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Abstract. We consider the question of future global non-linear stability in
the case of Einstein’s equations coupled to a non-linear scalar field. The
class of potentials V to which our results apply is defined by the conditions
V(0) > 0, V ′(0) = 0 and V ′′(0) > 0. Thus Einstein’s equations with
a positive cosmological constant represents a special case, obtained by
demanding that the scalar field be zero. In that context, there are stability
results due to Helmut Friedrich, the methods of which are, however, not
so easy to adapt to the presence of matter. The goal of the present paper
is to develop methods that are more easily adaptable. Due to the extreme
nature of the causal structure in models of this type, it is possible to prove
a stability result which only makes local assumptions concerning the initial
data and yields global conclusions in time. To be more specific, we make
assumptions in a set of the form B4r0(p) for some r0 > 0 on the initial
hypersurface, and obtain the conclusion that all causal geodesics in the
maximal globally hyperbolic development that start in Br0(p) are future
complete. Furthermore, we derive expansions for the unknowns in a set that
contains the future of Br0(p). The advantage of such a result is that it can
be applied regardless of the global topology of the initial hypersurface. As
an application, we prove future global non-linear stability of a large class of
spatially locally homogeneous spacetimes with compact spatial topology.

1. Introduction

1.1. Background, previous results

This paper is concerned with cosmological solutions to Einstein’s equations
with accelerated expansion, one motivation being that, at present, physicists
use such solutions to model the universe. The problem we wish to study is
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that of stability. What we mean by stability here is the question of whether
a cosmological solution, which is future causally geodesically complete, has
the property that if we make small perturbations of the initial data of this
solution, then the resulting spacetimes are also future causally geodesically
complete. In other words, we do not concern ourselves with the question of
whether the perturbed solution decays to the background solution, though
we shall derive asymptotic expansions in the cases where we prove future
causal geodesic completeness. The first results on stability were obtained
by Helmut Friedrich in [15] in the 3 + 1-dimensional case. These were
later extended by Michael Anderson in [1] to the n + 1-dimensional case
for n odd. The specific situation the above authors consider is Einstein’s
equations with a positive cosmological constant, though the methods can
also be generalized to include matter of Maxwell and Yang–Mills type,
cf. [17]. Let us try to sketch the ideas on which [15] is based. The first
important result is that a solution to Einstein’s vacuum equations with
a positive cosmological constant Λ in 4 spacetime dimensions,

Ric[g̃] = Λg̃, (1)

can be considered to be a solution to the conformal field equations, de-
veloped by Helmut Friedrich, the variables of which include a conformal
factor Ω, and conversely, a solution to the conformal field equations gives
a solution to Einstein’s equations on the region where Ω > 0. Given the
metric g produced by the conformal field equations, the metric solving (1) is
given by g̃ = Ω−2g. In fact, the set defined by Ω = 0 corresponds to “infin-
ity” from the point of the Lorentz manifold with metric g̃ in some suitable
sense, cf. [15,16] and references cited therein. On the other hand, from the
point of view of the conformal field equations, there are no complications
associated with Ω being zero. The de Sitter metric

−dt2 + cosh2(t)g1, (2)

where t ∈ R and g1 is the standard metric on S3, allows a rescaling by
a conformal factor so that it becomes −ds2 + g1 where s ∈ (−π/2, π/2),
cf. [1]. The question of stability of the de Sitter metric, which from a PDE
point of view would seem to be a global in time question, can then be
reduced to local in time stability of a specific solution to the conformal field
equations. Since the local stability follows from the fact that the conformal
field equations, after suitable gauge choices, form a symmetric hyperbolic
system, the stability of de Sitter space follows immediately. Another very
interesting result which follows from [15] is that one can specify data at
“infinity”, and that there are no topological restrictions for doing so. Thus
one gets a large family of solutions to (1) with arbitrary spatial topology
which are future causally geodesically complete and, furthermore, future
stable. Note that in the case of 0 cosmological constant, there are no results
of this type, and perhaps one should not even expect the corresponding
statement to be true. To conclude, the method is very elegant and geometric
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in nature and makes it possible to avoid proving global existence of solutions
to a non-linear hyperbolic PDE. However, it does suffer from a lack of
robustness. A first indication of this is the fact that the conformal field
equations developed by Friedrich are specific to 3+1 dimensions. However,
in the n +1-dimensional case, n odd, Anderson [1] showed that the equation
H = 0, where H is the ambient obstruction tensor of Fefferman and
Graham, cf. [13], has properties analogous to the conformal field equations.
Consequently, for constants H > 0, metrics of the form

−dt2 + cosh2(Ht)gΣ (3)

on R× Σ, where (Σ, gΣ) is a compact odd dimensional Riemannian mani-
fold with Ric[gΣ] = (n −1)H2gΣ , are stable solutions to Einstein’s vacuum
equations with a positive cosmological constant Λ = n(n − 1)H2/2. One
can also specify data at “infinity” on odd dimensional manifolds of arbitrary
topology.

