∈ Sl, where Sl

is a curve of length � 1) and that this system satisfies all assumptions of
Corollary 4.4. Whenever we talk about the Jacobian | ∂(x,y)

∂(r,Φ)
|, we will assume

that it is defined only at points ξ located inside some A(n)

l , i.e. the Jacobian is
not defined for points on the boundary of A(n)

l . Other conditions we always
assume are: r(ξ) ∼ |ξ|, and for each fixed Φ0 the intersection

A(n)
l ∩ {ξ = (r,Φ0), r ∈ [0,∞)} = {ξ = (r,Φ0), r ∈ [r1, r2]}(4.5)

is an interval with endpoints ξ1 = (r1,Φ0) and ξ2 = (r2,Φ0) satisfying
|ξ1|2 = ρ2

n − 100v and |ξ2|2 = (4ρn)
2 + 100v. The latter condition, while

looking rather horrific, is easy to check and will be always automatically
satisfied in our constructions. Roughly speaking, it is needed to ensure that
the curve {ξ = (r,Φ0), r ∈ [0,∞)} (which happens to be a semi-infinite
interval in all our constructions) cannot enter or leave A(n)

l from the ‘sides’.
Technically, it is required to make sure that formulas (4.18) and (4.19)
imply (4.20).

Let us introduce more notation. Put

Â+ := {ξ ∈ R2, g(ξ) < ρ2 < |ξ|2}(4.6)

and

Â− := {ξ ∈ R2, |ξ|2 < ρ2 < g(ξ)}.(4.7)

Lemma 4.8.

vol
(
Bg(ρ

2)
) = πρ2 + vol Â+ − vol Â−.(4.8)

Proof. We obviously have Bg(ρ
2) = B(ρ2) ∪ Â+ \ Â−. Since Â− ⊂ B(ρ2)

and Â+ ∩ B(ρ2) = ∅, this implies (4.8). ��
Remark 4.9. Property (ii) of the mapping g implies that we have Â+,
Â− ⊂ A. Thus, statements 4.2–4.8 imply that in order to compute N(λ),
we need to analyse the behaviour of g only inside A.
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In order to apply Corollary 4.4 and Lemma 4.8 for computing the asymp-
totic behaviour of N(ρ), we need even more assumptions. Roughly speaking,
the next lemma says that whenever all objects involved enjoy a power
asymptotics at infinity, then so does Bg(λ).

Lemma 4.10. Let l ∈ N and α ∈ (0, 1) be fixed. Suppose that all assump-
tions of Corollary 4.4 and Remark 4.7 are satisfied and that for fixed Φ the
point ξ = (r,Φ) ∈ A(n)

l has an absolute value |ξ| which has an asymptotic
expansion in powers of r:

|ξ| = r(ξ)

(
1 +

[ M+1
1−α ]∑

j=1

aj(Φ(ξ))r(ξ)− j

)
+ O(r(ξ)−M)(4.9)

and this formula can be formally differentiated once with respect to r, i.e.

∂|ξ|
∂r

= 1 −
[ M+1

1−α ]∑

j=2

( j − 1)aj(Φ(ξ))r(ξ)− j + O(r(ξ)−M−1).(4.10)

Suppose also that the function g enjoys the following asymptotic behaviour
in r(ξ) when ξ ∈ A(n)

l :

g(ξ) = r(ξ)2

(
1 +

[ M+2
1−α ]∑

j=1

ǎj(Φ(ξ))r(ξ)− j

)
+ O(r(ξ)−M).(4.11)

Finally, suppose that the Jacobian also satisfies an asymptotic formula:

∂(x, y)

∂(r,Φ)
= r(ξ) +

[ M
1−α ]∑

j=1

âj(Φ(ξ))r(ξ)− j + O(r(ξ)−M).(4.12)

All functions aj , ǎj , etc. are measurable and bounded (but not necessarily
continuous) functions of Φ and are O(ρα j), α < 1. Then

vol
(

Â+ ∩ A(n)
l

) − vol
(

Â− ∩ A(n)
l

) = ρ2

[ M+2
1−α ]∑

j=1

bjρ
− j + O(ρ−M)(4.13)

and all bj are O(ρα j).

Remark 4.11. It may seem strange that absolute value of the power in the
remainder term in the above formulas is smaller than the upper summation
limit. This is caused by the fact that the coefficients aj , ǎj , bj , etc. are allowed
to grow together with ρ: compare this with Remark 3.4.
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Proof. First of all we notice that without loss of generality we can assume
that

g(ξ) = r(ξ)2

(
1 +

[ M+2
1−α ]∑

j=1

ǎj(Φ(ξ))r(ξ)− j

)
,(4.14)

since Corollary 4.4 implies that the error caused by using this approximation
is O(ρ−M). Let us for a moment fix some value Φ0. The RHS of (4.14) is
an increasing function of r for sufficiently large r. Let us call by Q1 = Q1

Φ

the inverse function to (4.14), i.e.

(Q1(t))2

(
1 +

[ M+2
1−α ]∑

j=1

ǎj(Φ(ξ))(Q1(t))− j

)
= t.(4.15)

It is an easy exercise to show that the function Q1 also enjoys the asymptotic
behaviour as |ξ| → ∞:

Q1
Φ(t) = t1/2

(
1 +

[ M+1
1−α ]∑

j=1

b̌j(Φ(ξ))t− j/2

)
+ O(t−M/2)(4.16)

and that the coefficients b̌j = O(ρα j). Note that Q1 is also monotone
increasing, so the inequality g(ξ) < ρ2 is equivalent to r(ξ) < Q1

Φ(ρ2).
Equation (4.10) implies that the RHS of (4.9) is an increasing function

of r. Let us denote by Q2 = Q2
Φ the inverse function to it. Then again it is

easy to show that Q2 also enjoys the asymptotic behaviour:

Q2(t) = t

(
1 +

[ M+1
1−α ]∑

j=1

b̂j(Φ(ξ))t− j

)
+ O(t−M)(4.17)

with b̂j = O(ρα j). Moreover, Q2(t) is a monotone function for large t, so
the inequality |ξ| < ρ is equivalent to r(ξ) < Q2

Φ(ρ).
Now we can re-write definitions (4.6) and (4.7) in the following way:

Â+ := {
ξ ∈ R2, Q2

Φ(ρ) < r(ξ) < Q1
Φ(ρ2)

}
(4.18)

and

Â− := {
ξ ∈ R2, Q1

Φ(ρ2) < r(ξ) < Q2
Φ(ρ)

}
.(4.19)

Therefore,

vol
(
Â+ ∩ A(n)

l

) − vol
(
Â− ∩ A(n)

l

) =
∫

Sl

∫ Q1
Φ(ρ2)

Q2
Φ(ρ)

∂(x, y)

∂(r,Φ)
drdΦ.(4.20)

Now (4.13) follows from (4.16), (4.17), and (4.12). ��
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Remark 4.12. When applying Lemma 4.10 later, we will first establish
asymptotic formula (4.11) only for ξ ∈ A(ρ) with a fixed ρ ∈ In. After this
formula is established for each ρ ∈ In , we just check that the coefficients
do not depend on the particular choice of ρ, so this formula holds for all
ξ ∈ A(n)

l .

Remark 4.13. Note that logarithms have made a brief appearance in the
RHS of (4.20) before being canceled out.

Remark 4.14. Lemma 4.10 gives us only a priori estimates on coeffi-
cients bj . In fact, we will be able to say more about them. For example,
since Â+, Â− ⊂ A and vol A � 1, this implies that the LHS of (4.13)
is bounded and, thus, leads to additional restrictions on the first several
coefficients bj . Later we will come back to this discussion.

5. Abstract perturbation results and decomposition into invariant
subspaces

In this section, we begin the construction of the mappings f , g with prop-
erties (i), (ii) stated in the previous section.

First, we formulate the abstract result which was proved in
[8, Lemma 3.2 and Corollary 3.3]; see introduction for an informal dis-
cussion of this result.

Lemma 5.1. Let H0, and V be self-adjoint operators such that H0 is
bounded below and has compact resolvent and V is bounded. Let {Pl}
(l = 0, . . . , L) be a collection of orthogonal projections commuting with
H0 such that if l �= n then Pl Pn = Pl VPn = 0. Denote Q := I − ∑

Pl.
Suppose that each Pl is a further sum of orthogonal projections commuting
with H0: Pl = ∑ jl

j=0 Pl
j such that Pl

j VPl
t = 0 for | j − t| > 1 and Pl

j VQ = 0
if j < jl. Let v := ‖V‖ and let us fix an interval J = [λ1, λ2] on the spectral
axis which satisfies the following properties: spectra of the operators QH0 Q
and Pl

j H0 Pl
j , j ≥ 1 lie outside J; moreover, the distance from the spectrum

of Q H0 Q to J is greater than 4v and the distance from the spectrum of
Pl

j H0 Pl
j ( j ≥ 1) to J, which we denote by al

j , is greater than 12v. Denote
by µp ≤ · · · ≤ µq all eigenvalues of H = H0 + V which are inside J. Then
the corresponding eigenvalues µ̃p, . . . , µ̃q of the operator

H̃ :=
∑

l

PlHPl + Q H0Q

are eigenvalues of
∑

l PlHPl, and they satisfy

|µ̃r − µr | ≤ max
l

[
(6v)2 jl+1

jl∏

j=1

(
al

j − 6v
)−2

]
;
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all other eigenvalues of H̃ are outside the interval [λ1 + v, λ2 − v]. More
precisely, there exists an injection G defined on the set of eigenvalues of
the operator

∑
l PlHPl (all eigenvalues are counted according to their

multiplicities) and mapping them to the subset of the set of eigenvalues of H
(again considered counting multiplicities) such that:

(a) all eigenvalues of H inside J have a pre-image,
(b) if µ̂r ∈ [λ1 + 2v, λ2 − 2v] is an eigenvalue of

∑
l PlHPl, then

|G(µ̂r) − µr | ≤ max
l

[
(6v)2 jl+1

jl∏

j=1

(
al

j − 6v
)−2

]
,

and
(c) G(µ̂r) = µr+T (H), where T is the number of eigenvalues of Q H0 Q

which are smaller than λ1.

Finally, we have: ‖H − H̃‖ ≤ 2v.

Let us fix n and M, and let λ = ρ2 be a real number with ρ ∈ In.
Consider the truncated potential

V ′(x) =
∑

m∈B(Rn)∩Γ†

V̂ (m)em(x),(5.1)

where

em(x) := 1√
vol(O)

ei〈m,x〉, m ∈ Γ†,

and

V̂ (m) =
∫

O

V(x)e−m(x)dx(5.2)

are the Fourier coefficients of V . Rn is a large parameter the precise value
of which will be chosen later; at the moment we just state that Rn ∼ ρ

p
n

with p > 0 being small. Throughout the text, we will prove various state-
ments which will hold under conditions of the type Rn < ρ

pj
n . After each

statement of this type, we will always assume, without possibly specifically
mentioning, that these conditions are always satisfied in what follows; at
the end, we will choose p = min pj .

