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Abstract. Given a projective irreducible symplectic manifold M of dimen-
sion 2n, a projective manifold X and a surjective holomorphic map f :
M → X with connected fibers of positive dimension, we prove that X is
biholomorphic to the projective space of dimension n. The proof is obtained
by exploiting two geometric structures at general points of X: the affine
structure arising from the action variables of the Lagrangian fibration f and
the structure defined by the variety of minimal rational tangents on the Fano
manifold X.

1 Introduction

We work in the category of complex analytic sets. A connected complex
manifold M of dimension 2n equipped with a holomorphic symplectic from
ω ∈ H0(M,Ω2

M ) is called a holomorphic symplectic manifold. A subva-
riety V of M is said to be Lagrangian if V has dimension n and the restriction
of ω on the smooth part of V is identically zero. A simply connected
projective algebraic manifold M is called a projective irreducible symplectic
manifold if M has a symplectic form ω such that H0(M,Ω2

M ) = Cω. It is
remarkable that fibrations of projective irreducible symplectic manifolds
are of very special form, as described in the following theorem due to
D. Matsushita.

Theorem 1.1 Let M be a projective irreducible symplectic manifold of
dimension 2n. For a projective manifold X and a surjective holomorphic

� This work was supported by the Korea Research Foundation Grant funded by the Korean
Government (MOEHRD) (KRF-2006-341-C00004).

Mathematics Subject Classification (2000): 14J40, 14J45



626 J.-M. Hwang

map f : M → X with connected fibers of positive dimension, the following
holds.

(1) X is a Fano manifold of dimension n with Picard number 1.
(2) A general fiber of f is biholomorphic to an abelian variety.
(3) The underlying subvariety of every fiber of f is Lagrangian.
(4) All even Betti numbers of X are equal to 1 and all odd Betti numbers

of X are equal to 0.

(1), (2) and (3) in Theorem 1.1 were proved in [Ma1] and [Ma2]. These
results led to the question whether the base manifold X is the complex pro-
jective space (cf. [Hu, 21.4]). The result of [Ma3] verifies Theorem 1.1 (4),
i.e., that the Betti numbers of X are indeed equal to those of Pn. Some
special cases of this question were studied in [CMS, Sect. 7] and [Ng].

Our goal is to give an affirmative answer to the question as follows.

Theorem 1.2 In the setting of Theorem 1.1, X is biholomorphic to Pn.

There are two geometric ingredients in the proof of Theorem 1.2: the the-
ory of varieties of minimal rational tangents and the theory of Lagrangian
fibrations. On the one hand, the theory of varieties of minimal rational
tangents describes a certain geometric structure arising from minimal ra-
tional curves at general points of a Fano manifold X with b2(X) = 1
(cf. [HwMo1,HwMo2]). This geometric structure has differential geometric
properties reflecting special features of the deformation theory of minimal
rational curves. On the other hand, the theory of Lagrangian fibrations,
or equivalently, the theory of completely integrable Hamiltonian systems,
provides an affine structure at general points of the base manifold X via
the classical action variables (cf. [GuSt, Sect. 44]). Our strategy to prove
Theorem 1.2 is to exploit the interplay of these two geometric structures on
the base manifold X. Under the assumption that X is different from Pn, the
condition b2(X) = 1 forces the geometric structure arising from the variety
of minimal rational tangents to be ‘non-flat’, while the affine structure aris-
ing from the action variables is naturally ‘flat’. These two structures interact
via the monodromy of the Lagrangian fibration, leading to a contradiction.
To be precise, two separate arguments are needed depending on whether
the dimension p of the variety of minimal rational tangents is positive or
zero. The easier case of p > 0 is handled by a topological argument using
b4(X) = 1. The more difficult case of p = 0 needs a deeper argument, de-
pending on the local differential geometry of the variety of minimal rational
tangents.

It is expected that an analog of Theorem 1.2 holds under the weaker
assumption that M is a Kähler irreducible symplectic manifold and X is
a compact Kähler manifold (cf. [Hu, 24.8]). As far as we see, the only
point where our proof of Theorem 1.2 uses the projectivity assumption in
an essential way is the result b4(X) = 1 from [Ma3], which is used to
handle the case of p > 0. Thus if [Ma3] is generalizable to Kähler setting,
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so is our result. On the other hand, after seeing the first draft of this paper,
D. Matsushita informed us that he has a new approach to the case of p > 0,
which may lead to the generalization to Kähler setting, even allowing some
singularity on M.

It is also expected that an analog of Theorem 1.2 holds under the weaker
assumption that X is a normal projective variety. In fact, under this weaker
assumption, [Ma1] showed that the singularity of X is mild and X must be
a Fano variety of Picard number 1. However, our approach to Theorem 1.2
uses the smoothness of X in a crucial way and seems difficult to generalize
to the singular setting.

In Sect. 2, we present results about varieties of minimal rational tangents
of Fano manifolds that are independent of Lagrangian fibrations. In Sect. 3,
we present results about Lagrangian fibrations that are independent of Fano
manifolds. These two theories are played against each other to prove The-
orem 1.2, first in the case of p > 0 in Sect. 4 and then in the case of p = 0
in Sect. 5.

2 Results on varieties of minimal rational tangents

In this section, we present several results about varieties of minimal rational
tangents, especially when they are linear. Most of these are already known,
for which we only give brief explanation with precise references.

Throughout this section, we will denote by X an n-dimensional Fano
manifold with b2(X) = 1. An irreducible component K of the space of
rational curves on X is called a minimal component if for a general point
x ∈ X, the subscheme Kx of K consisting of members passing through x
is non-empty and complete. In this case, the subvariety Cx of the project-
ivized tangent space PTx(X) consisting of the tangent directions at x of
members of Kx is called the variety of minimal rational tangents at x
(see [HwMo2] for more details). For a general member C of K , the nor-
malization ν : Ĉ → C ⊂ X is an immersion of P1.

The following result is proved in [HwRa, Corollary 2.2].

Proposition 2.1 Given a minimal component K on X and a general point
x ∈ X, let C1 be a component of Cx . Denote by K1 the corresponding
component of Kx . For a general member C of K1, let SC ⊂ PT ∗

x (X) be
the linear subspace of the projectivized cotangent space that is the image of
the evaluation of H0(Ĉ, ν∗T ∗(X)) at x. Then the closure of the union of SC
as C varies over general points of K1 is the dual variety of C1 ⊂ PTx(X).

Proposition 2.1 is useful when combined with the following.

