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Abstract. A fundamental conjecture in general relativity asserts that the
domain of outer communication of a regular, stationary, four dimensional,
vacuum black hole solution is isometrically diffeomorphic to the domain of
outer communication of a Kerr black hole. So far the conjecture has been re-
solved, by combining results of Hawking [17], Carter [4] and Robinson [28],
under the additional hypothesis of non-degenerate horizons and real analyt-
icity of the space-time. We develop a new strategy to bypass analyticity based
on a tensorial characterization of the Kerr solutions, due to Mars [24], and
new geometric Carleman estimates. We prove, under a technical assumption
(an identity relating the Ernst potential and the Killing scalar) on the bifur-
cate sphere of the event horizon, that the domain of outer communication of
a smooth, regular, stationary Einstein vacuum spacetime of dimension 4 is
locally isometric to the domain of outer communication of a Kerr spacetime.
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1. Introduction

A fundamental conjecture in general relativity1 asserts that the domains
of outer communication of regular2, stationary, four dimensional, vacuum
black hole solutions are isometrically diffeomorphic to those of Kerr black
holes. One expects, due to gravitational radiation, that general, asymptotic-
ally flat, dynamic, solutions of the Einstein-vacuum equations settle down,
asymptotically, into a stationary regime. A similar scenario is supposed
to hold true in the presence of matter. Thus the conjecture, if true, would
characterize all possible asymptotic states of the general evolution.

So far the conjecture has been resolved, by combining results of Hawk-
ing [17], Carter [4], and Robinson [28], under the additional hypothesis
of non-degenerate horizons and real analyticity of the space-time. The as-
sumption of real analyticity is both hard to justify and difficult to dispense
of. One can show, using standard elliptic theory, that stationary solutions
are real analytic in regions where the corresponding Killing vector-field T
is time-like, but there is no reason to expect the same result to hold true
in the ergo-region (in Kerr, the Killing vector-field T, which is time-like
in the asymptotic region, becomes space-like in the ergo-region). In view
of the main application of the conjectured result to the general problem of
evolution, mentioned above, there is also no reason to expect that, by losing
gravitational radiation, general solutions become, somehow, analytic. Thus
the assumption of analyticity is a serious limitation of the present unique-
ness results. Unfortunately one of the main step in the current proof, due to
Hawking [17], depends heavily on analyticity. As we argue below, to ex-
tend Hawking’s argument to a smooth setting requires solving an ill posed
problem. Roughly speaking Hawking’s argument is based on the observa-
tion that, though a general stationary space may seem quite complicated, its
behavior along the event horizon is remarkably simple. Thus Hawking has
shown that in addition to the original, stationary, Killing field, which has
to be tangent to the event horizon, there must exist, infinitesimally along
the horizon, an additional Killing vector-field. To extend this information,
from the event horizon to the domain of outer communication, requires one
to solve a boundary value problem, with data on the horizon, for a linear
differential equation. Such problems are typically ill posed (i.e. solutions
may fail to exist in the smooth category.) In the analytic category, however,
the problem can be solved by a straightforward Cauchy–Kowalewsky type
argument. Thus, by assuming analyticity for the stationary metric, Hawk-
ing bypasses this fundamental difficulty, and thus is able to extend this
additional Killing field to the entire domain of outer communication. As
a consequence, the space-time under consideration is not just stationary
but also axi-symmetric, situation for which Carter–Robinson’s uniqueness

1 See reviews by B. Carter [5] and P. Chrusciel [9,10] for a history and review of the
current status of the conjecture.

2 The notion of regularity needed here requires a careful discussion concerning the geo-
metric hypothesis on the space-time.
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theorem [4,28] applies. It is interesting to remark that this final step does
not require analyticity.

Though ill posed problems do not, in general, admit solutions, one
can, when a solution is known to exist, often prove uniqueness (we refer
the reader to the introduction in [19] for a more thorough discussion of
this issue). This fact has led us to develop a different strategy for prov-
ing uniqueness based on a characterization of the Kerr solution, due to
Mars [24], and geometric Carleman estimates applied to covariant wave
equations on a general, stationary, black hole background. We discuss this
strategy in more details in the following subsection, after we recall a few
basic definitions and results concerning stationary black holes. Our main
result, stated in Subsect. 1.2 below, proves uniqueness of the Kerr family
among all, smooth, appropriately regular, stationary solutions, with a regu-
lar, bifurcate, event horizon, under an additional assumption which has to be
satisfied along the bifurcate sphere S0 of the event horizon. More precisely
we assume a pointwise complex scalar identity relating the Ernst potential σ
and the Killing scalar F 2 on S0.

1.1. Stationary, regular, black holes. In this subsection we review some
of the main definitions and results concerning stationary black holes (see
also the discussion in the introduction to Sect. 3). We will also give a more
detailed discussion of our new approach to the problem of uniqueness.
Precise assumptions concerning our result will be made only in the next
subsection.

The main objects in the theory of stationary, vacuum, black holes are
3 + 1 dimensional space-times (M, g) which are smooth, strongly causal,
time oriented, solutions of the Einstein vacuum equations, see [17] for
precise definitions, and which are also stationary, asymptotically flat. More
precisely one considers, see for example p. 2 in [15], space-times (M, g)
endowed with a 1-parameter group of isometries Φt , generated by a Killing
vector-field T, and which possess a smooth space-like slice Σ0 with an
asymptotically flat end Σ

(end)
0 ⊂ Σ0 on which g(T, T) < 0. To ensure strong

causality we assume that M is the maximal globally hyperbolic extension
of Σ0. This implies, in particular, that all orbits of T are complete, see [8],
and must intersect Σ0, see [14]. Define M(end) = ⋃

t∈RΦt(Σ
(end)
0 ). Take B

to be the complement of �−(M(end)), W the complement of �+(M(end)),
where �±(S) denote the causal future and past sets of a set S ⊂ M. In
other words B (called the black hole region), respectively W (called the
white hole region), is the set of points in M for which no future directed,
respectively past directed, causal curve meets M(end). Also we take E (called
domain of outer communication) the complement of W ∪ B, i.e. E =
�−(M(end)) ∩ �+(M(end)). We further define the future event horizon H+
to be the boundary of �−(M(end)) and the past event horizon H− to be the
boundary of �+(M(end)),

H+ = δB, H− = δW.
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By definition both H+ and H− are achronal (i.e. no two points on H+,
or H− can be connected by time-like curves) boundaries generated by
null geodesic segments. According to the topological censorship theorem,
see [13] or [16], the domain of outer communication E is simply connected.
This implies that all connected components of event horizons must have the
topology of S2 ×R. In our work we shall assume that the event horizon has
only one component.

It follows immediately from the definitions above that the flow Φt must
keep H+ and H− invariant, therefore the generating vector-field T must be
tangent to H . One further assumes that Φt has no fixed points on H with the
possible exception of S0 = H+ ∩ H−. Then either T is space-like or null
at all points of H . If T is null on H , in which case H is said to be a Killing
horizon for T, Sudarski–Wald [30] have proved that the space-time must be
static, i.e. T is hypersurface orthogonal. Static solutions, on the other hand,
are known to be isomorphic to Schwarzschild metrics, see [3,11,21]. In this
paper we are interested only in the case when T is space-like at some points
on the horizon.

The existence of partial Cauchy hypersurface Σ0 implies, in particular,
the existence of a foliation Σt on E, which induces a foliation St on the
horizon H with a well defined area. A key result of Hawking [17] (see
also [12] where the area theorem is proved under very general differen-
tiability assumptions), shows that the area of St is a monotonous function
of t. Using this fact, together with the tangency of the Killing field T, one
can show that the null second fundamental forms of both H+ and H− must
vanish identically, see [17]. Specializing to the future event horizon H+,
Hawking [17] (see also [20]) has proved the existence of a non-vanishing
vector-field K , tangent to the null generators of H+ which is Killing to any
order along H+. Moreover DK K = κK with κ, constant along H+, called
the surface gravity of H+. If κ �= 0 we say that H+ is non-degenerate.
In the non-degenerate case the work of Racz and Wald [27] supports the
hypothesis, which we make in our work (see next subsection), that H+
and H− are smooth null hypersurfaces intersecting smoothly on a 2 sur-
face S0 with the topology of the standard sphere. We say, in this case, that
the horizon H is a smooth bifurcate horizon.

Under the restrictive assumption of real analyticity of the metric g one
can show, see [10,17], that the Hawking vector-field K can be extended
to a neighborhood of the entire domain of communication.3 One can then
show that the spacetime (M, g) is not just stationary but also axi-symmetric.
One can then appeal to the results of Carter [4] and Robinson [28] which
show that the family of Kerr solutions with 0 ≤ a < m exhaust the class
of non-degenerate, stationary axi-symmetric, connected, four dimensional,
vacuum black holes. This concludes the present proof of uniqueness, based
on analyticity.

3 In [15] it is shown that K can be extended in the complement of the domain of outer
communication E without the restrictive analyticity assumption. However their argument
does not apply to the domain of outer communication E.
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Without analyticity any hope of extending K outside H , in E, by a direct
argument encounters a fundamental difficulty. Indeed one needs to extend K
such that it satisfies the Killing equation,

DµKν + DµKν = 0. (1.1)

Differentiating the Killing equation and using the Ricci flat condition
Ric(g) = 0 one derives the covariant wave equation �gK = 0. The
obstacle we encounter is that the boundary value problem �gK = 0
with K prescribed on H is ill posed, which means that it is impossible
to extend K by solving �gK = 0, if the metric is smooth but fails to
be real analytic. To understand the ill posed character of the situation
it helps to consider the following simpler model problem in the domain
E = {(t, x) ∈ R1+3/|x| > 1 + |t|} of Minkowski space R1+3

�φ = F(φ, ∂φ), φ|δE = φ0. (1.2)

Here � is the usual D’Alembertian of R1+3 and F a smooth function of φ
and its partial derivatives ∂αφ, vanishing for φ = ∂φ = 0. One can regard E
as a model of the domain of outer communication and its boundary H = δE
as analogous to the bifurcate event horizon considered above. The problem
is still ill posed; even in the case F ≡ 0 we cannot, in general, find solutions
for arbitrary smooth boundary data φ0. Yet, as typical to many ill posed
problems, even if existence fails we can still prove uniqueness. In other
words if (1.2) has two solutions φ1, φ2 which agree on H = δE then they
must coincide everywhere in E, see [19]. The result is based on Carleman
estimates, i.e. on space-time L2 a-priori estimates with carefully chosen
weights. A more realistic model problem is to consider smooth space-time
metrics g in R1+3 which verify the Einstein vacuum equations and agree, up
to curvature, with the standard Minkowski metric on the boundary H = δE.
Can we prove that g must be flat also in E? It is easy to see, using the Einstein
equations, that the Riemann curvature tensor R of such metrics must verify
a covariant wave equation of the form�g R = R∗ R, with R∗ R denoting an
appropriate quadratic product of components of R. We are thus led to a ques-
tion similar to the one above; knowing that R vanishes on the boundary of E
can we deduce that it also vanishes on E? Using methods similar to those
of [19] we can prove that R must vanish in a neighborhood of H . We also ex-
pect that, under additional global assumptions on the metric g, one can show
that R vanishes everywhere on E and therefore g is locally Minkowskian.

These considerations lead us to look for a tensor-field S, associated to
our stationary metric g, which satisfies the following properties.

(1) If S vanishes in E then the metric g is locally isometric to a Kerr
solution.

(2) S verifies a covariant wave equation of the form,

�gS = A ∗ S + B ∗ DS, (1.3)

with A and B two arbitrary smooth tensor-fields.
(3) S vanishes identically on the bifurcate event horizon H .
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An appropriate space-time tensor verifying condition (1) has been proposed
by M. Mars in [24], based on some previous work of W. Simon [29]; we refer
to it as the Mars–Simon tensor. In this paper we shall show that S verifies
the desired wave equation in (2) and give a sufficient, simple condition
on the bifurcate sphere S0, which insures that S vanishes on the event
horizon H . We then prove, based on a global unique continuation argument,
that S must vanish everywhere in the domain of outer communication E. In
view of Mars’s result [24] we deduce that E is locally isometric with a Kerr
solution.

The unique continuation strategy is based on two Carleman estimates.
The first one establishes the vanishing of solutions to covariant wave equa-
tions, with zero boundary conditions on a neighborhood of S0 on the event
horizon, to a full space-time neighborhood of S0. The proof of this result
can be extended to the exterior of a regular, bifurcate null hypersurface (i.e.
with a regular bifurcate sphere), in a general, smooth, Lorentz manifold.
Our second, conditional, Carleman estimate is significantly deeper as it
depends heavily on the specific properties of stationary solutions of the Ein-
stein vacuum equations. We use it, together with an appropriate bootstrap
argument, to extend the region of vanishing of the Mars–Simon tensor from
a neighborhood of S0 to the entire domain of outer communication E. The
proof of both Carleman estimates (see also discussion in the first subsection
of Sect. 3), but especially the second, rely on calculations based on null
frames and complex null tetrads. We develop our own formalism, which
is, we hope, a useful compromise between that of Newmann–Penrose [26]
and that used in [7,22]. Strictly speaking the formalism used in [7] does
not apply in the situation studied here as it presupposes that the horizontal
distribution generated by the null pair is integrable. The horizontal distri-
bution generated by the principal null directions in Kerr do not verify this
property.

1.2. Precise assumptions and the main theorem. We state now our pre-
cise assumptions. We assume that (M, g) is a smooth,4 time oriented, vac-
uum Einstein spacetime of dimension 3 + 1 and T ∈ T(M) is a smooth
Killing vector-field on M. In addition, we make the following assumptions
and definitions.

AF (Asymptotic flatness). We assume that there is an open subset M(end)

of M which is diffeomorphic to R × ({x ∈ R3 : |x| > R}) for some R
sufficiently large. In local coordinates {t, xi } defined by this diffeomorphism,
we assume that, with r = √

(x1)2 + (x2)2 + (x3)2,

g00 = −1 + 2M

r
+ O(r−2), gij = δij + O(r−1), g0i = O(r−2),

(1.4)

4 M is assumed to be a connected, orientable, paracompact C∞ manifold without bound-
ary.
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for some M > 0, and

T = ∂t therefore ∂tgµν = 0.

We define the domain of outer communication (exterior region)

E = �−(M(end)) ∩ �+(M(end)).

We assume that there is an imbedded space-like hypersurface Σ0 ⊆ M
which is diffeomorphic to {x ∈ R3 : |x| > 1/2} and, in M(end), Σ0 agrees
with the hypersurface corresponding to t = 0. Let T0 denote the future
directed unit vector orthogonal to Σ0. We assume that every orbit of T in E
is complete and intersects the hypersurface Σ0, and

|g(T, T0)| > 0 on Σ0 ∩ E. (1.5)

SBS (Smooth bifurcate sphere). Let

S0 = δ(�−(M(end))) ∩ δ(�+(M(end))).

We assume that S0 ⊆ Σ0 and S0 is an imbedded 2-sphere which agrees with
the sphere of radius 1 in R3 under the identification of Σ0 with {x ∈ R3 :
|x| > 1/2}. Furthermore, we assume that there is a neighborhood O of S0
in M such that the sets

H+ = O ∩ δ(�−(M(end))) and H− = O ∩ δ(�+(M(end)))

are smooth imbedded hypersurfaces diffeomorphic to S0 × (−1, 1), We
assume that these hypersurfaces are null, non-expanding5 , and intersect
transversally in S0. Finally, we assume that the vector-field T is tan-
gent to both hypersurfaces H+ = O ∩ δ(�−(M(end))) and H− = O ∩
δ(�+(M(end))), and does not vanish identically on S0.6

T (Technical assumptions). Let Fαβ = DαTβ denote the Killing form on M,
and Fαβ = Fαβ + i ∗Fαβ , where ∗Fαβ = 1

2∈αβγδFγδ. Let F 2 = FαβF
αβ. The

Ernst 1-form associated to T is defined as σµ = 2TαFαµ. It is easy to check,
see (4.18), that σµ is exact and, therefore, there exists a complex scalar σ
defined in an open neighborhood of Σ0, called the Ernst potential, such
that Dµσ = σµ. In view of the asymptotic flatness assumption AF, we
can choose σ such that σ → 1 at infinity along Σ0. Our main technical
assumptions are

−4M2F 2 = (1 − σ)4 on S0, (1.6)

5 A null hypersurface is said to be non-expanding if the trace of its null second fundamental
form vanishes identically.

6 In view of a well known result, see [23], any non-vanishing Killing field on S0 can only
vanish at a finite number of isolated points.
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and

�((1 − σ)−1) > 1/2 at some point on S0. (1.7)

Remark 1.1. As we have discussed in the previous subsection some of the
assumptions made above have been deduced from more primitive assump-
tions. For example, the completeness of orbits of E can be deduced by
assuming that M is the maximal global hyperbolic extension of Σ0, see [8].
Our precise space-time asymptotic flatness conditions can be deduced by
making asymptotic flatness assumptions only on Σ0, see [2,1]. The as-
sumption (1.5) can be replaced, at the expense of some additional work in
Sect. 8, by a suitable regularity assumption on the space of orbits of T. The
non-expanding condition in SBS can be derived using the area theorem,
see [17,12]. The regular bifurcate structure of the horizon, assumed in SBS,
is connected to the more primitive assumption of non-degeneracy of the
horizon, see [27].

Remark 1.2. Assumption (1.7) is consistent with the natural condition 0 ≤
a < M satisfied by the two parameters of the Kerr family. The key technical
assumption in this paper is the identity (1.6), which is assumed to hold on
the bifurcate sphere S0. This assumption is made in order to insure that the
corresponding Mars–Simon tensor vanishes on H− ∪ H+. We emphasize,
however, that we do not make any technical assumptions in the open set E
itself; the identity (1.6) is only assumed to hold on the bifurcate sphere S0,
which is a codimension 2 set, while the inequality (1.7) is only assumed
at one point of S0. We hope to further relax these technical conditions and
interpret them as part of the “regularity” assumptions on the black hole in
future work.

Remark 1.3. In Boyer–Lindquist coordinates the Kerr metric takes the form,

ds2 = −ρ2∆

Σ2
(dt)2 + Σ2(sin θ)2

ρ2

(

dφ − 2aMr

Σ2
dt

)2

+ ρ2

∆
(dr)2 + ρ2(dθ)2,

(1.8)

where,

ρ2 = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2Mr,

Σ2 = (r2 + a2)ρ2 + 2Mra2(sin θ)2.

On the horizon we have r = r+ := M + √
M2 − a2 and ∆ = 0. The

domain of outer communication E is given by r > r+. One can show that
the complex Ernst potential σ and the complex scalar F 2 are given by

σ = 1 − 2M

r + ia cos θ
, F 2 = − 4M2

(r + ia cos θ)4
. (1.9)
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Thus,

−4M2F 2 = (1 − σ)4 (1.10)

everywhere in the exterior region. Writing y + iz := (1 − σ)−1 we observe
that,

y = r

2M
≥ r+

2M
>

1

2

everywhere in the exterior region.

Main theorem. Under the assumptions AF, SBS, and T the domain of
outer communication E of M is locally isometric to the domain of outer
communication of a Kerr space-time with mass M and 0 < a < M.

As mentioned earlier, the basic idea of the proof is to show that the
Mars–Simon tensor is well-defined and vanishes in the entire domain of
outer communication, by relying on Carleman type estimates. We provide
below a more detailed outline of the proof.

In Sect. 3, we prove a sufficiently general geometric Carleman inequal-
ity, Proposition 3.3, with weights that satisfy suitable conditional pseudo-
convexity assumptions. This Carleman inequality is applied in Sect. 6 to
prove Proposition 6.1 and Sect. 8 to prove Proposition 8.5.

