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1 Introduction

In this paper we show the Weil–Petersson metric on Teichmüller space
can be reconstructed from the dimensions of dynamical artifacts, such as
measures on the circle and limit sets on the sphere. The proof reveals a con-
nection between Hausdorff dimension, L2-norms of holomorphic forms,
and the central limit theorem for geodesic flows, especially the variance of
observables of mean zero.

These elements are mediated by the thermodynamic formalism, which
leads to parallel results for Julia sets, polynomials and Blaschke products
f : ∆ → ∆. Here the foliated unit tangent bundle T1 X is replaced by the
Riemann surface lamination ̂X of f |S1. These parallels suggest a definition
of the Weil–Petersson metric for dynamical moduli spaces, and contribute
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366 C.T. McMullen

additional entries to the well-known dictionary between rational maps and
Kleinian groups, such as those summarized in Table 1.

Table 1

Riemann surfaces Dynamics

Fuchsian group G ⊂ Aut(∆) Blaschke product f : ∆ → ∆

Quasifuchsian group Γ Mating F(z) of two Blaschke products

Unit tangent bundle T1(X) Riemann surface lamination ̂X

Geodesic flow Suspension of f

Closed geodesic γ Periodic point p in S1

Length of γ Log of the multiplier |( f n)′(p)|
Length of a random geodesic Growth of ( f n)′ along a random orbit

Weil–Petersson metric on Tg Metric
∫

̂X |v′′|2 on Bd

We now turn to a detailed statement of results.

1.1 Riemann surfaces and Kleinian groups. Let Tg be the Teichmüller
space of Riemann surfaces of genus g, and let Xt ∈ Tg be a smooth
path through X = X0 ∈ Tg. The tangent vector Ẋ0 = dXt/dt|t=0 can
be represented uniquely by a harmonic Beltrami differential

µ = ρ−2 φ,

where ρ is the hyperbolic metric and φ ∈ Q(X) is a holomorphic quadratic
differential. The Weil–Petersson metric on Tg is given by

‖Ẋ0‖2
WP = ‖µ‖2

WP =
∫

X0

ρ2|µ|2 =
∫

X0

ρ−2|φ|2. (1.1)

It is naturally to scale this metric by dividing by

area(X0) =
∫

X0

ρ2 = 4π(g − 1).

With this normalization, the inclusions Tg → T h defined by taking finite
covers of X ∈ Tg become isometries.

Dimensions. The family of Riemann surfaces Xt can be described as a fam-
ily of quotients of the disk by a smoothly varying family of Fuchsian groups,

Xt = ∆/Gt .

There is a unique isotopy ht : S1 → S1 transporting the action of G = G0
to that of Gt and satisfying h0(z) = z.
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Using ht to glue ∆ to 1/∆ = {z ∈ ̂C : |z| > 1} along S1, we obtain
a smooth family of quasifuchsian groups

(̂C,Γt) = (∆, G0) ∪ht (1/∆, Gt)

which can be normalized so Γ0 = G0. This construction is the basis of Bers’
embedding of Teichmüller space [Bers]. The limit set Λ(Γt) is a Jordan
curve, with Λ(Γ0) = S1, so the Hausdorff dimension H.dim(Λ(Γt)) is
minimized at t = 0.

Similarly the dimension of the pushforward mt of Lebesgue measure on
the circle under ht , defined by

H.dim(mt) = inf
{

H.dim(E) : mt(S1 − E) = 0
}

,

achieves its maximum at t = 0. Our first result shows the Weil–Petersson
metric can be expressed in terms of the second derivatives of these dimen-
sions.

Theorem 1.1 The dimension of the quasifuchsian limit set, the dimension
of the pushforward of Lebesgue measure on S1, and the Weil–Petersson
metric are related by

d2

dt2
H.dim(Λ(Γt))

∣

∣

∣

∣

t=0

= −1

4

d2

dt2
H.dim(mt)

∣

∣

∣

∣

t=0

= 1

3

‖Ẋ0‖2
WP

area(X0)
·

See Sect. 2.

Bending. As an application, we have:

Corollary 1.2 The quasifuchsian groups obtained by bending G0 with
angle θ along the lifts of a simple geodesic γ ⊂ X0 satisfy

d2

dθ2
H.dim(Λ(Γθ))

∣

∣

∣

∣

θ=0

= 4

3

‖d�γ (X0)‖2
WP

area(X0)
·

Here �γ : Tg → R denotes the corresponding geodesic length function.

Proof. Under bending, the Riemann surfaces X0 and X0 uniformized by
G0 are deformed by positive and negative grafting along γ . But the graft-
ing vector field on Tg is simply the Weil–Petersson gradient of �γ [Mc6,
Thm. 3.8], so ‖Ẋ0‖WP = ‖d�γ ‖WP. The factor of 1/3 in Theorem 1.1 is
replaced by a factor of 4/3 since X0 is changing as well. ��

Vector fields. To obtain more perspective on the Weil–Petersson metric,
recall there is a unique smooth family of conformal maps

Ht : ∆ → ̂C



368 C.T. McMullen

conjugating the action of Γ0 to Γt and satisfying H0(z) = z. Each Ht extends
to a quasiconformal map on̂C, sending S1 to Λ(Γt). The holomorphic vector
field

v = dHt

dt

∣

∣

∣

∣

t=0

is canonically determined by Ẋ0 up to the addition of an infinitesimal
Möbius transformation

(az2 + bz + c)
∂

∂z
∈ sl2(C).

The derivatives v′(z), v′′(z) and v′′′(z) can all be used to measure the
size of [v] as a deformation of X. In particular, the quadratic differential

˜φ = −2v′′′(z) dz2

is invariant under the action of G, and descends to the original quadratic
differential φ ∈ Q(X) representing Ẋ0. Thus we can regard the Weil–
Petersson metric (1.1) as a measurement of the size of v′′′(z), which is itself
an infinitesimal form of the Schwarzian derivative.

Power series. Our next result (Sect. 4) is given in terms of the first derivative
v′(z) on the unit disk.

Theorem 1.3 The Hausdorff dimension of the limit set also satisfies

d2

dt2
H.dim(Λ(Γt))

∣

∣

∣

∣

t=0

= lim
r→1

1

4π| log(1 − r)|
∫

|z|=r
|v′(z)|2 |dz|.

This formula leads to several expressions for the Weil–Petersson metric
in terms of the power series for v(z) or for ˜φ(z) (Sect. 9); for example, we
have:

Theorem 1.4 The Weil–Petersson metric is given in terms of the quadratic
differential ˜φ = ∑∞

0 anzn dz2 by

1

3

‖Ẋ0‖2
WP

area(X0)
= 1

8

2k

(k − 1)! lim
r→1

(1 − r)k
∞

∑

1

nk−4|an|2r2n,

for any integer k > 0.

This result can also be deduced from spectral estimates for automorphic
forms (see Corollary 8.7).

The foliated unit tangent bundle. To study v′′ intrinsically, we pass to
the unit tangent bundle T1 X. Recall there is a unique smooth probability
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measure dξ on T1 X that is invariant under the geodesic flow. The fluctuations
of a smooth function f : T1 X → R along geodesics obey the central limit
theorem, with variance given by

Var( f ) = lim
S→∞

∫

T1 X

1

S

∣

∣

∣

∫ S

0
f(gsξ) ds

∣

∣

∣

2
dξ (1.2)

when
∫

f dξ = 0.
The unit tangent bundle T1 X carries a natural foliation F whose leaves

are swept out by geodesics that are asymptotic in forward time. The universal
cover of each leaf L of F can be identified with the upper halfplane

H = {z : Im(z) > 0}
in such a way that the orbits of gs|L become vertical lines. These coor-
dinates are well-defined up to z 
→ az + b, and hence they determine an
affine structure on L . The nonlinearity of v along F is then given in affine
coordinates by the holomorphic 1-form v′′ = v′′(z) dz, and in Sect. 9 we
show:

Theorem 1.5 The Weil–Petersson metric also satisfies

1

3

‖Ẋ0‖2
WP

area(X0)
= 2

∫

T1 X0

ρ−2|v′′|2 dξ = Var(Re v′′/ρ).

1.2 Complex dynamics. We now turn to the formulation of parallel results
in complex dynamics.

Given d > 1, let Bd denote the moduli space of degree d proper holo-
morphic maps f : ∆ → ∆ such that f has an attracting fixed point in ∆.
We identify maps that are conjugate by an automorphism of ∆.

Any [ f ] ∈ Bd can be represented by a Blaschke product of the form

f(z) = z
d

∏

2

(

z − ai

1 − ai z

)

, ai ∈ ∆,

and hence regarded as a rational map on the whole Riemann sphere. The
assumption that f |∆ has an attracting fixed point corresponds to the as-
sumption that X = ∆/G is compact; it insures that the Julia set J( f )
coincides with S1, and that f |S1 is expanding.

Now let ft(z) be a smooth family of Blaschke products representing
a path in Bd . In this setting, we again have a unique isotopy ht : S1 → S1

transporting the action of f0 to that of ft and satisfying h0(z) = z. If we
use ht to glue (∆, f0) to (1/∆, ft), we obtain a smooth family of rational
maps

Ft : ̂C→ ̂C



370 C.T. McMullen

which can be normalized so that F0 = f0. The Julia set J(Ft) is a Jordan
curve, with J(F0) = S1, so the Hausdorff dimension H.dim(J(Ft)) is mini-
mized at t = 0. As before, the dimension of the pushforward mt of Lebesgue
measure on the circle under ht also achieves its maximum at t = 0. There
is a unique smooth family of conformal maps

Ht : ∆ → ̂C

conjugating the action of F0 to Ft , satisfying H0(z) = z, and extending
continuously to a family of maps from S1 to J(Ft).

We will see in Sects. 2 and 4 that the results we have formulated for
Fuchsian groups carry over to this setting as well, yielding:

Theorem 1.6 The dimension of the Julia set and the dimension of the
pushforward of Lebesgue measure are related by

d2

dt2
H.dim(J(Ft))

∣

∣

∣

∣

t=0

= −1

4

d2

dt2
H.dim(mt)

∣

∣

∣

∣

t=0

·

Theorem 1.7 In terms of the vector field v = dHt/dt|t=0, we also have

d2

dt2
H.dim(J(Ft))

∣

∣

∣

∣

t=0

= lim
r→1

1

4π| log(1 − r)|
∫

|z|=r
|v′(z)|2 |dz|.

Example (Polynomial Julia sets). The preceding results readily imply:

Theorem 1.8 For t near zero, the family of polynomials

Ft(z) = zd + t
(

b2zd−2 + b3zd−3 + · · · + bd
)

satisfies

H.dim J(Ft) = 1 + |t|2
4d2 log d

d
∑

k=2

k2|bk|2 + O(|t|3).

See Sect. 5. The case d = 2 yields Ruelle’s formula [Ru2]

H.dim(J(z2 + c)) = 1 + |c|2/(4 log 2) + O(|c|3).
(The graph of H.dim(J(z2 + c)) for c ∈ [−1, 0.5] appears in [Mc7, Fig. 8].)
The general formula was calculated by different means in [AMO, §8].

Dynamical moduli spaces. The open hyperbolic component containing zd

in the moduli space of polynomials is naturally isomorphic to Bd , giving
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the latter space the structure of a complex orbifold. (This isomorphism,
obtained by mating zd with f ∈ Bd, is analogous to Bers’ embedding of
Teichmüller space.) The results above suggest defining a Hermitian metric
on Bd by

∥

∥

∥

∥

dft

dt

∥

∥

∥

∥

2

WP

= d2

dt2
H.dim(J(Ft)). (1.3)

It would be interesting to investigate this metric further; for example, is it
Kähler, convex and incomplete, as is the case for the Weil–Petersson metric
on Tg? (The preceding result computes this metric on the tangent space to
f(z) = zd ∈ Bd.)

The Riemann surface lamination. To form the dynamical counterpart to
the unit tangent bundle T1 X = T1∆/G, let

̂∆ = {

(zi) ∈ ∆Z : f(zi) = zi+1 and |zi | → 1 as i → −∞}

,

and define

̂X = ̂∆/〈̂f 〉,
where ̂f ((zi)) = ( f(zi)) = (zi+1). The space ̂X is a compact Riemann
surface lamination, with the local structure of (a complex disk) × (a Cantor
set).

There is a natural geodesic flow gs : ̂X → ̂X, preserving a smooth
probability measure dξ . Each leaf (connected component) of ̂X is covered
by the upper halfplane, giving it a natural affine structure and hyperbolic
metric ρ. Just as for the unit tangent bundle T1 X, we can define the nonlin-
earity v′′(z) dz and the Schwarzian v′′′(z) dz2 using affine coordinates along
the leaves of ̂X. We can also define the variance of a function on ̂X by (1.2),
with T1 X replaced by ̂X; and in Sect. 11 we will show:

Theorem 1.9 The vector field v satisfies

Var(Re v′′/ρ) = 2
∫

̂X
ρ−2|v′′|2 dξ = 4

3

∫

̂X
ρ−4|v′′′|2 dξ,

and all three quantities coincide with (d2/dt2) H.dim(J(Ft))|t=0.

We note that the Riemann surface lamination ̂X can be constructed for
any C1+ε or even symmetric expanding map f : S1 → S1, and such maps
are classified by the Teichmüller space of ̂X [Sul4]. The results above also
carry over to this setting; they are formulated for Blaschke products on the
unit disk since these most closely parallel Fuchsian groups.

1.3 Random geodesics and random orbits. Assume for convenience that
the family of Blaschke products ft(z) is normalized so that f0(0) = 0. Then
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the orbit under f0 of a random point on S1 is uniformly distributed with
respect to the invariant measure m0 = |dz|/2π on S1. The rate of expansion
of f0 along a random orbit is therefore measured by the Lyapunov exponent

L( f0, m0) =
∫

S1
log

∣

∣ f ′
0(z)

∣

∣ dm0(z).

Recalling that ht transports m0 to mt , we see that L( ft, mt) measures the
rate of expansion of ft along a random orbit for f0.

Now it is well-known that the dimension, Lyapunov exponent and en-
tropy of an ergodic measure for a rational map are related by

H.dim(m)L( f, m) = h( f, m) (1.4)

(see [Mn, Lemma, p. 426]). The entropy is invariant under topological
conjugacy, so h( ft, mt) is constant. Thus Theorems 1.6 and 1.9 imply:

Theorem 1.10 The expansion of ft along a random orbit for f0 satisfies

d2

dt2
log L( ft, mt)

∣

∣

∣

∣

t=0

= 16

3

∫

̂X
ρ−4|v′′′|2 dξ.

Similarly, Theorem 1.1 gives a new proof of:

Theorem 1.11 (Wolpert) The length on Xt of a random geodesic on X0
satisfies

d2

dt2
log �(Xt, g0)

∣

∣

∣

∣

t=0

= 4

3

‖Ẋ0‖2
WP

area(X0)
.

