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1 Introduction

Inspired by the beautiful work of Donaldson [15], the author initiated a series
of works [8,9] aiming to understand the geometric structure of the space
of Kähler potentials and its application to interesting problems in Kähler
geometry. The present work should be viewed as part III of this series. It
consists of three inter-related parts:
1. First, we prove a folklore conjecture on the greatest lower bound of the

Calabi energy in any Kähler class. This was known in the 1990s for Käh-
ler metrics that are invariant under a maximal compact subgroup [23] of
the automorphism group. See the acknowledgments for further remarks
on this result.

2. Secondly, we give upper and lower bounds on the K-energy in terms
of the geodesic distance and the Calabi energy. This is used to prove
a theorem on convergence of Kähler metrics in holomorphic coordin-
ates, with uniform bound on the Ricci curvature and the diameter. This
kind of problem is difficult because Kähler geometry is extrinsic while
the well-known Cheeger–Gromov convergence theorem (with bound on
curvature, diameters) is intrinsic.

� The author is partially supported by NSF grant.
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3. Thirdly, we set up a framework for the existence of geodesic rays when
an asymptotic direction is given. In particular, if the initial geodesic ray
is tamed by a bounded ambient geometry (c.f. Definitions 3.2 and 3.3),
then one can derive some relative C1,1 estimates for other geodesic rays
in the same direction. More in depth discussions on geodesic rays will
be delayed to the beginning of Sect. 3. In a sequel to this paper, we will
give more regularity estimates on geodesic rays.

1.1 Donaldson’s conjectures. According to Calabi [6], extremal Kähler
metrics are characterized as the critical points of the L2 norm of the scalar
curvature function in any given Kähler class. The class of extremal Käh-
ler metrics includes the more famous Kähler Einstein metrics as a special
case. In [15], Donaldson set out an ambitious program to attack core prob-
lems in Kähler geometry. He formally outlined a connection between geo-
metric problems in an infinite dimensional space and the current interesting
problems in Kähler geometry. In particular, he proposed three inter-related
conjectures:

1. Any pair of Kähler potentials are uniquely connected by C∞ geodesic
segments.

2. The space of Kähler potentials is a metric space.
3. The non-existence of constant scalar curvature metrics is equivalent to

a geodesic ray where the K-energy functional (cf. (2.7) for definition)
decays at ∞.

In [9], following Donaldson’s program, the author established the exist-
ence of C1,1 geodesics by solving a Dirichlet boundary value problem
for a homogenous complex Monge–Ampere equation. Consequently, the
second conjecture of Donaldson is completely verified. Moreover, one im-
portant application is to show that Calabi’s extremal Kähler metric (CextrK)
is unique if the first Chern class is non-positive [9]. The uniqueness problem
(with no assumption on c1) is completely settled now. In algebraic manifolds
with discrete automorphism groups, it was proved by S.K. Donaldson [16].
T. Mabuchi [26] removed the assumption on the automorphism group while
Chen–Tian [12] completed the proof for general Kähler manifolds.

Chen–Tian [12] showed that the solution to the disc version of the
geodesic problem is smooth except at most on a co-dimension 2 set with re-
spect to generic boundary data. This is the best regularity result on C1,1 solu-
tions (to the disc version of the geodesic equation) established in [9]. For
the convenience of the readers, we will briefly describe main results of [12]
in Sect. 2; in particular, the partial regularity theory established in [12] for
solutions of the disc version of the geodesic equation plays a crucial role in
this paper (for obtaining a lower bound on the Calabi energy).

1.2 The Yau–Tian–Donaldson conjecture. The Calabi conjecture on the
existence of Kähler Einstein (KE) metrics has driven the subject for the sec-
ond half of the last century. In the late 1990s, S.T. Yau conjectured that the
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existence of Kähler Einstein metrics on Fano manifolds is equivalent to some
form of stability with respect to the anti-canonical polarization. According
to G. Tian [33] and Donaldson [15], this equivalence relation should be
extended to include the case of a constant scalar curvature (cscK) metric in
a general Kähler class. In a fundamental paper, G. Tian [33] introduced the
notion of K-Stability and proved that the existence of KE metric implies
weak K-stability. More recently, in a fundamental paper [16], Donaldson
proved that, on an algebraic manifold with discrete automorphism group,
the existence of a cscK metric implies that the underlying polarization
is Chow stable. In this paper, Donaldson actually formulated a new ver-
sion (but equivalent) of K-stability in terms of weights of Hilbert points.
In Kähler toric varieties, the existence of a csck metric implies that the
underlying polarization is semi-K-stable [18]. In [12], Chen–Tian proved
that the existence of a cscK metric implies that the K-energy is bounded
below on this Kähler class. As a corollary, this implies that the semi-
K-stability of the underlying polarization (cf. [27]). After we announced
our work [12], S.K. Donaldson [17] proved a similar lower bound in the
algebraic setting.

1.3 On the existence of geodesic rays. The stability result of Donaldson’s
was extended by T. Mabuchi to the case of extremal Kähler metrics with
a modified notion of stability. For general Kähler classes, the usual notion of
stability does not apply because the manifold cannot be embedded in CPN

for any N � 1. In [15], Donaldson envisioned that a geodesic segment or
geodesic ray in the space of Kähler potentials should play a similar role that
a one parameter subgroup of SL(N + 1) plays in deforming a projective
Kähler manifold. In the third conjecture of Donaldson’s program, he defined
a set of equivalence relationships:

1. There exists no cscK metric on M in the Kähler class [ω0].
2. There exists a geodesic ray φ(t) in the space of Kähler potentials H

initiating from some φ0 such that the K-energy is strictly decreasing as
t → ∞.

3. For any φ ∈ H , there exists a geodesic ray initiating from φ such that
the K-energy function is strictly decreasing as t → ∞.

The first step toward proving this conjecture is establishing the existence
of a geodesic ray parallel to some given geodesic ray. According to Calabi–
Chen [8], the infinite dimensional space H is a non-positively curved space.
By the triangle comparison theorem, we can show that there always exists
a geodesic ray initiating from a given Kähler potential in the direction of any
given geodesic ray. However, the geodesic rays obtained this way possess
very little regularity; and it is very hard to use these “geodesics” in practice.1

As a first step in this direction, we prove

1 Note that in Donaldson’s conjecture above, the geodesic ray should be geodesic ray
with sufficient regularities.
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Theorem 1.1 (cf. Theorem 3.9). If there exists a geodesic ray (cf. Defin-
ition 3.2) ρ : [0,∞) → H which is tamed by a bounded ambient geometry,
then for any Kähler potential ϕ0 ∈ H , there exists a relative C1,1 geodesic
ray ϕ : [0,∞) → H initiating from ϕ0. Moreover, this geodesic ray is
parallel to the original geodesic ray.

Heuristically, a geodesic ray tamed by a bounded ambient geometry
corresponds to the notion of a special degeneration of complex structure
in the algebraic case. In Sect. 3, we will discuss at length, various issues
related to stability (in terms of geodesic rays). It is expected that these
notions are more-or-less equivalent to the corresponding notions in the
algebraic setting.

1.4 On the lower bound of geodesic distance and the collapsing of
Kähler manifolds. The famous work of Cheeger–Gromov states that the
set of Riemannian metrics satisfying the following three conditions:

1. uniform curvature bound,
2. diameter is bounded from above,
3. volume is bounded from below,

is compact in the C1,α topology for all α ∈ (0, 1) up to diffeomorphisms.
For any sequence of Kähler metrics in a fixed Kähler class, the volume is
a priori fixed. With uniform control of the curvature and diameter from
above, a subsequence of Kähler metrics may converge to a limiting Kähler
manifold with perhaps a different complex structure. In general, we don’t
know what additional geometrical condition is needed to ensure that the
limiting complex structure is the same with the original complex structure.
In fact, such a sequence might collapse in some Zariski open subset of
the original Kähler manifold (i.e., the volume form vanishes in this subset)
while the subsequence of Kähler metrics converges as Riemmanian metrics
up to diffeomorphism (cf. [30]). In the discussion below, we will refer this
phenomenon as “Kähler collapsing”.

One intriguing and challenging question is: when this “Kähler collaps-
ing” occurs, does the geodesic distance (in the space of Kähler metrics)
necessarily diverge to ∞?2 This in turn leads to another question: given
a sequence of Kähler potentials, how do we estimate from below the
geodesic distance from a fixed reference point? For instance, if the diam-
eter of the sequence diverges to ∞ does the geodesic distance also diverge
to ∞?

We first prove a theorem which links the K-energy, the Calabi energy
and the geodesic distance together. The author believes that this theorem is
very interesting in its own right.

2 For a sequence of metrics mentioned above which does not converge in the original
complex structure, one is expected to prove, via implicit function theory, that the geodesic
distance (to some fixed Kähler metric) must diverge to ∞.
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Theorem 1.2. Let ϕ0, ϕ1 be two arbitrary smooth Kähler potentials in the
same Kähler class. The following inequality holds

E(ϕ1) − d(ϕ0, ϕ1) · √
Ca(ϕ1) ≤ E(ϕ0). (1.1)

Here d(ϕ0, ϕ1) is the geodesic distance in the space of Kähler potentials.

In other words, fixing ϕ0 and letting ϕ1 change, if the geodesic distance
and the Calabi energy of ϕ1 are bounded above, so is the K-energy. From an
analytic point of view, this is quite surprising since we do not know how to
control the K-energy, even assuming a uniform bound on the Riemmanian
curvature. On the other hand, fixing ϕ1 and letting ϕ0 change, this formula
gives a lower bound for the K-energy in terms of geodesic distance. Clearly,
this inequality is a natural generalization of Theorem 1.1.2 of [12] that the
K-energy has a lower bound if there is a cscK metric. In fact, we conjecture
that, in a fixed Kähler class, if the infimum of the Calabi energy is 0, then
the K-energy must be bounded below.

An immediate corollary is:

Corollary 1.3. For any constant C, there exists a constant C ′ such that
whenever ϕ is a Kähler potential with Ca(ϕ) < C and |ϕ|∞ < C, then its
K-energy satisifies E(ϕ) < C′.

We say that the K-energy functional is “proper” if it is bounded from
below by a certain norm function which will be introduced in Sect. 2. We say
that the K-energy functional is “quasi-proper” if the K-energy functional is
bounded below by its highest order term (cf. Sect. 2). On a Kähler Einstein
manifold, the K-energy functional is always proper [33]. On a general
Kähler manifold, Tian conjectured that a cscK metric exists if and only if
the K-energy functional is proper. When the first Chern class is non-positive,
there is a sufficient condition for the K-energy functional in that Kähler class
to be either proper or quasi proper3.

Now we are ready to answer the question about Kähler collapsing:

Theorem 1.4 (No Kähler collapsing). Let (M, [ω]) be a Kähler manifold
for which the K-energy is either proper or quasi-proper. Let S be a set of
Kähler metrics in the class [ω] with Ricci curvature uniformly bounded
and diameter bounded above4. If S lies in a bounded geodesic ball then all
metrics in S are uniformly equivalent to each other in the C1,α topology for
any α ∈ (0, 1) in holomorphic coordinates. In particular, Kähler collapsing
does not occur.

3 For instance, in complex dimension 2, if

[ω] · [−C1(M)]
[ω][2] [−C1(M)] − [ω] > 0

then the K-energy is quasi-proper [10]. For higher dimensional Kähler manifolds, readers
are referred to Song–Weinkove [3].

4 The diameter bound can be replaced by a bound on a certain Sobolev constant.
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Note that the geodesic distance appears to be a very weak notion. The
bound on Ricci curvature is much weaker than the conditions stated in
Cheeger–Gromov’s theorem. However, the combination of the geodesic
distance and Ricci curvature bounds seems to be very powerful.

In a subsequent paper, we will drop the assumption that the Ricci curva-
ture is bounded from above. The assumption that the K-energy functional
is either proper or quasi-proper in (M, [ω]) is just technical. We hope that
this will be removed in a subsequent work.

1.5 On the lower bound of the Calabi energy. It is well-known that the
Calabi energy is locally convex near an extremal Kähler metric. According to
Calabi [6], an extremal Kähler metric is invariant under a maximal compact
subgroup of the automorphism groups of the underlying complex structure.
In the 1990s, A. Hwang [23] proved that the Calabi energy of an invariant
Kähler metric is bounded below by the absolute value of the Calabi–Futaki
invariant (evaluated at the canonical extremal vector field). If there is an
extremal Kähler metric in this class, the absolute value of the Calabi–Futaki
invariant is precisely the Calabi energy of the extremal Kähler metric. In the
1980s, it was conjectured that the same lower bound holds for all metrics
in the same Kähler class. There have been many attempts to generalize this
to all Kähler metrics; however this problem proved to be a very difficult
one.

Aside from this folklore conjecture on the Calabi energy, there are
other important motivations for studying the greatest lower bound of the
Calabi energy, such as stability and degeneration of Kähler manifolds. For
our strategy to work, the main technical obstacle has been the insufficient
regularity of the C1,1 geodesic. However, the partial regularity theory estab-
lished earlier (Theorem 1.3.4 in [12]) for solutions of the disc version of the
geodesic equation is very helpful. By Theorem 1.3.5 of [12], we know that
the K-energy functional, when restricted to the disc version of the geodesic
equation, is sub-harmonic in the disc. This is used crucially to establish the
sharp lower bound for the Calabi energy in terms of any effective destabil-
izing smooth geodesic ray (cf. Definition 3.13). In particular, we prove the
following folklore conjecture about the greatest lower bound of the Calabi
energy in each Kähler class.

Theorem 1.5. For any Kähler metric ωϕ in [ω], we have

Ca(ωϕ) ≥ FXc([ω]),
where Xc is the extremal vector field of (M, [ω]) and F is the Calabi–Futaki
invariant. Equality holds when ωϕ is an extremal Kähler metric.

More generally, we have

Theorem 1.6. Let (M, [ω]) be a Kähler manifold and let ωϕ be any Kähler
metric in the class [ω]. Then

Ca(ωϕ) ≥ sup
ρ

�(ρ)2,
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where the supremum runs over all possible effective destabilizing smooth
geodesic rays ρ : [0,∞) → H .

Definitions of an effective destabilizing smooth geodesic ray and the �
invariant are given in Definition 3.13 and Definition 3.10 respectively. To
extend above theorem to a more general setting, we need to introduce two
more notions.