In Sect. 4 we define, in a simply connected neighborhood M̃ of Σ0 ∩ E,
the Killing form Fαβ and the Ernst potential σ . We then introduce the
Mars–Simon tensor, see [24],

Sαβµν = Rαβµν + 6(1 − σ)−1
(
FαβFµν − (1/3)F 2�αβµν

)

as a self-dual Weyl tensor, which is well defined and smooth in the open set

N0 = {x ∈ M̃ : 1 − σ(x) �= 0}.
It is important to observe that N0 contains a neighborhood of the bifurcate
sphere S0, since �σ = −TαTα, which is nonpositive on S0. In particular,
the Mars–Simon tensor is well defined in a neighborhood of S0. The main
result of the section, stated in Theorem 4.5, is the identity

DσSσαµν = J(S)αµν = −6(1 − σ)−1TλSλργδ

(
Fα

ρδγ
µδδ

ν − (2/3)F γδ�α
ρ
µν

)
,

(1.11)

which shows that S verifies a divergence equation with a source term J(S)
proportional to S. It is then straightforward to deduce, see Theorem 4.7,
that S verifies a covariant wave equation with a source proportional to S
and first derivatives of S.

In Sect. 5 we show that S vanishes on the horizon δ(�−(M(end))) ∪
δ(�+(M(end))), in a neighborhood of the bifurcate sphere S0. The proof
depends on special properties of the horizon, such as the vanishing of the
null second fundamental forms and certain null curvature components, and
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the divergence equation (1.11). The proof also depends on the main technical
assumption (1.6) to show that the component ρ(S) vanishes on S0 (this is
the only place where this technical assumption is used).

In Sect. 6 we show that S vanishes in a full space-time neighborhood
Or1 ∩ E of S0 in E, see Proposition 6.1. For this we derive the Carle-
man inequality of Lemma 6.2, as a consequence of the more general
Proposition 3.3. The weight function used in this Carleman inequality is
constructed with the help of two optical functions u+ and u−, defined in
a space-time neighborhood of S0. We then apply this Carleman inequality
to the covariant wave equation verified by S, to prove Proposition 6.1.

Once we have regions of space-time in which S vanishes we can rely on
some of the remarkable computations of Mars [24]. In Sect. 7 we work in
an open set N ⊆ N0 (thus 1 − σ �= 0 in N), S0 ⊆ N, with the property that
S = 0 in N ∩ E and N ∩ E is connected. Such sets exist, in view of the main
result of Sect. 6. Following Mars [24], we define the real functions y and z
in N by

y + iz = (1 − σ)−1,

see Remark 1.3 for explicit formulas in the Kerr spaces. The function y
satisfies the important identity (7.19), found by Mars,

Dαy Dαy = y2 − y + B

4M2(y2 + z2)
(1.12)

in N ∩ E, where B ∈ [0,∞) is a constant which has the additional property
that z2 ≤ B in N ∩ E (in the Kerr space B = a2/(4M2)). We then use this
identity and the fact that �(1 − σ) = 1 + g(T, T) to prove the key bound
on the coordinate norm of the gradient

|D1y| ≤ C̃ in N ∩ E, (1.13)

with a uniform constant C̃ (see Proposition 7.2). This bound, together with
z2 ≤ B, shows that the function 1 − σ = (y + iz)−1 cannot vanish in
a neighborhood of the closure of N ∩ E, as long as S = 0 in N ∩ E and
N ∩ E is connected. This observation is important in Sect. 8, as part of
the bootstrap argument, to show that 1 − σ �= 0 in Σ0 ∩ E. Finally, in
Lemma 7.3 we work in a canonical complex null tetrad and compute the
Hessian D2 y in terms of the functions y and z, and the connection coeffi-
cient ζ .

In Sect. 8 we use a bootstrap argument to complete the proof of the main
theorem. Our main goal is to show that 1 − σ �= 0 and S = 0 in Σ0 ∩ E.
We start by showing that y = yS0 is constant on the bifurcate sphere S0,
and use (1.12) to show that y2

S0
− yS0 + B = 0; using (1.7) it follows that

B ∈ [0, 1/4) and yS0 ∈ (1/2, 1]. We use then the wave equation

DαDαy = 2y − 1

4M2(y2 + z2)
,
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which is a consequence of S = 0, and the fact that yS0 > 1/2, to show
that y must increase in a small neighborhood Oε ∩ E. We can then start
our bootstrap argument: for R > yS0 let UR denote the unique connected
component of the set {x ∈ Σ0 ∩ E : σ(x) �= 1 and y(x) < R} whose closure
in Σ0 contains S0. We need to show, by induction over R, that S = 0 in UR
for any R > yS0; assuming this, it would follow from (1.13) that σ �= 1 in
Σ0 ∩ E and

⋃
R>yS0

UR = Σ0 ∩ E, which would complete the proof of the
main theorem. The key inductive step in proving that S = 0 in UR is to show
that if x0 is a point on the boundary of UR in Σ0 ∩ E, and if S = 0 in UR,
then S = 0 in a neighborhood of x0 (see Proposition 8.5). For this we use
a second Carleman inequality, Lemma 8.6, with a weight that depends on
the function y. To prove this second Carleman estimate we use the general
Carleman estimate Proposition 3.3 and the remarkable pseudo-convexity
properties of the Hessian of the function y computed in Lemma 7.3.

We would like to thank P. Chrusciel, M. Dafermos, J. Isenberg, M. Mars
and R. Wald for helpful conversations connected to our work. We would
also like to thank the referees for very helpful comments, particularly on
Sect. 3.

2. Geometric preliminaries

2.1. Optical functions. We define two optical functions u−, u+ in a neigh-
borhood of the bifurcate sphere S0, included in the neighborhood O of
hypothesis SBS. Choose a smooth future-past directed null pair (L+, L−)
along S0 (i.e. L+ is future oriented while L− is past oriented),

g(L−, L−) = g(L+, L+) = 0, g(L+, T0) = −1, g(L+, L−) = 1.
(2.1)

We extend L+ (resp. L−) along the null geodesic generators of H+
(resp. H−) by parallel transport, i.e. DL+ L+ = 0 (resp. DL− L− = 0).
We define the function u− (resp. u+) along H+ (resp. H−) by setting
u− = u+ = 0 on the bifurcate sphere S0 and solving L+(u−) = 1 (resp.
L−(u+) = 1). Let Su− (resp. Su+) be the level surfaces of u− (resp. u+)
along H+ (resp. H−). We define L− at every point of H+ (resp. L+ at
every point of H−) as the unique, past directed (resp. future directed), null
vector-field orthogonal to the surface Su− (resp. Su+) passing through that
point and such that g(L+, L−) = 1. We now define the null hypersur-
face Hu− to be the congruence of null geodesics initiating on Su− ⊂ H+ in
the direction of L−. Similarly we define Hu+ to be the congruence of null
geodesics initiating on Su+ ⊂ H− in the direction of L+. Both congruences
are well defined in a sufficiently small neighborhood O of S0 in M. The null
hypersurfaces Hu− (resp. Hu+) are the level sets of a function u− (resp. u+)
vanishing on H− (resp. H+). Moreover we can arrange that both u−, u+
are positive in the domain of outer communication E. By construction they
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are both null optical functions, i.e.

gµν∂µu+∂νu+ = gµν∂µu−∂νu− = 0. (2.2)

We define

Ω = gµν∂µu+∂νu−. (2.3)

In view of our construction we have,

u+|H+ = u−|H− = 0, Ω|H+∪H− = 1. (2.4)

Let

L+ = gµν∂µu+∂ν, L− = gµν∂µu−∂ν. (2.5)

We have,

g(L+, L+) = g(L−, L−) = 0, g(L+, L−) = Ω.

Define the sets,

Oε = {x ∈ O : |u−| < ε, |u+| < ε}.
For sufficiently small ε0 > 0 we have,

Ω >
1

2
in Oε0, Oε0 ⊂ O. (2.6)

We also have, for ε ≤ ε0, Oε ∩ E = {0 ≤ u− < ε, 0 ≤ u+ < ε}. If φ is
a smooth function in Oε, vanishing on H+ ∩ Oε, one can show that there
exists a smooth function φ′ defined on Oε such that,

φ = u+ · φ′ on Oε. (2.7)

Similarly, if φ is a smooth function in Oε, vanishing on H− ∩Oε, then there
exists another smooth function φ′ defined on Oε such that,

φ = u− · φ′ on Oε. (2.8)

2.2. Quantitative bounds. Using the hypothesis (1.5) we may assume that
for every 0 < ε < ε0 there is a sufficiently large constant Ãε such that,

|g(T, T0)| > Ã−1
ε , ∀x ∈ (Σ0 ∩ E) \ Oε. (2.9)

In view of the normalization (2.1) we may assume (after possibly decreasing
the value of ε0) that, for some constant A0,

u+/u− + u−/u+ ≤ A0 on Oε0 ∩ E ∩ Σ0. (2.10)
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We construct a system of coordinates which cover a neighborhood of the
space-like hypersurface Σ0. For any R ∈ (0, 1] let BR = {x ∈ R4 : |x| < R}
denote the open ball of radius R in R4. In view of the asymptotic flatness
assumption AF, there is a constant A0 ∈ [ε−1

0 ,∞) such that (2.10) holds and,
in addition, for any x0 ∈ Σ0 ∩E there is an open set B1(x0) ⊆ M containing
x0 and a smooth coordinate chart Φx0 : B1 → B1(x0), Φx0(0) = x0, with
the property that

sup
x0∈Σ0∩E

sup
x∈B1(x0)

6∑

j=0

4∑

α1,...,α j ,β,γ=1

(|∂α1 . . . ∂α j gβγ (x)| + ∣
∣∂α1 . . . ∂α j g

βγ (x)
∣
∣
)

≤ A0;

sup
x0∈Σ0∩E

sup
x∈B1(x0)

6∑

j=0

4∑

α1,...,α j ,β=1

∣
∣∂α1 . . . ∂α j T

β(x)
∣
∣ ≤ A0.

(2.11)

We may assume that B1(x0) ⊆ Oε0 if x0 ∈ S0. We define M̃ to be the
union of the balls B1(x0) over all points x0 ∈ Σ0 ∩ E. We can arrange such
that M̃ is simply connected.

Since S0 is compact, we may assume (after possibly increasing the value
of A0) that

sup
x0∈S0

sup
x∈B1(x0)

[ 6∑

j=0

4∑

α1,...,α j=1

|∂α1 . . . ∂α j u±(x)| +
( 4∑

α=1

|∂αu±(x)|
)−1] ≤ A0.

(2.12)

Finally, we may also assume, in view of (1.7), that there is a point x0 ∈ S0
such that,

�(
(1 − σ(x0))

−1
)

>
1

2
+ A−1

0 . (2.13)

To summarize, we fixed constants ε0 and A0 ≥ ε−1
0 such that (2.10)–(2.13)

hold.

3. Unique continuation and Carleman inequalities

3.1. General considerations. As explained in Sect. 1 our proof of the
main theorem is based on a global, unique continuation strategy applied
to (1.3). We say that a linear differential operator L , in a domain Ω ⊂ Rd,
satisfies the unique continuation property with respect to a smooth, oriented,
hypersurface Σ ⊂ Ω, if any smooth solution of Lφ = 0 which vanishes
on one side of Σ must in fact vanish in a small neighborhood of Σ. Such
a property depends, of course, on the interplay between the properties of the
operator L and the hypersurface Σ. A classical result of Hörmander, see for
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example Chapt. 28 in [18], provides sufficient conditions for a scalar linear
equation which guarantee that the unique continuation property holds. In
the particular case of the scalar wave equation, �gφ = 0, and a smooth
surface Σ, defined by the equation h = 0, ∇h �= 0, Hörmander’s pseudo-
convexity condition takes the simple form,

D2h(X, X) < 0 if g(X, X) = g(X, Dh) = 0 (3.1)

at all points on the surface Σ, where we assume that φ is known to vanish
on the side of Σ corresponding to h < 0.

In our situation, we plan to apply the general philosophy of unique
continuation to the covariant wave equation (see Theorem 4.7),

�gS = A ∗ S + B ∗ DS, (3.2)

verified by the Mars–Simon tensor S, see Definition 4.3. We prove in Sect. 5,
using the main technical assumption (1.6), that S vanishes on the horizon
H+ ∪ H− and we would like to prove, by unique continuation, that S
vanishes in the entire domain of outer communication. In implementing
such a strategy one encounters the following difficulties:

(1) Equation (3.2) is tensorial, rather than scalar.
(2) The horizon H+ ∪ H− is characteristic and non smooth in a neighbor-

hood of the bifurcate sphere.
(3) Though one can show that an appropriate variant of Hörmander’s

pseudo-convexity condition holds true along the horizon, in a neighbor-
hood of the bifurcate sphere, we have no guarantee that such condition
continues to be true slightly away from the horizon, within the ergo-
sphere region of the stationary space-time where T is space-like.

Problem (1) is not very serious; we can effectively reduce (3.2) to a sys-
tem of scalar equations, diagonal with respect to the principal symbol.
Problem (2) can be dealt with by an adaptation of Hörmander’s pseudo-
convexity condition. We note however that such an adaptation is neces-
sary since, given our simple vanishing condition of S along the horizon,
we cannot directly apply Hörmander’s result in [18]. Problem (3) is by
far the most serious. Indeed, even in the case when g is a Kerr met-
ric (1.8), one can show that there exist null geodesics trapped within the
ergosphere region m + √

m2 − a2 ≤ r ≤ m + √
m2 − a2 cos2 θ. Indeed

surfaces of the form r∆ = m(r2 − a2)1/2, which intersect the ergosphere
for a sufficiently close to m, are known to contain such null geodesics,
see [6]. One can show that the presence of trapped null geodesics inval-
idates Hörmander’s pseudo-convexity condition. Thus, even in the case
of the scalar wave equation �gφ = 0 in such a Kerr metric, one cannot
guarantee, by a classical unique continuation argument (in the absence of
additional conditions) that φ vanishes beyond a small neighborhood of the
horizon.
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In order to overcome this difficulty we exploit the geometric nature of
our problem and make use of the invariance of S with respect to T. Thus
the tensor S satisfies, in addition to (3.2), the identity

LTS = 0. (3.3)

Observe that (3.3) can, in principle, transform (3.2) into a much simpler
elliptic problem, in any domain which lies strictly outside the ergosphere
(where T is strictly time-like). Unfortunately this possible strategy is not
available to us since, as we have remarked above, we cannot hope to extend
the vanishing of S, by a simple analogue of Hörmander’s pseudo-convexity
condition, beyond the first trapped null geodesics.

Our solution is to extend Hörmander’s classical pseudo-convexity condi-
tion (3.1) to one which takes into account both (3.2) and (3.3). These consid-
erations lead to the following qualitative, T-conditional, pseudo-convexity
condition,

T(h) = 0;
D2h(X, X) < 0 if g(X, X) = g(X, Dh) = g(T, X) = 0.

(3.4)

In a first approximation one can show that this condition can be verified
in all Kerr spaces a ∈ [0, m), for the simple function h = r (see [19]),
where r is one of the Boyer–Lindquist coordinates. Thus (3.4) is a good
substitute for the more general condition (3.1). The fact that the two geo-
metric identities (3.2) and (3.3) cooperate exactly in the right way, via (3.4),
thus allowing us to compensate for both the failure of condition (3.1) as
well as the failure of the vector field T to be time-like in the ergore-
gion, seems to us to be a very remarkable property of the Kerr spaces.
In the next subsection we give a quantitative version of the condition
and derive a Carleman estimate of sufficient generality to cover all our
needs.

3.2. A Carleman estimate of sufficient generality. Unique continuation
properties are often proved using Carleman inequalities. In this subsec-
tion we prove a sufficiently general Carleman inequality, Proposition 3.3,
under a quantitative conditional pseudo-convexity assumption. This gen-
eral Carleman inequality is used in Sect. 6 to show that S vanishes in
a small neighborhood of the bifurcate sphere S0 in E, and then in Sect. 8
to prove that S vanishes in the entire exterior domain. The two applica-
tions are genuinely different, since, in particular, the horizon is a bifurcate
surface which is not smooth and the weights needed in this case have
to be “singular” in an appropriate sense. In order to be able to cover
both applications and prove unique continuation in a quantitative sense,
which is important especially in Sect. 8, we work with a more techni-
cal notion of conditional pseudo-convexity than (3.4), see Definition 3.1
below.
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Assume, as in the previous section, that x0 ∈ Σ0 ∩ E and Φx0 : B1 →
B1(x0) is the corresponding coordinate chart. For simplicity of notation, let
Br = Br(x0). For any smooth function φ : B → C, where B ⊆ B1 is an
open set, and j = 0, 1, . . . let

|D jφ(x)| =
4∑

α1,...,α j=1

|∂α1 . . . ∂α j φ(x)|.

Assume that V = V α∂α is a vector-field on B1 with the property that

sup
x∈B1

4∑

j=0

4∑

β=1

|D j V β| ≤ A0. (3.5)

In our applications, V = 0 or V = T.

Definition 3.1. A family of weights hε : Bε10 → R+, ε ∈ (0, ε1), ε1 ≤ A−1
0 ,

will be called V-conditional pseudo-convex if for any ε ∈ (0, ε1)

hε(x0) = ε, sup
x∈B

ε10

4∑

j=1

ε j
∣
∣D jhε(x)

∣
∣ ≤ ε/ε1, |V(hε)(x0)| ≤ ε10, (3.6)

Dαhε(x0)Dβhε(x0)(DαhεDβhε − εDαDβhε)(x0) ≥ ε2
1, (3.7)

and there is µ ∈ [−ε−1
1 , ε−1

1 ] such that for all vectors X = Xα∂α ∈ Tx0(M)

ε2
1[(X1)2 + (X2)2 + (X3)2 + (X4)2]
≤ XαXβ(µgαβ − DαDβhε)(x0) + ε−2(∣∣XαVα(x0)

∣
∣2 + ∣

∣XαDαhε(x0)
∣
∣2)

.

(3.8)

A function eε : Bε10 → R will be called a negligible perturbation if

sup
x∈B

ε10

∣
∣D jeε(x)

∣
∣ ≤ ε10 for j = 0, . . . , 4. (3.9)

Remark 3.2. One can see that the technical conditions (3.6)–(3.8) are related
to the qualitative condition (3.4), at least when hε = h + ε for some
smooth function h. The assumption |V(hε)(x0)| ≤ ε10 is a quantitative
version of V(h) = 0. The assumption (3.8) is a quantitative version of the
inequality in the second line of (3.4), in view of the large factor ε−2 on
the terms |XαVα(x0)|2 and |XαDαhε(x0)|2, and the freedom to choose µ in
a large range. The assumption (3.7) is a quantitative version of the condition
∇h �= 0 (assuming that (3.8) already holds).

It is important that the Carleman estimates we prove are stable under
small perturbations of the weight, in order to be able to use them to prove
unique continuation. We quantify this stability in (3.9).
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We observe that if {hε}ε∈(0,ε1) is a V -conditional pseudo-convex family,
and eε is a negligible perturbation for any ε ∈ (0, ε1], then

hε + eε ∈ [ε/2, 2ε] in Bε10.

The pseudo-convexity conditions of Definition 3.1 are probably not as gen-
eral as possible, but are suitable for our applications both in Sect. 6, with
“singular” weights hε, and Sect. 8, with “smooth” weights hε. We also note
that it is important to our goal to prove a global result (see Sect. 8), to be
able to track quantitatively the size of the support of the functions for which
Carleman estimates can be applied; in our notation, this size depends only
on the parameter ε1 in Definition 3.1.

Proposition 3.3. Assume x0, V are as above, ε1 ≤ A−1
0 , {hε}ε∈(0,ε1) is a V-

conditional pseudo-convex family, and eε is a negligible perturbation for
any ε ∈ (0, ε1]. Then there is ε ∈ (0, ε1) sufficiently small and C̃ε sufficiently
large such that for any λ ≥ C̃ε and any φ ∈ C∞

0 (Bε10)

λ‖e−λ fεφ‖L2 + ‖e−λ fε |D1φ|‖L2

≤ C̃ελ
−1/2

∥
∥e−λ fε�gφ

∥
∥

L2 + ε−6‖e−λ fε V(φ)‖L2,
(3.10)

where fε = ln(hε + eε).

Proof. As mentioned earlier, many Carleman estimates such as (3.10) are
known, for the particular case when V = 0, in more general settings. The
optimal proof, see Chap. 28 of [18], is based on the Fefferman–Phong in-
equality. Here we provide a self-contained, elementary, proof which, though
not optimal, it is perfectly adequate to our needs.

