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Abstract. A fundamental conjecture in general relativity asserts that the
domain of outer communication of a regular, stationary, four dimensional,
vacuum black hole solution is isometrically diffeomorphic to the domain of
outer communication of a Kerr black hole. So far the conjecture has been re-
solved, by combining results of Hawking [17], Carter [4] and Robinson [28],
under the additional hypothesis of non-degenerate horizons and real analyt-
icity of the space-time. We develop a new strategy to bypass analyticity based
on a tensorial characterization of the Kerr solutions, due to Mars [24], and
new geometric Carleman estimates. We prove, under a technical assumption
(an identity relating the Ernst potential and the Killing scalar) on the bifur-
cate sphere of the event horizon, that the domain of outer communication of
a smooth, regular, stationary Einstein vacuum spacetime of dimension 4 is
locally isometric to the domain of outer communication of a Kerr spacetime.
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1. Introduction

A fundamental conjecture in general relativity' asserts that the domains
of outer communication of regularz, stationary, four dimensional, vacuum
black hole solutions are isometrically diffeomorphic to those of Kerr black
holes. One expects, due to gravitational radiation, that general, asymptotic-
ally flat, dynamic, solutions of the Einstein-vacuum equations settle down,
asymptotically, into a stationary regime. A similar scenario is supposed
to hold true in the presence of matter. Thus the conjecture, if true, would
characterize all possible asymptotic states of the general evolution.

So far the conjecture has been resolved, by combining results of Hawk-
ing [17], Carter [4], and Robinson [28], under the additional hypothesis
of non-degenerate horizons and real analyticity of the space-time. The as-
sumption of real analyticity is both hard to justify and difficult to dispense
of. One can show, using standard elliptic theory, that stationary solutions
are real analytic in regions where the corresponding Killing vector-field T
is time-like, but there is no reason to expect the same result to hold true
in the ergo-region (in Kerr, the Killing vector-field T, which is time-like
in the asymptotic region, becomes space-like in the ergo-region). In view
of the main application of the conjectured result to the general problem of
evolution, mentioned above, there is also no reason to expect that, by losing
gravitational radiation, general solutions become, somehow, analytic. Thus
the assumption of analyticity is a serious limitation of the present unique-
ness results. Unfortunately one of the main step in the current proof, due to
Hawking [17], depends heavily on analyticity. As we argue below, to ex-
tend Hawking’s argument to a smooth setting requires solving an ill posed
problem. Roughly speaking Hawking’s argument is based on the observa-
tion that, though a general stationary space may seem quite complicated, its
behavior along the event horizon is remarkably simple. Thus Hawking has
shown that in addition to the original, stationary, Killing field, which has
to be tangent to the event horizon, there must exist, infinitesimally along
the horizon, an additional Killing vector-field. To extend this information,
from the event horizon to the domain of outer communication, requires one
to solve a boundary value problem, with data on the horizon, for a linear
differential equation. Such problems are typically ill posed (i.e. solutions
may fail to exist in the smooth category.) In the analytic category, however,
the problem can be solved by a straightforward Cauchy—Kowalewsky type
argument. Thus, by assuming analyticity for the stationary metric, Hawk-
ing bypasses this fundamental difficulty, and thus is able to extend this
additional Killing field to the entire domain of outer communication. As
a consequence, the space-time under consideration is not just stationary
but also axi-symmetric, situation for which Carter—Robinson’s uniqueness

! See reviews by B. Carter [5] and P. Chrusciel [9,10] for a history and review of the
current status of the conjecture.

2 The notion of regularity needed here requires a careful discussion concerning the geo-
metric hypothesis on the space-time.
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theorem [4,28] applies. It is interesting to remark that this final step does
not require analyticity.

Though ill posed problems do not, in general, admit solutions, one
can, when a solution is known to exist, often prove uniqueness (we refer
the reader to the introduction in [19] for a more thorough discussion of
this issue). This fact has led us to develop a different strategy for prov-
ing uniqueness based on a characterization of the Kerr solution, due to
Mars [24], and geometric Carleman estimates applied to covariant wave
equations on a general, stationary, black hole background. We discuss this
strategy in more details in the following subsection, after we recall a few
basic definitions and results concerning stationary black holes. Our main
result, stated in Subsect. 1.2 below, proves uniqueness of the Kerr family
among all, smooth, appropriately regular, stationary solutions, with a regu-
lar, bifurcate, event horizon, under an additional assumption which has to be
satisfied along the bifurcate sphere S, of the event horizon. More precisely
we assume a pointwise complex scalar identity relating the Ernst potential o
and the Killing scalar £2 on .

1.1. Stationary, regular, black holes. In this subsection we review some
of the main definitions and results concerning stationary black holes (see
also the discussion in the introduction to Sect. 3). We will also give a more
detailed discussion of our new approach to the problem of uniqueness.
Precise assumptions concerning our result will be made only in the next
subsection.

The main objects in the theory of stationary, vacuum, black holes are
3 4 1 dimensional space-times (M, g) which are smooth, strongly causal,
time oriented, solutions of the Einstein vacuum equations, see [17] for
precise definitions, and which are also stationary, asymptotically flat. More
precisely one considers, see for example p. 2 in [15], space-times (M, g)
endowed with a 1-parameter group of isometries &, generated by a Killing
vector-field T, and which possess a smooth space-like slice ¥y with an
asymptotically flat end Eff"d) C Xponwhich g(T, T) < 0. To ensure strong
causality we assume that M is the maximal globally hyperbolic extension
of ¥y. This implies, in particular, that all orbits of T are complete, see [8],
and must intersect Xo, see [14]. Define M) = | J, . CIDI(ZE)"”“!)). Take B
to be the complement of I~ (M©®) W the complement of I+ (M),
where 1%(S) denote the causal future and past sets of a set S C M. In
other words B (called the black hole region), respectively W (called the
white hole region), is the set of points in M for which no future directed,
respectively past directed, causal curve meets M"? . Also we take E (called
domain of outer communication) the complement of W U B, i.e. E =
I~ M@Dy N 1t MDY We further define the future event horizon H*
to be the boundary of I~ (M%) and the past event horizon #~ to be the
boundary of I+ M),

HT =6B, FH =5W.
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By definition both #* and J#~ are achronal (i.e. no two points on 7,
or €~ can be connected by time-like curves) boundaries generated by
null geodesic segments. According to the topological censorship theorem,
see [13] or [16], the domain of outer communication E is simply connected.
This implies that all connected components of event horizons must have the
topology of S? x R. In our work we shall assume that the event horizon has
only one component.

It follows immediately from the definitions above that the flow ®, must
keep # T and #~ invariant, therefore the generating vector-field T must be
tangent to J¢. One further assumes that @, has no fixed points on # with the
possible exception of Sy = #H+ N #~. Then either T is space-like or null
at all points of #¢. If T is null on #¢, in which case #¢ is said to be a Killing
horizon for T, Sudarski—Wald [30] have proved that the space-time must be
static, i.e. T is hypersurface orthogonal. Static solutions, on the other hand,
are known to be isomorphic to Schwarzschild metrics, see [3,11,21]. In this
paper we are interested only in the case when T is space-like at some points
on the horizon.

The existence of partial Cauchy hypersurface ¥, implies, in particular,
the existence of a foliation X, on E, which induces a foliation S; on the
horizon # with a well defined area. A key result of Hawking [17] (see
also [12] where the area theorem is proved under very general differen-
tiability assumptions), shows that the area of S, is a monotonous function
of t. Using this fact, together with the tangency of the Killing field T, one
can show that the null second fundamental forms of both #* and #~ must
vanish identically, see [17]. Specializing to the future event horizon €7,
Hawking [17] (see also [20]) has proved the existence of a non-vanishing
vector-field K, tangent to the null generators of #* which is Killing to any
order along #*. Moreover Dx K = kK with «, constant along #*, called
the surface gravity of #*. If k # 0 we say that #* is non-degenerate.
In the non-degenerate case the work of Racz and Wald [27] supports the
hypothesis, which we make in our work (see next subsection), that #+
and A~ are smooth null hypersurfaces intersecting smoothly on a 2 sur-
face Sy with the topology of the standard sphere. We say, in this case, that
the horizon ¢ is a smooth bifurcate horizon.

Under the restrictive assumption of real analyticity of the metric g one
can show, see [10,17], that the Hawking vector-field K can be extended
to a neighborhood of the entire domain of communication.’> One can then
show that the spacetime (M, g) is not just stationary but also axi-symmetric.
One can then appeal to the results of Carter [4] and Robinson [28] which
show that the family of Kerr solutions with 0 < a < m exhaust the class
of non-degenerate, stationary axi-symmetric, connected, four dimensional,
vacuum black holes. This concludes the present proof of uniqueness, based
on analyticity.

3 In [15] it is shown that K can be extended in the complement of the domain of outer
communication E without the restrictive analyticity assumption. However their argument
does not apply to the domain of outer communication E.
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Without analyticity any hope of extending K outside #¢, in E, by a direct
argument encounters a fundamental difficulty. Indeed one needs to extend K
such that it satisfies the Killing equation,

D,K, +D,K, =0. (1.1)

Differentiating the Killing equation and using the Ricci flat condition
Ric(g) = 0 one derives the covariant wave equation [, K = 0. The
obstacle we encounter is that the boundary value problem [J,K = 0
with K prescribed on # is ill posed, which means that it is impossible
to extend K by solving [J;K = 0, if the metric is smooth but fails to
be real analytic. To understand the ill posed character of the situation
it helps to consider the following simpler model problem in the domain
E = {(t,x) € R'"**/|x| > 1 + |t|} of Minkowski space R'*3

Lo = F(¢.9¢),  ¢lse = ¢o- (1.2)

Here [ is the usual D’ Alembertian of R'*3 and F a smooth function of ¢
and its partial derivatives d,¢, vanishing for ¢ = d¢ = 0. One can regard E
as a model of the domain of outer communication and its boundary # = JE
as analogous to the bifurcate event horizon considered above. The problem
is still ill posed; even in the case F' = 0 we cannot, in general, find solutions
for arbitrary smooth boundary data ¢,. Yet, as typical to many ill posed
problems, even if existence fails we can still prove uniqueness. In other
words if (1.2) has two solutions ¢;, ¢, which agree on £ = SE then they
must coincide everywhere in E, see [19]. The result is based on Carleman
estimates, i.e. on space-time L? a-priori estimates with carefully chosen
weights. A more realistic model problem is to consider smooth space-time
metrics g in R'*3 which verify the Einstein vacuum equations and agree, up
to curvature, with the standard Minkowski metric on the boundary # = JE.
Can we prove that g must be flat also in E? It is easy to see, using the Einstein
equations, that the Riemann curvature tensor R of such metrics must verify
a covariant wave equation of the form [; R = R* R, with R* R denoting an
appropriate quadratic product of components of R. We are thus led to a ques-
tion similar to the one above; knowing that R vanishes on the boundary of E
can we deduce that it also vanishes on E? Using methods similar to those
of [19] we can prove that R must vanish in a neighborhood of #. We also ex-
pect that, under additional global assumptions on the metric g, one can show
that R vanishes everywhere on E and therefore g is locally Minkowskian.

These considerations lead us to look for a tensor-field 4, associated to
our stationary metric g, which satisfies the following properties.

(1) If & vanishes in E then the metric g is locally isometric to a Kerr
solution.
(2) 4 verifies a covariant wave equation of the form,

g8 = A x84+ B xDS, (1.3)

with 4 and B two arbitrary smooth tensor-fields.
(3) 4 vanishes identically on the bifurcate event horizon #€.
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An appropriate space-time tensor verifying condition (1) has been proposed
by M. Mars in [24], based on some previous work of W. Simon [29]; we refer
to it as the Mars—Simon tensor. In this paper we shall show that 4 verifies
the desired wave equation in (2) and give a sufficient, simple condition
on the bifurcate sphere Sy, which insures that 4 vanishes on the event
horizon #€. We then prove, based on a global unique continuation argument,
that 4 must vanish everywhere in the domain of outer communication E. In
view of Mars’s result [24] we deduce that E is locally isometric with a Kerr
solution.

The unique continuation strategy is based on two Carleman estimates.
The first one establishes the vanishing of solutions to covariant wave equa-
tions, with zero boundary conditions on a neighborhood of S, on the event
horizon, to a full space-time neighborhood of Sy. The proof of this result
can be extended to the exterior of a regular, bifurcate null hypersurface (i.e.
with a regular bifurcate sphere), in a general, smooth, Lorentz manifold.
Our second, conditional, Carleman estimate is significantly deeper as it
depends heavily on the specific properties of stationary solutions of the Ein-
stein vacuum equations. We use it, together with an appropriate bootstrap
argument, to extend the region of vanishing of the Mars—Simon tensor from
a neighborhood of S to the entire domain of outer communication E. The
proof of both Carleman estimates (see also discussion in the first subsection
of Sect. 3), but especially the second, rely on calculations based on null
frames and complex null tetrads. We develop our own formalism, which
is, we hope, a useful compromise between that of Newmann—Penrose [26]
and that used in [7,22]. Strictly speaking the formalism used in [7] does
not apply in the situation studied here as it presupposes that the horizontal
distribution generated by the null pair is integrable. The horizontal distri-
bution generated by the principal null directions in Kerr do not verify this

property.

1.2. Precise assumptions and the main theorem. We state now our pre-
cise assumptions. We assume that (M, g) is a smooth,* time oriented, vac-
uum Einstein spacetime of dimension 3 4+ 1 and T € T(M) is a smooth
Killing vector-field on M. In addition, we make the following assumptions
and definitions.

AF (Asymptotic flatness). We assume that there is an open subset M(“"®
of M which is diffeomorphic to R x ({x € R? : |x| > R}) for some R
sufficiently large. In local coordinates {¢, x' } defined by this diffeomorphism,

we assume that, with r = /(x1)2 4 (x2)2 + (x3)2,

2M -2 —1 -2
go=—1+"=+007). g =38+00"). gi=007
(1.4)

4 M is assumed to be a connected, orientable, paracompact C° manifold without bound-
ary.
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for some M > 0, and
T =09, therefore 0,8,, =0.

We define the domain of outer communication (exterior region)
E = I-M“9) N 1My,

We assume that there is an imbedded space-like hypersurface ¥y € M
which is diffeomorphic to {x € R? : |x| > 1/2} and, in M9 ¥, agrees
with the hypersurface corresponding to + = 0. Let 7 denote the future
directed unit vector orthogonal to (. We assume that every orbit of T in E
is complete and intersects the hypersurface 3y, and

|g(T, Tp)] > 0 on Xy NE. (1.5

SBS (Smooth bifurcate sphere). Let
So = 8(I~ (M D))y N (T MDYy,

We assume that Sy € X and Sy is an imbedded 2-sphere which agrees with
the sphere of radius 1 in R? under the identification of ¥y with {x € R? :
|x| > 1/2}. Furthermore, we assume that there is a neighborhood O of S,
in M such that the sets

Ht=0N8T- M) and H~ =O0NsIT MDY

are smooth imbedded hypersurfaces diffeomorphic to Sy x (—1,1), We
assume that these hypersurfaces are null, non-expanding’, and intersect
transversally in Sy. Finally, we assume that the vector-field T is tan-
gent to both hypersurfaces #+ = O N §(I- (M) and H~ = O N
S(IT M )) and does not vanish identically on Sp.®

T (Technical assumptions). Let Fy,g = D, Ty denote the Killing form on M,
and \7:(;/3 = Faﬁ + i*Faﬁ, where *Faﬁ = %Eaﬁynga. Let F2 = %ﬁ?aﬂ. The
Ernst 1-form associated to T is defined as o, = 2T*¥%,,. Itis easy to check,
see (4.18), that o, is exact and, therefore, there exists a complex scalar o
defined in an open neighborhood of ¥, called the Ernst potential, such
that D,0 = oy,. In view of the asymptotic flatness assumption AF, we
can choose o such that o — 1 at infinity along Xy. Our main technical
assumptions are

—AM’Fr=(1—-0)* onS, (1.6)

5 A null hypersurface is said to be non-expanding if the trace of its null second fundamental
form vanishes identically.

% In view of a well known result, see [23], any non-vanishing Killing field on Sy can only
vanish at a finite number of isolated points.
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and

R(1—0) > 1/2 at some point on . (1.7)

Remark 1.1. As we have discussed in the previous subsection some of the
assumptions made above have been deduced from more primitive assump-
tions. For example, the completeness of orbits of E can be deduced by
assuming that M is the maximal global hyperbolic extension of ¥, see [8].
Our precise space-time asymptotic flatness conditions can be deduced by
making asymptotic flatness assumptions only on %, see [2,1]. The as-
sumption (1.5) can be replaced, at the expense of some additional work in
Sect. 8, by a suitable regularity assumption on the space of orbits of T. The
non-expanding condition in SBS can be derived using the area theorem,
see [17,12]. The regular bifurcate structure of the horizon, assumed in SBS,
is connected to the more primitive assumption of non-degeneracy of the
horizon, see [27].