Definition 1.7. Let (M, [ω0], J0) be a Kähler manifold. Another Kähler
manifold (M′, [ω′], J ′) is said to lie in the closure of the diffeomorphism
orbit of (M, [ω0], J0) if there exists a sequence of Kähler forms {ωϕm ,
m ∈ N} ⊂ [ω] and a sequence of diffeomorphisms { fm ∈ Diff(M), m ∈ N}
such that (M, f ∗

mωϕm , f ∗
m J0) converges to (M′, ω′, J ′) in the C1,α topology

for some α ∈ (0, 1).

Definition 1.8. Let (M, [ω0], J0) be a Kähler manifold. Suppose that
(M′, [ω′], J ′) is another Kähler manifold which lies in the closure of the
diffeomorphism orbit of (M, [ω0], J0). (M′, [ω′], J ′) is said to destabilize
the original Kähler manifold if there exists an effective destabilizing smooth
geodesic ray ρ(t) in (M, [ω0], J0) such that there is a subsequence of
(M, ωρ(t))(t → ∞) which converges to a metric on (M′, [ω′], J ′) up to
diffeomorphism.

Now we are ready to state a general theorem.

Theorem 1.9. Let (M, [ω0], J0) be a Kähler manifold. The following in-
equality holds

inf
g∈H

Ca(ωg) ≥ sup
(M′,[ω′],J ′)

inf
(X,X )=1,X∈K(J ′)

(X,Xc)
2

(X, X)
.

Here the inner product is the Futaki–Mabuchi inner product on the Lie
algebra K(J ′) of the maximum compact subgroup K(J ′) of Aut(M′, J ′).
The supremum runs over all possible Kähler manifolds (M′, [ω′], J ′) in
the closure of the diffeomorphism orbit of (M, [ω0], J0) that destabilize
(M, [ω0], J0).

One should be able to define a weak notion of destabilizing Kähler
manifold, while retaining the validity of the inequality in Theorem 1.9.

Definition 1.10. Suppose the Kähler manifold (M, [ω], J) satisfies the fol-
lowing inequality

FXc([ω0]) ≥ sup
(M′,[ω′],J ′)

FXc([ω′]), (1.2)

where (M′, [ω′], J ′) runs over all Kähler manifolds in the closure of the
diffeomorphism orbit of (M, [ω], J). Then we call (M, [ω], J) stable in the
sense of differential geometry.

What is the relation of stability in the sense of differential geometry
with other algebro-geometric notions of stability such as K-stability? For
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algebraic manifolds, the notion of K-stability is expected to be stronger than
this one.

In the light of these theorems, one expects that there is a deep inter-
relation between geodesic rays, test configurations and their respective roles
in defining stability. We propose notions of stability in terms of smooth
geodesic rays which might be viewed as a natural extension of what is given
in [15]. Moreover, the relation between geodesic stability and K-stability
may also be an interesting topic to be explored in near future. More extensive
discussions on this topic will be deferred to Sect. 3.

Organization. In Sect. 2, we give a brief outline of known results in the
space of Kähler potentials. In Sect. 3, we prove the existence of geodesic
rays parallel to some “nice” geodesic rays. In Sect. 4, we give the greatest
lower bound estimate for the Calabi energy. In Sect. 5, we give a lower
bound estimate of the geodesic distance and rule out the possibility of
“Kähler collapsing” in bounded geodesic balls in H . In Sect. 6, we propose
some conjectures in Kähler geometry.

Acknowledgments. The strategy of obtaining a lower bound of the Calabi energy via smooth
geodesic rays was discussed with S.K. Donaldson in 1997-98, and on-and-off since then.
The author wishes to thank Professor Donaldson for kindly sharing his insight on this matter.
Readers are encouraged to compare the results on the lower bound of the Calabi energy
to [18] (in particular, Theorem 1.6.).

The author wishes to thank Professors E. Calabi, J.P. Bourguignon and G. Tian for their
support on his research; and to thank his former students Y.D. Tang, H.Z. Li and B. Weber
for their help in proof-reading of an earlier version of this paper; and to thank his friend
J. Fine for meticulous proof-reading of the final version.

Anonymous referees have made many constructive and insightful comments and sugges-
tions which have been a tremendous help. Not only have they improved the presentation
substantially but, more importantly, they have helped the author to clarify ambiguous points
in the original version. The author is deeply grateful for their help with this paper.

2 Brief outline of geometry in the space of Kähler potentials

2.1 Quick introduction to Kähler geometry. Let ω be a fixed Kähler
metric on M. In a local holomorphic coordinate, ω can be expressed as

ω =
√−1

2
gαβ̄dwα ∧ dwβ̄ > 0.

The Ricci curvature can be conveniently expressed as

Rαβ̄ = −∂2 log det(gij̄)

∂wα∂wβ̄
.

The scalar curvature can be defined as

R = −gαβ̄
∂2 log det(gij̄ )

∂wα∂wβ̄
.
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The Calabi energy is defined to be

Ca(ω) =
∫

M
(R(ω) − R )2ωn. (2.1)

Here R is the average scalar curvature, whose value is the same for all
metrics in a fixed Kähler class. Following Calabi [6,7], a Kähler metric is
called extremal if the complex gradient vector field

Xc = gαβ̄ ∂R

∂wβ̄

∂

∂wα
(2.2)

is a holomorphic vector field. According to [21], the extremal vector field Xc
is a priori determined in each Kähler class, up to holomorphic conjugation.

If X is a holomorphic vector field, then for any Kähler potential ϕ we
can define θX up to an additive constant by

LXωϕ = √−1∂∂̄θX(ϕ). (2.3)

Then, the well-known Calabi–Futaki invariant [20,7] is

FX([ω]) =
∫

M
θX(ϕ) · ( R − R(ϕ))ωn

ϕ. (2.4)

Note that this is a Lie algebra character which depends on the Kähler class
only.

2.2 Weil–Petersson type metric in the space of Kähler potentials. It
follows from Hodge theory that the space of Kähler metrics with Kähler
class [ω] can be identified with the space of smooth Kähler potentials

H = {ϕ | ωϕ = ω + ∂̄∂ϕ > 0, on M}/∼,

where ϕ1 ∼ ϕ2 if and only if ϕ1 = ϕ2 + c for some constant c. A tangent
vector in TϕH is just a function ψ such that

∫

M
ψωn

ϕ = 0.

Its norm in the L2-metric on H is given by (cf. [25])

‖ψ‖2
ϕ =

∫

M
ψ2ωn

ϕ.

This metric was subsequently re-defined in [31] and [15]. In all three
papers, [25,31] and [15], the authors defined this Weil–Petersson type metric
from various points of view and proved formally that this infinite dimen-
sional space has non-positive curvature. Using this definition, we can define
a distance function in H : For any two Kähler potentials ϕ0, ϕ1 ∈ H , let
d(ϕ0, ϕ1) be the infimum of the length of all possible curves in H that
connect ϕ0 with ϕ1.
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A straightforward computation shows that a geodesic path ϕ : [0, 1]
→ H of this L2 metric must satisfy the following equation

ϕ′′(t) − gϕ
αβ̄ ∂2ϕ

∂t∂wα

∂2ϕ

∂t∂wβ̄
= 0,

where

gϕ,αβ̄ = gαβ̄ + ∂2ϕ

∂wα∂wβ̄
> 0.

According to S. Semmes [31], a smooth path {φ(t), t ∈ [0, 1]} ⊂ H
satisfies the geodesic equation if and only if the function φ on [0, 1]×S1×M
satisfies the homogeneous complex Monge–Ampere equation

(
π∗

2ω + ∂∂̄φ
)n+1 = 0, on Σ × M, (2.5)

where Σ = [0, 1] × S1 and π2 : Σ × M �→ M is the projection. In fact, one
can consider (2.5) over any Riemann surface Σ with boundary condition
φ = φ0 along ∂Σ, where φ0 is a smooth function on ∂Σ × M such that
φ0(z, ·) ∈ H for each z ∈ ∂Σ.5 The equation (2.5) can be regarded as the
infinite dimensional version of the WZW equation for maps from Σ into H
(cf. [15]).6

Next we introduce three well-known functionals on H . Note that our
definition of the first two functionals may differ from some appearing in the
literatures. First, the so-called I functional is defined as

dI(ϕ(t))

dt
=

∫

M

∂ϕ

∂t
ωn

ϕ(t), ϕ(t) ∈ H .

The advantage of this functional is that it is constant along any geodesic
segment (or ray). An explicit formula for the I functional is

I(ϕ) =
∫

M
ϕωn −

n−1∑

k=0

k + 1

n + 1
∂ϕ ∧ ∂̄ϕ ∧ ωk ∧ ωn−k−1

ϕ . (2.6)

Secondly, the so-called J functional is defined as

J(ϕ) =
∫

M
ϕ
(
ωn − ωn

ϕ

) =
∫

M
∂ϕ ∧ ∂̄ϕ ∧

( n−1∑

k=0

ωk ∧ ωn−k−1
ϕ

)
> 0.

Finally, the K-energy functional (introduced by T. Mabuchi) is defined as
a closed form dE. Namely, for any ψ ∈ TϕH , we have

(dE, ψ)ϕ =
∫

M
ψ · ( R − R(ϕ))ωn

ϕ. (2.7)

According to [10] (cf. Tian [33]), the K-energy functional can be expressed
explicitly through the second derivatives of the Kähler potentials. For any

5 We often regard φ0 as a smooth map from ∂Σ into H .
6 The original WZW equation is for maps from a Riemann surface into a Lie group.
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φ ∈ Hω, we have

E(φ) =
∫

M
ln

ωn
φ

ωn
ωn + R · I(ϕ)

−
n−1∑

p=0

1

p + 1

∫

M
φ Ric(ω) ∧ ωn−p−1 ∧ (

√−1∂∂̄φ)p.

From this formulation, it is clear that the K-energy is well defined for any
C1,1 Kähler potential. We will exploit this important property later in this
paper.

The K-energy functional is called proper (cf. [33]) in (M, [ω]) if there
exists a small constant δ > 0 and two constants C1, C2 such that

E(ϕ) ≥ C1 · J(ϕ)δ − C2.

The K-energy of (M, [ω]) is called quasi-proper if there exists a small
constant δ > 0 and a constant C such that

E(ϕ) ≥ δ

∫

M
log

ωn
ϕ

ωn
ωn

ϕ − C. (2.8)

Finally, we point out that the first derivative of the K-energy along
a holomorphic family is precisely the Calabi–Futaki invariant. In other
words, for any holomorphic vector field X we have

FX([ω]) = (dE, θX )ϕ.

2.3 Brief exposition of Theorem 1.3.4 in Chen–Tian [12]. We wish to
point out that complex Monge–Ampere equations have been studied exten-
sively (cf. [5,24,2] etc. and references therein). However, regularity for
solutions of homogeneous complex Monge–Ampere (HCMA) equations
beyond C1,1 has been conspicuously missing. Indeed, there is a known
example where solutions for a certain HCMA equation are only C1,1, while
the boundary value is smooth.

The best regularity result about the solution to the disc version of the
geodesic equation is due to Chen–Tian [12] where they showed that the solu-
tion is smooth except at most on a codimension 2 set for generic boundary
data. The C1,1 bound derived in [9] plays a crucial role in [12].

Suppose that φ is a C1,1 solution of (2.5), we denote by Rφ the set of all
(z, x) ∈ Σ × M near which φ is smooth and ωφ(z′,·) = ω + √−1∂∂̄φ(z′, ·)
is a Kähler metric when restricted to the M factor. We may regard Rφ as
the regular set of φ. It is open, but a priori, it might be empty. We have
a distribution Dφ ⊂ T(Σ × M) over Rφ:

Dφ|(z,x) = {
v ∈ TzΣ × Tx M | iv

(
π∗

2ω + √−1∂∂̄φ
) = 0

}
, ∀(z, x) ∈ Rφ.

(2.9)

Here iv denotes the interior product. Since the form is closed, Dφ is inte-
grable when φ is smooth. We say that Rφ is saturated in V ⊂ Σ × M if
every maximal integral sub-manifold of Dφ in Rφ ∩V is a closed disk in V.



464 X.X. Chen

As on any product manifold, we may write any vector in Dφ as

∂

∂z
+ X ∈ Dφ|(z,x), where X ∈ T 1,0

x M (2.10)

for some choice of local coordinate z on Σ.

Definition 2.1. A solution φ of (2.5) is called partially smooth if it is
C1,1-bounded on Σ× M and Rφ is open and saturated in Σ× M, but dense
in ∂Σ×M, such that the varying volume form ωn

φ(z,·) extends to a continuous
(n, n) form on Σ0 × M, where Σ0 = (Σ\∂Σ).

Clearly, if φ is a partially smooth solution, then its regular set Rφ consists
of all points where the vertical volume form ωn

φ(z,·) is positive in Σ × M.

Definition 2.2. We say that a solution φ of (2.5) is almost smooth if

1. It is partially smooth.
2. The distribution Dφ extends to a continuous distribution in a saturated

set Ṽ ⊂ Σ × M, such that the complement S̃φ of Ṽ has codimension at
least 2 and φ is C1 continuous on Ṽ. The set S̃φ is referred to as the
singular set of φ.

3. The leaf vector field X is uniformly bounded in Dφ.

A smooth solution is certainly an almost smooth solution of (2.5). If the
boundary values of a sequence of almost smooth solutions converge in some
Ck,β topology, then the sequence converges to a partially smooth solution
in the C1,β-topology (k > 2, 0 < β < 1).

Theorem 2.3 (Theorem 1.3.4 in [12]). Suppose that Σ is a unit disc. For
any Ck,α map φ0 : ∂Σ → H (k ≥ 2, 0 < α < 1) and for any ε > 0, there
exists a φε : ∂Σ →H in the ε-neighborhood of φ0 in Ck,α(Σ × M)-norm,
such that (2.5) has an almost smooth solution with boundary value φε.