Proposition 2.2 Given a minimal component K on X and a general point
x ∈ X, suppose the dual variety C∗

1 ⊂ PT ∗
x (X) of a component C1 of Cx

is linearly degenerate, i.e., contained in a hyperplane in PT ∗
x (X). Then the

component C1 is a linear subspace of PTx(X).
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Proof. If C∗
1 is linearly degenerate in PT ∗

x (X), then C1 is a cone. Thus Prop-
osition 2.2 is equivalent to [HwMo2, Proposition 13], which says that C1
cannot be a cone unless it is a linear subspace. ��
Proposition 2.3 Let X ′ be a projective algebraic manifold and X be a Fano
manifold with b2(X) = 1. Fix a minimal component K on X. Given a gener-
ically finite morphism µ : X ′ → X which is not birational, and given a gen-
eral member C ⊂ X of K , there exists a component C′ of µ−1(C) such that
the restriction µ|C′ : C ′ → C is finite of degree > 1.

For the rest of this section, we will make the following assumption.

Assumption X is an n-dimensional Fano manifold with b2 = 1, different
from Pn, and for some choice of K , the variety of minimal rational tangents
at a general point is the union of linear subspaces of dimension p ≥ 0.

The condition X 	= Pn implies that p < n − 1 by [CMS, Theorem 0.2].
In an analytic local neighborhood of x, each component of Cx defines
a distribution. It is easy to see that this distribution is integrable and the
leaf through x is an immersed Pp+1. More precisely, we have the following
result from [Ar, Theorem 3.1] and [Hw, Proposition 1].

Proposition 2.4 When X satisfies the above assumption, there exists a pro-
jective algebraic manifold X ′ with a generically finite holomorphic map
µ : X ′ → X of degree > 1 and a proper holomorphic map ρ : X ′ → Z onto
a positive-dimensional projective manifold Z such that ρ is a Pp+1-bundle
over a Zariski open subset Zo ⊂ Z, µ is unramified on ρ−1(Zo), and each
member of Kx for a general x ∈ X is the image of a line in some Pp+1-fibers
of ρ. Here, p + dim Z = n − 1 and dim Z = dim H0(Ĉ, ν∗T ∗(X)) for the
normalization ν : Ĉ → C ⊂ X of a general member C of K . Moreover, if
we set Pζ := µ(ρ−1(ζ)) for each ζ ∈ Zo, then the following holds.

(a) Pζ is an immersed submanifold with trivial normal bundle in X.
(b) µ|ρ−1(ζ) is the normalization of Pζ .
(c) For two distinct points ζ1 	= ζ2 ∈ Zo, the two subvarieties Pζ1 and Pζ2

are distinct.

Here, when X is a complex manifold and V ⊂ X is a subvariety, we say
that V is an immersed submanifold if the normalization V̂ is smooth and the
normalization map ν : V̂ → V ⊂ X is an immersion. The normal bundle
of V means the vector bundle on V̂ defined as the quotient of ν∗T(X) by the
image of T(V̂ ). If the normal bundle of V is a trivial bundle, we say that V
is an immersed submanifold with trivial normal bundle.

The first sentence of the following proposition is exactly [Hw, Prop-
osition 2.2], from which the second sentence follows because Pζ , ζ ∈ Zo,
is immersed with trivial normal bundle.

Proposition 2.5 In the setting of Proposition 2.4, for a general point
x ∈ X, the variety of minimal rational tangents Cx is a disjoint union
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of linear subspaces in PTx(X), i.e., for each ζ1 	= ζ2 ∈ Zo with x ∈
Pζ1 ∩ Pζ2 , the intersection of the tangent spaces Tx(Pζ1) and Tx(Pζ2) in
Tx(X) is zero. Consequently, the elements of T ∗

x (X) obtained by evaluating
H0(ρ−1(ζ1), µ

∗T ∗(X)) and H0(ρ−1(ζ2), µ
∗T ∗(X)) at x span T ∗

x (X).

In the situation of Proposition 2.4, it is convenient to introduce the fol-
lowing notion, which already played an essential role in [Hw]. We say
that K is multivalent on an irreducible hypersurface H ⊂ X, if the follow-
ing holds: when H ′ ⊂ X ′ denotes the union of the components of µ−1(H)
that are dominant over H by µ and dominant over Z by ρ, the domin-
ant map H ′ → H has degree > 1. The next proposition is a variation
of [Hw, Proposition 3.2].

Proposition 2.6 In the setting of Proposition 2.4, suppose that K is multi-
valent on an irreducible hypersurface H ⊂ X. Then a general point y ∈ H
has two open neighborhoods W ⊂ W0 satisfying the following.

(1) The fundamental group π1(W0 \ H) is cyclic.
(2) For each general point x ∈ W \ H, there are two distinct points ζ1,

ζ2 ∈ Zo with x ∈ Pζ1 ∩ Pζ2 and Tx(Pζ1) ∩ Tx(Pζ2) = 0 such that there
exists a loop γ1 (resp. γ2) based at x lying on the smooth locus of Pζ1 \ H
(resp. Pζ2 \ H), the homotopy class of which generates the cyclic group
π1(W0 \ H, x).

Proof. The multivalence assumption on H implies that there are two distinct
Pζ3 and Pζ4 passing through y. The desired Pζ1 and Pζ2 can be obtained as
small deformations of Pζ3 and Pζ4 . Let us make this more precise.

Since K is multivalent on H , there exist two distinct points y1, y2 in
µ−1(y) ∩ H ′ such that the map µ is unramified at y1 and y2. We can choose
open neighborhoods W1 ⊂ X ′ of y1, W2 ⊂ X ′ of y2 and W0 ⊂ X of y with
the following properties:

(a) W0 is biholomorphic to the polydisc ∆n and W0 ∩ H corresponds to the
coordinate hyperplane ∆n−1 ⊂ ∆n.

(b) µ(W1) = µ(W2) = W0.
(c) µ|W1 and µ|W2 are biholomorphic over W0.
(d) W1 ∩ H ′ and W2 ∩ H ′ are transversal to fibers of ρ at the intersection

points, i.e., their scheme-theoretic intersections with the fibers of ρ are
smooth.

We can assume that ρ is a Pp+1-bundle near ρ(y1) (resp. ρ(y2)), so there
exists an open neighborhood W ′

1 ⊂ W1 of y1 (resp. W ′
2 ⊂ W2 of y2) such that

for any w ∈ W ′
1 (resp. w ∈ W ′

2), ρ−1(ρ(w))∩ W ′
1 (resp. ρ−1(ρ(w))∩ W ′

2) is
irreducible. Now choose W to be a neighborhood of y in µ(W ′

1) ∩ µ(W ′
2).