Remark 1.2. Assumption (1.7) is consistent with the natural condition 0 <
a < M satisfied by the two parameters of the Kerr family. The key technical
assumption in this paper is the identity (1.6), which is assumed to hold on
the bifurcate sphere Sy. This assumption is made in order to insure that the
corresponding Mars—Simon tensor vanishes on #~ U #*. We emphasize,
however, that we do not make any technical assumptions in the open set E
itself; the identity (1.6) is only assumed to hold on the bifurcate sphere Sy,
which is a codimension 2 set, while the inequality (1.7) is only assumed
at one point of Sy. We hope to further relax these technical conditions and
interpret them as part of the “regularity” assumptions on the black hole in
future work.

Remark 1.3. In Boyer—Lindquist coordinates the Kerr metric takes the form,

2
A
ds® = —’;—z(dr)z +

¥2(sin )> 2aMr \*  p* o, L, o
T(d -5 dz) + )+ p?(d0)?,

(1.8)
where,

0> =r*+a*cos’0, A=r’+a*—2Mr,
¥? = (r* + a®) p* + 2Mrd® (sin 6)°.

On the horizon we have r = ry := M + ~/M? —a?> and A = 0. The
domain of outer communication E is given by r > r,. One can show that
the complex Ernst potential o and the complex scalar £ 2 are given by

2M ) 4M?
c=1-—— ¥F = (1.9)
r +iacos6 (r +iacos0)*



On the uniqueness of smooth, stationary black holes in vacuum 43

Thus,
—AM*F?P=(1—-0)* (1.10)

everywhere in the exterior region. Writing y + iz := (1 — o) ! we observe
that,

r ry
y=——>—>
2M — 2M

everywhere in the exterior region.

N =

Main theorem. Under the assumptions AF, SBS, and T the domain of
outer communication E of M is locally isometric to the domain of outer
communication of a Kerr space-time with mass M and 0 < a < M.

As mentioned earlier, the basic idea of the proof is to show that the
Mars—Simon tensor is well-defined and vanishes in the entire domain of
outer communication, by relying on Carleman type estimates. We provide
below a more detailed outline of the proof.

In Sect. 3, we prove a sufficiently general geometric Carleman inequal-
ity, Proposition 3.3, with weights that satisfy suitable conditional pseudo-
convexity assumptions. This Carleman inequality is applied in Sect. 6 to
prove Proposition 6.1 and Sect. 8 to prove Proposition 8.5.

In Sect. 4 we define, in a simply connected neighborhood M of ¥y NE,
the Killing form %,s and the Ernst potential o. We then introduce the
Mars—Simon tensor, see [24],

/Saﬁuv - tﬂaﬁuv + 6(1 - G) ( aﬂj‘uv (1/3)?2Iaﬁuu)
as a self-dual Weyl tensor, which is well defined and smooth in the open set
={xeM:1—o(x) #0}.

It is important to observe that Ny contains a neighborhood of the bifurcate
sphere S, since ic = —T*T,, which is nonpositive on Sy. In particular,
the Mars—Simon tensor is well defined in a neighborhood of Sy. The main
result of the section, stated in Theorem 4.5, is the identity

D7 Soapr = FE)apy = —6(1 — 0) T 85,55 (F 81,8, — (2/3) F " 1”10
(1.11)

which shows that 4 verifies a divergence equation with a source term g (48)
proportional to 4. It is then straightforward to deduce, see Theorem 4.7,
that & verifies a covariant wave equation with a source proportional to §
and first derivatives of §.

In Sect. 5 we show that 8 vanishes on the horizon §(I~(M©®)) U
S(IT (M), in a neighborhood of the bifurcate sphere Sy. The proof
depends on special properties of the horizon, such as the vanishing of the
null second fundamental forms and certain null curvature components, and
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the divergence equation (1.11). The proof also depends on the main technical
assumption (1.6) to show that the component p(4) vanishes on S (this is
the only place where this technical assumption is used).

In Sect. 6 we show that § vanishes in a full space-time neighborhood
O,, NE of S in E, see Proposition 6.1. For this we derive the Carle-
man inequality of Lemma 6.2, as a consequence of the more general
Proposition 3.3. The weight function used in this Carleman inequality is
constructed with the help of two optical functions u, and u_, defined in
a space-time neighborhood of Sy. We then apply this Carleman inequality
to the covariant wave equation verified by 4, to prove Proposition 6.1.

Once we have regions of space-time in which 4 vanishes we can rely on
some of the remarkable computations of Mars [24]. In Sect. 7 we work in
an open set N € Ny (thus 1 — o # 0in N), Sy € N, with the property that
4 =0in NN E and NNE is connected. Such sets exist, in view of the main
result of Sect. 6. Following Mars [24], we define the real functions y and z
in N by

ytiz=(1-0)7",
see Remark 1.3 for explicit formulas in the Kerr spaces. The function y
satisfies the important identity (7.19), found by Mars,
2
— B
DayDay = Y Y
AM?(y> + 2%)
in NN E, where B € [0, co) is a constant which has the additional property
that z> < B in N N E (in the Kerr space B = a®/(4M?)). We then use this

identity and the fact that (1 — o) = 1 4 g(T, T) to prove the key bound
on the coordinate norm of the gradient

ID'y] < C inNNE, (1.13)

(1.12)

with a uniform constant C (see Proposition 7.2). This bound, together with
72 < B, shows that the function 1 — ¢ = (y 4 iz)~! cannot vanish in
a neighborhood of the closure of NN E, as long as § = 0 in NN E and
N N E is connected. This observation is important in Sect. 8, as part of
the bootstrap argument, to show that 1 — o # 0 in Xy N E. Finally, in
Lemma 7.3 we work in a canonical complex null tetrad and compute the
Hessian D?y in terms of the functions y and z, and the connection coeffi-
cient ¢.

In Sect. 8 we use a bootstrap argument to complete the proof of the main
theorem. Our main goal is to show that | —o # 0 and 4 = 0 in Xy N E.
We start by showing that y = yg, is constant on the bifurcate sphere Sy,
and use (1.12) to show that yéo — ys, + B = 0; using (1.7) it follows that
B €[0,1/4) and ys, € (1/2, 1]. We use then the wave equation

2y — 1

DO(DO[ = 5 5.
a2
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which is a consequence of 4 = 0, and the fact that y5, > 1/2, to show
that y must increase in a small neighborhood O, N E. We can then start
our bootstrap argument: for R > ys, let Ug denote the unique connected
component of the set {x € XyNE : o(x) # 1 and y(x) < R} whose closure
in X, contains Sy. We need to show, by induction over R, that § = 0 in U
for any R > yg,; assuming this, it would follow from (1.13) that o # 1 in
Yo NEandJ R>y50‘u r = 2o N E, which would complete the proof of the

main theorem. The key inductive step in proving that § = 0in U is to show
that if x is a point on the boundary of Ug in £y NE, and if 4 = 0 in Uk,
then 4 = 0 in a neighborhood of x (see Proposition 8.5). For this we use
a second Carleman inequality, Lemma 8.6, with a weight that depends on
the function y. To prove this second Carleman estimate we use the general
Carleman estimate Proposition 3.3 and the remarkable pseudo-convexity
properties of the Hessian of the function y computed in Lemma 7.3.

We would like to thank P. Chrusciel, M. Dafermos, J. Isenberg, M. Mars
and R. Wald for helpful conversations connected to our work. We would
also like to thank the referees for very helpful comments, particularly on
Sect. 3.

2. Geometric preliminaries

2.1. Optical functions. We define two optical functions «_, u in a neigh-
borhood of the bifurcate sphere S, included in the neighborhood O of
hypothesis SBS. Choose a smooth future-past directed null pair (L, L_)
along Sy (i.e. L is future oriented while L _ is past oriented),

g(L,, L*) = g(L+’ L+) = O’ g(LJr’ TO) = _1’ g(LJr’ L*) =1
2.1

We extend L, (resp. L_) along the null geodesic generators of F*
(resp. J¢7) by parallel transport, i.e. D; L, = 0 (resp. D, _L_ = 0).
We define the function u_ (resp. u,) along F#* (resp. #~) by setting
u_ = uy = 0 on the bifurcate sphere Sy and solving L (u_) = 1 (resp.
L_(uy) = 1). Let S, (resp. S, ) be the level surfaces of u_ (resp. u;)
along J* (resp. #7). We define L_ at every point of J* (resp. L, at
every point of #7) as the unique, past directed (resp. future directed), null
vector-field orthogonal to the surface S, (resp. S, ) passing through that
point and such that g(L,,L_) = 1. We now define the null hypersur-
face #,_ to be the congruence of null geodesics initiating on S, C #7 in
the direction of L_. Similarly we define #,, to be the congruence of null
geodesics initiating on S, C J¢~ in the direction of L. Both congruences
are well defined in a sufficiently small neighborhood O of S in M. The null
hypersurfaces #¢,_ (resp. #, ) are the level sets of a function u_ (resp. u )
vanishing on J¢~ (resp. #*). Moreover we can arrange that both u_, u
are positive in the domain of outer communication E. By construction they
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are both null optical functions, i.e.
g o, u duy =g"ou_du_=0. (2.2)
We define
Q=g""d,uidu_. (2.3)
In view of our construction we have,
Uylgor =U_|g0- =0, Qgpruge- = 1. 2.4)
Let
L, =g"d,u;0,, L_=g"0,u_a,. (2.5)
We have,
gL Ly)=gL_,L)=0, gl L )=
Define the sets,
O.={xeO0:|u_| <e|uy| <e}.
For sufficiently small €y > 0 we have,

1
Q>; Oy O,CO. (2.6)

We also have, for € < ¢y, O. NE = 0<u_<e0<u, <e}.Ifgpis
a smooth function in O, vanishing on #* N O, one can show that there
exists a smooth function ¢’ defined on O, such that,

p=u,-¢ onO,. (2.7)

Similarly, if ¢ is a smooth function in O, vanishing on #£~ N Oy, then there
exists another smooth function ¢’ defined on O, such that,

p=u_-¢ onO.. (2.8)

2.2. Quantitative bounds. Using the hypothesis (1.5) we may assume that
for every 0 < € < ¢ there is a sufficiently large constant A, such that,

8(T. Ty)| > A;',  Vx € (Z)NE)\O.. (2.9)

In view of the normalization (2.1) we may assume (after possibly decreasing
the value of ¢;) that, for some constant A,

uy/u_+u_jup <Ay onO,NENZ. (2.10)
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We construct a system of coordinates which cover a neighborhood of the
space-like hypersurface ¥o. Forany R € (0, 1]let B = {x € R* : |x| < R}
denote the open ball of radius R in R*. In view of the asymptotic flatness
assumption AF, there is a constant Ay € [e, ! 00) such that (2.10) holds and,
in addition, for any xy € ¥y N E there is an open set B (xp) € M containing
xo and a smooth coordinate chart ®* : B; — Bj(xp), ®*(0) = x¢, with
the property that

6 4
sup  sup Z Z (180 - - - 0o, 8y (X)] + |00, - .- 8ajg’3”(x)|)

x0€XoNE *€B1(x0) J=0 ai,.aj,By=1

< Ao; (2.11)
6 4
sup - sup > D> By - 00, TP )] < Ap.
xoeZoNE X€B1(x0) J=0 ai,...a;,p=1
We may assume that Bi(xg) € O, if xo € Sp. We define M to be the
union of the balls B;(xo) over all points xo € o N E. We can arrange such
that M is simply connected.

Since Sy is compact, we may assume (after possibly increasing the value
of Ap) that

6 4 4

-1
sip sup [3 N e @]+ (Y 0 ]) | = Ao
xp€So x€B(x0) =0 ai,o, wj=1 o

(2.12)

Finally, we may also assume, in view of (1.7), that there is a point xo € Sy
such that,

R((A —oxe)™") > % + Ay (2.13)

To summarize, we fixed constants €y and Ay > €, ! such that (2.10)—(2.13)
hold.

3. Unique continuation and Carleman inequalities

3.1. General considerations. As explained in Sect. 1 our proof of the
main theorem is based on a global, unique continuation strategy applied
to (1.3). We say that a linear differential operator L, in a domain  C R,
satisfies the unique continuation property with respect to a smooth, oriented,
hypersurface ¥ C €2, if any smooth solution of L¢ = 0 which vanishes
on one side of ¥ must in fact vanish in a small neighborhood of X. Such
a property depends, of course, on the interplay between the properties of the
operator L and the hypersurface X. A classical result of Hormander, see for
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example Chapt. 28 in [18], provides sufficient conditions for a scalar linear
equation which guarantee that the unique continuation property holds. In
the particular case of the scalar wave equation, [ls¢p = 0, and a smooth
surface X, defined by the equation 4 = 0, VA # 0, Hormander’s pseudo-
convexity condition takes the simple form,

D*h(X,X) <0 ifg(X,X)=g(X,Dh) =0 (3.1)

at all points on the surface X, where we assume that ¢ is known to vanish
on the side of X corresponding to 4 < 0.

In our situation, we plan to apply the general philosophy of unique
continuation to the covariant wave equation (see Theorem 4.7),

(g8 = A % 8 + B DS, (3.2)

verified by the Mars—Simon tensor 4, see Definition 4.3. We prove in Sect. 5,
using the main technical assumption (1.6), that 4 vanishes on the horizon
J¢T U #~ and we would like to prove, by unique continuation, that &
vanishes in the entire domain of outer communication. In implementing
such a strategy one encounters the following difficulties:

(1) Equation (3.2) is tensorial, rather than scalar.

(2) The horizon #* U J~ is characteristic and non smooth in a neighbor-
hood of the bifurcate sphere.

(3) Though one can show that an appropriate variant of Hormander’s
pseudo-convexity condition holds true along the horizon, in a neighbor-
hood of the bifurcate sphere, we have no guarantee that such condition
continues to be true slightly away from the horizon, within the ergo-
sphere region of the stationary space-time where T is space-like.

Problem (1) is not very serious; we can effectively reduce (3.2) to a sys-
tem of scalar equations, diagonal with respect to the principal symbol.
Problem (2) can be dealt with by an adaptation of Hérmander’s pseudo-
convexity condition. We note however that such an adaptation is neces-
sary since, given our simple vanishing condition of 4 along the horizon,
we cannot directly apply Hormander’s result in [18]. Problem (3) is by
far the most serious. Indeed, even in the case when g is a Kerr met-
ric (1.8), one can show that there exist null geodesics trapped within the
ergosphere region m + ~/m? —a?> < r < m + ~/m? — a? cos? 0. Indeed
surfaces of the form rA = m(r> — a®)'/?, which intersect the ergosphere
for a sufficiently close to m, are known to contain such null geodesics,
see [6]. One can show that the presence of trapped null geodesics inval-
idates Hormander’s pseudo-convexity condition. Thus, even in the case
of the scalar wave equation [lg¢p = 0 in such a Kerr metric, one cannot
guarantee, by a classical unique continuation argument (in the absence of
additional conditions) that ¢ vanishes beyond a small neighborhood of the
horizon.
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In order to overcome this difficulty we exploit the geometric nature of
our problem and make use of the invariance of 4 with respect to T. Thus
the tensor 4 satisfies, in addition to (3.2), the identity

L18 = 0. 3.3)

Observe that (3.3) can, in principle, transform (3.2) into a much simpler
elliptic problem, in any domain which lies strictly outside the ergosphere
(where T is strictly time-like). Unfortunately this possible strategy is not
available to us since, as we have remarked above, we cannot hope to extend
the vanishing of 4, by a simple analogue of Hormander’s pseudo-convexity
condition, beyond the first trapped null geodesics.

Our solution is to extend Hérmander’s classical pseudo-convexity condi-
tion (3.1) to one which takes into account both (3.2) and (3.3). These consid-
erations lead to the following qualitative, T-conditional, pseudo-convexity
condition,

Th) =0;

D°h(X,X) <0 ifg(X, X)=g(X,Dh) =g(T, X)=0. ©4
In a first approximation one can show that this condition can be verified
in all Kerr spaces a € [0, m), for the simple function 2 = r (see [19]),
where r is one of the Boyer-Lindquist coordinates. Thus (3.4) is a good
substitute for the more general condition (3.1). The fact that the two geo-
metric identities (3.2) and (3.3) cooperate exactly in the right way, via (3.4),
thus allowing us to compensate for both the failure of condition (3.1) as
well as the failure of the vector field T to be time-like in the ergore-
gion, seems to us to be a very remarkable property of the Kerr spaces.
In the next subsection we give a quantitative version of the condition
and derive a Carleman estimate of sufficient generality to cover all our
needs.