An almost smooth solution of (2.5) has uniform C1,1 bounds and is
smooth almost everywhere. A detailed explanation (including definitions)
can be found in [12]. However, the importance of this theorem lies in the
following

Theorem 2.4 (Theorem 1.3.5 in [12]). Suppose that φ is an almost smooth
solution to (2.5). For every point z ∈ Σ, let E(z) be the K-energy (or modi-
fied K-energy) evaluated on φ(z, ·) ∈ H . Then the first derivative of E is
a uniformly continuous function in Σ up to the boundary. Moreover, it is
a bounded sub-harmonic function on Σ in the sense of distributions, such
that

∫

Rφ

∣
∣∣
∣D

∂φ

∂ z̄

∣
∣∣
∣

2

ωφ(z,·)
ωn

φ(z,·)dzdz̄ ≤
∫

∂Σ

∂E
∂n

∣
∣∣
∣
∂Σ

ds,

where ds is the length element of ∂Σ. For any smooth function θ, Dθ
denotes the (2, 0)-part of the Hessian of θ with respect to the metric ωφ(z,·).
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3 On the existence of geodesic rays

3.1 Definitions and main results. As suggested in [15], one may view
geodesic rays as substituting for the degenerations of projective Kähler
manifolds arising from one parameter subgroups of SL(N, C). It is natural
to compare geodesic rays to the degenerations described by test configur-
ations π : X → ∆ where all fibers π−1(t) are biholomorphic except when
t = 0. The central fiber usually carries a different complex structure with
singularities. By blowing up a few points in the central fiber if necessary, it
might be possible to make the total space smooth (or at least having some
kind of bounded geometry). For any test configuration, it might be possible
to prove that there is always a relatively C1,1 geodesic ray which is asymp-
totically close to the test configuration near the central fiber. If the central
fiber is smooth or smooth except along a sub-variety of codimension 4,
one may speculate that the geodesic ray must be smooth generically except
perhaps at a singular locus of codimension two or higher.

Motivated by the study of test configurations in the algebraic setting, in
this section we restrict our attentions to the case of “nice” geodesic rays
ωρ(t) (t ∈ [0,∞)) which satisfy the following conditions:

1. The non-compact family (M, ωρ(t)) can be compactified in some sense.
2. The limit of (M, ωρ(t)) as t → ∞ in a suitable topology is smooth in

the “compactiftication” or has mild singularities (codimension 4 and
higher).

The most special case of geodesic rays are those arising from a fixed
gradient complex holomorphic vector field. In this case, the curvature of
(M, ωρ(t)) is uniformly bounded and the injectivity radius is uniformly
bounded from below.

Let us introduce various concepts on geodesic ray.

Definition 3.1. A path ρ : [0,∞) → H is called strictly convex if
π∗

2ω0 + i∂∂̄ρ defines a Kähler metric in ([0,∞) × S1) × M.

Here π2 : ([0,∞) × S1) × M → M is the natural projection map.

Definition 3.2. A smooth geodesic ray ρ : [0,∞) → H is called special if
it is one of the following types:

1. Effective if the Calabi energy of ωρ(t) in M is dominated by ε · t2 for any
ε > 0 as t → ∞.

2. Normal if the curvature of ωρ(t) in M is uniformly bounded for t ∈ [0,∞).
3. Bounded geometry if (M, ωρ(t)) (t ∈ [0,∞)) has uniform bounds on

curvature and uniform positive lower bounds on the injective radius.

Definition 3.3 (Bounded ambient geometry). A Kähler metric h =
π∗

2ω0 + i∂∂̄ρ̄ in ([0,∞) × S1) × M is said to have bounded ambient
geometry if
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1. It has a uniform bound on its curvature.
2. ([0, T ] × S1 × M, h) has a uniform lower bound on injectivity radius

and the bound is independent of T → ∞.
3. The vector length

∣∣ ∂
∂t

∣∣
h

has a uniform upper bound.

Definition 3.4 (Tamed by a bounded ambient geometry). A smooth geo-
desic ray (M, [ωρ(t)]) is said to be tamed by a bounded ambient geometry h,
if there is a uniform bound for the relative potential ρ − ρ̄.

For most purposes, “weakly tamed by a bounded ambient geometry
weakly” is sufficient.

Definition 3.4a (Weakly tamed by a bounded ambient geometry).
A smooth geodesic ray (M, ωρ(t)) is said to be weakly tamed by a bounded
ambient geometry h, if there is a constant C such that7

1. supt |n + 1 + ∆h(ρ − ρ̄)| ≤ C;
2. supt

∣∣ ∂(ρ−ρ̄)

∂t

∣∣
h

≤ C.

Remark 3.5. A smooth geodesic ray, tamed by a bounded ambient geometry,
might be compared to a test configuration where the total space is smooth. In
the future, we should broaden our definition of bounded ambient geometry
to include the following situations:
1. The upper bound of the curvature of the ambient Kähler metric might

not be uniform.
2. The injectivity radius may have a lower bound which depends on the dis-

tance to some singular sub-variety of higher codimension as well as on t.
3. The restriction of the ambient Kähler metric h to {ti} × S1 × M may

be some finite geodesic distance from (M, ωρ(ti)) while the later has cer-
tain geometric bounds (on, for example, the Calabi energy or Sobolev
constant, cf. Theorem 1.4).

Of course, the regularity of the geodesic might have to be weakened a bit
as well.

Let h be a Kähler metric in ([0,∞) × S1) × M with bounded ambient
geometry. Suppose that its Kähler form ω̃ is given by

π∗
2ω0 +

n∑

i, j=1

∂2ρ̄

∂wi∂w j̄
dwidw j̄ + 2 Re

( n∑

i=1

∂2ρ̄

∂wi∂ z̄
dwidz̄

)
+ ∂2ρ̄

∂z∂ z̄
dzdz̄.

(3.1)

Here z = t + √−1θ. In other words

ω̃ = π∗
2ω0 + √−1∂∂̄ρ̄. (3.2)

In the remainder of this section, we will use h to denote any Kähler metric
in ([0,∞) × S1) × M with bounded ambient geometry.

7 It is sufficient to only assume these two inequalities hold for some sequence of ti → ∞
for technical purposes. This also applies to Definition 3.4.
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Remark 3.6. Using Cauchy–Kowalevska’s classical theorem, Arezzo–Tian
[1] proved that a special degeneration of a complex structure when the
central fiber is analytic is asymptotically equivalent to a smooth geodesic
ray near the central fiber.

Example 3.7. Suppose that X is a gradient holomorphic vector field and
let ω0 be a Kähler form invariant under Im(X). Let σ(t), t ∈ [0,∞) be the
automorphism group generated by X. Set

ωρ(t) = σ∗
t ω0.

A straightforward calculation shows that ρ(t) (t ∈ (−∞,∞)) is a geodesic
line. Let σ = σ1 and let g1 = σ∗g0 and g0 be the two Kähler metrics
corresponding to ω0 and σ∗ω0. Note that

z
∂

∂z
+ X

induces aC∗ action σ̄ on ∆× M which coincides with σ in the M directions
and the multiplicity action in the ∆ directions. Let z0 = 1 and zk =
σ̄ kz0 → 0. Set

Ml,k =
{

1

2l
≤ |z| ≤ 1

2k

}
× M, ∀l, k ∈ N,

and

M∞,0 = (∆ \ {0}) × M.

It is easy to see that there is a smooth S1 invariant Kähler metric h̄ on M1,0
such that

1. h̄||z|=0 = g0 and h̄||z|=1 = g1.
2. h and σ̄∗h̄ give rise a smooth metric in M2,0.

Using h̄, we can define a Kähler h on (∆ \ {0}) × M simply by

h(z, ·) = σ̄ k∗h̄, ∀(z, ·) ∈ Mk+1,k.

By definition, h is a smooth metric in (∆ \ {0}) × M which has bounded
curvature and uniform positive lower bound on injectivity radius.

In fact, any normal geodesic ray is expected to be tamed by some bounded
ambient geometry, at least when it has bounded geometry.

Definition 3.8. Any two smooth geodesic rays ρ1, ρ2 : [0,∞) → H, are
called parallel if there exists a constant C such that

sup
t∈[0,∞)

|ρ1(t) − ρ2(t)|C0 ≤ C.
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This notion of “parallelism” here is stronger than the usual one for
finite dimensional hyperbolic manifolds (where “parallelism” is defined in
terms of the geodesic distance between two geodesic rays). Since this is
our first attempt in this direction, we are content with this stronger version.
However, my sense is that when one of the geodesic ray is “nice” in some
sense, then the two notions of “parallelism” are equivalent. This type of
question is closely related to our discussions in Sect. 5 below and the reader
is encouraged to read that part if interested.

In principle, given a smooth geodesic ray, there is some geodesic ray
which initiates from any Kähler potential and which is parallel to the given
geodesic ray as in Definition 3.8. However, these new “geodesic rays”
usually only have very weak regularity. Now, let us re-state our main The-
orem 1.1 here.

Theorem 3.9. If there exists a smooth geodesic ray ρ : [0,∞) → H which
is tamed by a bounded ambient geometry, then for any Kähler potential
ϕ0 ∈ H , there exists a relative C1,1 geodesic ray ϕ : [0,∞) → H initi-
ating from ϕ0 and parallel to ρ. More specifically, there exist two uniform
constants λ and C such that

0 ≤ n + 1 + ∆̃(ϕ(t, x) − ρ(t, x)) ≤ C exp λ(ρ(t, x) − ρ̄(t, x)).

Here ∆̃ is taken with respect to the ambient Kähler metric h. In particular,
when

ρ(t, x) − ρ̄(t, x)

is uniformly bounded, the resulting geodesic ray has a uniform C1,1 bound
in terms of the ambient metric h. The constants λ, C depend on h.

In [29], Phong–Sturm approximated C1,1 geodesic segments (established
in [9]) in algebraic manifolds via finite dimensional approximations. In
light of the preceding theorem, it would be nice to find finite dimensional
approximations of these relative C1,1 geodesic rays also.

Definition 3.10. For every smooth geodesic ray ρ(t)(t ∈ [0,∞)), we can
define an invariant as

�(ρ) = lim
t→∞

∫

M

∂ρ(t)

∂t
( R − R(ρ(t)))ωn

ρ(t). (3.3)

Remark 3.11. For a smooth geodesic ray, the K-energy is convex and the
above invariant is well defined. The tricky part is how to extend this notion
to the case of relative C1,1 geodesic rays.

If a geodesic ray arises from a one parameter holomorphic transform-
ation, the integral in (3.3) is just the usual Calabi–Futaki invariant.

A natural question is: If two geodesic rays are parallel to each other, are
their � invariants the same? The answer is a partial “yes”:
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Proposition 3.12. For any smooth geodesic ray with bounded ambient
geometry, any other smooth geodesic ray which is parallel to it must have
the same � invariant.

Definition 3.13. A smooth geodesic ray ρ : [0,∞) → H is called stable
(resp. semi-stable) if �(ρ) > 0 (resp. ≥ 0). It is called destabilizing if
�(ρ) < 0 and it is called effectively destabilizing if in addition,

lim sup
t→∞

1

t2
·
∫

M
(R(ρ(t)) − R )2ωn

ρ(t) = 0.

Following the approach used in the algebraic case, we define (cf. [15]):

Definition 3.14. A Kähler manifold (M, [ω]) is called (effectively) geo-
desically stable if there is no (effective) destabilizing smooth geodesic ray.
It is called weakly geodesically stable if the invariant � is always non-
negative for every smooth geodesic ray.

We now re-state Theorem 1.6 more precisely as:

Theorem 3.15. Suppose ρ : [0,∞) → H is an effective destabilizing
smooth geodesic ray in H , then

∫

M
(R(ϕ) − R )2ωn

ϕ ≥ �(ρ)2, ∀ϕ ∈ H .

In fact, we have

inf
ϕ∈H

∫

M
(R(ϕ) − R )2ωn

ϕ ≥ sup
ρ

�(ρ)2, (3.4)

where the sup in the right hand side of (3.4) runs over all possible effective
destabilizing smooth geodesic rays.

As an immediate corollary, we have

Corollary 3.16. If there is a Kähler metric of cscK metric in [ω], then
(M, [ω]) is weakly effectively geodesic stable.

One can generalize these results to the case of extremal Kähler metrics
with non-constant scalar curvature. Recall that Xc is the canonical extremal
vector field in (M, [ω]) (cf. (2.2)) while θ(Xc) is defined as (2.3).

Definition 3.10a. For every smooth geodesic ray ρ(t ∈ [0,∞)), we can
define an invariant as

�̃(ρ) = lim
t→∞

∫

M

∂ρ(t)

∂t
( R − R(ρ(t)) − θ(Xc))ω

n
ρ(t). (3.5)
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A smooth geodesic ray ρ : [0,∞) → H is called stable (resp. semi-stable)
if �̃(ρ) > 0 (resp. ≥ 0). It is called a destabilizing for H if �̃(ρ) < 0 and
effective destabilizing for H if in addition

lim sup
t→∞

1

t2
·
∫

M
(R(ρ(t)) − R − θ(Xc))

2ωn
ρ(t) = 0.

With essentially the same proof, we have

Theorem 3.15a. Suppose ρ : [0,∞) → H is a smooth effectively destabil-
izing geodesic ray in H , then

∫

M
(R(ϕ) − R − θ(Xc))

2ωn
ϕ ≥ �̃(ρ)2, ∀ϕ ∈ H .

In fact, we have

inf
ϕ∈H

∫

M
(R(ϕ) − R − θ(Xc))

2ωn
ϕ ≥ sup

ρ

�̃(ρ)2, (3.6)

where the sup in the right hand side runs over all possible effectively de-
stabilizing smooth geodesic rays. In particular, (M, [ω]) is weakly effectively
geodesically stable if there exists an extremal Kähler metric in the Kähler
class [ω].