1.2. Motivation

The question then arises why any further consideration of the question of
stability in the context of accelerated expansion should be of interest. The
answer lies in the lack of robustness of the above method; if one wants
to go beyond Einstein’s equations with a positive cosmological constant,
possibly coupled to Maxwell or Yang–Mills type matter, the method does
not give clear indications concerning how to proceed. At present, many
different mechanisms that yield accelerated expansion are being considered,
the simplest one being a positive cosmological constant. Other mechanisms
of interest involve a scalar field with a non-linear potential, whence the
desire to understand the stability properties of such models. Furthermore,
in order to be able to say something concerning the models of the universe
physicists consider, one does in the end need to study the stability of models
which include matter. The motivation for developing the methods described
in this paper is the hope that they will be of use in the treatment of the above
mentioned problems.

The formulation of the main result is non-standard in the sense that we
do not make assumptions concerning an entire initial hypersurface, but only
concerning a subset. Let us motivate this type of formulation. Consider the
metric

−dt2 + e2Htg0 (4)

on M = R×Rn (orR×Tn), where g0 is the ordinary Euclidean metric. This
is a solution to Einstein’s equations with a positive cosmological constant
Λ = n(n−1)H2/2. Consider a future directed causal curve γ : [0, a] → M
(we always assume ∂t to be future oriented) such that γ(0) ∈ {t0} ×Rn. The
length of the projection of this curve to Rn, measured with respect to the
Riemannian metric induced on {t0} × Rn, is bounded from above by H−1.
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Say now, for the sake of argument, that we wish to determine a solution
to the wave equation with respect to the metric (4) in the causal future
of {t0} × BH−1(p), where the radius of the ball is measured with respect to
the Riemannian metric induced on {t0} × Rn. Then all we need to know is
what the initial data look like on the set {t0} × B3H−1(p). In other words

J+[{t0} × BH−1(p)] ⊆ D+[{t0} × B3H−1(p)], (5)

using the notation of Subsect. 3.2. This should be compared with Minkowski
space, for which it is only possible to determine a solution to the wave
equation on the causal future of a point if one controls the initial data on an
entire Cauchy hypersurface. The above example indicates that it might be
enough to make local assumptions concerning the initial data in order to get
global in time conclusions concerning the solution. The advantage of such
a formulation is that it could be applied regardless of the topology of the
initial hypersurface.

The above observations suggest that in the context of accelerated expan-
sion, the connection between the global topology of the Cauchy hyper-
surfaces and the dynamics is less strong than in the context of non-acceler-
ated expansion. In fact, it is tempting to make the following conjecture.
Let (M, g) be a globally hyperbolic and future causally geodesically com-
plete Lorentz manifold. We shall say that late time observers are oblivious
to topology if there is a Cauchy hypersurface Σ such that there is no causal
curve whose past contains Σ and we shall say that late time observers
are not oblivious to topology if for every Cauchy hypersurface Σ there
is a causal curve whose past contains Σ. A stronger version would be to
say that late time observers in M are completely oblivious to topology if
there is a Cauchy hypersurface Σ such that for every causal curve γ , the
intersection of the causal past of γ with Σ is contained in a coordinate chart
on Σ, the domain of which is diffeomorphic to a ball in Rn. The conjecture
is then that if (M, g) is a future causally geodesically complete vacuum
solution to Einstein’s equations with a positive cosmological constant and
compact Cauchy hypersurfaces, then late time observers in M are oblivious
to topology. That the corresponding conjecture with the word “oblivious”
replaced by “completely oblivious” is incorrect follows by an important
example which is due to an anonymous referee. The example is given by
the metric

gR = −dt2 + cosh2(Ht)dx2 + H−2gS2 (6)

