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Abstract. This paper concerns the existence and explicit construction of
extremal Kähler metrics on total spaces of projective bundles, which have
been studied in many places. We present a unified approach, motivated by
the theory of Hamiltonian 2-forms (as introduced and studied in previous
papers in the series) but this paper is largely independent of that theory.

We obtain a characterization, on a large family of projective bundles, of
the ‘admissible’ Kähler classes (i.e., those compatible with the bundle struc-
ture in a way we make precise) which contain an extremal Kähler metric. In
many cases every Kähler class is admissible. In particular, our results com-
plete the classification of extremal Kähler metrics on geometrically ruled
surfaces, answering several long-standing questions.

We also find that our characterization agrees with a notion of K-stability
for admissible Kähler classes. Our examples and nonexistence results there-
fore provide a fertile testing ground for the rapidly developing theory of sta-
bility for projective varieties, and we discuss some of the ramifications. In
particular we obtain examples of projective varieties which are destabilized
by a non-algebraic degeneration.
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EPSRC Advanced Research Fellowship and the fourth author by the Union College Faculty
Research Fund.
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Introduction
In this paper we give a systematic overview of some explicit constructions of
extremal Kähler metrics on projective bundles and relate our constructions
to the theory of stability for algebraic varieties.

There has been a great deal of interest recently in the relation between
extremal Kähler metrics, especially constant scalar curvature (CSC) Kähler
metrics, and stability: initiated by ideas going back to Yau [56], there are
conjectures [53,15] that the existence of an extremal or CSC Kähler metric,
in an integral Kähler class Ω on a compact complex manifold M, should
be equivalent to an algebraic geometric stability condition on the Kodaira
embeddings of M into P(H0(M, Lk)∗) for k � 1, where c1(L) = Ω/2π.

Our own interest in constructions of extremal Kähler metrics has been
renewed and stimulated not only by these developments, but also by a uni-
fying principle, which we shall explain and apply here, underlying explicit
examples of such metrics on projective bundles obtained in [8,27,30,31,34,
47,54]. In short these examples have in common the presence of a Hamil-
tonian 2-form of order 1.

The general theory of Hamiltonian 2-forms has been developed in our
previous papers [4,5]. A main feature of the Kähler metrics admitting
a Hamiltonian 2-form is the appearance of hidden symmetries, which, in
the compact case, results in a rigid Hamiltonian torus action of dimension
the order of the Hamiltonian 2-form.

Motivated by a non-existence result proved in Appendix A.2, in this pa-
per we focus our attention to the case when this order is 1. Under some mild
additional hypotheses, the resulting manifolds are biholomorphic to projec-
tive bundles of the form P(E0 ⊕ E∞) → S, where E0, E∞ are projectively
flat hermitian holomorphic vector bundles over a compact Kähler mani-
fold S. The latter is locally a Kähler product

∏
a∈A Sa where A is the finite

set of distinct constant eigenvalues of the hamitonian 2-form, ηa say, and
each Sa has complex dimension equal to the multiplicity of ηa; furthermore,
for each a in A there is an associated 2-form ωa on S (with ±ωa being the
component of the Kähler form of S on Sa and ± is chosen so that ηa ωa is pos-
itive definite) such that c1(E∞)/rk(E∞)−c1(E0)/rk(E0) = ∑

a∈A[ωa/2π].
Complex projective bundles of this form will be referred to as admissible

bundles or admissible manifolds. Likewise, the Kähler metrics, forms and
classes arising on admissible manifolds according to the general theory of
Hamiltonian 2-forms will be called admissible. By their very definition,
admissible Kähler metrics admit a natural isometric Hamiltonian S1-action
whose generator is denoted by K . Section 1 is mainly devoted to make
precise the above notions and conventions.

As in the first constructions of extremal Kähler metrics by E. Calabi
in [7], the search for admissible extremal Kähler metrics in a given admissi-
ble class Ω on an admissible 2m-manifold involves a polynomial of degree
equal to or less than m + 2, here denoted by FΩ, which we call the extremal
polynomial of Ω. This polynomial plays a pivotal role in the whole paper.
Our first main result can be stated as follows.
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Theorem 1. Let M = P(E0 ⊕ E∞) → S be an admissible manifold, where
the base S is a local Kähler product of CSC metrics (±ga,±ωa). Then there
is an extremal Kähler metric in an admissible Kähler class Ω if and only if
the extremal polynomial FΩ is positive on (−1, 1). This condition always
holds if Ω is ‘sufficiently small’; if it does, there is an admissible extremal
Kähler metric in Ω, which is CSC if and only if the Futaki invariant FΩ(K )
vanishes (i.e., FΩ has degree ≤ m + 1).

The admissible Kähler classes containing an extremal Kähler metric
form a nonempty open subset of all such classes, and those containing
a CSC Kähler metric form a real analytic hypersurface which is nonempty
if c1(E∞)/rk(E∞) − c1(E0)/rk(E0) is strictly indefinite (i.e., the definite
forms ωa on Sa do not all have the same sign).

Geometrically, an admissible Kähler class is sufficiently small if the
base S is large (low curvature) compared to the fibres (high curvature).
Thus the above theorem asserts the existence of extremal Kähler metrics
with curvature concentrated in the fibres, which agrees with the results
in [32,45]. Note also that by the uniqueness theorem of Chen–Tian [10,11],
‘the’ extremal Kähler metric in Ω (if it exists) is unique up to automorphism.

Section 2 is devoted to the proof of Theorem 1. This involves several
new ingredients of independent interest and relies in a crucial way on a re-
cent result of Chen–Tian [10,11], quoted in this paper as Theorem 4. First
of all, we consider what implications the existence of an extremal Kähler
metric has for admissible bundles, Kähler classes and metrics. In Sect. 2.1,
we apply the Matsushima–Lichnerowicz criterion [36,41] to obtain infor-
mation about the automorphism group of an admissible bundle when the
base metric on S is CSC. In Sect. 2.2, we use this information to show that,
for any admissible Kähler class Ω, the so-called extremal vector field of Ω
is a multiple of the canonical Hamiltonian Killing vector field K and we
compute the Futaki invariant FΩ(K ). In Sect. 2.3, we provide an explicit
formula for the Mabuchi–Guan–Simanca (modified) K-energy functional
relative to the natural S1-action on the space of admissible Kähler metrics
in Ω, and show that it is determined by the extremal polynomial FΩ which
has as a leading coefficient a nonzero multiple of FΩ(K ). By using the
Chen–Tian Theorem 4, we deduce that if Ω contains an extremal Kähler
metric, then FΩ must be nonnegative on (−1, 1). In the boundary case,
when FΩ is nonnegative with zeroes on (−1, 1), we show non-existence
of extremal Kähler metrics in Ω via a delicate limiting argument involving
the LeBrun–Simanca stability theorem [35], the general theory of Hamil-
tonian 2-forms [5], and the uniqueness of extremal Kähler metrics modulo
automorphisms established in [11].

In Sect. 2.4, we apply Proposition 1 of Sect. 1 to give a constructive proof
of the existence part of Theorem 1, unifying and generalizing work of Calabi,
Guan, Hwang, Hwang–Singer and the fourth author [8,27,30,31,54].

In Sect. 3 we present further existence and nonexistence results for
extremal and CSC metrics by computing the extremal polynomial on various
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examples and testing its positivity on (−1, 1). In many of these examples,
every Kähler class on M is admissible (see Remark 2) and, therefore,
Theorem 1 describes precisely which Kähler classes do contain an extremal
Kähler metric. This is the case when M = P(O ⊕L) → S is an admissible
geometrically ruled complex surface (meaning here that the degree of L
is non-zero); the extremal polynomial FΩ(z) is then a quartic divisible by
1 − z2. We thus obtain a complete resolution of the existence question for
extremal Kähler metrics on these complex surfaces. This, combined with an
observation from [2], fills in the missing step in the complete classification
of extremal Kähler metrics on all geometrically ruled complex surfaces,
which can be specifically stated as follows.

Corollary 1. Let M = P(E) → S be a geometrically ruled complex sur-
face, where E is a rank 2 holomorphic vector bundle over a compact
Riemann surface S of genus g. If M admits an extremal Kähler metric, then
one of the following two cases holds:

• E is polystable: then M = P(E) admits a locally-symmetric CSC Kähler
in each Kähler class;

• M = P(O⊕L) → S is admissible, the Kähler cone is a cone on an open
interval (a, b); the extremal Kähler metrics are precisely those of [7,30,
54], which are admissible and locally of cohomogeneity one, with Kähler
classes parameterized by a cone on a subinterval (a, c), with c = b
if and only if S has genus 0 or 1.

We refer the reader to [2] for more details. We also note that Ross–
Thomas [45] and G. Székelyhidi [50,51] independently obtained similar
results for rational Kähler classes on ruled surfaces, by using a different
approach relying on recent works of S. Donaldson [15,17,18].

Our results provide a fertile testing ground for the conjectures relat-
ing extremal and CSC Kähler metrics to stability, and we explore this in
Sect. 4. In Sect. 4.2 we relate our results to those of Ross–Thomas [45] and
Hong [32]: in particular, we show that there are CSC metrics on projective
bundles P(E) → S for which E is only (slope) polystable with respect to
one Kähler class on S up to scale.

In Sect. 4.4 we relate Theorem 1 to the notions of K-polystability [15,52]
or relative K-polystability [50] for Kähler classes, which are conjectured
to be equivalent to the existence of a CSC or extremal Kähler metric in
a given class. Actually, to be precise, we use a closely related notion of
(relative) slope K-polystability defined by Ross–Thomas in [45], which is
stronger than just specializing the notion of K-polystability in the sense [15]
to certain test configurations: the notion of (relative) slope K-polystability
used here might more properly be referred to as analytic (relative) slope
K-polystability, and is the notion relevant to assigning a sign of the Fu-
taki invariant on analytic test configurations (while the original defini-
tions of [53,15] require only algebraic test configurations). By generalizing
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a beautiful calculation of G. Székelyhidi [50] for ruled surfaces, we establish
the following result.

Theorem 2. Let Ω be an admissible integral Kähler class on the admissible
projective bundle M = P(E0 ⊕ E∞) → S, where S is CSC. If Ω is slope
K-polystable, it contains a CSC Kähler metric, and if it is relatively slope
K-polystable, it contains an extremal Kähler metric.

It is natural to ask if (relative) K-polystability in the sense of [15,50]
implies the existence of a CSC (or extremal) Kähler metric in Ω. We find
that this is true if dim S ≤ 4, but for dim S ≥ 6, we are only able to show
that the extremal polynomial is positive on (−1, 1) ∩Q.

Before our work, it was believed that K-polystability implies slope
K-polystability in general, but the proof in [45,46] only shows that it implies
slope K-semistability, the gap being closely related to the issue of positiv-
ity (versus nonnegativity) of the extremal polynomial at irrational points
in (−1, 1).

To show that this is a genuine problem, we end with some examples, on
projective line bundles over a product of three Riemann surfaces, of integral
admissible Kähler classes Ω such that FΩ is positive on (−1, 1) ∩ Q but
has an irrational repeated root in (−1, 1). We find these examples intrigu-
ing, since by Theorem 1, these Kähler classes do not contain an extremal
Kähler metric, so they should be unstable. However, even though they are
projective varieties, the degeneration that demonstrates this instability is not
algebraic. While we cannot prove that there is no other algebraic test config-
uration which would detect this instability, it is difficult to imagine how such
a test configuration could be constructed. Thus, presumably, our examples
are algebraically (relatively) K-polystable but analytically only (relatively)
K-semistable. This suggests that the non-algebraic degenerations implicit
in the use of slope K-polystability may be essential to relate stability to
existence of CSC and extremal Kähler metrics.1

We would like to thank Claude LeBrun for helpful comments, Richard
Thomas for discussions concerning [45,46], and the referee for useful sug-
gestions.
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1. Admissible bundles and Kähler metrics

This section is devoted to introducing the main ingredients of the general
theory of Hamiltonian 2-forms which we will use in this paper, and giving the
precise definitions of the geometric entities mentioned in the introduction.

1.1. Hamiltonian 2-forms. A Hamiltonian 2-form [4] on a Kähler mani-
fold (M, J, g, ω), of real dimension 2m > 2 is a real (1, 1)-form (i.e.,
a J-invariant 2-form) φ such that

2∇Xφ = d tr φ ∧ (JX)� − (Jd tr φ) ∧ X�

for all X ∈ TM (where X�(Y ) = g(X, Y ) for Y ∈ TM and tr φ = 〈ω, φ〉g).
The momentum polynomial of φ is then defined to be

p(t) := (−1)m pf(φ − tω) = tm − (tr φ) tm−1 + · · · + (−1)m pf φ,

where the Pfaffian is defined by φ∧· · ·∧φ = (pf φ)ω∧· · ·∧ω. The reason φ
is called Hamiltonian is that for any t ∈ R, p(t) is a Hamiltonian for a Killing
vector field K(t) := J gradg p(t) (this is not difficult to show [4, §2]). The
integer � = maxx∈M dim span{K(t)x : t ∈ R} (with 0 ≤ � ≤ m) is called
the order of φ.

We do not wish to impose the study of Hamiltonian 2-forms on the reader
of this paper, since we only need the general theory as motivation for the
classes of complex manifolds and metrics that we shall study. We therefore
now state a classification result which reduces the theory of Hamiltonian
2-forms of order 1 to an ansatz for metrics on projective bundles. This result
follows easily from [4,5], as we explain in Appendix A, where we also
explain why we restrict attention to the order 1 case.

Theorem 3. Let (M, g, J, ω) be a compact connected Kähler 2m-manifold
with a Hamiltonian 2-form φ of order 1. Then:

• there is an effective isometric Hamiltonian S1 action on M generated
by a vector field K = J gradg z such that the stable quotient of M by
the induced holomorphic C× action is a compact connected complex
manifold Ŝ of real dimension 2(m − 1);

• without loss, the image of the momentum map z is [−1, 1], and there are
Kähler manifolds Sa of dimension 2da and real numbers xa, indexed by
a ∈ Â ⊂ N ∪ {∞}, such that Ŝ is covered by

∏
a∈Â Sa and 0 < |xa| ≤ 1

with equality iff a ∈ {0,∞};
• z is a Morse–Bott function [1] on M with critical set z−1({−1, 1}), M0 :=

z−1((−1, 1)) is a principal C×-bundle over Ŝ, and on each Sa there is a
(1, 1)-form ωa (which is the pullback of a tensor on Ŝ) such that either
+ωa or −ωa is positive definite (with the sign chosen so that ωa/xa is
positive definite), and thus gives rise to a Kähler metric on Sa , accordingly
denoted by ±ga, such that the Kähler structure on M0 is
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g =
∑

a∈Â

1 + xaz

xa
ga + dz2

Θ(z)
+ Θ(z)θ2, ω =

∑

a∈Â

1 + xaz

xa
ωa + dz ∧ θ,

(1)

where θ is a connection 1-form (θ(K ) = 1) with dθ = ∑
a∈Â ωa, and Θ

is a smooth function on [−1, 1] satisfying

Θ > 0 on (−1, 1),(2)

Θ(±1) = 0, Θ′(±1) = ∓2;(3)

• if 0 ∈ Â then x0 = 1, S0 = CPd0 and g0 is the Fubini–Study metric
of scalar curvature 2d0(d0 + 1), otherwise we set d0 = 0; likewise, if
∞ ∈ Â then x∞ = −1, S∞ = CPd∞ and −g∞ is the Fubini–Study
metric of scalar curvature 2d∞(d∞ + 1), otherwise we set d∞ = 0; we
also put A = Â \ {0,∞} ⊂ Z+;

• the blow-up M̂ of M along z−1({−1, 1}) is C×-equivariantly biholomor-
phic to M0 ×C× CP1 → Ŝ and Ŝ is a fibre product of flat projective
unitary CPd0- and CPd∞-bundles over a Kähler manifold S covered by∏

a∈A Sa.

If we assume that Ŝ = P(E0)×S P(E∞) → S for projectively-flat hermitian
vector bundles E0, E∞ → S, then these bundles can be chosen so that M
is C×-equivariantly biholomorphic to P(E0 ⊕ E∞) → S, and we therefore
have c1(E∞) − c1(E0) = ∑

a∈A[ωa/2π], where c1(E) = c1(E)/ rank E.

The final assumption of this theorem is automatic if π1(S) = 1, when
Ŝ = CPd0 × S × CPd∞ and there is a line bundle L → S with
c1(L) = ∑

a∈A[ωa/2π] such that M is C×-equivariantly biholomorphic to
P(O ⊗ Cd0+1 ⊕ L ⊗ Cd∞+1) → S.

We shall use this theorem as an ansatz for constructing extremal Kähler
metrics on projective bundles of the form P(E0 ⊕ E∞) → S. For this we
shall use the following elementary computation [27,30,4].

Proposition 1. Let g be a Kähler metric of the form (1) on M0 and write
F(z) = Θ(z)pc(z) with pc(z) := ∏

a∈Â(1+ xaz)da . Then g is extremal, with
Scalg a constant affine function of z, iff

• there is a polynomial P of degree ≤ #Â + 1 such that

F ′′(z) = ( ∏

a∈Â

(1 + xaz)da−1
)
P(z);(4)

• for all a, ±ga has constant scalar curvature Scal±ga = ±2dasa where

P(−1/xa) = 2dasaxa

∏

b∈Â\{a}

(

1 − xb

xa

)

.(5)

The metric g then has constant scalar curvature iff P has degree ≤ #Â.
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Compared to [4,5], we have rescaled F(z) and pc(z) by
∏

a∈Â xda
a : this

is convenient as pc(z) is then positive on (−1, 1). Thus Θ is positive on
(−1, 1) if and only if F is. Also if Θ(z) satisfies (3), then F(z) = Θ(z)pc(z)
satisfies

F(±1) = 0, F ′(±1) = ∓2pc(±1).(6)

In the following subsections we study metrics of the form (1) and show
that the conditions of Theorem 3 are sufficient for the compactification of
such metrics on a projective bundle M = P(E0 ⊕ E∞) → S.