Since V is smooth, for each m we have

sup
x∈R2

|V(x) − V ′(x)| � R−m
n .(5.3)

This implies that if we denote H ′(k) := H0(k)+ V ′ with the domain D(k),
the following estimate holds for all n:

|µj(H(k)) − µj(H ′(k))| � R−m
n � ρ−mp

n .(5.4)
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Thus, if we choose sufficiently large m, namely m > M/p, we can safely
work with the truncated operator H ′ instead of the original operator H .

For each natural j we denote

Θj := Γ† ∩ B( jRn), Θ0 := {0}, Θ′
j := Θj \ {0}.(5.5)

We also choose a number M̃ := 3M. Each vector from γ ∈ Θ′
6M̃

generates a one-dimensional linear space {tγ , t ∈ R}. The intersection
{tγ , t ∈ R} ∩ Θ′

6M̃
contains two vectors with the smallest length. We

call such vectors the primitive vectors. Note that if θ is a primitive vec-
tor, then so is −θ. Let θ1, . . . , θL be the set of all the primitive elements
of Θ′

6M̃
. We choose the labeling in such a way that if we take n(θ1) and

start rotating it counterclockwise, we meet n(θ2), n(θ3), etc. in consecutive
order.

Lemma 5.2. If γ , ν ∈ Θ′
15M̃

are two linearly independent vectors, then the
angle φ(γ , ν) � R−2

n for large Rn.

Proof. It is a simple geometry (and was proved, e.g. in [8], Lemma 4.2 and
Corollary 4.3). ��
Corollary 5.3. Under assumptions of Lemma 5.2 we have |〈n(γ ), n(ν⊥)〉|
� R−2

n for large Rn.

Let θ = θl be a primitive vector which we consider fixed for the moment.
Let us introduce Cartesian coordinates on a plane where the first axis goes
along θ⊥, and the second axis goes along θ. We call this set of coordinates
coordinates generated by θ. Sometimes, we will also need the Cartesian
coordinates which are fixed and independent of the choice of θl; we will
call such set of coordinates universal coordinates.

This choice of coordinates generated by θ means that each ξ ∈ R2 has
coordinates (ξ1, ξ2), where ξ1 = 〈ξ, n(θ⊥)〉 and ξ2 = 〈ξ, n(θ)〉. Let us fix
this coordinate system for now. We also define a = an to be the smallest
real number which satisfies two conditions:

a ≥ ρ1/3
n and

2a

|θ| − 1

2
∈ N.(5.6)

In particular, we have ρ
1/3
n ≤ a ≤ ρ

1/3
n + |θ|/2 + 1 ≤ 2ρ

1/3
n . Now we can

make the following definitions:

Λ(θ) := {ξ ∈ R2, |〈ξ, n(θ)〉| < a},(5.7)

Ξ1(θ) := {ξ ∈ A(ρ) ∩ Λ(θ), 〈ξ, θ⊥〉 > 0}.(5.8)

Obviously, the intersection A(ρ)∩ Λ(θ) consists of two connected compo-
nents, and the condition 〈ξ, θ⊥〉 > 0 chooses one of them. We also define
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Ξ2(θ) := {η = ξ + tθ, ξ ∈ Ξ1(θ), t ∈ R},(5.9)
Ξ3(θ) := Ξ2(θ) ∩ Λ(θ),(5.10)

and

Ξ4(θ) := (A(ρ) ∩ Ξ2(θ)) \ Ξ3(θ).(5.11)

Fig. 1

Fig. 2

Fig. 3

Lemma 5.4. Suppose Rn ≤ ρ
1/10
n , ξ /∈ Λ(θ) and γ = tθ ∈ Θ′

6M̃
. Then

||ξ + γ |2 − |ξ|2| � ρ
1/3
n .

Proof. Indeed, we have
∣
∣|ξ + γ |2 − |ξ|2∣∣ ≥ |〈ξ, γ 〉| − |γ |2 � a ≥ ρ1/3

n . ��
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Lemma 5.5. Let η ∈ Ξ1(θ). Then |η1 − ρ| � ρ−1/3.

Proof. Indeed, since η ∈ A(ρ), we have |η|2 = η2
1 + η2

2 = ρ2 + O(1).
However, since η ∈ Λ(θ), we have η2

2 = O(ρ2/3). Thus,

η1 = (ρ2 + O(ρ2/3))1/2 = ρ(1 + O(ρ−4/3))1/2

= ρ(1 + O(ρ−4/3)) = ρ + O(ρ−1/3)),

which finishes the proof (recall that η1 is positive). ��
Since points in Ξ2 have the same first coordinate as the points from Ξ1,

we immediately obtain:

Corollary 5.6. Let ξ ∈ Ξ2(θ). Then |ξ1 − ρ| � ρ−1/3.

Let us denote

p− = p−(θ) := inf{η1, η = (η1, η2) ∈ Ξ1(θ)}
and

p+ = p+(θ) := sup{η1, η = (η1, η2) ∈ Ξ1(θ)}.
Then Lemma 5.5 implies p+ − p− � ρ−1/3. Moreover, we can give another
equivalent definition of Ξ2:

Ξ2(θ) = {η = (η1, η2), η1 ∈ (p−, p+)}.(5.12)

Note that we obviously have the following equalities:

p− = inf{η1, η = (η1, η2) ∈ Ξ4(θ)}(5.13)

and

a = inf{|η2|, η = (η1, η2) ∈ Ξ4(θ)}.(5.14)

Denote

p̃− := sup{η1, η = (η1, η2) ∈ Ξ4(θ)}(5.15)

and

ã := sup{|η2|, η = (η1, η2) ∈ Ξ4(θ)}.(5.16)

Lemma 5.7. We have: p̃− − p− = O(ρ−1) and ã − a = O(ρ−1/3).

Proof. Let η̂ := (p−, a), η̃ := ( p̃−, a), and η̌ := (p−, ã). Then all these
points belong to Ξ4(θ). Thus, |η̃|2−|η̂|2 = p̃2−− p2− = O(1). Since p− ∼ ρ,
this implies p̃− − p− = O(ρ−1). Similarly, |η̌|2 − |η̂|2 = ã2 − a2 = O(1).
Since a ∼ ρ1/3, this implies ã − a = O(ρ−1/3). ��
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Lemma 5.8. Suppose Rn ≤ ρ
1/10
n , ξ ∈ (Ξ3(θ) ∪ Ξ4(θ)), and let γ ∈ Θ′

15M̃
be linearly independent of θ. Put η := ξ + γ . Then ||η|2 − ρ2| � ρ4/5 and,
in particular, η /∈ A(ρ).

Proof. Since γ and θ are linearly independent, γ1 �= 0; moreover, Corol-
lary 5.3 implies |γ1| � R−2

n � ρ−1/5. Corollary 5.6 implies |ξ1 − ρ| �
ρ−1/3. Thus, |η1 − ρ| � ρ−1/5 and

|η2
1 − ρ2| � ρ−1/5(η1 + ρ) � ρ4/5.

Since η2
2 � ρ2/3, this implies

∣∣|η|2 − ρ2
∣∣ � ρ4/5, so η /∈ A(ρ). ��

Now we make one more definition

Ξ5(θ) := Ξ3(θ) \
(
Ξ4(θ) +

⋃

j∈Z
{ jθ}

)
.(5.17)

Lemma 5.9. Suppose ξ ∈ Ξ5(θ) and j ∈ Z. If ξ + jθ ∈ Λ(θ), then
ξ + jθ ∈ Ξ5(θ).

Proof. Indeed, our assumptions imply that ξ + jθ ∈ Ξ3(θ). Moreover,

ξ + jθ /∈
(
Ξ4(θ) +

⋃

j∈Z
{ jθ}

)
. ��

Lemmas 5.8 and 5.9 immediately imply

Lemma 5.10. Suppose Rn ≤ ρ
1/10
n , ξ ∈ Ξ5(θ), and γ ∈ Θ′

15M̃
. If ξ + γ ∈

A(ρ), then ξ + γ ∈ Ξ5(θ).

Proof. If γ is linearly independent from θ, this is proved in Lemma 5.8.
Suppose that γ = jθ, j ∈ Z. Then ξ + γ ∈ Ξ2(θ), so if we assume
ξ +γ ∈ A(ρ), this means that either ξ +γ ∈ Ξ3(θ), or ξ +γ ∈ Ξ4(θ). The
last possibility contradicts the definition of Ξ5(θ). Thus, ξ + γ ∈ Λ(θ) and
now the statement follows from Lemma 5.9. ��
Lemma 5.11. Ξ1(θ) ⊂ Ξ5(θ).

Proof. Definitions of the sets Ξj immediately imply that Ξ1(θ) ⊂ Ξ3(θ).
Thus, it remains to prove that if ξ ∈ Ξ4(θ) and j ∈ Z, j �= 0, we have
η := ξ + jθ /∈ A. Without loss of generality we may assume that ξ2 > 0.
Then ξ2 ∈ [a, ã] (see (5.14) and (5.16)), and thus Lemma 5.7 implies
ξ2 = a + O(ρ−1/3). The second condition in (5.6) implies that the distance
between each point of the set {a + j|θ|, j ∈ Z, j �= 0} and ±a is at least |θ|

2 .
Thus, ||η2| − |ξ2|| ≥ |θ|

3 for sufficiently large ρ. Since η1 = ξ1, this implies
||η|2 − |ξ|2| � ρ1/3|θ|. Since ξ ∈ A, this means that η /∈ A. This finishes
the proof. ��
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Now we discuss the relationship between Ξ5(θj) for various j.

Lemma 5.12. Suppose, Rn ≤ ρ
1/10
n and j1 �= j2. Then (Ξ5(θj1) + Θ15M̃) ∩

Ξ5(θj2) = ∅.

Proof. Denote ηj := ρn(θ⊥
j ). Then the definition of Ξ5 and Corollary 5.6

imply that the distance between any point ξ ∈ Ξ5(θj) and ηj is O(ρ1/3). On
the other hand, Lemma 5.2 implies that |ηj1 −ηj2| � R−2

n ρ � ρ1/2. Thus, if
ξ1 ∈ Ξ5(θj1) and ξ2 ∈ Ξ5(θj2), we have |ξ1 − ξ2| � ρ1/2. Since ρ1/2 � Rn ,
this finishes the proof. ��

Now we define

D = D(ρ) :=
L⋃

l=1

Ξ5(θl)(5.18)

and

B = B(ρ) := A(ρ) \ D(ρ).(5.19)

The sets Ξ5(θ) are called resonance regions corresponding to θ. The set
D is called the resonance region. Finally, the set B is called the non-
resonance region. Obviously, B consists of L connected components, each
one is located ‘between’ θ⊥

l and θ⊥
l+1 for some l, where of course we use

the convention that θL+1 = θ1. We call this connected component (located
‘between’ θ⊥

l and θ⊥
l+1) Bl. More precisely, we define (see Fig. 4 at the

beginning of the Sect. 6)

Bl := {x ∈ B, 〈ξ, θl〉 > 0 and 〈ξ, θl+1〉 < 0}.(5.20)

We also define

Ξ0(θ) := Ξ5(θ) + Θ7M̃(5.21)

and

Ξ0(B) := B + ΘM̃.(5.22)

Lemma 5.13. We have:

(Ξ0(θj1) + ΘM̃) ∩ Ξ0(θj2) = ∅(5.23)

when j1 �= j2 and

(Ξ0(B) + ΘM̃) ∩ Ξ0(θj) = ∅.(5.24)

Proof. Formula (5.23) follows from Lemma 5.12. Suppose (5.24) does
not hold. Then there exists a point ξ ∈ Ξ5(θj) and γ ∈ Θ′

15M̃
such that

η := ξ + γ ∈ B ⊂ A. Lemma 5.10 implies that η ∈ Ξ5(θj). This means
that η /∈ B in view of (5.18) and (5.19). ��
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Let us introduce more notation. Let C ⊂ Rd be a measurable set. We
denote by P (k)(C) the orthogonal projection in H = L2([0, 2π]d ) onto the
subspace spanned by the exponentials eξ(x), ξ ∈ C, {ξ} = k.