Then (1) is automatic and (2) can be seen from the following lemma. ��
Lemma 2.7 Let B = ∆n and H ⊂ B be the coordinate hyperplane
∆n−1 ⊂ ∆n. Let y ∈ H be a point and V ⊂ B be an irreducible closed
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immersed submanifold in B such that y ∈ V and an irreducible component
of the germ of V at y is non-singular and intersects H transversally at y.
Then for any non-singular point x of V , there exists a loop based at x lying
on the smooth locus of V \ H which generates the cyclic fundamental group
π1(B \ H, x).

Proof. Since V is irreducible, it suffices to show this for some non-singular
point x ∈ V \ H . But this is obvious if x lies on the irreducible component
of the germ of V intersecting H transversally at x. ��

The next proposition is precisely [Hw, Proposition 3.1].

Proposition 2.8 Let X be a Fano manifold with b2(X) = b4(X) = 1
satisfying the assumption of Proposition 2.4 with p > 0. Then the minimal
component K is multivalent on every irreducible hypersurface H ⊂ X.

The condition p > 0 in Proposition 2.8 is crucial. In fact, when X is
a Fano 3-fold defined by a linear section of the 6-dimensional Grassmannian
of rank 3, there is a surface H ⊂ X such that the minimal component K is
not multivalent on H .

3 Results on Lagrangian fibrations

In this section, we present some results about Lagrangian fibrations.
In this paper, the phrase ‘Lagrangian fibration’ will have the follow-

ing restrictive meaning. Let (M, ω) be a holomorphic symplectic manifold
and B be a complex manifold of dimension n. A proper surjective holo-
morphic map f : M → B is a Lagrangian fibration if it satisfies the
statements (2) and (3) of Theorem 1.1, i.e., if a general fiber of f is biholo-
morphic to an abelian variety and the underlying subvariety of every fiber
of f is Lagrangian.

Given a Lagrangian fibration f : M → B, the locus D ⊂ B of the
critical values of f is a hypersurface (e.g. [HwOg, Proposition 3.1]), if non-
empty. We will call D the critical set of f . The following is well-known,
see, for example, [HwOg, Proposition 3.2] for a proof.

Proposition 3.1 Let f : M → B be a Lagrangian fibration. Given b ∈ B, if
the underlying reduced variety of f −1(b) is an abelian variety, then f −1(b)
is smooth, i.e., b is not in the critical set of f .

A proper holomorphic map f : M → B between two connected com-
plex manifolds is called a smooth abelian fibration if every fiber is biholo-
morphic to an abelian variety. Recall that for a smooth abelian fibration,
a choice of a base point b ∈ B gives rise to the monodromy representation

π1(B, b) −→ GL
(
H1( f −1(b), Z)

)
.
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The following result is due to Matsushita [Ma4]. Since its proof in [Ma4]
is buried in a longer argument to prove a much more substantial result, we
will give a sketch of the proof for readers’ convenience.

Proposition 3.2 Let f : M → B be a Lagrangian fibration with a non-
empty critical set D ⊂ B. Assume that B is biholomorphic to the polydisc ∆n

and the critical set D ⊂ B as a subvariety is biholomorphic to a coordinate
hyperplane ∆n−1 ⊂ ∆n. Assume furthermore that there exists a line bundle
on M which is ample on each fiber. Then the monodromy of the smooth
abelian fibration M \ f −1(D) → B \ D is non-trivial, i.e., for any point
b ∈ B \ D, the image of the representation

π1(B \ D, b) −→ GL
(
H1( f −1(b), Z)

)

is not the identity.

Proof. Assume that the monodromy is trivial. We can choose a cyclic cover
of B along D, ξ : B′ → B such that the induced fibration ξ∗ f : ξ∗M → B′
has a section. If f already has a section, we choose ξ to be the identity
map of B. Let D′ = ξ−1(D)red be the ramification set of ξ . Using the
triviality of the monodromy of ξ∗ f and the ample line bundle, we can
define the period map from B′ \ D′ to the Siegel upper half space, which
extends to a holomorphic map from B′ to the Siegel upper half space.
Using the extended period map, we can construct a smooth abelian fibration
f̃ : M̃ → B′ with a biholomorphic map

Φ : ξ∗M \ [(µ∗ f )−1(D′)] −→ M̃ \ f̃ −1(D′).

The existence of the section for ξ∗ f ensures that Φ defines a bimero-
morphic map between ξ∗M and M̃, by the argument of Nakayama [Nk,
Proposition 1.6]. The action of the Galois group Γ of the cyclic cover ξ

on ξ∗M induces an action of Γ on M̃. If Γ is not trivial, i.e., if f doesn’t
have a section, then Γ acts non-trivially on the fibers of f̃ over D′. On the
other hand, Γ acts trivially on the singular homology group of the fibers
of f̃ over D′ by the triviality of the monodromy. This means that Γ acts as
a translation on the fibers of f̃ over D′. Thus the quotient of M̃ by Γ is an
abelian fibration M̃/Γ → B, the underlying reduced variety of each fiber of
which is an abelian variety. In particular, M̃/Γ contains no rational curve.
The bimeromorphic map Φ descends to a bimeromorphic map between M
and M̃/Γ. Since M̂/Γ contains no rational curve, M and M̂ are biholo-
morphic. By Proposition 3.1, the critical set of f is empty, a contradiction.

��
Given a holomorphic symplectic manifold (M, ω), the contraction with ω

induces a natural isomorphism

ιω : T ∗(M) −→ T(M).



632 J.-M. Hwang

For a Lagrangian fibration f : M → B, any b ∈ B and any z ∈ f −1(b), we
have a homomorphism

ιω ◦ f ∗ : T ∗
b (B) −→ Tz(M).

If z is a non-singular point of f −1(b), this induces an isomorphism

ιb,z : T ∗
b (B) −→ Tz( f −1(b)).

If b is not in the critical set, denote by Auto( f −1(b)) the identity component
of the automorphism group of the abelian variety f −1(b). Then for any
z ∈ f −1(b), ιb,z induces a natural unramified surjective group homomorph-
ism

hb : T ∗
b (B) −→ Auto( f −1(b)).

An analog of this exists for arbitrary b ∈ B as follows.