1.2. Admissible projective bundles. We use Theorem 3 (including the
final assumption) as motivation for the class of compact complex manifolds
we will study. A projective bundle of the form M = P

(
E0 ⊕ E∞

) p→ S will
be called admissible or an admissible manifold if:

• S is a covered by a product S̃ = ∏
a∈A Sa (for A ⊂ Z+) of simply-

connected Kähler manifolds (Sa,±ga,±ωa) of real dimensions 2da,
with (ga, ωa) being pullbacks of tensors on S; here and henceforth,
with slight abuse of notation, the signs ± before the Kähler struc-
ture (±ga,±ωa) on the complex manifold Sa mean that either +ωa or
−ωa is a positive definite (1, 1)-form which defines a Kähler metric de-
noted by +ga or −ga, respectively. We will use the notation ±ωa (rep.
±ga) to denote the positive definite form (resp. the Riemannian metric)
on Sa.

• E0 and E∞ are holomorphic projectively-flat hermitian vector bundles
over S of ranks d0 + 1 and d∞ + 1 with c1(E∞) − c1(E0) = [ωS/2π]
and ωS = ∑

a∈A ωa.

The second condition (cf. [33]) means that we can fix hermitian metrics on
E0 and E∞ whose Chern connections have tracelike curvatures Ω0 ⊗ IdE0

and Ω∞⊗ IdE∞ satisfying Ω∞−Ω0 = ∑
a∈A ωa. We normalize the induced

fibrewise Fubini–Study metrics (g0, ω0) and (−g∞,−ω∞) on P(E0) and
P(E∞) to have scalar curvatures 2d0(d0 + 1) and 2d∞(d∞ + 1).

We collect a few remarks and notations that we will use. We omit
pullbacks by obvious projections in these remarks.

(i) We sometimes let the index a take values in N∪{∞} by setting da = 0
for a /∈ A ∪ {0,∞} (so that Sa is a point and ωa = 0). This range will
be assumed unless otherwise stated. We set Â := {a : da > 0} so that
A = Â ∩ Z+.

(ii) The pullbacks of E0 and E∞ to S̃ are of the form E0 ⊗ Cd0+1 and
E∞ ⊗ Cd∞+1, where L := E−1

0 ⊗ E∞ = ⊗
a∈A La for line bundles

La → Sa with c1(La) = [ωa/2π].
(iii) e0 := P(E0 ⊕0) and e∞ := P(0⊕ E∞) denote the ‘zero’ and ‘infinity’

subbundles of M, covered by S0 × S̃ and S̃ × S∞, where S0 = CPd0

and S∞ = CPd∞ .
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(iv) The blow-up of M along e0 ∪ e∞ is M̂ := P(O ⊕ L̂)
p̂→Ŝ, where

Ŝ = P(E0) ×S P(E∞) → S and L̂ = O(1)E0 ⊗ O(−1)E∞ , using
the (fibrewise) hyperplane and tautological line bundles; we have
c1(L̂) = [ωŜ/2π], where ωŜ = ∑

a ωa. If d0 > 0 or d∞ > 0 we
say a blow-down occurs.

(v) ê0 and ê∞ denote the zero and infinity sections of M̂. The pullback of
L̂ to S0 × S̃ × S∞ is L0 ⊗ L ⊗ L∞, where L0 = O(1) → S0 and
L∞ = O(−1) → S∞.

(vi) Ŝ has a family of local Kähler product metrics gŜ(z) with Kähler forms
zωŜ+

∑
a ωa/xa and we set gŜ = gŜ(0). (Note that gŜ is not compatible

with ωŜ – the latter is symplectic, but not a Kähler form in general.)
We let gS(z) and gS = gS(0) denote the induced local Kähler product
metrics on S.

We summarize the set-up with the following diagram of bundles and
a blow-up:

M̂ = P(O ⊕ L̂)

��

�� Ŝ = P(E0) ×S P(E∞)

��

M = P(E0 ⊕ E∞) �� S,

the universal cover (omitting pullbacks) of this diagram being:

P(O ⊕ L̂)

��

�� CPd0 × S̃ × CPd∞

��

P(O ⊗ Cd0+1 ⊕ L ⊗ Cd∞+1) �� S̃ = ∏
a∈A Sa.

Remark 1. The existence of the line bundle L̂ → Ŝ with c1(L̂) = [ωŜ/2π]
implies that ωŜ is integral in the sense that [ωŜ/2π] is in the image of
H2(Ŝ,Z) in H2(Ŝ,R). When Ŝ is a global Kähler product (i.e., we can
write M = P(O ⊗ Cd0+1 ⊕ L ⊗ Cd∞+1) → S = ∏

a∈A Sa), this integral-
ity condition means that each ωa is integral, i.e., the compact manifolds
(Sa,±ga,±ωa) are Hodge.

We write ωa = qaαa for an integer qa �= 0, where αa is a primi-
tive integral Kähler form on Sa, so that qa is a nonzero integer with
the same sign as (ga, ωa), and q0 = 1 and q∞ = −1. We now com-
pare [ωa/2π] to the first Chern class c1(K

−1
a ) = [ρa/2π] of the anti-

canonical bundle of Sa, by writing [ρa] = pa[αa] + [ρa]0, for a ratio-
nal number pa, where [ρa]0 · [αa]da−1 = 0. Since any line bundle P
with first Chern class [αa/2π] is ample, P da+1 ⊗ Ka is nef by a re-
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sult of Fujita [21] (see also [12, Theorem 8.3]), from which it follows
easily that pa ≤ da + 1. If Sa is a Riemann surface of genus ga, then
pa = 2(1 − ga) ≤ 2.

We set sa = pa/qa. When ±ga is CSC, we have Scal±ga = ±2dasa,
where the sign is that of qa, so the scalar curvature of ±ga has the same sign
as pa. Thus, in the case of a CSC Hodge manifold Sa, the Fujita inequality
pa ≤ da + 1 is (since |qa| ≥ 1) equivalent to Scal±ga ≤ 2da(da + 1).

The conditions of Theorem 3 are also sufficient for the compactif-
ication of metrics of the form (1) on an admissible projective bundle M =
P(E0 ⊕ E∞) → S, where z : M → [−1, 1] with e0 = z−1(1) and
e∞ = z−1(−1), and θ is a connection 1-form. Before discussing this, we
introduce the Kähler classes to which they belong.

1.3. Admissible Kähler classes and canonical metrics. Suppose that
M = P(E0 ⊕ E∞) → S is an admissible bundle. We say that a Kähler
class Ω on M is admissible if there are constants xa, with x0 = 1, x∞ = −1,
such that the pullback of Ω to M̂ has the form

∑

a

[ωa]/xa + Ξ̂

up to scale, where the 2-forms ωa are viewed as pullbacks to M̂ of the
corresponding forms on Ŝ (induced by the local product Kähler structure∏

a Sa) and Ξ̂ is Poincaré dual to 2π[ê0 + ê∞]. Thus Ξ̂ = 2πc1(VM̂), where
VM̂ = O(2)O⊕L̂ ⊗ p̂∗L̂ and O(−1)O⊕L̂ is the (fibrewise) tautological
bundle of M̂ = P(O ⊕ L̂). (The first Chern class [ωŜ/2π] of L̂ itself pulls
back to M̂ to give the Poincaré dual of [ê0 − ê∞].)

It follows that admissible Kähler classes have the form

Ω =
∑

a∈A

[ωa]/xa + Ξ

up to scale, where the pullback of Ξ to M̂ is [ω0]−[ω∞]+Ξ̂. Since pullback
to a blow-up is injective on cohomology, admissible Kähler classes on M
are uniquely determined by the parameters xa.

If (g, ω) is any Kähler metric on M of the form (1) on M0, then we claim
Ω = [ω] is admissible. For this we first note that on M0, the Kähler form ω
is a linear combination

∑
a∈A ωa/xa + η, where

η = (z + 1)ω0 +
∑

a∈A

zωa + (z − 1)ω∞ + dz ∧ θ.

Here ω0, ω∞ and θ are defined only on M0. However, for a ∈ A, ωa extends
to a closed 2-form on M (as a pullback from S), so η is globally defined
and closed on M (since ω is). The pullback of η to M̂ may be written
ω0 − ω∞ + η̂ with η̂ = d(zθ) on M0, and since ω0 and ω∞ are well-defined
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and closed on M̂ (as pullbacks from Ŝ), so is η̂, and we easily see2 that
[η̂] = Ξ̂.

Observe that η depends implicitly on the choice of metric (g, ω) on M
because the momentum map z does. However, the above shows that the
cohomology class [η] is Ξ, independent of this choice. From this realisation
of Ξ, it follows easily, by pulling back to e0 and e∞, that for a cohomology
class of the form

∑
a∈A[ωa]/xa + Ξ to be a Kähler class, it is necessary

that for a ∈ A, 0 < |xa| < 1 with the sign of xa such that ωa/xa is
positive. Conversely, we claim that any cohomology class of this form (with
0 < |xa| < 1 and ωa/xa positive for a ∈ A) is an admissible Kähler class
and contains a Kähler metric of the form (1) on M0 up to scale. To do this
we construct a distinguished Kähler metric in each such class.

Let r0 and r∞ be the norm functions induced by the hermitian metrics
on E0 and E∞. Then z0 = 1

2r2
0 and z∞ = 1

2r2∞ are fibrewise momentum
maps for the U(1) actions given by scalar multiplication in E0 and E∞,
generated by K0 and K∞. We equip M with a fibrewise Fubini–Study
metric (gM/S, ωM/S): with our normalization of g0 and g∞, each fibre is the
Kähler quotient of the corresponding fibre of E0 ⊕ E∞ by the diagonal U(1)
action at momentum level z0 + z∞ = 2; then on this momentum level, the
function z = z0 − 1 = 1 − z∞ descends to a fibrewise momentum map
M → [−1, 1] for the quotient U(1) action.

We extend (gM/S, ωM/S) to TM by requiring that the horizontal distribu-
tion of the induced connection on M is degenerate. To obtain a nondegen-
erate metric, we then set

gc =
∑

a∈A

1 + xaz

xa
ga + gM/S, ωc =

∑

a∈A

1 + xaz

xa
ωa + ωM/S,

where the (ga, ωa) are pulled back from S; gc is then a positive def-
inite Kähler metric with respect to the canonical complex structure of
M = P(E0 ⊕ E∞) by the assumptions on the parameters xa. We refer
to (gc, ωc) as the canonical Kähler metric on M in the given admissible
Kähler class.

Lemma 1. For any 0 < |xa| < 1 (a ∈ A), the corresponding canoni-
cal Kähler metric on M is of the form (1) on M0, where Θ = Θc and
Θc(z) = 1 − z2.

Proof. The inverse image in E0 ⊕ E∞ of M0 = M \ (z−1(−1) ∪ z−1(1))
may be viewed as an open subset of O(−1)E0 ⊕ O(−1)E∞ . Then (gc, ωc)

2 On each fibre of p̂ : M̂ → Ŝ, η̂/4π integrates to 1 and so [η̂/4π] restricts to give the
generator of H2( p̂−1(x),Z). Hence by the Leray–Hirsch theorem, H2(M̂,R) is generated
by [η̂] and pullbacks from S. The restriction of [η̂/2π] to ê0 is the first Chern class [ωŜ/2π]
of L̂ (and the restriction to ê∞ is the first Chern class [−ωŜ/2π] of L̂−1). Thus [η̂/4π] is
a projective version of the Thom class of a vector bundle.
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is the Kähler quotient at momentum level z0 + z∞ = 2 of the metric

∑

a

(1 + xa)z0 + (1 − xa)z∞
2xa

ga + dz2
0

2z0
+ dz2∞

2z∞
+ 2z0θ

2
0 + 2z∞θ2

∞,

where x0 = 1, x∞ = −1, and θ0, θ∞ are connection 1-forms for the
U(1)-line bundles O(−1)E0 , O(−1)E∞ with θ0(K0) = 1 = θ∞(K∞), dθ0 =
−ω0 + Ω0, dθ∞ = ω∞ + Ω∞.

If we regard M0 as an open subset of M̂ = P(O ⊕ L̂), then the diagonal
action is generated by K0 + K∞, θ∞ − θ0 is basic and so induces a unitary
connection θ (with respect to the quotient U(1)-action) on L̂ with dθ = ωŜ.
Substituting z0 = 1 + z and z∞ = 1 − z and performing the quotient
yields (1) with Θ = Θc. (On each fibre over Ŝ this is the realization of CP1

as a Kähler quotient of C2.) ��
Remark 2. The existence of the canonical metric on M shows there does
exist a cohomology class Ξ whose pullback to M̂ is Ξ̂. Ξ is then unique,
and the admissible Kähler classes form a family of dimension #A + 1. If
b2(Sa) = 1 for all a and b1(Sa) �= 0 for at most one a, then every Kähler
class on M is admissible.

1.4. Admissible metrics. Let M = P(E0 ⊕ E∞) → S be an admissible
bundle and Ω an admissible Kähler class corresponding to parameters xa.
Then a Kähler metric in Ω is said to be admissible if it has the form (1) on M0,
up to scale, with respect to the given projective unitary bundle structure on M
and local Kähler product structure on S. According to Theorem 3, in order
for a (scale of a) metric of the form (1) on M0 to define an admissible
Kähler metric on M, it is necessary that Θ is a smooth function on [−1, 1]
satisfying (2) and (3). We now show that these conditions are also sufficient
and provide a parameterization of admissible metrics.

We first note that any metric of the form (1), where Θ is a smooth
function on [−1, 1] satisfying (2) and (3), defines a smooth metric g on M
compatible with the same symplectic form as the canonical Kähler metric gc
in Ω, provided that we take z to be the momentum map and θ the connection
1-form of the canonical Kähler metric; then, using (3), we find that g − gc
is smooth on M, and g is positive definite on M since it is on M0 by (2) and
ω is nondegenerate on M. (See [5, §1] for details.)

With this point of view, the smooth functions Θ on [−1, 1] satisfy-
ing (2) and (3) define a family of complex structures on M. However, we
claim that there is an S1-equivariant biholomorphism, in the identity com-
ponent of the diffeomorphism group, between any two such complex struc-
tures, so that Θ parameterizes Kähler metrics compatible with the given
(fixed) complex structure on M whose Kähler forms belong to a given ad-
missible Kähler class Ω. This claim holds essentially because it is true for
toric complex structures on CP1 (and for toric varieties in general), but for
later use we need to make explicit the transformation of M that relates the
complex and symplectic points of view, following [29,28,15].
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A key ingredient in this transformation is the notion of a symplectic
potential of an admissible Kähler metric defined by Θ(z), which is a function
u(z) on (−1, 1) with u′′(z) = U(z) := 1/Θ(z). Then

uc(z) = 1

2
((1 − z) log(1 − z) + (1 + z) log(1 + z) − 2 log 2)

is the unique symplectic potential for the canonical Kähler metric (gc, Jc)
given by Θc(z) = (1 − z)(1 + z), which satisfies uc(±1) = 0. We can
extend this description to all admissible Kähler metrics compatible with ω,
thanks to the following lemma, which is an easy application of l’Hôpital’s
rule and Taylor’s theorem.

Lemma 2. A smooth function Θ(z) = 1/U(z) satisfies (3) if and only if
U(z)−Uc(z) is smooth on [−1, 1]. Then U(z)/Uc(z) is positive and smooth
on [−1, 1].

On M0, the symplectic potential u(z) of an admissible Kähler metric is
closely related to a Kähler potential of ω with respect to J by a fibrewise
Legendre transform (see [4,29]) over Ŝ. Indeed, if we put

y = u′(z), h(y) = −u(z) + yz,

then dc
J y = θ and ddc

J h(y) = ω − ∑
a ωa/xa on (M0, J).3 Let yc, hc(yc)

denote the corresponding quantities associated to uc . There are local 1-forms
α on Ŝ such that θ = dt + α, where t : M0 → R/2πZ is locally defined up
to an additive constant on each fibre. Since exp(y + it) and exp(yc + it) give
C×-coordinates on the fibres, there is a U(1)-equivariant fibre-preserving
diffeomorphism Ψ of M0 over Ŝ with

Ψ∗y = yc, Ψ∗t = t, and hence Ψ∗ J = Jc.

As Jc and J are integrable complex structures, Ψ extends to a U(1)-
equivariant diffeomorphism of M leaving fixed any point on e0 ∪ e∞ (since
it is fibre preserving).

Put ω̃ := Ψ∗ω. Then ω̃ is a Kähler form on (M, Jc) which (we claim)
belongs to the same cohomology class Ω as ω. Indeed, on M0 we have

ω̃ − ω = ddc
Jc
(h(yc) − hc(yc))

since ddc
Jc

h(yc) = Ψ∗ddc
J h(y) = ω̃ − ∑

a ωa/xa, so the following implies
the claim.

Lemma 3. The function h(yc) − hc(yc) is smooth on M.