Lemma 5.14. For arbitrary set C ⊂ Rd and arbitrary k we have:

V ′P (k)(C) = P (k)(C + Θ1)V ′P (k)(C).(5.25)

Proof. This follows from the obvious observation that if ξ = m + k ∈ C
and |n| ≤ Rn , then ξ + n ∈ (C + Θ1). ��

We are going to apply Lemma 5.1 and now we will specify what are
the projections Pl

j . The construction will be the same for all values of
quasi-momenta, so often we will skip k from the superscripts. We denote
Pl := P (k)(Ξ0(θl)), l = 1, . . . , L and P0 := P (k)(Ξ0(B)). We also put

Pl
j := P (k)((Ξ5(θl) + Θ6M̃+ j) \ (Ξ5(θl) + Θ6M̃+ j−1)),

l = 1, . . . , L, j = 1, . . . , M̃,

Pl
0 := P (k)(Ξ5(θl) + Θ6M̃), l = 1, . . . , L,

P0
j := P (k)((B + Θj) \ (B + Θj−1)), j = 1, . . . , M̃,

P0
0 := P (k)(B).

Finally, we define Q := I−∑L
l=0 Pl, H̃(k) := ∑L

l=0 PlH ′(k)Pl+Q H0(k)Q,
and J := [λ − 90v, λ + 90v].
Lemma 5.15. Let µn(H ′(k)) ∈ J. Then

|µn(H̃(k)) − µn(H ′(k))| � ρ−2M̃/3 = ρ−2M.

Proof. This follows from Lemma 5.1 and from properties of the sets Ξ
formulated in Lemmas 5.4–5.11. Indeed, let us check that all the assump-
tions of Lemma 5.1 are satisfied. Lemma 5.13 implies that if l �= n then
Pl Pn = PlV ′Pn = 0. The properties Pl

j V ′Pl
t = 0 for | j − t| > 1 and

Pl
j V ′Q = 0 if j < jl follow from Lemma 5.14. The distance from the

spectrum of Q H0Q to J is greater than 4v: this follows from the fact that
Q is a projection to all the exponentials eξ with ξ lying outside of the union
Ξ0(B)∪⋃

l Ξ0(θl) and, thus, satisfying ξ /∈ A. Finally, let us show that the
distance from the spectrum of Pl

j H0 Pl
j ( j ≥ 1) to J is greater than cρ1/3

n .
When l = 0, this follows from Lemma 5.4 and the fact that Λ(θp) ∩ B = ∅
for any primitive vector θp from Θ′

6M̃
. Suppose, l �= 0. It is enough to prove

that if

η ∈ ((Ξ5(θl) + Θ7M̃) \ (Ξ5(θl) + Θ6M̃))

with θl ∈ Θ′
6M̃

, then
∣
∣|η|2 − ρ2

∣
∣ � ρ1/3.(5.26)
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Since η ∈ (Ξ5(θl) + Θ7M̃), we can write it as η = ξ + γ with ξ ∈ Ξ5(θl)
and γ ∈ Θ7M̃ . If γ and θl are linearly independent, (5.26) follows from
Lemma 5.8. Suppose, γ is a multiple of θl. Let us introduce coordinates
generated by θl as above (after Corollary 5.3). Then we have η1 = ξ1 ∈
[p−, p+]. Moreover, since η /∈ Ξ5(θl) + Θ6M̃ , we have |η2| ≥ a + |θl|.
Indeed, suppose |η2| < a+|θl|. Assume as we can without loss of generality
that η2 ≥ 0. Then η − θl ∈ Ξ3(θl). Since ξ ∈ Ξ5(θl), we have: η − θl =
ξ + jθl /∈ Ξ4(θl) + Zθl. Therefore, η − θl ∈ Ξ5(θl), so η ∈ Ξ5(θl) + Θ6M̃ .
This contradiction shows that |η2| ≥ a + |θl|.

Let us now denote by ν the point with coordinates ν1 = p− and ν2 = a.
Then ν ∈ A, so ||ν|2 − ρ2| � 1. But

|η|2 − |ν|2 ≥ η2
2 − a2 ≥ (a + |θl|)2 − a2 � a ≥ ρ1/3.

Thus, |η|2 − ρ2 � ρ1/3, which finishes the proof. ��
Now we are going to construct mappings f, g : R2 → R with properties
stated in the previous section. Let ξ ∈ R2 with {ξ} = k. Then we are going
to define

f(ξ) = µp(H(k))(5.27)

and

g(ξ) = µp(H̃(k)),(5.28)

where p = p(ξ) is a natural number chosen in a certain canonical way so
that the mapping p : {ξ ∈ R2, {ξ} = k} → N is a bijection. Leaving aside
for a moment the question of the precise definition of this mapping, we
notice that if we define the functions f and g by formulas (5.27) and (5.28),
then the properties (i) and (ii) formulated in the previous section will be
satisfied due to Lemmas 5.15 and 5.1. So, now we discuss how to define
the mapping p. Before doing it, we need more definitions. Let ξ ∈ A.
Then ξ belongs to exactly one of the sets B, Ξ5(θ1), . . . ,Ξ5(θL). If ξ ∈ B,
we define

ϒ(ξ) := ξ + ΘM̃.(5.29)

If ξ ∈ Ξ5(θl), we define

ϒ(ξ) = ϒ(ξ; θl) := {ξ + jθl ∈ Ξ3(θl), j ∈ Z} + Θ7M̃.(5.30)

We call two vectors ξ1 and ξ2 equivalent, if ϒ(ξ1) = ϒ(ξ2). Note that
ξ1, ξ2 ∈ A could be equivalent only if they belong to the same Ξ5(θl).

Now suppose that η ∈ R2. Then we can define ϒ(η) in the following
way: if η ∈ Ξ0(B), then we have η ∈ ϒ(ξ) for a unique ξ ∈ A (then ξ ∈ B);
if η ∈ Ξ0(θl), then we have η ∈ ϒ(ξ) for a unique (up to the equivalence)
ξ ∈ D (then ξ ∈ Ξ5(θl)). In both these cases we put ϒ(η) := ϒ(ξ).
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Finally, if η /∈ (Ξ0(B) ∪ ⋃L
l=1 Ξ0(θl)), we put ϒ(η) := {η}. We also define

P(η) := P ({η})(ϒ(η)).
Lemma 5.4 implies that the operator P0 H ′(k)P0 admits a decomposition

into invariant subspaces:

P0 H ′(k)P0 =
⊕

ξ∈B,{ξ}=k

P(ξ)H ′(k)P(ξ).(5.31)

Similarly, Lemma 5.8 implies that for each l = 1, . . . , L we have:

PlH ′(k)Pl =
⊕

P(ξ)H ′(k)P(ξ),(5.32)

where the union in the RHS is over all classes of equivalence of ξ ∈ Ξ5(θl)
with {ξ} = k. Finally, we obviously have:

Q H0(k)Q =
⊕

P(η)H0(k)P(η),(5.33)

where the union is over all η /∈ (Ξ0(B) ∪ ⋃L
l=1 Ξ0(θl)), {η} = k. More-

over, since all projections P(η) in (5.33) are one-dimensional and we have
assumed that

∫
O V(x)dx = 0, we can replace H0(k) with H ′(k) for the sake

of uniformity so that

Q H0(k)Q =
⊕

P(η)H ′(k)P(η).(5.34)

Thus,

H̃(k) =
⊕

P(η)H ′(k)P(η),(5.35)

where the union is over all (non-equivalent) η ∈ R2, {η} = k.
Suppose now η ∈ R2, {η} = k. Then |η|2 is an eigenvalue of the operator

P(η)H0(k)P(η), say

|η|2 = µt(P(η)H0(k)P(η)).(5.36)

If |η|2 is a simple eigenvalue of P(η)H0(k)P(η), then this defines the number
t uniquely. Suppose now that |η|2 is a multiple eigenvalue, say |η|2 = |η̃|2,
η̃ ∈ ϒ(η), and there are precisely t − 1 eigenvalues of P(η)H0(k)P(η)
below |η|2. In this case, we label these eigenvalues according to the crystal-
lographic order of their universal coordinates. More precisely, we write
|η|2 = µt(P(η)H0(k)P(η)) and |η̃|2 = µt+1(P(η)H0(k)P(η)) if either
η1 < η̃1, or η1 = η̃1 and η2 < η̃2. Thus, we have put into correspon-
dence to any point η a number t = t(η), t varies between 1 and the number
of elements in ϒ(η). (Although we will not use this function t(η) in this
section, it will be of much use for us later on). Next, we define

ν(η) := µt(η)(P(η)H ′(k)P(η)).(5.37)

Due to (5.35), the set {ν(η), {η} = k} coincides with the set of all eigenvalues
of H̃(k) (including multiplicities). Let us label these eigenvalues in an



302 L. Parnovski, R. Shterenberg

increasing order; in the case of multiple eigenvalues we, as before, label
them in accordance with the crystallographic order of their coordinates.
Then to each point η, {η} = k, we have put into correspondence a number
p = p(η) such that

ν(η) = µp(H̃(k)).(5.38)

Thus defined mapping p is the mapping we are using in the definitions (5.27)
and (5.28). The rest of this paper is devoted to introducing the coordinates
(r,Φ) and checking that the conditions of Lemma 4.10 are satisfied. We
start from the non-resonance region B.

6. Non-resonance regions

Suppose that ξ ∈ Bl (recall that Bl is defined in (5.20) and φ(x1, x2) is
the angle between two non-zero vectors x1 and x2). Put φl := φ(θl,θl+1)

2 .
Throughout this section, we fix the coordinate (ξ1, ξ2) introduced after
Corollary 5.3 and related to θl. Namely, we put ξ1 = 〈ξ, n(θ⊥

l )〉 and ξ2 =
〈ξ, n(θl)〉. There is a unique point ν = ν(l) satisfying the following two
properties: 〈ν, n(θl)〉 = a and 〈ν, n(θl+1)〉 = −a; we have ν1 = a cot φl,
ν2 = a, so |ν| = a

sin φl
.