3.2. A Carleman estimate of sufficient generality. Unique continuation
properties are often proved using Carleman inequalities. In this subsec-
tion we prove a sufficiently general Carleman inequality, Proposition 3.3,
under a quantitative conditional pseudo-convexity assumption. This gen-
eral Carleman inequality is used in Sect. 6 to show that § vanishes in
a small neighborhood of the bifurcate sphere Sy in E, and then in Sect. 8
to prove that 4 vanishes in the entire exterior domain. The two applica-
tions are genuinely different, since, in particular, the horizon is a bifurcate
surface which is not smooth and the weights needed in this case have
to be “singular” in an appropriate sense. In order to be able to cover
both applications and prove unique continuation in a quantitative sense,
which is important especially in Sect. 8, we work with a more techni-
cal notion of conditional pseudo-convexity than (3.4), see Definition 3.1
below.
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Assume, as in the previous section, that xy € ¥y N E and ®* : B —
Bi(xg) is the corresponding coordinate chart. For simplicity of notation, let
B, = B,(xp). For any smooth function ¢ : B — C, where B C B is an
openset,and j =0, 1,... let

4

IDIg) = Y 0 ... 0, ().

O(l,m,aj=l

Assume that V = V9, is a vector-field on B; with the property that

4 4
sup Y Y |DIVE| < A (3.5)

x€B; =0 p=1
In our applications, V. =0or V =T.

Definition 3.1. A family of weights h. : B.o — Ry, € € (0, €)), €; < Ay,
will be called V -conditional pseudo-convex if for any € € (0, €)

4
he(xo) =€, sup Y €/|D/hc(x)] <€fer,  [V(ho)(xo)| < €', (3.6)

XGBel() j=1

Dh(x0)DPhe(x0) (DghDghe — eDeDghe)(x0) = €7, (3.7)
and there is i € [—ef], ef]] such that for all vectors X = X*9, € Ty,(M)
el(XH? + (X2 + (X)) + (XH?]

< XX (ugyp — DuDphe) (x0) + € (| X Vo (x0) | + | XDy (x0)[).
(3.8)

A function e, : B.io — R will be called a negligible perturbation if

sup |D/ec(x)| <€ forj=0,....4. (3.9)

XEBGIO

Remark 3.2. One can see that the technical conditions (3.6)—(3.8) are related
to the qualitative condition (3.4), at least when A, = h + € for some
smooth function h. The assumption |V(h.)(xo)| < €'® is a quantitative
version of V(h) = 0. The assumption (3.8) is a quantitative version of the
inequality in the second line of (3.4), in view of the large factor €2 on
the terms | X*V, (x¢)|? and | X*D,h.(x0)|?, and the freedom to choose i in
alarge range. The assumption (3.7) is a quantitative version of the condition
Vh # 0 (assuming that (3.8) already holds).

It is important that the Carleman estimates we prove are stable under
small perturbations of the weight, in order to be able to use them to prove
unique continuation. We quantify this stability in (3.9).
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We observe that if {h¢}cc(,¢,) is @ V-conditional pseudo-convex family,
and e, is a negligible perturbation for any € € (0, €], then

he + e € [€/2,2€¢] in Bo.

The pseudo-convexity conditions of Definition 3.1 are probably not as gen-
eral as possible, but are suitable for our applications both in Sect. 6, with
“singular” weights A, and Sect. 8, with “smooth” weights /.. We also note
that it is important to our goal to prove a global result (see Sect. 8), to be
able to track quantitatively the size of the support of the functions for which
Carleman estimates can be applied; in our notation, this size depends only
on the parameter €; in Definition 3.1.

Proposition 3.3. Assume xq, V are as above, €, < Aal, {helec.ep isa V-
conditional pseudo-convex family, and e. is a negligible perturbation for
any e € (0, €1]. Thenthereis € € (0, 1) sufficiently small and C. sufficiently
large such that for any . > C. and any ¢ € C3°(B.w)

rle el 2 + lle | D ¢l 2

~ X ) 3.10
< Ca™ e D] o + € Clle V@) 12, 10

where f. = In(he + e.).

Proof. As mentioned earlier, many Carleman estimates such as (3.10) are
known, for the particular case when V = 0, in more general settings. The
optimal proof, see Chap. 28 of [18], is based on the Fefferman—Phong in-
equality. Here we provide a self-contained, elementary, proof which, though
not optimal, it is perfectly adequate to our needs.

We will use the notation C to denote various constants in~[1, o0) that
may depend only on the constant €;. We will use the notation C, to denote
various constants in [1, co) that may depend only on €. We emphasize
that these constants do not depend on the (very large) parameter A or the
function ¢ in (3.10). The value of € will be fixed at the end of the proof and
depends only on €;. We divide the proof into several steps.

Step 1. Clearly, we may assume that ¢ is real-valued. Let ¢ = e */¢¢p €
Cy°(Bo). In terms of v, inequality (3.10) takes the form,

MW llz + lle ™| D eyl

~ X X 3.11
< CaA™ POy )| o 4 € Clle ™ V(e )| 2. G-1h

We reduce the proof of (3.11) by a sequence of steps. We claim first that
for (3.11) to hold true, it suffices to prove that there existe << 1 and C, > 1
such that

Myl + 1Dl < Ca™ e e Oge 9| . + 8¢ * I VW)l 2
(3.12)
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for any A > 66 and any € C;°(B0). Indeed, using (3.6) and (3.9) (thus
|[V(he + e)(x)] < Ce® for x € B.w), the observation h, + e, € [€/2, 2¢]
in B,i0, and the definition f, = In(k, + e.), we have

e Dl ey < ID'y| + Ce'Alyl;
le™ V(e ey — V()| < Ce' Al
Thus, assuming (3.12), we deduce,
MWz + le ™ DY)l 2 < Mwle + 11D Wl 2 + Ce Al
< (14 Ce ) (CA™ V2| e Oy )| 2 + 8¢ VW)l 12)
< (14 Ce H[Ca™ 2| e MO ) | 2 + 8 Hlle M V(e y)]| 12
+8CEM Y 2]
< Caa™ P e Ogeey) | > + Ce 2 lle ™oV y) || 2 + CEMY I 12,
and the inequality (3.11) follows for e <« C!.
Step 2. We write
e MOy (e ) = gy + 20D (fo)Dutr

FAPDL(fODY(fo) - ¥ +A0g(fo) -, (3.13)
= Loy + 20g(f) - ¥,

with L, = Ug + 2AD%(fo)D, + 22Dy (f.)DY(£.), and show that (3.12)
follows from,

Mgl + 1D W2 < CA™ PILll e +4€ VAl (B.14)
for any A > C. and any ¥ € C5°(B.w). Indeed,
e O )| 12 = 1L 2 = Mg (f)W 2

Observe that, according to (3.6), we have |Ug(fo)| < 56 on B.. Thus,
if (3.14) holds,

M llzz + 11D ¥l .2

< CA™2 (e Oge ) | > + MIOg(fV Il 2) + 4e V) | 12

< Ca™ P |le O )| + CA I 112 + 4e VA 12

or,

(= C2A2) 1Y ll2 + 11D ¥l 2
< Coa™'P|le e Og(ey) | 2 + de IV Il 2
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from which we easily derive (3.12), by redefining the constant C. and
taking A sufficiently large relative to C..

Step 3. We write L. in the form,

L =0g +2AW + A%G

e ., (3.15)
W =D"(f)Da, G =Du(f)D"(fo).

We observe that inequality (3.14) follows as a consequence of the following
statement: there exist € < 1, u; € [—€ /2, €73/?], and C, > 1 such that

20 PV 172 +/ Loy - CAW(Y) — 2hwy)dp
B 10 (3.16)

> C U AW — 2awirl2, + 221912 + AlID ¥,
for any A > C. and any ¢ € C3°(B.w0), where
w =y — (1/2)0g fe. (3.17)

The reason for choosing w of this form will become clear in Step 6. Assum-
ing that (3.16) holds true and denoting by RHS the right-hand side of that
inequality, we have

RHS < f CPLAp - CTVPAW(Y) — 20w)dp + 20 S| V() |12
B_ 1o

< C'IMWE) = hwll7, + CIL 17 + 2xe [V
Hence

WY+ AD'WIIE, < CALApIZ. + 2 SV 12
from which (3.14) follows easily.

Step 4. We claim now that inequality (3.16) is a consequence of the in-
equality

20 ¥Vl + /B (O + 2°GY) - QAW () — 22w)du
o0 3.18
L 22 W) (3-18)

> 2219112 4 240D |17
To prove that (3.18) implies (3.16) we write

Loy = 0gy + A%G - + QW) — Awy) + AW + 2w).
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Thus, assuming (3.18),

2% V)17 +f Leyr - QAW(Y) — 20wy)du

B_ 1o

=22 VW17 +f (Og¥ +2°GY) - QAW(Y) — 2Awp)dp

B_ 1o
+ 21AW ) — awr |7, + 222 (W) 117 — lwyll3,)
> 2021 YlI5s + 20D W17 + 212W (W) — dwillz, — 227 w17,
> 2{AW) — Awyrll72 + Al + 240D ]2,
if C. is sufficiently large and A > gg, which gives (3.16). In the last

inequality we use the bound |w| < Ce2 (see (3.17)) thus 2)\,3||W||iz —
22 |wyr |12, = A3y 13, for A sufficiently large.

Step 5. Let Qqp denote the enery-momentum tensor of [g, i.e.

1
Qup = DatDyr — = gup (D" YD, 1),
Direct computations show that

Oy - QW) — 2wyp) = D*(2WPQup — 2wy - Doy + Dow - )
—2D“WP - Qpp + 2uD*Y - Doty — Cgw - ¥/,
(3.19)

and

Gy - QW) —2wy) =D*(Y°G - W,,)

3.20
—¥*(2wG + W(G) + G - D*W,). G20

Since ¥ € C§°(B.0) we integrate by parts to conclude that
/ (O + 127G - ) - QW () — 2wy)dp
B 10

:/ 2Dy - Dy — 2D*WF - Qpdp
B 10

€

+ /\2/ v (—2wG — W(G) — G - D*W, — A *Oyw)dp.
B 10

€

Thus, after dividing by A, for (3.18) it suffices to prove that the pointwise
bounds

D'y P < eIV + AW@) P + (wD*y - Doty — D*WF - Qyp),
(3.21)
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and
2 < —2wG — W(G) — G -D*W, — A *Ow, (3.22)
hold on B.1o.

Step 6. Recall that w = p; — (1/2)0gfe, W = D*(f) and G =
D, (fo)D*(f.). Observe that

wD*Y - Dy — D*WF - Qg
= Dy - D’Y)[(w + (1/2)0g f)gap — DuDp fo]
and
—2wG — W(G) — G -D*W, = —GQw + Oy f.) — 2D*f. Df. - D, Dy f..
Thus (3.21) and (3.22) are equivalent to the pointwise inequalities
D'y < e VaDP +A[Dq fo - Dy’ (323
+ (DY - DY) (118ap — DaDp fo),
and
1 < =G —Df.DPf. - DDy fe + (1/4)27*05(fo) (3.24)

on B, for some € < 1 and A sufficiently large.

Let h, = h, + e. and H, = D*h.D,h.. We use now the definition

fe = Inh,. Since h, € [€/2, 2¢], for (3.23) and (3.24) it suffices to prove

that there are constants € < 1 and u; € [—€ /%, €73/?] such that the
pointwise bounds

D'y < VI + € [Dohe - Dy [ (35)

+ (DY - DY) (118ap — b, ' DeDyhe),

and
2 <h *H? — h°Dh DPh.DyDsh, — h 2 H, (3.26)

hold on B for any € Cg°(B.w). Indeed, the bound (3.23) follows
from (3.25) if A > 2¢’. The bound (3.24) follows from (3.26) if
|)52D}2,3(f5)| < 1, which holds true if » > Ce™2.

Step 7. We prove now that the bound (3.26) holds for any u, €
[—e~3/2, €73/2]. We start from the assumption (3.7)

D%/ (x0)DPh (x0) (DyhDgh. — eDeDgho)(xo) > €i.
For x € B0 let

K(x) = D*h (x)DPh (x)(DghDgh, — he - DgDgh,)(x).
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It follows from the second bound in (3.6) that | D'K(x)| < Ce~!, thus, since
€ = he(x), K(x) > €7/2 for any x € B, if € is sufficiently small.
Let

K (x) = D*h(x)DPho(x)(Dyh Dgh, — he - DDghe)(x).

It follows from the assumption (3.9) on e, and the assumption (3.6) that
|K(x) K(x)| < Ce, thus K(x) > 62/4 on B.iw0, provided that € is suffi-

ciently small. By multiplying with h6 we have
/4 < h*K(x) = h_*H? — h°D*h DPh, - D Dgh,
on B.10. The bound (3.26) follows for € small enough since h «(x) € [e€/2, 2¢]
on Boo and [h- 2 He| < Cluy|e 2 < Ce /2,
Step 8. We prove now the bound (3.25). We start from the assumption (3.8)
ell(XH? 4+ (X2 + (X)) + (xH?]
o — o 2 o 2
< X*XP(ugap — DaDphe) (x0) + € (| X Vo (x0) |” + | X“Dohe(x0)[),
(3.27)
for some u € [—el_l, el_l] and all vectors X = X“0d, € T,,(M). Let
Kaﬁ = /LE_lhegaﬁ — DaDﬁhe + €2 Vy Vlg + E_zDahEDﬁhe.
We work in the local frame 9y, 0,, 93, 94. In view of (3.6),
|D'Kop(x)| < Ce™3
for any o, 8 = 1,2,3,4 and x € B.o. It follows from (3.27) and
€ 'h(xp) = 1 that
4
Z XXPKop(x) > (e1/2)1(X)* + (X + (X)) + (XH*]  (3.28)
o, B=1

for any x € B.io and (X X2 X3, X% e R%, provided that € is sufficiently
small. Let

i(votﬂ = ,ueilil;gaﬁ - DaDﬁﬁe + e? Vo Vg + EizDa;{EDﬁ;{E,

and observe that, in view of (3.9) and (3.6), |Eaﬂ(x) — Kop(x)| < Ce’ for
any o, § = 1,2,3,4 and x € B.w. Thus, using (3.28), if € is sufficiently
small then
4
> X XPKap(x) = (e1/4) (X1 + (X7 + (X°)* + (XH7]
o,f=1
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for any x € B and (X', X*, X°, X*) € R*. We multiply this by h' e
[e7!/2,2¢7!] and use the definition of K «p to conclude that

4
Z XaXﬂ(ME_lgaﬂ — ﬁ;lDQDﬂﬁE)
ao,f=1

4
2
4 26*3‘ Y xev,
a=1

4
2
+ 26*3‘ 3" X“Dyh,
a=1

> i (E/4) (X2 + (X2 + (X3)2 + (X4,

The bound (3.25) follows for € sufficiently small, with u; = pe™! e

[—(e€1)~!, (e€;)~']. This completes the proof of the proposition. ]

4. The Mars-Simon tensor 4§

4.1. Preliminaries. Assume (N, g) is a smooth vacuum Einstein spacetime
of dimension 4. Given an antisymmetric 2-form, real or complex valued,
Gop = —Gp, we define its Hodge dual,

1
*Gaﬁ = Eeaﬁ'qu/w-

Observe that *(*G) = —G. This follows easily from the identity,
Capoo €77 = =284 N8y = —2(8l8) — 8,5).

Given 2 such forms F, G we have the identity
o * * o 1 af
Fuan _( F)va( G)u = Eg/wFaﬁG (41)

which follows easily from the identity
o3
S €B283 a1 = _8§§ A 8/3; A 5%2
QO QU3 o4 a0 oQ3 o4 o) 03 o4
- 8/348/33 8/32 + 8/32 8/34 8/33 + 8/33 8/32 8/34
) Q03 Ol4 o o3 o4 ) o3 Ol4
- 8/328/33 8/34 - 8/33 8/348/32 - 8/348/328/33‘
An antisymmetric 2-form ¥ is called self-dual if,

F=—iF.