3 It follows that if ±Ha is a local Kähler potential for ±ωa and ũ = u(z) − ∑
a(1 +

xaz)Ha/xa , then ỹ = ∂ũ/∂z is pluriharmonic and h̃ = −ũ + ỹz is a local Kähler potential
for ω on (M0, J ) [4].
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Proof. Since Ψ is a diffeomorphism with Ψ∗y = yc, this holds if and only
if h(y) − hc(y) is smooth on M. We already know that h(y) − hc(yc) =
−(u(z)−uc(z))+ z(u′(z)−u′

c(z)) is smooth (by Lemma 2) so it suffices to
show that hc(y) − hc(yc) is smooth on M. However, knowing uc explicitly,
we calculate

hc(y) − hc(yc) = −1

2

(

log

(
1 − z̃

1 − z

)

+ log

(
1 + z̃

1 + z

))

,

where z̃ := Ψ∗z is the momentum map of ω̃ = Ψ∗ω; since Ψ is S1-
equivariant and fixes e0 ∪ e∞, it follows that z̃, viewed as a function of z,
satisfies z̃(±1) = ±1; moreover, since both z̃ and z are momentum maps of
the same U(1) action on M (and are therefore Morse–Bott functions with
the same critical sets), we must have z̃′(±1) �= 0. Thus hc(y) − hc(yc) is
smooth on M. ��

Hence the moduli space Kadm
ω of admissible metrics in Ω = [ω] is

identified with the space of smooth functions Θ on [−1, 1] satisfying (2)–(3)
or equivalently with {u ∈ C0([−1, 1]) : u − uc ∈ C∞([−1, 1]), u(±1) = 0
and u′′ > 0 on (−1, 1)}.
1.5. The isometry Lie algebra. For a compact Kähler manifold (M, g),
we denote by i0(M, g) the Lie algebra of all Killing vector fields with zeros.
Since M is compact this is equivalently the Lie algebra of all Hamiltonian
Killing vector fields.

Proposition 2. Let g be an admissible metric on M = P(E0 ⊕ E∞)
p→ S

and equip S and Ŝ → S with the metrics gS, gŜ induced by
∑

a ga/xa on∏
a Sa. Let z(K, g) be the centralizer in i0(M, g) of the Killing vector field

K = J gradg z.
Then the vector space z(K, g) is the direct sum of a lift of i0(Ŝ, gŜ) and

the span of K in such a way that p∗ : i0(M, g) → i0(S, gS) is induced by
the natural surjection i0(Ŝ, gŜ) → i0(S, gS).

Proof. Let X be a holomorphic vector field on Ŝ which is Hamiltonian
with respect to ωh := ∑

a ωa/xa; then the projection Xa of X onto the
distribution Ha (induced by TSa on the universal cover

∏
a Sa of Ŝ) is

a Killing vector field with zeros, so ιXa
ωh = −d fa for some function fa

(with integral zero). Thus
∑

a faxa is a Hamiltonian for X with respect
to the symplectic form ωŜ = ∑

a ωa: since this is the curvature dθ of
the connection on M0, X lifts to a holomorphic vector field X̃ = XH +
(
∑

a faxa)K on M0, which is Hamiltonian with potential
∑

a(1 + xaz) fa

and commutes with K . Here XH is the horizontal lift to M0 with respect
to θ. X̃ and its potential extend to M since M \ M0 has codimension ≥ 2
and X̃ has zeros.

Conversely any element of z(K, g) pulls back to a holomorphic vector
field V on M̂. The projection of V to the normal bundle p̂∗TŜ of p̂ : M̂ → Ŝ
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is holomorphic hence constant on the CP1 fibres by Liouville’s theorem
(the normal bundle is trivial on each fibre), so V is projectable; since V is
the pullback of a Killing vector field which commutes with K , it maps to
zero iff it comes from a constant multiple of K . This gives a projection to
i0(Ŝ, gŜ) splitting the inclusion just defined. ��

2. Admissible extremal Kähler metrics

2.1. Automorphisms and the Matsushima–Lichnerowicz obstruction.
On any compact Kähler manifold (M, g), the Lie algebra h(M) of holomor-
phic vector fields lies in an exact sequence:

0 → h0(M) → h(M) → H1(M,R)∗,

where h0(M) is the ideal of holomorphic vector fields with zeros, which is
the Lie algebra of the reduced automorphism group H0(M) ⊂ Aut0(M), i.e.,
the connected component of the kernel of the Albanese map Aut0(M) →
H1(M,R)∗/H1(M,Z). The Matsushima–Lichnerowicz theorem [36,41]
says that if g is CSC, h0(M) is the complexification of the Lie algebra
i0(M, g) of Hamiltonian Killing vector fields and h(M) = a(M) ⊕ h0(M),
a(M) being the central subalgebra of parallel vector fields: thus h(M)
is reductive. This condition on h(M) is often called the Matsushima–
Lichnerowicz obstruction to the existence of CSC Kähler metrics on (M, J).

Let us consider the special case of geometrically ruled complex mani-
folds M = P(E), where p : P(E) → S and E is a holomorphic vector
bundle of rank r +1 over a compact Kähler 2d-manifold (S, h, ωh). Thus M
is a kählerian 2m-manifold with m = r +d: for instance, [O(1)E]+k[p∗ωh]
is a Kähler class for k � 1, where O(−1)E is the (fibrewise) tautological
line bundle of P(E).

The projection of any holomorphic vector field V ∈ h(M) to the normal
bundle p∗TS is constant on each fibre, so V descends to a holomorphic
vector field p∗V ∈ h(S). Since p∗[V1, V2] = [p∗V1, p∗V2], we have an
exact sequence of Lie algebras

0 → hS(M) → h0(M) → h0(S),

where hS(M) is the subspace of h(M) of holomorphic vector fields tangent
to the fibres of p (which have zeros). Obviously hS(M) = H0(S, sl(E))
is the Lie algebra of holomorphic vector fields preserving the CPr-fibres
of p : P(E) → S. Since an ideal in a reductive Lie algebra is reductive,
we obtain the following weaker (but often more useful) version of the
Matsushima–Lichnerowicz obstruction.

Proposition 3. Let M = P(E) → S be a geometrically ruled complex
manifold which admits a CSC Kähler metric. Then hS(M) must be reductive.

The following elementary result yields a simple application of this cri-
terion.
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Proposition 4. Let M = P(E0 ⊕ E1 ⊕· · ·⊕ E�), where Ej are holomorphic
vector bundles on a compact kählerian manifold S such that H0(S, gl(Ej))

is reductive and H0(S, Hom(Ej , Ei)) = 0 for all i < j. Then hS(M) is
reductive iff H0(S, Hom(Ei, Ej)) = 0 for all i < j.

Proof. Any element of the Lie algebra hS(M) = H0(S, sl(E)) may be rep-
resented as an (�+1)× (�+1) matrix (aij ) with aij ∈ H0(S, Hom(Ei, Ej)).
By assumption, this matrix is upper-triangular. The strictly upper-triangular
matrices form a nilpotent ideal n and if this is zero, hS(M) is clearly re-
ductive. Conversely, taking commutators with elements of the form IdEi /

rank Ei − IdEj / rank Ej ∈ H0(S, sl(E)), we see that n ⊆ [hS(M), hS(M)].
Hence if n �= 0, [hS(M), hS(M)] is not semisimple, i.e., hS(M) is not
reductive. ��
Corollary 2. Let M = P(E) where E = L0 ⊕ L1 ⊕ · · · ⊕ Lr is a direct
sum of holomorphic line bundles over a Riemann surface Σ of genus g. If
g ≥ 2 and deg Li − deg Lj > g − 1 for some 0 ≤ i, j ≤ r then M admits
no CSC Kähler metric. If g ≤ 1, then M admits a CSC Kähler metric if and
only if deg Li = deg Lj for all i, j (i.e., L0 ⊕L1 ⊕· · ·⊕Lr is a polystable
vector bundle).

Proof. We can assume without loss that E = E0 ⊗ Cr0 ⊕ E1 ⊗ Cr1 ⊕ · · · ⊕
E� ⊗Cr� with deg Ei ≤ deg Ej and Ei �∼= Ej for i < j. The Kodaira vanishing
theorem then implies H0(Σ,E−1

j ⊗ Ei) = 0 for any i < j, and we may
apply Proposition 4. By assumption, deg E� − deg E0 > max(0, g − 1),
and so dim H0(Σ,E−1

0 ⊗ E�) > 0 by Riemann–Roch. Hence hΣ(M) is not
reductive, and there is no CSC Kähler metric on M. The converse when
g ≤ 1 follows from Narasimhan–Seshadri [43]. ��
Remark 3. The assumptions of Proposition 4 hold if E1, . . . , E� are project-
ively-flat hermitian vector bundles such that the slopes µ(Ej) := c1(Ej) ∪
Ωd−1, with respect to some Kähler class Ω on S (dim S = 2d), satisfy
µ(Ei) < µ(Ej) for i < j. Indeed in this case gl(Ej) is a flat hermitian
bundle and H0(S, gl(Ej)) is the space of parallel sections of gl(Ej)

4, which
is a complexification of the space of parallel sections of u(Ej ), hence a reduc-
tive Lie algebra. The slope condition then ensures H0(S, Hom(Ej, Ei)) = 0
for all i < j by a theorem of Kobayashi [33].

In general, the condition that hS (M) is reductive does not implyh0(M) is.
However it does if p∗ : h0(M) → h0(S) is surjective and h0(S) is reductive.
This obviously holds if h0(S) = 0. It also holds if (S, gS) is CSC and there
is a metric g on M such that p∗ is a surjection from i0(M, g) to i0(S, gS).
This is true for admissible bundles by Proposition 2.

4 This is a standard Bochner argument, as in [33]. Alternatively, note that the pullback
of gl(Ej) to the universal cover of S is trivialized by parallel sections, and apply the open
mapping theorem: the pullback of a holomorphic section of gl(Ej) has closed bounded
image in this trivialization.
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Proposition 5. Let Ω be an admissible Kähler class on the admissible
projective bundle M = P(E0 ⊕ E∞) → S, where the local product metric
gS on S is CSC. Then the admissible metrics in Ω are invariant under
a common maximal compact connected subgroup of H0(M), and h0(M)

is reductive iff H0(S, Hom(E0, E∞)) = 0 = H0(S, Hom(E∞, E0)). This
latter condition holds if c1(E∞) − c1(E0) is strictly indefinite.

Proof. Let g be an admissible Kähler metric on M. We know by the
Matsushima–Lichnerowicz theorem that h(S) is reductive and h0(S) is the
complexification of the Lie algebra i0(S, gS) of a maximal compact sub-
group of H0(S). Then by Proposition 2, both p∗ : h0(M) → h0(S) and
p∗ : i0(M, g) → i0(S, gS) are surjective.

To show that the Lie algebra i0(M, g) is a maximal compact subalgebra
of h0(M), it therefore suffices to show that i0(M, g) ∩ hS(M) is a maximal
compact subalgebra of hS(M). Since c1(E∞) − c1(E0) = ωS, we can
certainly arrange that µ(E∞) − µ(E0) is nonzero by the choice of a Kähler
class on S. Then, by Remark 3, we are under the hypotheses of Proposition 4,
and, as in its proof, we have that hS(M) is the direct sum of the reductive
centralizer of K and a nilpotent ideal n in [hS(M), hS(M)]. The first part
now follows easily from Proposition 2 and Remark 3.

As noted above, h0(M) is reductive iff hS(M) is. By Proposition 4, the
latter happens iff both H0 (S, Hom(E0, E∞)) = 0 = H0(S, Hom(E∞, E0)).
This indeed holds if c1(E∞)−c1(E0) is strictly indefinite (by the vanishing
theorem of Kobayashi [33] as in Remark 3), since we can then choose Kähler
classes on S such that the corresponding slopes have µ(E∞) − µ(E0) with
either sign. ��
Since S is a local Kähler product, it is CSC iff the factors Sa (a ∈ A) in the
universal cover are CSC.

2.2. The Futaki invariant and extremal vector field. On a compact Käh-
ler 2m-manifold (M, J, g, ω), recall that the (normalized) Futaki invariant
of a real holomorphic vector field with zeros V = J gradg f + gradg h is
defined by

Fω(V ) =
(∫

M µg
∫

M( f + ih)Scalgµg − ∫
M Scalgµg

∫
M( f + ih)µg

)

Vol(M)2
,

where µg = ωm/m! is the volume form of g. Futaki [23] showed that
this complex number is independent of the choice of metric in the Käh-
ler class Ω = [ω], and that the map FΩ : h0(M) → C is a character
on h0(M). FΩ is closely related to the Futaki–Mabuchi extremal vector field
KΩ := J gradg prgScalg of (M, J,Ω, G), where G is a maximal compact
connected subgroup of H0(M) and prg is the L2-projection onto the space
of Killing potentials with respect to any G-invariant metric g in Ω: Futaki
and Mabuchi [24] showed that KΩ is independent of this choice. Clearly
FΩ and KΩ vanish if Ω contains a CSC metric. Calabi [8] showed that if
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FΩ vanishes then any extremal Kähler metric in Ω is a CSC metric, but
the vanishing of FΩ does not suffice in general for the existence of a CSC
metric in Ω.

Let Ω be an admissible Kähler class on M = P(E0 ⊕ E∞) → S and
suppose in addition that for a ∈ A, ±ga is a CSC Kähler metric with scalar
curvature Scal±ga = ±2dasa. Let pc(t) = ∏

a(1 + xat)da and define

αr :=
∫ 1

−1
pc(t)t

rdt,

βr := pc(1) + (−1)r pc(−1) +
∫ 1

−1

(∑

a

dasaxa

1 + xat

)

pc(t)t
rdt.

(7)

We now compute the Futaki invariant FΩ(K ) of K = J gradg z and show
that KΩ is essentially FΩ(K )K , where G the maximal compact connected
subgroup of H0(M) of Proposition 5 preserving admissible Kähler metrics
in Ω. FΩ(K ) will reappear in the next paragraph as the leading coefficient
of a polynomial associated with Ω.

Proposition 6. Suppose M is admissible over a CSC base and Ω is
an admissible Kähler class with admissible metric g. Then FΩ(K ) =
2(α0β1 −α1β0)/α

2
0. Also the L2-projection of Scalg orthogonal to the space

of Killing potentials is

Scalg + Az + B(8)

where A and B are given by

Aα1 + Bα0 = −2β0

Aα2 + Bα1 = −2β1.
(9)

(Since α0α2 > α2
1, this system has a unique solution for A, B.) In particular

the extremal vector field of (Ω, G) is KΩ = −AK = 2(α0β1 − α1β0)K/
(α0α2 − α2

1).

Proof. We may rescale Ω so that an admissible metric (g, ω) in Ω is of the
form (1). We then have

µg = ωm

m! = pc(z)

(∧

a

(ωa/xa)
da

da!
)

∧ dz ∧ θ,

where m = 1 + ∑
a da is the complex dimension of M. Thus

∫

M
µg = 2πVol

(

S,
∏

a

ωa

xa

)

α0 (= Vol(M)),

∫

M
zµg = 2πVol

(

S,
∏

a

ωa

xa

)

α1 = Vol(M)α1/α0,

where Vol(S,
∏

a
ωa
xa

) = ∏
a Vol(Sa,

ωa
xa

) in the case when S is a global
product.
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The scalar curvature of (M, g) is given by

Scalg =
∑

a

2dasaxa

1 + xaz
− F ′′(z)

pc(z)
(10)

where F(z) = Θ(z)pc(z) (see e.g. [4, (79)]). We thus calculate
∫

M
zScalgµg = 2πVol

(

S,
∏

a

ωa

xa

)

×
∫ 1

−1

((∑

a

2dasaxa

1 + xaz

)

pc(z) − F ′′(z)
)

zdz

= 2πVol

(

S,
∏

a

ωa

xa

)

×
(∫ 1

−1

(∑

a

2dasaxa

1 + xaz

)

pc(z)z dz − [zF ′(z) − F(z)]+1
−1

)

= 2Vol(M)β1/α0,

where we integrate by parts, then impose the boundary conditions (3).
Similarly,

∫

M
Scalgµg = 2Vol(M)β0/α0

and the first claim follows.
For the second claim note that the above integral formulae imply Scalg +

Az + B is orthogonal to the Killing potentials 1, z if and only if (9) holds.
By the form of Scalg, the fact that the sa are constant, and Proposition 2,
the result follows. ��

Note that the above expression for FΩ(K ) is manifestly independent of
the choice of a smooth function Θ(z) satisfying (3), as it should be according
to the general theory [23]. Indeed, as we have already discussed in Sect. 1.4,
these smooth functions Θ(z) define Kähler metrics within the same Kähler
class.

2.3. K-energy and the extremal polynomial. Given a complex 2m-mani-
fold (M, J), a maximal compact connected subgroup G of H0(M), and
a Kähler class Ω, we denote by MΩ the infinite dimensional Fréchet space
of Kähler metrics in Ω and let MG

Ω be the subspace of G-invariant Kähler
metrics in Ω. Following Guan [28] and Simanca [48], consider the map

g �→ pr⊥g Scalgµg,

where pr⊥g is the L2-projection orthogonal to the space of Killing potentials.
This can be viewed (by integration) as a 1-form σ on MG

Ω , which turns out
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to be closed. Therefore for any ω0 ∈ Ω, there exists a unique functional
EG

ω0
: MG

Ω → R with

dEG
ω0

= −σ,

EG
ω0

(ω0) = 0. Note that changing the base point ω0 ∈ MΩ would change
EG

ω0
by an additive constant. We refer to EG

ω0
as the (modified) K-energy: it

agrees with the Mabuchi K-energy [38] when G is trivial.
By definition, it is clear that the critical points of EG

ω0
are exactly the

extremal Kähler metrics in MG
Ω , since σ = 0 means that Scalg is a Killing

potential. Note that by the Calabi theorem [7], any extremal Kähler metric
g ∈ MΩ belongs to MG

Ω with G = Isom0(M, g) ∩ H0(M).
Building on earlier work by Bando–Mabuchi [6], Chen [9], Donald-

son [16] and others, Chen and Tian have established the following unique-
ness result and necessary condition for existence of an extremal Kähler
metric.

Theorem 4 [10,11]. Extremal Kähler metrics in MΩ are unique up to
automorphism and any extremal Kähler metric in MG

Ω realizes the absolute
minimum of EG

ω0
(for any ω0 ∈ MG

Ω). In particular, if MG
Ω contains an

extremal Kähler metric, then EG
ω0

is bounded from below.