Fig. 4

We introduce the following pseudo-polar coordinates (r,Φ) on Bl:
r(ξ) := |ξ − νl| and Φ(ξ) = φ(ξ − ν, θ⊥

l ) when ξ ∈ Bl. Obviously,
Φ(ξ) ∈ [0, 2φl] =: Sl = Sn

l and r(ξ) ∼ ρ when ξ ∈ Bl. We also have the
following formulas: ξ1 = ν1 +r(ξ) cos(Φ(ξ)) and ξ2 = ν2 +r(ξ) sin(Φ(ξ)).
Therefore,

|ξ|2 = (r(ξ) cos(Φ(ξ)) + |ν| cos φl)
2 + (r(ξ) sin(Φ(ξ)) + |ν| sin φl)

2

=
(

r(ξ) cos(Φ(ξ)) + a
cos φl

sin φl

)2

+ (r(ξ) sin(Φ(ξ)) + a)2.
(6.1)
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This implies that there is a complete asymptotic formula:

|ξ| ∼ r(ξ)
(

1 +
∞∑

j=1

b̃j(Φ(ξ))r(ξ)− j
)

(6.2)

with b̃j = b̃j(Φ(ξ)) � a j R2 j
n � ρ

j/2
n as r(ξ) → ∞, uniformly over

ξ ∈ Bl, and this formula can be differentiated once. (Here we assumed that
Rn � ρ

1/12
n .)

The following lemma was proved in [8] (Lemma 6.1 there):

Lemma 6.1. Let Rn � ρ
1/24
n . Then the following asymptotic formula holds:

g(ξ) ∼ |ξ|2 +
∞∑

s=1

∑

η1,...,ηs∈Θ′
M̃

∑

m1+···+ms≥2

Am1,...,ms〈ξ, η1〉−m1 . . . 〈ξ, ηs〉−ms

(6.3)

in a sense that for each natural K we have

g(ξ) = |ξ|2 +
3K∑

s=1

∑

η1,...,ηs∈Θ′
M̃

∑

m1+···+ms≥2

Am1,...,ms〈ξ, η1〉−m1 . . . 〈ξ, ηs〉−ms

+ o(ρ−K )

(6.4)

uniformly over Rn � ρ
1/24
n and ξ ∈ B. Here, Am1,...,m p is a polynomial

of the Fourier coefficients V̂ (ηj) and V̂ (ηj − ηl) of the potential and the
exponents m1, . . . , ms are positive integers. Moreover,

|Am1,...,m p | � 1(6.5)

uniformly over n (but with the implied constant depending on V and m1,
. . . ,m p).

Remark 6.2. Estimate (6.5) was not stated in [8], but it follows easily from
the proof of Lemma 6.1 there.

Corollary 6.3. We have:

g(ξ) = |ξ|2 + G(ξ) + o(ρ−M),(6.6)

where

G(ξ) :=
M̃∑

s=1

∑

η1,...,ηs∈Θ′
M̃

∑

2≤m1+···+ms≤M̃

Am1,...,ms 〈ξ, η1〉−m1 . . . 〈ξ, ηs〉−ms .

(6.7)
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Remark 6.4. Since, as we have seen in Lemma 4.3 and Corollary 4.4, the
terms of order O(ρ−M) do not contribute to asymptotic formula (3.6), we
can re-define

g(ξ) := |ξ|2 + G(ξ).(6.8)

Lemma 6.5. Assume Rn � ρ
1/20
n . For each m ∈ N and η ∈ Θ′

6M̃
such

that η is not a multiple of θl or θl+1 there is a complete asymptotic formula:

〈ξ, η〉−m ∼
∞∑

j=m

r(ξ)− j cm
j (Φ(ξ))(6.9)

uniformly over ξ ∈ Bl , where |cm
j | � ρ

j/2
n . Similar formulas are valid

if η is a multiple of θl+1 and 0 ≤ Φ(ξ) ≤ φl , or if η is a multiple of θl and
φl ≤ Φ(ξ) ≤ 2φl .

Proof. We have: ξ = ν + r(ξ)n(ξ − ν). Therefore, 〈ξ, η〉 = 〈ν, η〉 +
r(ξ)〈n(ξ −ν), η〉. Our constructions and Corollary 5.3 imply |〈n(ξ −ν), η〉|
� R−2

n . Thus,

〈ξ, η〉−1 = r−1〈n(ξ − ν), η〉−1(1 + r−1〈n(ξ − ν), η〉−1〈ν, η〉)−1

= r−1〈n(ξ − ν), η〉−1
∞∑

j=0

(−1) jr− j〈n(ξ − ν), η〉− j 〈ν, η〉 j(6.10)

and 〈n(ξ − ν), η〉− j 〈ν, η〉 j � R3 j
n ρ

j/3
n � ρ

j/2
n . Now (6.9) is obtained

from (6.10) by raising both sides to the m-th power. The proof of the
last two statements is similar. ��

Unfortunately, Lemma 6.5 does no longer hold if η is a multiple of θl
or θl+1 and Φ(ξ) is close to 0 or 2φl respectively. Therefore, we cannot
apply Lemma 4.10 without modifications. This means, we need to do some
extra work. We can assume, without loss of generality, that φl ≤ 1/100,
which is certainly the case for sufficiently large n.

Let us fix an angle Φ for a moment, 0 ≤ Φ ≤ 2φl and let ξ = (r,Φ)
where only r varies. Denote by r0 = r0(Φ;ρ) a unique value of r which
corresponds to ξ satisfying |ξ|2 = ρ2. It is easy to check that the partial
derivative ∂G

∂r = O(ρ−4/3). Therefore, there is a unique value of r such that
corresponding point ξ = (r,Φ) satisfies g(ξ) = ρ2; we denote this value of
r by r1 = r1(Φ;ρ).

Lemma 6.6. There is an asymptotic decomposition

r0 ∼ ρ
(

1 +
∞∑

j=1

pjρ
− j

)
,(6.11)
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where pj = pj(Φ) = O(ρ
j/2
n ) uniformly over Φ. Moreover, we have p1 =

−a cos(φl − Φ)(sin φl)
−1, p2m = (1/2

m

)
(−1)ma2m sin2m(φl − Φ)(sin φl)

−2m,
and p2m+1 = 0 for m ∈ N.

Proof. This follows from the explicit formula which can be easily obtained
using the cosine theorem:

r0 = −a cos(φl − Φ)(sin φl)
−1 +

√
ρ2 − a2 sin2(φl − Φ)(sin φl)−2.

(6.12)

��
Lemma 6.7. We have:

vol
(

Â+ ∩ Bl
) − vol( Â− ∩ Bl) = 1

2

∫ 2φl

0

(
r1(Φ;ρ)2 − r0(Φ;ρ)2)dΦ.

(6.13)

Proof. Integrating in polar coordinates, we have:

vol
(
Â+ ∩ Bl

) − vol( Â− ∩ Bl) =
∫ 2φl

0
dΦ

∫ r1

0
rdr −

∫ 2φl

0
dΦ

∫ r0

0
rdr

=
∫ 2φl

0

r2
1 − r2

0

2
dΦ.

(6.14)

��
The last two lemmas show that in order to compute vol( Â+ ∩ Bl) −

vol( Â− ∩ Bl), it remains to compute r1. We do it using the sequence of
approximations. Assume as above that Φ is fixed. Put r̃0 := r0 and ξ0 :=
(r̃0,Φ). The further elements of the sequence are defined like this: ξm+1 =
(r̃m+1,Φ) is a unique point satisfying |ξm+1|2 = ρ2 − G(ξm).

Lemma 6.8. For each m ∈ N we have:

r1 = r̃m + O(ρ−m).(6.15)

Proof. Put

H(r) := −a cos(φl − Φ)(sin φl)
−1

+
√

ρ2 − G(r,Φ) − a2 sin2(φl − Φ)(sin φl)−2.
(6.16)

Then H ′(r) = O(ρ−4/3). Moreover, r1 is a unique solution of equation
r1 = H(r1). Thus, Banach contraction mapping theorem tells us that the
sequence r̃m satisfying r̃m+1 = H(r̃m) converges to r1 and |r1 − r̃m+1| �
ρ−1|r1 − r̃m|. Since r1 = r0 + O(1), this finishes the proof. ��
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Corollary 6.9. We have:

vol( Â+ ∩ Bl) − vol( Â− ∩ Bl)

= 1

2

∫ 2φl

0

(
r̃M+1(Φ;ρ)2 − r0(Φ;ρ)2)dΦ + O(ρ−M).

(6.17)

Analogously to (6.12), we have:

r̃m+1 = −a cos(φl − Φ)(sin φl)
−1

+
√

ρ2 − G(rm,Φ) − a2 sin2(φl − Φ)(sin φl)−2.
(6.18)

Taking into account (6.7), (6.10), (6.12), (6.18), and Lemma 6.5, we obtain
that

r̃M+1 = r0 + ρ−1
∑

j,s≥0; j+s≥2

Cj,s,M(Φ)ρ− j〈ξ0, n(θl)〉−s

= r0 + ρ−1
∑

j,s≥0;2≤ j+s≤2M̃

Cj,s,M(Φ)ρ− j〈ξ0, n(θl)〉−s + O(ρ−M−1)

(6.19)

for 0 ≤ Φ ≤ φl . Similarly,

r̃M+1 = r0 + ρ−1
∑

j,s≥0; j+s≥2

C̃j,s,M(Φ)ρ− j〈ξ0, n(θl+1)〉−s

= r0 + ρ−1
∑

j,s≥0;2≤ j+s≤2M̃

C̃j,s,M(Φ)ρ− j〈ξ0, n(θl)〉−s + O(ρ−M−1)

(6.20)

for φl ≤ Φ ≤ 2φl . Here, Cj,s,M(Φ) and C̃j,s,M(Φ) are polynomials of
cos(φl −Φ), sin(φl −Φ), and expressions of the form (〈n(ξ −ν), n(ηt)〉)−1,
where ηt ∈ Θ′

M̃
are not multiples of θl or θl+1. Each term in the poly-

nomial Cj,s,M(Φ) and C̃j,s,M(Φ) is O(ρ
j/2
n ), and the number of such terms

is O(R2( j+s)
n ).

Next, we note that 〈ξ0, n(θl)〉 = a + r0 sin Φ and 〈ξ0, n(θl+1)〉 = −a −
r0 sin(2φl − Φ). Thus, in order to use Corollary 6.9, we need to compute
integrals of the form

∫ φl

0

Cj,s,M(Φ)r0(Φ)δdΦ

(a + r0(Φ) sin(Φ))s
,

∫ 2φl

φl

C̃j,s,M(Φ)r0(Φ)δdΦ

(−a − r0(Φ) sin(2φl − Φ))s
,

δ = 0, 1.(6.21)

Taking into account Lemma 6.6 and properties of Cj,s,M(Φ), C̃j,s,M(Φ)
stated above, we can decompose all functions of Φ in (6.21) into Taylor’s
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series in the neighborhoods of Φ = 0 and Φ = 2φl . At the same time we
apply the following transform of the denominator:

(a + r0(Φ) sin(Φ))−s = (a + ρΦ(1 + p(ρ,Φ))(1 + φ(Φ)))−s

= (a + ρΦ)−s

(
1 + Φ

a/ρ + Φ
(p(ρ,Φ) + φ(Φ) + p(ρ,Φ)φ(Φ))

)−s

= ρ−s(a/ρ + Φ)−s

×
(

1 +
∞∑

k=1

(−1)k

(
Φ

a/ρ + Φ
(p(ρ,Φ) + φ(Φ) + p(ρ,Φ)φ(Φ))

)k)s

,

(6.22)

where (see Lemma 6.6)

p(ρ,Φ) :=
∞∑

k=1

pk(Φ)ρ−k

and

φ(Φ) :=
∞∑

k=1

(−1)k

(2k + 1)!Φ
2k;

recall that we are assuming that φl ≤ 1/100, so that there is no doubt about
the convergence of the last series in (6.22). Thus, decomposing pk(Φ) into
Taylor’s series we reduce the problem to computing the following model
integrals:

∫ φl

0

ΦkdΦ

(a/ρ + Φ)m
.