3.2 Proof of Theorem 3.9. In this subsection, we will give a proof of
the existence of a geodesic ray parallel to some initial geodesic ray which
is tamed by some bounded ambient geometry. One of the main challenges
here has been to find the right condition to ensure the existence of a par-
allel geodesic ray with regularity beyond the L2 topology on the evolved
Kähler potentials. We follow the main steps in [9] under the current circum-
stances: for any given Kähler potential ϕ0, we can pick a sequence of Kähler
potentials {ρ(ti)}(i ∈ N) along the given geodesic ray ρ : [0,∞) → H .
Connecting ϕ0 to ρ(ti)(i ∈ N) via the unique C1,1 geodesic segment estab-
lished in [9], we obtain a sequence of C1,1 geodesic segments and hope
to take a limit as ti → ∞. The main difficulty is to obtain some uniform
C1,1 bound which allows us to take a limit. However, without any addi-
tional assumptions, such an approach runs into a serious problem as we
shall explain now. First, there is no absolute C0 estimate, which is crucial to
Yau’s calculation of the second derivatives. Secondly, when we consider the
blowing-up estimate, the non-compactness of the underlying Kähler mani-
fold presents a tough challenge. This is because the quantities we want to
control are measured against a background metric. In the case of a geodesic
segment, these background metrics at each time slice are identical to each
other. In the case of a geodesic ray, the background metric in fact varies with
time. It is then important that this non-compact family of background Käh-
ler metrics has some sort of compactness before sense can be made of any
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blowing-up arguments. Thirdly, in deriving boundary estimates as in [9],
we need the assumption that the restriction of Kähler metric in ∂Σ× M has
a uniform positive lower bound with respect to some fixed metric. This is
clearly not available since the sequence of metrics along a geodesic ray are
expected to either diverge wildly or converge to a Kähler metric in a differ-
ent complex structure. In a typical scenario, this sequence of metrics (along
a geodesic ray) will degenerate along generic points in the Kähler manifold
and will blow up along some divisor. To overcome this difficulty, we assume
the existence of a bounded ambient metric which tames the initial geodesic
ray (cf. Definitions 3.2–3.4) to find a relative C0 bound on the modified
potential. In order to find a C2 estimate in terms of this relative C0 estimate,
we need to exploit the structure of the HCMA equation more carefully.
In particular, if the modified potential does not have a uniform C0 bound,
we need to re-design the blowing up procedure in [9] to obtain a growth
control of the C1,1 bound on the modified potential. We believe that such
a technique may be applicable to some other interesting cases in the future.

3.2.1 Relative C0 estimates. Let us first set up some notation. Let T � 1
be a large positive number. Let ΣT = [0, T ]×S1. In the (n+1) dimensional
Kähler manifold ΣT ×M, we want to solve the Dirichlet problem for HCMA
equation (2.5) where the boundary data is invariant in the S1 direction. As
in [9], for any T and for any smooth boundary data, we can obtain a unique
C1,1 solution φ(t) that solves the HCMA equation (2.5). In other words, we
have

(
π∗

2ω0 + √−1∂∂̄φ
)n+1 = 0, (3.7)

where

φ(0) = ϕ0, and φ(T ) = ρ(T ). (3.8)

Here, ρ : [0,∞) → ∞ is the smooth geodesic ray we wish to construct
a geodesic ray parallel to. Obviously, the C1,1 estimate on φ depends on T
and may blow up as T → ∞. In fact, this C1,1 estimate must blow up if it
represents a geodesic ray.

Lemma 3.17. For any smooth geodesic ray ρ(t)(t ∈ [0,∞)) and for any
initial metric ϕ0 ∈ H , there exists a uniform constant C such that for any
T ∈ (0,∞), there exists a unique C1,1 geodesic φT (t)(t ∈ [0, T ]) which
connects ϕ0 to ρ(T ) such that

−C ≤ φT (t, x) − ρ(t, x) ≤ C. (3.9)

The Dirichlet boundary value problem (3.7) and (3.8) can be re-written
as a Dirichlet problem on ΣT × M such that

det

(
hαβ̄ + ∂2(φ − ρ̄)

∂wα∂wβ̄

)

(n+1)×(n+1)

= 0, (3.10)
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with boundary condition

φ|{0}×S1×M = ϕ0, and φ|{T }×S1×M = ρ(T ). (3.11)

Here h is the bounded ambient metric defined in (3.1) and (3.2). Now we
are ready to give a proof of Lemma 3.17.

Proof. Following [9], let φε
T be the ε-approximated geodesic between ϕ0

and ρ(T ) and let ρε
T be the ε-approximated geodesic between ρ(0) and ρ(T ).

Then, we have (in ΣT × M)

det
(

hαβ̄ + ∂2
(
φε

T − ρ̄
)

∂wα∂wβ̄

)

(n+1)×(n+1)

= ε · det h

= det

(
hαβ̄ + ∂2

(
ρε

T − ρ̄
)

∂wα∂wβ̄

)

(n+1)×(n+1)

with

φε
T (0) = ϕ0, ρε

T (0) = ρ(0), φε
T (T ) = ρε

T (T ) = ρ(T ).

Set

C = max
∂ΣT ×M

∣∣(φε
T − ρ̄

) − (
ρε

T − ρ̄
)∣∣

= max
∂ΣT ×M

∣∣φε
T − ρε

T

∣∣

= max
M

|ϕ0 − ρ(0)|.
Note that this constant C is independent of T . By the maximum principle
for the Monge Ampere equation, we have

max
ΣT ×M

∣
∣(φε

T − ρ̄
) − (

ρε
T − ρ̄

)∣∣ ≤ max
∂ΣT ×M

∣
∣(φε

T − ρ̄
) − (

ρε
T − ρ̄

)∣∣.

In other words,

max
ΣT ×M

∣
∣φε

T − ρε
T

∣
∣ < C.

Let ε → 0, we obtain the desired estimate.

max
ΣT ×M

|φT − ρ| < C. ��
From the proof, it is clear that we do not need to make any assumption

on h in this lemma except that the initial geodesic ray be tamed by h. Now
the main problem is to decide if any higher derivative of the sequence {φT }
can be controlled uniformly in some sense as T → ∞?

3.2.2 Relative C1,1 estimates for the HCMA equation in unbounded
domains. In this subsection, we want to solve (3.10) and (3.11) for any
large T > 0. In this subsection, we do need to assume that the initial geodesic
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ray ρ is tamed by the ambient metric h. Set

ψ̃T (t, x) = φT (t, x) − ρ̄(t, x). (3.12)

For a sequence of numbers Ti → ∞ we have

ψ̃Ti (Ti, x) = φTi (ti, x) − ρ̄(Ti, x) = ρ(Ti, x) − ρ̄(Ti, x).

According to Lemma 3.17, the modified potential ψ̃T (t, x) has uniform
C0 bound. For simplicity, we drop the explicit dependency on T in this
subsection.

As in [9], we want to use the method of continuity. So we set up the
problem as

det
(

hαβ̄ + ∂2ψ̃

∂wα∂wβ̄

)

(n+1)×(n+1)

= ε det(hij̄)n×n, (3.13)

with boundary condition

ψ̃|{0}×S1×M = ϕ0 − ρ̄(0), and ψ̃|{T }×S1×M = ρ(T ) − ρ̄(T ). (3.14)

For any T fixed, this Dirichlet boundary value has a unique C1,1 solution as
in [9]. The challenge at hand is how to obtain a C1,1 estimate when T → ∞
and ε → 0.

Put ωρ̃(t) =
√−1

2 hαβ̄dwα ∧ wβ̄ and ωφ(t) =
√−1

2 g′
αβ̄

dwα ∧ dwβ̄ where

g′
αβ̄

= hαβ̄ + ∂2ψ̃

∂wα∂wβ̄
.

Denote two Laplacian operators by

∆′ =
n∑

α,β=1

g′αβ̄ ∂2

∂wα∂wβ̄
, ∆̃ =

n∑

α,β=1

hαβ̄ ∂2

∂wα∂wβ̄
.

Following [9], we can prove

Lemma 3.18. There exist two constants λ, C which depend only on the
ambient metric h (independent of T ) and initial Kähler potentials ϕ0, ρ̄(0)
such that

e−λ(ρ−ρ̄)(n + 1 + ∆̃ψ̃(t)) ≤ C · max
t=0,t=T

e−λ(ρ−ρ̄)(n + 1 + ∆̃ψ̃(t)).

Proof. Following Yau’s proof of the Calabi conjecture in [34], we want to
calculate ∆′ (n + 1 + ∆̃ψ̃

)
first.

For any point in ΣT × M, let us fix a coordinate system so that at this
point, both ωρ̃(t) = √−1hαβ̄dwα ⊗ dwβ̄ and the complex Hessian of ψ̃ are
in diagonal forms. Moreover, the connection of ωρ̄(t) vanishes at the same
point. In other words, we assume that hij̄ = δi j̄ and ψ̃i j̄ = δi j̄ψ̃iī . Thus

g′is̄ = δis̄

1 + ψ̃iī

.
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For convenience, put

F = ln ε + log det(hij̄).

Then our equation reduces to

log det
(

hij̄ + ∂2ψ̃

∂wi∂w j̄

)
= F + log det(hij̄).

We first follow the standard calculation of C2 estimates in [34]. Differentiate
both sides with respect to ∂

∂wk

(g′)i j̄

(
∂hij̄

∂wk
+ ∂3ψ̃(t)

∂wi∂w̄j∂wk

)
− hij̄

∂hij̄

∂wk
= ∂F

∂wk
,

and differentiating again with respect to ∂
∂w̄l

yields

(g′)i j̄

(
∂2hij̄

∂wk∂w̄l
+ ∂4ψ̃(t)

∂wi∂w̄j∂wk∂w̄l

)
+ htj̄his̄ ∂hts̄

∂w̄l

∂hij̄

∂wk
− hij̄

∂2hij̄

∂wk∂w̄l

− (g′)t j̄(g′)is̄

(
∂hts̄

∂w̄l
+ ∂3ψ̃(t)

∂wt∂w̄s∂w̄l

)(
∂hij̄

∂wk
+ ∂3ψ̃(t)

∂wi∂w̄j∂wk

)
= ∂2F

∂wk∂w̄l
.

Assume that we have normal coordinates at the given point, i.e., hij̄ = δij

and the first order derivatives of g vanish. Now taking the trace of both
sides, we have

∆̃F = hkl̄(g′)i j̄

(
∂2hij̄

∂wk∂w̄l
+ ∂4ψ̃(t)

∂wi∂w̄j∂wk∂w̄l

)

− hkl̄(g′)t j̄(g′)is̄ ∂3ψ̃(t)

∂wt∂w̄s∂w̄l

∂3ψ̃(t)

∂wi∂w̄j∂wk
− hkl̄hij̄

∂2hij̄

∂wk∂w̄l
.

On the other hand, we also have

∆′(∆̃ψ̃(t)) = (g′)kl̄ ∂2

∂wk∂w̄l

(
hij̄ ∂2ψ̃(t)

∂wi∂w̄j

)

= (g′)kl̄hij̄ ∂4ψ̃(t)

∂wi∂w̄j∂wk∂w̄l
+ (g′)kl̄ ∂2hij̄

∂wk∂w̄l

∂2ψ̃(t)

∂wi∂w̄j
,

and we will substitute ∂4ψ̃(t)
∂wi∂w̄j∂wk∂w̄l

in ∆′(∆̃ψ̃(t)) so that the above reads

∆′(∆̃ψ̃(t)) = −hkl̄(g′)i j̄
∂2hij̄

∂wk∂w̄l
+ hkl̄(g′)t j̄(g′)is̄ ∂3ψ̃(t)

∂wt∂w̄s∂w̄l

∂3ψ̃(t)

∂wi∂w̄j∂wk

+ hkl̄hij̄
∂2hij̄

∂wk∂w̄l
+ ∆̃F + (g′)kl̄ ∂2hij̄

∂wk∂w̄l

∂2ψ̃(t)

∂wi∂w̄j
,
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which we can rewrite after substituting
∂2hij̄

∂wk∂w̄l
= −Rij̄kl̄ and ∂2hij̄

∂wk∂w̄l
= Rjīkl̄

as

∆′(∆̃ψ̃(t)) = ∆̃F + hkl̄(g′)t j̄(g′)is̄ψ̃(t)ts̄lψ̃(t)i j̄k

+ (g′)i j̄ hkl̄ Rij̄kl̄ − hij̄hkl̄ Rij̄kl̄ + (g′)kl̄ Rjīkl̄ ψ̃(t)i j̄ .

Restrict to the coordinates we chose in the beginning so that both g and ψ̃(t)
are in diagonal form. The above transforms to

∆′(∆̃ψ̃(t)) = 1

1 + ψ̃(t)iī

1

1 + ψ̃(t)j j̄

ψ̃(t)i j̄kψ̃(t)ī j k̄ + ∆̃F

+ Riīkk̄

(
− 1 + 1

1 + ψ̃(t)iī

+ ψ̃(t)iī

1 + ψ̃(t)kk̄

)
.

Set now C = infi �=k Riīkk̄ and observe that

Riīkk̄

(
− 1 + 1

1 + ψ̃(t)iī

+ ψ̃(t)iī

1 + ψ̃(t)kk̄

)
= 1

2
Riīkk̄

(ψ̃(t)kk̄ − ψ̃(t)iī)
2

(1 + ψ̃(t)iī)(1 + ψ(t)kk̄)

≥ C

2

(1 + ψ̃(t)kk̄ − 1 − ψ(t)iī)
2

(1 + ψ̃(t)iī)(1 + ψ̃(t)kk̄)

= C

(
1 + ψ̃(t)iī

1 + ψ̃(t)kk̄

− 1

)
,

which yields

∆′(∆̃ψ̃(t)) ≥ 1

(1 + ψ̃(t)iī)(1 + ψ̃(t)j j̄)
ψ̃(t)i j̄kψ̃(t)ī j k̄ + ∆̃F

+ C

(
(n + 1 + ∆̃ψ̃(t))

∑

i

1

1 + ψ̃(t)iī

− 1

)
.

We need to apply one more trick to obtain the requested estimates. Namely,

∆′(e−λψ̃(t)(n + 1 + ∆̃ψ̃(t)))

= e−λψ̃(t)∆′(∆̃ψ(t)) + 2∇′e−λψ̃(t)∇′(n + ∆̃ψ(t))

+ ∆′(e−λψ̃(t))(n + 1 + ∆̃ψ̃(t))

= e−λψ̃(t)∆′(∆̃ψ̃(t)) − λe−λψ̃(t)(g′)iīψ̃(t)i(∆̃ψ̃(t))ī

− λe−λψ̃(t)(g′)iīψ̃(t)ī(∆̃ψ̃(t))i

− λe−λψ̃(t)∆′ψ̃(t)(n + 1 + ∆̃ψ̃(t))

+ λ2e−λψ̃(t)(g′)iīψ̃(t)iψ̃(t)ī(n + 1 + ∆̃ψ̃(t))
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≥ e−λψ̃(t)∆′(∆̃ψ̃(t))

− e−λψ̃(t)(g′)iī(n + ∆̃ψ̃(t))−1(∆̃ψ̃(t))i(∆̃ψ̃(t))ī

− λe−λψ̃(t)∆′ψ̃(t)(n + 1 + ∆̃ψ̃(t)),

which follows from the Schwarz lemma applied to the middle two terms.
We will write out one term here; the other goes in an analogous way.
(
λe− λ

2 ψ̃(t)ψ̃(t)i(n + ∆̃ψ̃(t))
1
2
)(

e− λ
2 ψ̃(t)(∆̃ψ̃(t))ī(n + 1 + ∆̃ψ̃(t))− 1

2
)

≤ 1

2

(
λ2e−λψ̃(t)ψ̃(t)iψ̃(t)ī(n + 1 + ∆̃ψ̃(t))

+ e−λψ̃(t)(∆̃ψ̃(t))ī(∆̃ψ̃(t))i(n + ∆̃ψ̃(t))−1
)
.