on MR = R×S1×S2, where Λ > 0, H = Λ1/2 and gS2 is the standard metric
on the unit 2-sphere. Then (MR, gR) is causally geodesically complete,
satisfies Einstein’s vacuum equations with a cosmological constant Λ and
if Σ is an arbitrary Cauchy hypersurface in (MR, gR) and γ is an arbi-
trary inextendible causal curve, then the intersection of the causal past
of γ with Σ is not contained in a subset of Σ homeomorphic to a 3-ball,
cf. Lemma 21. The spacetime (MR, gR) is sometimes referred to as the
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Nariai spacetime. It is also of interest to note that the conjecture that late
time observers are oblivious to topology is false in the class of solutions
to the Einstein–Maxwell equations with a positive cosmological constant
(again, the example is due to an anonymous referee). In fact, let Λ > 0,
Λ0 = 2Λ, γ0 = (2Λ)1/2 and

gR = −dt2 + dx2 + Λ−1
0 gS2, F = γ0(dt ⊗ dx − dx ⊗ dt). (7)

Then gR is a Lorentz metric and F a 2-form on MR. Furthermore, one can
compute that

∇αFµν = 0,

where ∇ is the Levi–Civita connection associated with gR. Consequently,
F satisfies Maxwell’s equations without sources:

∇αFαβ = 0, ∇[αFµν] = 0,

cf. [32, p. 70]. Furthermore gR and F satisfy Einstein’s equations with
a positive cosmological constant Λ:

Gαβ + Λgαβ = Tαβ,

where the stress energy tensor T is given by

Tαβ = FαµF µ
β − 1

4
gαβ Fµν Fµν.

To conclude, (MR, gR, F) is a globally hyperbolic and geodesically com-
plete solution to the Einstein–Maxwell equations with a positive cosmo-
logical constant Λ but late time observers are not oblivious to topology,
cf. [24, Corollary 57, p. 89] and the arguments presented in the proof
of Lemma 21.

In view of the above conjecture, there is reason to expect that the global
topology should not play an important role when studying the stability
of future causally geodesically complete vacuum models with a positive
cosmological constant, since one can restrict one’s attention to the future of
any fixed Cauchy hypersurface when doing the analysis. Nevertheless, the
example (6) should be kept in mind; if the Cauchy hypersurfaces are such
that they allow a metric of positive scalar curvature, the situation might be
more complicated. If one instead considers vacuum solutions to Einstein’s
equations without a cosmological constant, the situation is, however, quite
different, cf. [14,2] and references cited therein. In fact, the existing con-
jectures, with which all understood solutions conform, imply that in the
vacuum context without a cosmological constant, the global spatial top-
ology plays a crucial role in the asymptotic behaviour. Furthermore, it is
natural to conjecture that if (M, g) is a future causally geodesically com-
plete vacuum solution to Einstein’s equations with a vanishing cosmological
constant and compact Cauchy hypersurfaces, then late time observers in M
are not oblivious to topology.
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1.3. Matter models, initial value problem

Let us be more specific concerning the models we wish to study. We are
interested in Einstein’s equations

Gµν = Tµν, (8)

where

Gµν = Rµν − 1

2
Sgµν,

Rµν is the Ricci tensor of a Lorentz metric g on an n + 1-dimensional
manifold M, and S is the associated scalar curvature. Concerning the stress
energy tensor, we assume it to be of the form

Tµν = ∇µφ∇νφ −
[

1

2
∇γφ∇γφ + V(φ)

]
gµν, (9)

where φ ∈ C∞(M) and V ∈ C∞(R) is a function such that V(0) = V0 > 0,
V ′(0) = 0 and V ′′(0) > 0. For the sake of future convenience, let us
define H to be the positive solution to

nH2 = 2

n − 1
V0 (10)

and define χ by

χ = V ′′(0)/H2. (11)

By assumption H, χ > 0. With this choice of H , (3) and (4) are solutions
to (8) with φ = 0 since they are both solutions to Einstein’s equations
with a positive cosmological constant Λ = n(n − 1)H2/2. Note that (8) is
equivalent to

Rµν = ∇µφ∇νφ + 2

n − 1
V(φ)gµν. (12)

It should of course be coupled to a matter equation for φ, which is given by

∇µ∇µφ − V ′(φ) = 0. (13)

As a consequence, ∇µTµν = 0, i.e. Tµν is divergence free. Thus this equation
ensures the compatibility of a stress energy tensor of the form (9) with (8),
since the Bianchi identities imply that ∇µGµν = 0. Note, however, that
∇µTµν = 0 does not imply (13), since if φ = φ0 is a constant such that
V ′(φ0) �= 0, then ∇µTµν = 0, but (13) is not satisfied. The system of
equations of interest is thus (12) and (13). The main motivation for studying
these equations comes from the n = 3 case, but since the dimension does
not play any significant role in the arguments, we shall only assume n ≥ 3
in what follows.
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Let us recall some basic facts concerning spacelike hypersurfaces in
Lorentz manifolds that we shall need in what follows. Assume we have
an n + 1-dimensional Lorentz manifold (M, g) and a scalar function φ
satisfying (12) and (13). If Σ is a spacelike hypersurface in M, and the
future directed unit normal to this surface is N, then