(Here the ‘random geodesic’ g0 can be interpreted formally as the Liouville
current for the hyperbolic metric on X0; cf. [Bon]. The difference in the
factors 4 and 16 stems from the relation |µ|2 = 4ρ−4|v′′′|2.) The new proof
replaces the quasiconformal methods of [Wol2] with arguments from the
thermodynamic formalism.

1.4 Thermodynamics. We now turn to a sketch of the proofs.

Pressure and variance. Let f(z) be an expanding rational map with
J( f ) = S1 and f(∆) = ∆. Let Cα(S1) denote the space of functions
on S1 which are Hölder continuous of exponent α.

The thermodynamic formalism associates to each φ ∈ Cα(S1) a transfer
operator Lφ : Cα(S1) → Cα(S1), defined by

Lφ(ψ)(y) =
∑

f(x)=y

eφ(x)ψ(x).
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The pressure P(φ) is the log of the spectral radius of Lφ. If P(φ) = 0, then φ
also determines an ergodic, f -invariant equilibrium measure m = m(φ)
on S1.

The variance of a Hölder continuous function ψ : S1 → R with
∫

ψ dm = 0 is given by

Var(ψ, m) = lim
n→∞

1

n

∫

S1

∣

∣

∣

n−1
∑

0

ψ ◦ f i(z)
∣

∣

∣

2
dm.

It is known that the variance gives the second derivative of the pressure: we
have

P(φ + tψ) = P(φ) + (t2/2) Var(ψ, m(φ)) + O(t3). (1.5)

Suspensions. In Sect. 3 we show that the variance behaves well under
suspensions: given a Hölder continuous roof function ρ : S1 → R with
ρ = ∫

ρ dm > 0, the variance of the suspension flow on ̂S 1 × R/((z, t) ∼
( f(z), t + ρ(z))) satisfies

Var(ψρ, mρ) = Var(ψ, m)/ρ. (1.6)

Here mρ = (m̂ × dt)/ρ and ψρ(x, t) = ψ(x)/ρ(x) for 0 ≤ t < ρ(x).

Families of dynamical systems. Now consider a smooth family of expand-
ing rational maps ft(z) with f0 = f . Since expanding maps are structurally
stable, we can view ft(z) as a family of geometric structures imposed on
the single topological dynamical system ( f, S1). The changing geometry is
recorded by the family of Hölder continuous functions

φt(z) = − log
∣

∣ f ′
t (ht(z))

∣

∣,

where ht : S1 → J( ft) is a topological conjugacy from f0 to ft . Let m
be the unique absolutely continuous f -invariant probability measure on S1.
(If we normalize so f(0) = 0, then m = |dz|/2π, by a simple argument
with harmonic functions (see e.g. [Mar])). Let mt = (ht)∗(m) and µt =
H.dim(mt).

In this framework, the Hausdorff dimension δt of J( ft) can be charac-
terized as the unique solution to the equation

P(δtφt) = 0.

Using (1.5) and (1.4), in Sect. 2 we obtain the relation

Var(φ̇0, m0)/L( f, m0) = δ̈0 − µ̈0. (1.7)

For a family of Blaschke products ft(z), we have δt = H.dim J( ft) =
H.dim(S1) = 1 and thus δ̈0 = 0. For the corresponding family of matings
Ft = (∆, f0) ∪ht (1/∆, ft), mt coincides with harmonic measure on J(Ft)
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and thus µt = 1 and µ̈0 = 0. In either case, we obtain a direct connection
between Var(φ̇0, m0) and the second derivative of dimension. Comparing
the values of φ̇0 in the two cases, we obtain the equation

d2

dt2
H.dim(J(Ft))

∣

∣

∣

∣

t=0

= −1

4

d2

dt2
H.dim(mt)

∣

∣

∣

∣

t=0

stated in Theorem 1.6. The factor 1/4 = (1/2)2 arises because Ft is obtained
by varying f0 on only half of the Riemann sphere, and the variance is
quadratic.

Virtual coboundaries. In the case of matings, ht : S1 → J(Ft) extends
to a conformal map Ht : ∆ → C conjugating f to Ft . It follows that the
harmonic extension of φ̇0 to ∆ satisfies the coboundary equation

φ̇0(z) = Re[v′(z) − v′( f(z))],
where v = dHt/dt. This equation only holds on ∆; in general v′ blows up
on S1. Nevertheless, in concert with the suspension relation (1.6) it leads to
the formula

Var(φ̇0, m0)/L( f, m0) = (1/2)I0(v
′),

where

I0(v
′) = lim

r→1

1

2π| log(1 − r)|
∫

|z|=r
|v′(z)|2 |dz|;

see Sect. 4.

Power series and ergodicity. In Sect. 10 we demonstrate the equation

I0(v
′) = 2 Var(Re v′′/ρ),

using the fact that the growth of |v′|2 = | ∫ v′′(z) dz|2 along a random ray in
the disk mimics the growth of | ∫ Re v′′/ρ|2 along a random geodesic on the
Riemann surface lamination ̂X. Using orthogonality of the functions zn|∆,
we also relate I0(v

′) to various L2-norms of its higher derivatives v(k+1)

on ∆ (Sect. 11). Ergodicity of the geodesic flow for ̂X then implies these
L2-norms are proportional to

∫

̂X
ρ−k|v(k+1)|2 dξ,

completing the proof of Theorems 1.6, 1.7 and 1.9.

Fuchsian groups. The corresponding Theorems 1.1, 1.3 and 1.5 for fami-
lies of Riemann surfaces Xt = ∆/Gt are obtained similarly, using a Markov
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partition introduced by Bowen and Series to replace the action of G0 by
a piecewise-analytic expanding map F0 : S1 → S1.

The pressure metric. Finally we observe that the pressure itself gives rise
to a natural metric in the thermodynamic setting.

Let σ : Σ → Σ be an aperiodic subshift of finite type, and let T (Σ)
denote the space of Hölder continuous functions with P(φ) = 0 modulo
coboundaries. By convexity, the second derivative

D2 P(ψ) = Var(ψ, m(φ))

is non-negative on the tangent space

TφT (Σ) = {ψ : ∫

ψ dm(φ) = 0}/(coboundaries).

In fact the variance vanishes if and only if ψ is cohomologous to zero [PP,
Prop. 4.12], and thus the pressure metric on T (Σ), given by

‖ψ‖2
P = Var(ψ, m(φ))

− ∫

φ dm(φ)
,

is nondegenerate.
Now let (Σ, σ) be the shift space coming from a Markov partition for

a Fuchsian group of genus g. Then each marked Riemann surface X =
∆/G ∈ Tg determines a Markov map F : S1 → S1 and a symbolic
encoding

π : Σ → S1,

satisfying π(σ(x)) = F(π(x)). Note that the Hölder continuous function

φX(x) = − log |F ′(π(x))|
changes by a coboundary when G changes by conjugacy, and that φX
determines the lengths of closed geodesics on X. Thus the map X 
→ φX
gives a thermodynamic embedding

Tg ↪→ T (Σ)

of Teichmüller space into the space of functions modulo coboundaries.
Theorem 1.1 and (1.7) then imply:

Theorem 1.12 The pressure metric pulls back to a multiple of the Weil–
Petersson metric under the thermodynamic embedding. More precisely, we
have

‖φ̇X‖2
P = 4

3

‖Ẋ‖2
WP

area(X)
·
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The metric on Bd given by (1.3) can similarly be regarded as a pullback
of the pressure metric up to scale.

Notes and references. The Weil–Petersson metric was introduced in [Wl].
Theorem 1.11 appears in [Wol2]; see also [Bon] and [Bu]. (Note: 3π should
be 6π in [Wol2, Eq. (0.1) and Cor. 4.3], to be consistent with the definition
gWP(µ,µ) = 2

∫

X ρ2|µ|2 used in [Wol2, p. 152 and Cor. 3.5].) E. Cawley
showed that Wolpert’s theorem implies a variant of Theorem 1.12.

More on the theory of Riemann surface laminations for circle maps can
be found in [Sul3], [Sul4], [GS2], [GS1], and [MeSt, Ch. VI.6]. A simi-
lar theory for rational maps on ̂C is developed in [LM]. For a survey of
connections between rational maps and Kleinian groups, see [Mc4].

The mating of Blaschke products to yield the rational maps Ft(z) dis-
cussed above is a special case of the gluing construction given in [Mc1,
Prop. 5.5] (see also [Mc3]); the maps Ft(z) can be regarded as matings of
polynomials whose Julia sets are topological circles. See e.g. [Tan] and [Mil]
for more on matings.

I would like to thank M. Bridgeman for a lecture on [BT1] which
motivated this investigation. See also [BT2]; the results of the latter paper
give the inequality

(d2/dt2) H.dim(Λ(Γt))
∣

∣

t=0 ≥ (1/3)‖Ẋ0‖2
WP/ area(X0)

which is sharpened by Theorem 1.1, and include an inequality version of
Corollary 1.2 [BT2, §11]. We remark that the pseudometric on quasifuchsian
space introduced in [BT2] can also be regarded as a pullback of the pressure
metric. I would also like to thank M. Zinsmeister and the referees for many
useful comments.

Notation. The expressions A ∼ B, A = O(B) and A � B mean A/B → 1,
|A| < CB and B/C < A < CB for an unspecified constant C.

2 Thermodynamic formalism

In this section we recall the thermodynamic formalism for expanding con-
formal maps, following [PP] (see also [Ru1]). We then prove the dimension
relations

(d2/dt2) H.dim(Λ(Γt))
∣

∣

t=0 = −(1/4)(d2/dt2) H.dim(mt)
∣

∣

t=0

and

(d2/dt2) H.dim(J(Ft))
∣

∣

t=0 = −(1/4)(d2/dt2) H.dim(mt)
∣

∣

t=0

appearing in Theorems 1.1 and 1.6 of the introduction.
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Shifts. Let A(i, j) be a d ×d matrix with entries 0 or 1. Assume A is aperi-
odic, meaning there is an n > 0 such that An has only positive entries. The
associated 1-sided shift space Σ consists of all sequences (x0, x1, x2, . . .)
of integers 1 ≤ xi ≤ d such that A(xi , xi+1) = 1 for all i. The shift map
σ : Σ → Σ is defined by σ((xi)) = (xi+1). We give Σ the metric

d((xi), (yi)) = 1/dn,

where n is the smallest index such that xn �= yn. Then (Σ, d) is a Cantor set
of Hausdorff dimension one, and the map σ : Σ → Σ is locally expanding
by a factor of d.

For α > 0, let Cα(Σ) denote the Banach space of real-valued continuous
functions f on Σ satisfying a Hölder estimate of the form

| f(x) − f(y)| ≤ Md(x, y)α.

The norm on Cα(Σ) is given by

‖ f ‖Cα = sup
x

| f(x)| + sup
x �=y

| f(x) − f(y)|
d(x, y)α

·

The pullback operator on Cα(Σ) is defined by (σ∗ f )(y) = f(σ(y)), and we
say f1 and f2 are cohomologous if

f1 − f2 = f3 − σ∗ f3

for some f3 ∈ Cα(Σ).

Pressure. Given φ ∈ Cα(Σ), the transfer operator (or Ruelle operator) on
f ∈ Cα(Σ) is defined by

Lφ( f )(y) =
∑

σ(x)=y

eφ(x) f(x).

It is the composition of multiplication by eφ with pushforward under σ , and
satisfies:

Lφ(gσ∗( f )) = f Lφ(g). (2.1)

The pressure of φ is defined in terms of the spectral radius of the transfer
operator by

P(φ) = log ρ(Lφ).

The pressure is a convex, real-analytic function on Cα(Σ). By a generaliza-
tion of the Perron–Frobenius theorem there is a positive eigenfunction eψ ,
unique up to scale, satisfying

Lφ(e
ψ) = ρ(Lφ)e

ψ;
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and the rest of the spectrum of the transfer operator lies in a disk of radius
r < ρ(Lφ).

Equilibrium measure. Now suppose P(φ) = 0, so Lφ(eψ) = eψ . Then
there is a unique positive measure µ on Σ satisfying

∫

Lφ( f ) dµ =
∫

f dµ

for all f ∈ Cα(Σ) and
∫

eψ dµ = 1. We define the associated equilibrium
measure on Σ by

m(φ) = eψµ. (2.2)

The equilibrium measure is an ergodic, σ -invariant probability measure
with positive entropy.

The pressure and the equilibrium measure depend only on the cohomo-
logy class of φ. Moreover, we can modify φ by the coboundary ψ − σ∗ψ to
obtain Lφ(1) = 1; then m(φ) = µ, and using (2.1) we have Lφ(σ

∗( f )) = f
and

∫

Lφ( f ) dm(φ) =
∫

f dm(φ)

for all f ∈ Cα(Σ).

Decay of correlations. Now fix an equilibrium measure m = m(φ). Con-
sider the inner product 〈 f, g〉 = ∫

Σ
fg dm and norm ‖ f ‖2

2 = 〈 f, f 〉 on
the Banach space Cα(Σ). Adjusting by a coboundary, we can assume
Lφ(1) = 1; we then have

〈Lφ( f ), g〉 = 〈 f, σ∗(g)〉. (2.3)

Because the spectrum of Lφ restricted to functions with
∫

f dm = 0 lies in
a disk of radius r < 1, we have rapid decay of correlations; that is,

|〈 f, g ◦ σn〉| = O(rn)

for any f, g ∈ Cα(Σ) of mean zero.

Variance. Decay of correlations implies that the functions f(σ i x) behave
roughly like independent random variables. The variance of f ∈ Cα(Σ) of
mean zero is given by

Var( f ) = lim (1/n)‖Sn( f )‖2
2,

where

Sn( f, x) =
n−1
∑

0

f(σ i x).
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The variance depends only on the cohomology class of f . It is given
more explicitly by the series

Var( f ) = 〈 f, f 〉 + 2
∞

∑

1

〈 f, f ◦ σ i〉,
which is rapidly convergent by decay of correlations. We also write Var( f ) =
Var( f, m) to emphasize the dependence on m.

The central limit theorem says the oscillations of Sn ( f )/
√

n are governed
by a Gaussian distribution with variance Var( f ).

Theorem 2.1 For any a < b, and f ∈ Cα(Σ) of mean zero and variance V ,
we have

m

{

x : a <
Sn( f, x)√

n
< b

}

→ 1√
2πV

∫ b

a
e−t2/(2V )2

dt.

See [PP, Thm 4.13].

Derivatives. The following useful formulas for the derivatives of pressure
appear in [PP, Props. 4.10, 4.11].