It follows easily form (4.1) that if ¥, § are two self-dual 2-forms then

1
Fio6” + Fio§” = ngﬁﬁgaﬁ. (4.2)
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We also have, for any self-dual £,
FrioMF),° = Fis (é}t}')u" 4.3)

where ¥ denotes the real part of F .
A tensor W € Tg (N) will be called partially antisymmetric if

Waﬁ,uv = _Wﬁa/w = _Waﬁvu- (44)
Given such a tensor-field we define its Hodge dual

1
* aBfys = Eeyépa Waﬁpa-

As before, *(*W) = —W for any partially antisymmetric tensor W. A com-
plex partially antisymmetric tensor U of rank 4 is called self-dual if
*U = (—i)U. The following extension of identity (4.2) holds for such
tensors,

1
‘?:;LU uaﬂva + j:\{za uaﬁ,ua = Eguv?{]ﬂs‘u(xﬁyé- 4.5)
A partially antisymmetric tensor of rank 4 is called a Weyl field if

Waﬂ/w = _Wﬁauv = _Waﬂvu = W;wozﬁ;
Wa[ﬂp,u] = Waﬂuv + Wauvﬁ + Wavﬂp, = 0; (46)
gﬂ” Waﬂ;u) =0.

It is well-known that if W is a Weyl field then *W is also a Weyl field. In
particular

k k

1
afuy = e — Eeaﬂ e W;wpa- (47)

The Riemann curvature tensor R of an Einstein vacuum spacetime provides
an example of a Weyl field. Moreover R verifies the Bianchi identities,

D[O’ R)/S]aﬁ == 0

In this paper we will have to consider Weyl fields W which verify equations
of the form

D*Wepys = Jpys (4.8)

for some Weyl current J € Tg(N). It follows from (4.8) that

1
Da*WaﬁV(g = *Jﬁy(; = Eeygpa./ﬁpg. (49)

The following proposition follows immediately from definitions and (4.7).
Proposition 4.1. If W is a Weyl field and (4.8) is satisfied then
D[a Wy,g]a/g = €uops *J'ua/g. (4]0)
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4.2. Killing vector-fields and the Ernst potential. We assume now that
T is a Killing vector-field on N, i.e.

D, T + DgT, = 0. 4.11)
We define the 2-form,
F,p =D, Tg
and recall that F verifies the Ricci identity
D, F,p = T'R, 0, (4.12)

with R the curvature tensor of the spacetime. In view of the first Bianchi
identity for R we infer that,

Dy, Fopy =D, Fop + Do Fg, + DgFy = 0. (4.13)
Also, since we are in an Einstein vacuum spacetime,
DF,5 = 0. (4.14)
We now define the complex valued 2-form,
Fop = Fop + i Fup. (4.15)

Clearly, ¥ is self-dual solution of the Maxwell equations, i.e. £ * = (—i)F
and

Dy, Fop =0, DPFp=0. (4.16)
We define also the Ernst 1-form associated to the Killing vector-field T,
0, = 2T°%,, = D, (—-T°Ty) — i€,5, T’ D' T’ 4.17)
It is easy to check (see, for example, [25, Sect. 3]) that

D,o, —D,o, =0;
Dio, = —F% (4.18)
oot = g(T, T)F>.

Since d(o,dx") = 0 and the set M is simply connected we infer that
there exists a function o : M — C, called the Ernst potential, such that
o, = D,0,0 — 1 atinfinity along %y, and o = —T*T,,.

4.3. The Mars—Simon tensor. In the rest of this section we assume that
N € M is an open set with the property that

l1—0#0 inN. (4.19)
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We define the complex-valued self-dual Weyl tensor
i
ﬁaﬁuv = Raﬁ;w + Ee,uvpa Raﬂpa = Raﬁuv + i*Raﬁp,u- (420)

We define the tensor I € Tg N),

Lopuv = (Bau8py — Bav8pu + [ €apuv) /4 (4.21)
Clearly,
Lopw = — Ly = —Lapop = Luvap- (4.22)
On the other hand,
Loigys) = Lapys + Laysp + Laspy = %eaﬁy& (4.23)

Using the definition (4.21) we derive

*

1 .
afuy = EeuvpaIaﬁpa = (_l)Iaﬁ,uv- (424)

Thus I is a self-dual partially antisymmetric tensor. We can therefore
apply (4.5) and (4.22) to derive

1
ﬂaluaaﬁ + }T)Uluoaﬂ = Eguu?yaly&xﬂ- (425)
We observe also that
?WIaﬂ,w = Fup- (4.26)

Following [24], we define the tensor-field @ € Tg (N),

1
Quppn = (1 —0)! <}7,,,3}7w - gsfzzaﬁw). 4.27)

We show now that @ is a self-dual Weyl field on N.
Proposition 4.2. The tensor-field @ is a self-dual Weyl field, i.e.

&aﬂ/w = _@ﬁa/w = _(Qaﬂvu = @/Lvaﬁ;
@aﬁ;w + @a;wﬂ + @avﬂp, = 0;
gﬁv@aﬁuv =0,

and

1

Eeuvpa@aﬁpa = (_i)@aﬁ,uv-
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Proof. The identities

Qupv = Qo = —Quopopy = Qvap
follow immediately from the definition. To prove

Qv = Qopuv + Qg + Qg =0

it suffices to check, in view of the identity (4.23),

?&ﬂﬂu + ﬁ;},}‘;)ﬂ + Fo rvﬂp, = —€ofuv ° ?2- (428)

Since £ is a 2-form, the left-hand side of (4.28) is a 4-form on N (which
has dimension 4). Thus, for (4.28) it suffices to check

eaﬂﬂv(%ﬁ%v + %zu%ﬂ + %zv\%u) = _61.?2-

This follows since the left-hand side of the above equation is equal to
6Fp*F P = —6iF2.

We compute
ﬁv —1 T T ,3 1 a2 ,311
g @aﬂuv = (1 - U) faﬂfp. - gf g Iaﬁ;w =0.
Also
1 r‘-’ L7 1 a2 * .
Ee,uvpa@a = (1 - 0) fp,u 3 Iaﬁuv = (_l)@aﬂuv-
This completes the proof of the proposition. O

We define now the Mars—Simon tensor.
Definition 4.3. We define the self-dual Weyl field &,

$ =R+ 64Q. (4.29)

Remark 4.4. Since o = —T*T, < 0 on Sy, it follows from the definition
of the constant A, in Sect. 2 that R(1 — o) > 1/2 in a neighborhood
O, C M of So, for some €, < ¢ that depends only on Ag. In particular, the
tensor 4 is well defined in O, .

4.4. A covariant wave equation for §. Our main goal now is to show
that 4 verifies a covariant wave equation. We first calculate its spacetime
divergence D*8,p,,,. Clearly, it suffices to calculate D*@,g,,,. Recalling the
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definition of the 1-form o, = 2T"#,, and using the definition (4.27) we
compute

D,Quppr = (1 —0) 'D,Fop - Fiuv + (1 —0) ' Fop - D, Fpuy

1 —1y 2
— 5(1 —0) ' D,F7 - Topun

(4.30)
1
+ 1 —0)?0, (%ﬁ% — gsb'zzaﬂﬂv).
Using (4.12), (4.26), and R = 4 — 6@, we have
D,Fs=T"'R,ps=T"8,,,s —6-T'Q,
pJys Y8 Y8 Y8 4.31)

=-31-0)"0,F5+2(01 —0) ' F> T Lopys + T 800
Thus,

(1—0) " Fop - D, Frv= =31 —0) - 0, FopFpu

+2(1 — O')_Z?Z%ﬁTAIApuv + i (5)paﬁlwv
(4.32)

where
g](g)paﬁuv =(1- (7)_1 : %ﬁTASApuv-

Observe that, in view of (4.31) and (4.26)

D,F*=2D,F, F” = —4(1 —0) ' F?0, + 2T 8,,,sF . (4.33)
Thus

1 —1 2 4 —2g2
_5(1 - (7) Dp? . Iaﬂ/w = 5(1 - (7) F- UpIaﬂ;w + gZ(g)paﬁum
(4.34)

where,

2 —1 A %)
gZ(g)paﬁuv = _5(1 - (7) -T 5)»,0)/8? Iaﬁ,uv-
We combine (4.30), (4.32), and (4.34) to write

D,Qupur = (1 —0) 'D,Fap - Fruw — 2(1 — 0) 20, Fap Fpu
+2(1 — ) 2F2Fap T - Lippo + (1 — 0) 2 F 20, Luppun

+ gl (5)paﬂlw + gZ(g)paﬁ;w-
4.35)
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We are now ready to compute the divergence D?@g,,,,. Using (4.35) and
the Maxwell equations (4.16) we derive

D’ Qo = §' Bayr — 2(1 — 0) 20, F," F
+2(1 —0) 2F2F LT Lo pn + (1 — 0) 2 F 20P gy
g”(g)auv = gpﬁ(gl(/fg)paﬁp,u + gZ(/S)paﬁp.u)-
Using (4.2) and the definition of o, we derive,
21 —=0)2- 0, Fpp = =2(1 —0) 2 - 2T F , Fo Frn
1
=-2(1—-0)%.2T". ngﬂ - F,, (436)
= —(1 —0) *F°ToF.
Using (4.25), (4.26), and the definitions,
2(1 — o) 2F - Fo T Ly + (1 — 0) 2F - 0P Lopyun
=2(1 — o) *FX(F T Lipr + T FoP Topyun)
=2(1 — o) 2 F*TH(F" Lipr + F2' Tappuv) (4.37)
1
=2(1 —o) 2F?1T*. Egm?""’ L ooy
= (1 —0) 2F* T, F.
Thus, using (4.36) and (4.37), we derive,
Da&aalw = g//(g)a,uva
with
G 8y = (1 — 0) "T85, (F 8180 — (2/3) F " 1"0).

Since, according to the Bianchi identities, and the Einstein equations, we
have D? R g, = 0 we deduce the following.

Theorem 4.5. The Mars—Simon tensor § verifies,
Doy = F(8)ap- (4.38)
where,
F oy = —6(1 — 0) " T"8;5,5(F 8180 — (2/3)F " 1o’,).
As a consequence of the theorem we deduce from Proposition 4.1 and

the self-duality of 4 and ¢,

Dio8miep = —1€poun F o (). (4.39)
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In the following calculations the precise form of ¢ (4) is not important, we
only need to keep track of the fact that it is a multiple of §.

Definition 4.6. We denote by M(8) any k-tensor with the property that
there is a smooth tensor-field A such that

M(g)al...ak = 5/31.../34‘7%/31."/34(11...01/(' (440)

Similarly we denote by M (8, D) any k-tensor with the property that there
exist smooth tensor-fields A and 8B such that

‘M(g’ Dg)(xl...ak = 5/31.../34‘%/31‘“/34011...(11{ + D,BS 5/31.../343/31‘“/35011...(11{' (441)
We state the main result of this section.
Theorem 4.7. We have
Lg8 = M (S, D3S). (4.42)

Proof. The result follows easily from (4.38) and (4.39)
D*Supys = F(8)pys
Do 8upys = —i€p0apd” ,5(5)-
Indeed, differentiating once more the second equation we derive,
D°(Dy 8upys + DaBpoys + Dpdouys) = —i€p0apD’ G’ 5(8).

Thus, after commuting covariant derivatives and using the first equation we
derive,

Dg/saﬂy(s = CM(/S, D/S)aﬂyfs

as desired. O

5. Vanishing of § on the horizon

In this section we prove that the Mars—Simon tensor § vanishes on #TUH .

Proposition 5.1. The Mars—Simon tensor 8 vanishes along the horizon
HTUFH.

The rest of the section is concerned with the proof of Proposition 5.1.
Recall, see Remark 4.4, that the tensor § is well defined on Sy;. We will
use the notation in the appendix. Assume -/ is a null hypersurface (in our
case N = HT or N = # ) and let [ € T(N) denote a null vector-field
orthogonal to . The Lie bracket [X, Y] of any two vector-fields X, Y
tangent to JV is again tangent to N and therefore

gDxl,Y) —gDyl, X) = —g(, [X,Y]) =0 and
gD, X) = —g(, D;X) = 0.
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In particular we infer that along & V% vanishes identically and ®y is
symmetric.

Definition 5.2. Given a null hypersurface N and [ a fixed non-vanishing
null vector-field on it we define x(X,Y) = gDxl,Y), X, Y € T(N), the
null second fundamental form of N. We denote by tr x the trace’ of x
with respect to the induced metric and by X the traceless part of x, i.e.
X=Xx- %y tr x, with y the degenerate metric on N induced by g.

In view of the definitions (A.13), writing m = (e; +ie;)/ V2, with ey, e
an arbitrary horizontal orthonormal frame, we deduce that,

0= (11 + x2)/2=1try/2
U= (X1 — x22)/2 +ixi.

We now restrict our considerations to that of a non-expanding null
hypersurface. In other words we assume that 8 = tr x/2 vanishes identically
along V. In view of the null structure equation (A.21) and the vanishing
of & = Mg(m), we deduce that |9|> = 0 along N therefore ¥ = 0.
Therefore the full null second fundamental form of .V vanishes identically.
We now consider the null structure equation (A.19). Since &, 6, ¥ vanish
we deduce that W, (R) must vanish along . Similarly we deduce that
W(1)(R) vanishes along N from (A.29). Finally, we consider the Bianchi
equations with zero source J. From (A.41) we deduce that DW g, vanishes
identically along . Observe also that W, (R) is invariant under general
changes of the null pair (/, /) which keep / orthogonal to V. Indeed ¥ g, (R)
is always invariant under the scale transformations ' = fI,I’ = f~'I. On
the other hand if we keep / fixed and perform the general transformations
I'=1+Al+Bm+ Bm we easily find that \IJEO)(R) differs from W (R) by
a linear combination of W) (R) and W, (R).

We have thus proved the following.

Proposition 5.3. Let (I, 1) be a null pair in an open set N with [ orthogonal
to a non-expanding null hypersurface in N C N. Then & and Py vanish
identically on N. Moreover the curvature components W 2)(R) and ¥ 1,(R)
(or equivalently, a(R), B(R)) vanish along N and the invariant Vo, (R) (or
equivalently p(R + i *R)) is constant along the null generators.

We apply this proposition to the surfaces #* and #~ to establish the
following facts. Recall that R = R 4 i *R.

(1) The null second fundamental form x, respectively y, vanishes identi-
cally along ¢, respectively J¢~. B

(2) The null curvature components & = «(R) and B = B(R) (respectively
a(R), B(R)), vanish identically along F* (respectively 7).

7 The trace is well defined since x(X, 1) = y(X,1) = 0 for all X € T(N).
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(3) The null curvature component p({R) is invariant and constant along the
null generators of both A+ and F~.

(4) All null curvature components, except p(R), vanish along the bifurcate
sphere Sy. We also have y = x = 0 on Sp.

Consider an adapted null frame ey, e, e3 = [, ¢, = [ in O with [ tangent to
the null generators of #* and [ tangent to the null generators of #~. Thus,

g(lv l) - g(_lv_l) - 0’ g(lv_l) - _17 g(lv ea) == g(_lv ea) - Oa
gleq, ep) =8ap, a,b=1,2, €pp==¢(er,er,e3,€4) = 1.

We introduce the notation,
a,(F) =F(e, ), a,(F)=F(e.,D), p(F)=FUD. .

Observe that the null components «,(F), a,(F), p(F) completely deter-
mine the antisymmetric, self-dual tensor ¥ . Indeed, —iF34 = (*F )34 =
%634@37‘”’ = %eab}‘”b. Hence,

Fap = —i€app(F). (5.2)
We claim that o(F) vanishes on #* while o(F) vanishes on
a(F)=0 onHT, a(F)=0 onH . (5.3)

Indeed since g(T,[) = 0 on J* (see the assumption SBS) and the null
second fundamental form yx vanishes identically on F¢7,

F(e,, 1) = —g(T,D,l) = —x(T,e,) =0 on F.
On the other hand,

1
b3
Fuu = §€a4quW = €uF”” = —€uap3Fpa = 0.

Hence o, (F) = Fo4 = Fy4 +i*F,4 = 0 on HT. The proof of vanishing of
a(F) on H is similar. We infer that both «(F) and «(¥F) have to vanish
along the bifurcate sphere Sy. We also observe,

F?=F o, F =2F 1 Fy+ FCF,y = —4F; = —4p(F)* on S,

Since F? does not vanish on S, we infer that p(F) cannot vanish on S.
Consider now the Mars—Simon tensor (4.29). To show that the Weyl ten-

sor 4 vanishes along the U #¢~ it suffices to show that all its null compo-

nents (see appendix) a(48), B(8), p(8), «(8), B(8), relative to an arbitrary,

adapted, null frame (e, e, 1, 1), vanish along #* U J~. We first show that

a(§) =p8) =0 onH",  a) =S =0 onH . (54
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Indeed,
I, eq,l,e5) =0, T(es,l,1,1)=0, I 111])=—-1/4
Therefore along #*, where a(F), a(R), B(R) vanish,
a(8)ap = P($)a =0,
using the formula 4 = R + 6@Q. Similarly we infer that a($) = B =0
along .