Proposition 3.3 Let f : M → B be a Lagrangian fibration. For each point
b ∈ B, there exists a canonical homomorphism of complex Lie groups

hb : T ∗
b (B) −→ Auto

(
f −1(b)red

)
,

where T ∗
b (B) is the vector group and the target is the identity component

of the automorphism group of the underlying reduced variety of the fiber
at b.

Proof. For each v ∈ T ∗
b (B), let ṽ be an exact 1-form in a local analytic

neighborhood U of b which coincides with v at b. The vector field ιω( f ∗ṽ)
on f −1(U) is a Hamiltonian vector field and is tangent to the fibers of f .
Thus it induces a derivation �v on f −1(b)red. At a point z of f −1(b)red, �v is
just ιω ◦ f ∗(v). Thus this derivation is independent of the choice of ṽ and
depends only on v. By integrating the derivation (e.g. [Ka, p. 83, Korollar]),
we get a natural group homomorphism Cv → Auto( f −1(b)red). This defines
hb : T ∗

b (B) → Auto( f −1(b)red) in a canonical way. ��
Proposition 3.4 Let f : M → B be a Lagrangian fibration and let V be
an irreducible complete variety in B. Then the following holds.

(i) There exists a canonical homomorphism of complex Lie groups

hV : H0(V, T ∗(B)) −→ Aut f
o

(
f −1(V )red

)

where the target denotes the identity component of the complex Lie
group of automorphisms preserving the f -fibers of the underlying
reduced variety of f −1(V ).

(ii) If V is not contained in the critical set of f , the group Aut f
o ( f −1(V )red)

is an abelian variety, which we denote by AV .
(iii) If V is not contained in the critical set of f , but has a non-empty inter-

section with the critical set, then the abelian variety AV has dimension
≤ n − 1.
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(iv) Suppose that b ∈ V is not in the critical set and z ∈ f −1(b). Let
Te(AV ) be the tangent space of the abelian variety AV in (ii) at the
identity. The homomorphism hV in (i) induces

dhV : H0(V, T ∗(B)) −→ Te(AV )

and there is a commutative diagram

H0(V, T ∗(B)) ��

��

dhV

T ∗
b (B)

��

ιb,z

Te(AV ) �� Tz( f −1(b))

where the upper horizontal arrow is the evaluation at b and the lower
horizontal arrow is the tangent map for the AV -orbit of z.

Proof. For each ξ ∈ H0(V, T ∗(B)), the automorphism hV (ξ) is defined
such that it acts on y ∈ f −1(V )red by

hV (ξ) · y = hb(ξb) · y

where b = f(y) ∈ V , hb is the homomorphism defined in Proposition 3.3
and ξb is the value of ξ at b. This gives (i). To see (ii), suppose that the
algebraic group Aut f

o ( f −1(V )red) is not an abelian variety. Then it contains
a linear algebraic subgroup by Chevalley decomposition. This linear alge-
braic group must act non-trivially on f −1(b) for a general point b ∈ V . But
linear algebraic groups cannot act on abelian varieties nontrivially, a contra-
diction. Regarding (iii), if the dimension of Aut f

o ( f −1(V )red) is ≥ n, the
fiber of f over each point of V contains an orbit, which must be an abelian
variety of dimension ≥ n. Thus each fiber is smooth by Proposition 3.1,
a contradiction to the assumption in (iii). Finally, (iv) is immediate from the
definition. ��

Recall that the cotangent bundle of a complex manifold has a canonical
holomorphic symplectic form on it. The following is a geometric version of
the classical action-angle variables for an integrable Hamiltonian system.
The proof in [GuSt, Theorem 44.2] works verbatim in the holomorphic
setting.

Proposition 3.5 Let f : M → B be a smooth Lagrangian fibration with
a Lagrangian section Σ ⊂ M. The orbit of Σ under the action of T ∗

b (B),
b ∈ B, in Proposition 3.3 gives rise to an unramified surjective holomorphic
map χ : T ∗(B) → M which commutes with the projection to B and the
map f . Then the pull-back of the symplectic form ω on M by χ coincides
with the standard symplectic structure of T ∗(B).

An immediate consequence is the following.
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Proposition 3.6 Let f : M → B be a smooth Lagrangian fibration with
a Lagrangian section Σ ⊂ M. Let M′ ⊂ M be a family of abelian subvar-
ieties of f , i.e., a submanifold containing Σ such that f |M′ is a smooth
abelian fibration. Let V ⊂ T ∗(B) be the subbundle defined by χ−1(M′).
Then V, regarded as a differential system on B, is involutive, i.e., the
distribution V⊥ ⊂ T(B) annihilated by V is integrable.

Proof. By Proposition 3.5, the submanifold χ−1(Σ) ⊂ T ∗(B), i.e., the
family of lattices for the family of abelian varieties, is Lagrangian in T ∗(B).
The family of lattices for the family of abelian subvarieties M′ is V∩χ−1(Σ).
Thus the subbundle V is locally generated by vectors lying in χ−1(Σ).
But Lagrangian sections of T ∗(B) are just closed 1-forms on B. Thus the
system V is locally generated by closed 1-forms, and consequently it is
involutive by Frobenius theorem. ��

To use Proposition 3.6, we need to have a family of abelian subvarieties
of a Lagrangian fibration. One construction leading to a family of abelian
subvarieties is the following.

Proposition 3.7 Let f : M → B be a Lagrangian fibration with non-empty
critical set D ⊂ B. Suppose that there exists a smooth proper morphism
ρ : B → Z of relative dimension 1 onto a complex manifold Z. Assume that
each fiber of ρ intersects the critical set D. Then for each fiber C of ρ, the
abelian variety AC in the notation of Proposition 3.4 is of dimension n−1. In
particular, if we choose an open subset W ⊂ B \ D such that the restriction
of f to f −1(W ), f −1(W ) → W, admits a Lagrangian section, then we
have a family of (n − 1)-dimensional abelian subvarieties in the smooth
Lagrangian fibration f −1(W ) → W, defined as the orbit of the Lagrangian
section. The distribution on W induced by this family of abelian subvarieties
in the sense of Proposition 3.6 is just the fibers of ρ on W.