Consider now the following

− (n + 1 + ∆̃ψ̃(t))−1 1

1 + ψ̃(t)iī

(∆̃ψ̃(t))i(∆̃ψ̃(t))ī + ∆′∆̃ψ̃(t)

≥ −(n + 1 + ∆̃ψ̃(t))−1 1

1 + ψ̃(t)iī

|ψ̃(t)kk̄i|2 + ∆̃F

+ 1

1 + ψ̃(t)iī

1

1 + ψ̃(t)kk̄

ψ̃(t)kī j̄ψ̃(t)ik̄ j + C(n + 1 + ∆̃ψ̃(t))
1

1 + ψ̃(t)iī

.

On the other hand, using the Schwarz inequality, we have

(n + ∆̃ψ̃(t))−1 1

1 + ψ̃(t)iī

|ψ̃(t)kk̄i |2

= (n + 1 + ∆̃ψ̃(t))−1 1

1 + ψ̃(t)iī

∣
∣∣
∣

ψ̃(t)kk̄i

(1 + ψ̃(t)kk̄)
1
2

(1 + ψ̃(t)kk̄)
1
2

∣
∣∣
∣

2

≤ (n + 1 + ∆̃ψ(t))−1

(
1

1 + ψ̃(t)iī

1

1 + ψ̃(t)kk̄

ψ̃(t)kk̄iψ̃(t)k̄kī

)
(1 + ψ̃(t)ll̄)

= 1

1 + ψ̃(t)iī

1

1 + ψ̃(t)kk̄

ψ̃(t)kk̄iψ̃(t)k̄kī

= 1

1 + ψ̃(t)iī

1

1 + ψ̃(t)kk̄

ψ(t)ik̄kψ̃(t)kī k̄

≤ 1

1 + ψ̃(t)iī

1

1 + ψ̃(t)kk̄

ψ̃(t)ik̄ jψ̃(t)kī j̄,

so that we get

− (n + ∆̃ψ̃(t))−1 1

1 + ψ̃(t)iī

(∆̃ψ̃(t))i(∆̃ψ̃(t))ī + ∆′∆̃ψ̃(t)

≥ ∆̃F + C(n + 1 + ∆̃ψ̃(t))
1

1 + ψ̃(t)iī

.
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Putting all these together, we obtain

∆′(e−λψ̃(t)(n + ∆̃ψ̃(t)))

≥ e−λψ̃(t)

(
∆̃F + C(n + 1 + ∆̃ψ̃(t))

n∑

i=1

1

1 + ψ̃(t)iī

)

− λe−λψ̃(t)∆′ψ̃(t)(n + 1 + ∆̃ψ̃). (3.15)

Consider

∆̃F = hαβ̄
∂2 log det(hij̄)

∂wα∂wβ̄
= −R(ρ(t)).

Plugging this into the inequality (3.15), we obtain

∆′(e−λψ̃(t)(n + ∆̃ψ(t)))

≥ e−λψ̃(t)

(
C(n + 1 + ∆̃ψ(t))

n∑

i=1

1

1 + ψ̃(t)iī

)

− λe−λψ̃(t)∆′ψ̃(t)(n + 1 + ∆̃ψ̃(t)) − R(ρ(t))e−λψ̃(t).

Now

∆′ψ̃(t) = ∆′ψ̃(t) = trg′(ω̃ + i∂∂̄ψ̃ − ω̃)

= n + 1 − trg′h.

Plugging this into the above inequality, we obtain

∆′(e−λψ̃(t)(n + ∆̃ψ̃(t)))

≥ e−λψ̃(t)

(
(C + λδ)(n + 1 + ∆̃ψ̃(t))

n+1∑

i=1

1

1 + ψ(t)iī

)

− |λ|c3e−λψ̃(t)(n + 1 + ∆̃ψ̃(t)) − R(ρ(t))e−λψ̃(t).

Let λδ = −C + 1, we then have

∆′(e−λψ̃(t)(n + ∆̃ψ̃(t)))

≥ e−λψ̃(t)

(
(n + ∆̃ψ̃(t))

n+1∑

i=1

1

1 + ψ̃(t)iī

)

− c5e−λψ̃(t)(n + 1 + ∆̃ψ̃(t)) − c2e−λψ̃ .

Here c5 is a uniform constant.

Claim. The maximum value of e−λψ̃(t)(n + 1 + ∆̃ψ̃(t)) must occur in
∂ΣT × M.
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Otherwise, if the maximum occurs in the interior, we have

e−λψ̃(t)

(
(n + 1 + ∆̃ψ̃(t))

n+1∑

i=1

1

1 + ψ̃(t)iī

)

− c5e−λψ̃(t)(n + 1 + ∆̃ψ̃(t)) − c2e−λψ̃ ≤ 0.

However,

n+1∑

i=1

1

1 + ψ̃(t)iī

→ ∞

as ε → 0. This leads to a contradiction when T is finite. Thus,

e−λψ̃(t)(n + 1 + ∆̃ψ̃(t)) ≤ max
t=0,t=T

e−λψ̃(t)(n + 1 + ∆̃ψ̃(t)).

In other words,

e−λ(ρ−ρ̄)(n + 1 + ∆̃ψ̃(t)) ≤ C · max
t=0,t=T

e−λ(ρ−ρ̄)(n + 1 + ∆̃ψ̃(t))

for some uniform constant C since

ψ̃ = ρ − ρ̄ + φT − ρ

and

φT − ρ

is uniformly bounded (independent of T ). ��
Before stating the next lemma, we need to explain a bit about the re-

lationship between a geodesic ray and its bounded ambient geometry. By
Definitions 3.2–3.4, there exists a constant C such that either

sup
[0,∞)×M

|ρ(t, ·) − ρ̄(t, ·)| ≤ C

or the following three inequalities hold

1. |n + 1 + ∆h(ρ − ρ̄)| ≤ C.
2.

∣∣ ∂(ρ−ρ̄)

∂t

∣∣
h

≤ C.
3. The vector

∣
∣ ∂
∂t

∣
∣
h

has uniform upper bound.

Note that the assumption of the uniform bound of ρ − ρ̄ is stronger. On
a first reading, one could perhaps just assume a uniform bound on ρ − ρ̄
throughout this subsection, although the second set of assumptions is more
general.

As in [9], we have

Lemma 3.19. If ψ is a solution of (3.13) at 0 < ε < 1, then there exists
a constant C which depends only on (ΣT × M, h) such that if e−λ(ρ−ρ̄)(n +
1 + ∆̃ψ̃(t)) attains the maximal value at t = T , then for any {t} × S1 × M
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which has h-distance to {T } × S1 × M less than 1, we have

max
{t}×S1×M

(n + 1 + ∆̃ψ̃) ≤ C max
[T−µ,T ]×S1×M

(|∇ψ̃|2h + 1
)
, (3.16)

for any µ > 0 where the h distance from {T − µ} × S1 × M to {T } × M
is small (� 1). On the other hand, if e−λ(ρ−ρ̄)(n + 1 + ∆̃ψ̃(t)) attains the
maximal value at t = 0, then

max
[0,1]×S1×M

(n + 1 + ∆̃ψ̃) ≤ C max
[0,µ]×S1×M

(|∇ψ̃|2h + 1
)
. (3.17)

Now, we are ready to give a proof of Theorem 3.9.

Proof. For simplicity, denote the h-distance between two hyper-surfaces
{t1} × S1 × M and {t2} × S1 × M as dh(t1, t2). Following a blowing up
argument in [9], we can prove that there is a uniform C1,1 estimate for
t ∈ [T − 1, T ] ∪ [0, 1], depending on the t for which

e−λψ̃(t)(n + 1 + ∆̃ψ̃(t))

realizes its maximum. For simplicity, let us assume that

e−λψ̃(t)(n + 1 + ∆̃ψ̃(t))

obtains its maximum at {T } × S1 × M. Thus, we have

max
{t}×S1×M

(n + 1 + ∆̃ψ̃) ≤ C max
[T−µ,T ]×S1×M

(|∇ψ̃|2h + 1
)
, ∀µ > 0

for any t where dh(t, T ) ≤ 1 and dh(T − µ, T ) � 1. Unlike in [9], here we
need to blowup at the maximum point of

|∇ψ̃|h ·
(

1

2
− dh(t, T )

)
, ∀t ∈

[
T

2
, T

]
.

Note that we don’t assume that ψ̃ has a uniform C0 bound. To bypass this
difficulty, we note that

ψ̃ = ϕ − ρ + ρ − ρ̄.

By assumption, the first and second derivatives of the two functions ψ̃ and
ϕ − ρ are equivalent. Therefore, we really blowup at the maximum of

|∇(ϕ − ρ)|h ·
(

1

2
− dh(t, T )

)
, ∀t ∈

[
T

2
, T

]
.

As in [9], we can prove that |∇(ϕ − ρ)|h is uniformly bounded for t ∈
[T − 1

2 , T ]. Consequently, this implies uniform control on |∇ψ̃|h . The
crucial observation here is that the distance function dh(t, T ) is a positive
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function which vanishes in the boundary, and the hessian of dh(t, T ) with
respect to the metric h is positive and bounded.

Using Lemma 3.19, we have

n + 1 + ∆̃ψ̃ ≤ C

where C is a constant independent of T . Using the estimates of Lemma 3.18,
we obtain a uniform growth control on geodesic ray. Theorem 3.9 then
follows. ��

4 On the lower bound of the Calabi energy

In this section, we will give a lower bound estimate for the modified Calabi
energy in the absence of a cscK metric or an extremal Kähler metric. Note
that for an algebraic manifold, the corresponding theorem is given in [17].

4.1 The classical theory of Futaki–Mabuchi and A. Hwang. Let K =
K(J) be a maximal compact subgroup of the automorphism group of the
Kähler manifold and let K = K(J) be its Lie algebra of gradient holo-
morphic vector fields in M. According to E. Calabi, if there is a cscK metric
or CextrK metric, the cscK metric or CextrK metric must be symmetric
with respect to one of these maximal compact subgroups (up to holomorph-
ic conjugation). Therefore, it makes perfect sense to consider a restricted
class HK ⊂ H where all Kähler metrics are invariant under K . For sim-
plicity, suppose ω is invariant with respect to action of K . Recall that the
Lichnerowicz operator is defined as:

Lg( f ) = f,αβdzα ⊗ dzβ,

where the right hand side is the (2,0) component of the Hessian form of f
with respect to the Kähler metric g. For any metric g ∈ HK , define Ker(Lg)

to be the real part of the kernel8 of the operator Lg in C∞(M). It is easy to
see the correspondence between Ker(Lg) and K in the following formula

X = gαβ̄ ∂

∂wα

∂θX

∂wβ̄

where

X ∈ K, θX ∈ Ker(Lg) and
∫

M
θXωn

g = 0.

It is also easy to see that this correspondence is 1–1 as long as g ∈ K .
Futaki–Mabuchi define a bilinear form in K by

(X, Y ) =
∫

M
θXθYωn

g.

8 Usually, the Kernel space cannot be split as real part and imaginary part. However, in
the case when the metric is invariant under K(J ), its Lie algebra K(J ) always corresponds
to this real part of the Kernel space.



Lower bound of the Calabi energy and geodesic distance 481

Here θY is the holomorphic potential of Y . Futaki–Mabuchi proved that
such a bilinear form is positive definite and well defined on HK . From the
definition of θX , it is easy to see that if g ∈ HK , then θX is real since

LIm(X )ωg = 0 ∀X ∈ K and g ∈ HK .

Thus, the Futaki–Mabuchi bilinear form is positive definite. To show it is
well defined, we need to show that it is invariant as the metric varies
inside HK . Let ωg(t) = ωg + t

√−1∂∂̄ϕ ∈ HK . Let

X = g(t)αβ̄ ∂

∂wα

∂θX(t)

∂wβ̄
, and

Y = g(t)αβ̄ ∂

∂wα

∂θY (t)

∂wβ̄
.

Then,

θX(t) = θX + tX(ϕ), θY (t) = θY + tY(ϕ),

where

LIm(X )ϕ = LIm(Y )ϕ = 0.

Set

(X, Y )t =
∫

M
θX(t)θY (t)ωn

g(t).

It is straightforward to compute

d

dt
(X, Y )t =

∫

M

(
θY (t)

d

dt
θX(t) + θX(t)

d

dt
θY (t) + θX(t)θY (t)∆g(t)ϕ

)
ωn

g(t)

=
∫

M

(
θY (t)X(ϕ) + θX(t)Y(ϕ)

− g(t)αβ̄ ∂θX(t)

∂wβ̄
Y(ϕ)

∂ϕ

∂wα
− g(t)αβ̄ ∂θY (t)

∂wβ̄
X(ϕ)

∂ϕ

∂wα

)
ωn

g(t)

=
∫

M
(θY (t)X(ϕ) + θX(t)Y(ϕ) − θY (t)X(ϕ) − θX(t)Y(ϕ)) ωn

g(t)

= 0.

Thus, the Futaki–Mabuchi bilinear form is well defined. Now, the Calabi–
Futaki character defines a linear map from K toR, so by the Riesz represen-
tation theorem, there is a unique vector field Xc ∈ K such that

FX([ω]) = (X,Xc), ∀X ∈ K.

Since both FX and the Futaki–Mabuchi form are independent of the metric,
Xc is a priori determined. When there is an extremal Kähler metric, then Xc
coincides with the complex gradient vector field of the scalar curvature
function.
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Theorem 4.1 (Hwang). The following inequality holds

inf
g∈HK

Ca(ωg) ≥ FXc([ω]).
Equality holds if there is an extremal Kähler metric in [ω].
Proof. Suppose g ∈ K and using the L2 norm with respect to ωn

g to de-
compose R(g) − R as

R(g) − R = −ρ − ρ⊥ = −∆g F, where ρ ∈ Ker(Lg),

it is easy to see that

Xc = gαβ̄ ∂

∂wα

∂ρ

∂wβ̄
.

