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Abstract. We study the local existence of strong solutions for the cubic
nonlinear wave equation with data in Hs(M), s < 1/2, where M is a three
dimensional compact Riemannian manifold. This problem is supercritical
and can be shown to be strongly ill-posed (in the Hadamard sense). However,
after a suitable randomization, we are able to construct local strong solution
for a large set of initial data in Hs(M), where s ≥ 1/4 in the case of
a boundary less manifold and s ≥ 8/21 in the case of a manifold with
boundary.

1. Introduction

In the study of the local well-posedness of a nonlinear evolutionary PDE,
one often encounters the presence of a critical threshold for the well-
posedness theory. A typical situation is to have a method showing well-
posedness in Sobolev spaces Hs where s is greater than a critical index
scr. This index is often related to a scale invariance (leading to solutions
concentrating at a point of the space-time) of the considered equation.
In some cases (but not all), a good local well-posedness theory is valid
all the way down to the scaling regularity. On the other hand, at least in
the context of nonlinear dispersive equations, no reasonable local well-
posedness theory is known for any supercritical equation, i.e. for data hav-
ing less regularity than the scaling one. In fact, recently, several methods to
show ill-posedness, or high frequency instability, for s < scr emerged (see
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the works by Burq, Gérard and Tzvetkov [4,5], Lebeau [12] and Christ
Colliander and Tao [10]). The goal of this paper is to give a class of
equations for which, using probabilistic arguments, one can still obtain
a suitable well-posedness theory below the critical threshold. Our model
will be the cubic nonlinear wave equation posed on a compact mani-
fold.

Let (M, g) be a three dimensional compact smooth Riemannian manifold
(without boundary) and let � be the Laplace–Beltrami operator associated
to the smooth metric g. For s ∈ R, we denote by Hs(M) the classical
Sobolev space equipped with the norm ‖u‖Hs(M) = ‖(1 − �)s/2u‖L2(M).
Consider the following cubic wave equation

(
∂2

t − �
)
u + u3 = 0, (u, ∂tu)|t=0 = ( f1, f2)(1.1)

with real valued initial data ( f1, f2) ≡ f ∈ Hs(M)× Hs−1(M) ≡ H s(M).

Using Strichartz estimates for the free evolution (see Sect. 2) one can
show that for s > 1/2 the Cauchy problem (1.1) is locally well-posed
for data in H s(M). This means that for every f ∈ H s(M) there exists
T > 0 and a unique solution u of (1.1), in a suitable class, such that
(u, ut) ∈ C([0, T ];H s(M)), i.e. the solution u represents a continuous
curve in Hs(M) (we call such a solution strong solution since the classic-
al construction of weak solutions does not yield the continuity in time).
Moreover, we can show that the time existence T may be chosen the same
for all f belonging to a fixed bounded set B of H s(M) and the map
f �→ (u, ut) is continuous (and even Lipschitz continuous) from B to
C([0, T ];H s(M)).

For s = 1/2 one can still construct local strong solution for f ∈
H1/2(M) but the dependence of T on f is more complicated and the
Sobolev space H1/2(M) is called critical space for (1.1).

For s < 1/2, the argument to construct local solutions by Strichartz
estimates breaks down. Moreover one may show (see [10,12] for the case
of constant coefficient metrics or the appendix of this paper for the case of
non constant coefficient metrics) that if the initial data belong to H s(M),
s < 1/2, the Cauchy problem (1.1) is ill-posed in a strong sense: there
exists initial data ( f1, f2) ∈ H s(M) such that any reasonable solution
of (1.1), i.e. satisfying the finite speed of propagation ceases instanta-
neously to be in H s for positive times (by finite speed of propagation,
we mean the fact that the value of the solution at (x0, t0) depends only
on the values of the initial data on the set of points located at distance
smaller that |t0|: {x : dg(x, x0) ≤ |t0|}). However, the functions for which
one can prove such a pathological behavior are highly non generic and
a natural question is whether despite this result one can still prove that
the problem (1.1) possesses local strong solutions for a “large class of
functions” in H s(M), s < 1/2. Our purpose in this paper is precisely
to give a positive answer to this question. Our main result reads as fol-
lows.
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Theorem 1. Assume that ∂M = ∅. Let us fix s ≥ 1/4 and f = ( f1, f2) ∈
H s(M). Let f ω ∈ L2(Ω;H s(M)) be the associated random function de-
fined in Definition 1.1 below. Then there exists σ ≥ 1/2 such that for almost
all ω ∈ Ω there exist Tω > 0 and a unique solution to (1.1) with initial data
f ω in a space continuously embedded in

Xω =
(

cos(t
√−�) f ω

1 + sin(t
√−�) f ω

2√−�

)
+ C

([−Tω, Tω]; Hσ (M)
)
.

More precisely, there exist C > 0, δ ≥ 0 (δ > 0 if s > 1/4) and for every
0 < T ≤ 1, an event ΩT such that

p(ΩT ) ≥ 1 − CT 1+δ(1.2)

and such that for every ω ∈ ΩT there exists a unique solution u of (1.1)
with data f ω in a space continuously embedded in C([−T, T ]; Hs(M)).

Moreover, if s > 1/4 and if the random variables appearing in the defin-
ition of f ω, hn, ln, are standard real Gaussian or Bernoulli variables (1.2)
can be improved to

p(ΩT ) ≥ 1 − Ce−c/T δ

, c, δ > 0.(1.3)

Let us now define precisely the randomization we use and what we mean
by “a large class of initial data in H s(M)”.

Definition 1.1. Let (en) ∈ C∞(M), n = 1, 2, . . . be an orthonormal basis
of L2(M) constructed from real eigenfunctions of the operator −� associ-
ated to eigenvalues λ2

n. Let (hn(ω), ln(ω))∞
n=1 be a sequence of independent,

0 mean value, real random variables on a probability space (Ω,A, p) such
that

∃ C > 0 : ∀ n ≥ 1,

∫

Ω

(|hn(ω)|4 + |ln(ω)|4)dp(ω) < C.(1.4)

For f = ( f1, f2) ∈ H s(M) given by

f1(x) =
∞∑

n=1

αnen(x), f2(x) =
∞∑

n=1

βnen(x), αn, βn ∈ R,

we consider the map

ω �−→ f ω = (
f ω
1 (x) =

∞∑

n=1

hn(ω)αnen(x), f ω
2 (x) =

∞∑

n=1

ln(ω)βnen(x)
)

(1.5)

from (Ω,A) to H s(M) equipped with the Borel sigma algebra. Using
(1.4) one can check that the map ω �→ f ω is measurable and f ω ∈
L2(Ω;H s(M)). Thus it defines a H s(M) valued random variable, which
we call the random function associated to ( f1, f2).
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Remark 1.2. A simple computation (see Appendix 2) shows that if hn, ln
are identically distributed and different from zero, or more generally if there
exists c > 0 such that the distributions hn, ln satisfy

lim sup
n→+∞

p({|hn| + |ln| ≤ c}) < 1,

then, if f does not belong to H s+ε(M), for almost all ω, f ω does not belong
to H s+ε(M). Thus the randomization ω �→ f ω does not give a regulariza-
tion in the scale of the Sobolev spaces (but we shall crucially exploit L p

regularizations of this randomization).