We show now that p(4) vanishes on Sj. This is where we need the main
technical assumption (1.6) along Sy,

(1—o0)* = —4M*F2.
Differentiating it along Sy we find,
0=D,(F*1 -0 =(10-0)*DF>+4(1 —0) 'a,).
On the other hand, recalling formula (4.33)
D F*+4(1 —0) ' F20, = 2T 84,5 F 7.
We deduce that
T"8,,sF " =0 on Sp. (5.5

Recall T is tangent on Sy and can only vanish at a discrete set of points (see
assumption SBS in Subsect. 1.2). Therefore, at a point where g(T, T)!/2,
does not vanish we can introduce an orthonormal frame e, e; with T =
g(T, T)%e,.

We now expand the left-hand side of (5.5) using (5.2) while setting the
index a = 2,

0 =T"82,,F " = 2T" 8,234 F T 85000 F
= —2T" 81034 Fsu — iT 850006 p(F)
= —g(T.1)'*p(F) (281234 + i 81200 € ) = 4ig(T, )" p(F)p(8).
The last equality follows from (see (A.12))

81234 = —ip(8), Bioea = —€cap(8).

Therefore, at all points of Sy where T does not vanish we infer that p(4) = 0
(since p(F) cannot vanish on Sy, due to (1.6) and (1.7)). Since the set of
such points is dense in Sy we conclude that p(48) vanishes identically on the
bifurcate sphere Sy. We have thus proved the following.
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Proposition 5.4. The components a(8), B(8) vanish along FH+ while a(8),
B(8) vanish along ™. In addition, if (1.6) holds then p(8) also vanishes
on Sy.

To show that p(8), B(8), a($) vanish on J* we need to use the Bianchi
equations (see Theorem 4.5),

2
DU/Saalw = g(g)auv = _6(1 - O')_ITA/SApyS <%p8,}:8i - E}VV(SIap/w)-
(5.6)
Assume, without loss of generality, that the null generating vector-field / is

geodesic along #7, i.e. D;/ = 0. Since both B(8) = a(48) = 0 along F we
deduce?® directly that p($) must verify the equation,

Vip(8) = —F(8)a34. (5.7

To deduce that p(8) vanishes identically on #7 it only remains to verify
that g(8)434 vanishes on #*. Clearly

2
F(8)s3a = —6(1 —0) "T85 (ﬂp%cﬁ - 53”514‘)34)-

Observe that the only choice of the index p for which the expression inside
brackets does not vanish is p = 4. Thus

1
F(8)aza = —6(1 —0) ' T 8545 <J’r345§/5i + 8?”5)
= —6(1 —0) '"T"8434F54 — (1 — 0) " T 84,5 F 7.

Since «(4), B(8) vanish the only pair of indices 6 for which T’\5My5 does
not vanish is when either of the two indices is a 3 and the otheris a € {1, 2}.
Since a(F) = 0, it follows that §(8)434 vanishes identically as stated. Thus
p(8) is constant along generators and vanishes on Sy. We conclude that
p(8) vanishes identically on .

To show that B(4) also vanishes we derive a transport equation for it
along the generators of #*. In view of the vanishing of a(§), B(8), p(8)
we can directly deduce’ (see also appendix) it from (5.6),

ViB(8)a = F(8)4a3.

Thus, since B(4) vanishes on Sy, to deduce that it vanishes everywhere
on #* we only need to verify that J(4$)4,3 vanishes identically on J¢.

8 Alternatively we can use the null Bianchi identities of the appendix.
9 We also refer the reader to the appendix for the definition of the horizontal covariant
derivative V.
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Now,

2
g(5)4a3 = _6(1 - O')_ITA/SApyS (ﬂp858§ - §?y81’4pc13)

= —6(1 —0) '"T"8403Fa3 + 8(1 — 0) " T*85u Fis 1s 3
+4(1 — ) ' T 800eaF 1,05 + 81 — ) ' T 85 pu e F XL, 5.

Since a(4), B(4) and p(8) vanish, it follows that 84,3 = Sup34 = Supea =
Bapea = Bapac = 0, which gives J(8)443 = 0.

To show that a(4) also vanishes on J* we derive another transport
equation for it. Since all other components of 4 have already been shown
to vanish we easily derive, from (5.6),

Via(8)ap = = (8)azp- (5.8)

Since a(4) vanishes on Sy it only remains to check that J(4),3, vanishes
identically. This can be checked as before taking advantage of the cancella-
tions of all the other null components of §. Therefore § vanishes along the
entire event horizon.

6. Vanishing of 4§ in a neighborhood of the bifurcate sphere

LetO, = {x € O: |u_| < €,|uy| < €} as in Sect. 2. In this section we
show that the tensor 4 vanishes in a neighborhood of the bifurcate sphere S,
in E.

Proposition 6.1. There is ry = r;(Ag) > 0 such that

8§=0 in O, NE.

The rest of this section is concerned with the proof of Proposition 6.1.
Recall, see Remark 4.4, that the tensor 4§ is well defined and smooth on O,
for some €, = €,(Ag) € (0, ). Recall that we have

1

gLy, L) =0, gLy, L )=9Q> 5 in O,.
Moreover both L, L_ are orthogonal to the 2-surfaces S, ,, =
H,_ N FH,,. We choose, locally at any point p € §,_,,, an orthonor-
mal frame (L,)q=1 tangent to S, , . Thus, relative to the null frame
Li,L,,Ly=L_, Ly = L, the metric g takes the form,
a:8a, a:a:(), ’b:1s2
{g b by 8a3 = 8ad a 6.1)

g3 =8u=0, gu=~Q.
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Also, for the inverse metric,

ab:8ab as’s _ a4:O hb=1.2
{g . g =g . a : 62)

g33 — 844 — O, g34 — Q—l‘
We denote by O(1) any quantity with absolute value uniformly bounded

by a positive constant which depends only on A (in particular L, (2) =
O(l),x=1,2,3,4). In view of the definitions of 14 and L we have,

Li(ug) =Loue) =L (u-)=Li(uy) =0, L_(uy)=Li(u-)=KQ.

(6.3)
For € € (0, ¢y] we define the weight function in Oz,
he =€ '(uy +e)(u_ +e). (6.4)
Observe that,
Lithe) =€ 'y + R, Lyh) =€ '(u_+ o), 6.5)

L,h)=0, a=1,2.
Also, using (6.3) and (6.5)

(D%h)sy = O, (D*he),, = O(D),
(D*he),, =€'Q*+ 0(1), (D*h.) ,=0(), ab=12 (6.6
(D*h.),, = 0(1), (D*h.), =O), a=12.

Assume xy € S is a fixed point and define, using the coordinate chart
®* : By — Bi(xg), N* : Bi(x9) — [0, 00),

N (x) = (@)~ (). (6.7)

We state now the main Carleman estimate needed in the proof of Prop-
osition 6.1.

Lemma 6.2. Thereis € € (0, €;) sufficiently small and C ¢ sufficiently large
such that for any xo € So, any A > C, and any ¢ € Ci°(B10(x¢))

Mle @l 2 + lle D' lll 2 < CA™"2|e Oyt .. (6.8)
where f. = In(h, + €'2N*0), see definitions (6.4) and (6.7).

Proof. 1t is clear that B.io(xg) € O, for € sufficiently small (depending
only on the constant A), thus the weight f, is well defined in B.io(xg).
We apply Proposition 3.3 with V = 0. It is clear that €'>N*° is a negligible
perturbation, in the sense of (3.9), for € sufficiently small. It remains to prove
that there is €; = €;(Ag) > 0 such that the family of weights {hc}cc(,e))
satisfies conditions (3.6)—(3.8).
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Let C denote constants that may depend only on Ag. The definition (6.4)
easily gives hc(xo) = €, |D'h.| < C on B.uo(xo), and |D/h,| < Ce™" on
B.10(xp) for j = 2, 3, 4. Thus condition (3.6) is satisfied pr0V1ded € < c-!

Using (6.2), (6.5), (6.6), and Q2(xyp) = 1 we compute in the frame
Ly, Ly, L3, Ly

D% (x0)D 1 (x0) Do Dghe — €D Dyhe)(x0) =2+ €0(1) = 1
if €, is sufficiently small. Thus condition (3.7) is satisfied provided €, <
C 1

Assume now Y = Y%L, is a vector in T,,(M). We fix u = €,
compute, using (6.5), (6.6), and Q(xy) = 1,

12 and

YVP (ugep — DoDpho) (x0) + € 2| Y*Dyh|”
=u((YH? + >+ 2Y3Y4) 2¢7y3y4
+e (Y 4+ 0(1)Z(Y"‘)2

a=1
> (/DI + D+ (€ /21D + (V)
= (V)2 + @)+ () + (rH?
if €; is sufficiently small. We notice now that we can write ¥ = X“0, in
the coordinate frame 91, d;, 93, d4, and | X*| < C(|Y |4+ Y2+ Y3+ |Y4|)

for « = 1,2,3,4. Thus condition (3.8) is satisfied provided ¢, < C~!,
which completes the proof of the lemma. O

We prove now Proposition 6.1.

Proof of Proposition 6.1. In view of Lemma 6.2, there are constants € =
€(Ap) € (0,¢p) and C > 1 such that, for any xy € Sp, A > C and any
¢ € C°(Be(xo))

Me gl 2 + e[ D'|ll 2 < CA™ 2| e <Oy | o, (6.9)
where
fe=In(e ' (up + - +e) +€*N). (6.10)

The constant € will remain fixed in this proof. For simplicity of notation, we
replace the constants C, in (6.9) with C; since € is fixed, these constants may
depend only on the constant Ayg. We will show that § = 0 in B.o(x9) NE
for any xy € Sy. This suffices to prove the proposition.

We fix xo € Sp and, for (ji, ..., js) € {1,2,3, 4}*, we define using the
vector-fields 9, induced by the coordinate chart $*°
Gy = 3(0jys o5 0jy)- (6.11)

The functions ¢, j,) : Beo(xg) — C are smooth. Let n : R — [0, 1]
denote a smooth function supported in [1/2, 0o) and equal to 1 in [3/4, 00).
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For é € (0, 1] we define,

B iy = BGrin  1E - NQugu_/8) - (1 — n(N*°/€))

B (6.12)
= Pjrja) * Mose-

Clearly, q&fjf i € Cy° (Beo(xg) NE). We would like to apply the inequal-
ity (6.9) to the functions (/)fjf and then let § — 0 and A — o0 (in this
order).

Using the definition (6.12), we have

...ja)’

S, ~ ~ ~
Ded(i,. o = se - Ogiir.cjy + 2Da(i..jo) - D¥s.e + Br..ojoy - Dglis.e-

Using the Carleman inequality (6.9), for any (ji, ..., js) € {1, 2,3, 4}* we
have

e Tabiio L 1 Dl
< CA7V2 e 55, e o | 12
+ 6;[”eikfE : Da¢(j1---j4)Daﬁ5»E ” L?
+ ||€7)‘fe ‘¢(j]‘.‘j4)(“:|g7745,€| + |D1ﬁ8»6|) ” LZ]’

(6.13)

for any % > C. We estimate now |Ug@(j,...j |- Using Theorem 4.7 and the
definition (4.41), in B.10(xo) we estimate pointwise

Deiiinl <M D" (1D uran| + 1bar..0)). (6.14)

St

for some large constant M. We add inequalities (6.13) over (ji, ..., ji) €
{1,2,3,4}* The key observation is that, in view of (6.14), the first term in
the right-hand side of (6.13) can be absorbed into the left-hand side for A
sufficiently large. Thus, for any A sufficiently large and é € (0, 1],

A Z Hei)hfE "7\748,e¢(j1~~j4) HL2

=C Z (e - Dagpjy.. oD Msce) 1 (6.15)

Jlsees J4
+ ||€7)‘fe @i (10756 | + |D]7745,€|) ||L2]‘

We would like to let § — 0 in (6.15). For this, we observe first that the
functions Dy, jyD*%s.e and (|Cg7s | + |D'%s.¢|) vanish outside the set
A; UB,, where

As ={x € Bao(xg) NE 1 u,(x)u_(x) € (8/2,9)};
B. = {x € B.o(xo) NE : N € (€772, )}
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In addition, since ¢(j, ;) = 0 on O, N [§(I~ (M@ D)) U §(I+MD))]
(see Sect. 5), it follows from (2.7) and (2.8) that there are smooth functions
¢ i\ - Oc, = C such that

Pljronju) = Ut '¢/(j1.‘.j4) in O,. (6.16)
We show now that
Dghs.el + | D'Ts.e| < Cp, + (1/8)14,). (6.17)

The inequality for |D177“5,€| follows directly from the definition (6.12). Also,
using again the definition,

ID“Ds.e| < [DDo(Ig - n(uyu_/8))| - (1 — n(N* /™))
+ C(1p, + (1/8)14,).
Thus, for (6.17), it suffices to prove that

Lgng,1000 * DD (n(usu_/8)] < C/8 - 1y, (6.18)
Since u, u_, n are smooth functions, for (6.18) it suffices to prove that
872D (uyu_)Dy(uiu_)| < C/8 in As, (6.19)
which follows from (6.3).
We show now that
IDodjy. oD Ts.e| < 5¢/(IB€ + 14a,), (6.20)

where the constant 5¢/ depends on the smooth functions ¢’ ;, .., defined

in (6.16). Using the formula (6.16), this follows easily from (6.19).
It follows from (6.16), (6.17), and (6.20) that

Doty oD Tse| + 1005 ul (1075, | + | D'Tis.e|) < Cy (1g, + 1a,).

Since lims_,¢ [[1a;ll,2 = 0, we can let § — 0 in (6.15) to conclude that

A Z ||87)Lf6 ' 13610/2(x0)ﬁE : ¢(j1--.j4) ||L2 < 5¢, e*)\fe . 1B€
Tt Ja

6.21)

L2
for any A sufficiently large. Finally, using the definition (6.10), we observe
that

. _ _ 32 1
inf e Me > g MEFET/2 5 gyp et e
B_40(x0)NE B

It follows from (6.21) that

Y M aoonE - Gi.iollz < Collls, ll2
Jlsees J4
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for any A sufficiently large. We let A — oo to conclude that ¢, j,) = 0 in
B.0(xg) N E, which completes the proof of the proposition. O

7. Consequences of the vanishing of §

We assume in this section that N C Mis a open set, S0 € N, NNE is
connected, and

l1—0#0 inN;
Bapuv = Rapuy +6(1 —0) ™ (FoapFw — 3F ?Tupy) =0 inNNE.
(7.1)

It follows from the assumption (1.6), and the identities (4.33) and (7.1)
(which give D,(F2(1 —0)~*) = 0in NN E) that

—AM?’F*=(1-0)* inNNE. (7.2)
We define the smooth function P = y + iz : N — C,
P=y+iz=(1—-0)"". (7.3)

Since —F?/4 = (4MP?)~2 # 0 (see (7.2)), there are null vector-fields
1, 1, locally around every point in N, such that

Fopl® = GMP) Uy, Fopl’ = —(=4MPH)7'l,, and
I“I =—1 inNNE.

-

(7.4)

We fix a complex-valued null vector-field m on N such that (m,m,[,]) =
(e1, ez, €3, e4) is a complex null tetrad, see the definitions in Subsect. A.2.
We may also assume that (m, m, [, [) has positive orientation, i.e.

Eappym®mP Il = i.

We prove now some identities. Most of these identities, with the ex-
ception of Proposition 7.2 and the computation of the Hessian of y in
Lemma 7.3, were derived by Mars [24]; for the sake of completeness
we rederive them in our notation. It follows from (7.4) and (7.2) that,
inNNE,

%zﬁ (_la_lﬁ + lﬂ_la - ieaﬁ,uvlﬂ_lv)- (7.5)

~ AMP?