Theorem 2.2 Let φt be a smooth path in Cα(Σ), let m0 = m(φ0) and let
φ̇0 = dφt/dt|t=0. We then have

dP(φt)

dt

∣

∣

∣

∣

t=0

=
∫

Σ

φ̇0 dm0

and, if the first derivative is zero, then

d2 P(φt)

dt2

∣

∣

∣

∣

t=0

= Var(φ̇0, m0) +
∫

φ̈0 dm0.

(Note: [PP] treats the second derivative in the case where ct = ∫

φt dm0 is
constant; to obtain the general formula above, use the fact that P(φt − ct) =
P(φt) − ct .)

Markov maps. The thermodynamic formalism is well-suited to the study
of expanding conformal dynamical systems.

To treat the case of both rational maps and Kleinian groups, we will
consider the dynamics of an expanding, conformal Markov map

F : J(F) → J(F)

relative to a Markov partition J(F) = ⋃n
1 Ji . Here J(F) is a compact subset

of ̂C, and we require that:

1. As subspaces of J(F), each tile Ji is the closure of its interior;
2. The interiors of different tiles are disjoint;
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3. F| int Ji is injective, and extends to a conformal map Fi on a neighbor-
hood of Ji ;

4. Fi(Ji) is a union of tiles, and
5. The graph of F|J(F) is the union of the graphs of Fi |Ji .

The map F is generally multivalued at points where two tiles meet.
We say F is expanding if there is an n > 0 such that the spherical

derivative of every branch of Fn|J(F) satisfies

|(Fn)′(x)| > C > 1,

and if for every nonempty open set U ⊂ J(F) there is an m > 0 such that
Fm(U) = J(F).

Let A(i, j) = 1 if F(Ji) ⊃ Jj , and 0 otherwise. By the expanding
assumption, A(i, j) is aperiodic, and the associated shift space Σ admits
a Hölder continuous projection

π : Σ → J(F),

characterized by the property that x = (x0, x1, x2, . . .) gives the sequences
of tiles visited by the forward orbit (z, F(z), F2(z), . . .) of z = π(x). (Orbits
of F that land on the borders between tiles have multiple encodings in Σ,
but these ambiguous orbits have zero mass for all equilibrium measures.)
The shift map σ gives a single-valued resolution of F, satisfying

π(σ(x)) = Fx0(π(x)).

Example. For F(z) = zd with J(F) = S1, we can take J1, . . ., Jd ⊂ S1 to
be the intervals bounded by consecutive dth roots of unity; then Σ ∼= (Z/d)N

is the 1-sided shift on d symbols.

Dimensions. The geometry of F is encoded by the Hölder continuous
function

φ(x) = − log
∣

∣F ′
x0

(π(x))
∣

∣

on the symbolic dynamical system (Σ, σ). For example, the Lyapunov
exponent of an equilibrium measure m is given by

L(F, π∗m) = −
∫

Σ

φ dm. (2.4)

This perspective is especially useful for studying families of dynamical
systems; cf. [Sul2, §3].

The dimensions of interest to us can be recovered from φ by the following
standard results.

Theorem 2.3 The Hausdorff dimension δ of J(F) is the unique solution to
P(δφ) = 0; and the equilibrium measure mδφ is equivalent to the Hausdorff
measure of dimension δ on J(F).
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Theorem 2.4 Let m be an equilibrium measure on Σ. Then the Hausdorff
dimension of m transported to J(F) satisfies

H.dim(π∗m) = h(m, σ)
(

∫

Σ

−φ dm
)−1

.

For continuous F, these results appear in [Ru2, Prop. 4] and [Mn]
respectively (see also [Me]); the proofs for Markov maps follow the same
lines.

Families of rational maps. For simplicity, we now focus on the case of
a rational map F(z) with Julia set J(F) ⊂ C. Assume F is expanding; that
is, for some n > 0 we have |(Fn)′| > c > 1 on J(F) in the spherical metric.
Then there exists a Markov partition J(F) = ⋃

Ji making F|J(F) into
a Markov map as above (see e.g. [Ru1, §7.29]).

Now consider a smooth family of expanding rational maps Ft(z). By
the theory of holomorphic motions, there is a smooth family of homeomor-
phisms

ht : J(F0) → J(Ft)

respecting the dynamics (see e.g. [Mc2, Ch. 4]). By smooth we mean there
is an α > 0 such that ht varies smoothly in the Banach space Cα(J(F0)) for
small t. (Indeed, ht can be extended to a smooth family of Kt -quasiconformal
maps on the whole sphere, with Kt → 1 as t → 0.)

Choosing a Markov partition for F0, we obtain a continuous family of
projections

πt : Σ → J(Ft)

satisfying πt(x) = ht(π0(x)). Then

φt(x) = log
∣

∣F ′
t (πt(x))

∣

∣

varies smoothly in Cα(Σ) for small t. By Theorem 2.3, the Hausdorff
dimension δt = H.dim(J(Ft)) is characterized by

P(δtφt) = 0,

and the implicit function theorem implies δt is a smooth function of t.

Theorem 2.5 For any smooth family of expanding rational maps with
J(F0) = S1, we have

Var(φ̇0, m0) + δ̈0

∫

φ0 dm0 +
∫

φ̈0 dm0 = 0, (2.5)

where m0 is the equilibrium measure for φ0.

(Here φ̇0, φ̈0 and δ̈0 denote derivatives with respect to t evaluated at t = 0.)
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Proof. Since J(Ft) is homeomorphic to a circle, we have δt ≥ δ0 = 1 and
thus δ̇0 = 0. Using Theorem 2.2 to compute the quantity d2 P(δtφt)/dt2 = 0,
we obtain the expression above. ��
Remark (Lyapunov exponents). Let Mt = (πt)∗(m0). Then (2.5) can also
be expressed in terms of the Lyapunov exponents Lt = L(Ft, Mt) and the
dimensions µt = H.dim(Mt), as follows:

Var(φ̇0, m0)/L0 = δ̈0 + L̈0/L0 = δ̈0 − µ̈0.

Rational maps. Returning to the setting of Theorem 1.6, we now consider
a smooth family of expanding rational maps ft(z) with J( ft) = S1 and
ft(∆) = ∆.

Let ht : S1 → S1 be the unique isotopy transporting the action of f0
to ft and satisfying h0(z) = z. Consider the smooth, 2-parameter family of
rational maps

Fs,t : ̂C→ ̂C

obtained by gluing (∆, fs) to (1/∆, ft) using ht ◦h−1
s as in [Mc1, Prop. 5.5]

(see also [Mc3]).
The family Fs,t can be normalized so that Ft,t(z) = ft(z) and

Fs,t(z ) = Ft,s(z). (2.6)

Using a Markov partition, we obtain a smoothly varying symbolic encoding

πs,t : Σ → J(Fs,t),

and hence smoothly varying Hölder continuous functions

φt(x) = − log
∣

∣F ′
0,t(π0,t(x))

∣

∣

and

Φt(x) = − log
∣

∣F ′
t,t(πt,t(x))

∣

∣.

Let m0 = m(φ0) and let ms,t denote the pushforward of m0 to J(Fs,t).
Then m0,0 is equivalent to Lebesgue measure on S1, and mt,t = (ht)∗(m0,0).
Thus Theorem 1.6 follows from:

Theorem 2.6 At t = 0 we have

d2

dt2
H.dim(J(F0,t)) = Var(φ̇0, m0)

∫ −φ0 dm0
= −1

4

d2

dt2
H.dim(mt,t). (2.7)
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Proof. The key point is that F0,t is conformally conjugate on one compon-
ent U of ̂C− J(Fs,t) to f0|∆. Thus m0,t is equivalent to harmonic measure
on ∂U , and hence H.dim(m0,t) = 1 for all t [Mak]. This implies, by The-
orem 2.4, that

∫

φt dm0 is constant, and hence
∫

φ̈0 dm0 = 0. Applying
Theorem 2.5 we then obtain

Var(φ̇0, m0) + δ̈0

∫

φ0 dm0 = 0,

where δt = H.dim J(F0,t). Rearranging terms gives the first equality in (2.7).
For the second, we observe that

d2

dt2
H.dim(mt,t) = −

∫

Φ̈0 dm0
∫

Φ0 dm0

by Theorem 2.4, while

Var(Φ̇0, m0) +
∫

Φ̈0 dm0 = 0

by Theorem 2.5, since H.dim(J(Ft,t)) = 1 for all t. The symmetry (2.6)
of Fs,t implies Φ̇0 = 2φ̇0, and hence

Var(Φ̇0, m0) = 4 Var(φ̇0, m0).

Since φ0 = Φ0, these relations give the second equality in (2.7). ��

Families of Fuchsian groups. Now consider a smooth family of cocompact
Fuchsian groups Γt with Λ(Γt) = S1.

By Bowen and Series, the group Γ0 also admits a Markov partition; that
is, there is an expanding Markov map

f0 : S1 =
n

⋃

1

Ji → S1

with f0| int Ji = γi ∈ Γ0 (see [BS]).
Gluing (∆,Γs) to (1/∆,Γt), we obtain a two-parameter family of quasi-

fuchsian groups Γs,t and a corresponding family of Markov maps Fs,t .
Applying the theory of holomorphic motions (as in [Sul1]), this yields
a smoothly varying symbolic coding

πs,t : Σ → Λ(Γs,t),

allowing us to define

φt(x) = − log
∣

∣F ′
0,t(π0,t)(x)

∣

∣.

Then m0 = m(φ0) corresponds to Lebesgue measure on S1; setting ms,t =
(πs,t)∗(m0), the proof just given now yields:
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Theorem 2.7 At t = 0 we have

d2

dt2
H.dim(Λ(Γ0,t)) = Var(φ̇0, m0)

∫ −φ0 dm0
= −1

4

d2

dt2
H.dim(mt,t).

In particular, we obtain the dimension relation stated in Theorem 1.1.

3 Variance and suspensions

In this section we relate the variance Var( f ) for the shift map to the variance
for its suspension under a roof function. This relation will allow us to express
Var( f ) for maps on the circle in terms of integrals over ∆, T1 X and ̂X .

Stopping times. We begin by fixing an equilibrium measure m on Σ, and
a roof function ρ ∈ Cα(Σ), satisfying

n−1
∑

0

ρ(σ ix) > 0 (3.1)

for some n > 0. This implies that ρ = ∫

ρ dm > 0.
Recall that the variance of f ∈ Cα(Σ) with

∫

f dm = 0 is given by

Var( f, m) = lim
n→∞ (1/n)‖Sn( f )‖2

2,

where

Sn( f, x) =
n−1
∑

i=0

f(σ i x). (3.2)

We define the variance relative to ρ by

Varρ( f, m) = lim (1/n)‖Vn( f )‖2
2,

where

Vn( f, x) =
N(n,x)−1

∑

0

f(σ i x),

and the stopping time N(n, x) > 0 is the least positive integer such that

N(n,x)−1
∑

0

ρ(σ ix) ≥ nρ.

Note that N(n, x) � n by (3.1), and N/n → 1 almost everywhere by the
ergodic theorem.
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The main result of this section is:

Theorem 3.1 For any roof function ρ and equilibrium measure m, we have

Varρ( f, m) = Var( f, m)

for all f ∈ Cα(Σ) of mean zero.

This result is an immediate consequence of:

Theorem 3.2 If f ∈ Cα(Σ) has mean zero, then we have

lim(1/n)‖Vn( f ) − Sn( f )‖2
2 = 0.

We will also deduce:

Theorem 3.3 For any g ∈ C(Σ) and f ∈ Cα(Σ) with
∫

f dm = 0, we
have

lim
n→∞

〈

g, Vn( f )2/n
〉 = Var( f, m)

∫

g dm.

Suspension. The results above can also be formulated in terms of flows, as
follows.

Let (̂Σ, σ̂ ) be the natural extension of Σ to a two-sided shift. Any
equilibrium measure m on Σ determines an invariant measure m̂ on ̂Σ. The
variance of f ∈ Cα(̂Σ) is defined just as for Σ.

Let ρ ∈ Cα(̂Σ) be a roof function satisfying (3.1). Then the suspension
of (̂Σ, σ̂) under ρ is the space

̂Σρ = (̂Σ × R)/((x, t) ∼ (σ(x), t + ρ(x)))

equipped with the natural flow gs(x, t) = (x, t + s). The measure m|Σ
determines a natural gs-invariant probability measure

dmρ = dm̂ dt/ρ.

Let F(x, t) be a bounded measurable function on ̂Σρ such that

̂F(x) =
∫ ρ(x)

0
F(x, t) dt

is Hölder continuous on ̂Σ and
∫

F dmρ = ∫

̂Fdm̂ = 0. We can then form
the integrals

Sn(F, (x, t)) =
∫ n

0
F(x, t + s) ds
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(even for n ∈ R), and define the variation of F by

Var(F, mρ) = lim
n→∞(1/n)

∫

̂Σρ

Sn(F)2 dmρ.

Theorem 3.4 We have Var(F, mρ) = Var(̂F, m̂)/ρ.

Proof. By [PP, Prop. 1.2], there is a Hölder continuous function g such that

f = ̂F + g − g ◦ σ

depends only on the coordinates (xi) with i ≥ 0; in other words, f is
essentially a function on Σ. It follows easily that for 0 ≤ t < ρ(x) we have

Snρ(F, (x, t)) = Vn( f, x) + O(1). (3.3)

Appealing to Theorem 3.3 and using the fact that
∫

ρ(x)/ρ = 1, we obtain

Var(F, mρ) = lim
n→∞

1

nρ

∫

Σρ

Sρn(F)2dm̂dt/ρ

= lim
n→∞

1

nρ

∫

̂Σ

Vn( f, x)2(ρ(x)/ρ)dm̂

= Var( f, m)/ρ = Var(̂F, m̂)/ρ. ��
For use in Sect. 10 we also record:

Theorem 3.5 For any g ∈ C(̂Σ) with
∫

gdm̂ = 1, we have

lim
n→∞

1

n

∫

̂Σ

g(x)Sn(F, (x, 0))2dm̂ = Var(F, mρ).

Proof. The set of g ∈ C(̂Σ) for which the result holds is closed under
uniform limits and composition with σ±1. Thus we may assume g(x) only
depends on xi for i ≥ 0, since translates of functions of this type by σ span
a dense subspace of C(̂Σ). We can then apply Theorem 3.3 and (3.3) again,
and continue the proof above to obtain the desired result:

Var(F, mρ) = Var( f, m)

ρ
= lim

n→∞
1

nρ

∫

̂Σ

g(x)Vn( f, x)2dm̂

= lim
n→∞

1

nρ

∫

̂Σ

g(x)Snρ(F, (x, 0))2dm̂. ��

Local variation. To prove Theorem 3.2, we begin with a bound for the
variation of the function Sn( f ) (defined by (3.2)) on sets of small measure.
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Theorem 3.6 Given f ∈ Cα(Σ) of mean zero and measurable sets En, we
have

lim sup
n→∞

∫

En

Sn( f )2

n
dm ≤ √

3 Var( f, m)(lim sup m(En))
1/2.

Proof. It suffices to treat the case where the limits superior above are
actually limits.