Remark 1.3. The result in Theorem 1 shows that in some sense the prob-
lem (1.1) is well-posed for almost all initial data in H

1
4 (M), exhibiting

a gain of 1/4 derivatives with respect to the critical index 1/2.

Remark 1.4. For any f ∈ H s(M), 1/4 ≤ s, the map

ω ∈ Ω �−→ f ω ∈ H s(M)

endows naturally H s(M) with a probability measure µ f . It is straightfor-
ward to check that the solutions given by Theorem 1 satisfy the finite speed
of propagation. As a consequence, Theorem 1 implies that the set of ini-
tial data exhibiting the same kind of pathological behavior as the ones we
constructed in the appendix have measure 0 for any measure µ f .

Remark 1.5. Combining the ideas developed in this paper (and in particu-
lar (1.3)) with a global control on the flow given by invariant measures
(which itself is related to the Hamiltonian nature of our equation, see e.g.
our previous work [8] or [2,3,16,17]) leads to global well posedness results
for a class of super critical wave equations (see our forthcoming paper [9]).
On the other hand, it would be interesting to decide whether the local in
time result of Theorem 1 may be successfully combined with other global
controls on the flow such as conservation laws.

Remark 1.6. The method of proof consists in using the fact that though
the initial data have low regularity, their L p properties are (almost surely)
much better than expected, allowing the use of a fixed point method after
having singled out the linear evolution. Let us note that such L p regulariza-
tion phenomena are well-known in the context of Fourier series since the
work of Paley–Zygmund [13]. Similar phenomena were recently studied
by Ayache and the second author in the context of sums of type (1.5)
in [1].

Remark 1.7. In the improved time existence statement of Theorem 1 one
may replace the assumption to deal with Gaussian or Bernoulli’s variables
by the assumption (3.1) below.



Supercritical wave equation 453

Remark 1.8. For the sake of conciseness, we chose to focus on the cubic
semi linear wave equation. However, the strategy presented here applies to
arbitrary non linearities and allows to go beyond the usual critical threshold.
In particular, at the energy level (H1 × L2), the local well posedness result
holds for the semilinear wave equation

�u + |u|p−1u = 0

for any exponent 1 ≤ p < +∞.

Remark 1.9. Let us observe that the possibility of a similar phenomenon
as described in Theorem 1, in the context of the nonlinear Schrödinger
equation (NLS), is studied in the last section of [17]. However, the situation
in the context of NLS is much more involved and it would be interesting to
decide whether the main result of this paper has an appropriate extension in
the context of NLS (or other nonlinear PDE’s).

Finally let us notice that our results extend to Dirichlet or Neumann
boundary conditions. In this case, the deterministic Cauchy theory is much
less well known.

Definition 1.10. Let M be a smooth manifold with boundary and compact
closure, and let (en)

∞
n=1 be an L2-normalized basis consisting in eigenfunc-

tions of the Laplace operator with Dirichlet (resp. Neumann) boundary
conditions, associated to eigenvalues λ2

n. The space Hs
D(M) (resp. Hs

N(M))
is the space of functions f such there exists a sequence (αn)

∞
n=1 such

that

f(x) =
∑

n

αnen(x)(1.6)

with
∑

n

(1 + λn)
2s|αn|2 < ∞.

We shall denote by H s
D(M) = Hs

D(M) × Hs−1
D (M) (resp.H s

N = Hs
N(M) ×

Hs−1
N (M)).

Remark 1.11. The space Hs
D(M) coincides with the usual Sobolev space of

order s if −1/2 < s < 1/2 whereas Hs
N(M) coincide with the usual Sobolev

space of order s if −3/2 < s < 3/2.

Consider now the wave equation
(
∂2

t − �
)
u + u3 = 0, (u, ∂tu)|t=0 = ( f1, f2)(1.7)

with real valued initial data ( f1, f2) ≡ f ∈ Hs(M)× Hs−1(M) ≡ H s(M),
and Dirichlet (u |Rt×∂M = 0) or Neumann ( ∂u

∂n |Rt×∂M = 0) boundary condi-
tions.



454 N. Burq, N. Tzvetkov

From the results by Lebeau, Planchon and the first author [7] (see also
Sect. 6), one can show that the Cauchy problem is well posed in H

2/3
D,N(M).

Here we show that almost surely, this result can be improved to s = 8/21 <
1/2).

Theorem 2. Assume that ∂M = ∅, and that the random variables have
sixth moments uniformly bounded

∃ C > 0 : ∀ n ≥ 1,

∫

Ω

(|hn(ω)|6 + |ln(ω)|6)dp(ω) < C.(1.8)

Let us fix s ≥ 8
21 and f = ( f1, f2) ∈ H s

D,N(M). Let f ω ∈ L2(Ω;H s
D,N(M))

be defined by the randomization (1.5). Then there exists σ ≥ 2
3 such that for

almost all ω ∈ Ω there exist Tω > 0 and a unique solution to (1.7) with
initial data f ω in a space continuously embedded in

Xω =
(

cos(t
√−�D,N) f ω

1 + sin(t
√−�D,N) f ω

2√−∆D,N

)

+ C
([−Tω, Tω]; Hσ

D,N(M)
)
.

More precisely, there exists C > 0, δ > 0 and for every 0 < T ≤ 1, an
event ΩT such that

p(ΩT ) ≥ 1 − CT 1+δ(1.9)

and such that for every ω ∈ ΩT there exists a unique solution u of (1.1)
with data f ω in a space continuously embedded in C([0, T ]; Hs(M)).

Moreover, if hn, ln are standard real Gaussian or Bernoulli variables
one can improve (1.9) to

p(ΩT ) ≥ 1 − Ce−c/T δ

, c, δ > 0.(1.10)

The paper is organized as follows: in Sect. 2 we recall Strichartz esti-
mates for wave equations and Sogge’s estimates for L p norms of spectral
projectors. In Sect. 3 we prove a large deviation bound. In Sect. 4 we prove
in some sense that “randomization beats deterministic Strichartz estimates”
in terms of L p estimates. In Sect. 5 we perform a fixed point argument in
a suitable space to prove Theorem 1. Finally, in Sect. 6 we indicate how the
previous argument have to be adapted in the case of a boundary value prob-
lem. In all the proof, we shall focus on positive times, the case of negative
times being similar due to time reversibility.

Acknowledgements: We thank H. Queffélec for providing us the reference [13].
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2. Strichartz and Sogge estimates

We shall assume in this section that the boundary of M is empty and collect
the Strichartz estimates for the free evolution and the Sogge estimates for
the eigenfunctions en(x). These sets of estimates are actually in the same
family, their proofs being a combination of the Fourier integral operator
approximation for hyperbolic problems and the TT	 duality argument. Let
us note that due to the finite speed of propagation for solutions to the wave
equation, Strichartz estimates on a compact manifold are equivalent to some
variable coefficient Strichartz estimates on R3. We refer to Kapitanskii [11,
Theorem 2] for the proof of the Strichartz estimate we state bellow and to
Sogge [15, Theorem 2.1] for the bound on en stated bellow.

The purpose of the next definition is to define the Strichartz spaces used
for solving the problem (1.1).

Definition 2.1. For 0 ≤ s < 1, a couple of real numbers (p, q), 2
s ≤ p ≤

+∞ is s-admissible if

1

p
+ 3

q
= 3

2
− s.