We will use the notation C̃ to denote various constants in [1,∞) that
may depend only on the constant ε1. We will use the notation C̃ε to denote
various constants in [1,∞) that may depend only on ε. We emphasize
that these constants do not depend on the (very large) parameter λ or the
function φ in (3.10). The value of ε will be fixed at the end of the proof and
depends only on ε1. We divide the proof into several steps.

Step 1. Clearly, we may assume that φ is real-valued. Let ψ = e−λ fεφ ∈
C∞

0 (Bε10). In terms of ψ, inequality (3.10) takes the form,

λ‖ψ‖L2 + ‖e−λ fε |D1(eλ fεψ)|‖L2

≤ C̃ελ
−1/2

∥
∥e−λ fε�g(e

λ fεψ)
∥
∥

L2 + ε−6‖e−λ fε V(eλ fεψ)‖L2 .
(3.11)

We reduce the proof of (3.11) by a sequence of steps. We claim first that
for (3.11) to hold true, it suffices to prove that there exist ε � 1 and C̃ε � 1
such that

λ‖ψ‖L2 + ‖|D1ψ|‖L2 ≤ C̃ελ
−1/2

∥
∥e−λ fε�g(e

λ fεψ)
∥
∥

L2 + 8ε−4‖V(ψ)‖L2,

(3.12)
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for any λ ≥ C̃ε and any ψ ∈ C∞
0 (Bε10). Indeed, using (3.6) and (3.9) (thus

|V(hε + eε)(x)| ≤ C̃ε8 for x ∈ Bε10), the observation hε + eε ∈ [ε/2, 2ε]
in Bε10, and the definition fε = ln(hε + eε), we have

e−λ fε |D1(eλ fεψ)| ≤ |D1ψ| + C̃ε−1λ|ψ|;
|e−λ fε V(eλ fεψ) − V(ψ)| ≤ C̃ε7λ|ψ|.

Thus, assuming (3.12), we deduce,

λ‖ψ‖L2 + ‖e−λ fε |D1(eλ fεψ)|‖L2 ≤ λ‖ψ‖L2 + ‖|D1ψ|‖L2 + C̃ε−1λ‖ψ‖L2

≤ (1 + C̃ε−1)
(
C̃ελ

−1/2
∥
∥e−λ fε�g(e

λ fεψ)
∥
∥

L2 + 8ε−4‖V(ψ)‖L2

)

≤ (1 + C̃ε−1)
[
C̃ελ

−1/2
∥
∥e−λ fε�g(e

λ fεψ)
∥
∥

L2 + 8ε−4‖e−λ fε V(eλ fεψ)‖L2

+ 8C̃ε3λ‖ψ‖L2

]

≤ C̃ελ
−1/2

∥
∥e−λ fε�g(e

λ fεψ)
∥
∥

L2 + C̃ε−5‖e−λ fε V(eλ fεψ)‖L2 + C̃ε2λ‖ψ‖L2,

and the inequality (3.11) follows for ε � C̃−1.

Step 2. We write

e−λ fε�g(e
λ fεψ) = �gψ + 2λDα( fε)Dαψ

+ λ2Dα( fε)Dα( fε) · ψ + λ�g( fε) · ψ,

= Lεψ + λ�g( fε) · ψ,

(3.13)

with Lε := �g + 2λDα( fε)Dα + λ2Dα( fε)Dα( fε), and show that (3.12)
follows from,

λ‖ψ‖L2 + ‖|D1ψ|‖L2 ≤ C̃ελ
−1/2‖Lεψ‖L2 + 4ε−4‖V(ψ)‖L2 (3.14)

for any λ ≥ C̃ε and any ψ ∈ C∞
0 (Bε10). Indeed,

∥
∥e−λ fε�g(e

λ fεψ)
∥
∥

L2 ≥ ‖Lεψ‖L2 − λ‖�g( fε)ψ‖L2 .

Observe that, according to (3.6), we have |�g( fε)| ≤ C̃ε on Bε10. Thus,
if (3.14) holds,

λ‖ψ‖L2 + ‖|D1ψ|‖L2

≤ C̃ελ
−1/2(∥∥e−λ fε�g(e

λ fεψ)
∥
∥

L2 + λ‖�g( fε)ψ‖L2

) + 4ε−4‖V(ψ)‖L2

≤ C̃ελ
−1/2

∥
∥e−λ fε�g(e

λ fεψ)
∥
∥

L2 + C̃2
ελ

1/2‖ψ‖L2 + 4ε−4‖V(ψ)‖L2

or,
(
λ − C̃2

ελ
1/2)‖ψ‖L2 + ‖|D1ψ|‖L2

≤ C̃ελ
−1/2

∥
∥e−λ fε�g(e

λ fεψ)
∥
∥

L2 + 4ε−4‖V(ψ)‖L2
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from which we easily derive (3.12), by redefining the constant C̃ε and
taking λ sufficiently large relative to C̃ε.

Step 3. We write Lε in the form,

Lε = �g + 2λW + λ2G
W = Dα( fε)Dα, G = Dα( fε)Dα( fε).

(3.15)

We observe that inequality (3.14) follows as a consequence of the following
statement: there exist ε � 1, µ1 ∈ [−ε−3/2, ε−3/2], and C̃ε � 1 such that

2λε−8‖V(ψ)‖2
L2 +

∫

B
ε10

Lεψ · (2λW(ψ) − 2λwψ)dµ

≥ C̃−1
ε ‖λW(ψ) − λwψ‖2

L2 + λ3‖ψ‖2
L2 + λ‖|D1ψ|‖2

L2,

(3.16)

for any λ ≥ C̃ε and any ψ ∈ C∞
0 (Bε10), where

w = µ1 − (1/2)�g fε. (3.17)

The reason for choosing w of this form will become clear in Step 6. Assum-
ing that (3.16) holds true and denoting by RHS the right-hand side of that
inequality, we have

RHS ≤
∫

B
ε10

C̃1/2
ε Lεψ · C̃−1/2

ε (2λW(ψ) − 2λwψ)dµ + 2λε−8‖V(ψ)‖2
L2

≤ C̃−1
ε ‖λW(ψ) − λwψ‖2

L2 + C̃ε‖Lεψ‖2
L2 + 2λε−8‖V(ψ)‖2

L2 .

Hence

λ3‖ψ‖2
L2 + λ‖|D1ψ|‖2

L2 ≤ C̃ε‖Lεψ‖2
L2 + 2λε−8‖V(ψ)‖2

L2

from which (3.14) follows easily.

Step 4. We claim now that inequality (3.16) is a consequence of the in-
equality

2λε−8‖V(ψ)‖2
L2 +

∫

B
ε10

(
�gψ + λ2Gψ

) · (2λW(ψ) − 2λwψ)dµ

+ 2λ2‖W(ψ)‖2
L2

≥ 2λ3‖ψ‖2
L2 + 2λ‖|D1ψ|‖2

L2 .

(3.18)

To prove that (3.18) implies (3.16) we write

Lεψ = �gψ + λ2G · ψ + (λW(ψ) − λwψ) + (λW(ψ) + λwψ).
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Thus, assuming (3.18),

2λε−8‖V(ψ)‖2
L2 +

∫

B
ε10

Lεψ · (2λW(ψ) − 2λwψ)dµ

= 2λε−8‖V(ψ)‖2
L2 +

∫

B
ε10

(
�gψ + λ2Gψ

) · (2λW(ψ) − 2λwψ)dµ

+ 2‖λW(ψ) − λwψ‖2
L2 + 2λ2

(‖W(ψ)‖2
L2 − ‖wψ‖2

L2

)

≥ 2λ3‖ψ‖2
L2 + 2λ‖|D1ψ|‖2

L2 + 2‖λW(ψ) − λwψ‖2
L2 − 2λ2‖wψ‖2

L2

≥ 2‖λW(ψ) − λwψ‖2
L2 + λ3‖ψ‖2

L2 + 2λ‖|D1ψ|‖2
L2,

if C̃ε is sufficiently large and λ ≥ C̃ε, which gives (3.16). In the last
inequality we use the bound |w| ≤ C̃ε−2 (see (3.17)) thus 2λ3‖ψ‖2

L2 −
2λ2‖wψ‖2

L2 ≥ λ3‖ψ‖2
L2 for λ sufficiently large.

Step 5. Let Qαβ denote the enery-momentum tensor of �g, i.e.

Qαβ = DαψDβψ − 1

2
gαβ

(
DµψDµψ

)
.

Direct computations show that

�gψ · (2W(ψ) − 2wψ) = Dα
(
2WβQαβ − 2wψ · Dαψ + Dαw · ψ2)

− 2DαWβ · Qαβ + 2wDαψ · Dαψ −�gw · ψ2,

(3.19)

and

Gψ · (2W(ψ) − 2wψ) = Dα
(
ψ2G · Wα

)

− ψ2
(
2wG + W(G) + G · DαWα

)
.

(3.20)

Since ψ ∈ C∞
0 (Bε10) we integrate by parts to conclude that

∫

B
ε10

(
�gψ + λ2G · ψ

) · (2W(ψ) − 2wψ)dµ

=
∫

B
ε10

2wDαψ · Dαψ − 2DαWβ · Qαβdµ

+ λ2
∫

B
ε10

ψ2(−2wG − W(G) − G · DαWα − λ−2�gw
)
dµ.

Thus, after dividing by λ, for (3.18) it suffices to prove that the pointwise
bounds

|D1ψ|2 ≤ ε−8|V(ψ)|2 + λ|W(ψ)|2 + (
wDαψ · Dαψ − DαWβ · Qαβ

)
,

(3.21)
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and

2 ≤ −2wG − W(G) − G · DαWα − λ−2�gw, (3.22)

hold on Bε10.

Step 6. Recall that w = µ1 − (1/2)�g fε, Wα = Dα( fε) and G =
Dα( fε)Dα( fε). Observe that

wDαψ · Dαψ − DαWβ · Qαβ

= (Dαψ · Dβψ)[(w + (1/2)�g fε)gαβ − DαDβ fε]
and

−2wG − W(G) − G · DαWα = −G(2w +�g fε) − 2Dα fε Dβ fε · DαDβ fε.

Thus (3.21) and (3.22) are equivalent to the pointwise inequalities

|D1ψ|2 ≤ ε−8|V(ψ)|2 + λ
∣
∣Dα fε · Dαψ

∣
∣2

+ (Dαψ · Dβψ)(µ1gαβ − DαDβ fε),
(3.23)

and

1 ≤ −µ1G − Dα fε Dβ fε · DαDβ fε + (1/4)λ−2�2
g( fε) (3.24)

on Bε10, for some ε � 1 and λ sufficiently large.
Let h̃ε = hε + eε and H̃ε = Dαh̃εDαh̃ε. We use now the definition

fε = ln h̃ε. Since h̃ε ∈ [ε/2, 2ε], for (3.23) and (3.24) it suffices to prove
that there are constants ε � 1 and µ1 ∈ [−ε−3/2, ε−3/2] such that the
pointwise bounds

|D1ψ|2 ≤ ε−8|V(ψ)|2 + ε−8
∣
∣Dαh̃ε · Dαψ

∣
∣2

+ (Dαψ · Dβψ)
(
µ1gαβ − h̃−1

ε DαDβh̃ε

)
,

(3.25)

and

2 ≤ h̃−4
ε H̃2

ε − h̃−3
ε Dαh̃εDβh̃εDαDβh̃ε − h̃−2

ε µ1 H̃ε (3.26)

hold on Bε10 for any ψ ∈ C∞
0 (Bε10). Indeed, the bound (3.23) follows

from (3.25) if λ ≥ 2ε−7. The bound (3.24) follows from (3.26) if
|λ−2�2

g( fε)| ≤ 1, which holds true if λ ≥ C̃ε−2.

Step 7. We prove now that the bound (3.26) holds for any µ1 ∈
[−ε−3/2, ε−3/2]. We start from the assumption (3.7)

Dαhε(x0)Dβhε(x0)(DαhεDβhε − εDαDβhε)(x0) ≥ ε2
1.

For x ∈ Bε10 let

K(x) = Dαhε(x)Dβhε(x)(DαhεDβhε − hε · DαDβhε)(x).
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It follows from the second bound in (3.6) that |D1K(x)| ≤ C̃ε−1, thus, since
ε = hε(x0), K(x) ≥ ε2

1/2 for any x ∈ Bε10 if ε is sufficiently small.
Let

K̃(x) = Dαh̃ε(x)Dβh̃ε(x)(Dαh̃εDβh̃ε − h̃ε · DαDβh̃ε)(x).

It follows from the assumption (3.9) on eε and the assumption (3.6) that
|K̃(x) − K(x)| ≤ C̃ε, thus K̃(x) ≥ ε2

1/4 on Bε10, provided that ε is suffi-
ciently small. By multiplying with h̃−4

ε we have

h̃−4
ε ε2

1/4 ≤ h̃−4
ε K̃(x) = h̃−4

ε H̃2
ε − h̃−3

ε Dαh̃εDβh̃ε · DαDβh̃ε

on Bε10. The bound (3.26) follows for ε small enough since h̃ε(x) ∈ [ε/2, 2ε]
on Bε10 and |̃h−2

ε µ1 H̃ε| ≤ C̃|µ1|ε−2 ≤ C̃ε−7/2.

Step 8. We prove now the bound (3.25). We start from the assumption (3.8)

ε2
1[(X1)2 + (X2)2 + (X3)2 + (X4)2]
≤ XαXβ(µgαβ − DαDβhε)(x0) + ε−2(∣∣XαVα(x0)

∣
∣2 + ∣

∣XαDαhε(x0)
∣
∣2)

,

(3.27)

for some µ ∈ [−ε−1
1 , ε−1

1 ] and all vectors X = Xα∂α ∈ Tx0(M). Let

Kαβ = µε−1hεgαβ − DαDβhε + ε−2VαVβ + ε−2DαhεDβhε.

We work in the local frame ∂1, ∂2, ∂3, ∂4. In view of (3.6),
∣
∣D1Kαβ(x)

∣
∣ ≤ C̃ε−3

for any α, β = 1, 2, 3, 4 and x ∈ Bε10. It follows from (3.27) and
ε−1hε(x0) = 1 that

4∑

α,β=1

XαXβ Kαβ(x) ≥ (
ε2

1/2
)[(X1)2 + (X2)2 + (X3)2 + (X4)2] (3.28)

for any x ∈ Bε10 and (X1, X2, X3, X4) ∈ R4, provided that ε is sufficiently
small. Let

K̃αβ = µε−1h̃εgαβ − DαDβh̃ε + ε−2VαVβ + ε−2Dαh̃εDβh̃ε,

and observe that, in view of (3.9) and (3.6), |K̃αβ(x) − Kαβ(x)| ≤ C̃ε5 for
any α, β = 1, 2, 3, 4 and x ∈ Bε10. Thus, using (3.28), if ε is sufficiently
small then

4∑

α,β=1

XαXβ K̃αβ(x) ≥ (
ε2

1/4
)[(X1)2 + (X2)2 + (X3)2 + (X4)2]
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for any x ∈ Bε10 and (X1, X2, X3, X4) ∈ R4. We multiply this by h̃−1
ε ∈

[ε−1/2, 2ε−1] and use the definition of K̃αβ to conclude that

4∑

α,β=1

XαXβ
(
µε−1gαβ − h̃−1

ε DαDβh̃ε

)

+ 2ε−3
∣
∣
∣

4∑

α=1

XαVα

∣
∣
∣
2 + 2ε−3

∣
∣
∣

4∑

α=1

XαDαhε

∣
∣
∣
2

≥ h̃−1
ε

(
ε2

1/4
)[(X1)2 + (X2)2 + (X3)2 + (X4)2].

The bound (3.25) follows for ε sufficiently small, with µ1 = µε−1 ∈
[−(εε1)

−1, (εε1)
−1]. This completes the proof of the proposition. ��

4. The Mars–Simon tensor S

4.1. Preliminaries. Assume (N, g) is a smooth vacuum Einstein spacetime
of dimension 4. Given an antisymmetric 2-form, real or complex valued,
Gαβ = −Gβα we define its Hodge dual,

∗Gαβ = 1

2
∈αβ

µνGµν.

Observe that ∗(∗G) = −G. This follows easily from the identity,

∈αβρσ∈µνρσ = −2δµ
α ∧ δν

β = −2
(
δµ
α δν

β − δν
αδ

µ
β

)
.

Given 2 such forms F, G we have the identity

Fµσ Gν
σ − (∗F)νσ (∗G)µ

σ = 1

2
gµν FαβGαβ (4.1)

which follows easily from the identity

∈α2α3α4α1∈β2β3β4α1 = −δ
α2
β2

∧ δ
α3
β3

∧ δ
α4
β4

= δ
α2
β4

δ
α3
β3

δ
α4
β2

+ δ
α2
β2

δ
α3
β4

δ
α4
β3

+ δ
α2
β3

δ
α3
β2

δ
α4
β4

− δ
α2
β2

δ
α3
β3

δ
α4
β4

− δ
α2
β3

δ
α3
β4

δ
α4
β2

− δ
α2
β4

δ
α3
β2

δ
α4
β3

.

An antisymmetric 2-form F is called self-dual if,

∗F = −iF .

It follows easily form (4.1) that if F ,G are two self-dual 2-forms then

FµσGν
σ + FνσGµ

σ = 1

2
gµνFαβG

αβ. (4.2)
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We also have, for any self-dual F ,

Fµσ(�F ) σ
ν = Fνσ(�F ) σ

µ (4.3)

where �F denotes the real part of F .
A tensor W ∈ T0

4(N) will be called partially antisymmetric if

Wαβµν = −Wβαµν = −Wαβνµ. (4.4)

Given such a tensor-field we define its Hodge dual

∗Wαβγδ = 1

2
∈γδ

ρσ Wαβρσ .

As before, ∗(∗W ) = −W for any partially antisymmetric tensor W . A com-
plex partially antisymmetric tensor U of rank 4 is called self-dual if
∗U = (−i)U. The following extension of identity (4.2) holds for such
tensors,

Fµ
σUαβνσ + Fν

σUαβµσ = 1

2
gµνF

γδUαβγδ. (4.5)

A partially antisymmetric tensor of rank 4 is called a Weyl field if
⎧
⎨

⎩

Wαβµν = −Wβαµν = −Wαβνµ = Wµναβ;
Wα[βµν] = Wαβµν + Wαµνβ + Wανβµ = 0;
gβνWαβµν = 0.

(4.6)

It is well-known that if W is a Weyl field then ∗W is also a Weyl field. In
particular

∗Wαβµν = ∗Wµναβ = 1

2
∈ ρσ

αβ Wµνρσ . (4.7)

The Riemann curvature tensor R of an Einstein vacuum spacetime provides
an example of a Weyl field. Moreover R verifies the Bianchi identities,

D[σ Rγδ]αβ = 0.

In this paper we will have to consider Weyl fields W which verify equations
of the form

DαWαβγδ = Jβγδ (4.8)

for some Weyl current J ∈ T0
3(N). It follows from (4.8) that

Dα ∗Wαβγδ = ∗Jβγδ = 1

2
∈γδ

ρσ Jβρσ . (4.9)

The following proposition follows immediately from definitions and (4.7).

Proposition 4.1. If W is a Weyl field and (4.8) is satisfied then

D[σ Wγδ]αβ = ∈µσγδ
∗Jµ

αβ. (4.10)
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4.2. Killing vector-fields and the Ernst potential. We assume now that
T is a Killing vector-field on N, i.e.