After substitution x := a/ρ + Φ we can explicitly calculate these integrals.
Note, that if 1 ≤ m ≤ k + 1 then the term ln ρ appears. Combining together
all contributions we obtain the following lemma, which is the main result
of this section:

Lemma 6.10. Assume that Rn � ρ
1/24
n . Then

vol
(

Â+ ∩ Bl

) − vol( Â− ∩ Bl) =
M̃∑

j=1

Cjρ
− j + ln ρ

M̃∑

j=2

C̃jρ
− j + O(ρ−M),

(6.23)

where |C1| � ρ
−1/6
n , |Cj|, |C̃j | � ρ

2 j/3
n , j ≥ 2.

7. Resonance regions

We now consider η ∈ D and try to compute g(η). The key result in this
section is Corollary 7.11, where we compute g(η) in this setting. In the rest
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of this section, we fix l and omit it from the notation, so that θ := θl. We
also assume that n is fixed and will frequently omit it from the notation. As
above, we introduce the coordinates η = (η1, η2) so that η1 = 〈η, n(θ⊥)〉
and η2 = 〈η, n(θ)〉. We obviously have η1 ∼ ρ and |η2| � ρ1/3. It is
convenient to denote r := η1 and Φ := η2, to indicate that (r,Φ) are
going to play the same role as in Corollary 4.4 (or rather Remark 4.6) and
Lemma 4.10; note that (r,Φ) satisfy all properties of Remark 4.6. We also
fix an element ξ ∈ Ξ5(θl) in each set ϒ and assume that η ∈ ϒ(ξ); the point
is that we will frequently treat ξ as fixed and study how g(η) varies when η
runs over ϒ(ξ).

Let ν0 = 0, ν1, . . . , νp be a complete system of representatives of Θ7M̃
modulo θ. That means that νj ∈ Θ7M̃ and each vector γ ∈ Θ7M̃ has a unique
representation γ = νj + mθ, m ∈ Z. We denote the coordinates of νj by
(ν′

j, ν
′′
j ) and put �j = �j(ξ) := (ξ + νj + (Zθ)) ∩ ϒ(ξ). Then each set �j

consists of points having the same first coordinate; the distances between
points in �j are multiples of |θ|. Moreover,

ϒ(ξ) =
⋃

j

�j ,(7.1)

and this is a disjoint union.
Let us compute diagonal elements of H(ξ) := P(ξ)H ′(k)P(ξ), where

k = {ξ}. Put H(ξ) := P(ξ)H, so that H(ξ) can be thought of as an operator
acting in H(ξ).

Let η ∈ ϒ(ξ). Then η can be uniquely decomposed as

η = ξ + mθ + νj(7.2)

with m ∈ Z. Recall that H(ξ) = P(ξ)(H0(k) + V ′)P(ξ) and H0(ξ)eη =
|η|2eη whenever η ∈ ϒ(ξ). We obviously have:

|η|2 = |ξ + νj + mθ|2 = (r + ν′
j)

2 + (
ξ2 + ν′′

j + m|θ|)2

= r2 + 2ν′
jr + ν′

j
2 + (

ξ2 + ν′′
j + m|θ|)2

.
(7.3)

This simple computation implies that

H(ξ) = r2 I + rA + B.(7.4)

Here, A = A(ξ) and B = B(ξ) are self-adjoint operators acting in P(ξ)H
in the following way:

A = 2
p∑

j=0

ν′
jP

(k)(�j);(7.5)

in other words, for η ∈ �j we have

Aeη = 2ν′
jeη = 2(η − ξ)1eη,(7.6)

and

Beη = (
ν′

j
2 + (

ξ2 + ν′′
j + m|θ|)2 + P(ξ)V ′)eη(7.7)
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for all η ∈ �j(ξ) with νj and m being defined by (7.2). These definitions
imply that

V := ker A = P (k)(�0)H(ξ).(7.8)

Notice that

‖A(ξ)‖ � Rn � ρ1/3
n(7.9)

and

‖B(ξ)‖ � ρ2/3
n .(7.10)

Let us state more properties of A and B.

Lemma 7.1. Let µ be a non-zero eigenvalue of A. Then |µ| � R−2
n .

Proof. Formula (7.6) implies that the eigenvalues of A equal {ν′
j}. We also

have: ν′
j = 〈νj , n(θ⊥)〉. Now the statement follows from Corollary 5.3. ��

Let us define P̃ to be the orthogonal projection onto V = ker A acting
in H(ξ) and B̃ := P̃BP̃ : V→ V. Note that considering operators acting
in V means considering only j = 0 (and thus ν0 = 0) in (7.5) and (7.7).
Thus, in particular, we have:

B̃eη = ((ξ2 + m|θ|)2 + P̃(ξ)V ′)eη(7.11)

if η = ξ + mθ ∈ �0(ξ). We also denote n̂2 := [ ξ2
|θ| ] and k̂2 := { ξ2

|θ| } (note
that n̂2 is not the second coordinate of n = [ξ]; this is why we did not call
it n2).

Lemma 7.2. We have:

µj+2(B̃) − µj(B̃) � 1(7.12)

uniformly over j, n, l and ξ ∈ Ξ5(θ).

Proof. Denote by T the number of elements in {ξ + jθ, j ∈ Z} ∩ Λ(θ).
Inequality (7.12) obviously holds if j ≥ T − 2. Indeed, denote by B̃0 the
operator B̃ with potential V being identical zero. Then we have |µj(B̃) −
µj(B̃0)| ≤ v. On the other hand, it is easy to check that µj+2(B̃0)−µj(B̃0) �
a ∼ ρ1/3.

Let us assume now that j < T − 2. Then we will compare eigenvalues
of operator B̃ with the eigenvalues of a certain one-dimensional Sturm–
Liouville operator. Let ϒ̂(ξ) := {ξ + jθ, j ∈ Z}, P̂(ξ) := P (k)(ϒ̂(ξ)), and
Ĥ(ξ) := P̂(ξ)H. Consider an operator B̂ = B̂n (later on in the proof, we
will need to remember that these operators depend on n) acting in Ĥ(ξ) by
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the formula

B̂eη = (
(ξ2 + j|θ|)2 + P̂(ξ)V ′)eη(7.13)

for each η = ξ + jθ ∈ ϒ̂(ξ). Then, in the same way as we proved
Lemma 5.15 using Lemma 5.1, we can show that if j ≤ T , we have

|µj(B̃) − µj(B̂)| � ρ−(M̃−1)/3
n .(7.14)

However, the operator B̂ is unitary equivalent to a one-dimensional Schrö-
dinger operator −y′′ + Ṽ on the interval [0, 2π|θ|−1] with a potential

Ṽ = Ṽθ,Rn =
∑

m∈Z,|mθ|≤Rn

( |θ|
2π

)1/2

eix(ξ2+m|θ|) V̂ (mθ)(7.15)

and quasi-periodic boundary conditions y( 2π
|θ| ) = e2πk̂2i y(0) and y′( 2π

|θ| ) =
e2πk̂2i y′(0). Indeed, the isometry S which establishes this unitary equivalence
is given by S : eξ+mθ �→ (

|θ|
2π

)1/2eix(ξ2+m|θ|). Standard results about one-
dimensional Schrödinger operators (see e.g. [10]) imply that

µj+2(B̂) − µj(B̂) � |θ|2.(7.16)

The simplest way to see why this inequality holds is to notice that the
distance between eigenvalues of B̂ and the unperturbed eigenvalues
{(m + k̂2)

2|θ|2}m∈Z is at most the L∞-norm of the potential Ṽθ,Rn . This
shows that (7.16) holds when j ≥ Cv, whereas for finitely many j satisfy-
ing j < Cv we can use the fact that µj+2(B̂) �= µj(B̂), since an eigenvalue of
a one-dimensional differential operator of second order cannot have multi-
plicity three. Inequalities (7.16) and (7.14) prove (7.12) for j ≤ T . Let
us prove that this estimate is uniform in j, n, and l. Indeed, the uniformity
of (7.14) follows from Lemma 5.1. Consider (7.16). Uniformity in j follows
from the remark after (7.16). It follows immediately from the same remark
that (7.16) is uniform when L∞-norm of the potential Ṽθ,Rn satisfies

‖Ṽθ,Rn‖∞ ≤ |θ|2
8

.(7.17)

Since the potential V is infinitely smooth, we have |V̂ (γ )| � |γ |−2, which
shows that there are only finitely many θ for which (7.17) is not satisfied.
This shows uniformity of (7.16) in l. It remains to prove the uniformity
of (7.16) in n when θ is fixed. First, we notice that (7.16) holds for suffi-
ciently large j ≥ j0, where j0 depends only on ‖V‖∞, but not on n. Suppose
now that (7.16) is not uniform in n. Then there is a value of j such that

lim
n→∞ µj+2(B̂n) = lim

n→∞ µj+1(B̂n) = lim
n→∞ µj(B̂n) =: µ(7.18)
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(strictly speaking, we need to pass to a subsequence nk if necessary). How-
ever, these limits are the eigenvalues of the limit operator B̂∞ with the
potential

Ṽθ,∞ =
∑

m∈Z

( |θ|
2π

)1/2

eix(ξ2+m|θ|) V̂ (mθ).(7.19)

The required result now follows from the fact we already used above that
a second order one-dimensional differential operator B̂∞ cannot have an
eigenvalue of multiplicity three. ��

Our next task is to compare eigenvalues of H(ξ) and H(ξ ′) when ξ
and ξ ′ are two different vectors lying in Ξ5(θ). This is not a straightforward
task, since these operators act in different Hilbert spaces (H(ξ) and H(ξ ′)
correspondingly). Thus, first of all we need to be able to map these Hilbert
spaces onto each other. The natural candidate for such a mapping is

Fξ,ξ ′ (eη) = eη+ξ ′−ξ .(7.20)

Ideally, we would like this mapping to act as follows: Fξ,ξ ′ : H(ξ) → H(ξ ′)
and be an isomorphism. Unfortunately, in general this is not the case since
the sets ϒ(ξ) and ϒ(ξ ′) can contain different number of elements. In fact,
it may well happen that η ∈ ϒ(ξ), but (η + ξ ′ − ξ) /∈ ϒ(ξ ′). However, the
mapping F has the suggested property in one very important special case:
when Φ(ξ) = Φ(ξ ′) (in other words, when the second coordinates of ξ
and ξ ′ coincide). Indeed, suppose that Φ(ξ) = Φ(ξ ′). Then obviously

{ξ + jθl ∈ Ξ3(θl), j ∈ Z} + (ξ ′ − ξ) = {
ξ ′ + jθl ∈ Ξ3(θl), j ∈ Z}.