For T > 0, 0 ≤ s < 1, we define the spaces

Xs
T = C0([0, T ]; Hs(M))

⋂

(p,q) s-admissible

L p((0, T ); Lq(M))(2.1)

and its “dual” space

Y s
T = L1([0, T ]; H−s(M)) +(p,q) s-admissible L p′

((0, T ); Lq′
(M))(2.2)

(p′, q′) being the conjugate couple of (p, q), equipped with their natural
norms (notice that to define these spaces, we keep only the extremal couples
corresponding to p = 2/s and p = +∞ respectively).

We next state the Strichartz inequality for the wave equation, posed
on a three dimensional smooth compact (without boundary) Riemannian
manifold.

Proposition 2.2. Let (p, q) be an s-admissible couple. Then there exists
C > 0 such that for every T ∈ ]0, 1], every f ∈ Hs(M) one has

‖e±it
√−�( f )‖L p([−T,T ];Lq(M)) ≤ C‖ f ‖Hs(M).(2.3)

Let us now state a corollary of Proposition 2.2.
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Corollary 2.3. For every 0 < s < 1, every s-admissible couple (p, q), there
exists C > 0 such that for every T ∈ ]0, 1], every f ∈ H s(M), g ∈ Y 1−s

T
one has

‖ cos(t
√−�)( f1)‖Xs

T
+

∥
∥∥
∥

sin(t
√−�)√−∆

( f2)

∥
∥∥
∥

Xs
T

≤ C‖ f ‖Hs(M),(2.4)

∥∥
∥
∥

∫ t

0

sin((t − τ)
√−�)√−�

(g)(τ)dτ

∥∥
∥
∥

Xs
T

≤ C‖g‖Y1−s
T

.(2.5)

The proof of Corollary 2.3 can essentially be found in [8, Corollary 4.3].
Notice that here we have to modify slightly the argument to take care of
the 0 eigenvalue of the Laplace operator. We next state the Sogge estimate
which will be involved in our analysis.

Proposition 2.4. There exists C > 0 such that for every n ≥ 1,

‖en‖L4(M) ≤ C
(
1 + λ2

n

) 1
8 .

Let us note that the L4(M) norm can be replaced by other L p(M),
2 ≤ p ≤ ∞ norms by modifying appropriately the power of 1+λ2

n according
to an interpolation with the trivial L2 bound or the L∞ Weyl bound. We also
note that the estimate of Proposition 2.4 has a natural extension to other
dimensions, the index 4 being replaced by 2(d + 1)/(d − 1). Finally, the
estimate for en given by Proposition 2.4 also holds, with the appropriate
statement, for the spectral projection on

√−� ∈ [λ, λ + 1].

3. A large deviation bound

The purpose of this section is to prove the following statement.

Lemma 3.1. Let (ln(ω))∞
n=1 be a sequence of real, 0-mean, independent

random variables with associated sequence of distributions (µn)
∞
n=1. As-

sume that µn satisfy the property

∃ c > 0 : ∀ γ ∈ R, ∀ n ≥ 1,
∣∣
∫ ∞

−∞
eγxdµn(x)

∣∣ ≤ ecγ 2
.(3.1)

Then there exists α > 0 such that for every λ > 0, every sequence (cn)
∞
n=1∈ l2 of real numbers,

p
(
ω : ∣

∣
∞∑

n=1

cnln(ω)
∣
∣ > λ

) ≤ 2e
− αλ2

∑
n c2

n .(3.2)
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As a consequence there exists C > 0 such that for every p ≥ 2, every
(cn)

∞
n=1 ∈ l2,

∥
∥

∞∑

n=1

cnln(ω)
∥
∥

L p(Ω)
≤ C

√
p
( ∞∑

n=1

c2
n

)1/2
.(3.3)

Remark 3.2. Let us notice that (3.1) is readily satisfied if (ln(ω))∞
n=1 are

standard real Gaussian or standard Bernoulli variables. Indeed in the case
of Gaussian

∫ ∞

−∞
eγxdµn(x) =

∫ ∞

−∞
eγx e−x2/2 dx√

2π
= eγ 2/2.

In the case of Bernoulli variables (or more generally any random vari-
ables having compactly supported distribution) one can obtain that (3.1) is
satisfied by invoking the inequality

eγ + e−γ

2
≤ eγ 2/2, ∀ γ ∈ R.

Proof of Lemma 3.1. We give an argument similar to the proof of [18,
Lemma 4.2]. In the case of Gaussian we can see Lemma 3.1 as a very
particular case of a L p smoothing properties of the Hartree–Foch heat flow
(see e.g. [18, Sect. 3] for more details on this issue). For t > 0 to be
determined later, using the independence and (3.1), we obtain
∫

Ω

et
∑

n≥1 cnln(ω)dp(ω) =
∏

n≥1

∫

Ω

etcnln(ω)dp(ω)

=
∏

n≥1

∫ ∞

−∞
etcn x dµn(x) ≤

∏

n≥1

ec(tcn)2 = e(ct2)
∑

n c2
n .

Therefore

e(ct2)
∑

n c2
n ≥ etλ p

(
ω :

∑

n≥1

cnln(ω) > λ
)

or equivalently,

p
(
ω :

∑

n≥1

cnln(ω) > λ
) ≤ e(ct2)

∑
n c2

n e−tλ.

We choose t as

t ≡ λ

2c
∑

n c2
n

.
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Hence

p
(
ω :

∑

n≥1

cnln(ω) > λ
) ≤ e

− λ2

4c
∑

n c2
n .

In the same way (replacing cn by −cn), we can show that

p
(
ω :

∑

n≥1

cnln(ω) < −λ
) ≤ e

− λ2

4c
∑

n c2
n

which completes the proof of (3.2). To deduce (3.3), we write

∥
∥

∞∑

n=1

cnln(ω)
∥
∥p

L p(Ω)
= p

∫ +∞

0
p
(
ω : ∣

∣
∞∑

n=1

cnln(ω)
∣
∣ > λ

)
λp−1dλ

≤ Cp
∫ +∞

0
λp−1e

− cλ2
∑

n c2
n dλ

≤ Cp
(
C

∑

n

c2
n

) p
2

∫ +∞

0
λp−1e− λ2

2 dλ ≤ (
Cp

∑

n

c2
n

) p
2

which completes the proof of Lemma 3.1. ��

4. Averaging effects

In this section, we exploit the randomization to get two L4 estimates for
the free evolution. These estimates play a central role in the proof of The-
orem 1.

Proposition 4.1. Let s ≥ 1/4 and 0 < T ≤ 1. Under the assumptions of
Theorem 1, for f = ( f1, f2) ∈ H s(M), we consider the free evolution with
data f ω, given by

uω
f (t, x) = cos(t

√−�) f ω
1 + sin(t

√−∆)√−�
f ω
2 .

Then there exists C > 0 such that for every f ∈ H s(M),
∥
∥(−� + 1)

s
2 − 1

8 uω
f

∥
∥

L4(Ωω×[0,T ]t×Mx )
≤ CT 1/4‖ f ‖Hs(M).(4.1)

In particular, thanks to the Bienaymé–Tchebichev inequality, if we set

Eλ,T, f = {
ω ∈ Ω : ∥∥(−� + 1)

s
2 − 1

8 uω
f

∥∥
L4([0,T ]t×Mx )

≥ λ
}

then there exists C > 0 such that for every λ > 0, every f ∈ H s(M),

p(Eλ,T, f ) ≤ CT λ−4 ‖ f ‖4
Hs(M).
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Proof. By expanding the sines and cosines functions as sums of ex-
ponentials, we obtain that we may only consider the contribution of
(−� + 1)

s
2 − 1

8 eit
√−� f ω

1 , the other contributions being dealt with similarly
(again the zero frequency should be treated separately). Suppose that

f1(x) =
∑

n

αnen(x) ∈ Hs(M).