DαTβ + DβTα = 0. (4.11)

We define the 2-form,

Fαβ = DαTβ

and recall that F verifies the Ricci identity

DµFαβ = TνRνµαβ, (4.12)

with R the curvature tensor of the spacetime. In view of the first Bianchi
identity for R we infer that,

D[µFαβ] = DµFαβ + DαFβµ + Dβ Fµα = 0. (4.13)

Also, since we are in an Einstein vacuum spacetime,

DβFαβ = 0. (4.14)

We now define the complex valued 2-form,

Fαβ = Fαβ + i ∗Fαβ. (4.15)

Clearly, F is self-dual solution of the Maxwell equations, i.e. F ∗ = (−i)F
and

D[µFαβ] = 0, DβFαβ = 0. (4.16)

We define also the Ernst 1-form associated to the Killing vector-field T,

σµ = 2TαFαµ = Dµ

(−TαTα

) − i∈µβγδTβDγ Tδ. (4.17)

It is easy to check (see, for example, [25, Sect. 3]) that
⎧
⎨

⎩

Dµσν − Dνσµ = 0;
Dµσµ = −F 2;
σµσµ = g(T, T)F 2.

(4.18)

Since d(σµdxµ) = 0 and the set M̃ is simply connected we infer that
there exists a function σ : M̃ → C, called the Ernst potential, such that
σµ = Dµσ , σ → 1 at infinity along Σ0, and �σ = −TαTα.

4.3. The Mars–Simon tensor. In the rest of this section we assume that
N ⊆ M̃ is an open set with the property that

1 − σ �= 0 in N. (4.19)
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We define the complex-valued self-dual Weyl tensor

Rαβµν = Rαβµν + i

2
∈µν

ρσ Rαβρσ = Rαβµν + i ∗Rαβµν. (4.20)

We define the tensor � ∈ T0
4(N),

�αβµν = (gαµgβν − gανgβµ + i∈αβµν)/4. (4.21)

Clearly,

�αβµν = −�βαµν = −�αβνµ = �µναβ. (4.22)

On the other hand,

�α[βγδ] = �αβγδ + �αγδβ + �αδβγ = 3i

4
∈αβγδ. (4.23)

Using the definition (4.21) we derive

∗�αβµν = 1

2
∈µν

ρσ�αβρσ = (−i)�αβµν. (4.24)

Thus � is a self-dual partially antisymmetric tensor. We can therefore
apply (4.5) and (4.22) to derive

Fµ
σ�νσαβ + Fν

σ�µσαβ = 1

2
gµνF

γδ�γδαβ. (4.25)

We observe also that

F µν�αβµν = Fαβ. (4.26)

Following [24], we define the tensor-field Q ∈ T0
4(N),

Qαβµν = (1 − σ)−1

(

FαβFµν − 1

3
F 2�αβµν

)

. (4.27)

We show now that Q is a self-dual Weyl field on N.

Proposition 4.2. The tensor-field Q is a self-dual Weyl field, i.e.
⎧
⎨

⎩

Qαβµν = −Qβαµν = −Qαβνµ = Qµναβ;
Qαβµν + Qαµνβ + Qανβµ = 0;
gβνQαβµν = 0,

and

1

2
∈µνρσQαβ

ρσ = (−i)Qαβµν.
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Proof. The identities

Qαβµν = −Qβαµν = −Qαβνµ = Qµναβ

follow immediately from the definition. To prove

Qα[βµν] = Qαβµν + Qαµνβ + Qανβµ = 0

it suffices to check, in view of the identity (4.23),

FαβFµν + FαµFνβ + FανFβµ = i

4
∈αβµν · F 2. (4.28)

Since F is a 2-form, the left-hand side of (4.28) is a 4-form on N (which
has dimension 4). Thus, for (4.28) it suffices to check

∈αβµν(FαβFµν + FαµFνβ + FανFβµ) = −6iF 2.

This follows since the left-hand side of the above equation is equal to
6Fαβ

∗F αβ = −6iF 2.
We compute

gβνQαβµν = (1 − σ)−1

(

FαβFµ
β − 1

3
F 2 · gβν�αβµν

)

= 0.

Also

1

2
∈µνρσQαβ

ρσ = (1 − σ)−1

(

Fαβ
∗Fµν − 1

3
F 2 ∗� αβµν

)

= (−i)Qαβµν.

This completes the proof of the proposition. ��
We define now the Mars–Simon tensor.

Definition 4.3. We define the self-dual Weyl field S,

S = R + 6Q. (4.29)

Remark 4.4. Since �σ = −TαTα ≤ 0 on S0, it follows from the definition
of the constant A0 in Sect. 2 that �(1 − σ) ≥ 1/2 in a neighborhood
Oε2 ⊆ M̃ of S0, for some ε2 ≤ ε0 that depends only on A0. In particular, the
tensor S is well defined in Oε2.

4.4. A covariant wave equation for S. Our main goal now is to show
that S verifies a covariant wave equation. We first calculate its spacetime
divergence DαSαβµν. Clearly, it suffices to calculate DαQαβµν. Recalling the
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definition of the 1-form σα = 2TνFνα and using the definition (4.27) we
compute

DρQαβµν = (1 − σ)−1DρFαβ · Fµν + (1 − σ)−1Fαβ · DρFµν

− 1

3
(1 − σ)−1DρF

2 · �αβµν

+ (1 − σ)−2σρ

(

FαβFµν − 1

3
F 2�αβµν

)

.

(4.30)

Using (4.12), (4.26), and R = S − 6Q, we have

DρFγδ = TνRνργδ = TνSνργδ − 6 · TνQνργδ

= −3(1 − σ)−1σρFγδ + 2(1 − σ)−1F 2 · Tν�νργδ + TνSνργδ.
(4.31)

Thus,

(1 − σ)−1Fαβ · DρFµν = −3(1 − σ)−2 · σρFαβFµν

+ 2(1 − σ)−2F 2FαβTλ�λρµν + J1(S)ραβµν,

(4.32)

where

J1(S)ραβµν = (1 − σ)−1 · FαβTλSλρµν.

Observe that, in view of (4.31) and (4.26)

DρF
2 = 2DρFγδ · F γδ = −4(1 − σ)−1F 2σρ + 2TνSνργδF

γδ. (4.33)

Thus

−1

3
(1 − σ)−1DρF

2 · �αβµν = 4

3
(1 − σ)−2F 2 · σρ�αβµν + J2(S)ραβµν,

(4.34)

where,

J2(S)ραβµν = −2

3
(1 − σ)−1 · TλSλργδF

γδ�αβµν.

We combine (4.30), (4.32), and (4.34) to write

DρQαβµν = (1 − σ)−1DρFαβ · Fµν − 2(1 − σ)−2σρFαβFµν

+ 2(1 − σ)−2F 2FαβTλ · �λρµν + (1 − σ)−2F 2σρ�αβµν

+ J1(S)ραβµν + J2(S)ραβµν.

(4.35)



On the uniqueness of smooth, stationary black holes in vacuum 63

We are now ready to compute the divergence DσQβσµν. Using (4.35) and
the Maxwell equations (4.16) we derive

DβQαβµν = J′′(S)αµν − 2(1 − σ)−2σρFα
ρFµν

+ 2(1 − σ)−2F 2Fα
ρTλ�λρµν + (1 − σ)−2F 2σβ�αβµν;

J′′(S)αµν = gρβ(J1(S)ραβµν + J2(S)ραβµν).

Using (4.2) and the definition of σρ we derive,

−2(1 − σ)−2 · σρFα
ρFµν = −2(1 − σ)−2 · 2TλFλρFα

ρFµν

= −2(1 − σ)−2 · 2Tλ · 1

4
gλαF

2 · Fµν

= −(1 − σ)−2F 2TαFµν.

(4.36)

Using (4.25), (4.26), and the definitions,

2(1 − σ)−2F 2 · Fα
ρTλ�λρµν + (1 − σ)−2F 2 · σβ�αβµν

= 2(1 − σ)−2F 2
(
Fα

ρTλ�λρµν + TλFλ
ρ�αρµν

)

= 2(1 − σ)−2F 2Tλ
(
Fα

ρ�λρµν + Fλ
ρ�αρµν

)

= 2(1 − σ)−2F 2Tλ · 1

2
gλαF

ρσ�ρσµν

= (1 − σ)−2F 2TαFµν.

(4.37)

Thus, using (4.36) and (4.37), we derive,

DσQασµν = J′′(S)αµν,

with

J′′(S)αµν = (1 − σ)−1TλSλργδ

(
Fα

ρδγ
µδδ

ν − (2/3)F γδ�α
ρ
µν

)
.

Since, according to the Bianchi identities, and the Einstein equations, we
have DσRβσµν = 0 we deduce the following.

Theorem 4.5. The Mars–Simon tensor S verifies,

DσSσαµν = J(S)αµν. (4.38)

where,

J(S)αµν = −6(1 − σ)−1TλSλργδ

(
Fα

ρδγ
µδδ

ν − (2/3)F γδ�α
ρ
µν

)
.

As a consequence of the theorem we deduce from Proposition 4.1 and
the self-duality of S and J,

D[σSµν]αβ = −i∈ρσµνJ
ρ
αβ(S). (4.39)
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In the following calculations the precise form of J(S) is not important, we
only need to keep track of the fact that it is a multiple of S.

Definition 4.6. We denote by M(S) any k-tensor with the property that
there is a smooth tensor-field A such that

M(S)α1...αk = Sβ1...β4A
β1...β4

α1...αk . (4.40)

Similarly we denote by M(S, DS) any k-tensor with the property that there
exist smooth tensor-fields A and B such that

M(S, DS)α1...αk = Sβ1...β4A
β1...β4

α1...αk + Dβ5Sβ1...β4B
β1...β5

α1...αk . (4.41)

We state the main result of this section.

Theorem 4.7. We have

�gS = M(S, DS). (4.42)

Proof. The result follows easily from (4.38) and (4.39)

DαSαβγδ = J(S)βγδ

D[σSαβ]γδ = −i∈ρσαβJ
ρ
γδ(S).

Indeed, differentiating once more the second equation we derive,

Dσ(DσSαβγδ + DαSβσγδ + DβSσαγδ) = −i∈ρσαβDσJρ
γδ(S).

Thus, after commuting covariant derivatives and using the first equation we
derive,

�gSαβγδ = M(S, DS)αβγδ

as desired. ��

5. Vanishing of S on the horizon

In this section we prove that the Mars–Simon tensor S vanishes on H+∪H−.

Proposition 5.1. The Mars–Simon tensor S vanishes along the horizon
H+ ∪ H−.

The rest of the section is concerned with the proof of Proposition 5.1.
Recall, see Remark 4.4, that the tensor S is well defined on S0. We will
use the notation in the appendix. Assume N is a null hypersurface (in our
case N = H+ or N = H−) and let l ∈ T(N ) denote a null vector-field
orthogonal to N . The Lie bracket [X, Y ] of any two vector-fields X, Y
tangent to N is again tangent to N and therefore

g(DXl, Y ) − g(DYl, X) = −g(l, [X, Y ]) = 0 and
g(Dll, X) = −g(l, Dl X) = 0.
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In particular we infer that along N (h)ξ vanishes identically and (h)χ is
symmetric.

Definition 5.2. Given a null hypersurface N and l a fixed non-vanishing
null vector-field on it we define χ(X, Y ) = g(DXl, Y ), X, Y ∈ T(N ), the
null second fundamental form of N . We denote by tr χ the trace7 of χ
with respect to the induced metric and by χ̂ the traceless part of χ, i.e.
χ̂ = χ − 1

2γ tr χ, with γ the degenerate metric on N induced by g.

In view of the definitions (A.13), writing m = (e1 + ie2)/
√

2, with e1, e2
an arbitrary horizontal orthonormal frame, we deduce that,

θ = (χ11 + χ22)/2 = tr χ/2
ϑ = (χ11 − χ22)/2 + iχ12.

We now restrict our considerations to that of a non-expanding null
hypersurface. In other words we assume that θ = tr χ/2 vanishes identically
along N . In view of the null structure equation (A.21) and the vanishing
of ξ = (h)ξ(m), we deduce that |ϑ|2 = 0 along N therefore ϑ ≡ 0.
Therefore the full null second fundamental form of N vanishes identically.
We now consider the null structure equation (A.19). Since ξ, θ, ϑ vanish
we deduce that Ψ(2)(R) must vanish along N . Similarly we deduce that
Ψ(1)(R) vanishes along N from (A.29). Finally, we consider the Bianchi
equations with zero source J . From (A.41) we deduce that DΨ(0) vanishes
identically along N . Observe also that Ψ(0)(R) is invariant under general
changes of the null pair (l, l) which keep l orthogonal to N . Indeed Ψ(0)(R)

is always invariant under the scale transformations l′ = fl, l′ = f −1l. On
the other hand if we keep l fixed and perform the general transformations
l′ = l + Al + Bm + Bm we easily find that Ψ′

(0)(R) differs from Ψ(0)(R) by
a linear combination of Ψ(2)(R) and Ψ(1)(R).

We have thus proved the following.

Proposition 5.3. Let (l, l) be a null pair in an open set N with l orthogonal
to a non-expanding null hypersurface in N ⊂ N. Then (h)ξ and (h)χ vanish
identically on N . Moreover the curvature components Ψ(2)(R) and Ψ(1)(R)
(or equivalently, α(R), β(R)) vanish along N and the invariant Ψ(0)(R) (or
equivalently ρ(R + i ∗R)) is constant along the null generators.

We apply this proposition to the surfaces H+ and H− to establish the
following facts. Recall that R = R + i ∗R.

(1) The null second fundamental form χ, respectively χ, vanishes identi-
cally along H+, respectively H−.

(2) The null curvature components α = α(R) and β = β(R) (respectively
α(R), β(R)), vanish identically along H+ (respectively H−).

7 The trace is well defined since χ(X, l) = γ(X, l) = 0 for all X ∈ T(N ).
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(3) The null curvature component ρ(R) is invariant and constant along the
null generators of both H+ and H−.

(4) All null curvature components, except ρ(R), vanish along the bifurcate
sphere S0. We also have χ = χ = 0 on S0.

Consider an adapted null frame e1, e2, e3 = l, e4 = l in O with l tangent to
the null generators of H+ and l tangent to the null generators of H−. Thus,

g(l, l) = g( l, l) = 0, g(l, l) = −1, g(l, ea) = g( l, ea) = 0,

g(ea, eb) = δab, a, b = 1, 2, ∈12 = ∈(e1, e2, e3, e4) = 1.

We introduce the notation,

αa(F ) = F (ea, l), αa(F ) = F (ea, l), ρ(F ) = F ( l, l). (5.1)

Observe that the null components αa(F ), αa(F ), ρ(F ) completely deter-
mine the antisymmetric, self-dual tensor F . Indeed, −iF34 = (∗F )34 =
1
2∈34abF

ab = 1
2∈abF

ab. Hence,

Fab = −i∈abρ(F ). (5.2)

We claim that α(F ) vanishes on H+ while α(F ) vanishes on H−,

α(F ) = 0 on H+, α(F ) = 0 on H−. (5.3)

Indeed since g(T, l) = 0 on H+ (see the assumption SBS) and the null
second fundamental form χ vanishes identically on H+,

F(ea, l) = −g(T, Deal) = −χ(T, ea) = 0 on H+.

On the other hand,

∗Fa4 = 1

2
∈a4µν Fµν = ∈a4b3Fb3 = −∈a4b3Fb4 = 0.

Hence αa(F ) = Fa4 = Fa4 + i ∗Fa4 = 0 on H+. The proof of vanishing of
α(F ) on H− is similar. We infer that both α(F ) and α(F ) have to vanish
along the bifurcate sphere S0. We also observe,

F 2 = FµνF
µν = 2F 34F34 + F abFab = −4F 2

34 = −4ρ(F )2 on S0.

Since F 2 does not vanish on S0 we infer that ρ(F ) cannot vanish on S0.
Consider now the Mars–Simon tensor (4.29). To show that the Weyl ten-

sor S vanishes along the H+∪H− it suffices to show that all its null compo-
nents (see appendix) α(S), β(S), ρ(S), α(S), β(S), relative to an arbitrary,
adapted, null frame (e1, e2, l, l), vanish along H+ ∪H−. We first show that

α(S) = β(S) = 0 on H+, α(S) = β(S) = 0 on H−. (5.4)



On the uniqueness of smooth, stationary black holes in vacuum 67

Indeed,

� (l, ea, l, eb) = 0, � (ea, l, l, l) = 0, � (l, l, l, l) = −1/4.

Therefore along H+, where α(F ), α(R), β(R) vanish,

α(S)ab = β(S)a = 0,

using the formula S = R + 6Q. Similarly we infer that α(S) = β(S) = 0
along H−.

We show now that ρ(S) vanishes on S0. This is where we need the main
technical assumption (1.6) along S0,

(1 − σ)4 = −4M2F 2.

Differentiating it along S0 we find,

0 = Da(F
2(1 − σ)−4) = (1 − σ)−4(DaF

2 + 4(1 − σ)−1σa
)
.

On the other hand, recalling formula (4.33)

DαF
2 + 4(1 − σ)−1F 2σα = 2TλSλαγδF

γδ.

We deduce that

TλSλaγδF
γδ = 0 on S0. (5.5)

Recall T is tangent on S0 and can only vanish at a discrete set of points (see
assumption SBS in Subsect. 1.2). Therefore, at a point where g(T, T)1/2,
does not vanish we can introduce an orthonormal frame e1, e2 with T =
g(T, T)1/2e1.

We now expand the left-hand side of (5.5) using (5.2) while setting the
index a = 2,

0 = TλSλ2γδF
γδ = 2TλSλ234F

34 + TλSλ2cdF
cd

= −2TλSλ234F34 − iTλSλ2cd∈cdρ(F )

= −g(T, T)1/2ρ(F )
(
2S1234 + iS12cd ∈cd

) = 4ig(T, T)1/2ρ(F )ρ(S).

The last equality follows from (see (A.12))

S1234 = −iρ(S), S12cd = −∈cdρ(S).

Therefore, at all points of S0 where T does not vanish we infer that ρ(S) = 0
(since ρ(F ) cannot vanish on S0, due to (1.6) and (1.7)). Since the set of
such points is dense in S0 we conclude that ρ(S) vanishes identically on the
bifurcate sphere S0. We have thus proved the following.
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Proposition 5.4. The components α(S), β(S) vanish along H+ while α(S),
β(S) vanish along H−. In addition, if (1.6) holds then ρ(S) also vanishes
on S0.

To show that ρ(S), β(S), α(S) vanish on H+ we need to use the Bianchi
equations (see Theorem 4.5),

DσSσαµν = J(S)αµν = −6(1 − σ)−1TλSλργδ

(

Fα
ρδγ

µδδ
ν − 2

3
F γδ�α

ρ
µν

)

.

(5.6)

Assume, without loss of generality, that the null generating vector-field l is
geodesic along H+, i.e. Dll = 0. Since both β(S) = α(S) = 0 along H we
deduce8 directly that ρ(S) must verify the equation,

∇lρ(S) = −J(S)434. (5.7)

To deduce that ρ(S) vanishes identically on H+ it only remains to verify
that J(S)434 vanishes on H+. Clearly

J(S)434 = −6(1 − σ)−1TλSλργδ

(

F4
ρδ

γ

3 δδ
4 − 2

3
F γδ�4

ρ
34

)

.

Observe that the only choice of the index ρ for which the expression inside
brackets does not vanish is ρ = 4. Thus

J(S)434 = −6(1 − σ)−1TλSλ4γδ

(

F34δ
γ

3 δδ
4 + 1

6
F γδ

)

= −6(1 − σ)−1TλSλ434F34 − (1 − σ)−1TλSλ4γδF
γδ.

Since α(S), β(S) vanish the only pair of indices γδ for which TλSλ4γδ does
not vanish is when either of the two indices is a 3 and the other is a ∈ {1, 2}.
Since α(F ) = 0, it follows that J(S)434 vanishes identically as stated. Thus
ρ(S) is constant along generators and vanishes on S0. We conclude that
ρ(S) vanishes identically on H+.

To show that β(S) also vanishes we derive a transport equation for it
along the generators of H+. In view of the vanishing of α(S), β(S), ρ(S)
we can directly deduce9 (see also appendix) it from (5.6),

∇lβ(S)a = J(S)4a3.

Thus, since β(S) vanishes on S0, to deduce that it vanishes everywhere
on H+ we only need to verify that J(S)4a3 vanishes identically on H+.