Proof. For each C, H0(C, T ∗(B)) contains the (n − 1)-dimensional sub-
space corresponding to ρ∗T ∗

ρ(C)(Z). This subspace injects into Te(AC ) by
the construction of the homomorphism hC in Proposition 3.4. Thus AC is
an abelian variety of dimension ≥ n − 1. By Proposition 3.4 (iii), AC is an
(n − 1)-dimensional abelian variety. In particular, the homomorphism hC
sends T ∗

ρ(C)(Z) onto AC , which proves the last sentence of Proposition 3.7.
��

4 Varieties of minimal rational tangents for the base manifold

Now we go to the situation of Theorem 1.2. To start with, we recall the
following result, which can be proved in various ways. The proof here was
suggested by K. Oguiso.

Proposition 4.1 Let f : M → X be as in Theorem 1.2. Then the critical
set D is a non-empty hypersurface.
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Proof. We already mentioned in Sect. 3 that D is a hypersurface if it is
non-empty. Suppose D is empty. Then f : M → X is a proper smooth
morphism. Denote by ZM and ZX the constant sheaves of the integer group
on M and X. Since X is simply connected,

Ri f∗ZM
∼= Z⊕bi(F)

X ,

where bi(F) denotes the i-th Betti number of a fiber F. From the beginning
of the Leray spectral sequence for f , we get an exact sequence

H1(ZM) −→ H0
(
R1 f∗ZM

) −→ H2( f∗ZM ).

The first term vanishes because M is simply connected. Consequently,
b1(F) ≤ b2(X), which is absurd because b1(F) = 2n and b2(X) = 1. ��

Now let X be as in Theorem 1.2. By Theorem 1.1, the base manifold X is
a Fano manifold with b2(X) = b4(X) = 1 and f is a Lagrangian fibration.
Fix a minimal component K of X and let C be a general member of K.
We want to apply Proposition 3.4 to the complete curve C ⊂ X and the La-
grangian fibration f : M → X. However, we have little information about
H0(C, T ∗(X)). What we have is the information on H0(Ĉ, ν∗T ∗(X)) where
ν : Ĉ → C is the normalization. To remedy this, we lift the Lagrangian
fibration f to the normalization as follows.

Recall that ν : Ĉ → C ⊂ X is an immersion of P1. By analytic
continuation, we can find an embedding of Ĉ in a non-compact complex
manifold BC of dimension n and a holomorphic map α : BC → M that
is unramified at each point of BC. The germ of BC along Ĉ is uniquely
determined by the germ of X along C. By pulling back the Lagrangian
fibration f : M → X by the unramified holomorphic map α : BC → X, we
get a Lagrangian fibration

fC := α∗ f : MC −→ BC.

Now we apply Proposition 3.4 to fC and the complete curve Ĉ ⊂ BC.
We have an abelian variety AĈ acting on f −1

C (Ĉ)red in the notation of
Proposition 3.4.

Proposition 4.2 Let f : M → X be as in Theorem 1.2 and K be a minimal
component on X. Let ν : Ĉ → C ⊂ X be the normalization of a general
member of K and α : BC → X be the associated unramified holomorphic
map as explained above. Let fC : MC → BC be the pull-back of f by ν.
Then

(1) dim AĈ ≤ n − 1, and
(2) for a point b ∈ Ĉ outside the critical set and a point z ∈ f −1

C (b), the
tangent space Tz(AĈ · z) contains the ιb,z-image of the evaluation of
H0(Ĉ, T ∗(BC)) = H0(Ĉ, ν∗T ∗(X)) at the point b.
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Proof. Note that the critical set D of f is an ample hypersurface as a conse-
quence of the condition b2(X) = 1 and Proposition 4.1. Thus C intersects
the critical set D of f and Ĉ intersects the critical set of fC. Thus (1) and (2)
follow from Proposition 3.4 (iii) and (iv). ��
Proposition 4.3 Let f : M → X be as in Theorem 1.2. For any minimal
component K on X, the variety of minimal rational tangents Cx for a gen-
eral point x ∈ X is linear, i.e., each of its components is a linear subspace
in PTx(X).

Proof. Fix a general point x ∈ X and a component C1 of the variety of min-
imal rational tangents Cx ⊂ PTx(X). Let K1 be the corresponding compon-
ent of Kx . For a general member C of K1, C is non-singular at x. Choose
a point z ∈ f −1

C (x). For simplicity, we will identify f −1
C (x) and f −1(x) by

the obvious isomorphism. By Proposition 4.2 (2), the image in T ∗
x (X) of

the evaluation of H0(Ĉ, ν∗T ∗(X)) at x is contained in ι−1
x,z (Tz(AĈ · z)) in

the notation of Proposition 3.4(iv). Now let us vary the general member C
of K1. The abelian subvariety AĈ · z of the abelian variety f −1(x) with z
as the origin remains unchanged, because there is no continuous family of
abelian subvarieties in a fixed abelian variety (e.g. by Lemma 5.8 below).
Thus the image of the evaluation of H0(Ĉ, ν∗T ∗(X)) is contained in a fixed
linear subspace ι−1

x,z (Tz(AĈ · z)). This linear subspace has dimension < n
by Proposition 4.2 (1). Thus by Proposition 2.1, the dual variety of the
component C1 of Cx in PT ∗

x (X) is degenerate. Now apply Proposition 2.2
to complete the proof. ��

By Proposition 4.3, to prove Theorem 1.2, we may assume that X satisfies
the assumption of Proposition 2.4. In particular, we have the family of
Pp+1’s described in Proposition 2.4 and apply the results in Sect. 2. The
main consequence is the following.

Proposition 4.4 Let H ⊂ X be an irreducible hypersurface such that a min-
imal component K is multivalent on H. Then H is not contained in the
critical set D of the Lagrangian fibration f : M → X.

To prove Proposition 4.4, we need two elementary lemmata. First, some
notation. Suppose that we are given an abelian variety A acting on another
abelian variety A′ by a morphism β : A × A′ → A′. Fixing a point z ∈ A′,
the orbit map β(·, z) : A → A′ induces a homomorphism β∗ : H1(A, Z) →
H1(A′, Z). In fact, this homomorphism does not depend on the choice
of z, because the translation on A′ acts trivially on H1(A′, Z). We have the
following two lemmata.

Lemma 4.5 Let A1 and A2 be two abelian varieties acting on an abelian
variety A′, by two morphisms β1 : A1 × A′ → A′ and β2 : A2 × A′ → A′.
Suppose that for a point z ∈ A′, the tangents to the orbits Tz(A1 · z) and
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Tz(A2 · z) span Tz(A′). Then the images of the two homomorphisms

β1∗ : H1(A1, Z) −→ H1(A′, Z) and β2∗ : H1(A2, Z) −→ H1(A′, Z)

generate a subgroup of finite index in H1(A′, Z).