If we set α̃n = (λ2
n + 1)

s
2 − 1

8 αn then

‖ f1‖2
Hs(M) =

∑

n

|̃αn|2
(
1 + λ2

n

) 1
4 .

We shall use the following result.

Lemma 4.2. Assume that (hn)
∞
n=1 is a sequence of independent, 0-mean

value, complex random variables satisfying for some k ∈ N∗

∃ C > 0, ∀ n ≥ 1,

∫

Ω

|hn(ω)|2kdp(ω) ≤ C

then

∀ 2 ≤ p ≤ 2k, ∃ C > 0, ∀ (cn)n∈N∗ ∈ l2(N∗,C),
(4.2) ∥

∥
∑

n

cnhn

∥
∥

L p(Ω)
≤ C

(∑

n

|cn|2
)1/2

.

Proof. Using Hölder inequality, it suffices to prove the estimate for p = 2k.
We have

∫

Ω

∣∣
∑

n

cnhn(ω)
∣∣2k

=
∑

n1,··· ,n2k

∫

Ω

cn1 × · · · × cnk cnk+1 × · · · × cn2k

× hn1(ω) × · · · × hnk(ω)hnk+1(ω) × · · · × hn2k(ω)dp(ω).

Using the independence and the fact that the random variables have 0 mean,
we obtain that for the contribution of n1, . . ., n2k not to vanish, each index
have to be appear at least twice. As a consequence (using that the 2k-th
moment of the random variables are uniformly bounded)
∫

Ω

∣∣
∑

n

cnhn(ω)
∣∣2k ≤ Ck

∑

n1,··· ,nk

∫

Ω

|cn1 · · · cnk |2|hn1(ω) · · · hnk(ω)|2dp(ω)

≤ Ck
( ∑

n

|cn|2
)k

.

��
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Let us come back to the proof of Proposition 4.1. Using Lemma 4.2, we
obtain

∥∥(−� + 1)
s
2 − 1

8 eit
√−� f ω

1

∥∥
L4(Ωω×[0,T ]t×Mx )

≤ C
∥
∥(∑

n

|̃αnen(x)|2
)1/2∥∥

L4((0,T )×M)

= C
∥∥

∑

n

|̃αnen(x)|2
∥∥1/2

L2((0,T )×M)

≤ C
(∑

n

∥∥|̃αnen(x)|2
∥∥

L2((0,T )×M)

)1/2

≤ CT 1/4
( ∑

n

‖̃αnen(x)‖2
L4(M)

)1/2

which, according to Proposition 2.4 implies Proposition 4.1. ��
Remark 4.3. For 1 < p < +∞, the norm ‖ f ‖Ws,p(M) and ‖(−�+1)

s
2 ‖L p(M)

are equivalent. Indeed, for s ∈ 2N, this is a consequence of the L p elliptic
regularity theorem and for general s it follows by interpolation and duality.

As a consequence of Lemma 3.1, under Assumption (3.1), we can improve
the averaging effect estimate as follows.

Proposition 4.4. Under the assumption of Proposition 4.1, if we suppose
that in addition the randomization obeys the condition (3.1), then for p ≥ 4,

∥
∥(−� + 1)

s
2 − 1

8 uω
f

∥
∥

L p(Ω;L4([0,1]t×Mx ))
≤ Cp

1
2 ‖ f ‖Hs(M).(4.3)

As a consequence, if we set

Eλ, f = {
ω ∈ Ω : ∥∥(−� + 1)

s
2 − 1

8 uω
f

∥∥
L4([0,1]t×Mx )

≥ λ
}

then there exist C > 0 and c > 0 such that for every λ > 0, every
f ∈ H s(M),

p(Eλ, f ) ≤ Ce−cλ2/‖ f ‖2
Hs (M) .(4.4)

Proof. As in the proof of Proposition 4.1, we may only consider the con-
tribution of (−� + 1)

s
2 − 1

8 eit
√−−� f ω

1 . Writing f1 = ∑
n αnen and if we set

α̃n = (λ2
n + 1)

s
2 − 1

8 αn then

‖ f1‖2
Hs(M) =

∑

n

|̃αn|2
(
1 + λ2

n

) 1
4 .

Set

vω
f1
(t, x) ≡ (−� + 1)

s
2 − 1

8 eit
√−� f ω

1 .
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Thus the issue is to show that
∥
∥vω

f1
(t, x)

∥
∥

L p(Ω;L4([0,1]t×Mx ))
≤ C

√
p‖ f1‖Hs(M).

By the Minkowski inequality, for p ≥ 4,
∥
∥vω

f1
(t, x)

∥
∥

L p(Ω;L4([0,1]t×Mx ))
≤ ∥

∥vω
f1
(t, x)

∥
∥

L4([0,1]t×Mx ;L p(Ω))
.

Thanks to Lemma 3.1,
∥∥vω

f1
(t, x)

∥∥
L p(Ω)

= ∥∥
∑

n

α̃neitλn en(x)hn(ω)
∥∥

L p(Ω)

≤ C
√

p
( ∑

n

|̃αnen(x)|2
)1/2

.

Therefore, we get, thanks to Proposition 2.4,
∥
∥vω

f1
(t, x)

∥
∥

L p(Ω;L4([0,1]t×Mx ))
≤ C

√
p
∥
∥( ∑

n

|̃αnen(x)|2
)1/2∥∥

L4([0,1]t×Mx )

≤ C
√

p
(∥∥

∑

n

|̃αnen(x)|2
∥
∥

L2(Mx)

)1/2

≤ C
√

p
( ∑

n

∥∥|̃αnen(x)|2
∥∥

L2(Mx)

)1/2

≤ C
√

p
( ∑

n

|̃αn|2‖en(x)‖2
L4(Mx)

)1/2

≤ C
√

p
( ∑

n

|̃αn|2
(
1 + λ2

n

)1/4)1/2

which completes the proof of (4.3). Let us now turn to the proof of (4.4).
Thanks to the Bienaymé–Tchebichev inequality, there exists α > 0 such
that for every p ≥ 4, every f ∈ H s(M),

p(Eλ, f ) ≤ λ−p(α
√

p‖ f ‖Hs(M))
p.(4.5)

Inequality (4.4) easily holds, if λ is such that

λ

‖ f ‖Hs(M)

≤ 2αe.(4.6)

If (4.6) does not hold, we set

p ≡
[

λ

α‖ f ‖Hs(M)e

]2

(≥ 4).

With this choice of p, we come back to (4.5) which yields (4.4). This
completes the proof of Proposition 4.4. ��
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5. The fixed point

If we wish to solve
(
∂2

t − �
)
u + u3 = 0, (u, ∂tu)|t=0 = (

f ω
1 , f ω

2

) = f ω

by writing u = uω
f + v, where uω

f denotes the free evolution associated
to f ω, we obtain that v solves

(
∂2

t − �
)
v = −(

uω
f + v

)3
, (v, ∂tv)|t=0 = (0, 0).(5.1)

Write this equation as

v(t, ·) = −
∫ t

0

sin((t − τ)
√−�)√−�

((
uω

f + v
)3)

(τ, ·)dτ.