Now let M be an admissible projective bundle over a CSC base as
in the previous paragraph. We want to obtain a formula for the K-energy
as a functional acting on Kadm

ω , where ω is fixed, so we need to use the
description given in Sect. 1.4 which shows how Kadm

ω is embedded into MG
Ω ,

in which the complex structure is fixed.
This description shows that if ut(z) is a path of symplectic poten-

tials in Kadm
ω , then the smooth functions ht(yc) − hc(yc) define a path

ω + ddc
Jc
(ht(yc) − hc(yc)) in MΩ, where ht are introduced by

ht(yt(z)) = −ut(z) + ytz, yt = u′
t(z),

so that, after setting z = y−1
t (yc), we have

ht(yc) = −ut
(
y−1

t (yc)
) + y−1

t (yc)yc.

Differentiating with respect to t, we get for the corresponding vector fields
u̇ ∈ Tg(K

adm
ω ) and ḣ ∈ Tω(MG

Ω), the relation (cf. [28,15]):

ḣ = −u̇.

Hence we obtain the following symplectic version of the (modified)
K-energy.

Lemma 4. The K-energy EG
ω , restricted to the space of admissible Kähler

metrics in Ω and viewed as a function on the space of symplectic potentials,
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is determined uniquely up to an additive constant by the formula

(
dEG

ω

)
g
[u̇] =

∫

M

(
pr⊥g Scalg

)
u̇ µg,

where pr⊥g denotes the L2-projection orthogonal to the space of Killing
potentials.

Consider an admissible metric g in Ω corresponding to the function
Θ(z) = F(z)/pc(z). Since the base S is CSC we have, by Proposition 6,
pr⊥g Scalg = Scalg + Az + B, with A and B given by (9) and Scalg by (10).

Lemma 5. There is a unique smooth function FΩ on [−1, 1] with

F ′′
Ω(z) =

(

Az + B +
∑

a

2dasaxa

1 + xaz

)

pc(z)(11)

and FΩ(±1) = 0. FΩ satisfies (6) and is a polynomial of degree ≤ m + 2,
the coefficient of zm+2 being a nonzero multiple of A.

Proof. There is clearly a unique solution to (11) with FΩ(±1) = 0. One
easily checks, using (9) that the solution is

(1 + z)pc(−1) + (1 − z)pc(1)

+
∫ 1

−1

(
1

2
(At + B) +

∑

a

dasaxa

1 + xat

)

pc(t)|z − t|dt.

The derivative of this function is

pc(−1) − pc(1) +
∫ 1

−1

(
1

2
(At + B) +

∑

a

dasaxa

1 + xat

)

pc(t)sign(z − t)dt,

which gives the formulae for F ′
Ω(±1) in (6), using the first equation of (9).

��
The motivation for this lemma is that now Scalg + Az + B =

(F ′′
Ω(z) − F ′′(z))/pc(z), see (10). Furthermore, F and FΩ satisfy the same

boundary conditions (6).

Proposition 7. Let Ω be an admissible Kähler class on an admissible
bundle over a CSC base. Then the K-energy restricted to the space of
admissible Kähler metrics Kadm

ω is (up to an additive constant) a positive
multiple of the functional

Egc : u(z) �→
∫ 1

−1
FΩ(z)

(
u′′(z) − u′′

c(z)
)
dz −

∫ 1

−1
pc(z) log

(
u′′(z)
u′′

c (z)

)

dz.
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Proof. Egc is well-defined by Lemma 2 and its gradient is

(dEgc)g[u̇] =
∫ 1

−1
FΩ(z)u̇′′(z)dz −

∫ 1

−1
pc(z)

u̇′′(z)
u′′(z)

dz

=
∫ 1

−1
(FΩ(z) − F(z))u̇′′(z)dz.

Integrating twice by parts, using the fact that F and FΩ both satisfy (6), and
multiplying by 2πVol(S,

∏
a ωa/xa), we obtain

∫
M(Scalg + Az + B)u̇µg.

��
Remark 4. It is worth noticing that (by (3)) the functional

E : u(z) �→
∫ 1

−1

(
FΩ(z)u′′(z) − pc(z) log u′′(z)

)
dz

is well-defined on Kadm
ω and is still a primitive of the restriction of the

1-form σ to Kadm
ω . It can then be regarded as a natural determination of

a (modified) K-energy on Kadm
ω , with no explicit reference to any base

point in Kadm
ω , and such that Egc(u) = E(u) − E(uc).

Corollary 3. If there is an extremal Kähler metric in Ω, then FΩ ≥ 0
on [−1, 1].
Proof. If there is an extremal Kähler metric in Ω, then by Theorem 4 [10,
11], the K-energy is bounded from below. We now apply an argument
from [15]: take any nonnegative smooth function f(z) with supp( f ) ⊂
(−1, 1) and consider the sequence uk(z) with u′′

k(z) = u′′
c(z) + k f(z) of

symplectic potentials (cf. Lemma 2) for admissible Kähler metrics. We
therefore get

Egc(uk) = −
∫ 1

−1
pc(z) log

(

1 + k
f(z)

u′′
c (z)

)

dz + k
∫ 1

−1
FΩ(z) f(z)dz.

This will tend to −∞ if
∫ 1
−1 FΩ(z) f(z)dz < 0 for some f . ��

In the next paragraph, where we complete the proof of Theorem 1, we
shall show that positivity of FΩ on (−1, 1) is a necessary and sufficient
condition for the existence of an extremal Kähler metric in Ω.

Definition 1. Let Ω be an admissible Kähler class on M. Then the poly-
nomial FΩ constructed above will be called the extremal polynomial of Ω.

2.4. A characterization of extremal admissible Kähler classes. In this
paragraph we prove Theorem 1 in three steps. First, if the extremal poly-
nomial FΩ of an admissible Kähler class Ω is positive on (−1, 1), we
construct an admissible extremal Kähler metric in Ω by adapting an argu-
ment of Guan and Hwang (cf. [27,30,31]): we discuss their work further in
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the next section. Second, we extend the continuity argument of [54] to prove
the existence of admissible extremal Kähler metrics for Ω sufficiently small.
Third, we use Corollary 3, the uniqueness result of Chen–Tian [10,11] and
an argument from [54] to show that an extremal Kähler metric in Ω is
admissible up to automorphism. Hence we deduce that the existence of an
extremal Kähler metric in Ω implies that FΩ is positive on (−1, 1).

We begin with the construction. By Proposition 1, an admissible met-
ric (1) is extremal exactly when for each a ∈ Â, ±ga is a CSC Kähler
metric with Scal±ga = ±2dasa and (4)–(5) hold for a polynomial P of de-
gree ≤ N + 1, where N = #Â. The metric g is CSC iff P has degree ≤ N.

We have seen that the boundary conditions (3) imply (6) and the converse
clearly holds if pc(±1) �= 0 (i.e., d0 = 0 = d∞). However, if g is extremal,
then (4)–(5) imply that F ′′(z) = p′

c(z)Υ(z) with Υ(−1) = 2(d0 + 1) if
d0 > 0 and Υ(1) = −2(d∞ +1) if d∞ > 0 (because of the normalization of
the Fubini–Study metrics on S0 and S∞). Hence, by (6), F ′(z) = pc(z)Ψ(z)
with Ψ(−1) = 2(d0 + 1) and Ψ(1) = −2(d∞ + 1), and Θ(±1) = 0. Now
by l’Hôpital’s rule, Θ′(±1) = ∓2. Hence, for extremal Kähler metrics, the
boundary conditions (3) are equivalent to (6).

In summary, to obtain a globally defined admissible extremal metric on
a projective bundle P(E0 ⊕ E∞) → S, we need, for CSC Kähler metrics
(±ga,±ωa) satisfying c1(E∞)−c1(E0) = ∑

a[ωa/2π], to solve (4) and (5)
for a polynomial F (of degree ≤ m + 2) which satisfies (6) and is positive
on (−1, 1).

For an admissible Kähler class Ω on M, we claim that (4)–(5) and the
boundary conditions (6) have a unique solution for F, given by the extremal
polynomial FΩ.

Proposition 8. Let M = P(E0 ⊕ E∞) → S be an admissible 2m-manifold,
where S is CSC. Then for any admissible Kähler class Ω on M, the extremal
polynomial FΩ is the unique polynomial F of degree ≤ m + 2 satisfying
(4)–(5) and (6).

Proof. An admissible Kähler class on M is specified by parameters xa such
that x0 = 1, x∞ = −1 and otherwise 0 < |xa| < 1 with ωa/xa positive.
We write Scal±ga = ±2dasa. Equation (5) can be solved for a degree N − 1
polynomial P0 by Lagrange interpolation, i.e.,

P0(z) =
∑

a

2dasaxa

∏

b∈Â

(1 + xbz)

and then we can write the general degree N + 1 solution as

P(z) = P0(z) + (Az + B)
∏

a∈Â

(1 + xaz)

=
(

Az + B +
∑

a

2dasaxa

1 + xaz

) ∏

a∈Â

(1 + xaz)
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so that

F ′′(z) =
(

Az + B +
∑

a

2dasaxa

1 + xaz

)

pc(z).

Integrating F ′′(z) and zF ′′(z) on [−1, 1], (6) now implies that A, B sat-
isfy (9). Hence F = FΩ is the unique solution. ��
Remark 5. An alternative approach is to solve the initial value problem (at
z = −1) for F(z). The boundary conditions at z = 1 then show that A, B
satisfy (9). This gives another formula for the extremal polynomial:

FΩ(z) = 2(1+ z)pc(−1)+
∫ z

−1

(

At + B +
∑

a

2dasaxa

1 + xat

)

pc(t)(z − t)dt,(12)

where A and B are given (as usual) by (9).

Proposition 8 shows that the existence of an admissible extremal Kähler
metric in Ω is equivalent to the positivity of the extremal polynomial FΩ on
(−1, 1). Since the leading coefficient is a nonzero multiple of A, Propos-
ition 6 shows that such a metric will be CSC iff the Futaki invariant FΩ(K )
vanishes.

Remark 6. Since FΩ depends continuously (in fact analytically) on the ad-
missible Kähler class and has roots at ±1 with fixed multiplicities d∞ +1 and
d0 + 1, it is positive on (−1, 1) for an open subset of such classes. This ob-
servation fits in with the general stability result of LeBrun and Simanca [35].

We now show that FΩ is positive on (−1, 1) for sufficiently small Ω.

Proposition 9. Let M = P(E0 ⊕ E∞) → S be admissible, where S is
a local Kähler product of CSC metrics (±ga ,±ωa). Then there is a nonempty
open subset of admissible Kähler classes on M which contain an (admis-
sible) extremal Kähler metric of positive scalar curvature. The admissible
Kähler classes containing a CSC metric form a real analytic hypersurface
which is nonempty if c1(E∞) − c1(E0) is strictly indefinite over S (i.e., the
definite forms ωa do not all have the same sign).

Proof. As we noted in Remark 6, the extremal polynomial FΩ is positive on
(−1, 1) for an open subset of admissible Kähler classes. It remains to see
that this open subset is nonempty and to find the CSC metrics in the family.
For this, we study the behaviour of FΩ near xa = 0 for all a ∈ A.

Lemma 6. The coefficients A and B defined by (9), as functions of xa
(a ∈ A) for |xa| small are given by

A = − 2(2 + d0 + d∞)
∑

a∈A
daxa + O(x2)(13)

B = − (1 + d0 + d∞)(2 + d0 + d∞)(14)

− 2
∑

a∈A
dasaxa + 2(d0 − d∞)

∑

a∈A
daxa + O(x2)

where O(x2) is shorthand for
∑

a,b∈A O(xaxb).
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The proof is given in Appendix B. It follows that in the limit xa → 0 for
all a ∈ A (which does not give a Kähler class), F ′′

Ω(z)/(1 + z)d0(1 − z)d∞

is given by

−(1 + d0 + d∞)(2 + d0 + d∞) + 2d0(d0 + 1)

1 + z
+ 2d∞(d∞ + 1)

1 − z
.(15)

If d0 = 0 and d∞ = 0, this is negative on (−1, 1) and FΩ is convex.
By (6), for some ε > 0, FΩ is positive and increasing on (−1,−1 + ε)
and concave if d0 > 0, while it is positive and decreasing on (1 − ε, 1)
and concave if d∞ > ∞. By (15), for sufficiently small Ω, FΩ does not
have enough inflection points to have a zero on (−1, 1) and so it is positive
there. Hence the set of admissible Kähler classes containing an admissible
extremal Kähler metric is nonempty. Since z ∈ [−1, 1], we see that for xa
sufficiently small, the scalar curvature −Az − B of g is positive.

Now the Futaki invariant FΩ(K ) ∼ A is a rational function of xa,
a ∈ A, so the CSC metrics form a real analytic hypersurface. It is then
clear from (13) that if xa occur with both signs, A has nonconstant sign for
small xa. ��
(Using the Matsushima–Lichnerowicz criterion, the CSC existence result
in this proposition provides an alternative proof of the last part of Propos-
ition 5.)

Proposition 10. Let M be an admissible projective bundle over a CSC
base. Then if an admissible Kähler class on M contains an extremal Kähler
metric, this extremal Kähler metric is admissible up to automorphism.

Proof. Consider the set U of admissible Kähler classes that contain an
extremal Kähler metric invariant under the maximal compact subgroup G
of H0(M) defined in Proposition 5. By LeBrun–Simanca [35], U is open in
the set of all admissible Kähler classes. Suppose there is some admissible
class Ω0 (with parameters x0

a) which contains an inadmissible extremal
metric g0; by the Calabi theorem, we can assume that g0 is G-invariant, i.e.,
Ω0 ∈ U . By LeBrun–Simanca [35], this implies that in all Kähler classes
sufficiently close to Ω0, there are G-invariant extremal Kähler metrics close
to g0 (in suitable Sobolev spaces; by the Sobolev embedding theorem this
also holds in the C�(M) topology, for any � > 0). We have two cases:

• there is an open neighbourhood of Ω0 in U for which the extremal
polynomial is not positive on (−1, 1);

• there are admissible extremal Kähler metrics in classes arbitrarily close
to Ω0.

The first case contradicts the existence of admissible extremal Kähler
metrics on M for sufficiently small Ω, i.e., the positivity of the ex-
tremal polynomial. Indeed, for such Ω, FΩ(z) has at most two inflec-
tion points in (−1, 1) by (15), and an easy case by case analysis (ac-
cording to whether d0, d∞ are zero or positive) then shows that QΩ(z) :=
FΩ(z)/(1 + z)d0(1 − z)d∞ , as a polynomial in z, has simple roots. However,
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by assumption, for all Ω in some open neighbourhood of Ω0, the extremal
polynomial FΩ is nonnegative (by Corollary 3) but not positive on (−1, 1),
so QΩ(z) has zero discriminant. Since it is analytic in Ω, it is identically
zero, a contradiction.

In the second case we apply instead the uniqueness result [10,11] for ex-
tremal Kähler metrics, as in [54]. Let Ωk be a sequence of admissible Kähler
classes (with parameters xk

a) which converges to Ω0 (i.e., xk
a converges to x0

a
for all a) and such that Ωk contains an admissible extremal Kähler metric g̃k
which, without loss, is not CSC. By LeBrun–Simanca [35], it follows that
for k � 1 there are G-invariant extremal Kähler metrics gk ∈ Ωk which
converge to g0 in the C2(M) topology. By Chen–Tian [10,11], gk is the
pullback of g̃k by an automorphism Ψk of (M, J,Ωk, G). We now claim
that g0 is the pullback by an automorphism of an admissible extremal Kähler
metric in Ω0, completing the proof.

To prove the claim, we use the theory of Hamiltonian 2-forms of order 1
from [4,5]. Since g̃k admits such a 2-form with S1 action generated by K ,
so does gk (by Proposition 6, K is a nonzero multiple of the extremal vector
field of (Ωk, G) and so is preserved by Ψk). Now if (g, ω) is any Kähler
metric on M for which K = J gradg z generates an isometric S1 action, then
it follows from [5] that this action comes from a Hamiltonian 2-form if and
only if it is rigid (meaning that g(K, K ) depends only on z) and semisimple
(meaning that for any regular value z0 of z, the z-derivative at z = z0 of the
family of Kähler quotient metrics gŜ(z) on the complex quotient Ŝ is parallel
and diagonalizable with respect to gŜ(z0)). Thus, the S1 action generated
by K is rigid and semisimple with respect to gk , hence also with respect
to g0 by continuity, so that g0 itself admits a Hamiltonian 2-form of order 1
with S1 action generated by K .

We now apply Theorem 3 and Proposition 1 to g0: it follows that g0 is
adapted to the bundle structure of M = P(E0 ⊕ E∞) → S and induces
a CSC Kähler metric gŜ

0 on Ŝ = P(E0) ×S P(E∞), and a connection 1-
form θ0 on the principal C×-bundle over Ŝ (whose total space is identified
with M0), such that the (1, 1)-form dθ0 =: ωŜ

0 is parallel and diagonalizable
with respect to gŜ

0. Then (by Chern–Weil theory) we have [ωŜ
0] = [ωŜ],

where ωŜ is the product CSC metric defining the admissible class Ω0. It
follows that the Kähler form of gŜ

0 is in the cohomology class
∑

a[ωa]/x0
a ,

since, as explained in Sect. 1.3, this cohomology class is determined by
the admissible class Ω0, which can be uniquely written as the sum of the
‘projective Thom class’ Ξ̂, of M̂ = P(O ⊕ L̂) → Ŝ and a pullback from Ŝ.

Now by Chen–Tian [10,11] again (see also [14,40]), there is an automor-
phism ψ of Ŝ with gŜ = ψ∗gŜ

0, since these are CSC Kähler metrics in the
same Kähler class. In fact, the proof of [10,11] essentially shows that any two
extremal metrics in a given Kähler class can be connected by a geodesic in
the space of Kähler potentials, and therefore ψ can be chosen in the reduced
(connected) automorphism group H0(Ŝ) ⊆ Aut0(Ŝ) (see e.g. [28,26]); in
particular, such a ψ acts trivially on cohomology. By Proposition 2 there is



Hamiltonian 2-forms in Kähler geometry, III 573

a fibre-preserving S1-equivariant automorphism Ψ of M̂ = P(O ⊕ L̂) → Ŝ,
which induces ψ on Ŝ. Thus, Ψ preserves the C×-bundle structure of M0 →
Ŝ and sends the connection 1-form θ0 to a connection 1-form θ̃0 with curva-
ture dθ̃0 = ψ∗ωŜ

0 ∈ [ωŜ
0] = [ωŜ]; now since ψ∗ωŜ

0 and ωŜ are both paral-
lel (and therefore harmonic) with respect to ψ∗gŜ

0 = gŜ, Hodge theory im-
plies they are equal. We can therefore send θ̃0 to θ via a bundle isomorphism.