Using (7.5), we compute easily

Fa=Fp=Fn=F,=0 and Fi3=5 =1/GMP*. (7.6)
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Using (7.1) and (7.6) we compute
Ru141 = Rapar =0 thus \IJ(Z)(R) =0;

R3131 = R332 =0 thus Y (R) =0;
Riaza = Roaz3a =0 thus V) (R) = 0;

7.7
Ri343 = Rozaz3 =0 thus  Y()(R) = 0;
R34 = YYYIER R34 =0 thus Y(R) = S
We use now the first 4 Bianchi identities (A.37)—(A.40) to conclude that
§=£=09=9=0 inNNE. (7.8)
The remaining 4 Bianchi identities, (A.41)-(A.44) give
DP =0P, DP=0P, §P=nP, &P =7P. (7.9)

We analyze now the functions y and z. By contracting (7.5) with 2T
and using 2T* %4 = oy = Dgo we derive

1 - —1 QgL
Dpy = 2 [=(T)ly + (T°0,)lp]  and Dz = - TN

(7.10)
In particular,
§y=8y=Dz=Dz=0. (7.11)
Using (7.9) it follows that
Dy =06P, Dy=0P, 6z=—inP, 6&z=—ifP. (7.12)

In particular 6P = OP, 9P = P, —nP = 1713, and, using again (7.10),
T°l, = 2MOP, T°l, = —2MOP. (7.13)
Using (7.11) and (7.12) we rewrite (7.10) in the form
Dgy = —0Ply — OPly, Dz = —ifPmy — inPig. (7.14)
A direct computation using the definition of P shows that

D,oD% TT,
D, PD°P = -— .
(1 — o) 4M2

The real part of this identity and —T*T, = Ho give

I i y
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Using (7.14) this gives
8M>(ni — 09) P°P = y* — y + 2°. (7.16)

Lemma 7.1. There is a constant B € [0, 00) such that
D, D" B2 nNNE (7.17)
o =— in . .
TG+
In addition 7> < Bin NNE.

Proof. For (7.17) it suffices to prove that
AM?*PP - DyzD% + 7> = B. (7.18)
Let Z = 4M_2P1B - DyzD%z. To show D(Z + z?) = 0 we use the formula
Z = 8M*P>P*nij (which follows from (7.14) and —nP = nP), the identi-
ties (7.9), 6P = Qﬁ, and the Ricci equation (see (A.24), (7.7), and (7.8))
Dn=0(n—n — Tan.
Indeed,

5 » »= _(2DP 2DP Dn Dpy
DZ+7)=8MPPum| —+—=—+—+—=
—\ P P om0
=8M’P°P*n7[20 +20 — 0(P/P + 1) — I'13
—0(P/P + 1) — T3]
= 0.

To show D(Z + z?) = 0 we use the formula Z = 8M2P2P72nﬁ_(ivhich
follows from (7.14) and —nP = nP), the identities (7.9), 6P = 6P, and
the Ricci equation (see (A.23), (7.7), and (7.8))

Dn =06(n—n) — ian.
Indeed,
—, _(2DP 2DP Dn Dj
D(Z+7) = 8M2P2P2nﬁ(— et Y Tn>
n
= SM*P*P* (20 4+ 20 — O(P/P + 1) — o4
—O(P/P+1) — T4l
= 0.
Finally, to show that §(Z + z%) = 0 we use the formula

Z 4+ 722 = —8M*P*P%*09 — y* + y,
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which follows from (7.16) and 8P = 6P, the identities (7.9), 6P = 6P,
and the Ricci equations (see (A.29), (A.30), (7.7), and (7.8))

80 = —20 — (6 — 0);
80 = ¢ —Q(Q—é)-

Indeed,
5z +2) = —sm2pPop( L+ 2 28 2p
“= \o TP TP
= —8M’P?P?09[—¢ — n(1l — P/P) + ¢
— (1 = P/P)+2n+ 21
=0.
This completes the proof of (7.18). O

It follows from (7.17) and (7.15) that

2
y —=y+ B
D,yD%y = ————. 7.19
Y= oG 1 2 (7.19)
Using (7.13) and (7.14), it follows that
_ 2 B T%l,) - (Tl

= - 8M2(y2+z2) - 4M?

We express also the vector T in the complex null tetrad (m,m,l,1[).
Using (7.5) and (7.10),

Ty = (F2/4) 7 F TP Ty, = —(TPLy)ly — (TPlg)l, — 2M €4, DP 21" 1.
(7.21)

We prove now a uniform bound on the gradient of the function y.

Proposition 7.2. There is a constant C=C (Ag) that depends only on A
such that

ID'y| <C inN. (7.22)

Proof. For p € ®*(B)), xo € X, the gradient |D'y| is defined using the
coordinate chart ®, i.e.

4
ID'yI(p) = 19;((p)I.
j=1

In view of the definition y = R[(1 — 0)~'] and the smoothness of o, the
bound (7.22) is clear if |1 — o(p)| > 1/4. Assume that |1 — o(p)| < 1/4.
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Since
R —0)=1+g(T,T),

it follows that g(T, T)(p) < —3/4. In particular, p € N N E. We define the
vector-field,

Y = g*%8,ydp. (7.23)
In view of (7.19) and T(y) = 0, we have

y—y+B

PGy =C wmd sTN=TG)=0 ap.

1g(Y, ¥)| =‘

Since g(T, T) < —3/4 it follows that Y), is a space-like vector with norm

(as induced by the coordinate chart ®*°) dominated by C. The bound (7.22)
follows since d;y = g(¥, 9;). O

7.1. The connection coefficients and the Hessian of y. Assume now that
N’ is a subset of N N E with the property that

v —y+B>0 inN.
Using (7.20), we can normalize the vector / such that
Tl, =2M inN'. (7.24)
Thus, using (7.13) and (7.20), we compute

1 yY-y+B

9=1/P and = -W/P=—-—. -7
/ - / P 8M*(y*+2%)

inN. (7.25)

Using the null structure equation (A.21) (see also (7.8))
DO = —60% — wb),
together with (7.9) and (7.25), we compute
w=0 inN. (7.26)
Using the null structure equation (A.22) (see also (7.8))
D =6~ wb,
together with (7.11), (7.12), and (7.25), we compute

v =22 =2y(B— 7%
8M2(y2 + ZZ)Z

inN. (7.27)

Q:
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We can express w in the form,

V-2 -2yB-2)

w=HW, H= . 7.28
B (= y+B(*+2%) 728
Using the null structure equation (A.29) (see also (7.8) and (7.7))
80 = —t0 —n(6 —0),
together with (7.9) and (7.25), we compute
np N
{=—==—-n inN. (7.29)
P "
Using (7.16) and (7.25),
B—7? nP
2 = _ ! : /
<] —ﬂﬂ—m and 77——? imN. (7.30)
Finally, using (7.14), we rewrite (7.21) in the form
T=-2MWl+1—¢Pmn—¢Pm) inN. (7.31)

We summarize these computations in the first part of the following lemma.

Lemma 7.3. Let N be the set defined by (7.1) and N’ the subset of NN E
for which y*> — y 4+ B > 0, with B the constant of Lemma 7.1. In N’ we have,
with P =y +iz=(1—0)",

f=t=0=0=w=0

v =22 =2y(B—2%) v —z22=2y(B—2%)

w=HW = , = ,
- 8M?(y? + z2)? V—y+BG*+2%)

2

y—y+B 2
W=—-—_—<-"" 50, < B,

— ) B—z2 P

0=1/p, 0=-W/P, [{I'=——F7F"—5. N1=C(5, n=-4

- 8M2(y2 +Z2)2’ P’
Sy=08y=Dz=Dz=0, Dy=1, Dy=-W, D,yD%y =2W.

We also have, for the Hessian of y,

(D?y)as = (D*y)33 = 0, (D?y)s3 = (D?y)3g = —WH
D?y)a; = D2y = ¢, (D?y)s = D?y)a = ¢ (732)
(D%y)31 = (D*y)i3 = W, D?y)3 = (D?y)3 =W '

Dy = D)o = Wiy, (D) = D*)n =0.
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Proof. 1t only remains to prove formulas in (7.32). These formulas follow
easily using (Dzy)aﬁ = eq(egy) — I'*gue, (), the first part of the lemma,
and the table (A.16). |

8. The main bootstrap argument

In this section we show that
l—0#0 and 4=0 onZXyNE. (8.1)

In view of our assumption AF, this suffices to show that § = 0 in E. Our
main theorem is then consequence of the main result of Mars in [24].

We show first that the function y is constant on #+ U #~ and increases
inE.

Lemma 8.1. There is a constant ys, € (1/2, 1] such that
y=ys, onH" UH". (8.2)

In addition B € [0, 1/4), where B is the constant in Lemma 7.1. Finally,
for sufficiently small € = €(Agy) > 0,

y > ys, + 6*]u+u, on O.NE, (8.3)
where Q. are the open sets defined in Sect. 2, and cC=C (Ap) > 0.

Proof. Let N = O,, denote the set constructed in Proposition 6.1. Since
4 = 0in N, we can apply the computations of the previous section. It follows
from (5.3) that if / is tangent to the null generators of # then F,5l" = CI,

for some scalar C. Thus T is parallel to either / or [ on #*. Similarly, the null
generator of #~ is also parallel to either / or [ on #~. Thus the vector m
is tangent to the bifurcate sphere Sj. Using 6y = 0, see (7.11), it follows
that y is constant on Sy. Using (7.12) and Proposition 5.3 it follows that y is
constant on 1 U J~, which gives (8.2). Also, using (7.20) on Sy and the
fact that T is tangent to Sy, it follows that

yéo—ygo—i-B:O.

Since B € [0, c0) and ys, > 1/2 (using assumption (1.7)), it follows that
B €10, 1/4) and

14++1—-4B
2

To prove (8.3) we consider the open sets O, and the functions uy :
O. — R defined in Sect. 2. It follows from (8.2) combined with (2.7)
and (2.8) that

Vs = e (1/2,1].

Y =DYs + uyu_ - ylv (84)



On the uniqueness of smooth, stationary black holes in vacuum 81

for some smooth function y’ : O, — R, with |D'y| < C. The identities
P=(1-0"",DDo = —F> D,0D'0 = T*T, - F> = —No - F?
(see (4.18)), and F2 = —(1 — 0)*/(4M?) (see (7.2)) show that,

D*D,P = (1 —0) °D"D,0 +2(1 — 0) "D oD,0

1 2P —1
=——0-0)(1+456)= —.
nel U= rE
Therefore,
2y —1
D'D,y = (8.5)

We substitute y = ys, + uju_ -y’ (see (8.4)) and evaluate on Sy
2ys, — 1
4M2 (v, + 2)

Since ys, > 1/2+ C it follows that y > C'on So. Thus, for e € (0, ry)
sufficiently small,

=D'D,(ys, +usu_-y) =2D"(u)D,(u-) -y =4y

y>ys, + 6_1u+u, inO.NE,
as desired. |
We define the set
Y, ={xe ZoNE:ox) #1}.

Clearly, X is an open subset of ¥, N E which contains a neighborhood
of Sy in Xy N E. We define the function (which agrees with the function y
defined earlier on open sets)

y:X)— R, yx)=R1-0)""]

For any R > yg, let Vg = {x € X{ : y(x) < R} and Uy the unique
connected component of Vg whose closure in ¥, contains Sy (this unique
connected component exists since y(x) = ys, < R on Sp). We prove now
the first step in our bootstrap argument.

grop%ition 8.2. Thereis areal number Ry > ys,+ c !, for some constant
C = C(Ap) > 0, such that 8 = 0in Ug,.

Proof. With € as in Lemma 8.1, it follows from Proposition 6.1 that 8 = 0
in O, NE. Also, since u, /u_ +u_J/u, < Ayin Xy NEN QO it follows
from (8.3) that

Y—Ys, € [6*] (uz+ + uz), G(Lti + u%)] in Xy NENO,.

Thus, for R, sufficiently close to ys,, the set U, is included in O, and the
proposition follows. O
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With R; as in Proposition 8.2, the main result in this section is the
following:

Proposition 8.3. For any R, > R; we have 8 = 0 in Ug,.

The proof of Proposition 8.3, which will be completed in Subsect. 8.2,
is done by induction. In view of Proposition 8.2, we may assume that the
claims in Proposition 8.3 hold for some value R, > R;. We therefore make
the following induction hypothesis:

Induction hypothesis. For a fixed R, > R; the tensor § vanishes on the
set Ug,, which is the unique connected component of the set Vg, = {x €
Yo NE: y(x) < Ry, 0(x) # 1} whose closure in X contains the bifurcate
sphere So.

To complete the proof of the proposition we have to advance these claims
for R’2 = R, + 1/, where ' > 0 depends only on the constants A, AC i
(here Ag—1 = A, with € = C 1 see (2.9) for the definition of A,), and R,
(as before, the constants C may depend only on Ap). In the rest of this
section we let C r, denote various constants in [1, co) that may depend only
on Ay, Ag-1, and R,. It is important that such constants do not depend on
other parameters, such as the point xo € 8x,~g(Ug,) chosen below.

Assume x( € 8x,ng(Ug,) is a point on the boundary of Ug, in Xy N E.
Clearly,

y(x0) = R

Thus |1 — o(xo)| = (R3 + z(x0)?)~!/2. Since 1 — o is a smooth function
on M and 2(x0)?> < B < 1/4 (see Lemma 7.3), there is ry =1y(Ag, Ry) > 0
such that |1 — o(x)| € (1/(2R»),2/R,) in B, 2(xo) Thus the function

y:By(xo) = R, y(x) =R —ox)'],

is well defined; observe that, with 9; defined according to the coordinate
charts defined in Subsect. 2.2,

sup (Iy(x)| + D' y@)| + ...+ |D*y(x)]) < Cg,. (8.6)

XEBr/(xO)

By choosing r; sufficiently small it follows from y(x¢) = R, and (8.6) that
y(x) € ((ys, + R1)/2,2R,) forany x € By (xo). (8.7)

In view of (2.9) there is §, > 51;2] small'® such that the set (=65, §,) X
(Bré (x0) N Xp) is diffeomorphic to the set U|t|< 5 <I>,(B,§ (x0) N Xp). We let

10 The constants r} and 8, are fixed in this paragraph such that r/, 8> < 1. We later fix the
constants rp < min(r}, 87) (Lemma 8.4), r3 < ry (Proposition 8.5), and " <« r3 (proof of

Proposition 8.3). All of these constants are bounded from below by some constant 5,;21.
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0: U|I|< 5, P1(By;(x0) N Zo) — By (x0) N T denote the induced smooth
projection which takes every point ®,(x) into x.
We now define the connected open set of M, which we denote by Ng,,

Ny, = connected component of [(U o, (U Rz)) U O,l] NM

8.8
containing U, , 1eR (8:8)

where r; is as in Proposition 6.1. Since T is a Killing vector-field, L£L14 = 0
in M and T(1 — o) = 0. In view of our induction hypothesis 4 = 0 in U,
and T does not vanish in E; it follows that

I -0 #0inNg, and 4 =0inNg, NE.
Thus the computations in Sect. 7 can be applied in the open set N, .

Lemma 8.4. With xy € 8x,ne(Ug,) as before, there is ry € (0,r}] such
that

{x € B, (x0) : y(x) < R} € | @:(Ugy). (8.9)

[t]<d2

Proof. In view of (7.19),

Y —y+B

D“yDay = 74M2(y2 n ZZ)

in NRQ.

Thus, if rj < Cp' is sufficiently small then D*yD,y > Cg' in By (xo).
It follows that there exists r, = r(Ag, Xg_l, R3) > 0 and an open set B/,
B, (x0) € B C B,y (xp), such that the set {x € B : y(x) < Ry} is
connected. Let Q : B’ — B, (x0) N Xy denote the projection defined above.
Theset Q({x € B’ : y(x) < Ry}) C Bré (xp) N X is connected and contains

the set {x € B'N Xy : y(x) < Ry}. Since y(Q(x)) = y(x), it follows from
the definition of Ug, (as a connected component of the set Vg, ) that

O({x € B': y(x) < R2}) € Ug,.
The claim (8.9) follows. |

We define now N’ = Ng, N B,,(xo). Since y* —y + B > 5,;21 in N,
the calculations following (7.24) in the previous sections are also applicable
in N'. Recall the function H defined in (7.28),

Y =2 =2y(B -2
(V= y+ B+

Since B € [0, 1/4) (see Lemma 8.1) and y > ys, + Cp! > 1/2 4+ Cpl, it
follows that H > 5,}21 in N'.
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8.1. Vanishing of 5 is a neighborhood of xo. Assume xy € x,nr(Ur,)
is as before, and r, > 0 is constructed as in Lemma 8.4. We show now that
the tensor 4 vanishes in a neighborhood of x.

Proposition 8.5. There is r; = r3(A0,;14571, Ry) € (0,7rp) such that
8 =0in B, (xo).

As in Sect. 6, the main ingredient needed to prove Proposition 8.5 is
a Carleman inequality. We define the smooth function N* : ®*(B;) =
Bi(xp) — [0, 00)

N™(x) = [(@™) " (x)|%.