8 Alternatively we can use the null Bianchi identities of the appendix.
9 We also refer the reader to the appendix for the definition of the horizontal covariant

derivative ∇l .
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Now,

J(S)4a3 = −6(1 − σ)−1TλSλργδ

(

F4
ρδγ

a δδ
3 − 2

3
F γδ�4

ρ
a3

)

= −6(1 − σ)−1TλSλ4a3F43 + 8(1 − σ)−1TλSλb34F43�4
b

a3

+ 4(1 − σ)−1TλSλbcdF
cd� b

4 a3 + 8(1 − σ)−1TλSλb4cF
4c�4

b
a3.

Since α(S), β(S) and ρ(S) vanish, it follows that Sb4a3 = Sab34 = Sabcd =
S4bcd = S4b4c = 0, which gives J(S)4a3 = 0.

To show that α(S) also vanishes on H+ we derive another transport
equation for it. Since all other components of S have already been shown
to vanish we easily derive, from (5.6),

∇l α(S)ab = −J(S)a3b. (5.8)

Since α(S) vanishes on S0 it only remains to check that J(S)a3b vanishes
identically. This can be checked as before taking advantage of the cancella-
tions of all the other null components of S. Therefore S vanishes along the
entire event horizon.

6. Vanishing of S in a neighborhood of the bifurcate sphere

Let Oε = {x ∈ O : |u−| < ε, |u+| < ε} as in Sect. 2. In this section we
show that the tensor S vanishes in a neighborhood of the bifurcate sphere S0
in E.

Proposition 6.1. There is r1 = r1(A0) > 0 such that

S ≡ 0 in Or1 ∩ E.

The rest of this section is concerned with the proof of Proposition 6.1.
Recall, see Remark 4.4, that the tensor S is well defined and smooth on Oε2

for some ε2 = ε2(A0) ∈ (0, ε0). Recall that we have

g(L±, L±) = 0, g(L+, L−) = Ω >
1

2
in Oε0.

Moreover both L+, L− are orthogonal to the 2-surfaces Su−,u+ =
Hu− ∩ Hu+ . We choose, locally at any point p ∈ Su−,u+ , an orthonor-
mal frame (La)a=1,2 tangent to Su−,u+ . Thus, relative to the null frame
L1, L2, L3 = L−, L4 = L+ the metric g takes the form,

{
gab = δab, ga3 = ga4 = 0, a, b = 1, 2
g33 = g44 = 0, g34 = Ω.

(6.1)
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Also, for the inverse metric,
{

gab = δab, ga3 = ga4 = 0, a, b = 1, 2
g33 = g44 = 0, g34 = Ω−1.

(6.2)

We denote by O(1) any quantity with absolute value uniformly bounded
by a positive constant which depends only on A0 (in particular Lα(Ω) =
O(1), α = 1, 2, 3, 4). In view of the definitions of u± and L± we have,

L1(u±) = L2(u±) = L−(u−) = L+(u+) = 0, L−(u+) = L+(u−) = Ω.
(6.3)

For ε ∈ (0, ε0] we define the weight function in Oε2,

hε = ε−1(u+ + ε)(u− + ε). (6.4)

Observe that,

L4(hε) = ε−1(u+ + ε)Ω, L3(hε) = ε−1(u− + ε)Ω,

La(hε) = 0, a = 1, 2.
(6.5)

Also, using (6.3) and (6.5)
⎧
⎨

⎩

(
D2hε

)
33 = O(1),

(
D2hε

)
44 = O(1),

(
D2hε

)
34 = ε−1Ω2 + O(1),

(
D2hε

)
ab

= O(1), a, b = 1, 2,
(
D2hε

)
3a

= O(1),
(
D2hε

)
4a

= O(1), a = 1, 2.

(6.6)

Assume x0 ∈ S0 is a fixed point and define, using the coordinate chart
Φx0 : B1 → B1(x0), Nx0 : B1(x0) → [0,∞),

Nx0(x) = |(Φx0)−1(x)|2. (6.7)

We state now the main Carleman estimate needed in the proof of Prop-
osition 6.1.

Lemma 6.2. There is ε ∈ (0, ε2) sufficiently small and C̃ε sufficiently large
such that for any x0 ∈ S0, any λ ≥ C̃ε, and any φ ∈ C∞

0 (Bε10(x0))

λ‖e−λ fεφ‖L2 + ‖e−λ fε |D1φ|‖L2 ≤ C̃ελ
−1/2

∥
∥e−λ fε�gφ

∥
∥

L2, (6.8)

where fε = ln(hε + ε12Nx0), see definitions (6.4) and (6.7).

Proof. It is clear that Bε10(x0) ⊆ Oε2 for ε sufficiently small (depending
only on the constant A0), thus the weight fε is well defined in Bε10(x0).
We apply Proposition 3.3 with V = 0. It is clear that ε12Nx0 is a negligible
perturbation, in the sense of (3.9), for ε sufficiently small. It remains to prove
that there is ε1 = ε1(A0) > 0 such that the family of weights {hε}ε∈(0,ε1)

satisfies conditions (3.6)–(3.8).
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Let C̃ denote constants that may depend only on A0. The definition (6.4)
easily gives hε(x0) = ε, |D1hε| ≤ C̃ on Bε10(x0), and |D jhε| ≤ C̃ε−1 on
Bε10(x0) for j = 2, 3, 4. Thus condition (3.6) is satisfied provided ε1 ≤ C̃−1.

Using (6.2), (6.5), (6.6), and Ω(x0) = 1 we compute in the frame
L1, L2, L3, L4

Dαhε(x0)Dβhε(x0)(DαhεDβhε − εDαDβhε)(x0) = 2 + εO(1) ≥ 1

if ε1 is sufficiently small. Thus condition (3.7) is satisfied provided ε1 ≤
C̃−1.

Assume now Y = YαLα is a vector in Tx0(M). We fix µ = ε
−1/2
1 and

compute, using (6.5), (6.6), and Ω(x0) = 1,

YαYβ(µgαβ − DαDβhε)(x0) + ε−2
∣
∣YαDαhε

∣
∣2

= µ((Y 1)2 + (Y 2)2 + 2Y 3Y 4) − 2ε−1Y 3Y 4

+ ε−2(Y 3 + Y 4)2 + O(1)

4∑

α=1

(Yα)2

≥ (µ/2)[(Y 1)2 + (Y 2)2] + (ε−1/2)[(Y 3)2 + (Y 4)2]
≥ (Y 1)2 + (Y 2)2 + (Y 3)2 + (Y 4)2

if ε1 is sufficiently small. We notice now that we can write Y = Xα∂α in
the coordinate frame ∂1, ∂2, ∂3, ∂4, and |Xα| ≤ C̃(|Y 1| + |Y 2| + |Y 3| + |Y 4|)
for α = 1, 2, 3, 4. Thus condition (3.8) is satisfied provided ε1 ≤ C̃−1,
which completes the proof of the lemma. ��

We prove now Proposition 6.1.

Proof of Proposition 6.1. In view of Lemma 6.2, there are constants ε =
ε(A0) ∈ (0, ε0) and C̃ε ≥ 1 such that, for any x0 ∈ S0, λ ≥ C̃ε and any
φ ∈ C∞

0 (Bε10(x0))

λ‖e−λ fεφ‖L2 + ‖e−λ fε |D1φ|‖L2 ≤ C̃ελ
−1/2

∥
∥e−λ fε�gφ

∥
∥

L2, (6.9)

where

fε = ln
(
ε−1(u+ + ε)(u− + ε) + ε12Nx0

)
. (6.10)

The constant ε will remain fixed in this proof. For simplicity of notation, we
replace the constants C̃ε in (6.9) with C̃; since ε is fixed, these constants may
depend only on the constant A0. We will show that S ≡ 0 in Bε40(x0) ∩ E
for any x0 ∈ S0. This suffices to prove the proposition.

We fix x0 ∈ S0 and, for ( j1, . . . , j4) ∈ {1, 2, 3, 4}4, we define using the
vector-fields ∂α induced by the coordinate chart Φx0

φ( j1... j4) = S(∂ j1, . . . , ∂ j4). (6.11)

The functions φ( j1... j4) : Bε10(x0) → C are smooth. Let η : R → [0, 1]
denote a smooth function supported in [1/2,∞) and equal to 1 in [3/4,∞).
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For δ ∈ (0, 1] we define,

φ
δ,ε
( j1... j4)

= φ( j1... j4) · 1E · η(u+u−/δ) · (1 − η(Nx0/ε20))

= φ( j1... j4) · η̃δ,ε.
(6.12)

Clearly, φ
δ,ε
( j1... j4)

∈ C∞
0 (Bε10(x0) ∩ E). We would like to apply the inequal-

ity (6.9) to the functions φ
δ,ε
( j1... j4)

, and then let δ → 0 and λ → ∞ (in this
order).

Using the definition (6.12), we have

�gφ
δ,ε
( j1... j4)

= η̃δ,ε ·�gφ( j1... j4) + 2Dαφ( j1... j4) · Dαη̃δ,ε + φ( j1... j4) ·�gη̃δ,ε.

Using the Carleman inequality (6.9), for any ( j1, . . . , j4) ∈ {1, 2, 3, 4}4 we
have

λ · ∥∥e−λ fε · η̃δ,εφ( j1... j4)

∥
∥

L2 + ∥
∥e−λ fε · η̃δ,ε

∣
∣D1φ( j1... j4)

∣
∣
∥
∥

L2

≤ C̃λ−1/2 · ∥
∥e−λ fε · η̃δ,ε�gφ( j1... j4)

∥
∥

L2

+ C̃
[∥
∥e−λ fε · Dαφ( j1... j4)D

αη̃δ,ε

∥
∥

L2

+ ∥
∥e−λ fε · φ( j1... j4)

(|�gη̃δ,ε| + ∣
∣D1η̃δ,ε

∣
∣
)∥
∥

L2

]
,

(6.13)

for any λ ≥ C̃. We estimate now |�gφ( j1... j4)|. Using Theorem 4.7 and the
definition (4.41), in Bε10(x0) we estimate pointwise

|�gφ( j1... j4)| ≤ M
∑

l1,...,l4

(∣
∣D1φ(l1...l4)

∣
∣ + |φ(l1...l4)|

)
, (6.14)

for some large constant M. We add inequalities (6.13) over ( j1, . . . , j4) ∈
{1, 2, 3, 4}4. The key observation is that, in view of (6.14), the first term in
the right-hand side of (6.13) can be absorbed into the left-hand side for λ
sufficiently large. Thus, for any λ sufficiently large and δ ∈ (0, 1],

λ
∑

j1,..., j4

∥
∥e−λ fε · η̃δ,εφ( j1... j4)

∥
∥

L2

≤ C̃
∑

j1,..., j4

[∥
∥e−λ fε · Dαφ( j1... j4)D

αη̃δ,ε

∥
∥

L2

+ ∥
∥e−λ fε · φ( j1... j4)

(|�gη̃δ,ε| + ∣
∣D1η̃δ,ε

∣
∣
)∥
∥

L2

]
.

(6.15)

We would like to let δ → 0 in (6.15). For this, we observe first that the
functions Dαφ( j1... j4)D

αη̃δ,ε and (|�gη̃δ,ε| + |D1η̃δ,ε|) vanish outside the set
Aδ ∪ B̃ε, where

Aδ = {x ∈ Bε10(x0) ∩ E : u+(x)u−(x) ∈ (δ/2, δ)};
Bε = {

x ∈ Bε10(x0) ∩ E : Nx0 ∈ (ε20/2, ε20)
}
.
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In addition, since φ( j1... j4) = 0 on Oε2 ∩ [δ(�−(M(end))) ∪ δ(�+(M(end)))]
(see Sect. 5), it follows from (2.7) and (2.8) that there are smooth functions
φ′

( j1... j4) : Oε2 → C such that

φ( j1... j4) = u+u− · φ′
( j1... j4) in Oε2 . (6.16)

We show now that

|�gη̃δ,ε| + ∣
∣D1η̃δ,ε

∣
∣ ≤ C̃(1Bε

+ (1/δ)1Aδ
). (6.17)

The inequality for |D1η̃δ,ε| follows directly from the definition (6.12). Also,
using again the definition,

∣
∣DαDαη̃δ,ε

∣
∣≤ ∣

∣DαDα(1E · η(u+u−/δ))
∣
∣ · (1 − η(Nx0/ε20))

+ C̃(1Bε
+ (1/δ)1Aδ

).

Thus, for (6.17), it suffices to prove that

1E∩B
ε10 (x0) · ∣∣DαDα(η(u+u−/δ))

∣
∣ ≤ C̃/δ · 1Aδ

. (6.18)

Since u+, u−, η are smooth functions, for (6.18) it suffices to prove that

δ−2
∣
∣Dα(u+u−)Dα(u+u−)

∣
∣ ≤ C̃/δ in Aδ, (6.19)

which follows from (6.3).
We show now that

∣
∣Dαφ( j1... j4)D

αη̃δ,ε

∣
∣ ≤ C̃φ′(1Bε

+ 1Aδ
), (6.20)

where the constant C̃φ′ depends on the smooth functions φ′
( j1... j4) defined

in (6.16). Using the formula (6.16), this follows easily from (6.19).
It follows from (6.16), (6.17), and (6.20) that
∣
∣Dαφ( j1... j4)D

αη̃δ,ε

∣
∣ + |φ j1... j4|

(|�gη̃δ,ε| + ∣
∣D1η̃δ,ε

∣
∣
) ≤ C̃φ′(1Bε

+ 1Aδ
).

Since limδ→0 ‖1Aδ
‖L2 = 0, we can let δ → 0 in (6.15) to conclude that

λ
∑

j1,..., j4

∥
∥e−λ fε · 1B

ε10/2(x0)∩E · φ( j1... j4)

∥
∥

L2 ≤ C̃φ′
∥
∥e−λ fε · 1Bε

∥
∥

L2 (6.21)

for any λ sufficiently large. Finally, using the definition (6.10), we observe
that

inf
B

ε40(x0)∩E
e−λ fε ≥ e−λ ln[ε+ε32/2] ≥ sup

Bε

e−λ fε .

It follows from (6.21) that

λ
∑

j1,..., j4

‖1B
ε40 (x0)∩E · φ( j1... j4)‖L2 ≤ C̃φ′‖1Bε

‖L2
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for any λ sufficiently large. We let λ → ∞ to conclude that φ( j1... j4) = 0 in
Bε40(x0) ∩ E, which completes the proof of the proposition. ��

7. Consequences of the vanishing of S

We assume in this section that N ⊆ M̃ is a open set, S0 ⊆ N, N ∩ E is
connected, and
{

1 − σ �= 0 in N;
Sαβµν = Rαβµν + 6(1 − σ)−1

(
FαβFµν − 1

3F 2�αβµν

) = 0 in N ∩ E.

(7.1)

It follows from the assumption (1.6), and the identities (4.33) and (7.1)
(which give Dρ(F

2(1 − σ)−4) = 0 in N ∩ E) that

−4M2F 2 = (1 − σ)4 in N ∩ E. (7.2)

We define the smooth function P = y + iz : N → C,

P = y + iz = (1 − σ)−1. (7.3)

Since −F 2/4 = (4MP2)−2 �= 0 (see (7.2)), there are null vector-fields
l, l, locally around every point in N, such that

Fαβlβ = (4MP2)−1lα, Fαβlβ = −(−4MP2)−1lα, and
lαlα = −1 in N ∩ E.

(7.4)

We fix a complex-valued null vector-field m on N such that (m, m, l, l) =
(e1, e2, e3, e4) is a complex null tetrad, see the definitions in Subsect. A.2.
We may also assume that (m, m, l, l) has positive orientation, i.e.

∈αβµνmαmβlµlν = i.

We prove now some identities. Most of these identities, with the ex-
ception of Proposition 7.2 and the computation of the Hessian of y in
Lemma 7.3, were derived by Mars [24]; for the sake of completeness
we rederive them in our notation. It follows from (7.4) and (7.2) that,
in N ∩ E,

Fαβ = 1

4MP2

(−lαlβ + lβlα − i∈αβµνlµlν
)
. (7.5)

Using (7.5), we compute easily

F41 = F42 = F31 = F32 = 0 and F43 = F21 = 1/(4MP2). (7.6)
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Using (7.1) and (7.6) we compute

R4141 = R4242 = 0 thus Ψ(2)(R) = 0;
R3131 = R3232 = 0 thus Ψ(2)(R) = 0;
R1434 = R2434 = 0 thus Ψ(1)(R) = 0;
R1343 = R2343 = 0 thus Ψ(1)(R) = 0;
R2314 = 1

4M2P3
, R1324 = 0 thus Ψ(0)(R) = 1

8M2P3
.

(7.7)

We use now the first 4 Bianchi identities (A.37)–(A.40) to conclude that

ξ = ξ = ϑ = ϑ = 0 in N ∩ E. (7.8)

The remaining 4 Bianchi identities, (A.41)–(A.44) give

DP = θP, DP = θ P, δP = ηP, δP = ηP. (7.9)

We analyze now the functions y and z. By contracting (7.5) with 2Tα

and using 2TαFαβ = σβ = Dβσ we derive

Dβ y = 1

2M

[−(
Tαlα

)
lβ + (

Tαlα
)
lβ

]
and Dβz = −1

2M
∈αβµνTαlµlν.

(7.10)

In particular,

δy = δy = Dz = Dz = 0. (7.11)

Using (7.9) it follows that

Dy = θP, Dy = θP, δz = −iηP, δz = −iηP. (7.12)

In particular θP = θP, θ P = θ P, −ηP = ηP, and, using again (7.10),

Tαlα = 2MθP, Tαlα = −2MθP. (7.13)

Using (7.11) and (7.12) we rewrite (7.10) in the form

Dβ y = −θ Plβ − θPlβ, Dβz = −iηPmβ − iηPmβ. (7.14)

A direct computation using the definition of P shows that

DαP DαP = DασDασ

(1 − σ)4
= −TαTα

4M2
.

The real part of this identity and −TαTα = �σ give

DαyDαy − DαzDαz = −TαTα

4M2
= 1

4M2

(

1 − y

y2 + z2

)

. (7.15)
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Using (7.14) this gives

8M2(ηη − θθ)P3P = y2 − y + z2. (7.16)

Lemma 7.1. There is a constant B ∈ [0,∞) such that

DαzDαz = B − z2

4M2(y2 + z2)
in N ∩ E. (7.17)

In addition z2 ≤ B in N ∩ E.

Proof. For (7.17) it suffices to prove that

4M2PP · DαzDαz + z2 = B. (7.18)

Let Z = 4M2PP · DαzDαz. To show D(Z + z2) = 0 we use the formula
Z = 8M2P2P2ηη (which follows from (7.14) and −ηP = ηP), the identi-

ties (7.9), θ P = θP, and the Ricci equation (see (A.24), (7.7), and (7.8))

Dη = θ(η − η) − Γ123η.

Indeed,

D(Z + z2) = 8M2P2P2ηη

(
2DP

P
+ 2DP

P
+ Dη

η
+ Dη

η

)

= 8M2P2P2ηη [2θ + 2θ − θ(P/P + 1) − Γ123

− θ(P/P + 1) − Γ213]
= 0.

To show D(Z + z2) = 0 we use the formula Z = 8M2P2P2ηη (which
follows from (7.14) and −ηP = ηP), the identities (7.9), θP = θ P, and
the Ricci equation (see (A.23), (7.7), and (7.8))

Dη = θ(η − η) − Γ124η.

Indeed,

D(Z + z2) = 8M2P2P2ηη

(
2DP

P
+ 2DP

P
+ Dη

η
+ Dη

η

)

= 8M2P2P2ηη[2θ + 2θ − θ(P/P + 1) − Γ124

− θ(P/P + 1) − Γ214]
= 0.

Finally, to show that δ(Z + z2) = 0 we use the formula

Z + z2 = −8M2 P2P2θθ − y2 + y,
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which follows from (7.16) and θ P = θ P, the identities (7.9), θP = θP,
and the Ricci equations (see (A.29), (A.30), (7.7), and (7.8))

{
δθ = −ζθ − η(θ − θ);
δθ = ζθ − η(θ − θ).