Let µn be the probability measure on R obtained as the pushforward of
m under the function t = Sn( f, x)/

√
n, and let

µ = (2πV )−1/2 exp(−t2/(2V )2) dt

be the Gaussian measure on R of mean zero and variance V = Var( f, m).
By the central limit theorem (Sect. 2) we have µn → µ as distributions,
and hence t2µn → t2µ as well. By the definition of µ, these limit satisfy

1 = lim
∫

dµn =
∫

dµ

and

Var( f, m) = lim
∫

t2 dµn =
∫

t2 dµ;

that is, in both cases no mass is lost in the limit (the convergence of measures
is tight).

Now the pushforward of m|En can be expressed as νn = φnµn , where
φn is a Borel function with 0 ≤ φn ≤ 1. Passing to a further subsequence,
we can assume φnµn → φµ as distributions, where again 0 ≤ φ ≤ 1. Since
0 ≤ φnµn ≤ µn , these limits are also tight: we have

∫

φ dµ = lim
∫

φn dµn = lim m(En)

and
∫

t2φ dµ = lim
∫

t2φn dµn = lim
1

n

∫

En

Sn( f )2 dm.

Applying the Cauchy–Schwarz inequality, we obtain

(

∫

t2φ dµ
)2 ≤

∫

t4 dµ

∫

φ2 dµ ≤ 3V 2
∫

φ dµ = 3V 2(lim m(En)),

and the stated bound follows. ��
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Control of the stopping time. Applying the preceding result to f(x) =
ρ(x) − ρ, we obtain:

Theorem 3.7 For any sequence of measurable sets satisfying m(En) < ε,
we have

lim sup
n→∞

1

n

∫

En

|n − N(x, n)|2 dm = O(
√

ε). (3.4)

Proof. Equation (3.1) implies that | j −k| ≤ 1+C(ρ)|∑k
j ρ(σ i x)| for some

C(ρ) > 0. By considering the sum from j = n to k = N(n, x), we obtain

|n − N(n, x)| ≤ 1 + C(ρ) |Sn(ρ, x) − nρ| ;
and since Sn(ρ, x) − nρ = Sn(ρ − ρ, x), Theorem 3.6 implies that

lim sup
n→∞

1

n

∫

En

|Sn(ρ) − nρ|2 dm = O(
√

ε). ��

Cancellation. Now fix an f ∈ Cα(Σ) of mean zero, whose stopping-time
averages Vn( f ) are to be studied. We will use the ergodic theorem to show
there is usually abundant cancellation in these sums.

Theorem 3.8 For any ε > 0, there exists an M > 0 and a sequence of sets
with m(En) > 1 − ε such that

∣

∣

∣

k−1
∑

j

f(σ i x)
∣

∣

∣ ≤ ε|k − j| + M (3.5)

whenever x ∈ Ej ∪ Ek.

Proof. It is useful to pass to the natural extension (̂Σ, σ̂ , m̂). Since (Σ, σ, m)

is ergodic, so is (̂Σ, σ̂ , m̂). By the ergodic theorem, as N → ∞ we have
∣

∣

∣

∣

∣

1

N

N
∑

0

f(σ̂ i x)

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

1

N

0
∑

−N

f(σ̂ i x)

∣

∣

∣

∣

∣

→ 0

for almost every x ∈ ̂Σ. Thus for each ε > 0, there exists a set with
m̂(F0) > 1 − ε and an M > 0 such that

∣

∣

∣

k−1
∑

j

f(σ̂ i x)
∣

∣

∣ ≤ ε|k − j| + M (3.6)

for all x ∈ F0 and all j < k, provided that j = 0 or k = 0. Setting
Fn = σ̂−n(F0), we have (3.6) whenever x ∈ Fj ∪ Fk .
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Let En be the projection of Fn from ̂Σ to Σ. Then we have m(En) ≥
m̂(Fn) = m̂(F0) = 1 − ε, and (3.6) implies (3.5) for all k > j ≥ 0 and all
x ∈ Ej ∪ Ek. ��
Proof of Theorem 3.2. We begin by noting that if N = N(n, x), then

|Vn( f, x) − Sn( f, x)| =
∣

∣

∣

k−1
∑

j

f(σ ix)
∣

∣

∣

where ( j, k) = (n, N) or (N, n) (ordered so j ≤ k). Thus by Theorem 3.8,
for each ε > 0 there is an M > 0 and a sequence of sets with m(En) > 1−ε
such that

|Vn( f, x) − Sn( f, x)| ≤ ε|N(n, x) − n| + M

provided x ∈ En . This implies

lim sup
n→∞

1

n

∫

En

|Vn( f ) − Sn( f )|2 dm ≤ ε2 lim sup(1/n)‖N(n, x) − n‖2
2

= O(ε2)

by Theorem 3.7. Letting ˜En = Σ − En , Theorem 3.7 also implies

lim sup
n→∞

1

n

∫

˜En

|Vn( f )− Sn( f )|2 dm ≤ ‖ f ‖2
∞ lim sup

n→∞
1

n

∫

˜En

|N(n, x)−n|2 dm

= O(
√

ε),

since m ˜En < ε. Combining these results, we obtain

lim sup(1/n)‖Vn( f ) − Sn( f )‖2
2 = O(ε2 + √

ε);
since ε > 0 is arbitrary, the limit superior is actually zero. ��
Proof of Theorem 3.3. By Theorem 3.2, it suffices to prove

lim
n→∞

〈

g, Sn( f )2/n
〉 = Var( f, m)

∫

g dm;

and since this equation is immediate for g = 1, we may assume that g has
mean zero. Since sequence Sn( f )2/n is bounded in L1(Σ, dm), the set of g
for which the theorem holds is closed under uniform limits, so we may also
assume g belongs to the dense subspace of Hölder continuous functions
Cα(Σ) ⊂ C(Σ).

Since m is an equilibrium measure we can write m = m(φ), where φ is
normalized so that Lφ(1) = 1. Let

P(h) = h(x) −
∫

h dm
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be the projection onto the functions of mean zero, and let T = Lφ ◦ P. Then
the spectral radius of T is less than some r < 1, and hence

‖T i‖ = O(ri)

as an operator on Cα(Σ). Moreover we have

〈h1, h2 ◦ σ〉 = 〈T(h1), h2〉
whenever h1 or h2 has mean zero, by (2.3).

Now observe that
〈

g, Sn( f )2〉 =
∑

0≤ j,k<n

〈g, f j fk〉,

where fi(x) = f(σ i x). To bound the terms in this sum, we note that if j ≤ k
then

〈g, f j fk〉 = 〈

T j(g), f0 fk− j
〉 = 〈

T k− j
(

f0T j(g)
)

, f0
〉 = O(rk).

Consequently

∑

0≤ j,k<n

〈g, f j fk〉 = O
(

∞
∑

0

krk
) = O(1),

and hence
〈

g, Sn( f )2/n
〉 = O(1/n) → 0

as desired. ��
Notes. The study of variance and the central limit theorem for geodesic
flows and other dynamical systems has a long history, going back to [Si].
For recent work on the central limit theorem for suspensions, see [DP]
and [MT]. (Note that the central limit theorem for Sn( f ) does not formally
imply the existence of Var( f ), since an interchange of limits is required.)

4 Virtual coboundaries

Let f : S1 → S1 be an expanding conformal Markov map. In this section
we study the variance of a function h : S1 → R in terms of a solution to the
‘virtual coboundary equation’

h(z) = g(z) − g( f(z))

on the unit disk ∆ (for a suitable extension of h). To measure the asymptotic
growth of g : ∆ → C, we define

I0(g) = lim
r→1

1

2π| log(1 − r)|
∫

|z|=r
|g(z)|2 |dz|. (4.1)
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We will establish:

Theorem 4.1 If h is the virtual coboundary of g, then I0(g) exists and we
have:

Var(h ◦ π, m)
∫ −φ dm

= I0(g). (4.2)

Using Theorem 2.6, we will then deduce the formulas

(d2/dt2) H.dim(Λ(Γt))
∣

∣

t=0 = (1/2)I0(v
′(z))

and

(d2/dt2) H.dim(J(Ft))
∣

∣

t=0 = (1/2)I0(v
′(z))

stated as Theorems 1.3 and 1.7 in the introduction.

Virtual coboundaries. For simplicity of notation, we will treat the case
where f(z) is an expanding rational map with J( f ) = S1 and f(∆) = ∆.
The extension to general conformal expanding Markov maps is straightfor-
ward.

Let π : Σ → S1 express f as a quotient of the shift as usual, and let m
be the equilibrium measure for φ(x) = − log | f ′(π(x))|. Note that π∗m is
equivalent to Lebesgue measure on S1, and that the Lyapunov exponent of f
is given by

L( f, π∗m) =
∫

−φ dm.

Let h : S1 → C be a Hölder continuous function. We say h is the virtual
coboundary of a continuous function g : ∆ → C if

h(z) = g(z) − g( f(z))

defines an extension of h|S1 to a Hölder continuous function on the closed
disk ∆. Intuitively this means h|S1 is the coboundary of g|S1, although the
limiting values of g(z) on S1 need not exist. We remark that the expansion
of f implies g(z) is uniformly continuous in the hyperbolic metric on ∆.

Roof function. Now assume h and g are real-valued. To prove Theorem 4.1,
we will show the variance of h along an orbit in S1 can be approximated by
the variance along an orbit in ∆.

By Sect. 3, it suffices to compute the variance of h relative to the roof
function

ρ(x) = −φ(x) = log | f ′(π(x))|.
Note that

∑n−1
0 ρ(σ ix) > 0 for some n > 0, since f is expanding; and

ρ = L( f, π∗m).
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Escape times. Since f |S1 is expanding, we can choose small annular neigh-
borhoods A and B of S1 ⊂ C such that

f : A → B

is a proper covering map of degree d > 1, A ⊂ B, and h(z) is Hölder
continuous on B. Under iteration, every point of A eventually lands in B−A.

Let Rn = 1 − exp(−nρ). Given x ∈ Σ, let Z(n, x) = Rnπ(x) ∈ ∆, and
let the escape time E(n, x) ≥ 0 be the smallest integer such that

f E(n,x)(Z(n, x)) �∈ A.

Theorem 4.2 The escape time satisfies E(n, x) = N(n, x) + O(1), where
N(n, x) is the stopping time for ρ.

Proof. Let E = E(n, x), let z = π(x) and let Z = Z(n, x). Since f E(Z) ∈
∆ − A, we have 1 − | f E(Z)| � 1. Applying the distortion theorems for
univalent functions to f −E , we also have

1 − | f E(Z)| � |( f E )′(Z)|(1 − |Z|) = |( f E )′(z)| exp(−nρ).

Taking logarithms, we obtain

log |( f E )′(z)| =
E−1
∑

0

log | f ′( f i(z))| =
E−1
∑

0

ρ(σ i x) = nρ + O(1),

which implies the Theorem. ��
Theorem 4.3 We have Vn(h ◦ π, x) = g(Z(n, x)) + O(1).

Proof. Continuing with the notation above, we have

Vn(h ◦ π, x) =
N(n,x)−1

∑

0

h( f i(z)) =
E−1
∑

0

h( f i(z)) + O(1)

since E = E(n, x) = N(n, x)+O(1). Since f is expanding, there is a λ > 1
such that any branch of f −i contracts by a factor of O(λ−i), and thus

| f i(z) − f i(Z)| = O(λi−E) (4.3)

because | f E(z) − f E(Z)| = O(1).
By assumption, the extension of h to ∆ defined by

h(z) = g(z) − g( f(z))

is Hölder continuous of some exponent α > 0. Thus the bound (4.3) allows
us to replace z ∈ S1 with Z ∈ ∆ at the cost of an exponentially small error,
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to obtain:
E−1
∑

i=0

h( f i(z)) =
E−1
∑

0

h( f i(Z)) + O(λα(i−E))

= O(1) +
E−1
∑

0

g( f i(Z)) − g( f i+1(Z))

= O(1) + g(Z) − g( f E(Z)).

Moreover g( f E(z)) = O(1) because f E(z) belongs to the compact set
∆ − A, and the theorem follows. ��
Proof of Theorem 4.1. Recall from Sect. 2 that there is a unique probability
measure µ on Σ such that

∫

Lφ(ψ) dµ = ∫

ψ dµ for all ψ ∈ Cα(Σ).
Since e−φ = | f ′(π(x))|, µ is simply Lebesgue measure on S1; that is,
π∗(µ) = |dz|/2π. By (2.2) we can write µ = e−ψm, where ψ ∈ Cα(Σ)
and

∫

e−ψ dm = 1.
By Theorem 3.3, the variance of h ◦ π satisfies

Var(h ◦ π, m) = lim
n→∞

〈

e−ψ, Vn(h ◦ π)2/n
〉 = lim

n→∞
1

n

∫

Σ

Vn(h ◦ π)2 dµ.

Using Theorem 4.3, we can replace Vn(h ◦ π) with g and move the integral
over to S1, to obtain

Var(h ◦ π, m) = lim
n→∞

1

n

∫

Σ

g(Z(n, x))2 dµ(x) = lim
n→∞

1

2πn

∫

S1
g(Rn z)2|dz|.

The last integral is over a circle of radius r = Rn satisfying | log(1 − r)| =
nρ = n

∫ −φ dm, and we obtain (4.2). ��
Families of rational maps. We now return to the setting of Theorem 1.7.
Let Ft(z) be a smooth family of expanding rational maps with F0(z) = f(z).
Assume there is a smooth family of conformal maps Ht : ∆ → ̂C such that
H0(z) = z and

Ft(Ht(z)) = Ht(F0(z)). (4.4)

Let v denote the holomorphic vector field

v(z) = Ḣ0(z) = dHt(z)/dt|t=0,

and let

h(z) = d

dt
log F ′

t (Ht(z))

∣

∣

∣

∣

t=0

= Ḟ ′
0(z) + F ′′

0 (z)v(z)

F ′
0(z)

(4.5)

where Ḟ ′
0 = dF ′

t /dt|t=0. Using the fact that Ht transports the critical points
of F0|∆ to those of Ft , one can check that (4.5) defines h(z) as a holomorphic
function on ∆.
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Theorem 4.4 The function h(z) has a continuous extension to ∆ which is
(1 − ε)-Hölder continuous for every ε > 0.

Proof. By the theory of holomorphic motions, we can extend v(z) to a qua-
siconformal vector field on the whole sphere. Such a vector field is (1 − ε)-
Hölder continuous for every ε > 0 (see e.g. [Mc5, Cor. A.12]). Since Ft(z)
is a smooth function of (t, z) near 0× S1, the desired extension of h is given
by (4.5). ��

Theorem 4.5 The function h(z) is the virtual coboundary of g(z) = −v′(z).