Thus,

Ca(ωg) =
∫

M
(R(g) − R )2ωn

g

=
∫

M
ρ2ωn

g +
∫

M
(ρ⊥)2ωn

g

≥ −
∫

M
ρ(R(g) − R )ωn

g =
∫

M
ρ∆g Fωn

g = −
∫

M
∇ρ · ∇Fωn

g

=
∫

M
Xc(F)ωn

g = FXc([ω]). ��
At the time, A. Hwang thought the same proof could be extended to cover
the non-invariant case. Unfortunately, the Futaki–Mabuchi form is no longer
positive definite and the whole argument collapses. Much effort has been
made by other mathematicians to bridge the gap, though none has been
successful. Nonetheless, its generalization to more general settings is both
very interesting and important.

4.2 Approximating C1,1 geodesic segments via long oval discs. For
any two Kähler potentials φ0, φ1 ∈ H, we want to use the almost smooth
solution to approximate the C1,1 geodesic between φ0 and φ1. This approach
was first taken in [12].

Let us setup some notation first. Let Σ(∞) = (−∞,∞) × [0, 1] ⊂ R2

denote the infinitely long strip. For any integer l, let Σ(l) be a long “oval
shape” disc such that Σ(l) is the union of [−l, l] × [0, 1] with a half circle
centered at (−l, 1

2) with radius 1
2 at the left, and a half circle centered at

(l, 1
2 ) with radius 1

2 at the right. Note that we want to smooth out the corner
at the four corner points {±l} × {0, 1} so that Σ(l) is a smooth domain9. By

9 The author wishes to stress that we do this “smoothing” once for all: Namely, we smooth
Σ(1) first. For any l > 1, we may construct Σ(l)(l ≥ 1) by replacing the central line segment
{0} × [0, 1] in Σ(1) by a cylinder [−l + 1, l − 1] × [0, 1].
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construction, {Σ(l)} is a sequence of long ovals in this infinite strip Σ(∞)

where Σ(0) is a disc of radius 1
2 centered at (0, 1

2). Obviously this is different
from the ΣT defined in Sect. 3.

Let ψ be a convex family of Kähler potentials in Σ(∞) given by

ψ(s, t, ·) = φ̄(s, t, ·), ∀(s, t) ∈ Σ(∞). (4.1)

Here φ̄(s, t, ·) can be any convex path connecting φ0, φ1. For instance, we
may set

φ̄(s, t, ·) = (1 − t)φ0 + tφ1 − Kt(1 − t)

where K is a large enough constant. Here K must depend on φ0, φ1 to ensure
this family of potentials is convex. In this subsection, we assume that our
boundary map ψ is independent of s variable.

Consider Dirichlet problem for the HCMA equation (2.5) on the long
oval shape domain Σ(l) with boundary value

φ|∂Σ(l)×M = ψ|∂Σ(l)×M .

As in [9], we want to solve this via approximation method. For any ε > 0,
consider the Dirichlet problem:

(
π∗

2ω + ∂∂̄φ
)n+1 = ε · (

π∗
2ω + ∂∂̄ψ

)n+1
, ∀(s, t, ·) ∈ Σ(l) × M (4.2)

with fixed boundary data

φ|∂Σ(l)×M = ψ|∂Σ(l)×M . (4.3)

Denote the solution to this Dirichlet problem as φ(l,ε) for any l ≥ 1 and
ε ∈ (0, 1). For each fixed l, one can prove as in [9] that the solutions
φ(l,ε) to (4.2) and (4.3) have C1,1 upper bounds independent of ε. The
main problem in this subsection is to determine if this upper bound is also
independent of l.

Theorem 4.2. For every l fixed, there is a C1,1 solution φ(l) to (4.2) and (4.3)
with ε = 0. More importantly, this upper bound on |∂∂̄φ(l,ε)| is independent
of l > 1 and ε ∈ (0, 1].
Remark 4.3. Here we only want to control this second mixed derivatives
of {φ(l,ε)} in its appropriate domain Σ(l) × M. We do not attempt here to
control any higher derivatives at the present work.

We defer the proof of this crucial theorem until later in the section.
As in [9], let φε(t, ·) denote the ε-approximated S1 invariant solution for

the geodesic equation between φ0 and φ1. In other words, we have
(
π∗

2ω + ∂∂̄φε
)n+1 = ε · (

π∗
2ω + ∂∂̄ψ

)n+1
, ∀(t, ·) ∈ [0, 1] × S1 × M.
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Because φε is independent of s, we can view it as a solution in Σ(∞) × M.
In other words, we have

(
π∗

2ω + ∂∂̄φ
)n+1 = ε · (π∗

2ω + ∂∂̄ψ
)n+1

, ∀(t, ·) ∈ Σ(∞) × M (4.4)

with Dirichlet boundary data

φε(s, 0, . . . ) = φ0, φε(s, 1, . . . ) = φ1.

Here we abuse notations by letting

φε(s, t, . . . ) = φε(t, . . . ).

Let φ0 denote the C1,1 geodesic between φ0, φ1. By the maximum principle,
we know that φε monotonically increases as ε decreases to 0. In particular,
we have

ψ(s, t, ·) ≤ φε(s, t, ·) ≤ φ0(t, ·), ∀(s, t) ∈ Σ(∞). (4.5)

In particular, there is an error term o(ε) such that limε→0 o(ε) = 0 in any
C1,α norm and

φε(s, t, ·) = φ0(t) + o(ε). (4.6)

Lemma 4.4. In any fixed compact subset of Σ(∞) × M, {φ(l,ε)} converges
uniformly continuously to φ0 as l → ∞ and ε → 0. In particular, the
same convergence result holds for {φ(l)} in any fixed compact sub-domain
of Σ(∞) × M.

To prove this lemma, we need to introduce a sequence of harmonic
functions h(l) in Σ(l) such that the boundary value of h(l) in ∂Σ(l) is

h(l)(s, t) =
⎧
⎨

⎩

0 |s| ≤ l − 1,

K |s| ≥ l,
∈ [0, K ] otherwise

where K is some large enough positive constant:

K > 2 max |φ0 − ψ| + 1.

The following lemma is critical

Lemma 4.5. In any compact sub-domain O ⊂ Σ(∞), we have

lim
l→∞ max

O
h(l) = 0.

The proof, which we omit, is elementary. Now we are ready to prove
Lemma 4.4.
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Proof. Note that for any 1 ≥ ε > 0 and l fixed, we have
(
π∗

2ω + ∂∂̄φ(l,ε)
)n+1 = ε · (

π∗
2ω + ∂∂̄ψ

)n+1

= (
π∗

2ω + ∂∂̄φε
)n+1

with boundary data

φ(l,ε)|∂Σ(l)×M = ψ|∂Σ(l)×M

≤ φε|∂Σ(l)×M .

By the maximum principle for Monge–Ampere type equations, we have

φ(l,ε) ≤ φε, ∀(s, t, ·) ∈ Σ(l) × M.

Combining this with inequality (4.5), we have

φ(l,ε) ≤ φ0, ∀(s, t, ·) ∈ Σ(l) × M.

It is easy to see that for any (l, ε) we have

ψ(s, t, ·) ≤ φ(l,ε), ∀(s, t, ·) ∈ Σ(l) × M.

Note that h(l) is a harmonic function on Σ(l) and can be viewed as
a pluri-harmonic function in Σ(l) × M. Thus,

π∗
2ω + ∂∂̄(φε − h(l)) = π∗

2ω + ∂∂̄φε, ∀(s, t, ·) ∈ Σ(l) × M.

Thus, we have
(
π∗

2ω + ∂∂̄φ(l,ε)
)n+1 = (

π∗
2ω + ∂∂̄(φε − h(l))

)n+1

with boundary data

φ(l,ε)|∂Σ(l)×M = ψ|∂Σ(l)×M

≥ φε − h(l)|∂Σ(l)×M .

The last inequality holds because ψ = φε when t = 0, 1. In ∂Σ(l) with
t �= 0, 1, we have

h(l) = K > φ0 − ψ ≥ φε − ψ.

By the maximum principle for Monge–Ampere equation, we have

φε − h(l) ≤ φ(l,ε).

In particular, we have

φ0 + o(ε) − h(l) ≤ φ(l,ε) ≤ φ0.

Thus, the sequence of Kähler potentials φ(l,ε) converges to φ0 in any fixed
compact subset of Σ × M in the C0 norm. ��
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In fact, more is true.

Proposition 4.6. For any α ∈ (0, 1), the sequence of Kähler potentials φ(l)

converges to φ0 in any fixed compact subset of Σ(∞) × M in the C1,α norm.

This is just a corollary of Theorem 4.2 and Lemma 4.4. We are now
ready to prove Theorem 4.2.

To obtain uniform C1,1 bound of {φ(l)} independent of l → ∞, we need
to choose some appropriate background Kähler metric first. Let h be the
Kähler metric corresponding to the Kähler form ω̃ given by

π∗
2ω0 +

n∑

i, j=1

∂2ψ

∂wi∂w j̄
dwidw j̄ + 2 Re

( n∑

i=1

∂2ψ

∂wi∂ z̄
dwidz̄

)
+ ∂2ψ

∂z∂ z̄
dzdz̄.

(4.7)

Here z = w0 = s + √−1t. In other words

ω̃ = π∗
2ω0 + √−1∂∂̄ψ̄.

Note that h is a metric defined on Σ(∞) × M with uniform bounds on
curvature and injectivity radius.

The Dirichlet boundary value problem (2.5) can be re-written as a Dirich-
let problem on Σ(l) × M such that

det

(
hαβ̄ + ∂2(φ − ψ)

∂wα∂wβ̄

)

(n+1)×(n+1)

= ε · det(hαβ̄)(n+1)×(n+1), (4.8)

with boundary condition

φ|∂Σ(l)×M = ψ|∂Σ(l)×M . (4.9)

Lemma 4.4 implies a uniform C0 bound on the solution φ(l,ε) − φ0

where ψ is a sub-solution of φ(l,ε). To obtain a super-solution, we define
a sequence of (essentially) harmonic functions ψ̄(l) by solving

∆̃(ψ̄(l) − ψ) + (n + 1) = 0, ∀(s, t, ·) ∈ Σ(l) × M

with boundary data

ψ̄(l)|∂Σ(l)×M = ψ|∂Σ(l)×M .

Here ∆̃ is the Laplacian operator of the Kähler metric h. Since h is a smooth
metric with uniform bound on curvature and injectivity radius in Σ(l) × M
and ψ is a smooth function with uniform bounds (independent of l), the
standard elliptic PDE theory (interior and boundary estimates for harmonic
functions) implies that there is a uniform bound on ψ̄(l) (up to two deriva-
tives, for instance). Note that

ψ ≤ φ(l,ε) ≤ ψ̄(l)

with equality holding on ∂Σ(l) × M. Consequently, we have the following



Lower bound of the Calabi energy and geodesic distance 487

Lemma 4.7. The first derivatives of φ(l,ε) in ∂Σ(l) × M are uniformly
bounded (independent of l).

We want to solve (4.8) for any large l > 1. We follow Yau’s esti-
mate in [34] and we want to set up some notation first. Put ωφ(t) =√−1g′

αβ̄
dwα ⊗ dwβ̄ where

g′
αβ̄

= hαβ̄ + ∂2(φ(t) − ψ(t))

∂wα∂wβ̄
.

Denote the Laplacian operator of this metric as:

∆′ =
n∑

α,β=0

g′αβ̄ ∂2

∂wα∂wβ̄
.

Following [9], we have

Lemma 4.8. There exists a constant C which depends only on the Kähler
metric h (independent of l) such that

e−λ(φ−ψ)(n + 1 + ∆̃(φ − ψ)) ≤ max
∂Σ(l)×M

e−λ(φ−ψ)(n + 1 + ∆̃(φ − ψ)).

Lemma 4.7 implies uniform first derivative bounds of the solution along
the boundary. Using the same boundary estimate as in [9], we have

Lemma 4.9 [9]. There exists a uniform constant C which depends only on
the injectivity radius and curvature of h such that

max
∂Σ(l)×M

(n + 1 + ∆̃(φ − ψ)) ≤ C max
Σ(l)×M

(|∇(φ − ψ)|2h + 1
)
. (4.10)

Combining Lemma 4.8 and Lemma 4.9, we have

max
Σ(l)×M

(n + 1 + ∆̃(φ − ψ)) ≤ C max
Σ(l)×M

(|∇(φ − ψ)|2h + 1
)
. (4.11)

Following a blowing up argument in [9], we can prove that there is
a uniform C1,1 estimate for Σ(l) × M. Theorem 4.2 is then proved.

4.3 The first derivative of the K-energy. It is well-known that the first
derivative of the K-energy functional is monotonically increasing along
any smooth geodesic segment or ray. This is not clear when the geodesic
segment is only C1,1. Using Theorems 1.3.4 and 1.3.5 of Chen–Tian [12],
we can show that the difference of the first derivatives of the K-energy at
the two ends of any C1,1 geodesic segment always has a preferred sign. This
property turns out to be sufficient for our purposes later.

Lemma 4.10. 10 For any two smooth Kähler metrics ϕ0, ϕ1 ∈ H, let ϕ(t, ·)
be the unique C1,1 geodesic connecting these two metrics with ϕ(0, x) = ϕ0

10 This lemma is a natural application of Theorems 1.3.4, 1.3.5 in [12].
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and ϕ(1, x) = ϕ1. Then,
(

dE|ϕ0,
∂ϕ

∂t

∣
∣∣
∣
t=0

)
≤

(
dE|ϕ1,

∂ϕ

∂t

∣
∣∣
∣
t=1

)
.

Remark 4.11. Even though the K-energy is well defined along any C1,1

geodesic path, its derivative is in general not well defined. However, the
evaluation of the K-energy form on ∂ϕ

∂t at the two end points is well defined.
This lemma might be interpreted as a weak convexity property for the
K-energy along a C1,1 geodesic.

We follow the notation of Sect. 4.2. According to Theorem 4.2,
there is a C1,1 solution φ(l) to the geodesic equation with boundary data
ψ : ∂Σ(l) → H where the C1,1 bound is independent of l as l → ∞.
According to Theorem 2.3, for any δ > 0 there exists a modification ψl,δ

such that there is an almost smooth solution φ
(l)
δ : Σ(l) → H corresponding

to the boundary map

φ
(l)
δ

∣
∣
∂Σ(l)×M

= ψl,δ : ∂Σ(l) → H .