Indeed,

δ(Z + z2) = −8M2P2P2θθ

(
δθ

θ
+ δθ

θ
+ 2δP

P
+ 2δP

P

)

= −8M2P2P2θθ[−ζ − η(1 − P/P) + ζ

− η(1 − P/P) + 2η + 2η]
= 0.

This completes the proof of (7.18). ��
It follows from (7.17) and (7.15) that

DαyDαy = y2 − y + B

4M2(y2 + z2)
. (7.19)

Using (7.13) and (7.14), it follows that

−θθ P2 = y2 − y + B

8M2(y2 + z2)
=

(
Tαlα

) · (
Tαlα

)

4M2
. (7.20)

We express also the vector T in the complex null tetrad (m, m, l, l).
Using (7.5) and (7.10),

Tα = (F 2/4)−1Fα
µTβFβµ = −(

Tβlβ
)
lα − (

Tβlβ
)
lα − 2M∈αβµνDβzlµlν.

(7.21)

We prove now a uniform bound on the gradient of the function y.

Proposition 7.2. There is a constant C̃ = C̃(A0) that depends only on A0
such that

|D1y| ≤ C̃ in N. (7.22)

Proof. For p ∈ Φx0(B1), x0 ∈ Σ0, the gradient |D1y| is defined using the
coordinate chart Φx0 , i.e.

|D1y|(p) =
4∑

j=1

|∂ j(y)(p)|.

In view of the definition y = �[(1 − σ)−1] and the smoothness of σ , the
bound (7.22) is clear if |1 − σ(p)| ≥ 1/4. Assume that |1 − σ(p)| < 1/4.
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Since

�(1 − σ) = 1 + g(T, T),

it follows that g(T, T)(p) < −3/4. In particular, p ∈ N ∩ E. We define the
vector-field,

Y = gαβ∂αy∂β. (7.23)

In view of (7.19) and T(y) = 0, we have

|g(Y, Y )| =
∣
∣
∣
∣

y2 − y + B

4M2(y2 + z2)

∣
∣
∣
∣ ≤ C̃ and g(T, Y ) = T(y) = 0 at p.

Since g(T, T) < −3/4 it follows that Yp is a space-like vector with norm
(as induced by the coordinate chart Φx0) dominated by C̃. The bound (7.22)
follows since ∂ j y = g(Y, ∂ j). ��

7.1. The connection coefficients and the Hessian of y. Assume now that
N′ is a subset of N ∩ E with the property that

y2 − y + B > 0 in N′.

Using (7.20), we can normalize the vector l such that

Tαlα = 2M in N′. (7.24)

Thus, using (7.13) and (7.20), we compute

θ = 1/P and θ = −W/P = − 1

P
· y2 − y + B

8M2(y2 + z2)
in N′. (7.25)

Using the null structure equation (A.21) (see also (7.8))

Dθ = −θ2 − ωθ,

together with (7.9) and (7.25), we compute

ω = 0 in N′. (7.26)

Using the null structure equation (A.22) (see also (7.8))

Dθ = −θ2 − ω θ,

together with (7.11), (7.12), and (7.25), we compute

ω = y2 − z2 − 2y(B − z2)

8M2(y2 + z2)2
in N′. (7.27)
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We can express ω in the form,

ω = HW, H = y2 − z2 − 2y(B − z2)

(y2 − y + B)(y2 + z2)
. (7.28)

Using the null structure equation (A.29) (see also (7.8) and (7.7))

δθ = −ζθ − η(θ − θ),

together with (7.9) and (7.25), we compute

ζ = ηP

P
= −η in N′. (7.29)

Using (7.16) and (7.25),

|ζ |2 = ηη = B − z2

8M2(y2 + z2)2
and η = −ηP

P
in N′. (7.30)

Finally, using (7.14), we rewrite (7.21) in the form

T = −2M(Wl + l − ζ Pm − ζ Pm) in N′. (7.31)

We summarize these computations in the first part of the following lemma.

Lemma 7.3. Let N be the set defined by (7.1) and N′ the subset of N ∩ E
for which y2 − y + B > 0, with B the constant of Lemma 7.1. In N′ we have,
with P = y + iz = (1 − σ)−1,

ξ = ξ = ϑ = ϑ = ω = 0,

ω = HW = y2 − z2 − 2y(B − z2)

8M2(y2 + z2)2
, H = y2 − z2 − 2y(B − z2)

(y2 − y + B)(y2 + z2)
,

W = y2 − y + B

8M2(y2 + z2)
> 0, |z|2 ≤ B,

θ = 1/P, θ = −W/P, |ζ |2 = B − z2

8M2(y2 + z2)2
, η = ζ

P

P
, η = −ζ,

δy = δy = Dz = Dz = 0, Dy = 1, Dy = −W, DαyDαy = 2W.

We also have, for the Hessian of y,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(D2y)44 = (D2y)33 = 0, (D2 y)43 = (D2y)34 = −WH

(D2y)41 = (D2y)14 = ζ, (D2 y)42 = (D2y)24 = ζ

(D2y)31 = (D2y)13 = ηW, (D2 y)32 = (D2y)23 = ηW

(D2y)12 = (D2y)21 = W 2y
y2+z2 , (D2 y)11 = (D2y)22 = 0.

(7.32)
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Proof. It only remains to prove formulas in (7.32). These formulas follow
easily using (D2y)αβ = eα(eβ y) − Γµ

βαeµ(y), the first part of the lemma,
and the table (A.16). ��

8. The main bootstrap argument

In this section we show that

1 − σ �= 0 and S = 0 on Σ0 ∩ E. (8.1)

In view of our assumption AF, this suffices to show that S = 0 in E. Our
main theorem is then consequence of the main result of Mars in [24].

We show first that the function y is constant on H+ ∪H− and increases
in E.

Lemma 8.1. There is a constant yS0 ∈ (1/2, 1] such that

y = yS0 on H+ ∪ H−. (8.2)

In addition B ∈ [0, 1/4), where B is the constant in Lemma 7.1. Finally,
for sufficiently small ε = ε(A0) > 0,

y > yS0 + C̃−1u+u− on Oε ∩ E, (8.3)

where Oε are the open sets defined in Sect. 2, and C̃ = C̃(A0) > 0.

Proof. Let N = Or1 denote the set constructed in Proposition 6.1. Since
S = 0 in N, we can apply the computations of the previous section. It follows
from (5.3) that if l̃ is tangent to the null generators of H+ then Fαβ̃lβ = Cl̃α
for some scalar C. Thus l̃ is parallel to either l or l on H+. Similarly, the null
generator of H− is also parallel to either l or l on H−. Thus the vector m
is tangent to the bifurcate sphere S0. Using δy = 0, see (7.11), it follows
that y is constant on S0. Using (7.12) and Proposition 5.3 it follows that y is
constant on H+ ∪ H−, which gives (8.2). Also, using (7.20) on S0 and the
fact that T is tangent to S0, it follows that

y2
S0

− yS0 + B = 0.

Since B ∈ [0,∞) and yS0 > 1/2 (using assumption (1.7)), it follows that
B ∈ [0, 1/4) and

yS0 = 1 + √
1 − 4B

2
∈ (1/2, 1].

To prove (8.3) we consider the open sets Oε and the functions u± :
Oε → R defined in Sect. 2. It follows from (8.2) combined with (2.7)
and (2.8) that

y = yS0 + u+u− · y′, (8.4)
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for some smooth function y′ : Oε → R, with |D1y′| ≤ C̃. The identities
P = (1 − σ)−1, DµDµσ = −F 2, DµσDµσ = TαTα · F 2 = −�σ · F 2

(see (4.18)), and F 2 = −(1 − σ)4/(4M2) (see (7.2)) show that,

DµDµ P = (1 − σ)−2DµDµσ + 2(1 − σ)−3DµσDµσ

= 1

4M2
(1 − σ)(1 + σ̄ ) = 2P − 1

4M2PP
.

Therefore,

DµDµy = 2y − 1

4M2(y2 + z2)
. (8.5)

We substitute y = yS0 + u+u− · y′ (see (8.4)) and evaluate on S0

2yS0 − 1

4M2
(
y2

S0
+ z2

) = DµDµ(yS0 + u+u− · y′) = 2Dµ(u+)Dµ(u−) · y′ = 4y′.

Since yS0 > 1/2 + C̃−1 it follows that y′ > C̃−1 on S0. Thus, for ε ∈ (0, r1)
sufficiently small,

y > yS0 + C̃−1u+u− in Oε ∩ E,

as desired. ��
We define the set

Σ′
0 = {x ∈ Σ0 ∩ E : σ(x) �= 1}.

Clearly, Σ′
0 is an open subset of Σ0 ∩ E which contains a neighborhood

of S0 in Σ0 ∩ E. We define the function (which agrees with the function y
defined earlier on open sets)

y : Σ′
0 → R, y(x) = �[(1 − σ)−1].

For any R > yS0 let VR = {x ∈ Σ′
0 : y(x) < R} and UR the unique

connected component of VR whose closure in Σ0 contains S0 (this unique
connected component exists since y(x) = yS0 < R on S0). We prove now
the first step in our bootstrap argument.

Proposition 8.2. There is a real number R1 ≥ yS0 +C̃−1, for some constant
C̃ = C̃(A0) > 0, such that S = 0 in UR1 .

Proof. With ε as in Lemma 8.1, it follows from Proposition 6.1 that S = 0
in Oε ∩ E. Also, since u+/u− + u−/u+ ≤ A0 in Σ0 ∩ E ∩ Oε, it follows
from (8.3) that

y − yS0 ∈ [
C̃−1(u2

+ + u2
−
)
, C̃

(
u2

+ + u2
−
)]

in Σ0 ∩ E ∩ Oε.

Thus, for R1 sufficiently close to yS0, the set UR1 is included in Oε, and the
proposition follows. ��
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With R1 as in Proposition 8.2, the main result in this section is the
following:

Proposition 8.3. For any R2 ≥ R1 we have S = 0 in UR2 .

The proof of Proposition 8.3, which will be completed in Subsect. 8.2,
is done by induction. In view of Proposition 8.2, we may assume that the
claims in Proposition 8.3 hold for some value R2 ≥ R1. We therefore make
the following induction hypothesis:

Induction hypothesis. For a fixed R2 ≥ R1 the tensor S vanishes on the
set UR2 , which is the unique connected component of the set VR2 = {x ∈
Σ0 ∩ E : y(x) < R2, σ(x) �= 1} whose closure in Σ0 contains the bifurcate
sphere S0.

To complete the proof of the proposition we have to advance these claims
for R′

2 = R2 + r ′, where r ′ > 0 depends only on the constants A0, ÃC̃−1

(here ÃC̃−1 = Ãε with ε = C̃−1, see (2.9) for the definition of Ãε), and R2

(as before, the constants C̃ may depend only on A0). In the rest of this
section we let C̃R2 denote various constants in [1,∞) that may depend only
on A0, ÃC̃−1 , and R2. It is important that such constants do not depend on
other parameters, such as the point x0 ∈ δΣ0∩E(UR2) chosen below.

Assume x0 ∈ δΣ0∩E(UR2) is a point on the boundary of UR2 in Σ0 ∩ E.
Clearly,

y(x0) = R2.

Thus |1 − σ(x0)| = (R2
2 + z(x0)

2)−1/2. Since 1 − σ is a smooth function
on M̃ and z(x0)

2 ≤ B < 1/4 (see Lemma 7.3), there is r ′
2 = r ′

2(A0, R2) > 0
such that |1 − σ(x)| ∈ (1/(2R2), 2/R2) in Br′

2
(x0). Thus the function

y : Br′
2
(x0) → R, y(x) = �[(1 − σ(x))−1],

is well defined; observe that, with ∂ j defined according to the coordinate
charts defined in Subsect. 2.2,

sup
x∈Br′2(x0)

(|y(x)| + |D1y(x)| + . . . + |D4y(x)|) ≤ C̃R2 . (8.6)

By choosing r ′
2 sufficiently small it follows from y(x0) = R2 and (8.6) that

y(x) ∈ ((yS0 + R1)/2, 2R2) for any x ∈ Br′
2
(x0). (8.7)

In view of (2.9) there is δ2 > C̃−1
R2

small10 such that the set (−δ2, δ2) ×
(Br′

2
(x0) ∩ Σ0) is diffeomorphic to the set

⋃
|t|<δ2

Φt(Br′
2
(x0) ∩ Σ0). We let

10 The constants r ′
2 and δ2 are fixed in this paragraph such that r ′

2, δ2 � 1. We later fix the
constants r2 � min(r ′

2, δ2) (Lemma 8.4), r3 � r2 (Proposition 8.5), and r ′ � r3 (proof of
Proposition 8.3). All of these constants are bounded from below by some constant C̃−1

R2
.
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Q : ⋃
|t|<δ2

Φt(Br′
2
(x0) ∩ Σ0) → Br′

2
(x0) ∩ Σ0 denote the induced smooth

projection which takes every point Φt(x) into x.
We now define the connected open set of M̃, which we denote by NR2 ,

NR2 = connected component of
[(⋃

t∈R
Φt(UR2)

) ∪ Or1

] ∩ M̃

containing UR2,
(8.8)

where r1 is as in Proposition 6.1. Since T is a Killing vector-field, LTS = 0
in M̃ and T(1 − σ) = 0. In view of our induction hypothesis S = 0 in UR2

and T does not vanish in E; it follows that

1 − σ �= 0 in NR2 and S = 0 in NR2 ∩ E.

Thus the computations in Sect. 7 can be applied in the open set NR2 .

Lemma 8.4. With x0 ∈ δΣ0∩E(UR2) as before, there is r2 ∈ (0, r ′
2] such

that

{x ∈ Br2(x0) : y(x) < R2} ⊆
⋃

|t|<δ2

Φt(UR2). (8.9)

Proof. In view of (7.19),

DαyDαy = y2 − y + B

4M2(y2 + z2)
in NR2 .

Thus, if r ′′
2 ≤ C̃−1

R2
is sufficiently small then DαyDαy ≥ C̃−1

R2
in Br′′

2
(x0).

It follows that there exists r2 = r2(A0, ÃC̃−1, R2) > 0 and an open set B′,
Br2(x0) ⊆ B′ ⊆ Br′′

2
(x0), such that the set {x ∈ B′ : y(x) < R2} is

connected. Let Q : B′ → Br′
2
(x0)∩Σ0 denote the projection defined above.

The set Q({x ∈ B′ : y(x) < R2}) ⊆ Br′
2
(x0)∩Σ0 is connected and contains

the set {x ∈ B′ ∩ Σ0 : y(x) < R2}. Since y(Q(x)) = y(x), it follows from
the definition of UR2 (as a connected component of the set VR2 ) that

Q({x ∈ B′ : y(x) < R2}) ⊆ UR2 .

The claim (8.9) follows. ��
We define now N′ = NR2 ∩ Br2(x0). Since y2 − y + B > C̃−1

R2
in N′,

the calculations following (7.24) in the previous sections are also applicable
in N′. Recall the function H defined in (7.28),

H = y2 − z2 − 2y(B − z2)

(y2 − y + B)(y2 + z2)
.

Since B ∈ [0, 1/4) (see Lemma 8.1) and y ≥ yS0 + C̃−1
R2

≥ 1/2 + C̃−1
R2

, it
follows that H ≥ C̃−1

R2
in N′.
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8.1. Vanishing of S is a neighborhood of x0. Assume x0 ∈ δΣ0∩E(UR2)
is as before, and r2 > 0 is constructed as in Lemma 8.4. We show now that
the tensor S vanishes in a neighborhood of x0.

Proposition 8.5. There is r3 = r3(A0, ÃC̃−1, R2) ∈ (0, r2) such that
S = 0 in Br3(x0).

As in Sect. 6, the main ingredient needed to prove Proposition 8.5 is
a Carleman inequality. We define the smooth function Nx0 : Φx0(B1) =
B1(x0) → [0,∞)

Nx0(x) = |(Φx0)−1(x)|2.

Lemma 8.6. There is ε ∈ (0, r2] sufficiently small and C̃ε sufficiently large
such that for any λ ≥ C̃ε and any φ ∈ C∞

0 (Bε10(x0))

λ‖e−λ f̃εφ‖L2 + ‖e−λ f̃ε |D1φ|‖L2

≤ C̃ελ
−1/2

∥
∥e−λ f̃ε�gφ

∥
∥

L2 + ε−6‖e−λ f̃ε T(φ)‖L2,
(8.10)

where, with R2 = y(x0),

f̃ε = ln
[
y − R2 + ε + ε12Nx0

]
. (8.11)

Proof. We will use the notation C̃R2 to denote various constants in [1,∞)

that may depend only on the constants A0, ÃC̃−1 , and R2. We would like
to apply Proposition 3.3 with V = T, hε = y − R2 + ε and eε = ε12 Nx0 .
The condition (3.9) for the negligible perturbation eε is clearly satisfied
if ε is sufficiently small. It remains to show that there is ε1 sufficiently small
such that the family of weights {hε}ε∈(0,ε1) satisfies the pseudo-convexity
conditions (3.6)–(3.8).

Clearly, hε(x0) = ε and T(hε)(x0) = 0 since T(σ) = 0. Also |D j y| ≤
C̃R2 for j = 1, 2, 3, 4 in Br2(x0), see (8.6), thus condition (3.6) is satisfied
if ε1 is sufficiently small.

To prove (3.7) and (3.8) we use the complex null tetrad l = e4, l = e3,
m = e1, m = e2, normalized as in (7.24). With D(α) = Deα

, using Lemma 7.3
and the definition hε = y − R2 + ε we have

D(1)hε = D(2)hε = 0, D(3)hε = −W, D(4)hε = 1, (8.12)

and, using also η = ζ P
P ,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D(4)D(4)hε = D(3)D(3)hε = 0, D(4)D(3)hε = D(3)D(4)hε = −WH
D(4)D(1)hε = D(1)D(4)hε = ζ, D(4)D(2)hε = D(2)D(4)hε = ζ

D(3)D(1)hε = D(1)D(3)hε = Wζ P
P , D(3)D(2)hε = D(2)D(3)hε = Wζ P

P
D(1)D(2)hε = D(2)D(1)hε = W 2R2

R2
2+z2 , D(1)D(1)hε = D(2)D(2)hε = 0,

(8.13)
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where all the functions are evaluated at x0. Thus

DαhεDβhε(DαhεDβhε − εDαDβhε) = 4W2 − 2εW2H,

which is bounded from below by ε2
1 if ε1 is sufficiently small, since W(x0) ≥

C̃−1
R2

and |H(x0)| ≤ C̃R2 . The condition (3.7) is therefore satisfied.
We prove now condition (3.8) for a vector X = X(1)e1 + X(1)e2 +

Ye3 + Ze4, Y, Z ∈ R, X(1) ∈ C. Recall, see (7.31),

T/(2M) = ζ Pe1 + ζ Pe2 − e3 − We4.