Lemma 8.6. There is € € (0, rp] sufficiently small and C. sufficiently large
such that for any A > C. and any ¢ € Ci°(Bo(xp))

Mle ™l 2 + lle | D ¢l .2

~ 3 =172 = fe —6 ,—*fe (8.10)
< Ch™' P e Oggl| 2 + € Clle T () 2,
where, with Ry = y(x),
fe=In[y— Ry + e+ €2N"]. (8.11)

Proof. We will use the notation C R, tO denots various constants in [1, o0)
that may depend only on the constants Aj, Az-1, and R,. We would like
to apply Proposition 3.3 with V =T, h = y — R, + € and e, = €'!>N¥0,
The condition (3.9) for the negligible perturbation e, is clearly satisfied
if € is sufficiently small. It remains to show that there is €; sufficiently small
such that the family of weights {h}cc(.¢,) satisfies the pseudo-convexity
conditions (3.6)—(3.8).
_ Clearly, he(xg) = € and T(h¢)(xg) = 0 since T(0) = 0. Also |D/y| <
Cg, for j = 1,2,3,4 in B,,(xp), see (8.6), thus condition (3.6) is satisfied
if € is sufficiently small.

To prove (3.7) and (3.8) we use the complex null tetrad [ = ey, [ = e3,
m = e;,m = ep,normalized asin (7.24). WithD,) = D, , using Lemma 7.3
and the definition 2, = y — R, + € we have

Dyhe =Doyhe =0, Dahe =W, Duhe =1, (8.12)
and, using alson = ¢ g,
DyDwhe = DiDihe =0, DyD@)he = D@Dwhe = —WH
DyDmhe = DyDwhe =&, DyDphe = Doy)Duyhe = ¢
D Dyhe =D)Dahe = Weg,  DeDhe =DaDahe = Wi g
D)Doyhe = DyDoyhe = W% Dy)Dayhe = DyDyhe = 0,
(8.13)
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where all the functions are evaluated at x,. Thus
D*h DPh (Dyh Dsh, — eDyDgh,) = 4W? — 2eW?H,

which is bounded from below by ef if €; is sufficiently small, since W(x() >
CE; and |H(xo)| < Cg,. The condition (3.7) is therefore satisfied.

We prove now condition (3.8) for a vector X = XWe; + )Wez +
Yes + Zes, Y, Z € R, XV e C. Recall, see (7.31),

T/(2M) = { Pe; + { Pe, — e3 — Wey.
Thus, using also (8.12)
e 2(|X“T,|” + | X*Dyh.|*)
= 2(Z—-WY)2 4+ 24M*(PXD +TPXD + YW + 2)*  (8.14)
> (€72/20(Z — WY)> + (€ ' /2)(¢ PXDV + T PXD 4+ 2YW)?
for € sufficiently small. Using (8.13)

XX (j1gap — DoDghe)

— 2R,W
=2XOxXD( 1 —
TRy

—20XV[Z + WY(P/P)] - 20X(D[Z + WY(P/P)].

) +2YZ(—p + WH)

Let L = ¢PXD 4+ 7PXD. We write Z = WY + Z — WY, and then
L = -2WY + L + 2WY, and use

1+(P/P)="P 2R 1+ (P/P)=P 2R
R34 R34
to rewrite

XX (ugup — DoDphe)

— 2R,W
=2XDxDO(y — +2Y2 (—Wu + W?H
(M R+ Z2> (=Wu )
4R M _ 27y
— WY L+ (Z— WY)[2Y(—p + WH) — 22X — 22X D]
Ry +z
— 2R,W 4R, W?
=2XD x4y — +2Y* —Wu + W?H +
(M R; + z2> o R + 72
R wy (L +2WY)
R+ 22

+(Z = WY)[2Y(—p + WH) — 22X — 27X D], (8.15)
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We set now 1 = 3R,W/(R3 + z%) and combine (8.14) and (8.15). Since
H(xg) > 0 it follows that

XOXP (ugap — DaDphe) + € 2(|X“To|” + | XDohc|)

RW

> (€72/2)(Z — WY)? + (671 J2)(L +2YW)? + 2|)(<1>|2R227Jr2
B é

R,W?

R34 22

> (€ 2/4)(Z — WY)? + (e ' /4) (L +2YW)?
RyW R,W?
d 2 + Y2 22

Ry +z? Ry + 72

+ 272 — Cr,(1Z = WY| + |L +WYD(Y| + XD

+IXOP

if € is sufficiently small, since W > 5,;21. It follows that

XOXP (1ugos — DDpho) + € (| X T |* + | X“Dyhc[)
> Cp, (2 + IXVP + 17,

thus the condition (3.8) is satisfied for €; sufficiently small. This completes
the proof of the lemma. O

We prove now Proposition 8.1.

Proof of Proposition 8.1. We use the Carleman estimate in Lemma 8.6 and
Lemma 8.4. In view of Lemma 8.6, there are constants € € (0, ] and
Ce > 1 such that for any A > C, and any ¢ € C;°(B.0(xp)),

Mle el 2 + lle | D'l .2 @16
< Ca™ P e M Tgg|| o + € Clle T (@) 2,

where
fe=In[y— Ry +e+e?N"]. (8.17)
The constant € will remain fixed in this proof. For simplicity of notation,

we replace the constants C, with Cg,; since € is fixed, these constants may

depend only on the constants Ay, Ag-1, and R,. We will show that § = 0
in the set B.ioo = B.100(xp).
In view of Theorem 4.7 and the fact that T is a Killing vector-field

{Dggal'--% = 5/.‘31---/.‘54"4"/3]“'/340!1---014 + Dﬁs/sﬂl---ﬂ4£ﬁ]mﬁSal--.M; (8.18)

L1848 =0,

in B.10(xp), for some smooth tensor-fields + and 8. Also, using Lemma 8.4
and the fact that 4 vanishes in Ug, (the bootstrap assumption),

8 =0 in{x € B.o(xp) : y(x) < Rp}. (8.19)
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As in the proof of Proposition 6.1, for (ji,..., js) € {1, 2,3, 4)* we
define, using the coordinate chart &,
Bijr...jy = 805 -5 9j)-

The functions ¢y, j,) : Beo(xg) — C are smooth. Let n : R — [0, 1]
denote a smooth function supported in [1/2, co) and equal to 1 in [3/4, 00).
We define

¢(€j1...j4) = ¢(j1---j4) (1= n(N(X)/€40)) = ¢(j1...j4) : Fﬁe-

Clearly, ) € Cy°(Bo(xo)) and

Gt
Oed(, i = Te - Ogiir i) + 2Daijy _juy - DT + b1y - Oglie
T(¢5,. i) = Te - T@1jn) + Bijr.jay - TG

Using the Carleman inequality (8.16), for any (ji, ..., jis) € {1,2,3,4}*

we have
N R A P e A o |
< Cr2 ™ P e B 12 + Crole ™ - TT @i |12

+ CN‘RZ[He*kﬁ - Dotpijy..inD T2
+ |75 - ¢, (10877l + | D'Ae) | 2] (8.20)

for any A > 6R2. Using the identities in (8.18), in B.i0(xy) we estimate
pointwise

{|Dg¢(j|.‘.j4)| = Cjz Zl} ,,,,, Iy (|Dl¢(11ml4)| + |¢(l|‘.‘l4)|); (8.21)

.....

We add up the inequalities (8.20) over (i, ..., js) € {1,2, 3, 4}*. The key
observation is that, in view of (8.21), the first two terms in the right-hand
side can be absorbed into the left-hand side for A sufficiently large. Thus,
for any A > Ckg,

A Z “e_k‘ﬁ 'ﬁ6¢(j1~~j4)HL2
J1

,,,,, Ja

~ >

<Cr Y [le Detijr..soD T 2 (8.22)

JiseesJa
+ [le - b (10g7 + | D7) | 2]

Using the hypothesis (8.19) and the definition of the function 7., we
have

Doty ioD %] + b, ...joy (I0g7e | + | D'7e])

<Cg,- l{xeBelo(xo):y(x)sz and N(x)>e%0}-
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Using the definition (8.17), we observe also that
inf et > g™ 5 sup e e,
Betoo {x€B 10(x0):y(x)> Ry and N(x)>¢%0}
It follows from these last two inequalities and (8.22) that
A Z ”186100 '¢(j1~~j4)||L2 = CRz Z ||1{xeB€10(xo):y(x)zR2 and N(x)zem}”sz
JseeJa Jlsews J4
for any A > C ®,. The proposition follows by letting A — oo. O

8.2. Proof of Proposition 8.3 and the main theorem. In this subsection
we complete the proof of the main theorem.

Proof of Proposition 8.3. In view of Proposition 8.5, the tensor § vanishes
in the connected open set N' = Ng, U (Ux0 -t B, (xp)). It remains

to show that for some r’ < r; we have

uR2+’J g uRZ U < U Gr;/é(x0)>,
X0€855nE(UR,) (8.23)

G,(x0) = {x € B,(x0) N Zp : y(x) < Ry + 7'},

where C is sufficiently large so that,

U Gew)s( U Gutw) 624

x0€835nE(UR,) X0€85,nE(UR,)

with the bars denoting the closures in X,. We observe that such a constant
exists in view of the fact that §5,nr (U, ) is compact and the function y tends
to infinity in the asymptotic region of X (in view of our assumption AF).

Assume, by contradiction, that (8.23) does not hold, thus there exists
P € Ug,+~ Which does not belong in the open set (in X) in the right-hand
side of (8.23). Let y : [0, 1] — Ug,+~ U So denote a smooth curve such
that (0) € Sy and y(1) = p. Let p’ = y(¢') denote the first point on this
curve which is not in the open set in the right-hand side of (8.23). Clearly,
p’ does not belong to the closure of Ug,, thus

re |J G,eto.

x0€85)nE(UR,)
In view of (8.24) we infer that, for some x¢ € §x,ng(UR,).
P e{x € By plxg) Ny y(x) < Ry +7'}. (8.25)

Recall our smooth vector-field Y = g*# 9, ydg, see (7.23) and discussion
following it, with the property that g(Y, Y) > C,;zl in B, (xo). We consider
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the integral curve starting from the point p’ and flowing (backwards) a short
distance Cy! r, (much smaller than r3) along Y, and project this integral
curve to X using the smooth projection Q : U|t|< 5 D, (B, (x0) N Zp) —
B, (xp) N Xo. The resulting curve is a smooth curve in B, (xp) N Xo; if 7’
sufficiently small then this curve contains a point p” such that y(p”) < R,.
In view of Lemma 8.4, p” € Ug,, thus there is a point p”’ € &x)rg(Ur,)
on the curve joining p" and p”. Then p’ € B,, ,&(p""), which gives a contra-
diction. O

To complete the proof of the main theorem we use Propositions 8.3
and 7.2. Using Proposition 8.3, it follows that the tensor 4§ vanishes in the
connected component of the set X, whose closure in X contains Sy. Assume
(ZoNE)\ X, #Pandlet p € (XgNE)\ Xj. Assume y : [0, 1] — % NE
is a smooth curve such that y(0) € Sy and y(1) = p. Let p’ = y(¢') denote
the first point on this curve which is not in Xj U Sy. Thus y(¢”) belongs to
the connected component of the set X, whose closure in X, contains S for
any t”" < 1. Since 4 vanishes in this connected component, it follows from
Lemma 7.2 that the function y is bounded by a constant at all points y(t”),
t" < t'. Thus p’ € ¥, contradiction.

It follows that ¥ = ¥ NE and 4 = 0 in X N E, which establishes the
claim (8.1).

Appendix A. The main formalism

A.1. Horizontal structures. Assume (N, g) is a smooth!' vacuum Einstein
space-time of dimension 4. Assume (/, [) is a null pair on N, i.e.

g(l,) =g(l,)=0 and g [ =—
We say that a vector-field X is horizontal if
g, X) =g(l, X) =0.

Let O(N) denote the vector space of horizontal vector-fields on N. We define
the induced metric, and induced volume form,

{y(X, Y)=g(X,Y) VX,Y € O(N), (A

eX,Y)=eX,Y,,]) VX,Y e ON).

where € denotes the standard volume form on N. If (e;),=; 2 is an ortho-
normal basis of horizontal vector-fields, i.e. y(e,, €5) = 845, We Write €., =
€(e,, ep) and without loss of generality we assume that €, = 1.

In general the commutator [X, Y] of two horizontal vector-fields may
fail to be horizontal. We say that the pair ([, [) is integrable if the set of

11" As before, N is assumed to be a connected, orientable, paracompact C°° manifold
without boundary.
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horizontal vector-fields forms an integrable distribution, i.e. X, Y € O(N)
implies that [X, Y] € O(N). For any vector-field X € T(N) we define its
horizontal projection

WX = X 4+ g(X, DI + g(X, DL.

Using this projection we define the horizontal covariant derivative VxY,
X e T(N),Y € ONN),

VxY = "DxY) = DyxY — gDxl, Y)I — gDxl, Y)L.
The definition shows easily that,
VixypxY = fVxY + f'VxY;

Vx(fY + f'Y) = fVxY + X()Y + f'VxY' + X(f)Y'; (A.2)
Xy(Y,Y) =y(VxY, Y') + p(Y, VxY'),
forany X, X’ € T(N), Y, Y € O(N), f, f' € C®(N). In particular we see
that V is compatible with the horizontal metric y .
In what follows we identify covariant and contravariant horizontal tensor-

fields using the induced metric y. For any k € Z, let Oy (N) denote the
vector space of k horizontal tensor-fields

U:ON)x...xON)— C.

Given a horizontal tensor-field U € Oy(N) and X € T(N) we define the
covariant derivative VxU € O;(N) by the formula

VxUYy, ..., Y) = XUy, ..., V) —UVxYy, ..., ) (A3)
—...= UM, ...,VxYp). )

According to the definition the mapping (X,Y;,...,Yn) —
VxU(Yy, ..., Y;) is a multilinear mapping on T(N) x O(N) x ... x O(N).
We define the null second fundamental forms ®y, (h)l € 0,(N) by

{(h)X(X, Y) = gDyl Y),

Wy (X,Y) =gDxl, Y). (A4)

Observe that x and Wy are symmetric if and only if the horizontal structure
is integrable. Indeed this follows easily from the formulas,

Wx(X,Y) = Px(Y, X) = gDxl, Y) — gDyl, X) = —g(, [X, Y])
Wy (X, ¥) = Wx (¥, X) = gDxl, ¥) — gDy, X) = —g(L, [X, VD).
The trace of an horizontal 2-tensor U is defined according to
tr(U) := 8°U,,

where (e;),=1> is an arbitrary orthonormal frame of horizontal vector-
fields. Observe that the definition does not depend on the particular frame.



On the uniqueness of smooth, stationary black holes in vacuum 91

We denote by tr x and tr x the traces of ™y and @x. If U € Ox(N) with
k = 1,2 we define its dual, expressed relative to an arbitrary orthonormal
frame (€4)4=1,2 € ON),

*Ua = eabUba >kUab = €qc Ucb-

Clearly *("w) = —w. If o € O(N), is symmetric traceless then so is its
dual “w.
We define also the horizontal 1-forms g, (h)§ , M, (h)g, Mz e 0;(N)

by

Me(X) =g, X), Pe(X) =g X),
"n(X) =g, X), "n(X) =gl X), (A.5)
(h){(x) - g(DXl’_l)v

and the real scalars
w=gDl 1D, o=gDll. (A.6)
Assume that W € T(N) is a Weyl field, i.e.

Waﬂ/w = _Wﬁauv = _Waﬁvu = W;wozﬁ;
Waﬂ/w + Wauvﬂ + Wavﬁu =0; (A7)
gﬂ” Waﬂ;u) =0.

We define the null components of the Weyl field W, (W), (W), o(W) €
0O,(N) and (W), BW) € 0O;(N) by the formulas

a(W)(X,Y) =W, X, 1Y),
a(W)(X, Y) = W, X,L, Y),

BW)(X) = W(X, L, D), (A-8)
BW)(X) = W(X,L,1.D),

oW (X, Y) = W(X,LY,D).

Recall that if W is a Weyl field its Hodge dual *W, defined by *Weg,, =
%e w”” Wapoo, 18 also a Weyl field. We easily check the formulas,

a(*W) ="a(W), a(*W) = —"a(W)
BCW) ="B(W), BCW) = —"B(W) (A.9)
o(*W) = "o(W).
It is easy to check that «, o are symmetric traceless horizontal tensor-fields
in O;(N). On the other hand ¢ € O,(N) is however neither symmetric nor

traceless. It is convenient to express it in terms of the following two scalar
quantities,

pW) =W LLD, "p(W)="W({LLD. (A.10)
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Observe also that,
p(W) = "o(W),  *p(*W) = —p.
Thus,

o(X,Y) = %(—py(X, Y)+ *0e(X,Y)), VX,Y € ON). (A1)

We have,
WX, Y, 1,D) = o(W)(X,Y) —oW) (¥, X) = "p(W)e(X, Y).
Also, since *(*W) = —W, we deduce that
WX, Y, X, Y)=eX,Y)WX,Y L) =eX,Y)e(X',Y)o(*W).
Therefore,

WX, Y,L,1) = (X, Y)"p(W)
WX, Y, X', Y)=—€eX,Y) e (X,Y)p(W)
W(X,Y, Z,]) = (X, Y)B(W)(2).