Define the map

Kω
f : v �−→ −

∫ t

0

sin((t − τ)
√−�)√−�

((
uω

f + v
)3)

(τ, ·)dτ.

5.1. The case s = 1/4. In this case, the numerology is particularly simple

Proposition 5.1. Let us fix s = 1/4. Then there exists C > 0 such that for
every T ∈ [0, 1], every f ∈ H1/4(M), every λ > 0 for ω ∈ Ec

λ, f the map
Kω

f satisfies

∥∥Kω
f (v)

∥∥
X1/2

T
≤ C

(
λ3 + ‖v‖3

X1/2
T

)
,(5.2)

∥∥Kω
f (v) − Kω

f (w)
∥∥

X1/2
T

≤ C‖v − w‖X1/2
T

(
λ2 + ‖v‖2

X1/2
T

+ ‖w‖2
X1/2

T

)
.(5.3)

Proof. Indeed, for ω ∈ Ec
λ, f , we have

∥
∥uω

f

∥
∥

L4((0,T )×M)
≤ λ

and consequently, according to Corollary 2.3,

∥∥Kω
f (v)

∥∥
X1/2

T
≤ C

∥∥(
uω

f + v
)3∥∥

L4/3([0,T ]×M)
≤ C

(
λ3 + ‖v‖3

X1/2
T

)

and
∥∥Kω

f (v) − Kω
f (w)

∥∥
X1/2

T
≤ C

∥∥(
uω

f + v
)3 − (

uω
f + w

)3∥∥
L4/3([0,T ]×M)

≤ C‖v − w‖X1/2
T

(
λ2 + ‖v‖2

X1/2
T

+ ‖v‖2
X1/2

T

)
.

��
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5.2. The case s > 1/4

Proposition 5.2. Let us fix s > 1/4. Then there exists σ > 1/2, C > 0 and
κ > 0 such that for every T ∈ [0, 1], every f ∈ H s(M), every λ > 0,
ω ∈ Ec

λ, f the map Kω
f satisfies
∥
∥Kω

f (v)
∥
∥

Xσ
T

≤ C
(
λ3 + T κ‖v‖3

Xσ
T

)
,(5.4)

∥
∥Kω

f (v) − Kω
f (w)

∥
∥

Xσ
T

≤ CT κ‖v − w‖Xσ
T

(
λ2 + ‖v‖2

Xσ
T

+ ‖w‖2
Xσ

T

)
.(5.5)

Proof. Let us notice that, according to Corollary 2.3, for 1/2 < σ < 1 (to
be fixed later),

∥∥Kω
f (v)

∥∥
Xσ

T
≤ C

∥∥(u f + v)3
∥∥

L p′
([0,T ];Lq′

(M))
,

where

1

p
+ 3

q
= 3

2
− (1 − σ), p = 4.

Notice that 4 > 2/σ and thus the choice p = 4 is allowed. Using the triangle
inequality, we obtain

∥
∥Kω

f (v)
∥
∥

Xσ
T

≤ C
(∥∥uω

f

∥
∥3

L4([0,T ];L3q′
(M))

+ ‖v‖3
L4([0,T ];L3q′

(M))

)
.(5.6)

Let us first study the second term in the right hand-side of (5.6). This will
be done by invoking the Hσ , σ > 1/2 well-posedness argument. Observe
that 1

q′ = 11
12 − σ

3 . Let p be such that (p, 3q′) is σ -admissible, i.e.

1

p
+ 3

3q′ = 3

2
− σ, ⇒ 1

p
= 7

12
− 2σ

3
.

Observe that since σ > 1/2 we have that p > 4. Therefore thanks to the
Hölder inequality (in time) for σ > 1/2 there exists κ > 0 such that

‖v‖3
L4([0,T ];L3q′

(M))
≤ T κ‖v‖3

Xσ
T
.

Let us next study the first term in the right hand-side of (5.6). We first
consider the case s ≥ 1. Using the Sobolev inequality, for ω ∈ Ec

λ, f , we can
write

∥∥uω
f

∥∥
L4([0,1];L3q′

(M))
≤ C

∥∥uω
f

∥∥
L4([0,1];Ws− 1

4 ,4
(M))

≤ Cλ.

This ends the proof of (5.4) for s ≥ 1 (σ being an arbitrary number in
(1/2, 1)).

Let us next assume that s < 1. Then for ω ∈ Ec
λ, f (and according to

Sobolev embedding), we have
∥∥uω

f

∥∥
L4([0,1];Lq0(M))

≤ C
∥∥uω

f

∥∥
L4([0,1];Ws− 1

4 ,4
(M))

≤ Cλ
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where

1

q0
= 1

4
− (s − 1/4)

3
.

We choose

σ = min
(

9

10
,

1

2
+ 3

(
s − 1

4

))

which fixes the value of σ in the case s < 1. Then

1

4
+ 3

q
= 3

2
− (1 − σ) ⇒ 1

q
= 1

4
− (1/2 − σ)

3

⇒ 1

3q′ ≥ 1

4
− (s − 1/4)

3
= 1

q0
.

As a consequence for ω ∈ Ec
λ, f , using the Hölder inequality in space, we

get that for s < 1, we can bound the contribution of the first term in the
right hand-side of (5.6) as follows

∥∥uω
f

∥∥
L4([0,1];L3q′

(M))
≤ ∥∥uω

f

∥∥
L4([0,1];Lq0(M))

≤ C
∥∥uω

f

∥∥
L4([0,1];Ws− 1

4 ,4
(M))

≤ Cλ.

This ends the proof of (5.4). The proof of (5.5) is similar. Indeed, it suffices
to write
∥
∥Kω

f (v) − Kω
f (w)

∥
∥

Xσ
T

≤ ‖v − w‖L4([0,T ];L3q′
(M))

(∥∥uω
f

∥
∥2

L4([0,T ];L3q′
(M))

+ ‖v‖2
L4([0,T ];L3q′

(M))

+ ‖w‖2
L4([0,T ];L3q′

(M))

)

and to use the previous estimates. This completes the proof of Propos-
ition 5.2. ��

Let us now complete the proof of Theorem 1. Let us first consider the
case of a randomization induced by a general family of random variables
satisfying (1.4). Fix 0 < T ≤ 1. As a consequence of Propositions 5.1
and 5.2, if ω ∈ Ec

λ,T, f and if

Cλ3 + T κ(2Cλ3)3 ≤ 2Cλ3, and
(5.7)

CT κ(λ2 + λ6) ≤ 1

2
, κ ≥ 0, (κ > 0 if s > 1/4),

then the map Kω
f is a contraction on the ball of radius 2Cλ3 of Xσ

T . Notice
that the condition (5.2) above is implied by the following

T κλ6 = ε6 � 1.
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Let us fix such ε > 0. As a consequence, if we define, with δ = κ/6,

ΩT = Ec
λ=εT−δ,T, f , Σ =

⋃

n∈N∗
Ω1/n,

then

p(ΩT ) ≥ 1 − CT 1+4δ, p(Σ) = 1

and we obtain the first part in Theorem 1 in the case of general variables
satisfying only (1.4).