Following Theorem 2.3 again, we can modify the boundary map such that
the C2,α(0 < α < 1) norm satisfies

max
∂Σ(l)×M

|ψl,δ − ψ|C2,α = o(δ)

where limδ→0 o(δ) = 0. According to the maximum principle for the
Monge–Ampere equation, we have the following

max
Σ(l)×M

∣
∣φ(l) − φ

(l)
δ

∣
∣ = o(δ).

According to Theorem 4.2, we know that φ(l,δ) has a uniform C1,1 upper
bound which is independent of l, δ. By a standard application, we have

max
Σ(l)×M

∣
∣φ(l) − φ

(l)
δ

∣
∣
C1,α(Σ(l)×M)

= o(δ).

Set

E(l)
δ (s, t) = E

(
φ

(l)
δ (s, t)

)
, E(l)(s, t) = E(φ(l)(s, t)), ∀(s, t) ∈ Σ(l),

(4.12)

and

E(s, t) = E(ϕ(t)), ∀(s, t) ∈ Σ(l). (4.13)

By definition, we have

E(l)
δ (s, 1) = E(l)(s, 1) = E(ϕ1), E(l)

δ (s, 0) = E(l)(s, 0) = E(ϕ0).
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Following Theorem 2.4 (cf. Theorem 1.3.5 of [12]), E(l)
δ is a sub-harmonic

function with respect to its variables (s, t):

∂2E(l)
δ

∂t2
+ ∂2E(l)

δ

∂s2
≥ 0. (4.14)

More importantly, E(l)
δ has uniformly continuous first derivative. Now we

are ready to give the proof of Lemma 4.10.

Proof. Let κ : (−∞,∞) → R be a smooth non-negative function such that
κ ≡ 1 on

[ − 1
2 ,

1
2

]
and vanishes outside of y[− 3

4 ,
3
4

]
. Set

κ(l)(s) = 1

v
κ

(
s

l

)
, where v =

∫ ∞

−∞
κ(s)ds.

For any integer m < l, we can also define

f (ml)(t) =
∫ ∞

−∞
κ(m)(s)

dE(l)
δ

dt
(s, t)ds.

This is clearly well defined since E(l)
δ has continuous first derivative on

(s, t) ∈ Σ(l). In particular, we have

f (ml)(0) =
∫ ∞

−∞
κ(m)(s)

dE(l)
δ

dt

∣
∣
∣∣
(s,0)

ds,

f (ml)(1) =
∫ ∞

−∞
κ(m)(s)

dE(l)
δ

dt

∣∣
∣∣
(s,1)

ds.

Fixing (l, δ), let Fε be any smooth sub-harmonic function in Σ(l) such that

lim
ε→0

Fε = E(l)
δ

uniformly in C1(Σ(l)). Note that Fε is just an approximation of E(l)
δ in Σ(l)

and it has nothing to do with the K-energy functional. Set

f (ml)
ε (t) =

∫ ∞

−∞
κ(m)(s)

dFε

dt
(s, t)ds.

Now

f (ml)
ε (1) − f (ml)

ε (0) =
∫ 1

0

df (ml)
ε

dt
dt

=
∫ 1

0

∫ ∞

−∞
κ(m)(s)

∂2Fε

∂t2
dsdt

=
∫ 1

0

∫ ∞

−∞
κ(m)(s)∆s,tFεdsdt

−
∫ 1

0

∫ ∞

−∞
κ(m)(s)

∂2Fε

∂s2
dsdt
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≥ −
∫ 1

0

∫ ∞

−∞
κ(m)(s)

∂2Fε

∂s2
dsdt

= −
∫ 1

0

∫ ∞

−∞
d2κ(m)(s)

ds2
Fε(s, t)dsdt

= − 1

m2

1

v

∫ 1

0

∫ ∞

−∞
d2κ

ds2

∣
∣∣
∣

s
m

Fε(s, t)dsdt.

Here we have used the fact that Fε is a sub-harmonic function in its variables
(s, t). In other words, we have

f (ml)
ε (1) − f (ml)

ε (0) ≥ − 1

m2

1

v

∫ 1

0

∫ ∞

−∞
d2κ

ds2

∣
∣
∣∣

s
m

Fε(s, t)dsdt.

Taking the limit as ε → 0, we have

f (ml)(1) − f (ml)(0) ≥ − 1

m2

1

v

∫ 1

0

∫ ∞

−∞
d2κ

ds2

∣∣
∣∣

s
m

E(l)
δ (s, t)dsdt.

Note that |E(l)
δ (s, t)| has a uniform bound C. Thus,

1

m2

1

v

∣∣
∣∣

∫ ∞

−∞
d2κ

ds2

∣∣
∣∣

s
m

E(l)
δ (s, t)ds

∣∣
∣∣ ≤ 1

m2

1

v

∫ ∞

−∞

∣∣
∣∣
d2κ

ds2

∣∣
∣∣

s
m

E(l)
δ (s, t)

∣∣
∣∣ds

≤ C

vm2

∫ ∞

−∞

∣∣
∣∣
d2κ

ds2

∣∣
∣∣

s
m

ds

= C

vm

∫ ∞

−∞

∣
∣
∣∣
d2κ

ds2

∣
∣
∣∣
s

ds = C

vm

∫ 1

−1

∣
∣
∣∣
d2κ

ds2

∣
∣
∣∣
s

ds

≤ C

m
for some uniform constant C. Therefore, we have

f (ml)(1) − f (ml)(0) ≥ − 1

m2

1

v

∫ 1

0

∫ ∞

−∞
d2κ

ds2

∣
∣∣
∣

s
m

∣∣E(l)
δ (s, t)

∣∣dsdt

≥ − C

2m
. (4.15)

Recall that

f (ml)(1) =
∫ ∞

−∞
κ(m)(s)

dE(l)
δ

dt
(s, 1)ds

=
∫ ∞

−∞
κ(m)(s)

∫

M
( R − R(ϕ1))

∂φ
(l)
δ

∂t
ωn

ϕ1
ds.

For any fixed m, by Proposition 4.5, φ
(l)
δ converges uniformly to ϕ in

Σ(m) × M. In particular, ∂φ(l)

∂t converges strongly in the Cα-norm to ∂ϕ

∂t in
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Σ(m) × M. Thus, fixing m and letting l → ∞, we have

lim
l→∞ f (ml)(1) =

∫ ∞

−∞
κ(m)(s)

∫

M
( R − R(ϕ1))

∂ϕ

∂t

∣∣
∣∣
t=1

ωn
ϕ1

ds

= lim
l→∞

∫ ∞

−∞
κ(m)(s)

∫

M
( R − R(ϕ1))

∂φ
(l)
δ

∂t

∣
∣∣
∣
t=1

ωn
ϕ1

ds

=
∫ ∞

−∞
κ(m)(s)

∫

M
( R − R(ϕ1))

∂ϕ

∂t

∣
∣
∣∣
t=1

ωn
ϕ1

ds

=
∫

M
( R − R(ϕ1))

∂ϕ

∂t

∣∣
∣
∣
t=1

ωn
ϕ1

.

Similarly, we can prove

lim
l→∞

f (ml)(0) =
∫

M
( R − R(ϕ1))

∂ϕ

∂t

∣
∣
∣∣
t=0

ωn
ϕ0

.

Plugging this into inequality (4.15), we have
(

dE,
∂ϕ

∂t

∣
∣∣
∣
t=1

)

ϕ1

−
(

dE,
∂ϕ

∂t

∣
∣∣
∣
t=0

)

ϕ0

≥ −C

m
.

As m → ∞, we have
(

dE,
∂ϕ

∂t

∣∣
∣∣
t=1

)

ϕ1

≥
(

dE,
∂ϕ

∂t

∣∣
∣∣
t=0

)

ϕ0

.

The lemma is then proved. ��
4.4 The greatest lower bound of the Calabi energy. Note that the
first derivative of the K-energy functional is always non-decreasing along
a smooth geodesic ray. Thus, the � invariant is always well defined along
any smooth geodesic ray. We are ready to prove Theorem 1.6 (cf. The-
orem 3.15).

Proof. Suppose ρ : [0,∞) → ∞ is a geodesic ray parametrized by arc
length such that

lim
t→∞

(
dE,

∂ρ

∂t

)

ρ(t)

< 0

with
∥
∥
∥∥
∂ρ

∂t

∥
∥
∥∥

ωρ(t)

= 1, ∀t ∈ (−∞,∞).

For any Kähler potential ϕ0 ∈ H , consider the unique C1,1 geodesic seg-
ment connecting ϕ0 to ρ(l). Suppose the length of this geodesic segment is
τ(l)(∀l > 0) and denote this geodesic segment as Ψl : s ∈ [0, τ(l)] → H .
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Applying Lemma 4.9 of the preceding subsection, we have
(

dE,
∂Ψl

∂s

∣∣
∣
∣
s=0

)

ϕ0

≤
(

dE,
∂Ψl

∂s

∣∣
∣
∣
s=τ(l)

)

ρ(l)

=
(

dE,
∂Ψl

∂s

∣
∣∣
∣
s=τ(l)

− ∂ρ

∂t

∣
∣∣
∣
t=l

)

ρ(l)

+
(

dE,
∂ρ

∂t

∣
∣∣
∣
t=l

)

ρ(l)

≤
( ∫

M
(R(ρ(l)) − R )2ωn

ρ

) 1
2 ·

(∫

M

(
∂ρ

∂t

∣∣
∣∣
t=l

− ∂Ψl

∂t

∣∣
∣∣
s=τ(l)

)2

ωn
ρ(l)

) 1
2

+
(

dE,
∂ρ

∂t

∣
∣∣
∣
t=l

)

ρ(l)

≤ Ca(ωρ(l))
1
2 ·

(
2 − 2

(
∂ρ

∂t

∣
∣∣
∣
t=l

,
∂Ψl

∂s s=τ(l)

)

ρ(l)

) 1
2

+
(

dE,
∂ρ

∂t

∣
∣∣
∣
t=l

)

ρ(l)

.

Denote the three points ϕ0, ρ(0), ρ(l) as C, B, A in H . For l large enough,
the geodesic triangle ABC is a thin triangle with two long sides CA = ϕ0ρ(l),
BA = ρ(0)ρ(l) with lengths τ(l), l, respectively, while the length of side
CB = ϕ0ρ(0) is fixed. By triangle comparison, we have

l − |BC| < τ(l) < l + |BC|.
With l large enough, we can essentially treat τ(l) = l. According to Calabi–
Chen [8], the infinite dimensional space H is a non-positively curved mani-
fold in the sense of Alexandrov. Thus, the small angle at A = ρ(l) on this
long, thin geodesic hinge approaches 0 as l → ∞. Moreover, it is smaller
than the small angle of the corresponding long, thin hinge in the Euclidean
plane. Thus, we have

0 ≤ l2 ·
(

1 −
(

∂ρ

∂t

∣
∣
∣∣
l

,
∂Ψl

∂s s=τ(l)

)

ρ(l)

)
≤ C

for some uniform constant C. On the other hand, if the geodesic ray is
effectively destabilizing, we have

lim sup
t→∞

Ca(ωρ(t)) · 1

t2
= 0.

Now plugging this into a previous inequality, we obtain
(

dE,
∂Ψl

∂s

∣
∣∣
∣
s=0

)

ϕ0

≤ Ca(ωρ(l))
1
2 ·

(
2 − 2

(
∂ρ

∂t

∣
∣∣
∣
t=l

,
∂Ψl

∂s s=τ(l)

)

ρ(l)

) 1
2

+
(

dE,
∂ρ

∂t

∣
∣∣
∣
t=l

)

ρ(l)

= o

(
1

l

)
+

(
dE,

∂ρ

∂t

∣∣
∣∣
t=l

)

ρ(l)

< 0.
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The last inequality holds for large enough l since we assume that ρ is
a destabilizing geodesic ray. By the definition of the � invariant, we have

−�(ρ) = − lim inf
l→∞

(
dE,

∂ρ

∂t

∣∣
∣∣
l

)

ρ(l)

≤ lim inf
l→∞

(
o

(
1

l

)
−

(
dE,

∂Ψl

∂s

∣
∣∣
∣
s=0

)

ϕ0

)

≤ lim inf
l→∞

( ∫

M
(R(ωϕ0) − R )2ωn

ϕ0

) 1
2

(∫

M

(
∂Ψl

∂s

∣
∣∣
∣
s=0

)2

ωn
ϕ0

) 1
2

= (Ca(ωϕ0))
1
2 .

In other words, we have

Ca(ωϕ0) ≥ �(ρ)2.

Our theorem follows from here directly. ��
Theorem 3.15a can be proved similarly and we omit the proof here. Now

we are ready to prove Theorem 1.5.

Proof. Let Xc be the a priori extremal vector field. Suppose g ∈ HK .
Suppose that ωρ(t)(t ∈ (−∞,∞)) is the one parameter family of Kähler
metrics generated by pulling the Kähler metrics ωg in the direction of Re(X).
It is straightforward to check that ρ(t) satisfies the geodesic equation and

dE(ωρ(t))

dt
= ±FXc([ω]).

Select one direction so that

dE(ωρ(t))

dt
= −FXc([ω]).

Note that the length element of this geodesic line is

∫

M

(
∂ρ

∂t

)2

ωn
ρ(t) = (θXc, θXc) = −(θXc, R(ρ) − R )

= −
∫

M

∂ρ

∂t
(R(ρ(t)) − R)ωn

ρ(t) = FXc .

Now, if we re-parametrize the geodesic by arc length, then the � invariant
along this geodesic line satisfies

�(ρ)2 = FXc([ω]).
Our theorem then follows from Theorem 1.6. ��
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5 On the lower bound of the geodesic distance

Let us prove Theorem 1.2 first. All of calculations here are carried in the
barrier sense as in Sect. 4.3 (for simplicity, we just proceed here as if
everything is smooth).

Proof. We follow the notations of Sect. 4.3. Set

E(ml)(t) =
∫ ∞

−∞
k(m)(s)E(l)(s, t)ds, ∀m ≤ l ∈ N.

Then,

E(ml)(0) = E(ϕ0), E(ml)(1) = E(ϕ1)

and

dE(ml)

dt
(t) = f (ml)(t), ∀t ∈ [0, 1].