Proof. The functional equation (4.4) yields

F ′
t (Ht(z)) = H ′

t (z)
−1 H ′

t (F0(z))F ′
0(z)

upon differentiation with respect to z. Taking logs and differentiating with
respect to t, we obtain the coboundary equation

h(z) = d

dt
log F ′

t (Ht(z))

∣

∣

∣

∣

t=0

= −Ḣ ′
0(z) + Ḣ ′

0(F0(z)) = −v′(z) + v′( f(z)).

��

Proof of Theorems 1.3 and 1.7. Choose a Markov partition for F0 and let

πt : Σ → J(Ft)

be the corresponding symbolic encoding for points in the Julia set of Ft .
Then πt(x) = Ht(π0(x)), so φt(x) = − log |F ′

t (πt(x)| satisfies

φ̇0(x) = − Re h(π(x)).

Consequently φ̇0 is the virtual coboundary of Re v′(z). Combining The-
orems 2.6 and 4.1, we obtain

d2

dt2
H.dim(J(Ft))

∣

∣

∣

∣

t=0

= Var(φ̇0)
∫ −φ0 dm

= I0(Re v′(z)).

Since v′(z) is holomorphic, it satisfies I0(Re v′) = (1/2)I0(v
′), which yields

Theorem 1.7.
Theorem 1.3 follows similarly, by applying Theorem 4.1 to the ex-

panding conformal Markov map f : S1 → S1 associated to a cocompact
Fuchsian group. ��
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Question. Under what general circumstances does a smooth family of con-
formal maps Ht : ∆ → ̂C satisfy

d2

dt2
H.dim(Ht(S1)) = lim

r→1

1

4π| log(1 − r)|
∫

|z|=r

∣

∣Ḣ ′
0(z)

∣

∣

2 |dz|?

A survey of results on H.dim H(S1) for conformal maps can be found
in [Pom, Ch. 10].

5 Dimension of Julia sets

In this section we apply Theorem 1.7 to deduce Theorem 1.8, which states
that for small t ∈ R the family of monic, centered polynomials

Ft(z) = zd + t
(

b2zd−2 + b3zd−3 + · · · + bd
)

satisfies

H.dim J(Ft) = 1 + |t|2
4d2 log d

d
∑

k=2

k2|bk|2 + O(|t|3).

Similarly we obtain:

Theorem 5.1 The family of Blaschke products

ft(z) = zd + t
(

b2zd−2 + b3zd−3 + · · · + bd
)

1 + t
(

b2z2 + b3z3 + · · · + bdzd
)

satisfies

L( ft, mt) = log d + |t|2
d2

d
∑

k=2

k2|bk|2 + O(|t|3).

Here L( ft, mt) is the Lyapunov exponent of the measure of maximal
entropy.

Proof of Theorem 1.8. For t small, there is a smooth family of conformal
conjugacies Ht between F0 and Ft on their basins of infinity, which is
unique if we normalize so that H0(z) = z. The holomorphic vector field
V = dHt/dt then vanishes at infinity, and the functional equation Ht F0 =
Ft Ht implies that V = V(z)(d/dz) satisfies

V(zd) = dzd−1V(z) + (

b2zd−2 + b3zd−3 + · · · + bd
)

.
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It is readily verified that this equation has a unique holomorphic solution on
|z| > 1, namely

V(z) = − z

d

d
∑

k=2

∞
∑

n=0

bkz−kdn

dn

= − z

d

(

b2z−2 + · · · + bdz−d + b2z−2d

d
+ b3z−3d

d
+ · · ·

)

.

Changing variables by z 
→ 1/z, the vector field V on 1/∆ becomes the
vector field v = v(z)(d/dz) on ∆, where

v(z) = z

d

d
∑

k=2

∞
∑

n=0

bkzkdn

dn
·

By Theorem 1.7, we have

(d2/dt2) H.dim J(Ft)
∣

∣

t=0 = (1/2)I0(v
′(z)).

It is easy to see that

I0

(
∞

∑

n=0

zkdn
)

= lim
r→1

1

| log(1 − r)|
∞

∑

n=0

r2kdn = 1

log d
,

since the terms out to n ≈ | log(1 − r)|/ log d are all nearly one, and the
remaining terms are all nearly zero. Using orthogonality we obtain

I0(v
′(z)) = I0

(

d−1
∑

k

kbk

∑

n

zkdn
)

= 1

d2 log d

d
∑

k=2

k2|bk|2,

which gives the desired formula. ��
Proof of Theorem 5.1. Using the fact that ft(z) = Ft(z) + O(tzd+1), it is
easy to see that the family of polynomials obtained by gluing (1/∆, f0) to
(∆, ft) is tangent to the family Ft(z) at t = 0. Moreover the measure of
maximal entropy for f0(z) = zd is simply Lebesgue measure on the unit
circle, with entropy h( f0, m0) = log d. Thus H.dim(mt)L( ft, mt) = log d
as well, so Theorem 1.6 implies at t = 0 we have

d2

dt2
L( ft, mt) = −(log d)

d2

dt2
H.dim(mt) = 4(log d)

d2

dt2
H.dim(J(Ft)).

The last quantity is computed in Theorem 1.8. ��

Resultants and escape rates. An alternative proof of Theorem 5.1 can be
given using polynomial maps on C2 and the fact that Lebesgue measure on
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S1 is also the measure of maximal entropy for f(z) = zd. The algebra and
estimates needed are rather intricate, so we only outline the calculation.

Let F : C2 → C
2 be a homogeneous polynomial map of degree d,

covering a rational map f : P1 → P
1. Let Ci ∈ C2 be lifts of the (2d − 2)

critical points of f , normalized so that

| det(DF(z))| = d2
∏

|z ∧ Ci|, (5.1)

where |z ∧w| = |z1w2 − z2w1|. Let Res(F) ∈ C denote the resultant of the
polynomials F1 and F2 giving the coordinates of F, and define the escape
rate G : C2 − {0} → R by

G(z) = lim d−n log ‖Fn(z)‖ (5.2)

(using any norm on C2). Then by a result of DeMarco [D, Cor. 1.6], we
have:

Theorem 5.2 The Lyapunov exponent of f : P1 → P
1 with respect to its

measure of maximal entropy is given by

L( f, m) = log d +
∑

G(Ci) − 2

d
log | Res(F)|. (5.3)

Now let P be the polynomial

P(z) = zd + b2zd−2 + · · · + bd,

let P(z1, z2) = zd
2 P(z1/z2) be its homogenization, and let

Q(z) = zd P(1/z) = 1 + b2z2 + · · · + bdzd

be its reciprocal polynomial. Assume for simplicity that the coefficients bi
are real, and define

F(z1, z2) = (P(z1, z2), P(z2, z1)).

Then F covers the Blaschke product f(z) = P(z)/Q(z) corresponding
to P(z).

Our goal is to use (5.3) to compute L( f, m) to second order in the
coefficients bi . Thus we will assume the coefficients bi are small, and the
product of three or more coefficients is negligible.

Let ci ∈ C denote the (d − 1) critical points of f(z) in the unit disk ∆.
Since f(z) ≈ zd , the points ci are close to the origin. The remaining critical
points of f are given by 1/ci , so the vectors

{Ci} = {(c1, 1), (c2, 1), . . ., (cd−1, 1), (1, c1), (1, c2), . . ., (1, cd−1)}
in C2 are lifts of the 2d − 2 critical points of f on P1.
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Using the norm

‖(z1, z2)‖ = max(|z1|, |z2|),
(whose unit ball coincides with the region G < 0 for (zd, wd)), we will
approximate G(z) by setting n = 1 in (5.2). For this norm we have
‖F(ci, 1)‖ = |P(1, ci)| = |Q(ci)|, and thus

∑

G(Ci) ≈ 2

d
log

∏

|Q(ci)|.
The Ci’s we have chosen need not satisfy (5.1), so we must also compensate
by the ratio between | det(DF(1, 1))| and

d2
∏

|(1, 1) ∧ Ci| = d2
∏

|1 − ci |2.
The result is the formula

L( f, m) ≈ log d − 2

d
log | Res(F)| + 2

d
log

∏

|Q(ci)|
+ log | det(DF(1, 1))/d2| − 2 log

∏

|1 − ci |,
which is accurate to order two.

The matrix for Res(F) is a perturbation of the identity matrix, allowing
one to easily calculate

−2

d
log | Res(F)| ≈ (1/d)

d
∑

2

k|bk|2.

Observing that the points (ci)
d−1
1 are close to the zeros of P′(z), we also

have

log
∏

|Q(ci)| ≈
∑

R(ci) = Resz=0

(

R(z)P′′(z)
P′(z)

)

,

where R(z) = Q(z) − 1. Applying the residue calculus and combining
terms, we obtain

−2

d
log | Res(F)| + 2

d
log

∏

|Q(ci)| ≈ 2

d2

d
∑

2

k2|bk|2.

The calculation of
∏ |1 − ci | is more delicate, because approximating

(ci) by the zeros of P′(z) is not accurate enough. Instead we observe that
(ci) are the zeros of S(z) = Q(z)P′(z) − P′(z)Q(z) inside the unit circle,
and write S(z)/(dzd−1) = 1 + T(z) to obtain

log
∏

|1 − ci | ≈ Resz=0(log(1 − z)T ′(z)(1 − T(z))).
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The complicated resulting expression cancels nicely with det(DF(1, 1)),
yielding

log | det(DF(1, 1))/d2| − 2 log
∏

|1 − ci | ≈ − 1

d2

d
∑

2

k2|bk|2.

Collecting terms, we obtain

L( f, m) ≈ log d + 1

d2

d
∑

2

k2|bk|2

to order two, consistent with Theorem 5.1.

Notes and references. Related calculations for H.dim J(z2 + c) appear in
[Ru2], [Z] and [Mc7]. (Note that z2n

should be z2n+1
in Eq. (5) for a1(z)

on [Z, p. 80].)

6 Norms and forms on the disk

In this section we introduce a sequence of norms Ik( f ) that measure the
growth of a holomorphic function f(z) on the unit disk. The quantity I0( f )
introduced in Sect. 4 is included as a special case. We then establish:

Theorem 6.1 The deformation of X0 = ∆/Γ0 represented by the vector
field v on ∆ satisfies

d2

dt2
H.dim(Λ(Γt))

∣

∣

∣

∣

t=0

= I0(v
′)

2
= 4I4(v

′)
3

= ‖Ẋ0‖2
WP

3 area(X0)
·

This result, together with Theorem 2.7, completes the proof of The-
orem 1.1. We also discuss norms Jk( f ) for use with the Riemann surface
lamination ̂X.

Holomorphic forms on ∆. Let Ωk(∆) denote the space of (symmetric)
holomorphic k-forms α = α(z) dzk on the unit disk, k ≥ 0. We define an
operator

D : Ωk(∆) → Ωk+1(∆)

by Dα = α′(z) dzk+1.
Given α ∈ Ω j(∆) and β ∈ Ωk(∆), we measure the asymptotic growth

of rate of αβ by the pairing

〈α, β〉 j,k = lim
r→1

1

2π

∫

|z|=r
ρ− j−kz j zkαβ |dz|
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when j + k > 0, and by

〈α, β〉0,0 = lim
r→1

1

2π| log(1 − r)|
∫

|z|=r
αβ |dz|

when ( j, k) = (0, 0). Here ρ = 2|dz|/(1 − |z|2) denotes the hyperbolic
metric. These limits need not exist, but when they do, they obey the usual
properties of inner products. Note that we can also write

〈α, β〉0,0 = lim
r→1

dρ(0, S1(r))−1 1

2π

∫

|z|=r
αβ |dz|,

so when this limit exists, the average of αβ over S1(r) grows linearly with
respect to the hyperbolic distance dρ(0, S1(r)).

Power series. To make these pairings more concrete, let f(z) = ∑∞
0 anzn

be a holomorphic function on the unit disk, and define

I j+k( f ) = 〈D j f, Dk f 〉 j,k.

It is easy to see that this definition depends only on the sum � = j + k, and
satisfies

I�( f ) = lim
r→1

(1 − r)�

∞
∑

0

n�|an|2r2n

when � > 0, and

I0( f ) = lim
r→1

1

| log(1 − r)|
∞

∑

0

|an|2r2n,

consistent with (4.1).

Theorem 6.2 If Ik( f ) exists, then so does I j( f ) for all j < k, and

Ik( f ) = (k − 1)!
2k

I0( f ).

Proof. If Ik( f ) exists, k > 0, then as r → 1 we have
∞

∑

n=0

nk|an|2r2n ∼ Ik( f )

(1 − r)k
;

multiplying by 2 and integrating with respect to r, we obtain
∞

∑

n=0

nk−1|an|2r2n ∼ 2Ik( f )

∫ r

0

ds

(1 − s)k
.

For k = 1 the integral on the left grows like | log(1 − r)| and we obtain
2I0( f ) = I1( f ); while for k > 1 it grows like 1/((k − 1)(1 − r)k−1), which
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shows that Ik−1( f ) exists and agrees with 2Ik( f )/(k −1). By induction, we
obtain I0( f ) = 2k Ik( f )/(k − 1)!. ��
Proof of Theorem 6.1. The first equality is a restatement of Theorem 1.3,
and the second is immediate from Theorem 6.2.

For the final equality, let π : ∆ → X0 = ∆/Γ0 be the natural covering
map, and recall that ˜φ = −2v′′′(z)dz2 ∈ Ω2(∆) satisfies ˜φ = π∗(φ) where

‖Ẋ0‖2
WP

area(X0)
= 1

area(X0)

∫

X0

ρ−4|φ|2 ρ2(z)|dz|2.

By mixing of the geodesic flow, the projected circle π(S1(r)) becomes
equidistributed on X0 as r → 1 (see e.g. [EsM]). Thus the average of
|˜φ|2/ρ4 over |z| = r converges to the average of |φ|2/ρ4 over X0, and we
obtain

‖Ẋ0‖2
WP

area(X0)
= 〈˜φ, ˜φ〉2,2 = 4〈D2(v′), D2(v′)〉2,2 = 4I4(v

′).
��

Césaro norms. A central difference between the geodesic flows on T1 X
and ̂X is that, while both are ergodic, the geodesic flow on the Riemann
surface lamination ̂X need not be mixing (Sect. 10). Because of this, we
will need to replace the norms Ik( f ) with norms Jk( f ) that involve iterated
averages. These are defined for f(z) = ∑

anzn by J0( f ) = I0( f ) and

Jk( f ) = lim
r→1

1

| log(1 − r)|
∫ r

0
(1 − s)k−1

∞
∑

n=0

nk|an|2s2n ds

for k > 0. It is easy to see that

J2k( f ) = lim
r→1

1

2π| log(1 − r)|
∫ r

0

ds

1 − s

∫

|z|=s
ρ−2k|Dk f |2 |dz| (6.1)

for k > 0. Thus J2k( f ) is obtained by first averaging S1(s), then averaging
over s ∈ [0, r] ⊂ ∆ with respect to the hyperbolic metric, and finally taking
the limit as r → 1.