Let us finally consider the case of random variables satisfying in addition
to (1.4) the property (3.1). In this case λ = λ(T ) is chosen such that

T κλ6 = ε � 1

and according to Proposition 5.2, if ω ∈ Ec
λ,T, f , then the map Kω

f is a con-
traction on the ball of radius 2Cλ3 of Xσ

T . Now according to (4.4), we obtain
that if we set

ΩT = Ec
λ(T ), f , Σ =

⋃

n∈N∗
Ω1/n,

then

p(ΩT ) ≥ 1 − Ce−c/T δ

, δ, C, c > 0, p(Σ) = 1.

This completes the proof of Theorem 1. ��
Remark 5.3. Let us observe that in Theorem 1, if s > 1/4 then σ > 1/2.

6. Manifolds with boundary

In this section we consider the case of Dirichlet or Neumann boundary
conditions. For conciseness, we shall drop the subscript D, N.

6.1. Strichartz and spectral projector estimates. The following spectral
projector estimate is proved by Smith and Sogge [14, Theorem 7.1]

Proposition 6.1. There exists C > 0 such that for every n ≥ 1,

‖en‖L5(M) ≤ C
(
1 + λ2

n

) 1
5 .

This estimate implies (see [7, Theorem 2]) the following Strichartz
inequality

Proposition 6.2. There exists C > 0 such that for any f ∈ H
7
10 (M)

‖e±it
√−� f ‖L5((0,1)×M) ≤ C‖ f ‖

H
7
10 (M)

.
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By interpolation and duality, we deduce that the Strichartz inequal-
ities (2.4) and (2.5) remain true provided we replace the definition of ad-
missible couples by

Definition 6.3. Let 0 ≤ s ≤ 1. A couple (p, q) is s-admissible if

1

p
+ 3

q
= 3

2
− s

and

p ≥
{

7
2s if s ≤ 7

10 ,

5 if s ≥ 7
10 .

6.2. Averaging effects

Proposition 6.4. Let s ≥ 2
5 . Under the assumptions of Theorem 2, for

f = ( f1, f2) ∈ H s(M), we consider the free evolution with data f ω, given
by

uω
f (t, x) = cos(t

√−�) f ω
1 + sin(t

√−�) f ω
2√−�

.

Then there exists C > 0 such that for every f ∈ H s(M),
∥
∥(−� + 1)

s
2 − 1

5 uω
f

∥
∥

L5(Ωω×[0,T ]t×Mx )
≤ CT 1/5‖ f ‖Hs(M).(6.1)

In particular, thanks to the Bienaymé–Tchebichev inequality, if we set

Eλ,T, f = {
ω ∈ Ω : ∥

∥(−� + 1)
s
2 − 1

5 uω
f

∥
∥

L5([0,T ]t×Mx )
≥ λ

}

then there exists C > 0 such that for every λ > 0, every f ∈ H s(M),

p(Eλ,T, f ) ≤ CT λ−5 ‖ f ‖5
Hs(M).

Proof. Using Lemma 4.2 we compute
∥
∥(−� + 1)

s
2 − 1

5 eit
√−� f ω

1

∥
∥

L5(Ωω×[0,T ]t×Mx )

= ∥
∥

∑

n

eitλn
(
1 + λ2

n

) s
2 − 1

5 αnen(x)hn(ω)
∥
∥

L5(Ωω×[0,T ]t×Mx )

≤ C
∥∥( ∑

n

∣∣eitλn
(
1 + λ2

n

) s
2 − 1

5 αnen(x)
∣∣2)1/2∥∥

L5([0,T ]t×Mx )

≤ C
∥∥

∑

n

∣∣eitλ2
n
(
1 + λ2

n

) s
2 − 1

5 αnen(x)
∣∣2∥∥1/2

L5/2([0,T ]t×Mx )

≤ C
(∑

n

∥
∥
∣
∣(1 + λ2

n

) s
2 − 1

5 αnen(x)
∣
∣2∥∥

L5/2([0,T ]t×Mx )

)1/2
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Finally, using Proposition 6.1, we obtain

∥∥(−� + 1)
s
2 − 1

5 eit
√−� f ω

1

∥∥
L5(Ωω×[0,T ]t×Mx )

≤ CT 1/5
( ∑

n

∣
∣(1 + λ2

n

)s
αn

∣
∣2)1/2 ≤ CT 1/5‖ f1‖Hs(M).

The contribution of f2 is dealt with similarly. This ends the proof of Propos-
ition 6.4. ��

6.3. The fixed point. In this section we shall prove only the case s = 8/21
in Theorem 2. The case s > 8/21 and the improved estimate for Gaussian
are proved mutatis mutandi following the strategy developed in Sect. 5.
Interpolating between (6.1) and the trivial bound

∥
∥uω

f

∥
∥

L2(Ωω×[0,T ]t×Mx )
≤ CT 1/2‖ f ‖H0(M).

gives
∥
∥uω

f

∥
∥

L14/3(Ωω×[0,T ]t×Mx )
≤ CT 3/14‖ f ‖H8/21(M).(6.2)

As in Sect. 5, we are looking for a fixed point of the map

Kω
f : v �−→ −

∫ t

0

sin((t − τ)
√−�)√−�

((
uω

f + v
)3)

(τ, ·)dτ.

Using the Strichartz inequalities in Sect. 2 (with the new definition of
admissible couples and consequently of Xs

T and Y s
T spaces), we obtain

∥
∥Kω

f

∥
∥

X2/3
T

≤ C
∥
∥(

uω
f + v

)3∥∥
Y1/3

T
.

But (observe that (21/4, 14/3) is a 2/3-admissible couple)

‖g‖L∞((0,T );H2/3(M)) + ‖g‖L21/4((0,T );L14/3(M)) ≤ C‖g‖X2/3
T

and (observe that (21/2, 14/5) is a 1/3-admissible couple and that 21/4 >
63/19)

‖v3‖Y1/3
T

≤ C‖v3‖L21/19((0,T );L14/9(M))

≤ C‖v‖3
L63/19((0,T );L14/3(M))

≤ CT ‖v‖3
X2/3

T
.

These a priori bounds combined with the estimate (6.2) (and the fact that
14/3 > 63/19) allow to perform the fixed point in the space X2/3

T (for
sufficiently small T depending on ω), exactly as in the previous section.
This ends the proof of Theorem 2.
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A. Ill posedness on H s(M), s < 1/2.

The goal of this appendix is to prove the ill-posedness statement claimed in
the introduction. For that purpose, we first prove the lack of continuity at 0
of the flow map on H s(M), s < 1/2. More precisely we have the following
result.

Proposition A.1. Let us fix s ∈ ]0, 1/2[. Then there exists δ > 0 and
a sequence (tn)∞

n=1 of positive numbers tending to zero and a sequence
(un(t))∞

n=1 of C∞(M) functions such that
(
∂2

t − �
)
un + u3

n = 0

with

‖un(0)‖Hs(M) ≤ C log(n)−δ →n→+∞ 0

but

‖un(tn)‖Hs(M) ≥ C log(n)δ →n→+∞ +∞.