Following the same calculation as in Sect. 4.3, for any 0 ≤ t1 < t2 ≤ 1

f (ml)(t2) − f (ml)(t1) ≥ − 1

m2

1

v

∫ t2

t1

∫ ∞

−∞
d2κ

ds2

∣
∣∣
∣

s
m

E(l)(s, t)dsdt

≥ −
∫ t2

t1

1

m2

1

v

∣
∣∣
∣

∫ ∞

−∞
d2κ

ds2

∣
∣∣
∣

s
m

E(l)(s, t)ds

∣
∣∣
∣dt

≥ −
∫ t2

t1

C

m
dt = − C

2m
. (5.1)

Let t1 = 0 and replace t2 by t, we have

f (ml)(0) − C

2m
≤ f (ml)(t).

Let t2 = 1 and replace t1 by t, we have

f (ml)(t) ≤ f (ml)(1) + C

2m
.

Therefore,

E(ϕ1) − E(ϕ0) = E(ml)(1) − E(ml)(0)

=
∫ 1

0

dE(ml)

dt
(t)dt =

∫ 1

0
f (ml)(t)dt

≤
∫ 1

0

(
f (ml)(1) + C

2m

)
dt

=
∫ ∞

−∞
κ(m)(s)

∫

M
( R − R(ϕ1))

∂φ(l)

∂t
ωn

ϕ1
ds + C

2m
.
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As before, let l → ∞, so φ(l)(s, t) converges to the geodesic ϕ(t) strongly
in C1,α norm. Then, letting m → ∞, we have

E(ϕ1) − E(ϕ0) ≤
∫

M
( R − R(ϕ1))

∂ϕ

∂t
ωn

ϕ1

≤ √
Ca(ϕ1)

√∫

M

(
∂ϕ

∂t

)2

ωn
ϕ1

= √
Ca(ϕ1) · d(ϕ0, ϕ1). ��

Corollary 1.3 follows from this theorem since the |ϕ|∞ bound will imply
the geodesic distance of ϕ to a fixed Kähler potential is bounded.

Before we prove Theorem 1.4, we need to prove a proposition first.

Proposition 5.1 [11]. Let Ric(ωϕ) ≥ −C1 then there is a uniform con-
stant C such that :

inf
M

log
ωn

ϕ

ωn
≥ −4C exp

(
2 + 2

∫

M
log

ωn
ϕ

ωn
ωn

ϕ

)
.

If C1 = 0, then C is a dimensional constant. Otherwise, C depends on C1
and |ϕ|L∞ or sup ϕ− + ∫

M ϕ+ωn.

Proof. Set

F = log
ωn

ϕ

ωn
.

The lower Ricci curvature bound implies that

Ric(ω) − i∂∂̄F ≥ −C1ωϕ.

Taking the trace of both sides, we have

∆(F − C1ϕ) ≤ C2

for some constant C2.
Choose a constant c such that

∫

M
log

ωn
ϕ

ωn
ωn

ϕ ≤ c.

In a fixed Kähler class, we have
∫

M
ωn = Vol(M) = 1.

Put ε to be exp(−2 − 2c). Observe that

log
ωn

ϕ

ωn
ωn

ϕ ≥ −e−1ωn,
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we have

c ≥
(∫

εωn
ϕ>ωn

+
∫

εωn
ϕ≤ωn

)(
log

ωn
ϕ

ωn
ωn

ϕ

)

≥
∫

εωn
ϕ>ωn

(
log

1

ε

)
ωn

ϕ +
∫

εωn
ϕ≤ωn

(−e−1ωn)

> 2(1 + c)
∫

εωn
ϕ>ωn

ωn
ϕ − 1.

It follows that
∫

εωn
ϕ>ωn

ωn <
1

2
,

and consequently,
∫

ωn≤4ωn
ϕ

ωn ≥ ε

∫

ε
4 ωn≤εωn

ϕ≤ωn
ωn

ϕ ≥ 1

4
,

because we know
∫

ωn≤4ωn
ϕ

ωn
ϕ >

3

4

and
∫

ωn≤εωn
ϕ

>
1

2
.

Now by Green’s formula, we have

(F − C1ϕ)(p) = −
∫

M
G(p, q)∆(F − C1ϕ)ωn(q) +

∫

M
(F − C1ϕ)ωn,

where G(p, q) ≥ 0 is a Green function of ω. If either |ϕ|L∞ is bounded, or

sup ϕ− ≤ C, and
∫

M
ϕ+ωn ≤ C,

then

inf
M

F ≥ inf
M

F
∫

ωn≥4ωn
ϕ

ωn +
∫

ωn<4ωn
ϕ

Fωn − C1 sup ϕ + C1

∫

M
(−ϕ−)ωn

≥
∫

M
Fωn − C

≥ inf
M

F
∫

ωn≥4ωn
ϕ

ωn +
∫

ωn<4ωn
ϕ

Fωn − C
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≥ inf
M

F
∫

ωn≥4ωn
ϕ

ωn − log 4
∫

ωn<4ωn
ϕ

ωn − C

≥
(

1 − ε

4

)
inf
M

F − C,

where we can assume infM F < 0. Therefore, we have

inf
M

F ≥ −4C exp(2 + 2c).

By the way we choose the constant c in the beginning of the proof, the
proposition is proved. ��

One more lemma is needed.

Lemma 5.2. Pick a constant C, then there is a second constant C ′ such that
whenever (M, [ω]) is a Kähler manifold with Sobolev constant Csob < C,
all the Kähler potentials ψ on (M, [ω]) which satisfy ‖ψ+‖L p < C also
satisfy ‖ψ+‖∞ < C ′.

The proof is based on a version of Moser iteration and it is well-known
to the experts. We will include it here for the convenience of readers.

Proof. Without loss of generality, may assume ψ ≥ 1 for simplicity. We
start from

n + ∆′ψ > 0,

here ∆′ is the Laplacian operator of ω′. For any p ≥ 1, we have
∫

M
n · ψ pω′n ≥ p

∫

M
|∇ψ|2ψ p−1ω′n

= p
∫

M
|∇ψ

p+1
2 |2ψ p−1ω′n

= 4p

(p + 1)2

∫

M
|∇ψ

p+1
2 |2ω′n.

Since ω′ has a uniform Sobolev constant, we have

Csob

(∫

M
ψ

p+1
2 · 2m

m−2

)m−2
m ≤

∫

M
|∇ψ

p+1
2 |2 + (ψ

p+1
2 )2

≤ (p + 1)2

4p
n

∫

M
ψ pω′n +

∫

M
ψ p+1ω′n.

Thus, there is a uniform constant C which is independent of p such that

(∫

M
ψ(p+1)· m

m−2

)m−2
m ≤ C(p + 1)

∫

M
ψ p+1ω′n.
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Set

p1 = 1 > 0, p2 = p1
m

m − 2
, . . . , pj+1 = pj · m

m − 2
, . . .

Then,

‖ψ‖pj+1 ≤ C
1
pj p

1
pj

j ‖ψ‖pj , ∀ j = 1, 2, . . .

In other words,

‖ψ‖pj+1 ≤ ‖ψ‖p1 · C
∑ j

k=1

(
1
pj

+1pj log pj

)
‖ψ‖p1 .

Let j → ∞, then

‖ψ‖L∞ ≤ C‖ψ‖L2 . ��
Now we are ready to prove Theorem 1.4.

Proof. We consider a family of Kähler potentials ϕ such that:

1. Ric(ωϕ) is uniformly bounded from below.
2. The diameter of (M, ωϕ) is uniformly bounded from above.
3. The geodesic distance d(0, ϕ) is uniformly bounded from above.

The first two conditions imply that there are uniform Sobolev and Poincare
constants for (M, ωϕ). In the proof here, C represents a constant which may
change from line to line, but can always be chosen to be independent of ϕ.

Normalize ϕ by adding a constant so that

I(ϕ) = 0.

According to a theorem in [9], we have

max
( ∫

M
ϕ−ωn,

∫

M
ϕ+ωn

ϕ

)
≤ d(0, ϕ) ≤ C. (5.2)

Here ϕ+, ϕ− are positive and negative parts of ϕ respectively.
Normalize the K-energy to be 0 at ω0. Theorem 1.2 implies that

E(ϕ) ≤ E(0) + √
Ca(ϕ)d(0, ϕ) ≤ C.

If the K-energy functional is quasi-proper (cf., the detailed expression of
the K-energy functional in (2.7)), we obtain

∫

M
log

ωn
ϕ

ωn
ωn

ϕ ≤ C.

According to G. Tian [32], there is a positive constant α > 0 which depends
only on the Kähler class [ω] such that for any ϕ ∈ H , we have

∫

M
e−α(ϕ−sup ϕ)ωn ≤ C.
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Or
∫

M
e−α(ϕ−sup ϕ)−log

ωn
ϕ

ωn ωn
ϕ ≤ C.

Consequently, we have
∫

M
−α(ϕ − sup ϕ) − log

ωn
ϕ

ωn
ωn

ϕ ≤ C.

Therefore,

α sup ϕ ≤ α

∫

M
ϕωn

ϕ +
∫

M
log

ωn
ϕ

ωn
ωn

ϕ

≤ α

∫

M
ϕωn

ϕ +
∫

M
log

ωn
ϕ

ωn
ωn

ϕ

≤ C.

It follows that
∫

M
|ϕ|ωn ≤ C. (5.3)

By the detailed expression for I(ϕ) (cf. (2.6)), we have

J(ϕ) ≤ C. (5.4)

Alternatively, when the K-energy is proper, we can obtain estimates (5.3)
and (5.4) as well. Note that if the K-energy functional E is proper in H , we
have

0 ≤ J(ϕ) ≤ C. (5.5)

Again, from the detailed expression of I(ϕ) (cf. (2.6)), we have
∣
∣∣
∫

M
ϕωn

∣
∣∣ ≤ C.

Comparing with estimate (5.2), we have
∫

M
ϕ+ωn ≤ C (5.6)

and
∫

M
ϕ−ωn

ϕ ≤ C, (5.7)

or
∫

M
|ϕ|ωn ≤ C. (5.8)
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Since Ric(ωϕ) ≥ −C and the diameter is bounded from below, we have
a uniform Poincare constant for (M, ωϕ). Using the Poincare inequality, we
have

∫

M
ϕ2ωn +

∫

M
ϕ2ωn

ϕ ≤ C
(

J(ϕ) +
( ∫

M
|ϕ|ωn

ϕ

)2) ≤ C.

Recall that

n + ∆ϕ ≥ 0.

Using Moser iteration, and the J functional bound (5.4), we obtain

0 ≤ ϕ+ ≤ C.

Recall that

n + ∆ϕ(−ϕ) ≥ 0.

By the assumption that the Sobolev constant of (M, ωϕ) is bounded and the
L2 norm is bounded above, the inequality (5.7) implies

0 ≤ ϕ− ≤ C.

In other words, we have

|ϕ|L∞ ≤ C.

To derive an upper bound on the volume form, first note that Ric(ωϕ) is
bounded from above, thus

∆

(
log

ωn
ϕ

ωn
+ C2ϕ

)
≥ −C (5.9)

for some constants C2, C. Thus
(

log
ωn

ϕ

ωn
+ C2ϕ

)
(x)

= −
∫

M
G(x, y)∆

(
log

ωn
ϕ

ωn
+ C2ϕ

)
ωn +

∫

M

(
log

ωn
ϕ

ωn
+ C2ϕ

)
ωn

≤ +C + log
∫

M

ωn
ϕ

ωn
ωn +

∫

M
ϕωn

≤ C +
∫

M
ϕωn.

Using the fact that |ϕ|L∞ is bounded, we have

log
ωn

ϕ

ωn
≤ C

for some constant C.
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To prove the metric is equivalent, we follow Yau’s proof of the Calabi
conjecture (cf. [13]). Following the notation of Sect. 3.2.2, set

u = exp(−λϕ)(n + ∆ϕ), and F = log
ωn

ϕ

ωn
.

At the maximal point p of the function u, similar to inequality (3.15), we
have

∆ϕ{exp(−λϕ)(n + ∆ϕ)}(p) ≤ 0.

At the point p, we have

0 ≥ ∆F − n2 inf
i �=l

Riīll̄ − λn(n + ∆ϕ)

+
(

λ + inf
i �=l

Riī ll̄

)
exp

{ −F

n − 1

}
(n + ∆ϕ)

n
n−1 .

Applying inequality (5.9), we have

0 ≥ −C∆ϕ − C2 − n2 inf
i �=l

Riī ll̄ − λn(n + ∆ϕ)

+
(

λ + inf
i �=l

Riī ll̄

)
exp

{ −F

n − 1

}
(n + ∆ϕ)

n
n−1 .

Since we already have control of F from both above and below here, we can
choose λ large enough, to imply that (n + ∆ϕ)(p) are uniformly bounded
from above. Therefore,

u = exp(−λϕ)(n + ∆ϕ), and F = log
ωn

ϕ

ωn

are uniformly bounded from above (since |ϕ|L∞| is uniformly bounded).
Thus

0 < n + ∆ϕ ≤ C.

Thus, ωϕ is uniformly equivalent to ω. Consequently, |∆F| is uniformly
bounded. Thus, the metric is uniformly C1,α bounded for any α ∈ (0, 1). ��

6 Further remarks: some open problems on geodesic rays and
geodesic stability

Conjecture/Question 6.1. For every smooth test configuration, there is
a corresponding relative C1,1 geodesic ray.

In [1], Arezzo–Tian constructed a smooth geodesic ray out of special
degenerations where the central fiber is analytic. One may be able to prove
this directly with the method of continuity. A more challenging question is
the following
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Conjecture/Question 6.2. For a smooth test configuration where the central
fiber is smooth except on some codimension 2 sub-variety, there is a geodesic
ray associated to this test configuration. Moreover, the geodesic ray is
smooth everywhere except along a sub-variety of codimension at least 2.

One interesting question is whether the � invariant defined here and the
generalized Futaki invariant defined elsewhere are actually the same. The
author believes this is the case. This in particular means that the notion of
stability introduced here more-or-less corresponds to the notion of stability
in the algebraic setting, as is discussed so eloquently by Yau, Tian [33],
Donaldson [15] and others.

Conjecture/Question 6.3. If the initial geodesic ray has bounded geometry,
then there is a geodesic ray which is parallel to this initial ray from any
generic Kähler potential which is smooth everywhere except on a sub-
variety of codimension 2 or higher.
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