Theorem 6.3 If Jk( f ) exists for some k ≥ 0 and sup ρ−1|Df| < ∞, then
Jk( f ) exists for all k and satisfies

Jk( f ) = (k − 1)!
2k

J0( f ).
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Proof. It suffices to show that Jk+1( f ) = (k/2)Jk( f ) whenever one or the
other exists. Note that Jk( f ) = limr→1 Jk( f, r) where

J0( f, r) = 1

| log(1 − r)|
∑

|an|2r2n

and

Jk( f, r) = 1

| log(1 − r)|
∞

∑

n=0

|an|2nk
∫ r

0
(1 − s)k−1s2n ds

for k > 0; thus it suffices to show

Jk+1( f, r) ∼ (k/2)Jk( f, r) (6.2)

as r → 1, provided one side or the other has a nonzero limit.
The proof of (6.2) is by induction on k. For k = 0 we have

J1( f, r) = 1

| log(1 − r)|
∞

∑

n=0

|an|2 nr2n+1

2n + 1
∼ 1

2
J0( f, r),

so (6.2) certainly holds. For the inductive step we integrate by parts to obtain

Jk+1( f, r) = Bk( f, r) + Ck( f, r),

where

Bk( f, r) = (1 − r)k

| log(1 − r)|
∞

∑

n=0

nk+1|an|2r2n+1

2n + 1
∼ (1 − r)k

2| log(1 − r)|
∑

nk|an|2r2n

and

Ck( f, r) = 1

| log(1 − r)|
∫ r

0
k(1 − s)k−1 nk+1|an|2s2n+1

2n + 1
ds ∼ k

2
Jk( f, r).

Now the assumption sup ρ−1|Df| < ∞ implies (by Cauchy’s integral for-
mula) that sup ρ−2 j |D j f |2 < ∞ for all j > 0, and hence

(1 − r)�

∞
∑

n=0

n�|an|2r2n �
∫

|z|=r
ρ−2 j | f ( j)(z)|2 |dz| = O(1)

when � = 2 j is even. Integrating with respect to r shows the same O(1)
bound holds when � > 0 is odd. The case � = k implies that Bk( f, r) → 0
as r → 1, and thus

Jk+1( f, r) ∼ (k/2)Jk( f, r)

as desired. ��
Example. The function f(z) = ∑∞

0 z2n
satisfies I0( f ) = 4J2( f ) = log 2,

but (1 − r)2 ∑

n2|an|2r2n oscillates as r → 1, so I2( f ) does not exist. This
function f(z) arises in the study H.dim(J(z2 + c)) for small c (Sect. 5).
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7 The foliated unit tangent bundle

In this section we develop the theory of holomorphic forms on the foliated
unit tangent bundle T1 X. In particular we introduce an inner product on
forms and a differential operator D, and establish:

Theorem 7.1 Any holomorphic 1-form α along the leaves of F satisfies

2〈α, α〉 = 22k−1

(2k − 1)! 〈Dk−1α, Dk−1α〉

for all k > 0.

Parallel results for the Riemann surface lamination ̂X will be presented
in Sect. 10.

The unit disk. Let ∆ be the unit disk in the hyperbolic metric. By iden-
tifying each unit tangent vector ξ ∈ Tz∆ with the endpoint p ∈ S1 of the
geodesic ray in the direction ξ , we obtain an isomorphism

T1∆ ∼= ∆ × S1.

We denote the geodesic flow by gs : T1∆ → T1∆.
There is a natural foliation ˜F of T1∆ whose leaves Lp

∼= ∆×{p} consist
of all the geodesics converging to a given point p ∈ S1. Each leaf admits
a natural affine coordinate

z p : Lp → H = {z : Im(z) > 0},
unique up to automorphisms ofH fixing ∞, such that z p sends the geodesics
in Lp to vertical lines in H. In terms of z p = x + iy, the geodesic flow on
Lp is given by gs(x + iy) = x + ies y.

These affine coordinates can be assembled to obtain an isomorphism

Z : T1∆ ∼= H× S1

given by

Z(z, p) =
(

i

(

p + z

p − z

)

, p

)

. (7.1)

Here we have normalized so that the unit tangent circle over z = 0 maps to
{i} × S1.

Passage to the quotient surface. Now let X = ∆/G be a compact quotient
of the disk. Then ˜F descends to a foliation F of T1 X inheriting the structure
above. In particular, in local affine coordinates z = x + iy on any leaf
of F , we have the hyperbolic metric ρ = |dz|/y and the hyperbolic area
element dA = dx dy/y2. Since X is compact, T1 X carries a unique smooth
probability measure dξ invariant under the geodesic flow.
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The harmonic current. Next we describe a natural harmonic current T
adapted to F . This current takes the role of the fundamental class of F .

Choose local coordinates (z, p) on T1 X such that z is affine along each
leaf of F and p ranges in a transversal to F . Then the invariant 3-form for
the geodesic flow is given locally by

dξ = dx dy

y
dτ(p) = dx dy

y2
y dτ(p),

where dτ is a 1-form satisfying TF = Ker dτ . Since the hyperbolic area
element dx dy/y2 is globally well-defined, so is the 1-form

T = ydτ(p).

Note that

dT = dy

y
∧ T and dξ = dx dy

y2
∧ T.

Geometrically, T represents the (non-closed) current of integration along
the leaves of F given locally by y[Lp]dτ(p); in other words, a compactly
supported 2-form β satisfies

∫

p

(

∫

[Lp]
yβ

)

dτ(p) =
∫

β ∧ T.

The current T is harmonic since y is a harmonic function on each complex
leaf Lp. Harmonic current arise frequently for foliations like F which admit
no transverse invariant measure; see e.g. [Ga], [FS].

Holomorphic forms on F . A (symmetric) holomorphic k-form on F is
a continuous section of the bundle (T ∗F )k → T1 X given locally in affine
coordinates by

α = α(z, p) dzk,

where α(z, p) is holomorphic in z. We denote the space of all such forms
by Ωk(F ).

Example. Any holomorphic k-form β(z)dzk on X pulls back, under the
projection T1 X → X, to a holomorphic k-form on F .

Note that every α ∈ Ωk(F ) is bounded in the hyperbolic metric, since
ρ−k|α| is continuous and T1 X is compact. In particular, we have

|α(z)| = O(y−k) (7.2)

in affine coordinates on any leaf of F .
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Differentiation of k-forms. Let D : Ωk(F ) → Ωk+1(F ) denote the natural
differential operator given in affine coordinates by

Dα = (dα/dz) dzk+1.

(This operator is well-defined since any two affine coordinates are related by
z1 = az2 + b). We define the inner product between a j-form and a k-form
by

〈α, β〉 j,k =
∫

T1 X
y j+kα(z)β(z) dξ,

so in particular

〈α, α〉k,k =
∫

T1 X
y2k|α(z)|2 dξ

gives the average value of ρ−2k|α|2. We suppress the subscripts ( j, k) when
they are clear from the context.

Theorem 7.2 The holomorphic forms on F satisfy

〈Dα, β〉 j+1,k = i

2
( j + k)〈α, β〉 j,k. (7.3)

Proof. Let � = j + k, and consider the (0, 1)-form along the leaves of F
given by

γ = y�−1α(z)β(z) dz.

By Stokes’ theorem we have
∫

γ ∧ dT = ∫

dγ ∧ T . Since dT = (dy/y)T ,
we have

∫

γ ∧ dT =
∫

y�−2α(z)β(z) dz dy ∧ T

=
∫

y�α(z)β(z)
dx dy

y2
∧ T = 〈α, β〉 j,k,

while differentiation of γ yields
∫

dγ ∧ T =
∫

((� − 1)y�−2α(z)β(z)dy dz + y�−1α′(z)β(z) dz dz) ∧ T

= (1 − �)〈α, β〉 j,k − 2i〈Dα, β〉 j+1,k.

Equating these expressions gives the theorem. ��
Theorem 7.3 The map D : Ωk(F ) → Ωk+1(F ) is an isomorphism for all
k > 0, and satisfies

〈Dα, Dα〉 = 2k(2k + 1)

4
〈α, α〉.
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Proof. First note that if β(z) is a holomorphic function on H satisfying

|β(z)| = O(y−k−1), (7.4)

then there is a unique holomorphic function α on H satisfying α′(z) = β(z)
and |α(z)| = O(y−k) (as required by (7.2)). Indeed, we can simply take
α(z) = − ∫ i∞

z β(w)dw, using the fact that
∫ ∞

1 dy/yk+1 < ∞ (since k > 0).
Next observe that any β ∈ Ωk+1(F ) satisfies (7.4) in affine coordinates,

since it is bounded in the hyperbolic metric. Thus β has a canonical primitive
on each leaf of F , and these fit together to give the unique form α ∈ Ωk(F )
satisfying Dα = β. Therefore D is an isomorphism, and (7.3) implies

〈Dα, Dα〉 = i

2
(2k + 1)〈α, Dα〉 = i

2
(2k + 1)〈Dα, α〉 = 2k(2k + 1)

4
〈α, α〉.

��
Corollary 7.4 The space Ωk(F ) is infinite-dimensional for all k > 0.

Proof. The dimension of Ωk(F ) is independent of k and bounded below
by dim Ωk(X), which tends to infinity as k → ∞ by Riemann–Roch. ��
Proof of Theorem 7.1. Apply induction, using Theorem 7.3. ��

8 Growth along leaves

In this section we study holomorphic forms on the foliated unit tangent
bundle by passing to the universal cover ˜L ∼= ∆ of an individual leaf. In
particular, we use the relation I0( f ) = 4I2( f ) on the unit disk to establish:

Theorem 8.1 If α ∈ Ω1(F ) is Hölder continuous, then we have

Var(Re α/ρ) = 2〈α, α〉.

We also derive consequences for the power series of automorphic forms.

Uniformization of leaves. We begin by relating the L2-norm of a holo-
morphic form α ∈ Ωk(F ) to its growth along leaves. To study this growth,
choose a holomorphic covering map

π : ∆ → L ⊂ T1 X

from the unit disk to a leaf L of F .

Theorem 8.2 Let f(z) be a holomorphic function on the unit disk such that
f (k)(z) dzk = π∗(α). Then I�( f ) exists for all �, and we have

I2k( f ) =
∫

T1 X
ρ−2k|α|2 dξ.
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Proof. Note there is a p ∈ S1 such that the map z p : ∆ → H given by
z p = i(p + z)/(p − z) corresponds to an affine coordinate on L (cf. (7.1)).

By mixing of the geodesic flow, the normal vectors of the projection of
S1(r) to X become uniformly distributed in T1 X as r → 1 [EsM]. On the
other hand, most hyperbolic geodesics from p to S1(r) are nearly normal
to the circle. Thus π(S1(r)) also becomes equidistributed in T1 X, which
implies

∫

T1 X
ρ−2k|α|2 dξ = lim

r→1

1

2π

∫

|z|=r
ρ−2k| f (k)(z)|2 |dz| = I2k( f ).

To see that I2k+2( f ) also exists, consider a solution to g(k+1)(z) =
π∗(Dα). Then as we have just shown, I2k+2(g) exists. On the other hand,
we have

π∗(Dα) = dzk
pd

(

π∗(α)/dzk
p

) =
(

f (k+1)(z) + 2k
f (k)(z)

z − p

)

dzk+1

= Dk+1 f + 2kωDk f,

where ω = dz/(z − p). Since α is bounded, so is ρ−2k| f (k)|2. Consequently

〈ωDk f, ωDk f 〉 = O
(

lim
r→1

∫

|z|=r
ρ−2(z)|z − p|−2 |dz|

)

= 0,

since (1−|z|)/(|z−p|) → 0 a.e. as |z| → 1. It follows that 〈Dk+1g, Dk+1g〉 =
〈Dk+1 f, Dk+1 f 〉, and hence I2k+2( f ) also exists.

By similar reasoning, I�( f ) exists for all �. ��
Corollary 8.3 We have I2 j+2k( f ) = 〈D jα, D jα〉 for all j ≥ 0.

Proof. We have just seen this equality for j = 0, and by Theorems 6.2
and 7.3 both sides multiply by (2k + 2 j)(2k + 2 j + 1)/4 when we replace j
by j + 1. ��

Variance under the geodesic flow. We now turn to the proof of The-
orem 8.1. Recall that I0( f ) = limr→1 I0( f, r) where

I0( f, r) = 1

2π| log(1 − r)|
∫

|z|=r
| f(z)|2 |dz| = 1

| log(1 − r)|
∞

∑

n=0

|an|2r2n.

We begin by showing there is some uniformity in the calculation of I0( f ).

Theorem 8.4 If f(0) = 0 and 1/2 < r < 1, then we have

I0( f, r) = O
(

sup
∆

ρ−1|Df|).
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Proof. If M = sup∆ ρ−1|Df| is finite, then | f ′(z)|2 = O(M(1 − r)−2) on
the circle |z| = r, and thus we have

1

2π

∫

|z|=r
|z f ′(z)|2 |dz| =

∞
∑

n=0

|an|2n2r2n = O(M(1 − r)−2).

Integrating twice gives
∑ |an|2r2n = O(M| log(1 − r)|). ��

Lifts of 1-forms. Now let α = α(z) dz ∈ Ω1(F ) be a holomorphic 1-form,
and let h : T1 X → R denote the function given by

h = Re α/ρ = Re α(z) · Im(z)

in local affine coordinates on F . We then have

Var(h) = 1

area(X)
lim

S→∞

∫

X
Varx(h, S)dA, (8.1)

where dA is hyperbolic area on X, where

Varx(h, S) = 1

2πS

∫ 2π

0

∣

∣

∣

∫ S

0
h(gsξ(x, θ)) ds

∣

∣

∣

2
dθ,

and where ξ(x, θ) ∈ T1 X parameterizes the unit tangent circle over x ∈ X.
To study Varx(h, S) more explicitly, let us normalize the covering map

∆ → X = ∆/G so that 0 ∈ ∆ lies over x ∈ X. For each p ∈ S1 let

πp : ∆ → T1 X

be the natural map sending ∆ to the leaf of F consisting of geodesics that
converge to p in forward time. Let αp = π∗

p(α), and let fp : ∆ → C be the
unique holomorphic function satisfying fp(0) = 0 and αp = dfp.

Choose r = r(S) so |z| = r is a circle of hyperbolic radius S. Then for
q = eiθ we have

∫ S

0
h(gsξ(x, θ)) ds =

∫ rq

0

Re αq

ρ
ρ = Re fq(rq).