Thus, we also have

ϒ(ξ) + (ξ ′ − ξ) = ϒ(ξ ′),

and so the mapping Fξ,ξ ′ is an isometry between H(ξ) and H(ξ ′) with
F−1

ξ,ξ ′ = Fξ ′,ξ . Moreover, if we look carefully on (7.6) (the first equality
there) and (7.7), we realize that the definitions of operators A(ξ) and B(ξ)
do not depend on ξ1, so we have Fξ ′,ξ A(ξ ′)Fξ,ξ ′ = A(ξ) and, similarly,
Fξ ′,ξ B(ξ ′)Fξ,ξ ′ = B(ξ). Thus, all operators A(ξ) are unitary equivalent
when ξ runs along any horizontal line Φ(ξ) = Φ0; the same statement holds
for B(ξ). It is convenient to think of all such operators as being identical
operators A(Φ0) and B(Φ0) acting in the same Hilbert space H(Φ0). We
also notice that if Φ(ξ) = Φ(ξ ′), then the isometry Fξ ′,ξ leaves the function t
(defined after (5.36)) invariant. This means that whenever η ∈ ϒ(ξ) and
η′ = η + ξ ′ − ξ ∈ ϒ(ξ ′), we have t(η) = t(η′); this is true even if |η|2
is a multiple eigenvalue of H0(η) (and, correspondingly, |η′|2 is a multiple
eigenvalue of H0(η

′)).
Denote S = Sl+L

n := [−a, a], l = 1, . . . , L (recall that Sl were already
introduced in the previous section). Now it seems to be a straightforward
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task to apply Lemma 4.10 in the resonance region similarly to how we did it
in the non-resonance region. Indeed, (4.9), (4.10), and (4.12) are immediate
corollaries of |ξ|2 = r(ξ)2 + Φ(ξ)2, and (4.11) follows from the standard
results of perturbation theory (see, e.g., [6]) applied to the operator pencil
rA(Φ) + B(Φ) = r(A(Φ) + r−1 B(Φ)). The problem with this approach
is that the coefficients âj(Φ) in (4.11) are not bounded in general. This
unboundedness of the coefficients is caused by the fact that the eigenvalues
of B̂ can be located very close to each other. However, Lemma 7.2 shows
that the multiplicity of any cluster of eigenvalues of B̂ cannot be greater
than 2. This observation will be of a great help to us.

It will be slightly more convenient to introduce new operators A =
An := R2

n A and B = Bn := R2
n B (and B̃ := R2

n B̃ = P̃BP̃); we will be
assuming from now on that Rn ≤ ρ

1/25
n . The reason for this change is that

Lemmas 7.1 and 7.2 can be reformulated in a more uniform way:

Lemma 7.3. There is a positive constant C2 which satisfies two properties:
if µ is a non-zero eigenvalue of A, then |µ| ≥ C2 and

µj+2(B̃) − µj(B̃) ≥ 3C2(7.21)

uniformly over j, n, l and ξ .

Remark 7.4. 1) It will be convenient to assume that C2 < 1/10, which we
will be doing from now on.

2) Of course, we have slightly better estimate for eigenvalues of µj(B̃). The
distance between µj+2(B̃) and µj(B̃) is � R2

n . But (7.21) is enough for
our purposes.

The importance of Lemma 7.3 can be seen from the following remark.
Suppose that we could establish the inequality (7.21) with µj+1(B̃) instead
of µj+2(B̃). Then, using the approach from the previous section, we could
prove that the coefficients âj(Φ) in (4.11) are bounded, and this would finish
the proof of our main theorem. However, in general it could happen that
two eigenvalues of B̃ lie close to each other. Our further course of action
will reflect this possibility. We will divide the segment S = [−a, a] into
two disjoint parts, S = S̃ ∪ Ŝ. Roughly speaking, S̃ will be the region
where the eigenvalues of B̃ are far from each other, and Ŝ will be the
region corresponding to couples of eigenvalues of B̃ lying close to each
other. To be more precise, we need yet more notation. Let ξ ∈ Ξ5(θ) and
η = (η1, η2) ∈ �0(ξ) (recall that �0 = {ξ +Zθ} ∩ ϒ(ξ), so P̃ = P (k)(�0);
this means, in particular, that η1 = ξ1). Then (η2)

2 is an eigenvalue of the
unperturbed operator B̃0(ξ), say (η2)

2 = µτ(η)(B̃0). Here, as above, we use
the convention that if two eigenvalues (η2)

2 and say (ν2)
2 coincide, we label

them according to the crystallographic order of their universal coordinates
(of course, this could happen only if the quasi-momentum k̂2 is either 0
or 1/2). Thus, we have defined a mapping τ : �0(ξ) → N. Notice that we
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can talk simply about the value τ(η), without specifying what ξ is, since if
η ∈ �0(ξj), j = 1, 2, then �0(ξ1) = �0(ξ2). Next, for any point η ∈ �0(ξ),
we define

h(η) := µτ(η)(B̃(ξ))(7.22)

and

h(η) := µτ(η)(B̃(ξ)) = R2
nh(η).(7.23)

Then, we can reformulate (7.21) like this: for each η ∈ �0(ξ), there is at
most one point ν ∈ �0(ξ), ν �= η such that |h(ν)−h(η)| < 3C2. Notice that
this whole construction does not depend on the first coordinate η1 (we can
recall the paragraph after the proof of Lemma 7.2 at this stage), so we can
think of τ as a mapping τ : η2 �→ τ(η), where η is any point with second
coordinate η2 such that η ∈ �0(ξ) for some ξ ∈ Ξ5(θ). Then the domain
of thus defined mapping τ is some interval Ĩ which consist of all second
coordinates η2 of points η ∈ �0(ξ) with ξ ∈ Ξ5(θ); obviously, Ĩ ⊃ [−a, a].
Similarly, h : η2 �→ µτ(η2)(B̃(ξ)) is a well-defined function on Ĩ . Let s
be a small parameter which we will fix later on. At the moment, we put
s = 1

2 C2, but we will decrease s later. We define Ĩ1 = Ĩ1(s) to consist of
all points η2 from Ĩ such that there exists a non-zero integer m such that
η2 + m|θ| ∈ Ĩ and

|h(η2) − h(η2 + m|θ|)| ≤ s.(7.24)

In other words, Ĩ1 consists of all points η2 such that the eigenvalue of B̃
corresponding to η2 is close to being multiple. We also put Ĩ0 = Ĩ0(s) :=
Ĩ \ Ĩ1(s). Let us study the properties of this partition. First of all, due to
Lemma 7.3, for each η2 ∈ Ĩ1, (7.24) is satisfied for precisely one value of m;
obviously, then η2 +m|θ| also belongs to Ĩ1. Thus, we can define a mapping
ι : Ĩ1 → Ĩ1 by the formula ι(η2) = η2 + m|θ|, where m �= 0 is chosen so
that (7.24) is satisfied. Obviously, then ι2 = Id. We can extend the mapping ι

to the whole Ĩ by requesting that ι(η2) = η2 whenever η2 ∈ Ĩ0. Sometimes
we will slightly abuse this notation by writing ι(η) := (η1, ι(η2)).

Lemma 7.5. Suppose η2 ∈ [−a, a]. Then ι(η2) ∈ [−a, a].
Proof. If η2 ∈ Ĩ0, the statement is obvious. Suppose, η2 ∈ ( Ĩ1 ∩ [−a, a]).
Without loss of generality we can assume that η2 is positive. Notice that
|h(η2) − |η2|2| ≤ v. This implies that whenever η2 ≤ a/2, the statement
holds. Suppose, η2 ≥ a/2 � ρ

1/3
n . Then if (7.24) is satisfied, we have

∣∣|η2|2 − ∣∣η2 + m|θ|∣∣2∣∣ ≤ s + 2v,(7.25)

and thus
∣
∣|η2| − ∣

∣η2 + m|θ|∣∣∣∣ � ρ−1/3
n .(7.26)



314 L. Parnovski, R. Shterenberg

Since η2 is assumed to be positive and η2 +m|θ| is negative (otherwise there
is no chance for (7.26) to hold), this means

∣∣
∣η2 + m

2
|θ|

∣∣
∣ � ρ−1/3

n .(7.27)

Obviously, we will have the same inequality for ι(η2):
∣
∣∣|ι(η2)| + m

2
|θ|

∣
∣∣ � ρ−1/3

n ,(7.28)

so both η2 and ι(η2) are close to (i.e. within distance o(1)) points of the form
±m

2 |θ|. Now the second condition (5.6) implies that the distance from a to
any point of the form ±m

2 |θ| is at least |θ|/4. Thus, if |η2| < a, this implies
that |ι(η2)| < a. ��

Now let us establish the relationship between the labeling τ : �0(ξ) → N

used to define mapping h and the labeling t : ϒ(ξ) → N defined by (5.36).

Lemma 7.6. Let T̃ be the number of elements in ϒ(ξ) whose first coordinate
is strictly less than ξ1. Then for each η ∈ �0(ξ) we have

t(η) = τ(η) + T̃ .(7.29)

Proof. It follows from the proof of Lemma 5.8 that whenever µ ∈ ϒ(ξ) \
�0(ξ) and η ∈ �0(ξ), the following two conditions are equivalent: µ1 < η1
and |µ| < |η|. Indeed, to say that µ /∈ �0(ξ) is equivalent to saying that
µ1 �= η1. Suppose that µ1 < η1. then η1 − µ1 � R−2

n , so (η1)
2 − (µ1)

2 �
ρn R−2

n � ρ
4/5
n . Since |µ2| � a � ρ

1/3
n , this implies |µ| < |η|. The

case µ1 > η1 is treated similarly. The rest follows from the definitions of
mappings t and τ . ��

Now let us recall that because of (7.4), we are interested in studying
eigenvalues of the operator pencil

Z(r) := rA + B = r(A + r−1B) = R2
n Z(r),(7.30)

where

Z(r) = rA + B,(7.31)

r = ξ1, and operators A and B depend on Φ(ξ) = ξ2 for some point
ξ = (ξ1, ξ2) ∈ Ξ5(θ). These operators act in the Hilbert space which we have
denoted byH(Φ(ξ)); see the paragraph after the proof of Lemma 7.2 for the
discussion of this Hilbert space. To be more precise, we fix a point η ∈ ϒ(ξ)
and study the function g(η). We are only interested in eigenvalues of Z(r)
which are bounded as r → ∞ (which means, they can be considered as
perturbations of zero eigenvalues of A or, equivalently, that η ∈ �0(ξ)). The
first order of approximation of such eigenvalues as r → ∞ are eigenvalues
of B̃. We will consider separately two cases: η2 ∈ Ĩ1 and η2 ∈ Ĩ0. The
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former case is much more difficult, and we give all necessary details. The
latter case is much simpler and can be treated analogously to the first case
(alternatively, one can apply methods similar to those we used in the previous
section); we will make some remarks on this case later. So, let us assume
that η2 ∈ Ĩ1.