Thus we have constructed (on M0 and hence, by a standard extension
argument, everywhere) an automorphism sending g0 to an admissible ex-
tremal Kähler metric in Ω0, as required. ��

Theorem 1 follows from Propositions 8–10.

3. Existence and nonexistence results for extremal Kähler metrics

In this section we use Theorem 1 to construct explicit examples of extremal
Kähler metrics. We also obtain some nonexistence results for CSC Kähler
metrics.

3.1. Constructing admissible extremal Kähler metrics. We begin with
a root counting argument due to Hwang [30] and Guan [27] which gives
a complete construction when the base S is a local Kähler product of non-
negative CSC Kähler metrics (in fact Hwang and Guan only considered the
case that S has constant nonnegative eigenvalues of the Ricci tensor, but the
proof is no different in general, and the idea to weaken this hypothesis is
already explored in [31]).

Proposition 11. Suppose that M = P(E0 ⊕ E∞) → S is admissible where
S is a local Kähler product of nonnegative CSC metrics. Then every admis-
sible Kähler class contains an (admissible) extremal Kähler metric.

Proof. By the boundary conditions FΩ is positive, and increasing or de-
creasing, on (−1,−1 + ε) or (1 − ε, 1) respectively, for some ε > 0.
Suppose it is not positive on (−1, 1). Then it has at least two maxima, one
minimum and two inflection points on (−1, 1). It follows that P has at least
two roots in (−1, 1).

Let y1 ≤ · · · ≤ yQ and z1 ≤ · · · ≤ zR (Q, R ≥ 0) denote the roots
(counted with multiplicity) of P in [1,∞) and (−∞,−1] respectively, and
put y0 = 1, yQ+1 = ∞, z0 = −∞, zR+1 = −1. We order {xa : a ∈ Â} as

−1 ≤ xa1 < · · · < xaJ < 0 < xaJ+1 < · · · < xaN ≤ 1

(for some 0 ≤ J ≤ N) so that gaj is negative definite (hence with saj

nonpositive) for j ≤ J and positive definite (hence with saj nonnegative)
for j ≥ J + 1.

Therefore by (5), for each 0 ≤ q ≤ Q, there is at most one xaj with
yq ≤ −1/xaj < yq+1, so that Q + 1 ≥ J with equality iff there is exactly
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one xaj in each such interval. Similarly, for each 0 ≤ r ≤ R, there is at most
one xaj with zr < −1/xaj ≤ zr+1, so that R + 1 ≥ N − J with equality
iff there is exactly one xaj in each such interval. Thus P has at least N − 2
roots outside (−1, 1).

Since P has degree ≤ N + 1, it has at most N − 1 roots outside (−1, 1),
so we must either have Q + 1 = J or R + 1 = N − J . If (without loss of
generality) Q + 1 = J then −1/xa1 < y1, so that P(−1/xa1) > 0 (by (5)
again) and there must be a root of P between −1/xa1 (1 ≤ −1/xa1 < y1)
and the last maximum of FΩ in (−1, 1). This now forces R + 1 = N − J
also, hence P(−1/xaN ) > 0 and there must be a root of P between the first
maximum of FΩ in (−1, 1) and −1/xaN (zR < −1/xaN ≤ −1), contradict-
ing deg P ≤ N + 1. ��

Because of this result, in the rest of this section we shall mainly be
interested in the influence of negative scalar curvature factors in the base
metrics. In the presence of such factors, the existence of extremal Kähler
metrics is nontrivial, as was already observed in [54] for ruled surfaces. By
Theorem 1, such a metric exists in a given admissible class Ω iff the extremal
polynomial FΩ is positive on (−1, 1). However, the integrals αi and βj
involved in the above construction of FΩ are hard to compute in general
(see Appendix B). For the next examples, we therefore adopt a different
approach to compute FΩ. Instead of solving (4) and (5) and integrating, we
solve first the boundary conditions.

It is easy to see that (6), together with (5) for a = 0 and a = ∞ (if there
are blow-downs), are solved by any F of the form

F(z) = (1 − z2)
(

pc(z) + (1 + z)d0+1(1 − z)d∞+1q(z)
)

(16)

for some polynomial q(z). Conversely any polynomial solution is of this
form, and to obtain the extremal polynomial FΩ, the degree of q must be
≤ (

∑
a∈A da) − 1. Now it remains to compute F ′′(z), to solve (4) and (5)

for a ∈ A (so that F = FΩ), and to check positivity. For a given projective
bundle and admissible Kähler class this leads to equations on the coefficients
of q. The Futaki invariant will be zero (and the metric will be CSC) iff q
has degree ≤ (

∑
a∈A da) − 2.

In general, the algebraic equations on q are hopelessly complicated.
However, when S has real dimension ≤ 4, they are tractable.

3.2. Extremal Kähler metrics over a Riemann surface. We consider
first extremal Kähler metrics on projective bundles over a Riemann surface,
generalizing the study of projective line bundles in [54].

Let Σ be a compact Riemann surface with CSC metric (±gΣ,±ωΣ) and
let M = P(E0 ⊕ E∞) → Σ, where E0, E∞ are projectively-flat hermitian
vector bundles with ranks d0 +1 > 0, d∞ +1 > 0, and c1(E∞)−c1(E0) =
[ωΣ/2π]. Let ±2s be the scalar curvature of ±gΣ and Ω be an admissible
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Kähler class on M defined by 0 < |x| < 1. The metric

g = (z + 1)g0 + (z + 1/x)gΣ + (z − 1)g∞ + pc(z)

F(z)
dz2 + F(z)

pc(z)
θ2

is an extremal metric in the given class iff F = FΩ. From Sect. 3.1, we
know that

FΩ(z) = (1 + z)d0+1(1 − z)d∞+1((1 + xz) + c(1 − z2)),

where q(z) = c is a constant uniquely determined by the equation

F ′′
Ω(−1/x) = 2sx(1 − 1/x)d0(1 + 1/x)d∞ .

(This holds whether or not d0, d∞ are zero.) We solve this to obtain

c(s, x) = − 2x2(2 + d0(1 + x) + d∞(1 − x) − sx)
{
(2 + d0(1 + x) + d∞(1 − x))(4 + d0(1 + x) + d∞(1 − x))

+(4 + d0 + d∞)(1 − x2)

} .

Since sx has same sign as ScalΣ, it can be positive only when Σ = CP1,
in which case E0 = L0 ⊗ Cd0+1 and E∞ = L∞ ⊗ Cd∞+1 for some line
bundles L0,L∞. It then follows that ωΣ is integral, and thus s = p/q
where p ≤ 2 and q is an integer of same sign as x ∈ (−1, 1) \ {0} (see
Remark 1); then we have that sx < 2, so that c < 0. Therefore FΩ(K ),
which is a nonzero multiple of c, doesn’t vanish for any admissible Kähler
class. Since b2(Σ) = 1, every Kähler class on M is admissible, so we get
an immediate nonexistence result.

Theorem 5. Let E0, E∞ be projectively-flat hermitian vector bundles
over a Riemann surface Σ. Then there are no CSC Kähler metrics
on M = P(E0 ⊕ E∞) unless c1(E0) = c1(E∞) (i.e., E0 ⊕ E∞ is poly-
stable).

This partially extends the converse in Corollary 2 to the case g > 1.
Compared to Theorem 1, we note that here c1(E∞) − c1(E0) can never be
strictly indefinite. On the other hand, by Theorem 1, we have an extremal
Kähler metric for sufficiently small Ω. Indeed it is easy to see that |c| is
small when |x| is small, and hence (1+xz)+c(1−z2) is positive on (−1, 1).
We also know from Proposition 11 that if Σ has genus 0 or 1, then every
admissible Kähler class contains an extremal Kähler metric. Let us now see
what happens when g > 1, i.e., when sx < 0.

Since c < 0, the quadratic Q(z) = (1 + xz) + c(1 − z2) is concave. It is
clearly positive at z = ±1, so it is positive on (−1, 1) unless its minimum
is in (−1, 1) and it is nonpositive there. The minimum value 1 + c + x2/4c
occurs at z = x/2c and

c(s, 1) = − 2(1 + d0) − s

2(1 + d0)(2 + d0)
, c(s,−1) = − 2(1 + d∞) + s

2(1 + d∞)(2 + d∞)
.
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It follows that if s < −d0(d0 + 1), then c(s, 1) < − 1
2 and hence for 0 <

x < 1 sufficiently close to 1, we have c(s, x) < − 1
2 and the minimum

of Q(z) is in (−1, 0) and nonpositive. Similarly, if s > d∞(d∞ + 1) then
for −1 < x < 0 sufficiently close to −1, we have c(s, x) < − 1

2 and the
minimum of Q(z) is in (0, 1) and nonpositive.

Hence if Σ has genus g > 1 and s < −d0(d0+1) or s > d∞(d∞+1) then
not every admissible Kähler class contains an admissible extremal metric.

Conversely if s ≥ −d0(d0+1) then it is easy to check that c(s, x) ≥ −x/2
for all 0 < x < 1, so the minimum of Q(z) is not in (−1, 1) for any such x,
whereas if s ≤ d∞(d∞ + 1), c(s, x) ≥ x/2 for all −1 < x < 0 and again
the minimum of Q(z) is not in (−1, 1) for any such x.

Theorem 6. Let E0, E∞ be projectively-flat hermitian vector bundles of
ranks d0 + 1, d∞ + 1 over a compact Riemann surface Σ of genus g,
and suppose c1(E∞) − c1(E0) = [ωΣ/2π] for a Kähler form ±ωΣ of
constant curvature. Then there exist admissible extremal Kähler metrics on
P(E0 ⊕ E∞) → Σ. Such metrics exist in every Kähler class if g = 0 or 1.
For g > 1, put ρΣ = sωΣ. Then such metrics exist in every Kähler class if
and only if −d0(d0 + 1) ≤ s ≤ d∞(d∞ + 1), otherwise such metrics exist
for |x| sufficiently small (depending on s).

Remark 7. In absence of blow-downs, we recover the examples of [54] on
(complex) pseudo-Hirzebruch surfaces P(O ⊕ L) → Σ, where there are
Kähler classes which do not contain an extremal Kähler metric (if Σ has
genus g > 1). Our result extends these examples to higher rank projective
bundles. However, in the presence of blow-downs, there do exist projective
bundles for which there is an extremal Kähler metric in every Kähler class,
even with g > 1.

3.3. Nonexistence of CSC Kähler metrics over a Hodge 4-manifold.
We now obtain a similar nonexistence result to Theorem 5 when dim S = 4.

Theorem 7. Let (S,±gS,±ωS) be a CSC Hodge 4-manifold and let E0,
E∞ be projectively-flat hermitian vector bundles of ranks d0 + 1, d∞ + 1
over S with c1(E∞) − c1(E0) = [ωS/2π]. Then there are no CSC Kähler
metrics in the admissible Kähler classes on M = P(E0 ⊕ E∞) → S.

Proof. We will prove that FΩ(K ) is nonzero for any admissible Kähler
class Ω by showing that the leading coefficient of FΩ cannot vanish. Fol-
lowing the discussion in Sect. 3.1 we see that for given d0, d∞ ≥ 0 and
0 < |x| < 1 we have

FΩ(z) = (1 + z)d0+1(1 − z)d∞+1((1 + xz)2 + (cz + e)(1 − z2))

with c and e being constants uniquely determined by the conditions

F ′′
Ω(−1/x) = 0 and

F ′′
Ω(z)

1 + xz

∣
∣
∣
∣
z=−1/x

= 4sx(1 − 1/x)d0(1 + 1/x)d∞ .
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The leading coefficient of FΩ vanishes iff c = 0. As before c (and e) are
determined by s and x. In particular, c(s, x) = n(s, x)/d(s, x), where

d(s, x) = (1 + d∞)(2 + d∞)2(3 + d∞)(1 − x)4

+ 4(2 + d0)(1 + d∞)(2 + d∞)(3 + d∞)(1 − x)3(1 + x)

+ 6(2 + d0)(2 + d∞)(4 + d0 + d∞ + (1 + d0)(1 + d∞))

× (1 − x)2(1 + x)2

+ 4(1 + d0)(2 + d0)(3 + d0)(2 + d∞)(1 − x)(1 + x)3

+ (1 + d0)(2 + d0)
2(3 + d0)(1 + x)4

(which is manifestly positive for |x| < 1) and

−n(s, x)/2x3 = 4(6 − 3sx + sx3)

+ d0(1 + x)((5 − x)(1 + x) + (7 − x)(3 − sx))

+ d∞(1 − x)((5 + x)(1 − x) + (7 + x)(3 − sx))

+ (9 − sx)(d0(1 + x) + d∞(1 − x))2

+ (d0(1 + x) + d∞(1 − x))3.

Since s = p/q where p ≤ 3 (see Remark 1) and q is an integer of same
sign as x ∈ (−1, 1) \ {0}, we have that sx < 3 and a moment’s thought then
gives that n(s, x), and therefore c(s, x), is never zero. ��

3.4. CSC Kähler metrics over a product of two Riemann surfaces. As
counterpoint to the nonexistence results of Sect. 3.2 and 3.3, we now explore
explicitly the existence of CSC Kähler metrics, given by Theorem 1, in the
simplest case when the base is a global product of two Riemann surfaces
and there are no blow-downs.

Let Σa (a = 1, 2) be compact Riemann surface with CSC metrics
(±ga,±ωa) and let M be P(O ⊕ L) → Σ1 × Σ2 where L = L1 ⊗ L2
and La are pullbacks of line bundles on Σa with c1(La) = [ωa/2π].
Let ±2sa be the scalar curvature of ±ga and −1/xa be the constant roots
defining an admissible Kähler class with x1 �= x2 (the case x1 = x2 was
considered in Sect. 3.3, where we established nonexistence of CSC metrics).
We thus have pc(z) = (1 + x1z)(1 + x2z) and the metric becomes

g = 1 + x1z

x1
g1 + 1 + x2z

x2
g2 + pc(z)

F(z)
dz2 + F(z)

pc(z)
θ2.

According to Sect. 3.1, to obtain a CSC metric, F(z) must be the extremal
polynomial

FΩ(z) = (1 − z2)
(
(1 + x1z)(1 + x2z) + cx1x2(1 − z2)

)
,
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where c is a constant such that the following relations are satisfied:

F ′′
Ω(−1/x1) = 2s1(x1 − x2) and F ′′

Ω(−1/x2) = 2s2(x2 − x1).

Writing 2(1 − c) = s (which is 1
6 Scalg and not to be confused with the s in

Sects. 3.2 and 3.3), these relations hold iff

x1(s1(x1 − x2) − 2 + (1 − s)x1x2) + 3(s − 1)x2 = 0(17)
x2(s2(x2 − x1) − 2 + (1 − s)x1x2) + 3(s − 1)x1 = 0,(18)

and these are precisely the conditions on an admissible Kähler class Ω
(parameterized by (x1, x2) with 0 < |xa| < 1) coming from the vanishing
of FΩ(K ) (see Proposition 8). Eliminating s = 2(1 − c), we obtain (using
x1 �= x2)

x1
(
6 + s1x1

(
x2

2 − 3
)) + x2

(
6 + s2x2

(
x2

1 − 3
)) = 0.(19)

The normalized scalar curvatures sa are subject to the integrality condi-
tions sa = 2(1 − ga)/qa for qa a nonzero integer with the same sign as xa,
where ga is the genus of Σa. In particular saxa < 2. This and (19) imply
that x1x2 < 0; we thus get a nonexistence result in the case x1x2 > 0.

Theorem 8. Let (Σa, ωa) (a = 1, 2) be compact CSC Riemann surfaces
and L be a holomorphic vector bundle over Σ1 × Σ2 with c1(L) =
[(ω1 + ω2)/2π] (so that c1(L) is positive definite). Then there are no
admissible Kähler classes on M = P(O ⊕ L) ∼= P(O ⊕ L−1) containing
a CSC Kähler metric.

Remark 8. Note that we do not need to assume that the base is a global
product of compact Riemann surfaces for the nonexistence result in the
above theorem. It is sufficient to have a compact base S that is a local
product of Riemann surfaces with CSC and saxa < 2, which is always
satisfied, since Scal±ga ≤ 4 by the integrality of the pull-back of ±ωa to the
universal cover of S.

In contrast to this result, we have the following observation.

Lemma 7. Let Ω be an admissible Kähler class, corresponding to a solu-
tion (x1, x2) of (17)–(18) with s ≥ 0. Then Ω admits an admissible CSC
Kähler metric with scalar curvature 6s.

Proof. If (19) holds, the extremal polynomial FΩ of an admissible Kähler
class gives rise to a globally defined CSC Kähler metric iff FΩ > 0 on
(−1, 1). Let Q(z) = FΩ(z)/(1 − z2), and observe that the coefficient of z2

in this quadratic is 1
2 sx1x2. Since Q(±1) > 0, Q will be positive on [−1, 1]

if it is convex, i.e., if sx1x2 < 0. If s = 0, Q(z) is linear and positive
on [−1, 1]. Since x1x2 < 0, FΩ is positive on (−1, 1) whenever we have
solutions of (17)–(18) with s ≥ 0. ��
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We now obtain some explicit solutions of (17)–(18). If we take
x2(17) − x1(18) and x1(17) − x2(18), we obtain, for x1 �= x2:

(s1 + s2)x1x2 = 3(s − 1)(x1 + x2)

2(x1 + x2) = s1x2
1 + s2x2

2 + (1 − s)x1x2(x1 + x2).