We also consider the case of a self-dual Weyl field W = W+i*W,i.e. *W =
—i'W. Defining the null decomposition o('W), B(W), p(W), (W), B(W),
a(W) as in (A.8) and (A.10) and setting *o(W) := p(*W) as in (A.10), we
find,

(W) = —ip(W).
Relative to a null frame ey, e, e3 = [, [ = e4 we have,

Wavza = —i€app(W),  Wabca = —€ap€caP(W),  Waves = €apB (W).
(A.12)

A.2. Complex null tetrads. We extend by linearity the definition of hori-
zontal vector-fields to complex ones. We say that a complex vector-field m
on N is compatible with the null pair ([, /) if,

gl,m) =g(l,m) =g(m,m) =0, g(m,m)=1.

In that case we say that (m, m, [, [) forms a complex null tetrad. Clearly m
is compatible if and only if m = %(X + 1Y) for some real vectors X, Y €
O(N) with g(X,Y) = 0, g(X, X) = g(¥,Y) = 1. Given a compatible
vector-field m and U e O;(N) we can define the complex scalar U :
N — C,

U, = PU@m).
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Similarly, given PV € 0,(N) we can define the complex scalars V»;, Vi, :
N — C,

Var = WV, m), Vi = PVim, m).

The complex scalars Uy, respectively V,; and Vj;, determine uniquely the
real horizontal tensors fields U and ™V respectively.
Given a compatible vector-field m we define (compare with (A.4)—(A.6))

0= (h)X(m’ m) = g(DWL m),

0 = "y (77, m) = g(Dyd, m),
9 = Wy(m,m) =gDul,m), O =Ny(m,m)=gD,l m),

£ = "em) = gDil, m), & = Wg(m) = gDyl, m),

" " (A.13)
n="nim) = gD, m), n=""n(m) = gD, m),
o =gDl1D), w=gMDL1),

¢ = "em) = gDl D).

The complex scalars 0, 8, ¥, ¥, &, &, n, n, ¢ and the real scalars w, w are the

main connection coefficients of the null tetrad.
Similarly, given a real-valued Weyl field W we define (compare with
(A.8))

Vo) =Wy (W) = a(W)(m,m) = W, m, 1, m),

2(2) = 2(2)(W) =a(W)(m,m) = W(l,m,l,m),

Wy =V (W) = BW)(m) = W(m, 1,1, 1), (A.14)
Yoy =¥, (W) = BW)(m) = W(m, 1,1, D),

V) = Yo (W) = o(W)(m,m) = Wim, 1, m,1).

Notice that, in view of (A.7), a(W)(m, m) = a(W)(m, m) = o(W)(m, m)
= 0, so the scalars W), 2(2), W), g(]), W gy uniquely determine the real-
valued Weyl field W. In addition, if

ES o

afuy — Eep,up afpo

is the dual dual of W, and the null tetrad (m, m2, [, [) has positive orientation
(i.e. €qpuum®mP1*l" = i) then

U,("W) = (=)W (W), W ("W) = (=) ¥ (W),
Yo(*W) = (=) Wo(W), (A.15)
Yo, (W) =i, (W), ¥ (W) =iV, (W).

In what follows we denote,

ep=m, e=m, e=1I e=I
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We define the connection coefficients I'* g, I' 4 by the formulas
Dseq = M ope,
and
Cop = 8wl ap = 8leu, Degey).
Clearly
Lap + Lopp = 0.

We easily check the formulas,

Tus=§ Toaus=E Ti;z=§ TIoz=§,
la=mnTus=7n Tua=n Tws=7,
Tip=06, Tou =0, Ti;n=0, Ty =0, (A.16)
Tu=9 Tu=0 Tim=09 TImn=0,
Nu=0, Tm=0, Twm=¢( un=C.

Using the definition (A.3) we see easily that if WU € O;(N), ”V € 0,(N),
and @ € {1, 2, 3, 4} then

V."U; = (e + Tiae) (MUY), (A.17)
and

Ve "Vii = (ea + 2T 1) (MVi1), Vo Vay = o (MVa)). (A.18)

A.3. The null structure equations and the Bianchi identities. We define
D=l=e¢, D=l=e, S=m=e¢, S=m=e.
Let R denote the Riemann curvature tensor on M. We compute

Raﬂ/w = g(eq, [Deu (Deveﬂ) - D,, (Dc’ueﬁ) - D[e;t;el}]eﬁ])
= g(ea: [De, (Mpven) — De, (Mpue,) = (Mo = T70)Dee])
=eéy (Faﬁv) - eu(raﬂu) + Fpﬂvrapu - Fpﬂ,urapv
+ (Fplw - vau)raﬂp-

Using this formula and the table (A.16) we derive the null structure equa-
tions. Using Rys41 = —¥(2)(R) we derive

(D +2T124)0 — (§+ Tié = £Q¢ +n+ 1) — 9w+ 0 +0) — Yo (R).
(A.19)
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Using Ry331 = —W,(R) we derive

(D+2l23)0 — (6 + 21§
- - (A.20)
:§(—2§ +n+ n—dw+0+0) — 2(2)(R)-
Using Ry44p = 0 we derive
DO — (54 D) = —0% — b — 9 + En+ £(2C + 7). (A.21)
Using Ry33; = 0 we derive
DY — (§+Tin)s = —0° —wf — 00 +En+E(-20+7).  (A22)
Using Rjuu3 = —V(1)(R) we derive

(D +Tiag)n — (D +T123)§ = =208 + 6001 —n) + 91 — 1) — W) (R).
(A.23)

Using R334 = —¥(1)(R) we derive

D+ Tin)n— (D +T24)é§ = 206 +0(n—n) +20 — 1) — Yau)(R).
(A.24)

Using Ry431 = 0 we derive

(D+2l3)0 — G+ Tn=n"+5-00+9(@—0). (A25)
Using Ry341 = 0 we derive

(D+2T )9 — S+ T)n=n"+8 - 00+ w—0). (A26)
Using Rj43; = —V(0)(R) we derive

DO —(+ T =88+ i — 90 +0(w—0) — Vo (R).  (A27)

Using R340 = —W(p)(R) we derive

DO — (8 + Ty =EE+nij — 09 4+ 0(w — 0) — Yo (R).  (A.28)
Using Rj41 = —V(1)(R) we derive

(5 + 20 2)0 — 80 =20 — T + (0 — 0) + £(6 — §) — W1y (R).
(A.29)

Using Ri321 = —¥(1)(R) we derive

(8 +2l120)0 — 80 = =0+ C0 + (0 — 0) + £ — 6) — ¥(1)(R).
(A.30)
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Using Rzaa1 = —W(1)(R) we derive
(D+T124) — 80 =l +1n) +0(n— 0+ 97— )

_ _ (A.31)
—§(0+w) — &0 — V) (R).
Using R4331 = —¥(1)(R) we derive
(D + T13) (=) — 8@ = (= +n) + 0 + ) + 277+ ©) (A32)
— £+ w) —E0 — Y1)(R). '
USiIlg R3443 = \IJ(O) (R) + \IJ(O) (R) we derive
D Dw = & E—mn—ny n—1)+c(n—
w+ Do =8 +E—nmn—nm+t@M—1n)+¢n—mn) (A33)

— (Y (R) + ¥ (R)).
Using Rz = W) (R) — ¥(0)(R) we derive
(=Tl — G+ i) = D9 — 93) + (09 — 09) + w6 — 6)

— (0 —0) — (Y (R) — Y (R)).
(A.34)

We derive now the Bianchi identities. Assume W is a real-valued Weyl
field, see (A.7), and

D Wagw = Jpuv,
for some Weyl current J € Tg(M). Then, using Proposition 4.1,
D, Wt = DpWapus + Do Wepp + DpWoa = €opap *Jalw’ (A.35)
where
T = %e,wy‘sﬁya.

Using (A.7), we derive the following

Wiaia1 = Wipap = Wapar = Wipz1 = 0,

Wiar = Vo), Wi =V, Wiz = Yo, Wi = Yo,

Waia = W), Wina = Vo), Wisaz = Wina = =) — Vo),

Winzs = Yoy — Y(o),

Wigza = Warar = W0y, Wagza = Wing = ¥y,

Wizgs = Wizt = W), Waags = Wingo = . (A.36)
We use the table (A.36) and the formula (A.35) to derive the Bianchi
identities. Using Dy W41 = —Ja14 we derive

(6 +2T122) W) — (D + Taa) V)

1227 (A.37)
= -2+ 0¥ + (40 + )W) + 3§W(9) — Juia.
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Using D, Ws1131 = — J513 we derive

(6 + 2T 1) ¥ — (D + TMaz) Yo

= — (=20 + MY + 40 + ) Y1) + 35W () — J13.

USil’lg D[3 W41]4] = J114 we derive

(D+2IN3)¥e) — 6+ T W)
= Qw—0)Vo) + (¢ + 4V + 39V + J1a.

USil’lg D[4W31]31 = J113 we derive

(D+2I'20) W) — 0+ T ¥
= Qw— )Y + (= +4n¥a) + 30V + i3

USiIlg D[2 W34]41 = —J214 we derive

— DV — (8 + M) ¥,

= 9V + 27+ )W) + 30V + 26V 1) — .

USiIlg D[2 W43]31 = —J213 we derive

— DV — (5 + M) ¥

= —0Wo + 27— O¥( + 30% ) + 2§m — 3.

Using Dy Waop31 = Ja13 we derive

SW) + (D + Ty ¥y

= —20W(1) — 3nW(o) + (@ — 20) W) + EW(o) + Jass.

USiIlg D[l W32]41 = J314 we derive

W) + (D +Ti3) P
= 20U, —3nW) + (@ —20)¥a) + EW0) + 1.
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(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

A.4. Symmetries of the formalism. We discuss now the main symmetries

of the formalism introduced in this section.

1. Interchange of the vectors / and /. We define the complex tetrad

m',m', I, 1),

/ !

/o _ A /o _ /o —
eg=m=m, e=m=m, es=I0=I e =I=I

(A.45)
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Using this new complex tetrad we define the scalars €', 0', ¥', ', &', &', 1/,
n, o, o, ¢ asin (A.13). Given a real-valued Weyl field W, we define the

. ’ ’ / / / . :
scalars \Il(z), g(z), \IJ(I), g(l), \IJ(O) as in (A.14). We define the connection

coefficients I', 5 = g(e),, Dy e;,). The definitions show easily that

0=0, 00=6, ¥=09, =0 E=¢ &=¢

n=n n=n o= =0 ==

Vo =Y. Yo =%, Y,=¥n ¥Y,=Yun Y4,= Yo,
§=68 §&8=68 D =D, D =D,

=T, Tp=Tim, Ty =To, Ty =T (A.46)
The Ricci equations (A.19)-(A.34) and the Bianchi identities (A.37)—
(A.44) are invariant with respect to the transformation (A.45). For example,

the equation corresponding to (A.19) in the complex tetrad (m’,m’,l', 1)
reads

(D' 42T, )0 — (8" + T, E
=£'Q¢ + 1 + 1) — (@ +6 +8) — W, (R).
After using the table (A.46), this is equivalent to

(D +2N23)0 — 0+ T21)é
=E(=2t+n+n —2(@+0+0) — ¥ (R),

which is (A.20).

2. Interchange of the vectors m and m. We define the complex tetrad
(m',m", ', 1),

ef=m'=m, eéh=m'=m, ée=0I'=1l e =0I=I (A4])
Using this new complex tetrad we define the scalars 6, ¢', ¥/, ¥, &', &', ',
n, o, o, ¢ asin (A.13). Given a real-valued Weyl field W, we define the

- / / / / / ; :
scalars Wiy, W, , Wiy, Wy, Wi as in (A.14). We define the connection

coefficients I, , 5= g(e,, De;ge(’x). The definitions show easily that

0'=0, 0=0, ¢=9, =09 §=§ &=

/ — / — / / / o

n=mn n=1n ow=0 = =,

Vo =Vo, Yo =%¥o. Y45H=% ¥Y,=¥n Y=Y,

Sz,
I
el
S
I
el
S
I
>
S
I
®

Iy =T, Ty [ =T, [y =T (A.48)

I
-
N
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The Ricci equations (A.19)—(A.34) and the Bianchi identities (A.37)—(A.44)
are invariant with respect to the transformation (A.47). For example, the
equation corresponding to (A.19) in the complex tetrad (m’, m’, [’, ') reads

(D/ + 2F/124)19/ - (5/ + F/IZI)E/
=EQ+n0+1) =9 (@ +0 +0) — W, (R).

After using the table (A.48), this is equivalent to
(D42T )0 — 6+ T)E =EQC+7T+7) — 9w+ 0+60) — Vo (R),

which is equivalent to (A.19) after complex conjugation.

3. Rescaling of the null pair /,/. We define the complex tetrad (m’, m,
.,
ef=m=m, e =m=m, e, =1 =A"", e, =1'=A-1,

(A.49)

for some smooth function A : N — R\ {0}. Using this new complex tetrad
we define the scalars 0/, 0", %', 9/, &', &', n', /', o', ', &' asin (A.13). Given

areal-valued Weyl field W, we define the scalars \11;2), g;z), ‘1’21), gg 1y \IIEO)

as in (A.14). We define the connection coefficients I',, 5 = g(e,, De;ge(’x).
The definitions show easily that

0 =A0, 0 =A7"10, o =A9 o =A"'9,
E =A% E=A7% u=n n=n
Wiy = AW, W, = AW,

Wiy = AV, W =AW, Y = V),

§=8 &§=68 D=A"'D D =AD,

[y =T, Ty =T,

o =Aw—D(A), o =A"w—DAT"), '=7-54)/A,
[y = A T3, Ty = AT 4.

(A.50)

The Ricci equations (A.19)—(A.34) and the Bianchi identities (A.37)—(A.44)
are invariant with respect to the transformation (A.49). For example, the
equation corresponding to (A.19) in the complex tetrad (m’, m’, [’, ') reads

(D' +205,)0" = (8" + Ty )8’
=&§Q 4+ +n0) =0 +60 +0) -V, (R).
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After using the table (A.50), this is equivalent to

(AD + 2AT 124) (AD) — (8 + T'121) (A%E)
= A’6(2¢ —28(A)/A+n+1)
— AV(Aw — D(A) + A6 + AD) — A*W ) (R).

This is equivalent to (A.19), after simplifying the term AD(A)Y —2A5(A)&
and multiplying by A2,

4. Rotation of the vector m. We define the complex tetrad (m’, m’, ', I'),

¢y =m' = Bm, e&:m’:Bilm, es=0I'=1 e =1I=I,

(A51)

for some smooth function B : N — C, |B| = 1. Using this new complex
tetrad we define the scalars 6, 0', ', ', &', &', 0/, ', &', @', {" asin (A.13).
Given a real-valued Weyl field W, we define the scalars \1122), g;z), \Il’(l),
Wiy, Wiy as in (A.14). We define the connection coefficients F;wﬁ =
g(e,, DL);S e,). The definitions show easily that

0/:9’ Q/:Q’ ﬁ/:Bzﬁ, Q/:BZQ, %J:BS’ éJZBE,

n/ = Bn’ ﬂ/ = Bﬂ’ (,()/ = w, Q/ , é‘/ = Bé-,
‘I’/(z) = Bz‘p(z), 222) = Bzg(z),

Vi, =BV, ¥y, =B¥y), Y =Y,

8§ =Bs, & =Bs,

T, = BT — 8(B), Ty =B 'Tin+38(B7,
Q/ = Q$ D/ = D,

[y =i — D(B)/B, T}y, =T — D(B)/B.

The Ricci equations (A.19)—(A.34) and the Bianchi identities (A.37)—(A.44)
are invariant with respect to the transformation (A.51). For_example, the
equation corresponding to (A.19) in the complex tetrad (m’, m’,I’, ') reads

(D/ + 2F’124)19’ - (5/ + F/IZI)E/
=EQC+0+1) =0 (@ +0 +0) -V, (R).

(A.52)

After using the table (A.52), this is equivalent to
(D + 2T 124 — 2D(B)/B)(B*9) — (B8 + BT 12, — 8(B))(BE)
= BEQ2B¢ + Bn+ By) — B*(w + 0 + 0) — B*W5)(R).

This is equivalent to (A.19), after simplifying the left-hand side and multi-
plying by B~2.
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