Recall that P̃ is a projection onto ker A = ker A; we also denote P′ :=
P(ξ) − P̃. Let P0(< P̃) be projector onto span of two eigenfunctions of B̃
corresponding to h(η2) and h(ι(η2)); put P′

0 := P̃ − P0. By µ we denote
a spectral parameter, which at the moment we assume satisfies |µ| ≤ 2‖B‖.
Operator P′AP′ + P̃ is invertible and ‖(P′AP′ + P̃)−1‖ ≤ c with constant
c > 0 uniform with respect to n and η2. Thus, for sufficiently large ρ0,
operator

Sµ := P′AP′ + P̃ + 1

r
(B − µ)(7.32)

is invertible. We have

rA + B − µ = (
I − P̃S−1

µ

)
rSµ.(7.33)

Then µ is an eigenvalue of rA + B if and only if 0 is an eigenvalue of
I − P̃S−1

µ . Obviously, corresponding eigenfunction z belongs to P̃H(Φ).
Thus,

z = S−1
µ z + y(7.34)

for some y ∈ P′H(Φ). We have Sµz − z = Sµy. Then

P′Sµ P̃z = P′SµP′y, y = (P′SµP′)−1 P′Sµ P̃z.(7.35)

Thus,

0 = (
P̃Sµ P̃ − P̃ − P̃SµP′(P′SµP′)−1 P′Sµ P̃

)
z

= 1

r

(
P̃(B − µ)P̃

− 1

r
P̃(B − µ)P′

(
P′AP′ + 1

r
P′(B − µ)P′

)−1

P′(B − µ)P̃

)
z.

(7.36)

Therefore, zero is an eigenvalue of operator P̃(B − µ)P̃ − 1
r Kµ, where

Kµ = P̃(B − µ)P′
(

P′AP′ + 1

r
P′(B − µ)P′

)−1

P′(B − µ)P̃.(7.37)

Note that since P̃BP′ = R2
n P̃VP′ we have

‖Kµ‖ +
N∑

j=1

∥∥
∥∥

d j

dµ j
Kµ

∥∥
∥∥ ≤ C(N)R4

n,(7.38)
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where C(N) depends only on N and V , provided r ≥ ρ
3/4
n and ρ0(V ) is

sufficiently large.
Next, we want to narrow the range of µ’s which serve as the candidates

for being the eigenvalues of rA + B. Let us at the moment only look for
eigenvalues µ such that

|µ − h(η2)| ≤ C2.(7.39)

If we assume that (7.39) is satisfied, the operator P̃(B − µ)P̃ + P0 is
invertible (on V) and inverse operator is bounded uniformly in n and η2.
We have

P̃(B − µ)P̃ − 1

r
Kµ = (

I − P0 D−1
µ

)
Dµ,(7.40)

where Dµ := P̃(B − µ)P̃ + P0 − 1
r Kµ.

Now we repeat the same construction as in (7.34)–(7.37), only with
respect to the pair of projections P0, P̃ instead of P̃, P(ξ). As a result, we
obtain that µ is an eigenvalue of Z(r) = rA + B if and only if zero is an
eigenvalue of the operator P0(B − µ)P0 − Gµ, where

Gµ = 1

r

(
P0 Kµ P0 + 1

r
P0 Kµ P′

0

(
P′

0(B − µ)P′
0 − 1

r
P′

0 Kµ P′
0

)−1

P′
0 Kµ P0

)
.

(7.41)

The operator P0(B − µ)P0 − Gµ is, in fact, a (2 × 2)-matrix. Note that
in a suitable basis, P0(B − µ)P0 is a diagonal matrix with h(η2) − µ
and h(ι(η2)) − µ standing on the diagonal. Calculating the determinant of
P0(B − µ)P0 − Gµ in this basis, we obtain that µ satisfying (7.39) is an
eigenvalue of Z(r) if and only if

(
h(η2) − µ + 1

r
α1

)(
h(ι(η2)) − µ + 1

r
α2

)
− 1

r2
β2 = 0.(7.42)

Here, α1, α2, and β are functions of µ and r (depending on η2 as a parameter)
analytic in |µ − h(η2)| < C2, r > ρ

3/4
n and satisfying

|α1| + |α2| + |β| +
N∑

j=1

(∣
∣
∣∣
d jα1

dµ j

∣
∣
∣∣ +

∣
∣
∣∣
d jα2

dµ j

∣
∣
∣∣ +

∣
∣
∣∣
d jβ

dµ j

∣
∣
∣∣

)
≤ C(N)R4

n,

(7.43)

with constant C(N) uniform in n and η2 ∈ Ĩ1, provided ρ0 is sufficiently

large. We put ν := µ − h(η2), ε := ρ
3/4
n
r , and δ := h(η2) − h(ι(η2)).

Then (7.42) is equivalent to

F(ν, δ, ε; η2) := ν2 + ν

(
δ − ε

α1 + α2

ρ
3/4
n

)
− εδ

α1

ρ
3/4
n

+ ε2 α1α2 − β2

ρ
3/2
n

= 0.

(7.44)
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Here, we temporarily consider δ as independent variable, and α1, α2, and β
are considered as functions of ν and ε, depending on η2 and ρn as parameters.
It follows from Corollary 2.3 that there exists a neighborhoodω of (ν, δ, ε) =
(0, 0, 0) such that F = 0 in ω if and only if

ν2 − 2X1(δ, ε; η2)ν + X2(δ, ε; η2) = 0.(7.45)

Here, X1, X2 are analytic in δ, ε in ω and X1(0, 0; η2) = X2(0, 0; η2) = 0
(the difference between (7.45) and (7.44) is that functions X1, X2 do not
depend on ν). Moreover, it follows from Corollary 2.4 and uniformness of
our estimates that ω can be chosen to depend on V only; we also can achieve
that ω contains the set |ε| < ε0, |δ| < δ0, where, ε0 and δ0 do not depend on n
and η2 ∈ Ĩ1 (they depend only on V ). We also have uniform upper bounds
for X1, X2 and its derivatives. Indeed, we have uniform upper bound (2.5).
Then analyticity of W (which is equal to ν2 − 2X1(δ, ε; η2)ν + X2(δ, ε; η2)
in our case), (2.5), and Cauchy’s integral formula imply upper bounds for
the coefficients X1, X2. Now we can solve quadratic equation (7.45) and
obtain ν1,2 = X1 ± √

X2
1 − X2, or µ1,2 = h(η2) + X1 ± √

X2
1 − X2. Thus,

recalling that H(ξ) = r2 + Z(r) = r2 + R−2
n Z(r), we deduce that the points

r2 + R−2
n h(η2) + R−2

n

(
X1 ± √

X2
1 − X2

)

= r2 + h(η2) + R−2
n

(
X1 ± √

X2
1 − X2

)

are eigenvalues of H(ξ); notice that, since H(ξ) is a self-adjoint operator,
this implies that X2

1 − X2 ≥ 0 when all the variables take real values.
Now, the definition of the mapping g implies that there exist two points,
α+,α− ∈ ϒ(ξ) such that g(α±) = r2 + h(η2) + R−2

n (X1 ± √
X2

1 − X2).
Lemma 5.8 implies that α± ∈ �0(ξ).

Now we recall that δ in fact is not an independent parameter, but δ =
h(η2)−h(ι(η2)). Then our functions X1, X2 will be analytic in ε for |ε| < ε0,
provided |h(η2) − h(ι(η2))| < δ0. Thus, we have proved the following
statement:

Lemma 7.7. There exist positive numbers ρ0, δ0 and ε0 and two func-
tions X1, X2, Xj = Xj(δ, ε; η2), such that Xj are analytic in δ and ε when
|δ| < δ0 and |ε| < ε0 and the following property is satisfied. Suppose,
ξ = (ξ1, ξ2) ∈ Ξ5(θ) and η ∈ �0(ξ) with η2 ∈ Ĩ1(s), s < min(δ0,

1
2 C2).

Then, there exist two points α± = α±(η2) ∈ �0(ξ) such that

g(α±) = r2 + h(η2) + R−2
n

(
X1 ± √

X2
1 − X2

)
,(7.46)

where Xj = Xj(h(η2) − h(ι(η2)),
ρ

3/4
n
r ; η2). Moreover, each point ν ∈

�0(ξ) ∩ Ĩ1 can be expressed as ν = α±(µ2) for some µ ∈ ϒ0(ξ).

Proof. The last statement is the only one we have not proved so far. However,
it follows from the standard pigeonhole arguments based on the fact that



318 L. Parnovski, R. Shterenberg

the number of pairs (α+,α−) is the same as the number of pairs (η2, ι(η2))

with η2 ∈ Ĩ1(s). ��
Remark 7.8. Instead of assuming that n (and thus ρn) is sufficiently large,
we prefer to assume that ρ0 is large enough and prove that estimates hold
uniformly for all n (recall that ρn = 2nρ0). Also, since we always have
δ = h(η2) − h(ι(η2)) depending only on η2, we will often skip mentioning
the dependence of the functions Xj on the first variable and write Xj =
Xj(ε; η2).

Note that Xj and their derivatives enjoy uniform upper bounds and we
also have Xj(0, 0; η2) = 0. Therefore, by decreasing the values of δ0 and ε0

if necessary, we can achieve that |X1 ±√
X2

1 − X2| < C2/10 when |δ| < δ0
and |ε| < ε0 uniformly over η2. Now we can fix the value of the parameter s
which we used to define the sets Ĩ1(s) and Ĩ0(s): we put s := min( 1

2δ0,
1
4 C2).

Suppose now that η ∈ Ĩ0(s). We have:

Lemma 7.9. There exist positive numbers ρ0 and ε0 and a function Y =
Y(ε; η2), such that Y is analytic in ε when |ε| < ε0 and the following
property is satisfied. Suppose, ξ = (ξ1, ξ2) ∈ Ξ5(θ) and η ∈ �0(ξ) with
η2 ∈ Ĩ0(s). Then, there exists a point β = β(η2) ∈ �0(ξ) such that g(β) =
r2 + h(η2) + R−2

n Y(
ρ

3/4
n
r ; η2).

The proof is similar to the above and is even simpler; in fact, this proof
essentially is equivalent to the proof of Lemma 6.1 from [8]. That is why we
just give the sketch of the proof and make some remarks on uniformness.
We start with (7.37). Now, P0 is a projector onto one-dimensional subspace
corresponding to eigenvalue h(η2) of B̃. We consider µ such that (cf. (7.39))

|µ − h(η2)| ≤ s/3.

Then operator P̃(B −µ)P̃ + P0 is invertible. If necessary we increase ρ0 to
ensure that operator Dµ is invertible. Next, we repeat all further arguments
from the proof of Lemma 7.7 which are simpler in this case since Gµ is
a scalar-valued function now. We obtain that µ is an eigenvalue of Z(r) if
and only if

F̃ := h(η2) − µ + 1

r
α = 0,

where α is analytic in |µ − h(η2)| ≤ s/3, r > ρ
3/4
n and depends on η2

as a parameter. It also satisfies estimate similar to (7.43) uniformly in n
and η2 ∈ Ĩ0. Applying Corollary 2.3 (alternatively, we can just use the
implicit function theorem) we obtain that F̃ = 0 in some neighborhood ω

of (µ,
ρ

3/4
n
r ) = (h(η2), 0) if and only if µ = h(η2) + Y(

ρ
3/4
n
r ; η2) for some

analytic function Y . The neighbourhood ω contains the set |ρ
3/4
n
r | = |ε| < ε0,

where ε0 does not depend on n and η2 ∈ Ĩ0.
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As above, we have Y(0; η2) = 0 and Y and its derivatives being uniformly
bounded (actually, the bound depends on δ0 only). Thus, by decreasing ε0
again if necessary, we can achieve that |Y | < s/3 whenever |ε| < ε0.

Lemma 7.10. (A) Suppose, η2 ∈ Ĩ1(s). Then we either have α1 = η and
α2 = ι(η), or α2 = η and α1 = ι(η).