These are equivalent to (17)–(18) for x2
1 �= x2

2. As x1 �= x2, x2
1 = x2

2 iff
x1 +x2 = 0 and then s1 +s2 = 0. The following lemma deals with this case.

Lemma 8. If s1 +s2 = 0, then either x1 +x2 = 0 and s = (1−x2
1 +2s1x1)/

(3−x2
1), or, without loss, x1 = x2+1, s = 1, and s1 = 2 = −s2. Conversely,

these give solutions of (17)–(18).

Proof. Clearly s1 + s2 = 0 iff s = 1 or x1 + x2 = 0. The formula for s in
the latter case is immediate from (17). Now if s = 1, then without loss of
generality s1 = −s2 is nonnegative and we must have either x1 + x2 = 0, or
s1 > 0 and x1 = x2 +2/s1. Since 0 < |xa| < 1, this forces x1 to be positive,
hence s1 ≤ 2, so in fact we must have s1 = 2 and x1 = x2 + 1. ��

In order to apply Lemma 7, we suppose in the first case above that
x1s1 ≥ 0: then s > 0 since 1 − x2

1 > 0 for |x1| < 1. Thus in both cases
saxa ≥ 0 for a = 1, 2 and we obtain CSC Kähler metrics on projective
line bundles over T 2 × T 2, T 2 × CP1 and CP1 × CP1. In particular any
Kähler class on P(O ⊕ O(q,−q)) → CP1 × CP1 is admissible, so the
above Lemmas and Proposition 11 yield the following conclusions.

Theorem 9. On P(O ⊕ O(q,−q)) → CP1 × CP1 (q ≥ 1), any Kähler
class (parameterized, up to scale, by 0 < x1 < 1 and −1 < x2 < 0)
contains a unique admissible extremal Kähler metric. For q > 1 this metric
is CSC if and only if x1 + x2 = 0, while for q = 1 it is CSC if and only if
x1 + x2 = 0 or x1 = x2 + 1.

When q = 1, the two 1-parameter families of CSC Kähler classes of
this theorem intersect at x1 = 1/2, x2 = −1/2. In fact, the CSC metric in
this Kähler class is the Koiso–Sakane Kähler–Einstein metric [34,47].

We end our study of CSC Kähler metrics on P(O ⊕ L) → Σ1 × Σ2
by considering the case of zero scalar curvature metrics, which we do not
obtain automatically from Theorem 1. If s = 0 then (17) defines x2 as
a function of x1

x2 = f1(x1) = x1
2 − s1x1

x2
1 − s1x1 − 3

,

whereas (18) defines x1 as a function of x2

x1 = f2(x2) = x2
2 − s2x2

x2
2 − s2x2 − 3

.

Note that f1(0) = f2(0) = 0 and the gradients dx2/dx1 of the two graphs at
x1 = x2 = 0 are both negative. By comparing the size of the gradients, one
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sees that for x1 small and positive the graph of f1 is above the graph of f2.
Note also that the denominator appearing in fa(xa) is negative at xa = 0.

Assume that s1 ≤ 0. If f1 has no asymptotes for 0 < x1 < 1 then
f1(1) ≤ −1. Otherwise, for the asymptote x1 = v closest to x1 = 0 we have
limx1→v− = −∞. Assume moreover that 0 < s2. If f2 has no asymptotes
for −1 < x2 < 0 then f2(−1) > 1. Otherwise, for the asymptote x2 = v
closest to x2 = 0, we have limx2→v+ = +∞. By continuity, the graphs of f1
and f2 intersect in the open square (0, 1) × (0,−1) and (17)–(18) is solved
for some 0 < x1 < 1 and −1 < x2 < 0.

Theorem 10. Let (Σa,±ωa) (a = 1, 2) be compact Riemann surfaces with
genus ga and canonical bundles Ka, and suppose that the Kähler forms
±ωa are integral with constant curvature. Let La be line bundles on Σa
with c1(La) = [ωa/2π] and, if ga �= 1, let La be Kqa/2(ga−1)

a tensored by
a flat line bundle, for an integer qa.

There is then an admissible scalar-flat Kähler metric on P(O⊕L1⊗L2)
→ Σ1 × Σ2 in the following cases:

• Σ1 = T 2 and L1 is ample, Σ2 has genus g2 > 1 and q2 < 0;
• Σ1 and Σ2 both have genus ga > 1, q1 > 0, and q2 < 0.

4. K-stability and admissible extremal Kähler metrics

4.1. Introduction to stability. It has been first suggested by S.T. Yau
in [56], then formulated and worked out in several ways, in particular by
G. Tian [53] and by S. Donaldson [15], that the existence of a Kähler–
Einstein or, more generally, of a CSC or an extremal Kähler metric on
a projective complex manifold in the Kähler class determined by some
polarization L should be equivalent to some kind of stability for the polarized
projective variety (M, L). This conjecture is drawn from a detailed formal
picture which makes clear an analogy with the well-established relation
between the polystability of vector bundles and the existence of Einstein–
Hermitian connections.

At present the most promising candidate for the conjectured stability cri-
terion is ‘K-polystability’, in the form given by Donaldson [15], following
Tian [53]: a polarized projective variety (M, L) is K-polystable if any ‘test
configuration’ for (M, L) has nonpositive Futaki invariant with equality iff
the test configuration is a product. We shall explain this definition shortly. We
also discuss an idea of J. Ross and R. Thomas [45,46], who focus on test con-
figurations arising as ‘deformations to the normal cone’ of subschemes of
(M, L), leading to a notion of ‘slope’ K-polystability analogous to the slope
polystability of vector bundles. We explore this analogy further in Sect. 4.2.

(Note that some authors use the term K-stable rather than K-polystable,
but the latter term agrees better with pre-existing notions of stability.)

4.1.1. Finite dimensional motivation. Let (X,L,Ω) be a polarized Käh-
ler manifold with a hermitian metric on L with curvature −iΩ (thus
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c1(L) = Ω/2π). Suppose a compact connected group G acts holomorphi-
cally on X with momentum map µ : X → g∗ (i.e., d〈µ, ξ〉 = −Ω(Kξ , ·),
where Kξ is the vector field on X corresponding to ξ ∈ g, the Lie algebra
of G). There is a lift of the action to L generated by K̃ξ + 〈µ, ξ〉K for
each ξ ∈ g, where 〈µ, ξ〉 is pulled back to L, K̃ξ is the horizontal lift, and
K generates the standard U(1) action on L. The action of g on X and L
extends to an action of the complexification gc and we assume this integrates
to an action of a complex Lie group Gc.

By a well-known result of Kempf–Ness and Kirwan, for any x ∈ X,
there is a g ∈ Gc such that µ(g · x) = 0 iff for any nonzero lift x̃ of x to L∗,
the orbit Gc · x̃ is closed. Such points x are said to be polystable. If X ps

denotes the set of polystable points in X, we then have an equality between
X ps/Gc, the polystable quotient of X by Gc, and the symplectic quotient
X//G = µ−1(0)/G.

Gc · x̃ is closed iff α(C×) · x̃ is closed for any one parameter subgroup
α : C× ↪→ Gc. This leads to the Hilbert–Mumford criterion for polystability:
x is said to be semistable if for any one parameter subgroup α : C× ↪→ Gc,
the linear action of C× on L∗

x0
has nonpositive weight wx0(α) ≤ 0, where

x0 = limλ→0 α(λ) · x is the limit point; x is then polystable if it is semistable
and wx0(α) = 0 only when x0 = x; finally x is stable if it is polystable and
has zero dimensional isotropy subgroup.

4.1.2. The infinite dimensional analogue. We apply the finite dimensional
picture above formally to an infinite dimensional setting in which X is the
space of compatible complex structures on a compact symplectic manifold
(M, ω) with H1(M) = 0. The space X has a natural Kähler metric with
respect to which the group G of symplectomorphisms of M acts holomor-
phically with a momentum map µ : X → C∞

0 (M,R) given by the scalar
curvature of the corresponding Kähler metric on M, modified by a constant
in order to lie in g∗ ∼= g = C∞

0 (M,R), the functions with total integral zero,
which is the Lie algebra of the symplectomorphism group equipped with
the L2-inner product. A quick way to see this is to observe that the Mabuchi
K-energy (see Sect. 2.3) of M is a Kähler potential for the metric on X: the
gradient on X of the Mabuchi K-energy is the scalar curvature [26].

There is no group whose Lie algebra is the complexification gc, but
one can still consider the foliation of X given by the vector fields induced
by gc. The complex structures in a given leaf are all biholomorphic by
a diffeomorphism in the connected component of the identity, and pulling
back the symplectic form ω by these biholomorphisms, we may identify the
leaf with the set of all Kähler metrics in a fixed Kähler class, compatible
with a fixed complex structure on M. Hence there should be a CSC metric in
a given Kähler class iff the momentum map µ vanishes on the corresponding
leaf iff the leaf is stable in a suitable sense.

To make precise this infinite dimensional analogue, we formalize what is
meant by the orbit of a 1-parameter subgroup in terms of ‘test configurations’
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and give a Hilbert–Mumford formulation of stability in terms of the weight
of limit points.

4.1.3. Test configurations. Let (M,Ω) be a Hodge manifold, viewed as
a polarized projective variety with respect to a line bundle L with c1(L) =
Ω/2π.

Definition 2 [15]. A test configuration for (M, L) is a polarized scheme
(X,E ) overCwith aC× action α and a flat proper C×-equivariant morphism
p : X → C (where C× acts on C by scalar multiplication) such that the fibre
(Xt = p−1(t),E |Xt

) is isomorphic to (M, L) for some (hence all) t �= 0.
(X0,E |X0

) is called the central fibre. Since 0 ∈ C is fixed by the action,
(X0,E |X0

) inherits a C× action, also denoted by α.
A test configuration is said to be a product configuration if X = M ×C

and α is given by a C× action on M (and scalar multiplication on C).

Since relevant properties of test configurations are unchanged if we
replace E by E r for a positive integer r, we can let E be a Q-line bundle in
the definition above (i.e., E denotes a ‘formal root’ of a line bundle E r for
some positive integer r).

A particularly important class of test configurations are those associated
to a subscheme of (M, L), as studied by J. Ross and R. Thomas [45,46].
We shall state it here for complex submanifolds of (M, L), but the same
definition actually makes sense for subschemes.

Definition 3 (Deformation to the normal cone). For a polarized complex
manifold (M, L) and a complex submanifold Z the normal bundle is defined
by νZ = TM|Z/TZ (in the more general situation when Z is a subscheme
of M, νZ then denotes the normal cone, defined similarly). The deformation
to the normal cone is then defined as the family p : X → C, where
X = M̂ ×C denotes the blow-up of M × C along Z × {0} and p the map
induced by the natural projection from M ×C to C. For t �= 0 in C, p−1(t)
is then biholomrphic to M, whereas p−1(0) = P ∪ M̂, where P denotes
the exceptional divisor in M̂ × C, which is biholomorphic to P(OZ ⊕ νZ ),
hence is a compactification of the normal cone, and M̂ stands for the blow-
up of M along Z; notice that P ∩ M̂ = P(νZ), the exceptional divisor in M̂.5

We equip this with the polarization Ec = π∗L ⊗O(−cP), where O(P) is the
line bundle associated to the exceptional divisor P, π : X → M is induced
by the natural projection from M × C to M, and c is a positive rational
number such that Ec is an ample Q-line bundle. This last condition gives an
upper bound ε on c, called the Seshadri constant of Z with respect to L .

5 The name deformation to the normal cone originates from the following fact: In the
induced holomorphic embedding Z × C ↪→ M̂ ×C, Z × {t} ↪→ p−1(t) is isomorphic to
the natural embedding Z ↪→ M, whereas Z × {0} ↪→ p−1(0) = P ∪ M̂ has its image in
P = P(OZ ⊕ νZ ) and is isomorphic to the natural embedding Z ↪→ νZ ⊂ P(OZ ⊕ νZ ) as
the zero section of νZ , cf. [22, Chapter 5] for more details on this classical construction.
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We let α be theC× action coming from the trivial action on M and multi-
plication onC. This clearly defines an action on X with a lift to Ec. Hence the
deformation to the normal cone determines a family of test configurations,
parameterized by c ∈ (0, ε) ∩Q.

4.1.4. The Futaki invariant and K-stability. K-stability is defined using
a Hilbert–Mumford criterion, i.e., in terms of a ‘weight’ associated to each
test configuration. This weight is given by the Futaki invariant of the central
fibre; however, since the latter is typically a singular projective variety,
we need an algebraic geometric definition of the Futaki invariant. Such
a definition has been given by Donaldson [15].

Let V be a scheme of dimension n over C polarized by an ample line
bundle L and suppose that α is a C× action on V with a lift to L . Then α
acts on the vector spaces Hk = H0(V, Lk), k ∈ Z+. If wk(α) denotes the
weight of the highest exterior power of Hk (that is, the trace Tr Ak of the
infinitesimal generator Ak of the action) and dk denotes the dimension of Hk
then wk(α) and dk are given by polynomials in k for sufficiently large k, of
degrees at most n +1 and n respectively. For sufficiently large k the quotient
wk(α)/(kdk) can be expanded into a power series with no positive powers.
The Futaki invariant F(α) is the residue at k = 0 of this quotient, that is, the
coefficient of the k−1 term in the resulting expansion. The Futaki invariant
is independent of the choice of lift of α to L . (When V is a manifold, this
definition coincides with Futaki’s original definition up to a normalization
convention.)

Definition 4. The Futaki invariant of a test configuration is defined to be
the Futaki invariant F(α) of the central fibre, where α denotes the induced
C× action.

A Hodge manifold (M, L) is said to be K-polystable if the Futaki invari-
ant of any test configuration is nonpositive, and equal to zero if and only if
the test configuration is a product configuration.

For the test configurations (X,Ec) arising from a deformation to a normal
cone, J. Ross and R. Thomas [45,46] show that the Futaki invariants F(αc)
are rational in c ∈ (0, ε) ∩ Q, where ε is the Seshadri constant, and can be
extended to c ∈ (0, ε). With this in mind, we give the following

Definition 5. A Hodge manifold (M, L) is said to be slope K-polystable
if for the deformation to the normal cone of any nontrivial subscheme, the
Futaki invariant F(αc) of the corresponding family (X,Ec) of test configu-
rations and its natural extension to the whole interval (0, ε) are negative.

Remark 9. The concepts of slope K-stability, slope K-polystability, slope
K-semi-stability were introduced by J. Ross and R. Thomas [45,46] and,
in their relative versions, by G. Székelyhidi [50,51]. The notion of slope
K-polystability in [45] is stronger than the one in [46] and has been par-
tially motivated by the limiting situations illustrated by our Example 1
below (cf. Sect. 2.1 and Remark 3.9 in [45], and Remark 10 below). Our
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Definition 5 is closer to the one in [45], but is not quite the same as [45] also
requires F(αε) < 0 unless ε is rational and the semi-ample configuration
(X,Eε) is the pullback by a contraction of a product configuration. We shall
not need this refinement. As observed in [45, Remark 3.9], the notion of
(relative) slope K-polystability used here and in [45] might more properly
be referred to as analytic (relative) slope K-polystability, corresponding to
analytic test configurations (while the original definitions in [53,15] only
concern algebraic test configurations).

4.2. Stable bundles and CSC Kähler metrics. We now relate our results
concerning CSC Kähler metrics on projective bundles to stability theory for
vector bundles. Recall that if E → S is a holomorphic vector bundle over
a compact kählerian 2d-manifold (S, [ωh]), the slope µ(E) is the number
c1(E) · [ωh]d−1; E is called (slope) stable or semistable if µ(F) < µ(E)
or µ(F) ≤ µ(E) (respectively) for any proper coherent subsheaf F ⊂ E;
it is polystable if it is a direct sum of stable vector bundles with the same
slope; then, as is well-known, ‘stable’ ⇒ ‘polystable’ ⇒ ‘semistable’, and
by the Hitchin–Kobayashi correspondence (established by Donaldson [13]
and Uhlenbeck–Yau [55]), E admits an Einstein–Hermitian connection iff
it is polystable.

There is a close analogy between K-stability for polarized Kähler mani-
folds and slope stability for vector bundles. In particular, one might hope
to find a direct relation between the existence problem for CSC Kähler
metrics on a geometrically ruled complex manifold P(E) over S and the
stability of E → S. Notable progress in understanding the relation be-
tween K-polystability of P(E) and slope polystability of E has been made
by Ross–Thomas [45,46], using their notion of slope K-polystability: in-
deed if F is a coherent subsheaf of E, then P(F) is a subscheme of P(E)
and deformation to the normal cone of P(F) is a test configaration which
‘destabilizes’ P(E) iff µ(F) > µ(E) (see [45]).

Using the general theory of CSC Kähler metrics, the work of [45] shows
that if E is not semistable with respect to an integral Kähler class [ωh] on S,
then for all k � 1 the integral classes 2πc1(O(1)E )+k p∗[ωh] on P(E)

p→ S
do not contain CSC metrics. As a partial converse, Hong [32, Theorem A]
shows that if E is polystable and h0(M) → h0(S) is surjective, then there
is a CSC metric in 2πc1(O(1)E ) + k p∗[ωh], for each k � 1, iff the Futaki
invariant FΩ vanishes.