Consequently we have

Varx(Re α/ρ, S) = 1

2πS

∫

S1
| Re fq(rq)|2 |dq|. (8.2)

Similarly, we can write

1

2
I0( fp, r) = 1

2π| log(1 − r)|
∫

S1
| Re fp(rq)|2 |dq| (8.3)
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(using the fact that (1/2)
∫ | f |2 = ∫ | Re f |2). To compare these expres-

sions, we observe:

Theorem 8.5 If α is Hölder continuous, then we have

| fp(rq) + fq(rq)| ≤ M(1 + | log |p − q||)
for all p �= q ∈ S1 and z ∈ ∆, where M is independent of x.

Fig. 1 Convergent geodesics

Proof. Let [a, b] denote the hyperbolic geodesic between two points in ∆,
and let θ(z) denote the angle between [z, 0] and [z, p] for z = rq ∈ [0, q].
Assume α is Hölder continuous of exponent δ. Recalling that αp and αq are
the values of α along geodesics tending to p and q respectively, we find

ρ−1|αp + αq|(z) = O(|θ(z)δ|).
(The + sign comes from the fact that the geodesics [z, p] and [z, q] make
an angle of π − θ(z).)

It is easy to see that θ(z) → 0 exponentially fast with respect to arclength
on [0, q], and indeed θ(z) = O(d(z, [p, q])) where d(·) is the hyperbolic
metric. Integrating along [0, z], we obtain

| fp(rq) + fq(rq)| ≤ O(d(0, [p, q])) = O(1 + | log |p − q||). ��
Theorem 8.6 If α is Hölder continuous then Varx(Re α/ρ, S) is bounded
uniformly in x, and we have

lim
S→∞

Varx(Re α/ρ, S) = 2〈α, α〉
for all x ∈ X.

Proof. Fix any p ∈ S1. In light of the preceding theorem, (8.2) and (8.3)
imply

Varx(Re α/ρ, S) = 1

2
I0( f, r) + O(1/S). (8.4)



410 C.T. McMullen

Here we have used the elementary fact that S = d(0, r) = | log(1−r)|+O(1)
and that

∫

S1(1 + | log |p − q||)2 |dq| = O(1). Since

sup
∆

ρ−1|Dfp| = sup
∆

ρ−1|αp| = sup
X

ρ−1|α| < ∞,

Theorem 8.4 provides a bound for I0( fp, r) depending only on α. Con-
sequently Varx(Re α/ρ, S) also has such a bound. Finally (8.4) implies

lim
S→∞

Varx(Re α/ρ, S) = 1

2
lim
r→1

I0( fp, r) = 1

2
I0( fp),

and (1/2)I0( fp) = 2I2( fp) = 2〈α, α〉 by Theorems 6.2 and 8.2. ��
Proof of Theorem 8.1. Since Varx(Re α/ρ, S) is bounded, by the dominated
convergence theorem we can interchange limits in (8.1) to obtain

Var(Re α/ρ) = 1

area(X)

∫

X
lim

S→∞ Varx(Re α/ρ, S)dA = 2〈α, α〉.
��

Remark (Rankin–Selberg). For the special case of forms coming from the
inclusion Ωk(X) ↪→ Ωk(F ), Theorems 6.2 and 8.2 yield:

Corollary 8.7 Let α(z) = ∑

anzn dzk be an automorphic form for a co-
compact Fuchsian group G ⊂ Aut(∆). Then the limits

A� = lim
r→1

(1 − r)�

∞
∑

1

n�−2k|an|2r2n

exist for all � > 0, and satisfy A�+1 = (�/2)A�.

One can compare this corollary to a classical result of Rankin and
Selberg [Sel, (2.16)], which states that any cusp form

α = α(z) dzk =
∞

∑

n=0

ane2πiz dzk

for a lattice G ⊂ Aut(H) containing g(z) = z + 1 satisfies

∑

n≤N

|an|2
n2k−1

= AN + o(N) (8.5)

for some A ∈ R. (It is not required that G is arithmetic.) Wolpert showed
that (8.5) also holds for the power series α = ∑

anzn dzk of an automorphic
form for a cocompact Fuchsian group G ⊂ Aut(∆); the equivalent statement
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∑

n≤N |an|2/n ∼ AN2k−1 appears in [Wol1, Thm. 3]. This result implies
Corollary 8.7 by summation by parts.

9 Deformations of Fuchsian groups

In this section we show that the derivatives v(k)(z) dz of a deformation
of a Fuchsian group G determine holomorphic forms on the foliated unit
tangent bundle T1 X, X = ∆/G. We then prove the formulas for the Weil–
Petersson metric stated as Theorems 1.5 and 1.4 in the introduction.

Forms from vector fields. Let v be a holomorphic vector field on the unit
disk, representing a deformation of G as in the introduction. Then the
quadratic differential v′′′(z) dz2 on the disk descends to give a form in
Ω2(X) ↪→ Ω2(F ), which we also denote by v′′′. Let v′′ ∈ Ω1(F ) be the
unique solution to Dv′′ = v′′′ guaranteed by Theorem 7.3, and let v(k+1) =
Dk−1v′′ ∈ Ωk+1(F ). Then Theorems 7.1 and 8.1 immediately imply:

Theorem 9.1 For any k > 0, the vector field v satisfies

22k−1

(2k − 1)! 〈v
(k+1), v(k+1)〉 = Var(Re v′′/ρ).

Proof of Theorem 1.5. Since µ = ρ−2 φ = −2v′′′, we have

‖Ẋ0‖2
WP

area(X0)
= ‖µ‖2

WP

area(X0)
= 4〈v′′′, v′′′〉.

The preceding result gives 2〈v′′, v′′〉 = (4/3)〈v′′′, v′′′〉 = Var(Re v′′/ρ), and
the equation

1

3

‖Ẋ0‖2
WP

area(X0)
= 2

∫

T1 X0

ρ−2|v′′|2 dξ = Var(Re v′′/ρ) (9.1)

stated as Theorem 1.5 then follows. ��
Proof of Theorem 1.4. By Theorem 8.2, Ik(v

′) exists for all k > 0. Since
˜φ(z) = ∑

anzn = −2v′′′(z), we have Ik(
∑

anzn/n2) = 4Ik(v
′). Thus

Theorems 6.1 and 6.2 yield

1

3

‖Ẋ0‖2
WP

area(X0)
= I0(v

′)
2

= 1

2

2k Ik(v
′)

(k − 1)! = 1

8

2k Ik
( ∑

anzn/n2
)

(k − 1)!
= 1

8

2k

(k − 1)! lim
r→1

(1 − r)k
∞

∑

1

nk−4|an|2r2n,

as stated in Theorem 1.4. ��
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Remark (Unitary representations). One can regard Theorem 9.1 as an
instance (for k = 1) of the general principle that any two inner prod-
ucts on Ωk(X) constructed naturally from hyperbolic geometry must be
proportional. To justify this principle, recall that Ωk(X) is associated to
the irreducible discrete-series representation V2k of SL2(R) (see e.g. [Kn,
Prop. 2.7]); by Schur’s lemma, any two invariant inner products on V2k are
proportional, so the same is true of the induced inner products on Ωk(X).

10 The Riemann surface lamination

In this section we recall the Riemann surface lamination ̂X associated to
a Blaschke product f : ∆ → ∆. We define the geodesic flow on ̂X, and
prove it is ergodic (but generally not mixing). We then develop the theory
of holomorphic forms on ̂X , parallel to the theory of holomorphic forms on
the foliated unit tangent bundle T1 X. In particular we establish:

Theorem 10.1 Any holomorphic 1-form α along the leaves of ̂X satisfies

2〈α, α〉 = 22k−1

(2k − 1)! 〈Dk−1α, Dk−1α〉

for all k > 0.

We also show Var(Re α/ρ) = 2〈α, α〉 for suitable α ∈ Ω1(̂X).

The solenoid. Let f : ̂C → ̂C be an expanding rational map of degree d
with J( f ) = S1 and f(∆) = ∆. The associated solenoid is the space

̂S 1 = lim←−( f : S1 → S1) = {

(ui) ∈ (S1)Z : f(ui) = ui+1
}

.

A point in ̂S 1 is given by a point u0 ∈ S1 together with a consistent choice
of preimages u−n ∈ f −n(u0).

Each connected component or leaf of the solenoid has a natural affine
coordinate chart x : L ∼= R, well-defined up to x 
→ ax + b, inherited from
the smooth structure on S1. Topologically we have

̂S 1 ∼= (Zd ×R)/Z,

where Zd = lim←−Z/dn is the group of dyadic integers and Z ⊂ Zd × R is
embedded diagonally.

The Riemann surface lamination. We can also form the space of back-
wards orbits of f on the unit disk,

̂∆ = lim←−( f : ∆ → ∆)

= {

(zi) ∈ ∆Z : f(zi) = zi+1 and |zi| → 1 as i → ∞}

.
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(The condition |zi| → 1 excludes the orbit (. . ., p, p, p, . . .), where p is
the attracting fixed point of f |∆.) The expanding property of f |S1 implies
that every leaf L of ̂∆ has a natural affine coordinate chart z : L ∼= H,
well-defined up to z 
→ az + b.

The action of f determines a homeomorphism ̂f on ̂S 1 ∪ ̂∆, given by

̂f ((zi)) = ( f(zi)) = (zi+1).

The map ̂f |̂∆ is properly discontinuous, yielding as quotient space the
Riemann surface lamination

̂X = ̂∆/〈̂f 〉
associated to f . See [Sul3], [MeSt, Ch. VI.6] for more details.

Geodesic flow. The hyperbolic metric ρ = |dz|/y is well-defined in affine
coordinates z = x + iy along each leaf of ̂∆ and ̂X, and varies continuously
in the transverse direction. The geodesic flow gs : ̂∆ → ̂∆, given by

gs(x + iy) = x + ies y

in affine coordinates, is also transversally continuous. It commutes with ̂f
and hence descends to a flow on ̂X.

To see this flow more readily, we observe there is an isomorphism

E : ̂S 1 × R+ ∼= ̂∆

given by the exponential map

E((ui), t) = (zi) = (

lim
n→∞ f n(ui−n + vi−n)

)

, (10.1)

where v0 = −tu0 = ( f n−i)′(ui−n)vi−n for n ≥ i. The expansion of f |S1

yields the useful estimate

z0 = (1 − t)u0 + O(t2). (10.2)

In exponential coordinates, the geodesic flow and the action of ̂f take the
simple form

gs((ui), t) = ((ui), est)

and

̂f ((ui), t) = (

(ui+1),
∣

∣ f ′(u0)
∣

∣t
)

.

This shows:

Theorem 10.2 The geodesic flow on ̂X is isomorphic to the suspension of
̂f : ̂S 1 → ̂S 1 under the roof function r((ui)) = log | f ′(u0)|.
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Ergodicity. Let m denote the unique absolutely continuous f -invariant
probability measure on S1. (If we normalize so that f(0) = 0, then m =
|dz|/2π; cf. [Mar].) The corresponding ̂f -invariant probability measure m̂
on ̂S 1 is characterized by the property that it pushes forward to m under
each coordinate function zi : ̂S 1 → S1.

Since m is a continuous multiple of |dz|, m̂ conditions to a constant
multiple of dx in affine coordinates on each leaf of ̂S 1. Thus we can locally
write

m̂ = dx dτ, (10.3)

where dτ is a measure on the transverse Cantor set of ̂S 1 and x is affine on
each leaf.

From m̂ we obtain an invariant measure dξ for the geodesic flow on ̂X,
given upstairs on ̂∆ ∼= ̂S 1 × R+ by

dξ = m̂ × (dy/y)

L( f, m)
·

The denominator is chosen so that
∫

̂X dξ = 1.

Theorem 10.3 The geodesic flow on (̂X, dξ) is ergodic.

Proof. Since f |(S1, m) is ergodic, so is ̂f |(̂S 1, m̂) and its suspension. ��

Failure of mixing. The geodesic flow on ̂X need not be mixing; for example,
when f(z) = zd, the flow factors over a rotation of the circle because the
roof function log | f ′(u0)| = log d is constant. See [Ru3] and [Po] for more
on the behavior of mixing under suspension.

The harmonic current. We now define a harmonic current T on ̂X that
plays the role of the fundamental class of ̂X (although it is not closed).

By (10.3) the invariant measure for the geodesic flow can be written
locally as

dξ = dx dy

y
dτ = dA ∧ T,

where z = x + iy is an affine coordinate on each leaf, dA = dx dy/y2 is the
hyperbolic area form, dτ is a measure on the transverse Cantor set and

T = ydτ.

The current T pairs naturally with a continuous 2-form α along the leaves
of ̂X to give

∫

̂X
α ∧ T =

∫

̂X
(α/dA) dξ.
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Now let γ be a transversally continuous smooth 1-form on ̂X . Stokes’
theorem implies that

∫

U dγdτ = 0 if γ is supported in a coordinate chart U .
Using a partition of unity, we obtain

∫

̂X
(dγ) ∧ T =

∫

̂X
γ ∧ (dy/y) ∧ T

for any γ , and hence formally

dT = (dy/y) ∧ T. (10.4)

Holomorphic forms on ̂X. Let T ∗
̂X → ̂X denote the complex cotangent

bundle determined by the complex structure along the leaves of ̂X. A holo-
morphic k-form on ̂X is a continuous section α : ̂X → (T ∗

̂X)k that is
holomorphic along leaves. We denote the space of all such forms by Ωk(̂X).
Since ̂X is compact, every α ∈ Ωk(̂X) satisfies

sup
̂X

ρ−k|α| < ∞.

We define the differential operator D : Ωk(̂X) → Ωk+1(̂X) in affine
coordinates by

Dα = (dα/dz) dzk+1,

and the inner product between a j-form and a k-form by

〈α, β〉 j,k =
∫

̂X
y j+kα(z)β(z) dξ

where z = x + iy. The proofs in Sect. 7 for T1 X then carry over to yield the
following corresponding results for ̂X.

Theorem 10.4 The holomorphic forms on ̂X satisfy

〈Dα, β〉 j+1,k = i

2
( j + k)〈α, β〉 j,k.

Theorem 10.5 The map D : Ωk(̂X) → Ωk+1(̂X) is an isomorphism for all
k > 0, and satisfies

〈Dα, Dα〉 = 2k(2k + 1)

4
〈α, α〉.

It is known that Ωk(̂X) is infinite-dimensional when k = 2 [GS2, §7],
and thus the same is true for all k > 0.
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Proof of Theorem 10.1. This follows by induction from Theorem 10.5. ��
Almost invariant functions. A continuous function h : ∆ → C is almost
invariant under f if

lim
r→1

sup {|h( f i(z)) − h(z)| : | f i(z)| > r} = 0. (10.5)

When this holds, h determines a continuous function̂h : ̂∆ → C by

̂h((zi)) = lim
i→∞ h(z−i).

An almost invariant function behaves like the lift of a continuous function
on a compact quotient of ∆; in particular h is bounded and uniformly
continuous in the hyperbolic metric on ∆.