Proof. A′
1 := A1 · z and A′

2 := A2 · z are abelian subvarieties in A′.
Since Tz(A′

1) and Tz(A′
2) span Tz(A′), there is a basis of Tz(A′) consist-

ing of lattice vectors of A′
1 and A′

2 under the universal covering map
Tz(A′) → A′. Since the images of β1∗ (resp. β2∗) is of finite index in
H1(A′

1, Z) (resp. H1(A′
2, Z)), Lemma 4.5 follows. ��

Lemma 4.6 Let f : A → B be a smooth abelian fibration. Assume that
there exists an effective fiberwise action of an abelian variety A on A given
by β : A × A → A. For any b ∈ B, let β(b) : A × f −1(b) → f −1(b) be
the action on the fiber and let

β(b)∗ : H1(A, Z) −→ H1( f −1(b), Z)

be the homomorphism induced by β(b). Then the image of β(b)∗ is fixed
under the monodromy action of π1(B, b) on H1( f −1(b), Z).

Proof. As b varies over B, β(b)∗ defines a homomorphism from the constant
system H1(A, Z) on B into the local system defined by H1( f −1(b), Z) on B.
Thus the image is a constant system, unchanged under the monodromy.

��
Proof of Proposition 4.4 Let us use the notation of Proposition 2.6. Let
y ∈ H be a general point of H and choose neighborhoods W ⊂ W0 as
in Proposition 2.6. For a general point x ∈ W \ H , we get ζ1, ζ2 ∈ Zo
satisfying the properties in Proposition 2.6. For each i = 1, 2, choose
a neighborhood Ui of ζi in Z such that µ is unramified on Bi := ρ−1(Ui).
Pulling back f : M → X by the unramified map µ|Bi , we have a Lagrangian
fibration fi : Mi → Bi. Applying Proposition 3.4 to fi and the complete
variety ρ−1(ζi), we get an action of an abelian variety Ai on f −1

i (ρ−1(ζi))red.
Note that the loop γi on the smooth locus of Pζi is naturally lifted to a loop
in ρ−1(ζi), which we denote by the same symbol γi . Pick a point z ∈ f −1(x).
Let xi ∈ ρ−1(ζi) be the point over x and zi ∈ f −1

i (xi) be a point on the fiber
corresponding to z. The monodromy of the smooth Lagrangian fibration
along γi fixes the image of H1(Ai , Z) in

H1
(

f −1
i (xi), Z

) = H1( f −1(x), Z)

by Lemma 4.6. But the two subspaces ι−1
x,z (Tz(A1 · z)) and ι−1

x,z (Tz(A2 · z))
span the whole T ∗

x (X) by Proposition 2.5 and Proposition 4.2 (2). It follows
that the monodromy action of π1(W0 \ H) on H1( f −1(x), Z) is trivial by
Lemma 4.5. Thus the hypersurface is not in the critical set by Proposition 3.2.

��
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An immediate consequence of Propositions 2.8, 4.1 and 4.4 is the fol-
lowing.

Proposition 4.7 Let f : M → X be as in Theorem 1.2. Suppose X is
different from Pn. Then for any minimal component K , p = dim Cx = 0.

5 Use of the integrability of the distribution defined by a pair
of rational curves

By Proposition 4.7, to prove Theorem 1.2, we may assume that the base
manifold X has a minimal component K with p = 0. We will make this
assumption throughout this section. We start with the following observation.

Proposition 5.1 Let X be as above with p = 0. Let µ : X ′ → X be as in
Proposition 2.4. If E ⊂ X is a component of the branch locus of µ, then E
is contained in the critical set D of f : M → X.

Proof. Suppose not. Let y be a general point of E outside the critical set D.
Let R be a component of the ramification locus of µ such that µ(R) = E.
Let z ∈ R be a point in µ−1(y). We can choose an open neighborhood W ′
of z and an open neighborhood W of y with W ∩ D = ∅ such that

(i) W and W ′ are biholomorphic to a polydisc with E ∩ W ⊂ W and
R ∩ W ′ ⊂ W ′ biholomorphic to the coordinate hyperplane;

(ii) there exists a Lagrangian section Σ ⊂ f −1(W ) of f over W ;
(iii) W ′ \ R ⊂ ρ−1(Zo); and
(iv) µ|W ′ : W ′ → W is a cyclic branched covering of degree > 1.

Pulling back f by the unramified holomorphic map µ|W ′\R, we get
a smooth Lagrangian fibration f ′ : M′ → W ′ \ R with a Lagrangian section
Σ′ ⊂ M′. Applying Proposition 3.7, we get a family of abelian subvarieties
of dimension n − 1, say A ⊂ M′, over W ′ \ R. By Proposition 2.4 (c), we
know that the fibers of ρ on W ′ \ R are sent to W \ E to define a multi-valued
foliation. The relation between the family of abelian subvarieties A and the
fibers of ρ in Proposition 3.7 implies that the image of A in f −1(W \ E) is
a multi-valued family of abelian subvarieties. Thus the Galois group of the
cyclic covering µ|W ′ acts non-trivially on the family of lattices for A. This
means that the monodromy of π1 (W\E) acts non-trivially on H1( f −1(b), Z)
for a point b ∈ W \ E. This is absurd because the Lagrangian fibration f is
smooth over W . ��

Now we introduce a new notion. The family Z in Proposition 2.4 is
a P1-bundle over an open subset Zo of Z. Let x ∈ X be a general point
so that all members of Kx are smooth at x and have distinct tangent
vectors at x by Proposition 2.5. Furthermore, we can assume that x lies
outside µ(ρ−1(Z \ Zo)) and the branch locus of µ. Let ζ1, ζ2 ∈ Zo be
two distinct points with x ∈ Pζ1 ∩ Pζ2 . Let y1 = ρ−1(ζ1) ∩ µ−1(x) and
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y2 = ρ−1(ζ2) ∩ µ−1(x). Choose a small neighborhood W of x, W1 of y1
and W2 of y2 such that

(i) W1, W2 and W are biholomorphic to one another by µ;
(ii) fibers of ρ in W1 and fibers of ρ in W2 induce two transversal holo-

morphic foliations of rank 1 on W .

The span of these two foliations define a distribution of rank 2 on W ,
which we denote by D . We call D the distribution defined by the pair Pζ1

and Pζ2 .