Thus, using also (8.12)

ε−2
(∣
∣XαTα

∣
∣2 + ∣

∣XαDαhε

∣
∣2)

= ε−2(Z − WY )2 + ε−24M2(ζ PX(1) + ζ PX(1) + YW + Z)2

≥ (ε−2/2)(Z − WY )2 + (ε−1/2)(ζ PX(1) + ζ PX(1) + 2YW )2

(8.14)

for ε sufficiently small. Using (8.13)

XαXβ(µgαβ − DαDβhε)

= 2X(1)X(1)

(

µ − 2R2W

R2
2 + z2

)

+ 2YZ(−µ + WH)

− 2ζX(1)[Z + WY(P/P)] − 2ζ X(1)[Z + WY(P/P)].
Let L = ζ PX(1) + ζ PX(1). We write Z = WY + Z − WY , and then
L = −2WY + L + 2WY , and use

1 + (P/P) = P
2R2

R2
2 + z2

, 1 + (P/P) = P
2R2

R2
2 + z2

,

to rewrite

XαXβ(µgαβ − DαDβhε)

= 2X(1) X(1)

(

µ − 2R2W

R2
2 + z2

)

+ 2Y 2(−Wµ + W2H)

− 4R2

R2
2 + z2

WY · L + (Z − WY )[2Y(−µ + WH) − 2ζX(1) − 2ζ X(1)]

= 2X(1) X(1)

(

µ − 2R2W

R2
2 + z2

)

+ 2Y 2

(

−Wµ + W2H + 4R2W2

R2
2 + z2

)

− 4R2

R2
2 + z2

WY · (L + 2WY )

+ (Z − WY )[2Y(−µ + WH) − 2ζX(1) − 2ζ X(1)]. (8.15)
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We set now µ = 3R2W/(R2
2 + z2) and combine (8.14) and (8.15). Since

H(x0) ≥ 0 it follows that

XαXβ(µgαβ − DαDβhε) + ε−2
(∣
∣XαTα

∣
∣2 + ∣

∣XαDαhε

∣
∣2)

≥ (ε−2/2)(Z − WY )2 + (ε−1/2)(L + 2YW )2 + 2|X(1)|2 R2W

R2
2 + z2

+ 2Y 2 R2W2

R2
2 + z2

− C̃R2(|Z − WY | + |L + WY |)(|Y | + |X(1)|)
≥ (ε−2/4)(Z − WY )2 + (ε−1/4)(L + 2YW )2

+ |X(1)|2 R2W

R2
2 + z2

+ Y 2 R2W2

R2
2 + z2

if ε is sufficiently small, since W ≥ C̃−1
R2

. It follows that

XαXβ(µgαβ − DαDβhε) + ε−2
(∣
∣XαTα

∣
∣2 + ∣

∣XαDαhε

∣
∣2)

≥ C̃−1
R2

(Z2 + |X(1)|2 + Y 2),

thus the condition (3.8) is satisfied for ε1 sufficiently small. This completes
the proof of the lemma. ��

We prove now Proposition 8.1.

Proof of Proposition 8.1. We use the Carleman estimate in Lemma 8.6 and
Lemma 8.4. In view of Lemma 8.6, there are constants ε ∈ (0, r2] and
C̃ε ≥ 1 such that for any λ ≥ C̃ε and any φ ∈ C∞

0 (Bε10(x0)),

λ‖e−λ f̃εφ‖L2 + ‖e−λ f̃ε |D1φ|‖L2

≤ C̃ελ
−1/2

∥
∥e−λ f̃ε�gφ

∥
∥

L2 + ε−6‖e−λ f̃ε T(φ)‖L2,
(8.16)

where

f̃ε = ln
[
y − R2 + ε + ε12Nx0

]
. (8.17)

The constant ε will remain fixed in this proof. For simplicity of notation,
we replace the constants C̃ε with C̃R2 ; since ε is fixed, these constants may
depend only on the constants A0, ÃC̃−1 , and R2. We will show that S ≡ 0
in the set Bε100 = Bε100(x0).

In view of Theorem 4.7 and the fact that T is a Killing vector-field
{
�gSα1...α4 = Sβ1...β4A

β1...β4
α1...α4 + Dβ5Sβ1...β4B

β1...β5
α1...α4;

LTS = 0,
(8.18)

in Bε10(x0), for some smooth tensor-fields A and B. Also, using Lemma 8.4
and the fact that S vanishes in UR2 (the bootstrap assumption),

S = 0 in {x ∈ Bε10(x0) : y(x) < R2}. (8.19)
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As in the proof of Proposition 6.1, for ( j1, . . . , j4) ∈ {1, 2, 3, 4}4 we
define, using the coordinate chart Φ,

φ( j1... j4) = S(∂ j1, . . . , ∂ jk).

The functions φ( j1... j4) : Bε10(x0) → C are smooth. Let η : R → [0, 1]
denote a smooth function supported in [1/2,∞) and equal to 1 in [3/4,∞).
We define

φε
( j1... j4) = φ( j1... j4) · (1 − η(N(x)/ε40)) = φ( j1... j4) · η̃ε.

Clearly, φε
( j1... j4)

∈ C∞
0 (Bε10(x0)) and

{
�gφ

ε
( j1... j4)

= η̃ε ·�gφ( j1... j4) + 2Dαφ( j1... j4) · Dαη̃ε + φ( j1... j4) ·�gη̃ε

T
(
φε

( j1... j4)

) = η̃ε · T(φ( j1... j4)) + φ( j1... j4) · T(̃ηε).

Using the Carleman inequality (8.16), for any ( j1, . . . , j4) ∈ {1, 2, 3, 4}4

we have

λ · ∥
∥e−λ f̃ε · η̃εφ( j1... j4)

∥
∥

L2 + ∥
∥e−λ f̃ε · η̃ε

∣
∣D1φ( j1... j4)

∣
∣
∥
∥

L2

≤ C̃R2λ
−1/2 · ∥

∥e−λ f̃ε · η̃ε�gφ( j1... j4)

∥
∥

L2 + C̃R2

∥
∥e−λ f̃ε · η̃εT(φ( j1... j4))

∥
∥

L2

+ C̃R2

[∥
∥e−λ f̃ε · Dαφ( j1... j4)D

αη̃ε

∥
∥

L2

+ ∥
∥e−λ f̃ε · φ( j1... j4)

(|�gη̃ε| + ∣
∣D1η̃ε

∣
∣
)∥
∥

L2

]
, (8.20)

for any λ ≥ C̃R2 . Using the identities in (8.18), in Bε10(x0) we estimate
pointwise

{|�gφ( j1... j4)| ≤ C̃R2

∑
l1,...,l4

(∣
∣D1φ(l1...l4)

∣
∣ + |φ(l1...l4)|

);
|T(φ( j1... j4))| ≤ C̃R2

∑
l1,...,l4

|φ(l1...l4)|.
(8.21)

We add up the inequalities (8.20) over ( j1, . . . , j4) ∈ {1, 2, 3, 4}4. The key
observation is that, in view of (8.21), the first two terms in the right-hand
side can be absorbed into the left-hand side for λ sufficiently large. Thus,
for any λ ≥ C̃R2

λ
∑

j1,..., j4

∥
∥e−λ f̃ε · η̃εφ( j1... j4)

∥
∥

L2

≤ C̃R2

∑

j1,..., j4

[∥
∥e−λ f̃ε · Dαφ( j1... j4)D

αη̃ε

∥
∥

L2

+ ∥
∥e−λ f̃ε · φ( j1... j4)

(|�gη̃ε| + ∣
∣D1η̃ε

∣
∣
)∥
∥

L2

]
.

(8.22)

Using the hypothesis (8.19) and the definition of the function η̃ε, we
have

∣
∣Dαφ( j1... j4)D

αη̃ε

∣
∣ + φ( j1... j4)

(|�gη̃ε| + ∣
∣D1η̃ε

∣
∣
)

≤ C̃R2 · 1{x∈B
ε10(x0):y(x)≥R2 and N(x)≥ε50}.
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Using the definition (8.17), we observe also that

inf
B

ε100
e−λ f̃ε ≥ e−λ ln(ε+ε70) ≥ sup

{x∈B
ε10(x0):y(x)≥R2 and N(x)≥ε50}

e−λ f̃ε .

It follows from these last two inequalities and (8.22) that

λ
∑

j1,..., j4

‖1B
ε100 · φ( j1... j4)‖L2 ≤ C̃R2

∑

j1,..., j4

‖1{x∈B
ε10(x0):y(x)≥R2 and N(x)≥ε50}‖L2,

for any λ ≥ C̃R2 . The proposition follows by letting λ → ∞. ��
8.2. Proof of Proposition 8.3 and the main theorem. In this subsection
we complete the proof of the main theorem.

Proof of Proposition 8.3. In view of Proposition 8.5, the tensor S vanishes
in the connected open set N′ = NR2 ∪ (

⋃
x0∈δΣ0∩E(UR2 ) Br3(x0)). It remains

to show that for some r ′ � r3 we have

UR2+r′ ⊆ UR2 ∪
( ⋃

x0∈δΣ0∩E(UR2 )

Gr3/C̃(x0)
)
,

Gr(x0) = {x ∈ Br(x0) ∩ Σ0 : y(x) < R2 + r ′},
(8.23)

where C̃ is sufficiently large so that,
( ⋃

x0∈δΣ0∩E(UR2 )

Gr3/C̃(x0)
)

⊆
( ⋃

x0∈δΣ0∩E(UR2 )

Gr3/4(x0)
)
, (8.24)

with the bars denoting the closures in Σ0. We observe that such a constant
exists in view of the fact that δΣ0∩E(UR2) is compact and the function y tends
to infinity in the asymptotic region of Σ0 (in view of our assumption AF).

Assume, by contradiction, that (8.23) does not hold, thus there exists
p ∈ UR2+r′ which does not belong in the open set (in Σ0) in the right-hand
side of (8.23). Let γ : [0, 1] → UR2+r′ ∪ S0 denote a smooth curve such
that γ(0) ∈ S0 and γ(1) = p. Let p′ = γ(t′) denote the first point on this
curve which is not in the open set in the right-hand side of (8.23). Clearly,
p′ does not belong to the closure of UR2 , thus

p′ ∈
⋃

x0∈δΣ0∩E(UR2 )

Gr3/C̃(x0).

In view of (8.24) we infer that, for some x0 ∈ δΣ0∩E(UR2),

p′ ∈ {x ∈ Br3/2(x0) ∩ Σ0 : y(x) < R2 + r ′}. (8.25)

Recall our smooth vector-field Y = gαβ∂αy∂β, see (7.23) and discussion
following it, with the property that g(Y, Y ) ≥ C̃−1

R2
in Br3(x0). We consider
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the integral curve starting from the point p′ and flowing (backwards) a short
distance C̃−1

R2
(much smaller than r3) along Y , and project this integral

curve to Σ0 using the smooth projection Q : ⋃
|t|<δ2

Φt(Br3(x0) ∩ Σ0) →
Br3(x0) ∩ Σ0. The resulting curve is a smooth curve in Br3(x0) ∩ Σ0; if r ′
sufficiently small then this curve contains a point p′′ such that y(p′′) < R2.
In view of Lemma 8.4, p′′ ∈ UR2 , thus there is a point p′′′ ∈ δΣ0∩E(UR2)
on the curve joining p′ and p′′. Then p′ ∈ Br3/C̃(p′′′), which gives a contra-
diction. ��

To complete the proof of the main theorem we use Propositions 8.3
and 7.2. Using Proposition 8.3, it follows that the tensor S vanishes in the
connected component of the set Σ′

0 whose closure in Σ0 contains S0. Assume
(Σ0 ∩ E) \Σ′

0 �= ∅ and let p ∈ (Σ0 ∩ E) \Σ′
0. Assume γ : [0, 1] → Σ0 ∩ E

is a smooth curve such that γ(0) ∈ S0 and γ(1) = p. Let p′ = γ(t′) denote
the first point on this curve which is not in Σ′

0 ∪ S0. Thus γ(t′′) belongs to
the connected component of the set Σ′

0 whose closure in Σ0 contains S0 for
any t′′ < t′. Since S vanishes in this connected component, it follows from
Lemma 7.2 that the function y is bounded by a constant at all points γ(t′′),
t′′ < t′. Thus p′ ∈ Σ′

0, contradiction.
It follows that Σ′

0 = Σ ∩ E and S = 0 in Σ ∩ E, which establishes the
claim (8.1).

Appendix A. The main formalism

A.1. Horizontal structures. Assume (N, g) is a smooth11 vacuum Einstein
space-time of dimension 4. Assume (l, l) is a null pair on N, i.e.

g(l, l) = g(l, l) = 0 and g(l, l) = −1.

We say that a vector-field X is horizontal if

g(l, X) = g(l, X) = 0.

Let O(N) denote the vector space of horizontal vector-fields on N. We define
the induced metric, and induced volume form,

{
γ(X, Y ) = g(X, Y ) ∀X, Y ∈ O(N),

∈(X, Y ) = ∈(X, Y, l, l) ∀X, Y ∈ O(N).
(A.1)

where ∈ denotes the standard volume form on N. If (ea)a=1,2 is an ortho-
normal basis of horizontal vector-fields, i.e. γ(ea, eb) = δab, we write ∈ab =
∈(ea, eb) and without loss of generality we assume that ∈12 = 1.

In general the commutator [X, Y ] of two horizontal vector-fields may
fail to be horizontal. We say that the pair (l, l) is integrable if the set of

11 As before, N is assumed to be a connected, orientable, paracompact C∞ manifold
without boundary.
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horizontal vector-fields forms an integrable distribution, i.e. X, Y ∈ O(N)
implies that [X, Y ] ∈ O(N). For any vector-field X ∈ T(N) we define its
horizontal projection

(h)X = X + g(X, l)l + g(X, l)l.

Using this projection we define the horizontal covariant derivative ∇XY ,
X ∈ T(N), Y ∈ O(N),

∇XY = (h)(DXY ) = DXY − g(DXl, Y )l − g(DXl, Y )l.

The definition shows easily that,
⎧
⎨

⎩

∇f X+ f ′ X ′Y = f ∇XY + f ′∇X ′Y ;
∇X( f Y + f ′Y ′) = f ∇XY + X( f )Y + f ′∇XY ′ + X( f ′)Y ′;
Xγ(Y, Y ′) = γ(∇XY, Y ′) + γ(Y,∇XY ′),

(A.2)

for any X, X ′ ∈ T(N), Y, Y ′ ∈ O(N), f, f ′ ∈ C∞(N). In particular we see
that ∇ is compatible with the horizontal metric γ .

In what follows we identify covariant and contravariant horizontal tensor-
fields using the induced metric (h)γ . For any k ∈ Z+ let Ok(N) denote the
vector space of k horizontal tensor-fields

U : O(N) × . . . × O(N) → C.

Given a horizontal tensor-field U ∈ Ok(N) and X ∈ T(N) we define the
covariant derivative ∇XU ∈ Ok(N) by the formula

∇XU(Y1, . . . , Yk) = X(U(Y1, . . . , Yk)) − U(∇XY1, . . . , Yk)

− . . . − U(Y1, . . . ,∇XYk).
(A.3)

According to the definition the mapping (X, Y1, . . . , Yk) →
∇XU(Y1, . . . , Yk) is a multilinear mapping on T(N) × O(N) × . . . × O(N).

We define the null second fundamental forms (h)χ, (h)χ ∈ O2(N) by
{

(h)χ(X, Y ) = g(DXl, Y ),
(h)χ(X, Y ) = g(DXl, Y ).

(A.4)

Observe that (h)χ and (h)χ are symmetric if and only if the horizontal structure
is integrable. Indeed this follows easily from the formulas,

(h)χ(X, Y ) − (h)χ(Y, X) = g(DXl, Y ) − g(DYl, X) = −g(l, [X, Y ])
(h)χ(X, Y ) − (h)χ(Y, X) = g(DXl, Y ) − g(DYl, X) = −g( l, [X, Y ]).

The trace of an horizontal 2-tensor U is defined according to

tr(U) := δabUab

where (ea)a=1,2 is an arbitrary orthonormal frame of horizontal vector-
fields. Observe that the definition does not depend on the particular frame.
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We denote by tr χ and tr χ the traces of (h)χ and (h)χ. If U ∈ Ok(N) with
k = 1, 2 we define its dual, expressed relative to an arbitrary orthonormal
frame (ea)a=1,2 ∈ O(N),

∗Ua = ∈abUb,
∗Uab = ∈acUcb.

Clearly ∗(∗ω) = −ω. If ω ∈ O(N)2 is symmetric traceless then so is its
dual ∗ω.

We define also the horizontal 1-forms (h)ξ, (h)ξ, (h)η, (h)η, (h)ζ ∈ O1(N)

by
⎧
⎪⎨

⎪⎩

(h)ξ(X) = g(Dll, X), (h)ξ(X) = g(Dll, X),
(h)η(X) = g(Dll, X), (h)η(X) = g(Dll, X),
(h)ζ(X) = g(DXl, l),

(A.5)

and the real scalars

ω = g(Dll, l), ω = g(Dll, l). (A.6)

Assume that W ∈ T0
4(N) is a Weyl field, i.e.

⎧
⎨

⎩

Wαβµν = −Wβαµν = −Wαβνµ = Wµναβ;
Wαβµν + Wαµνβ + Wανβµ = 0;
gβνWαβµν = 0.

(A.7)

We define the null components of the Weyl field W , α(W ), α(W ), �(W ) ∈
O2(N) and β(W ), β(W ) ∈ O1(N) by the formulas

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α(W )(X, Y ) = W(l, X, l, Y ),

α(W )(X, Y ) = W(l, X, l, Y ),

β(W )(X) = W(X, l, l, l),
β(W )(X) = W(X, l, l, l),
�(W )(X, Y ) = W(X, l, Y, l).

(A.8)

Recall that if W is a Weyl field its Hodge dual ∗W , defined by ∗Wαβµν =
1
2∈µν

ρσ Wαβρσ , is also a Weyl field. We easily check the formulas,
⎧
⎨

⎩

α(∗W ) = ∗α(W ), α(∗W ) = −∗α(W )

β(∗W ) = ∗β(W ), β(∗W ) = −∗β(W )

�(∗W ) = ∗�(W ).

(A.9)

It is easy to check that α, α are symmetric traceless horizontal tensor-fields
in O2(N). On the other hand � ∈ O2(N) is however neither symmetric nor
traceless. It is convenient to express it in terms of the following two scalar
quantities,

ρ(W ) = W(l, l, l, l), ∗ρ(W ) = ∗W(l, l, l, l). (A.10)
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Observe also that,

ρ(∗W ) = ∗ρ(W ), ∗ρ(∗W ) = −ρ.

Thus,

�(X, Y ) = 1

2
(−ργ(X, Y ) + ∗ρ∈(X, Y )), ∀X, Y ∈ O(N). (A.11)

We have,

W(X, Y, l, l) = �(W )(X, Y ) − �(W )(Y, X) = ∗ρ(W )∈(X, Y ).

Also, since ∗(∗W ) = −W , we deduce that

W(X, Y, X ′, Y ′) = ∈(X, Y )∗W(X ′, Y ′, l, l) = ∈(X, Y )∈(X ′, Y ′)∗ρ(∗W ).

Therefore,
⎧
⎨

⎩

W(X, Y, l, l) = ∈(X, Y )∗ρ(W )

W(X, Y, X ′, Y ′) = −∈(X, Y ) ∈ (X ′, Y ′)ρ(W )

W(X, Y, Z, l) = ∈(X, Y )β(W )(Z).

We also consider the case of a self-dual Weyl field W = W +i ∗W , i.e. ∗W =
−iW . Defining the null decomposition α(W), β(W), ρ(W), ∗ρ(W), β(W),
α(W) as in (A.8) and (A.10) and setting ∗ρ(W) := ρ(∗W) as in (A.10), we
find,

∗ρ(W) = −iρ(W).

Relative to a null frame e1, e2, e3 = l, l = e4 we have,

Wab34 = −i∈abρ(W), Wabcd = −∈ab∈cdρ(W), Wabc3 = ∈abβc
(W).

(A.12)

A.2. Complex null tetrads. We extend by linearity the definition of hori-
zontal vector-fields to complex ones. We say that a complex vector-field m
on N is compatible with the null pair ( l, l) if,

g(l, m) = g( l, m) = g(m, m) = 0, g(m, m) = 1.

In that case we say that (m, m, l, l) forms a complex null tetrad. Clearly m
is compatible if and only if m = 1√

2
(X + iY ) for some real vectors X, Y ∈

O(N) with g(X, Y ) = 0, g(X, X) = g(Y, Y ) = 1. Given a compatible
vector-field m and (h)U ∈ O1(N) we can define the complex scalar U1 :
N → C,

U1 = (h)U(m).



On the uniqueness of smooth, stationary black holes in vacuum 93

Similarly, given (h)V ∈ O2(N) we can define the complex scalars V21, V11 :
N → C,

V21 = (h)V(m, m), V11 = (h)V(m, m).

The complex scalars U1, respectively V21 and V11, determine uniquely the
real horizontal tensors fields (h)U and (h)V respectively.