To put our results in this context, let P(E) → S be admissible so E =
E0 ⊕ E∞ for projectively-flat (and thus polystable) hermitian vector bundles
E0 and E∞ with c1(E∞) − c1(E0) = ∑

a[ωa/2π]. Thus E is determined
up to tensor product by a line bundle and is polystable iff it is semistable iff
µ(E0) = µ(E∞). With respect to a Kähler class [ωh] = [∑a ωa/ fa] on S
(where faxa > 0), this condition reads

0 = µ(E∞) − µ(E0) = (d − 1)!
2π

Vol
(
S,

∏

a

ωa/ fa

)(∑

a

da fa

)
,(20)
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which can happen for suitable fa iff c1(E∞) − c1(E0) is strictly indefinite;
this is exactly the condition of Theorem 1 that ensures the existence of
CSC metrics in a sufficiently small admissible Kähler class Ω = Ξ +
p∗[∑a∈A ωa/xa], subject only to the constraint that FΩ(K ) = 0. Note that
Ξ is equal to 4πc1(O(1)E ) up to a basic term (depending on the choice
of E) – this follows by integrating Ξd0+d∞+1 over a fibre and using the
expression for I(d0, d∞, 0) from Appendix B. Thus, admissible classes
play a similar role to those considered by Ross–Thomas and Hong, and
k � 1 corresponds to |xa| sufficiently small in our picture. (We recall
that this means that the fibres are small compared to the base.) However,
there is not a simple relation in general between those Ω containing a CSC
metric and the [ωh] with respect to which E is polystable: the approach of
Ross–Thomas and Hong suggests taking fa = xa/(1 + raxa), for some ra
depending only on E; then (20) agrees asymptotically with FΩ(K ) = 0 in
the limit xa → 0, but the two conditions define distinct hypersurfaces in
general.

Conversely, in the case E0 and E∞ are line bundles over a product
S = Σ1 ×Σ2 of two Riemann surfaces, Theorem 8 shows that polystability
of E with respect to some Kähler class on S (which is unique up to scale in
this case) is also necessary for the existence of a CSC metric in an admissible
Kähler class on P(E).

Consider now the case that the base S is a Riemann surface Σ of genus g;
the stability of a holomorphic vector bundle is then independent of the choice
of a Kähler class on Σ, and it is natural to speculate [45] that the notion of
K-polystability of the projective manifold P(E) should be independent of
the specific Kähler class, and to conjecture that P(E) admits a CSC Kähler
metric iff E is polystable. At present (see [2]) this conjecture is confirmed
when E is of rank 2 (i.e., on geometrically ruled surfaces), when g ≤ 1
and E is a direct sum of line bundles (cf. Corollary 2 – this always holds
when g = 0), or when E is indecomposable and g ≥ 2. Theorem 5 further
confirms the conjecture in the case of decomposable bundles of the form
E = E0 ⊕ E∞ with E0 and E∞ polystable.

4.3. Extremal Kähler metrics and relative K-polystability. In recent
work, G. Székelyhidi [50] has extended the theory of K-polystability to
cover extremal Kähler metrics, not just CSC Kähler metrics. We briefly
explain his ideas here.

4.3.1. Motivation. Recall that extremal Kähler metrics are critical points
for the L2-norm of the scalar curvature for metrics in a fixed Kähler class on
a complex manifold (M, J) [7]. If we identify the Kähler class with a leaf
of the formal Gc orbit described in Sect. 4.1.2, we are therefore looking for
critical points of ‖µ‖2, where µ : X → C∞

0 (M,R) and X is the space of
compatible complex structures on a compact symplectic manifold (M, ω)
with H1(M) = 0.



586 V. Apostolov et al.

We can adapt the finite dimensional model of Sect. 4.1.1 to this problem
by supposing that the Lie algebra g is equipped with a G-invariant inner
product 〈 , 〉. Now, following Székelyhidi [50], we note that the weight wx
of the linear action of the isotropy algebra gx on L∗

x is given by wx =
〈βx, ·〉 : gx → R for some βx ∈ gx , which is the orthogonal projection of
µ(x) onto gx . We refer to βx (or rather the induced vector field on X) as the
extremal vector field: for in the infinite dimensional setting it agrees with
the extremal vector field of Futaki and Mabuchi (see Sect. 2.2).

Clearly x is a critical point of ‖µ‖2 iff µ(x) is in gx , i.e., βx = µ(x).
Using this, Székelyhidi shows that x is in the Gc orbit of a critical point
of ‖µ‖2 if and only if it is polystable for the action of the subgroup of Gc

whose Lie algebra is the subspace β⊥
x of the centralizer of βx . The Hilbert–

Mumford criterion may then be modified as follows: the modified weight
wx0(α)−〈α, βx〉wx0(βx)/〈βx, βx〉 of the limit point x0 should be nonpositive
for any one parameter subgroup α of the centralizer of βx , with equality if
and only if x0 = x.

4.3.2. The inner product and modified Futaki invariant. Thus motivated,
we return to the setting of Sect. 4.1.4 and define a modified Futaki in-
variant of a polarized scheme (V, L) (of dimension n over C) relative to
a C× action β. We first need to define an inner product between such ac-
tions.

Assume then that V has two C× actions α and β with lifts to L and
infinitesimal generators Ak and Bk of the actions on Hk. Then for k suffi-
ciently large, Tr (Ak Bk) is a polynomial of degree at most n + 2. The inner
product 〈α, β〉 is defined to be the coefficient of kn+2 of the expansion of
Tr (Ak Bk)−wk(α)wk(β)/dk for large k, which is independent of the lifts of
α and β to L: indeed it depends only on the trace-free parts of Ak and Bk.
(When V is a manifold, this inner product coincides with Futaki–Mabuchi
bilinear form [24] up to a normalization convention.)

We define the modified Futaki invariant [50] Fβ(α) of α relative to β
(assuming the action β is nontrivial) to be

Fβ(α) = F(α) − 〈α, β〉
〈β, β〉F(β).

4.3.3. Relative K-stability. Let (M,Ω, L) be as in Sect. 4.1.3 and suppose
it has a nontrivial C× action β.

Definition 6 [50]. A test configuration (X,E ) for (M, L) is compatible with
β if there is aC× action, also denoted by β, on (X,E ) preserving p : X → C

and inducing the trivial action on C, such that β restricted to (Xt,E |Xt
)

coincides with the original action for t �= 0 under the isomorphism with
(M, L).
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In this case we have an induced action on the central fibre X0, also
called β, and the modified Futaki invariant of the test configuration is
defined to be Fβ(α).

A polarized Hodge manifold (M, L) with nontrivial C× action β is
K-polystable relative to β if the modified Futaki invariant of any test con-
figuration (X,E ) compatible with β is nonpositive, and equal to zero if and
only if (X,E ) is a product.

If (M, L) has a C× action β which preserves a subscheme Z, the test
configurations (X,Ec) arising from the deformation to the normal cone are
compatible with β. As in [45,46], Fβ(αc) is rational in c ∈ (0, ε) ∩ Q and
so extends to c ∈ (0, ε). Thus, cf. Sect. 4.1.4, we have a notion of slope
K-polystability relative to β.

Definition 7. A polarized Hodge manifold (M, L) with nontrivial C× ac-
tion β is said to be slope K-polystable relative to β if the modified Futaki
invariant Fβ(αc) of the family (X,Ec) of test configurations, corresponding
to the deformation to the normal cone of any nontrivial subsheme preserved
by β, is negative for c ∈ (0, ε).

As with the definition of (absolute) slope K-polystability, strictly speak-
ing, we should also require Fβ(αε) < 0 unless ε is rational and (X,Eε) is
the pullback by a contraction of a product configuration.

It follows from [25,42] that the (Futaki–Mabuchi) extremal vector field
associated to a Hodge Kähler manifold (M,Ω) with a maximal compact
connected subgroup G of H0(M) has closed orbits, and therefore defines
an effective C× action which we will refer to as the extremal C× action
of (M,Ω, G). By ‘K-polystable relative to G’, we mean relative to the
extremal C× action of (Ω, G). The motivation of Sect. 4.3.1 then suggests
the following conjecture [50].

Conjecture 1. Let (M,Ω, L) be a polarized Hodge manifold and G a max-
imal compact connected subgroup of H0(M). Then there is a G-invariant
extremal Kähler metric in Ω = 2πc1(L) if and only if (M, L) is K-polystable
relative to G.

As a motivating example, Székelyhidi considers the deformation to the
normal cone of the infinity section in a (higher genus) polarized geometri-
cally ruled surfaces P(O ⊕ L) → Σ. He finds that relative K-polystability
implies existence of extremal Kähler metrics of the type constructed in [54],
which are precisely the admissible metrics on these bundles. In the next sec-
tion we generalize this idea to arbitrary admissible bundles. However, in
doing so, we find that unless dim S ≤ 4, we need to replace ‘K-polystable’
by ‘slope K-polystable’ in the above conjecture.

4.4. Relative K-polystability of admissible projective bundles. We now
consider the deformation to the normal cone (X,Ec, α) of the infinity sec-
tion e∞ = z−1(−1) = P(0 ⊕ E∞) for an admissible projective bundle
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M = P(E0 ⊕ E∞) → S (with dim S = 2d), polarized by a line bundle L
with Ω = 2πc1(L) admissible.

We therefore choose the admissible Kähler class Ω = Ξ+∑
a[ωa]/xa to

be integral (where 0 < |xa| ≤ 1 with equality iff a ∈ {0,∞}). The Seshadri
constant of this polarization is 2, so we take c ∈ (0, 2) ∩ Q. Since the C×

action β induced by the vector field K preserves Z, X is compatible with
this action. We will use the letters α, β to denote also the corresponding
actions on the (polarized) central fibre (X0, L0) and on the vector space
H0(X0, Lk

0), where L0 = Ec|X0
.

Let us calculate the modified Futaki invariant of this configuration. For
this we first note that if �∞ ⊂ OM is the ideal sheaf of holomorphic functions
vanishing on e∞, then for any p ≥ 0, � p

∞/� p+1
∞ is supported on e∞, and its

restriction is Spν∗∞, where ν∞ is the normal bundle to e∞ in M.
Therefore, for k sufficiently large, we have, as in [45,50]

H0
(
X0, Lk

0

) =
(2−c)k⊕

i=0

H0
(
e∞, L|ke∞ ⊗ S2k−iν∗

∞
)

⊕
ck⊕

j=1

H0
(
e∞, L|ke∞ ⊗ Sck− jν∗

∞
)
,

where α acts on the first direct sum with weight 0 and on the components
of the second direct sum with weight − j. We can choose the lift of β to L
so that the weight of the induced action on H0(e∞, L|ke∞ ⊗ Suk+vν∗∞) is
(u − 1)k + v.

Now Spν∗∞ is the direct image q∗O(p)ν∞ , where O(−1)ν∞ is the (fi-
brewise) tautological bundle of q : ê∞ = P(ν∞) → e∞. Also ê∞ may be
identified with Ŝ via the obvious inclusion i of Ŝ into M̂ = P(O ⊕ L̂) as
the infinity section, and then i∗O(1)ν∞ = L̂. For convenience, we now drop
the hats, so that we have

H0
(
X0, Lk

0

) =
(1−z)k⊕

i=0

H0(S, i∗Lk ⊗ L2k−i) ⊕
(1+z)k⊕

j=1

H0(S, i∗Lk ⊗ L(1+z)k− j)

=
2k⊕

i=0

H0(S, i∗Lk ⊗ L2k−i),

where we have abused notation by writing c − 1 = z; a priori this has
nothing to do with the momentum map that we also denote by z, but notice
that it does take (rational) values in the same interval (−1, 1). To compute
dk, Tr Ak , Tr Bk, Tr Ak Bk, Tr B2

k , and thereby Fβ(α), we need only the
dimensions of these vector spaces. We note that we only need to compute
dk, Tr Ak and Tr Bk to subleading order in k, whereas for Tr Ak Bk and Tr B2

k
the leading order term suffices. Consequently we will be dropping lower
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order terms without further comment. We also note that since the Futaki
invariant is defined in terms of ratios, we can ignore any overall multiples.
Now by the Riemann–Roch formula and the ampleness of i∗L (in fact it is
only semiample if d∞ > 0, but we can apply a limiting argument in this
case, as in [45]), for sufficiently large k we have that

h0(S, i∗Lk ⊗ Luk+v) = χ(S, i∗Lk ⊗ Luk+v)

= (ch(i∗Lk ⊗ Luk+v) · Td(S))[S]

=
(

c1(i
∗Lk ⊗ Luk+v) + 1

2
c1

(
K−1

S

)
)d

[S] + O(kd−2)

=
(∑

a

k + ((u − 1)k + v + sa/2)xa

xa
[ωa/2π]

)d

[S]

+ O(kd−2)

since the Ricci form of Sa may be written saωa+ρa,0 where ρa,0∧ωda−1
a = 0.

After an overall multiplication by (2π)d/d! and
∏

a xda
a /Vol(Sa, ωa), this is

kd ps
c(u − 1 + v/k) + O(kd−2),

where ps
c(t) = ∏

a(1+xa(t+sa/2k))da . In order to carry out the summations
over i and j we use the trapezium rule, as in [45, Lemma 4.7].

Lemma 9. Let f(x) be a polynomial and b a rational number. Then for
ε ∈ {0, 1} and for k ∈ Z+ such that bk is a positive integer, we have

bk∑

i=ε

f(i/k) = k
∫ b

0
f(t) dt + 1

2
( f(b) + (−1)ε f(0)) + O(k−1).

The proof is easy (see e.g. [45]): by linearity we can assume f(x) = xm

and then use
∑N

i=1 im = Nm+1/(m + 1)+ Nm/2 + O(Nm−1) (which in turn
is an easy induction on N). We then obtain (up to an overall multiple), that
for any r ≥ 0,

k−d−rTr Br
k = k

∫ 2

0
(1 − t)r ps

c(1 − t) dt + 1

2

(
pc(1) + (−1)r pc(−1)

)

+ O(1/k)

= kαr + 1

2
βr + O(1/k),

with αr = ∫ 1
−1 pc(t)tr dt and βr as in (7). Setting r = 0 gives dk . Similarly,

using the explicit formula (12) for the extremal polynomial FΩ(z) we obtain
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k−d−1Tr Ak = k
∫ 1+z

0
−tps

c(z − t) dt − 1

2
(1 + z)pc(−1) + O(1/k)

= − k
∫ z

−1
pc(t)(z − t) dt

− 1

2

∫ z

−1

(∑

a

dasaxa

1 + xat

)

pc(t)(z − t)dt

− 1

2
(1 + z)pc(−1) + O(1/k)

= − k
∫ z

−1
(z − t)pc(t) dt

− 1

4
FΩ(z) + 1

4

∫ z

−1
(At + B)pc(t)(z − t) dt + O(1/k)

k−d−3Tr Ak Bk =
∫ 1+z

0
−t(z − t)pc(z − t) dt + O(1/k)

= −
∫ z

−1
pc(t)t(z − t) dt + O(1/k)

where A and B are the solutions of (9). Now we are ready to calculate 〈β, β〉,
〈α, β〉, F(β), and F(α). (We omit the dependence of z for convenience.)

〈β, β〉 = α2α0 − α2
1

α0

〈α, β〉 = −
∫ z

−1
pc(t)t(z − t) dt + α1

α0

∫ z

−1
pc(t)(z − t) dt

F(α) = Resk=0
(Tr Ak)1 + (Tr Ak)0/k

α0(1 + β0/(2kα0))
= α0(Tr Ak)0 − 1

2β0(Tr Ak)1

α2
0

=

{− 1
4α0FΩ(z) + 1

4α0
∫ z
−1(At + B)pc(t)(z − t) dt

+ 1
2β0

∫ z
−1 pc(t)(z − t) dt

}

α2
0

F(β) = Resk=0
α1 + β1/2k

α0(1 + β0/(2kα0))
= β1α0 − β0α1

2α2
0

where we have set (Tr Ak)0 = − 1
4 FΩ(z)+ 1

4

∫ z
−1(At + B)pc(t)(z − t) dt and

(Tr Ak)1 = −k
∫ z
−1 pc(t)(z − t) dt.
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Finally, we can calculate the modified Futaki invariant for our test con-
figuration.

α2
0Fβ(α) =α2

0(F(α) − 〈α, β〉F(β)/〈β, β〉)

= − 1

4
α0 FΩ(z) + 1

4
α0

∫ z

−1
(At + B)pc(t)(z − t) dt

+ 1

2
β0

∫ z

−1
pc(t)(z − t) dt

+ α0(β1α0 − β0α1)

2
(
α2α0 − α2

1

)
(∫ z

−1
pc(t)t(z − t) dt

− α1

α0

∫ z

−1
pc(t)(z − t) dt

)

= − 1

4
α0 FΩ(z) + 1

4
α0

∫ z

−1
(At + B)pc(t)(z − t) dt

− 1

4
α0

∫ z

−1
Atpc(t)(z − t) dt

+ β0
(
α2α0 − α2

1

) − α1(β1α0 − β0α1)

2
(
α2α0 − α2

1

)

∫ z

−1
pc(t)(z − t) dt

= − 1

4
α0 FΩ(z) + 1

4
α0

∫ z

−1
(At + B)pc(t)(z − t) dt

− 1

4
α0

∫ z

−1
Atpc(t)(z − t) dt − 1

4
α0

∫ z

−1
Bpc(t)(z − t) dt

= − 1

4
α0 FΩ(z)

which is a negative multiple of the extremal polynomial. It follows immedi-
ately that if (M, L) is slope K-polystable relative to K = J gradg z, then FΩ

is positive on (−1, 1) and Ω contains an admissible extremal metric by
Theorem 1.

If (M, L) is slope K-polystable in the absolute sense, then F(α) is nega-
tive on (−1, 1) and hence nonpositive at z = 1. Evaluating the integrals
in this case (and using FΩ(1) = 0), we find that A ≥ 0. Now if we swap
the roles of the zero and infinity sections (by interchanging E0 and E∞)
then the analogous calculation shows that A ≤ 0 (we get the same formulae
with the change of variables z �→ −z). Thus A = 0 and F(β) = 0. (Intu-
itively, the reason we get F(β) = 0 is that in these limits, deformation to
the normal cone of the zero or infinity section is actually the pullback by
a contraction of the product configuration associated to ±β, cf. [45,46].)
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Hence (M, L) is slope K-polystable relative to β, FΩ is positive on (−1, 1),
and the admissible extremal metric is CSC.