Proof. The proof is strongly inspired by the considerations in [10] where
the Euclidean space is considered instead of a Riemannian manifold (M, g).
The only advantage of our argument with respect to [10] is that we avoid
the scaling consideration of [10] and thus we can keep the argument local
in space and can be extended to the case of compact manifolds. A similar
discussion in the context of NLS may be found in [6, Appendix].

Working in a local coordinate system near a fixed point of M, we consider
an initial data concentrating at this fixed point. Namely, we consider (1.1)
subject to initial conditions

( f1,n(x), f2,n(x)) = (
κnn

3
2 −sϕ(nx), 0

)
, n � 1,(A.1)

where ϕ is a nontrivial bump function on R3 and

κn ≡ [log(n)]−δ1,

with δ1 > 0 to be fixed later. The equation (1.1) being H1(M) sub critical
(and defocusing), we obtain that (1.1) with data given by (A.1) has a unique
global smooth solution which we denote by un . We will consider the so-
lution of (1.1) with data (1.1) only for small times and thanks to the finite
propagation speed of the wave equation the analysis is local. Next, let us
denote by V(t) the global solution of the ODE

V ′′ + V 3 = 0, V(0) = 1, V ′(0) = 0.(A.2)

Multiplying (A.2) by V ′, we deduce that V(t) is a periodic function. We next
denote by vn the solution of

∂2
t vn + v3

n = 0, (vn(0), ∂tvn(0)) = (
κnn

3
2 −sϕ(nx), 0

)
.(A.3)
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It is now clear that

vn(t, x) = κnn
3
2 −sϕ(nx)V

(
tκnn

3
2 −sϕ(nx)

)
.

We next consider the semi-classical energy

En(u) ≡ n−(1−s)
(‖∂tu‖2

L2(M)
+ ‖∇u‖2

L2(M)

) 1
2

+ n−(2−s)
(‖∂tu‖2

H1(M)
+ ‖∇u‖2

H1(M)

) 1
2 .

We are going to show that for very small times un and vn are close with
respect to En but these small times are long enough to get the needed
amplification of the Hs norm (this amplification is a phenomenon only
related to the solution of (A.3)). Here is the precise statement.

Lemma A.2. There exist ε > 0, δ2 > 0 and C > 0 such that, if we set

tn ≡ [log(n)]δ2n−( 3
2 −s)

then for every n � 1, every t ∈ [0, tn], En(un(t)−vn(t)) ≤ Cn−ε. Moreover,

‖un(t) − vn(t)‖Hs(M) ≤ Cn−ε.(A.4)

Proof. Set wn = un − vn. Then wn solves the equation
(
∂2

t − �
)
wn = �vn − 3v2

nwn − 3vnw
2
n − w3

n,

(wn(0, ·), ∂twn(0, ·)) = (0, 0).

Set

F ≡ �vn − 3v2
nwn − 3vnw

2
n − w3

n.

By the energy inequality for the wave equation, we get

d

dt
(En(wn(t))) ≤ Cn−(2−s)‖F(t, ·)‖H1(M) + Cn−(1−s)‖F(t, ·)‖L2(M).

We have for t ∈ [0, tn],
‖�(vn)(t, ·)‖H1(M) ≤ C[log(n)]3δ2n3−s,

‖�(vn)(t, ·)‖L2(M) ≤ C[log(n)]2δ2n2−s.

Therefore

d

dt
(En(wn(t))) ≤ C

([log(n)]3δ2n + n−(2−s)‖G(t, ·)‖H1(M)

(A.5) + n−(1−s)‖G(t, ·)‖L2(M)

)
,

where

G ≡ −3v2
nwn − 3vnw

2
n − w3

n.
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Writing for t ∈ [0, tn],

wn(t, x) =
∫ t

0
∂swn(s, x)ds,

we obtain

‖wn(t, ·)‖Hk(M) ≤ C[log(n)]δ2n−( 3
2 −s) sup

0≤τ≤t
‖∂twn(τ, ·)‖Hk(M).(A.6)

Moreover, we have that for t ∈ [0, tn],
∥∥∇kvn(t, ·)

∥∥
L∞(M)

≤ C[log(n)]kδ2 n
3
2 −s+k(A.7)

and thanks to the Gagliardo–Nirenberg inequality,

‖wn(t, ·)‖L∞(M) ≤ C‖wn(t, ·)‖
3
4
H2(M)

‖wn(t, ·)‖
1
4
L2(M)

≤ Cn
3
2 −s En(wn(t)).

(A.8)

Set

en(wn(t)) ≡ sup
0≤τ≤t

En(wn(τ)).

Using (A.6), (A.7) and (A.8), we get that for l = 1, 2,

n−(l−s)‖G(t, ·)‖Hl−1(M) ≤ C[log(n)]lδ2n
3
2 −s

(
en(wn) + [en(wn)]3).

Therefore, coming back to (A.5), we get

d

dt
(En(wn(t))) ≤ C[log(n)]3δ2n + C[log(n)]lδ2 n

3
2 −s

(
en(wn) + [en(wn)]3

)
.

We first suppose that en(wn(t)) ≤ 1 which holds for small values of t since
wn(0) = 0. Thanks to a Gronwall lemma argument for t ∈ [0, tn],

en(wn(t)) ≤ C[log(n)]δ2ns− 1
2 eCt[log(n)]2δ2n

3
2 −s

≤ C[log(n)]δ2ns− 1
2 eC[log(n)]2δ2

.

(One should see δ2 as 3δ2 −2δ2 and s−1/2 as 1−(3/2−s)). Since s < 1/2,
by taking δ2 > 0 small enough, we obtain that there exists ε > 0 such that

En(wn(t)) ≤ Cn−ε

and in particular one has for t ∈ [0, tn],
‖∂twn(t, ·)‖L2(M) + ‖wn(t, ·)‖H1(M) ≤ Cn1−s−ε.(A.9)

We next estimate ‖wn(t, ·)‖L2 . We may write for t ∈ [0, tn],

‖wn(t, ·)‖L2(M) = ∥
∥

∫ t

0
∂twn(s, ·)

∥
∥

L2(M)
≤ ctn sup

0≤τ≤t
‖∂twn(τ, ·)‖L2(M).
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Thanks to (A.9) and the definition of tn , we get

‖wn(t, ·)‖L2(M) ≤ C[log(n)]δ2n−( 3
2 −s)n1−sn−ε.

Therefore, since s < 1/2,

‖wn(t, ·)‖L2(M) ≤ Cn−s−ε.(A.10)

An interpolation between (A.9) and (A.10) yields (A.4). This completes the
proof of Lemma A.2. ��

Using Lemma A.2, we may write

‖un(tn, ·)‖Hs(M) ≥ ‖vn(tn, ·)‖Hs(M) − Cn−ε.

On the other hand from the representation of vn , we obtain for n large
enough

‖vn(tn, ·)‖Hs(M) ≥ Cκn
(
tnκnn

3
2 −s

)s = C[log(n)]−(s+1)δ1+sδ2 .(A.11)

Indeed this estimate is the consequence of the following lemma.

Lemma A.3. Consider a smooth non constant 2π periodic function V and
two functions ψ,φ ∈ C∞

0 (Rd) such that φψ is not identically vanishing.
Then there exists C > 0 such that for any λ > 1 and any s ≥ 0

‖ψ(x)V(λφ(x))‖Hs(Rd ) ≥ λs

C
− C.