(B) Suppose, η2 ∈ Ĩ0(s). Then we have β = η.

Proof. Suppose, η and ν are two different points from �0(ξ) and ν �= ι(η).
Suppose for definiteness that τ(η) < τ(ν), i.e. that h(η2) < h(ν2). Then:

(a) if both η2 and ν2 belong to Ĩ0, we have h(ν2) − h(η2) > s, so

h(η2) + Y( · ; η2) < h(ν2) + Y( · ; ν2),(7.47)

and thus g(β(η)) < g(β(ν)).
(b) if both η2 and ν2 belong to Ĩ1, we have h(ν2) − h(η2) ≥ 3C2, so

h(η2) + X1( · ; η2) ± √
X2

1( · ; η2) − X2( · ; η2)

< h(ν2) + X1( · ; ν2) ±
√

X2
1( · ; ν2) − X2( · ; ν2),

(7.48)

and thus g(α(η)) < g(α(ν)).
(c) finally, if we have say η2 ∈ Ĩ1(s) and ν2 ∈ Ĩ0(s), we have h(ν2) −

h(η2) ≥ 3C2, so

h(η2) + X1( · ; η2) ± √
X2

1( · ; η2) − X2( · ; η2) < h(ν2) + Y( · ; ν2),

(7.49)

and thus g(α(η)) < g(β(ν)).
In all these cases, we have t(η) < t(ν). Now the proof follows from the

pigeonhole argument. ��
Corollary 7.11. Let ξ = (ξ1, ξ2) ∈ Ξ5(θ).

(a) Suppose, η ∈ �0(ξ) with η2 ∈ Ĩ1(s). Then, we either have

g(η) = r2 + h(η2) + R−2
n

(
X1 + √

X2
1 − X2

)
(7.50)

and

g(ι(η)) = r2 + h(η2) + R−2
n

(
X1 − √

X2
1 − X2

)
,(7.51)

or

g(η) = r2 + h(η2) + R−2
n

(
X1 − √

X2
1 − X2

)
(7.52)

and

g(ι(η)) = r2 + h(η2) + R−2
n

(
X1 + √

X2
1 − X2

)
.(7.53)

(b) Suppose, η ∈ �0(ξ) with η2 ∈ Ĩ0(s). Then, we have

g(η) = r2 + h(η2) + R−2
n Y

(
ρ

3/4
n

r
; η2

)
.(7.54)
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Remark 7.12. Suppose, η and η′ are two different points with the same
second coordinate η2 ∈ Ĩ1. Then we either have both t(η) > t(ι(η)) and
t(η′) > t(ι(η′)), or both t(η) < t(ι(η)) and t(η′) < t(ι(η′)). This shows that
we either have (7.50) and (7.51) or (7.52) and (7.53) simultaneously for
both η and η′.

Since the derivative of Y is bounded in {|ε| < ε0}, (7.54) is increasing
function of r (assuming, as we always do, that ρ0 is sufficiently large).
We denote by q = q(η2) (= q(Φ)) the value of r which makes the RHS
of (7.54) equal to ρ2. Unfortunately, the same argument will not work
with (7.50) or (7.52) (when we differentiate the RHS of these formulas,
we obtain square root in the denominator). It turns out, however, that if we
fix η2, the equations

r2 + h(η2) + R−2
n

(
X1 + √

X2
1 − X2

) = ρ2(7.55)

and

r2 + h(η2) + R−2
n

(
X1 − √

X2
1 − X2

) = ρ2(7.56)

have exactly one solution each. Indeed, the intermediate value theorem
implies that there is at least one solution to each equation, and later on
in Remark 7.13 we will see that the total number of solutions of (7.55)
and (7.56) is at most two. We denote by q = q(η2) (= q(Φ)) the value of r
which makes the RHS of the relevant equation (7.50) or (7.52) equal to ρ2.

Then similarly to our proof of Lemma 4.10 (more precisely, of (4.20)),
we obtain the following formula:

vol
(

Â+ ∩ A(n)
L+l

) − vol
(
Â− ∩ A(n)

L+l

) =
∫ a

−a

(
q(η2) −

√
ρ2 − η2

2

)
dη2.

(7.57)

Thus, in order to compute vol( Â+ ∩ A(n)
L+l) − vol( Â− ∩ A(n)

L+l), we need
to compute q(η2). We will consider the case where η2 ∈ Ĩ1 (another case
is simpler and can be dealt with in the same way). We also assume for
definiteness that (7.50) and (7.51) are the valid ones, so we need to solve
equation

r2 + h(η2) + R−2
n

(
X1 + √

X2
1 − X2

) = λ.(7.58)

Thus, q(η2) is the (only) value of r which makes (7.58) valid, and q(ι(η2))
is the (only) value of r which solves the following equation:

r2 + h(η2) + R−2
n

(
X1 − √

X2
1 − X2

) = λ.(7.59)

Now we introduce a new unknown variable

σ := r

ρ
− 1,(7.60)
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so that

r = ρ(1 + σ);(7.61)

we also put

ε̃ := ρ3/4
n /ρ.(7.62)

Then direct calculations show that (7.58) is equivalent to

(σ2 + 2σ) + ρ−3/2
n ε̃2(h(η2) + R−2

n X1
(
ε̃(1 + σ)−1; η2

))

= −ρ−3/2
n R−2

n ε̃2
√

X2
1

(
ε̃(1 + σ)−1; η2

) − X2
(
ε̃(1 + σ)−1; η2

)
.

(7.63)

Taking square of the last equality we obtain

W(σ, ε̃; η2) := (σ + 2)2σ2 + ε̃2ρ−3/2
n w(σ, ε̃; η2) = 0,(7.64)

where w is a certain function; the properties of w follow from the properties
of Xj . In particular, w is analytic in |σ | < 1/2 and |ε̃| < ε0/2. Moreover,
the bounds for w and its derivatives are uniform in n and η2 ∈ Ĩ1. We see
that

W(0, 0; η2) = W ′
σ (0, 0; η2) = 0 and W ′′

σσ (0, 0; η2) = 8 �= 0.

Applying again Theorem 2.1, we obtain that (in the neighborhood of
(σ, ε̃) = (0, 0)) W(σ, ε̃; η2) = 0 if and only if

σ2 − 2X3(ε̃; η2)σ + X4(ε̃; η2) = 0,(7.65)

where Xj(ε̃; η2) are analytic in ε̃ and Xj(0; η2) = 0 for j = 3, 4.

Remark 7.13. Since (7.65) has two σ -solutions, this implies that the total
number of solutions of (7.55) and (7.56) is at most two.

The solutions of (7.65) are σ1(ε̃; η2) := X3+
√

X2
3 − X4 and σ2(ε̃; η2) :=

X3 − √
X2

3 − X4. Thus, we either have q(η2) = ρ(1 + σ1) and q(ι(η2)) =
ρ(1 + σ2), or q(η2) = ρ(1 + σ2) and q(ι(η2)) = ρ(1 + σ1); for the sake of
definiteness we assume the former possibility.

Put

T(η2, ρ) = Tn(η2, ρ) := q(η2) + q(ι(η2)) = ρ(2 + σ1 + σ2)

= 2ρ(1 + X3).

According to Corollary 2.4, X3 and consequently ρ−1Tn is analytic in ε̃

for |ε̃| < c(V ) with some constant c(V ) > 0 uniform in n and η2 ∈ Ĩ1.
Function ρ−1Tn and its derivatives are bounded uniformly in n and η2 ∈ Ĩ1.

Thus, for η2 ∈ Ĩ1 we have ρ−1Tn is analytic (while σ1, σ2 are only
algebraic).
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Now assume that η2 ∈ Ĩ0. As usual, this case is similar to the case
η2 ∈ Ĩ1, but simpler. We solve equation

r2 + h(η2) + R−2
n Y

(
ρ

3/4
n

r
; η2

)
= λ,(7.66)

where Y is analytic in 1/r. Using arguments similar to the first case, we
obtain that (7.66) has a unique solution r =: q(η2). We define T(η2, ρ) =
Tn(η2, ρ) := 2q(η2) for η2 ∈ Ĩ0.

Next, notice that |ε̃| < c(V ) is satisfied if r > ρ
3/4
n 2(c(V ))−1 =

ρ
4/5
n (ρ

1/20
n c(V )/2)−1. Thus if we assume that ρ0 is large enough, we en-

sure that the set {r ≥ ρ
4/5
n } is included into domains of analyticity of all our

analytic functions.
According to (7.57) we have

vol
(
Â+ ∩ A(n)

L+l

) − vol
(

Â− ∩ A(n)
L+l

)

=
∫ a

−a

(
q(η2) −

√
ρ2 − η2

2

)
dη2 = 1

2

∫ a

−a

(
T(η2) − 2

√
ρ2 − η2

2

)
dη2.

(7.67)

Note that although q(η2) is not an analytic function of ρ (it involves square
root of analytic functions), the function T(η2) is analytic.

The proof is almost finished, since the RHS of (7.67) is analytic in ρ for
sufficiently large ρ (recall that |η2| � a � ρ

1/3
n ). The only remaining thing

is to obtain some estimates for coefficients in the analytic expansion of Tn
(and thus of (7.67)). We have

Tn = ρ

∞∑

j=0

tj(n, η2)
1

ρ j
.(7.68)

It easily follows from (7.63), (7.66) and definition of Tn that t0 = 2 and
t1 = 0. Since ρ−1|Tn| ≤ C uniformly in η2 for any ρ ≥ ρ

4/5
n , we obtain

|tj(n, η2)| ≤ C ′ρ4 j/5
n(7.69)

with constant C′ > 0 uniform in n and η2. Substituting it into (7.67), we
derive

vol
(

Â+ ∩ A(n)
L+l

) − vol
(

Â− ∩ A(n)
L+l

) = 1

2
ρ

∞∑

j=2

ẽj(n)
1

ρ j
,(7.70)

where ẽj(n) = ∫ a
−a(tj(n, η2)−t̃j(η2))dη2. Here, we denoted by t̃j coefficients

in analytic expansion

2
√

ρ2 − η2
2 = ρ

(
2 +

∞∑

j=2

t̃j(η2)
1

ρ j

)
.
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We have

|ẽj | ≤ 4C′ρ4 j/5+1/3
n .(7.71)

Next,

ρn

∞∑

j=6M

|ẽj(n)| 1

ρ
j
n

≤ Cρ4/3
n

∞∑

j=6M

ρ− j/5
n ≤ Cρ−6M/5+4/3

n ≤ Cρ−M
n(7.72)

with constant C > 0 uniform in n. Put ej(n) := 1
2 ẽj+1(n). Thus, using (7.70)

and estimates of the coefficients obtained above, we arrive at

Lemma 7.14.

(7.73) vol
(

Â+ ∩ A(n)
L+l

) − vol
(

Â− ∩ A(n)
L+l

) =
6M∑

j=1

ej(n)ρ− j + O
(
ρ−M

n

)

for ρ ∈ [ρn, 4ρn],
with |ej(n)| � ρ

4 j/5+6/5
n .

Lemma 3.3 now follows after summation over l from Lemmas 7.14,
6.10, 4.8 and Corollary 4.4. This finishes the proof of Lemma 3.3 and,
therefore, of Theorem 3.1.
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