Theorem 10.6 If h : ∆ → C is almost invariant under f , then we have

lim
r→1

1

| log(1 − r)|
∫ r

0

h(sz)ds

1 − s
=

∫

̂X

̂h dξ

for almost every z ∈ S1.

Proof. Ergodicity of the geodesic flow implies

lim
T→0

1

| log T |
∫ 1

T

̂h(E((ui), t))
dt

t
=

∫

̂X

̂h dξ

for almost every (ui) ∈ ̂S 1. Let (zi(t)) = E((ui), t). Then as t → 0, we
have |z0(t)| → 1 and thus

|̂h((ui), t) − h(z0(t))| → 0

by (10.5), and

|h(z0(t)) − h((1 − t)u0)| → 0

by uniform continuity of h in the hyperbolic metric and (10.2). Consequently
we have

∫

̂X

̂h dξ = lim
T→0

1

| log T |
∫ 1

T
h((1 − t)u0)

dt

t

for almost every (ui) ∈ ̂S 1, or equivalently for almost every u0 ∈ S1

(since m is absolutely continuous). The proof is completed by the change
of variables (1 − t)u0 = sz and T = 1 − r. ��
Almost invariant forms. A holomorphic form α ∈ Ωk(∆) is almost in-
variant under f if

lim
r→1

sup {ρ−k|( f i)∗α − α|(z) : | f i(z)| > r} = 0.
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In this case we can use the coordinate functions zi : ̂∆ → ∆ to define an
̂f -invariant form α̂ ∈ Ω(̂∆) by

α̂ = lim
i→∞(z−i)

∗α.

Theorem 10.7 Let g(z) be a holomorphic function on the disk such that
α = g(k)(z) dzk is almost invariant. Then we have

〈̂α, α̂〉 = J2k(g).

Proof. Since the hyperbolic metric on the disk is almost invariant, so is the
function

h(z) = ρ−2k|α|2 = ρ−2k(z)| f k(z)|2,
and we have ̂h = ρ−2k |̂α|2, so

∫

̂X

̂h dξ = 〈̂α, α̂〉.

By Theorem 10.6, we also have

hr(z) = 1

| log(1 − r)|
∫ r

0

ds

1 − s
h(sz) ds → 〈̂α, α̂〉

as r → 1 for almost every z ∈ S1. Since h is bounded, so is hr , and thus
dominated convergence implies

lim
r→1

∫

S1
hr(z) |dz| = 〈̂α, α̂〉.

Reversing the order of integration over z and r, we obtain

〈̂α, α̂〉 = lim
r→1

1

2π| log(1 − r)|
∫ r

0

ds

1 − s

∫

|z|=s
ρ−2k|g(k)(z)| |dz| = J2k(g).

��

Almost invariance with Hölder bounds. Given δ > 0, we say a continuous
function h : ∆ → R is δ-almost invariant if

sup
|z|=r

|h( f(z)) − h(z)| = O((1 − r)δ).

This condition implies h is almost invariant. Using the expansion property
of f , it also implies the comparison

|̂h((zi)) − h(z0)| = O((1 − |z0|)δ), (10.6)
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which shows that ̂h is Hölder continuous on ̂X. For k-forms, the condition
of δ-almost invariance becomes

sup
|z|=r

ρ−k| f ∗α − α| = O((1 − r)δ).

Theorem 10.8 Let α = g′(z) dz ∈ Ω1(∆) be a δ-almost invariant form on
the disk. Then we have

Var(Re α̂/ρ) = 2〈̂α, α̂〉 = (1/2)I0(g).

Proof. First note that ρ−1|α| = ρ−1|Dg| is bounded by almost invariance
of α; thus J0(g) = I0(g) exists and satisfies

(1/2)J0(g) = 2J2(g) = 2〈̂α, α̂〉
by Theorems 6.3 and 10.7.

Let h(z) = Re α/ρ. Since α is δ-almost invariant, so is h. We will regard
α̂ and̂h as ̂f -invariant forms and functions on ̂∆ in exponential coordinates
((ui), t) ∈ ̂S 1 × R+.

Given 0 < t < 1 and (ui) ∈ ̂S 1, let (zi) = E((ui), t). We then have
1 − |z0| � t, and thus

̂h((ui), t) = h(z0) + O(tδ)

by (10.6). Since ρ−1|α| is bounded, h is Lipschitz in the hyperbolic metric
on the disk, so the estimate z0 = (1 − t)u0 + O(t2) given in (10.2) implies

̂h((ui), t) = h((1 − t)u0) + O(tδ). (10.7)

Thus if we define ST : ̂S 1 → R for 0 < T < 1 by

ST ((ui)) =
∫ 1

T

̂h((ui), t)
dt

t
,

the estimate (10.7) gives

ST ((ui)) =
∫ 1

T
h((1 − t)u0)

dt

t
+ O(1). (10.8)

Now recall that the f -invariant measure m|S1 has a smooth density, i.e.
we can write

|dz|/(2π) = δ(z) dm(z)

for a suitable smooth function δ(z) satisfying
∫

δ dm = 1. Since the geodesic
flow on ̂X can be presented as a suspension of ̂f : ̂S 1 → ̂S 1, Theorem 3.5
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implies

Var(̂h) = lim
T→0

1

| log T |
∫

̂S 1
δ(u0)ST ((ui))

2dm̂.

Together with (10.8), this yields

Var(̂h) = lim
T→0

1

2π| log T |
∫

S1

(∫ 1

T
h((1 − t)u0)

dt

t

)2

|du0|.

Since ρ((1 − t)u0) ∼ 1/t, we have

h((1 − t)u0)dt/t = (Re α/ρ)dt/t ∼ Re α

exponentially fast, and thus

∫ 1

T
h((1 − t)u0)

dt

t
= Re g((1 − T )u0) + O(1).

A change of variables then gives

Var(Re α̂/ρ) = Var(̂h) = I0(Re g) = (1/2)I0(g),

completing the proof. ��

11 Deformations of Blaschke products

In this section we return to the setting of the introduction, and consider
a deformation v of an expanding Blaschke product f(z) with J( f ) = S1.
We show that v determines holomorphic forms v(k) on the Riemann surface
lamination ̂X determined by f , and then establish:

Theorem 11.1 Any deformation v of a Blaschke product f ∈ Bd satisfies

d2

dt2
H.dim(J(Ft))

∣

∣

∣

∣

t=0

= Var(Re v′′/ρ) = 22k−1

(2k − 1)!
∫

̂X
ρ−2k|v(k+1)|2 dξ

for all k > 0.

The cases k = 1, 2 yield Theorem 1.9 of the introduction.

Virtual cocycles and holomorphic forms. Let f ∈ Bd be an expanding
Blaschke product with J( f ) = S1 and f(∆) = ∆. Let Ft(z) be a family of
rational maps such that f(z) = F0(z), and such that there exists a smooth
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family of conformal maps Ht : ∆ → C satisfying H0(z) = z and Ft Ht(z) =
Ht f(z). The holomorphic vector field v = dHt/dt|t=0 records the associated
deformation of f .

We begin by constructing the forms v(k+1) ∈ Ωk(̂X).

Theorem 11.2 The 1-form α = v′′(z) dz on the unit disk is (1 − ε)-almost
invariant for every ε > 0.

Proof. By Theorems 4.4 and 4.5, the holomorphic function

h(z) = d

dt
log F ′

t (Ht(z))

∣

∣

∣

∣

t=0

extends to C1−ε(∆) and satisfies

h(z) = v′( f(z)) − v′(z)

for z ∈ ∆. Consequently we have

f ∗α − α = (v′′( f(z)) f ′(z) − v′(z)) dz = h ′(z) dz.

By Hölder continuity of h and Cauchy’s integral formula, we have the
estimate

|h ′(z)| = O((1 − |z|)−ε);
and since 1/ρ(z) ∼ 1 − |z|, this implies

sup
|z|=r

ρ−1| f ∗α − α| = O((1 − |z|)1−ε)

as desired. ��
Since α = v′′(z) dz is almost invariant, it determines a form α̂ ∈ Ω1(̂X)

which we also denote by v′′. Let v(k+1) = Dk−1(v′′) ∈ Ωk(̂X). With this
notation in place, we can now give the:

Proof of Theorem 11.1. We have

d2

dt2
H.dim(J(Ft))

∣

∣

∣

∣

t=0

= (1/2)I0(v
′)

by the results of Sect. 4,

(1/2)I0(v
′) = Var(Re v′′/ρ) = 〈v′′, v′′〉,

by Theorem 10.8, and

〈v′′, v′′〉 = 22k−1

(2k − 1)! 〈v
(k+1), v(k+1)〉

by Theorem 10.1 . ��
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12 Random geodesics

We conclude by presenting a new proof of:

Theorem 12.1 (Wolpert) The length on Xt of a random geodesic on X0
satisfies

d2

dt2
log �(Xt, g0)

∣

∣

∣

∣

t=0

= 4

3

‖Ẋ0‖2
WP

area(X0)
·

Random geodesics. Let Xt = ∆/Gt be a smooth family of compact Rie-
mann surfaces of genus g. Any closed, oriented geodesic γ ⊂ X0 determines
a unique probability measure m(γ) supported on its lift to T1 X0 and invari-
ant under the geodesic flow. It also determines a smooth function �(Y, γ) on
Teichmüller space, giving the hyperbolic length on Y of the unique geodesic
in the same homotopy class as γ on X.

The smooth invariant probability measure dξ on T1 X can be regarded as
the lift of a ‘random geodesic’ g0 on X0. To make this more precise, choose
a sequence of closed geodesics γn such that

m(γn) → dξ

in the weak topology on measures. (Such a sequence exists by the ergodic
theorem and the closing lemma.) We can then define the length on Y of
a random geodesic on X0 by

�(Y, g0) = lim
�(Y, γn)

�(X0, γn)
· (12.1)

The limit �(Y, g0) is independent of the choice of the sequence 〈γn〉, and
convergence to the limit is uniform on compact subsets of Tg. Indeed, one
can formalize the statement γ/�(γ, X0) → g0 using the space of geodesic
currents Cg, and interpret �(Y, ·) in terms of the continuous intersection
pairing i : Cg × Cg → R [Bon].

Random orbits. Now let f0 : S1 → S1 be an expanding Markov map
associated to the action of G0|S1 as in Sect. 2. Let ht : S1 → S1 be the
unique isotopy conjugating G0 to Gt and satisfying h0(z) = z, and let
ft = ht f0h−1

t be the corresponding Markov map for Gt . Let m0 be the
unique absolutely continuous invariant probability measure for f0|S1, and
let mt = (ht)∗(m0).

Let 〈γn〉 be a sequence of oriented closed geodesics on X0 satisfy-
ing (12.1). We will construct a corresponding sequence of periodic cycles
for f0 that become equidistributed for the invariant measure m0.

Let [a, b] ⊂ ∆ denote the hyperbolic geodesic joining a, b ∈ S1. Choose
a compact convex fundamental domain D ⊂ ∆ for the action of G0, and
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choose lifts

γ̃n = [an, bn]
of γn meeting D. Excluding finitely many n if necessary, we can assume
that G0 · an avoids the endpoints of the tiles defining f0|S1, and hence

an(i) = f i
0(an)

is well-defined for all i ≥ 0.
There are unique points bn(i) ∈ S1 such that [an(i), bn(i)] is also a lift

of γn. By the expanding property of f0 and compactness of D, there is an
ε > 0 such that

|an(i) − bn(i)| > ε (12.2)

for all i and n. But the orbit of G0 · (an, bn) ⊂ S1 × S1 accumulates only on
the diagonal, so the sequence [an(i), bn(i)], i = 1, 2, 3, . . ., takes on only
finitely many distinct values. Consequently there is an integer pn > 0 such
that

[an(i + pn), bn(i + pn)] = [an(i), bn(i)]
for all i � 0.

Replacing γ̃n with [an(i), bn(i)] for i � 0, we can assume an is actually
a periodic point for f0, and pn is its period. Let µn be the measure with
a δ-mass on each point of the periodic cycle {an(1), . . ., an(pn)} ⊂ S1.

Theorem 12.2 The probability measures µn/pn on S1 converge to the
absolutely continuous measure m0 as n → ∞, and satisfy

L( ft, µn)

L( f0, µn)
= �(Xt, γn)

�(X0, γn)
· (12.3)

Proof. By the definition of f0, for every n there is a gn ∈ G0 such that
f pn
0 = gn on a neighborhood of an . Since gn(an) = an , the Möbius trans-

formation gn stabilizes [an, bn] = γ̃n. Hence there is an integer Cn such
that

L( f0, µn) = log
∣

∣

(

f pn
0

)′
(an)

∣

∣ = log
∣

∣g′
n(an)

∣

∣ = Cn�(X0, γn). (12.4)

Letting the parameter t vary, we obtain (12.3).
We claim the period pn of an is comparable to length �n = �(X0, γn).

Indeed, since | f ′
0| is bounded and Cn ≥ 1, (12.4) implies �n = O(pn).

On the other hand, the length of γn is comparable to the number of its
intersections with the image of ∂D on X, which in turn bounds the number
of distinct lifts meeting D and hence the number of distinct lifts whose
endpoints satisfy (12.2). The latter quantity is an upper bound for the period
of an , and hence pn = O(�n).
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To see that µn/pn → m0, consider the lift of µn to a measure νn on S1×S1

with δ-masses on the pairs (an(i), bn(i)), i = 1, . . ., pn . Similarly, let ξn be
the measure with a δ-mass at every point in the orbit G0 ·(an, bn) ⊂ S1 × S1.

The assumption γn/�n → g0 implies the measures ξn/�n converge to an
absolutely continuous measure on S1 × S1. Since νn ≤ ξn and pn � �n,
any accumulation point of the probability measures νn/pn is also absolutely
continuous. Consequently the same is true for µn . But f0|S1 admits a unique
absolutely continuous invariant probability measure, and hence µn → m0.

��
Taking the limit as n → ∞ in (12.3), we obtain:

Theorem 12.3 The Lyapunov exponent of ft and the length of a random
geodesic on Xt are related by

L( ft, mt)

L( f0, m0)
= �(Xt, g0).

Proof of Theorem 12.1. At t = 0 we have

d2

dt2
log �(Xt, g0) = d2

dt2
log L( ft, mt)

by the preceding result,

d2

dt2
log L( ft, mt) = − d2

dt2
log H.dim(mt)

by the entropy relation H.dim(mt)L( ft, mt) = h( ft, mt) = h( f0, m0), and

− d2

dt2
log H.dim(mt) = 4

3

‖Ẋ0‖2
WP

area(X0)
(12.5)

by Theorem 1.1. ��
Remark. Conversely, one can use Theorem 12.3 and the entropy relation
to deduce (12.5) from Wolpert’s theorem.
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