Proof. The multiplication by a smooth function being continuous on Hs, it
suffices to prove the estimate with ψ replaced by any function χ × ψ with
χ ∈ C∞

0 . As a consequence (and using that Hs is invariant by diffeomorph-
isms), we can assume that on the support of the function ψ, we have
φ(x) = x1. We develop

V(t) =
∑

n∈Z
vneint , |vn| ≤ CN(1 + |n|)−N

and replacing the function V by V − v0 (which changes the Hs norm by at
most a constant), we can assume v0 = 0. Choose n1 = 0 such that vn1 = 0
(V is non constant). Then

‖ψ(x)V(λx1)‖2
Hs(Rd )

=
∫ ∣

∣
∑

n

vnψ̂
(
ξ1 − nλ, ξ ′)∣∣2

(1 + |ξ|)2sdξ

≥
∫

|(ξ1−n1λ,ξ ′)|≤1

∣∣
∑

n

vnψ̂
(
ξ1 − nλ, ξ ′)∣∣2

(1 + |ξ|)2sdξ

≥ 1

2

∫

|(ξ1−n1λ,ξ ′)|≤1

∣∣vn1ψ̂
(
ξ1 − n1λ, ξ ′)∣∣2

(1 + |ξ|)2s

− 2
∣∣
∑

n =n1

vnψ̂
(
ξ1 − nλ, ξ ′)∣∣2

(1 + |ξ|)2sdξ.
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The first term in the right hand side is bounded from below by

1

2

∫

|ξ|≤1

∣∣vn1ψ̂
(
ξ1, ξ

′)∣∣2
(1 + |ξ1 + n1λ|)2s ≥ 1

C
|n1λ|2s − C

whereas the second term is bounded (in absolute value) by

2
∫

|ξ|≤1

∣
∣
∑

n =n1

vnψ̂
(
ξ1 + (n1 − n)λ, ξ ′)∣∣2

(1 + |ξ| + |n1λ|)2sdξ

≤ C
( ∑

n =n1

|vn||(n1 − n)λ − 1|−N |n1λ|s)2 ≤ C

which ends the proof of Lemma A.3. ��
By choosing δ1 small enough (depending on the parameter δ2 fixed in

Lemma A.2), we obtain that limn→∞ ‖vn(tn, ·)‖Hs = ∞, which implies that
limn→∞ ‖un(tn, ·)‖Hs = ∞. This completes the proof of Proposition A.1. ��

We now can show that these solutions we just constructed can be glued
together to give the following statement.

Proposition A.4. Let us fix s ∈ ]0, 1/2[. There exists an initial data f =
( f1, f2) ∈ H s(M) such there exists no solution of (1.1) in L∞((−T, T );
H s(M)), T > 0 with initial data f satisfying in addition the finite speed of
propagation.

Proof. We use the notations introduced in the proof of the previous prop-
osition and consider solutions un as constructed above, but, working in local
coordinates, with initial data centered at points xn = (xn,1, x ′

n = 0) with
a sequence xn,1 converging to 0 to be specified later. As a consequence, the
support of the initial data of un is included in the set

{
x = (

x1, x ′) ∈ R3 : |x1 − xn,1| + |x ′| ≤ C

n

}
.

Furthermore, the explicit form of vn (and the fact that tn � n−1) shows that
if

Kn =
{

x : |x1 − xn,1| ≤ C

2n
− Ctn

}

then

‖un(tn, ·)‖Hs(Kn) → +∞.

Remark also that we have

Lemma A.5. For any 0 ≤ s < 1/2, there exists C > 0 such that

∀ n, ∀ u ∈ Hs(M), ‖u‖Hs(M) ≥ C‖u|Kn‖Hs(Kn).
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Proof. Indeed, the multiplication by the Heaviside function is continuous
on Hs(M) (because −1/2 < s < 1/2 and

u|Kn = u × 1− C
2n +Ctn<x1−xn,1<

C
2n −Ctn

. ��
We now consider a sequence (nk)k∈N such that

– ‖unk (0, ·)‖Hs(M) ≤ 2−k ,
– nk ≤ 2−k.

Remark also that all the estimates on the functions unk are independent of
the choice of the sequence xn,1 (because the bounds on un we have are
independent of the choice of the concentration point), and consequently, we
can assume that xnk ,1 = 1

k2 . Consider now as initial data

f = (
f1 =

∑

k≥k0

unk (0), f2 = 0
)
,

where k0 ≥ 1 is a large constant. The support of the function f1 is included
in the union of the balls of radius C2−k centered at ( 1

k2 , 0, 0). If k0 is large
enough, any solution u of the non linear wave equation with initial data f ,
satisfying the finite speed of propagation will consequently coincide with
the solutions unk , k ≥ k0 we just constructed on the cone Knk (notice that
for k0 � 1, the cones Knk , k ≥ k0 are disjoint). As a consequence, these
solutions will satisfy (using Lemma A.5)

‖u(tnk , ·)‖Hs (M) ≥ C‖u(tnk , ·)‖Hs(Knk ) →k→+∞ +∞
and consequently

lim sup
t→0+

‖u(t, ·)‖Hs (M) = +∞.

This ends the proof of Proposition A.4 ��

B. Lack of Hs regularization under the considered randomization

The goal of this appendix is to give the proof of the following lemma.

Lemma B.1. Let

f =
∞∑

n=1

αnen(x) ∈ Hs(M)

be such that for some ε > 0 one has that f does not belong to Hs+ε(M). Let
(ln(ω))∞

n=1 be a sequence of independent random variables such that there
exists c > 0 satisfying

lim sup
n→+∞

p({|ln| ≤ c}) < 1,
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(notice that this assumption is fulfilled if the random variables are identically
distributed and non identically zero). If we set

f ω =
∞∑

n=1

ln(ω)αnen(x),

then we have that f ω belongs to Hs+ε(M) with probability zero.

Proof. A similar argument is given in [8]. Denote by µn the distribution
of (ln(ω))∞

n=1. By assumption there exists c, δ > 0 such that µn([−c, c]) ≤
(1 − δ). Then, we can write (with ρn = e−c2λ

2(s+ε)
n α2

n )

∫

Ω

e
−‖ f ω‖2

Hs+ε(M)dp(ω) =
∞∏

n=1

∫
e−λ

2(s+ε)
n α2

n x2
dµn(x)

=
∫ c

−c
e−λ

2(s+ε)
n α2

n x2
dµn(x) +

∫

|x|≥c
e−λ

2(s+ε)
n α2

n x2
dµn(x)

≤
∞∏

n=1

(µn(−c, c) + ρn(1 − µn(−c, c))) =
∞∏

n=1

(µn(−c, c)(1 − ρn) + ρn)

≤
∞∏

n=1

((1 − δ)(1 − ρn) + ρn) ≤
∞∏

n=1

(1 − δ(1 − ρn)).

Since by assumption
∑

n λ2(s+ε)
n α2

n = ∞, we obtain that
∑∞

n=1(1 −
e−c2λ

2(s+ε)
n α2

n ) = ∞ and therefore

∞∏

n=1

(1 − δ(1 − e−c2λ
2(s+ε)
n α2

n)) = 0 ⇒
∫

Ω

e
−‖ f ω‖2

Hs+ε(M)dp(ω) = 0.

This implies that ‖ f ω‖2
Hs+ε(M)

= ∞ almost surely. This completes the proof
of Lemma B.1. ��
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