Proposition 5.2 Let X be a Fano manifold with b2(X) = 1 having a min-
imal component K with p = 0. Let x ∈ X be a general point and C1, C2
be two distinct members of Kx. If X is a base manifold of a fibration
f : M → X as in Theorem 1.2, then the distribution D defined by the pair
C1 and C2 in a neighborhood of x is integrable.

Proof. Let B := ρ−1(Zo), then µ is unramified on B. Pulling back
f : M → X by µ, we get a Lagrangian fibration g : M′ → B and
a smooth fibration by curves ρ : B → Zo. Let W be a neighborhood of x
and W1, W2 ⊂ B be the open subsets used in the definition of D . By
shrinking W if necessary, we may assume that f has a Lagrangian section
over W , hence the induced Lagrangian fibrations over W1 and W2 also have
Lagrangian sections. Applying Proposition 3.7 to W1 and W2, we get two
families A1 and A2 of abelian subvarieties of dimension n − 1 inside the
Lagrangian fibration f | f −1(W ). The annihilator D⊥ ⊂ T ∗(W ) of the dis-
tribution D ⊂ T(W ) corresponds, in the sense of Proposition 3.6, to the
family of abelian subvarieties of dimension n −2 defined by the intersection
A1 ∩ A2. Thus D is integrable by Proposition 3.6. ��
Proposition 5.3 Let us assume the situation of Proposition 5.2 and use the
notation of Proposition 2.4. Given a general member C of K , let C′ be
a component of µ−1(C) such that

µ|C′ : C ′ −→ C

is finite of degree > 1, which exists by Proposition 2.3. Let

h : Ĉ ′ −→ ̂ρ(C′)

be the lift of

ρ|C′ : C ′ −→ ρ(C′)

to the normalizations of C ′ and ρ(C′). Then h has a ramification point
z ∈ Ĉ ′ such that the image of h(z) in ρ(C′) lies in Zo.

We need two lemmata.
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Lemma 5.4 Let E be a component of the branch divisor of µ. Let E ′ be an
irreducible component of µ−1(E) which is dominant over K by ρ. Then C′
is disjoint from E ′.

Proof. Otherwise, through a general point x ′ of E ′, we have two distinct
curves, C′ and a fiber of ρ, neither of which are contained in E ′. Since µ
is unramified at x ′ by Proposition 2.4, the images of these curves under µ
are of the form Pζ1, Pζ2 with ζ1 	= ζ2. Since these two curves pass through
x = µ(x ′), which is a general point of E, K is multivalent on E. Then E
is not in the critical set of f by Proposition 4.4, a contradiction to Prop-
osition 5.1. ��
Lemma 5.5 There exist a family of members of K

{Ct, t ∈ ∆, C = C0}
and the associated deformation

{
C ′

t, t ∈ ∆, C′ = C ′
0

}

such that for each t ∈ ∆,

(i) C ′
t is a component of µ−1(Ct);

(ii) µ|C′
t
: C ′

t → Ct is finite of degree > 1 over Ct;
(iii) ρ(C ′

t) = ρ(C ′).

Proof. Let x ∈ C be a general point. Pick a point x ′ ∈ C ′ with µ(x ′) = x and
set Cx := µ(ρ−1(ρ(x ′))). Then Cx is a member of Kx . The triviality of the
normal bundle of C implies that there exists a ‘deformation of C along Cx’,
namely, a unique (up to reparametrization) deformation {Ct, t ∈ ∆} of
C = C0 satisfying Ct ∩ Cx 	= ∅. More precisely, there exists a unique
component C of µ−1(Cx) different from ρ−1(ρ(x ′)) that contains the point
ρ−1(ζ) ∩ µ−1(x) where Pζ = C. Then the germ of ρ(C) near ζ gives
a deformation {Ct, t ∈ ∆, C = C0} such that each Ct belongs to K and
Ct ∩ Cx 	= ∅. The germ of such a deformation of C is uniquely determined
by Cx , up to reparametrization.

By the generality of the choice of C, we have the associated deformation
{C ′

t, t ∈ ∆} of C ′ = C ′
0 such that µ|C′

t
: C ′

t → Ct is finite of degree > 1 for
any t ∈ ∆.

It remains to show that ρ(C′
t) = ρ(C′) for each t ∈ ∆. This follows from

the fact that the leaf through x of the distribution D defined by C and Cx

gives the germ of the surface traced out by the deformation of C along Cx

and at the same time the germ of the surface traced out by the deformation
of Cx along C. More precisely, it suffices to show that

ρ−1(z) ∩ C ′
t 	= ∅ for each z ∈ ρ(C′) and each t ∈ ∆.(∗)

Clearly ρ−1(ρ(x ′)) ∩ C ′
t 	= ∅. Suppose that we vary the choice of x ∈ C in

the above construction of Ct , say {xs ∈ C, s ∈ ∆, x0 = x}. Let x ′
s ∈ C ′
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be the associated variation of x ′ = x0 and Cxs := µ(ρ−1(ρ(xs))). By
Proposition 5.2, the deformation of C along Cxs are, up to reparametrization,
the same as the deformation of C along Cx for any s ∈ ∆. Thus ρ−1(ρ(x ′

s))∩
C ′

t 	= ∅ for each s ∈ ∆. This proves (∗) for z in a neighborhood of ρ(x ′). It
follows that (∗) holds for all z ∈ ρ(C′). ��
Proof of Proposition 5.3 Suppose that h is unramified over ρ(C′) ∩ Zo. Let
us use the deformation Ct constructed in Lemma 5.5. By the generality
of C, we may assume that for each t ∈ ∆ the holomorphic map

ht : Ĉ ′
t → ̂ρ(C′

t) = ̂ρ(C′), h0 = h,

which is the lift of ρ|C′
t

to the normalization of curves, is unramified over
ρ(C ′) ∩ Zo. Since ht is a continuous family of coverings of the Riemann
surface ̂ρ(C′) with fixed branch locus, we can find a biholomorphic map

ψt : Ĉ ′ → Ĉ ′
t, ψ0 = IdĈ′ with h = ht ◦ ψt,(♣)

which depends holomorphically on t (e.g. [Sh, p. 32, Corollary 1]).
From Lemma 5.5 (ii), there are at least two distinct points in Ĉt , say

at 	= bt ∈ Ĉt , such that the corresponding points in Ct lie in the branch
divisor of µ in X. Let {0,∞} ⊂ P1 be two distinct points on the projective
line. We can choose a family of biholomorphic maps {σt : Ĉt → P1, t ∈ ∆}
such that σt(at) = 0 and σt(bt) = ∞ for each t ∈ ∆. Denote by µt : Ĉ ′

t → Ĉt
the lift of µ|C′

t
to the normalization of curves. Then
{
ϕt : Ĉ ′ −→ P1, ϕt := σt ◦ µt ◦ ψt, t ∈ ∆