Given a compatible vector-field m we define (compare with (A.4)–(A.6))

θ = (h)χ(m, m) = g(Dml, m), θ = (h)χ(m, m) = g(Dml, m),

ϑ = (h)χ(m, m) = g(Dml, m), ϑ = (h)χ(m, m) = g(Dml, m),

ξ = (h)ξ(m) = g(Dll, m), ξ = (h)ξ(m) = g(Dll, m),

η = (h)η(m) = g(Dll, m), η = (h)η(m) = g(Dll, m),

ω = g(Dll, l), ω = g(Dll, l),

ζ = (h)ζ(m) = g(Dml, l).

(A.13)

The complex scalars θ, θ, ϑ, ϑ, ξ, ξ, η, η, ζ and the real scalars ω,ω are the
main connection coefficients of the null tetrad.

Similarly, given a real-valued Weyl field W we define (compare with
(A.8))

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ψ(2) = Ψ(2)(W ) = α(W )(m, m) = W(l, m, l, m),

Ψ(2) = Ψ(2)(W ) = α(W )(m, m) = W( l, m, l, m),

Ψ(1) = Ψ(1)(W ) = β(W )(m) = W(m, l, l, l),
Ψ(1) = Ψ(1)(W ) = β(W )(m) = W(m, l, l, l),
Ψ(0) = Ψ(0)(W ) = �(W )(m, m) = W(m, l, m, l).

(A.14)

Notice that, in view of (A.7), α(W )(m, m) = α(W )(m, m) = �(W )(m, m)
= 0, so the scalars Ψ(2),Ψ(2),Ψ(1),Ψ(1),Ψ(0) uniquely determine the real-
valued Weyl field W . In addition, if

∗Wαβµν = 1

2
∈µν

ρσ Wαβρσ

is the dual dual of W , and the null tetrad (m, m, l, l) has positive orientation
(i.e. ∈αβµνmαmβlµlν = i) then

Ψ2(
∗W ) = (−i)Ψ2(W ), Ψ1(

∗W ) = (−i)Ψ1(W ),

Ψ0(
∗W ) = (−i)Ψ0(W ),

Ψ(2)(
∗W ) = iΨ2(W ), Ψ(1)(

∗W ) = iΨ1(W ).

(A.15)

In what follows we denote,

e1 = m, e2 = m, e3 = l, e4 = l.
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We define the connection coefficients Γµ
αβ,Γµαβ by the formulas

Deβ
eα = Γµ

αβeµ

and

Γµαβ = gµνΓ
ν
αβ = g(eµ, Deβ

eα).

Clearly

Γµαβ + Γαµβ = 0.

We easily check the formulas,

Γ144 = ξ, Γ244 = ξ, Γ133 = ξ, Γ233 = ξ,

Γ143 = η, Γ243 = η, Γ134 = η, Γ234 = η,

Γ142 = θ, Γ241 = θ, Γ132 = θ, Γ231 = θ,

Γ141 = ϑ, Γ242 = ϑ, Γ131 = ϑ, Γ232 = ϑ,

Γ344 = ω, Γ433 = ω, Γ341 = ζ, Γ342 = ζ.

(A.16)

Using the definition (A.3) we see easily that if (h)U ∈ O1(N), (h)V ∈ O2(N),
and α ∈ {1, 2, 3, 4} then

∇α
(h)U1 = (eα + Γ12α)

(
(h)U1

)
, (A.17)

and

∇α
(h)V11 = (eα + 2Γ12α)

(
(h)V11

)
, ∇α

(h)V21 = eα

(
(h)V21

)
. (A.18)

A.3. The null structure equations and the Bianchi identities. We define

D = l = e4, D = l = e3, δ = m = e1, δ = m = e2.

Let R denote the Riemann curvature tensor on M. We compute

Rαβµν = g(eα, [Deµ
(Deν

eβ) − Deν
(Deµ

eβ) − D[eµ,eν]eβ])
= g

(
eα,

[
Deµ

(
Γρ

βνeρ

) − Deν

(
Γρ

βµeρ

) − (
Γρ

νµ − Γρ
µν

)
Deρ

eβ

])

= eµ(Γαβν) − eν(Γαβµ) + Γρ
βνΓαρµ − Γρ

βµΓαρν

+ (
Γρ

µν − Γρ
νµ

)
Γαβρ.

Using this formula and the table (A.16) we derive the null structure equa-
tions. Using R1441 = −Ψ(2)(R) we derive

(D + 2Γ124)ϑ − (δ + Γ121)ξ = ξ(2ζ + η + η) − ϑ(ω + θ + θ) − Ψ(2)(R).

(A.19)
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Using R1331 = −Ψ2(R) we derive

(D + 2Γ123)ϑ − (δ + Γ121)ξ

= ξ(−2ζ + η + η) − ϑ(ω + θ + θ) − Ψ(2)(R).
(A.20)

Using R1442 = 0 we derive

Dθ − (δ + Γ122)ξ = −θ2 − ωθ − ϑϑ + ξη + ξ(2ζ + η). (A.21)

Using R1332 = 0 we derive

Dθ − (δ + Γ122)ξ = −θ2 − ω θ − ϑϑ + ξη + ξ(−2ζ + η). (A.22)

Using R1443 = −Ψ(1)(R) we derive

(D + Γ124)η − (D + Γ123)ξ = −2ωξ + θ(η − η) + ϑ(η − η) − Ψ(1)(R).

(A.23)

Using R1334 = −Ψ(1)(R) we derive

(D + Γ123)η − (D + Γ124)ξ = −2ωξ + θ(η − η) + ϑ(η − η) − Ψ(1)(R).

(A.24)

Using R1431 = 0 we derive

(D + 2Γ123)ϑ − (δ + Γ121)η = η2 + ξξ − ϑθ + ϑ(ω − θ). (A.25)

Using R1341 = 0 we derive

(D + 2Γ124)ϑ − (δ + Γ121)η = η2 + ξξ − ϑθ + ϑ(ω − θ). (A.26)

Using R1432 = −Ψ(0)(R) we derive

Dθ − (δ + Γ122)η = ξξ + ηη − ϑϑ + θ( ω − θ) − Ψ(0)(R). (A.27)

Using R1342 = −Ψ(0)(R) we derive

Dθ − (δ + Γ122)η = ξξ + ηη − ϑϑ + θ(ω − θ) − Ψ(0)(R). (A.28)

Using R1421 = −Ψ(1)(R) we derive

(δ + 2Γ122)ϑ − δθ = ζθ − ζϑ + η(θ − θ) + ξ( θ − θ) − Ψ(1)(R).
(A.29)

Using R1321 = −Ψ(1)(R) we derive

(δ + 2Γ122)ϑ − δθ = −ζθ + ζϑ + η( θ − θ) + ξ(θ − θ) − Ψ(1)(R).

(A.30)
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Using R3441 = −Ψ(1)(R) we derive

(D + Γ124)ζ − δω = ω(ζ + η) + θ(η − ζ) + ϑ(η − ζ)

− ξ( θ + ω) − ξϑ − Ψ(1)(R).
(A.31)

Using R4331 = −Ψ(1)(R) we derive

(D + Γ123)(−ζ) − δω = ω(−ζ + η) + θ(η + ζ) + ϑ(η + ζ)

− ξ(θ + ω) − ξϑ − Ψ(1)(R).
(A.32)

Using R3443 = Ψ(0)(R) + Ψ(0)(R) we derive

Dω + Dω = ξξ + ξξ − ηη − ηη + ζ(η − η) + ζ(η − η)

− (Ψ(0)(R) + Ψ(0)(R)).
(A.33)

Using R3421 = Ψ(0)(R) − Ψ(0)(R) we derive

(δ − Γ121)ζ − (δ + Γ122)ζ = (ϑϑ − ϑϑ) + (θθ − θθ) + ω(θ − θ)

− ω( θ − θ) − (Ψ(0)(R) − Ψ(0)(R)).

(A.34)

We derive now the Bianchi identities. Assume W is a real-valued Weyl
field, see (A.7), and

DαWαβµν = Jβµν,

for some Weyl current J ∈ T0
3(M). Then, using Proposition 4.1,

D[ρWαβ]µν = DρWαβµν + DαWβρµν + DβWραµν = ∈σραβ
∗Jσ

µν, (A.35)

where

∗Jσ
µν = 1

2
∈µν

γδ Jσ
γδ.

Using (A.7), we derive the following

W3141 = W3242 = W4241 = W3231 = 0,

W4141 = Ψ(2), W4242 = Ψ(2), W3131 = Ψ(2), W3232 = Ψ(2),

W2314 = Ψ(0), W1324 = Ψ(0), W4343 = W1212 = −Ψ(0) − Ψ(0),

W1234 = Ψ(0) − Ψ(0),

W1434 = W2141 = Ψ(1), W2434 = W1242 = Ψ(1),

W1343 = W2131 = Ψ(1), W2343 = W1232 = Ψ(1). (A.36)

We use the table (A.36) and the formula (A.35) to derive the Bianchi
identities. Using D[2W41]41 = −J414 we derive

(δ + 2Γ122)Ψ(2) − (D + Γ124)Ψ(1)

= −(2ζ + η)Ψ(2) + (4θ + ω)Ψ(1) + 3ξΨ(0) − J414.
(A.37)
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Using D[2W31]31 = −J313 we derive

(δ + 2Γ122)Ψ(2) − (D + Γ123)Ψ(1)

= −(−2ζ + η)Ψ(2) + (4θ + ω)Ψ(1) + 3ξΨ(0) − J313.
(A.38)

Using D[3W41]41 = J114 we derive

(D + 2Γ123)Ψ(2) − (δ + Γ121)Ψ(1)

= (2ω − θ)Ψ(2) + (ζ + 4η)Ψ(1) + 3ϑΨ(0) + J114.
(A.39)

Using D[4W31]31 = J113 we derive

(D + 2Γ124)Ψ(2) − (δ + Γ121)Ψ(1)

= (2ω − θ)Ψ(2) + (−ζ + 4η)Ψ(1) + 3ϑΨ(0) + J113.
(A.40)

Using D[2W34]41 = −J214 we derive

− DΨ(0) − (δ + Γ122)Ψ(1)

= −ϑΨ(2) + (2η + ζ)Ψ(1) + 3θΨ(0) + 2ξΨ(1) − J214.
(A.41)

Using D[2W43]31 = −J213 we derive

− DΨ(0) − (δ + Γ122)Ψ(1)

= −ϑΨ(2) + (2η − ζ)Ψ(1) + 3θΨ(0) + 2ξΨ(1) − J213.
(A.42)

Using D[1W42]31 = J413 we derive

δΨ(0) + (D + Γ124)Ψ(1)

= −2ϑΨ(1) − 3ηΨ(0) + (ω − 2θ)Ψ(1) + ξΨ(2) + J413.
(A.43)

Using D[1W32]41 = J314 we derive

δΨ(0) + (D + Γ123)Ψ(1)

= −2ϑΨ1 − 3ηΨ(0) + ( ω − 2θ)Ψ(1) + ξΨ(2) + J314.
(A.44)

A.4. Symmetries of the formalism. We discuss now the main symmetries
of the formalism introduced in this section.

1. Interchange of the vectors l and l. We define the complex tetrad
(m′, m′, l′, l′),

e′
1 = m′ = m, e′

2 = m′ = m, e′
3 = l′ = l, e′

4 = l′ = l. (A.45)
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Using this new complex tetrad we define the scalars θ ′, θ ′, ϑ ′, ϑ ′, ξ ′, ξ ′, η′,
η′, ω′, ω′, ζ ′ as in (A.13). Given a real-valued Weyl field W , we define the
scalars Ψ′

(2),Ψ
′
(2),Ψ

′
(1),Ψ

′
(1),Ψ

′
(0) as in (A.14). We define the connection

coefficients Γ′
µαβ = g(e′

µ, De′
β
e′
α). The definitions show easily that

θ ′ = θ, θ ′ = θ, ϑ ′ = ϑ, ϑ ′ = ϑ, ξ ′ = ξ, ξ ′ = ξ,

η′ = η, η′ = η, ω′ = ω, ω′ = ω, ζ ′ = −ζ,

Ψ′
(2) = Ψ(2), Ψ′

(2) = Ψ(2), Ψ′
(1) = Ψ(1), Ψ′

(1) = Ψ(1), Ψ′
(0) = Ψ(0),

δ′ = δ, δ′ = δ, D′ = D, D′ = D,

Γ′
121 = Γ121, Γ′

122 = Γ122, Γ′
123 = Γ124, Γ′

124 = Γ123. (A.46)

The Ricci equations (A.19)–(A.34) and the Bianchi identities (A.37)–
(A.44) are invariant with respect to the transformation (A.45). For example,
the equation corresponding to (A.19) in the complex tetrad (m′, m′, l′, l′)
reads

(D′ + 2Γ′
124)ϑ

′ − (δ′ + Γ′
121)ξ

′

= ξ ′(2ζ ′ + η′ + η′) − ϑ ′(ω′ + θ ′ + θ ′) − Ψ′
(2)(R).

After using the table (A.46), this is equivalent to

(D + 2Γ123)ϑ − (δ + Γ121)ξ

= ξ(−2ζ + η + η) − ϑ(ω + θ + θ) − Ψ(2)(R),

which is (A.20).

2. Interchange of the vectors m and m. We define the complex tetrad
(m′, m′, l′, l′),

e′
1 = m′ = m, e′

2 = m′ = m, e′
3 = l′ = l, e′

4 = l′ = l. (A.47)

Using this new complex tetrad we define the scalars θ ′, θ ′, ϑ ′, ϑ ′, ξ ′, ξ ′, η′,
η′, ω′, ω′, ζ ′ as in (A.13). Given a real-valued Weyl field W , we define the
scalars Ψ′

(2),Ψ
′
(2),Ψ

′
(1),Ψ

′
(1),Ψ

′
(0) as in (A.14). We define the connection

coefficients Γ′
µαβ = g(e′

µ, De′
β
e′
α). The definitions show easily that

θ ′ = θ, θ ′ = θ, ϑ ′ = ϑ, ϑ ′ = ϑ, ξ ′ = ξ, ξ ′ = ξ,

η′ = η, η′ = η, ω′ = ω, ω′ = ω, ζ ′ = ζ,

Ψ′
(2) = Ψ(2), Ψ′

(2) = Ψ(2), Ψ′
(1) = Ψ(1), Ψ′

(1) = Ψ(1), Ψ′
(0) = Ψ(0),

δ′ = δ, δ′ = δ, D′ = D, D′ = D,

Γ′
121 = Γ121, Γ′

122 = Γ122, Γ′
123 = Γ123, Γ′

124 = Γ124. (A.48)
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The Ricci equations (A.19)–(A.34) and the Bianchi identities (A.37)–(A.44)
are invariant with respect to the transformation (A.47). For example, the
equation corresponding to (A.19) in the complex tetrad (m′, m′, l′, l′) reads

(
D′ + 2Γ′

124

)
ϑ ′ − (

δ′ + Γ′
121

)
ξ ′

= ξ ′(2ζ ′ + η′ + η′) − ϑ ′(ω′ + θ ′ + θ ′) − Ψ′
(2)(R).

After using the table (A.48), this is equivalent to

(D + 2Γ124)ϑ − (δ + Γ121)ξ = ξ(2ζ + η + η) − ϑ(ω + θ + θ) − Ψ(2)(R),

which is equivalent to (A.19) after complex conjugation.

3. Rescaling of the null pair l, l. We define the complex tetrad (m′, m′,
l′, l′),

e′
1 = m′ = m, e′

2 = m′ = m, e′
3 = l′ = A−1l, e′

4 = l′ = A · l,
(A.49)

for some smooth function A : N → R \ {0}. Using this new complex tetrad
we define the scalars θ ′, θ ′, ϑ ′, ϑ ′, ξ ′, ξ ′, η′, η′, ω′, ω′, ζ ′ as in (A.13). Given
a real-valued Weyl field W , we define the scalars Ψ′

(2),Ψ
′
(2),Ψ

′
(1),Ψ

′
(1),Ψ

′
(0)

as in (A.14). We define the connection coefficients Γ′
µαβ = g(e′

µ, De′
β
e′
α).

The definitions show easily that

θ ′ = Aθ, θ ′ = A−1θ, ϑ ′ = Aϑ, ϑ ′ = A−1ϑ,

ξ ′ = A2ξ, ξ ′ = A−2ξ, η′ = η, η′ = η,

Ψ′
(2) = A2Ψ(2), Ψ′

(2) = A−2Ψ(2),

Ψ′
(1) = AΨ(1), Ψ′

(1) = A−1Ψ(1), Ψ′
(0) = Ψ(0),

δ′ = δ, δ′ = δ, D′ = A−1D, D′ = AD,

Γ′
121 = Γ121, Γ′

122 = Γ122,

ω′ = Aω − D(A), ω′ = A−1ω − D(A−1), ζ ′ = ζ − δ(A)/A,

Γ′
123 = A−1Γ123, Γ′

124 = AΓ124.

(A.50)

The Ricci equations (A.19)–(A.34) and the Bianchi identities (A.37)–(A.44)
are invariant with respect to the transformation (A.49). For example, the
equation corresponding to (A.19) in the complex tetrad (m′, m′, l′, l′) reads

(
D′ + 2Γ′

124

)
ϑ ′ − (

δ′ + Γ′
121

)
ξ ′

= ξ ′(2ζ ′ + η′ + η′) − ϑ ′(ω′ + θ ′ + θ ′) − Ψ′
(2)(R).
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After using the table (A.50), this is equivalent to

(AD + 2AΓ124)(Aϑ) − (δ + Γ121)(A2ξ)

= A2ξ(2ζ − 2δ(A)/A + η + η)

− Aϑ(Aω − D(A) + Aθ + Aθ) − A2Ψ(2)(R).

This is equivalent to (A.19), after simplifying the term AD(A)ϑ −2Aδ(A)ξ
and multiplying by A−2.

4. Rotation of the vector m. We define the complex tetrad (m′, m′, l′, l′),

e′
1 = m′ = Bm, e′

2 = m′ = B−1m, e′
3 = l′ = l, e′

4 = l′ = l,
(A.51)

for some smooth function B : N → C, |B| ≡ 1. Using this new complex
tetrad we define the scalars θ ′, θ ′, ϑ ′, ϑ ′, ξ ′, ξ ′, η′, η′, ω′, ω′, ζ ′ as in (A.13).
Given a real-valued Weyl field W , we define the scalars Ψ′

(2), Ψ′
(2), Ψ′

(1),
Ψ′

(1), Ψ′
(0) as in (A.14). We define the connection coefficients Γ′

µαβ =
g(e′

µ, De′
β
e′
α). The definitions show easily that

θ ′ = θ, θ ′ = θ, ϑ ′ = B2ϑ, ϑ ′ = B2ϑ, ξ ′ = Bξ, ξ ′ = Bξ,

η′ = Bη, η′ = Bη, ω′ = ω, ω′ = ω, ζ ′ = Bζ,

Ψ′
(2) = B2Ψ(2), Ψ′

(2) = B2Ψ(2),

Ψ′
(1) = BΨ(1), Ψ′

(1) = BΨ(1), Ψ′
(0) = Ψ(0),

δ′ = Bδ, δ′ = B−1δ,

Γ′
121 = BΓ121 − δ(B), Γ′

122 = B−1Γ122 + δ(B−1),

D′ = D, D′ = D,

Γ′
123 = Γ123 − D(B)/B, Γ′

124 = Γ124 − D(B)/B.

(A.52)

The Ricci equations (A.19)–(A.34) and the Bianchi identities (A.37)–(A.44)
are invariant with respect to the transformation (A.51). For example, the
equation corresponding to (A.19) in the complex tetrad (m′, m′, l′, l′) reads

(
D′ + 2Γ′

124

)
ϑ ′ − (

δ′ + Γ′
121

)
ξ ′

= ξ ′(2ζ ′ + η′ + η′) − ϑ ′(ω′ + θ ′ + θ ′) − Ψ′
(2)(R).

After using the table (A.52), this is equivalent to

(D + 2Γ124 − 2D(B)/B)(B2ϑ) − (Bδ + BΓ121 − δ(B))(Bξ)

= Bξ(2Bζ + Bη + Bη) − B2(ω + θ + θ) − B2Ψ(2)(R).

This is equivalent to (A.19), after simplifying the left-hand side and multi-
plying by B−2.
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