This proves Theorem 2, providing evidence for the reverse implication in
Conjecture 1 (with relative K-stability replaced by relative slope K-stability)
because in our setting, the extremal vector field is a nonzero multiple of
AK . This calculation also shows that the forward implication in Conjec-
ture 1 implies Corollary 3, without referring to K-energy or the results of
Chen–Tian [10,11], providing further indirect evidence. However, if we use
relative K-stability instead of relative slope K-stability, we can only deduce
that FΩ is positive on (−1, 1)∩Q and hence nonnegative on (−1, 1). How-
ever, since Ω is integral, FΩ has rational coefficients, and so when dim S(=∑

a∈A 2da) ≤ 4 it follows that FΩ is positive on (−1, 1): indeed FΩ(z) =
(1+ z)d0+1(1− z)d∞+1 Q(z) where Q(z) is a quadratic or cubic with rational
coefficients, and the repeated roots of such a polynomial must be rational.

On the other hand, the following examples show that positivity of the
extremal polynomial on (−1, 1) ∩Q is not sufficient for the existence of an
extremal Kähler metric when dim S = 6.

Example 1. Let S = Σ1 × Σ2 × Σ3 be a product of hyperbolic Riemann
surfaces Σa with integral Kähler classes [±ωa]. Then for any admissible
projective line bundle M over S and any admissible integral Kähler class Ω
on M with parameters xa ∈ Q, the extremal polynomial has the form

FΩ(z) = (1 − z2)
(

pc(z) + (1 − z2)
(
a0 + a1z + a2z2

))
,

where the aj are determined by the constant gaussian curvatures ±sa of Σa
(via (4)–(5)). However, since we are free to choose the genera and degrees
of the line bundles defining M, the sa can be arbitrary rational numbers
subject only to the constraint that saxa < 0 (so that the gaussian curvatures
are negative). Hence we are free to choose the aj subject to this constraint.

We claim that for any rational r > 0 and x1 > x2 > 0 > x3, we can
choose the aj so that FΩ(z) is a positive multiple of (1 − z2)(z2 + rz − 1)2

provided that

x1x2x3 + x1 + x2 + x3 = 0.(21)

FΩ then has a repeated root in (0, 1) and another in (−∞,−1) and
for r in an open subset of Q+, these roots are irrational. Obviously
for any 1 > x1 > x2 > 0 rational, (21) has a unique rational solution
x3 = −(x1 + x2)/(1 + x1x2) with 0 > x3 > −1, and it is elementary to
verify our claim by equating coefficients. F ′′

Ω(z) is then negative for large z
and has at least two roots in (−1, 1) and none in (1,∞). We then check that
for r > 8/5, F ′′

Ω(−1) is negative and so the other two roots (which must be
real, since FΩ must have four inflection points) are in (−∞,−1). Hence we
can choose x1, x2 so that s1x1 < 0 and s2x2 < 0, with sa defined by (4)–(5).
It automatically follows that s3x3 < 0.

These data then define a countably infinite family (parameterized by
(x1, x2, r) in an open subset of Q3) of admissible projective line bundles
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over products of three Riemann surfaces together with admissible rational
Kähler classes (which we can scale to be integral) such that FΩ is positive
on (−1, 1)∩Q, but has an irrational repeated root in (−1, 1). By Theorem 1
these Kähler classes then do not contain an extremal Kähler metric.

Remark 10. According to the conjectures [15,50], the above examples
should define unstable projective varieties. However, the degeneration that
demonstrates this instability is not algebraic. While we cannot prove that
there is no other algebraic test configuration which would detect this in-
stability, it is difficult to imagine how such a test configuration could be
constructed. Thus, presumably, our examples are algebraically (relative) K-
polystable but analytically only (relative) K-semistable. This suggests that
the non-algebraic degenerations implicit in the use of slope K-polystability
may be essential to relate stability to existence of CSC and extremal Kähler
metrics.

Appendix A. Relation to previous papers

In this appendix we summarize the classification of compact Kähler 2m-
manifolds M with a Hamiltonian 2-form of order � given in [5, Theorem 5],
and explain how Theorem 3 follows from this classification in the case � = 1.
We also give a nonexistence result for extremal Kähler metrics when � = 2.

A.1. Summary of the classification. Let (M, g, J, ω) be a compact con-
nected Kähler 2m-manifold with a Hamiltonian 2-form φ of order �. Let p(t)
be the momentum polynomial of φ and K(t) = J gradg p(t) be the corres-
ponding family of Hamiltonian Killing vector fields. We summarize results
from [4,5] in italics.

The vector fields {K(t) : t ∈ R} generate an effective isometric Hamiltonian
action of an �-torus T on M and p(t) has m − � constant roots counted with
multiplicity. This action is free on a connected dense open subset M0 of M.

We let S∆ be the stable quotient of M by the induced action of the
complexified torus Tc and denote by ηa, for a in a finite set with ≤ m − �
elements, the distinct constant roots of p(t) and by da their multiplicities.

The stable quotient S∆ is covered by a product S̃∆ = ∏
a Sa of Kähler

2da-manifolds (Sa,±ga,±ωa), and the natural projection M0 → S∆ is
a principal Tc-bundle.

In [4,5], we took a ∈ {1, . . . , N}, but here we shall adopt (in a moment)
a different notation for the index set. We let pc(t) = ∏

a(t − ηa)
da and

write p(t) = pc(t)pnc(t), where pnc(t) = ∑�
r=0(−1)rσr t�−r and σ0 = 1.

The Killing vector fields Kr := J gradg σr , for r = 1, . . . , �, are linearly
independent on M0.
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The image ∆ of the momentum map (σ1, . . . , σ�) is a simplex in t∗ ∼= R�,
whose interior (the image of M0) is the image under the elementary symmet-
ric functions of a domain D = ∏�

j=1(βj−1, βj), where β0 < β1 < · · · < β�.
The roots of pnc(t) define smooth, functionally independent, pairwise dis-
tinct functions ξj ( j = 1, . . . , �) on M0 which extend continuously to M
with image [βj−1, βj]. The codimension one faces of ∆ may be labelled
F0, . . . , F� such that on Fj, either ξj = βj or ξj+1 = βj .

The local description of the metric on M0 is as follows (where we have
set c = 1, according to [5, Remark 13]).

There are 1-forms θ1, . . . , θ� on M0 such that θr(Ks) = δrs and dθr =∑
a(−1)rη�−r

a ωa and a function Θ of one variable satisfying

(−1)�− jΘ > 0 on (βj−1, βj),(22)

Θ(βj) = 0, Θ′(βj) = −
∏

k �= j

(βj − βk),(23)

such that the Kähler structure on M0 may be written

g =
∑

a

pnc(ηa)ga +
�∑

j=1

∆j

Θ(ξj)
dξ2

j +
�∑

j=1

Θ(ξj)

∆j

( �∑

r=1

σr−1(ξ̂j)θr
)2

,

ω =
∑

a

pnc(ηa)ωa +
�∑

r=1

dσr ∧ θr,

(24)

where
∑

a pnc(ηa)ga is the pullback of a local Kähler product metric on Ŝ,
∆j = ∏

k �= j(ξj − ξk), and σr(ξ̂j) is the rth elementary symmetric function of
ξ1, . . . , ξ� with ξj omitted. (σr itself is the rth elementary symmetric function
of ξ1, . . . , ξ�.)

The global description of M in [5, Theorem 5] was presented using the
blow-up M̂ of M along the inverse image of the codimension one faces
F0, . . . , F� of S∆.

M̂ isTc-equivariantly biholomorphic to theCP� -bundle M0×TcCP� → S∆.

The blow-up is encoded by fibrations S∆ → SFj for each Fj (see also
[5, Proposition 6]): either S∆ = SFj , or the fibration is covered by the
obvious projection S̃∆ → ∏

b �=aj
Sb for some index aj such that Saj is

a complex projective space and (±gaj ,±ωaj) has constant holomorphic
sectional curvature ±∏

k �= j(βj − βk).
We unify these cases here by introducing, if S∆ = SFj , an additional

index aj with daj = 0 and Saj = CP0 (a point). We denote the new index set
by Â and take a ∈ Â unless otherwise stated: the additional indices make



Hamiltonian 2-forms in Kähler geometry, III 595

no difference to the previous formulae. We still have S̃∆ = ∏
a Sa, and now

for all Fj , S∆ → SFj is a CPdaj -bundle covered by S̃∆ → ∏
b �=aj

Sb. The
map j → aj is injective [5] and so Â is the union of a set A and the injective
image of {0, . . . , �} (under j �→ aj).

For a ∈ A, either ηa < β0 or ηa > β�, according to the sign of (±ga,±ωa),
whereas for j = {0, . . . , �}, ηaj = βj .

The formula (24) for the metric on M0 leads to a description [5, The-
orem 5] of M̂ as a projective bundle P(L0 ⊕L1 ⊕· · ·⊕L�) → S∆ together
with formulae for the Chern classes of Lj on the covering S̃∆. To obtain
instead a description of M, we need one further ingredient, which follows
easily by considering the form of the covering transformations and the fact
that S̃∆ → ∏

b �=aj
Sb covers the fibration S∆ → SFj .

Lemma 10. The projection S̃∆ → S̃ := ∏
a∈A Sa descends to realize S∆

as a fibre product of flat projective unitary CPdaj -bundles over a quotient S
of S̃.

An important class of flat projective unitary CPr-bundles on S are those
of the form P(E), where E is a rank r + 1 projectively-flat hermitian vector
bundle on S. If S is simply connected, then any flat projective unitary
CPr-bundle is trivial, hence of the form P(E) with E ∼= E ⊗ Cr+1 for
a holomorphic line bundle E . In general the obstruction to the existence
of E is given by a torsion element of H2(S,O∗) (cf. [19]). In particular,
such an E always exists if S is a Riemann surface.

Let us suppose that S∆ = P(E0)×S P(E1)×S · · ·×S P(E�) → S, where
each Ej → S is projectively-flat hermitian of rank dj + 1. We are free to
choose the Ej so that M̂ = P(O(−1)E0 ⊕O(−1)E1 ⊕· · ·⊕O(−1)E�

) where
O(−1)Ej is the (fibrewise) tautological line bundle over P(Ej) (trivial over
the other factors of S∆). From the description of the blow-up in [5] (see in
particular formulae (46) there), we immediately deduce the following (in
which we write c1(E) = c1(E)/ rank E).

M is Tc-equivariantly biholomorphic to P(E0 ⊕ E1 · · · ⊕ E�) → S and
for any i �= j, c1(Ej) − c1(Ei) = 1

2

∑
a(

∏
k �=i(ηa − βk) − ∏

k �= j(ηa −
βk))[ωa/2π].

Derivation of Theorem 3. In order to derive Theorem 3 from the above, it
suffices to rescale g and φ so that we can take β0 = −1 and β1 = 1, see [5,
Remark 13]. Then we set ηa = −1/xa and change the sign of ωa for all a.
We also write Ŝ for S∆, and replace the index set {0, 1} by {0,∞} so that
we can take Â = {0,∞} ∪ A where A is a finite subset of Z+, but these
changes are purely cosmetic.

A.2. A nonexistence result for order 2 extremal Kähler metrics. In this
paper we study only Hamiltonian 2-forms of order 1. As a partial justification
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for this restriction, we now consider the lowest interesting dimension for
the order 2 case, and show that any extremal metric on a compact Kähler
6-manifold compatible with a Hamiltonian 2-form of order 2 is a Fubini–
Study metric on CP3.

According to [4], in this situation the momentum polynomial has non-
constant roots ξ1 and ξ2 and one constant root η so #A ≤ 1 and p(t) =
(t −η)(t − ξ1)(t − ξ2). The stable quotient Σ of (M, J) by the complexified
Tc action is a compact Riemann surface with Kähler structure (gΣ, ωΣ).

By [5, Remark 13], we can set β0 = −1 and β2 = 1 and write β1 = β
(where |β| < 1). If A is empty, (M, J) is biholomorphic to CP3; otherwise
|η| > 1 and (M, J) is Tc-equivariantly biholomorphic to M = P(L0 ⊕
L1 ⊕ L2) → Σ, where Lj are holomorphic line bundles on Σ such that
(without loss) L1 is trivial and, by [5, Theorem 5], we have

c1(L0) = 1

2
(η − 1)(β + 1)[ωΣ/2π],

c1(L2) = 1

2
(η + 1)(β − 1)[ωΣ/2π].

(25)

The Kähler metric on M is determined by a function Θ(t) satisfying pos-
itivity and boundary conditions which imply that Θ(t) = F(t)/(t − η)
where F(t) = H(t)((t − η) + H(t)Q(t)) for some function Q(t), and
H(t) = (1 − t2)(t − β).

If g is extremal and the extremal vector field is tangent to the fibres of
M → Σ, then by [4], F(t) is a polynomial of degree at most 5 and gΣ has
scalar curvature −F ′′(η). This forces Q(t) = 0 and so the scalar curvature
of gΣ is 2(3η2 −2βη−1) which is positive since |η| > 1 and |β| < 1. Hence
Σ = CP1. Since 1

4 ScalgΣ
[ωΣ/2π] is a primitive integral class, (25) implies

that

(η ∓ 1)(β ± 1) = q±(3η2 − 2βη − 1)

for some nonzero integers q±. We remark that these formulae show that
the relation between q± and (η, β) is birational, in fact the restriction to R2

of a quadratic transformation of CP2. In any case, η is constant on the
lines through (q+, q−) = (1, 1), and β = ±1 on the lines q± = 0 and
2q± − q∓ = 1, the latter being the lines on which η = ±1. It follows
straightforwardly that |η| > 1 and |β| < 1 iff q+ > 0, q− < 0 and
2q+ − q− < 1 or vice-versa (swap plus and minus) – which is impossible
as |q±| ≥ 1. We therefore have the following nonexistence result.

Theorem 11. A compact extremal Kähler 6-manifold (M, J, g, ω) which
admits a Hamiltonian 2-form of order 2 with the extremal vector field
tangent to the Tc-orbits is isometric to CP3 with a Fubini–Study metric.
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Appendix B. Proof of Lemma 6

In this appendix we prove Lemma 6 by computing the asymptotics as
xa → 0, for a ∈ A, of the solution (A, B) of the system (9), i.e.,
Aα1 + Bα0 = −2β0, Aα2 + Bα1 = −2β1, where αr = ∫ 1

−1 pc(t)trdt
and βr are as in (7). In order to do this, we rewrite β0 and β1 as integrals
using the obvious identities

pc(1) + pc(−1) =
∫ 1

−1

d

dt
(tpc(t))dt =

∫ 1

−1

(

1 +
∑

a

daxat

1 + xat

)

pc(t)dt

pc(1) − pc(−1) =
∫ 1

−1

d

dt

(
t2 pc(t)

)
dt =

∫ 1

−1

(

2 +
∑

a

daxat

1 + xat

)

pc(t)t dt

to obtain

β0 =
∫ 1

−1
(1 + t)d0(1 − t)d∞

×
(

1 + d0 + d∞ + d2
0

1 + t
+ d2∞

1 − t
+

∑

a∈A

daxa(sa + t)

1 + xat

)

× ( ∏

a∈A

(1 + xat)da
)
dt

β1 =
∫ 1

−1
(1 + t)d0(1 − t)d∞

×
(

2 + d0 + d∞ + d2
0

1 + t
+ d2∞

1 − t
+

∑

a∈A

daxa(sa + t)

1 + xat

)

× ( ∏

a∈A

(1 + xat)da
)
t dt.

The asymptotics of α0, α1, α2, β0 and β1 are given by integrals of the form

I(m, n, k) =
∫ 1

−1
(1 + t)m(1 − t)ntk dt.

Integrating by parts and using 2I(m, n, k + 1) = I(m + 1, n, k) − I(m,
n + 1, k),

I(m, n, 0) = 2m+n+1 m! n!
(m + n + 1)! , I(m, n, 1) = 2m+n+1(m − n) m! n!

(m + n + 2)! ,

I(m, n, 2) = 2m+n+1(m2 + n2 + m + n − 2mn + 2) m! n!
(m + n + 3)! .
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These are rather complicated, so we manipulate the integrals using the
identities

I(m − 1, n, 0)m2 + I(m, n − 1, 0)n2 = 1

2
I(m, n, 0)(m + n + 1)(m + n)

I(m − 1, n, 1)m2 + I(m, n − 1, 1)n2 = 1

2
I(m, n, 1)(m + n − 1)

× (m + n + 2)

I(m − 1, n, 2)m2 + I(m, n − 1, 2)n2 = 1

2
I(m, n, 2)(m + n + 3)(m + n)

− I(m, n, 1)(m − n)

and thus obtain, up to O(x2),

αk = I(d0, d∞, k) + I(d0, d∞, k + 1)
∑

a∈A

daxa,

β0 = 1

2
I(d0, d∞, 0)(1 + d0 + d∞)(2 + d0 + d∞) + I(d0, d∞, 0)

∑

a∈A

dasaxa

+ 1

2
I(d0, d∞, 1)(1 + d0 + d∞)(2 + d0 + d∞)

∑

a∈A

daxa,

β1 = 1

2
I(d0, d∞, 1)(1 + d0 + d∞)(2 + d0 + d∞) + I(d0, d∞, 1)

∑

a∈A

dasaxa

+
(

1

2
I(d0, d∞, 2)(3 + d0 + d∞)(2 + d0 + d∞)

− I(d0, d∞, 1)(d0 − d∞)

)∑

a∈A

daxa.

A direct computation using the above formulae together with the identity
I(m, n, 1)(m + n + 2) = I(m, n, 0)(m − n) now shows that, up to O(x2),

α0β1 − α1β0

α0α2 − α2
1

= (2 + d0 + d∞)
∑

a∈A

daxa

α2β0 − α1β1

α0α2 − α2
1

= 1

2
(1 + d0 + d∞)(2 + d0 + d∞) +

∑

a∈A

dasaxa

+ (d∞ − d0)
∑

a∈A

daxa.

Multiplying by −2 completes the proof.
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