}

is a family of meromorphic functions on the compact Riemann surface Ĉ ′.
By Lemma 5.4, for each component E of the branch divisor of µ,

the intersection of C′
t with µ−1(E) has a fixed image in ρ(C′) = ρ(C ′

t),

independent of t ∈ ∆. This implies that there is a finite subset Q ⊂ ̂ρ(C′),
independent of t, such that

µ−1
t (at) ∪ µ−1

t (bt) ⊂ h−1
t (Q)

for any t ∈ ∆. Then

ϕ−1
t (0) = ψ−1

t ◦ µ−1
t ◦ σ−1

t (0) = ψ−1
t

(
µ−1

t (at)
) ⊂ ψ−1

t

(
h−1

t (Q)
)

for all t ∈ ∆. Since ψ−1
t (h−1

t (Q)) = h−1(Q) by the choice of ψt in (♣),
ϕ−1

t (0) ⊂ h−1(Q) for any t ∈ ∆. Consequently, ϕ−1
t (0) = ϕ−1

0 (0) for all
t ∈ ∆. By the same argument we get ϕ−1

t (∞) = ϕ−1
0 (∞) for all t ∈ ∆.

In other words, the family of meromorphic functions ϕt have the same
zeroes and the same poles on the Riemann surface Ĉ ′. It follows that for
any w1, w2 ∈ Ĉ ′ and any t ∈ ∆,

ϕt(w1) = ϕt(w2) if and only if ϕ0(w1) = ϕ0(w2).(♦)
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Since µ|C′ is finite of degree > 1 by our assumption, we can choose
two points α 	= β ∈ Ĉ ′ such that ϕ0(α) = ϕ0(β). Furthermore, denoting
by ᾱ ∈ ρ(C′) (resp. β̄ ∈ ρ(C ′)) the point corresponding to h0(α) ∈ ̂ρ(C′)
(resp. h0(β) ∈ ̂ρ(C′)) under the normalization, we may assume that

ᾱ and β̄ are two distinct points in Zo.(♥)

From (♦), we have ϕt(α) = ϕt(β) for all t ∈ ∆. Since ϕt = σt ◦ µt ◦ ψt
and σt is biholomorphic, we see that

µt ◦ ψt(α) = µt ◦ ψt(β) for all t ∈ ∆.(♠)

Denote by

αt ∈ C ′
t ⊂ X ′ (

resp. βt ∈ C ′
t ⊂ X ′)

the point corresponding to ψt(α) ∈ Ĉ ′
t (resp. ψt(β) ∈ Ĉ ′

t) under the normal-
ization. Then the locus

A := {
αt ∈ X ′, t ∈ ∆

} (
resp. B := {

βt ∈ X ′, t ∈ ∆
})

covers a non-empty open subset in the fibre ρ−1(ᾱ) (resp. ρ−1(β̄)). Thus
µ(A) (resp. µ(B)) covers a non-empty open subset in

Pᾱ := µ(ρ−1(ᾱ))
(
resp. Pβ̄ := µ(ρ−1(β̄))

)
.

Since µ(A) (resp. µ(B)) is the locus of points corresponding to µt ◦ ψt(α)

(resp. µt ◦ ψt(β)) by the normalization Ĉt → Ct , the equality (♠) above
implies that µ(A) = µ(B). Consequently,

Pᾱ = Pβ̄,

a contradiction to (♥) and Proposition 2.4(c). ��
Proposition 5.6 In the situation of Proposition 5.3, there exists an irre-
ducible hypersurface H ⊂ X such that through a general point x ∈ H,
there are two distinct members C1 and C2 of K with Tx(C1) = Tx(C2)
in Tx(X) where Tx(C1) (resp. Tx(C2)) denotes the tangent space at x of
a component of the germ of C1 (resp. C2) at x. In particular, K is multi-
valent on H.

Proof. In the situation of Proposition 5.3, let z ∈ C′ be the image of
a ramification point of h such that ρ(z) ∈ Zo. Then µ is unramified at z
and the curve µ(ρ−1(ρ(z))) in X is an immersed P1. It follows that C ′ is
immersed at z and one of the component of the germ of C′ at z must be
tangent to ρ−1(ρ(z)) because z is a ramification point of h. But then the two
members C and µ(ρ−1(ρ(z))) of K have non-empty intersection at µ(z),
sharing a common tangent. As C varies, this intersection point also varies
to define a hypersurface H . This proves Proposition 5.6. ��
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Finally, the next proposition leads to a contradiction with Proposition 4.4
and Proposition 5.6, completing the proof of Theorem 1.2.

Proposition 5.7 The hypersurface H in Proposition 5.6 is contained in the
critical set D of f .

Proof. Suppose not. Let y ∈ H be a general point. By the definition of H ,
there are two points y1, y2 ∈ µ−1(y) where µ is unramified, such that Pζ1 ,
ζ1 = ρ(y1), and Pζ2 , ζ2 = ρ(y2) are two distinct members of K tangent
to each other at y. Choose a neighborhood W of y and a neighborhood Wi
of yi for each i = 1, 2 such that W , W1 and W2 are all biholomorphic
by µ. By shrinking W if necessary, we can assume that f | f −1(W ) is a smooth
Lagrangian fibration with a Lagrangian section over W . The same holds
for the pull-backs of f to W1 and W2. Thus by Proposition 3.7, we get
two families of abelian subvarieties of dimension n − 1 in the Lagrangian
fibration f −1(W ) → W such that each abelian subvariety in the fiber is
tangent to the image of the conormal bundle of deformations of C and C′.
Since C and C′ are tangent along H , the two families of abelian subvarieties
coincide along H , but not at a general point of W . This is a contradiction to
the following elementary lemma. ��
Lemma 5.8 Given a family of abelian varieties A → S and two families
of abelian subvarieties A1 → S and A2 → S, if the fibers of A1 and A2
coincide at some point of S, then A1 = A2.

Proof. Consider the family of quotient abelian varieties A/A1 → S and
the relative group quotient projection A → A/A1. This projection sends
one fiber of A2 to a point. So it must send each fiber of A2 to a point
by [Mu, Proposition 6.1]. Thus A1 = A2.
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