Nµ NνGµν = 1

2

[
r − kij k

ij + (tr k)2
]
, (14)

where all the objects that appear on the right hand side are intrinsic to the
hypersurface Σ: if h is the Riemannian metric induced on Σ by g, then r is
the scalar curvature of h, k is the second fundamental form, defined by

k(X, Y ) = 〈∇X N, Y 〉,
for vectors X, Y tangent to the surface Σ (where ∇ is the Levi–Civita
connection associated with g), and indices are raised and lowered by h. For
a derivation of (14), see [32]. Combining (14) with (8), we obtain

1

2

[
r − kij k

ij + (tr k)2
] = 1

2

[
(Nφ)2 + DiφDiφ

] + V(φ) (15)

where D is the Levi–Civita connection on Σ induced by h. We refer to (15)
as the Hamiltonian constraint. For any vector X tangent to Σ, we have

XµNνGµν = [
D jkji − Di(tr k)

]
Xi,

cf. [32]. Combining this with (8), we obtain

Dlkli − Di(tr k) = N(φ)Diφ, (16)

the so-called momentum constraint. This leads to the following initial value
problem.

Definition 1. Initial data for (12) and (13) consist of an n-dimensional
manifold Σ, a Riemannian metric h, a covariant 2-tensor k and two func-
tions φ0 and φ1 on Σ, all assumed to be smooth and to satisfy

r − kij k
ij + (tr k)2 = φ2

1 + Diφ0 Diφ0 + 2V(φ0), (17)

D jkji − Di(tr k) = φ1 Diφ0, (18)

where D is the Levi–Civita connection of h, r is the associated scalar
curvature and indices are raised and lowered by h. Given initial data, the
initial value problem is that of finding an n + 1-dimensional manifold M
with a Lorentz metric g and a φ ∈ C∞(M) such that (12) and (13) are
satisfied, and an embedding i : Σ → M such that i(Σ) is a Cauchy
hypersurface in (M, g), i∗g = h, φ ◦ i = φ0, and if N is the future directed
unit normal and κ is the second fundamental form of i(Σ), then i∗κ = k and
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(Nφ)◦ i = φ1. Such a triple (M, g, φ) is referred to as a globally hyperbolic
development of the initial data, the existence of an embedding i being tacit.

Remark. The concept of a Cauchy hypersurface is defined in Subsect. 3.2.
One can of course define the concept of initial data and development for
a lower degree of regularity. We shall, however, restrict our attention to the
smooth case in this paper.

For results concerning the existence of initial data in the current setting,
we refer the reader to [9].

Definition 2. Given initial data for (12) and (13), a maximal globally
hyperbolic development of the data is a globally hyperbolic development
(M, g, φ), with embedding i : Σ → M, such that if (M′, g′, φ′) is any
other globally hyperbolic development of the same data, with embedding
i ′ : Σ → M′, then there is a map ψ : M′ → M which is a diffeomorphism
onto its image such that ψ∗g = g′, ψ∗φ = φ′ and ψ ◦ i ′ = i.

Theorem 1. Given initial data for (12) and (13), there is a maximal globally
hyperbolic development of the data which is unique up to isometry.

Remark. When we say that (M, g, φ) is unique up to isometry, we mean
that if (M′, g′, φ′) is another maximal globally hyperbolic development,
then there is a diffeomorphism ψ : M → M′ such that ψ∗g′ = g, ψ∗φ′ = φ
and ψ ◦ i = i ′, where i and i ′ are the embeddings of Σ into M and M′
respectively.

The proof is as in [8]. This is an important result and will be of use
to us in this paper. However, it does not yield any conclusions concerning
e.g. causal geodesic completeness.

1.4. Results

Recall that the constants H > 0 and χ > 0 are determined by the po-
tential V through (10) and (11). Before we state the main result, we need
to introduce some terminology. Let Σ be an n-dimensional manifold. We
shall be interested in coordinate systems x on open subsets U of Σ such
that x : U → B1(0) is a diffeomorphism. If S is a tensor field on Σ, we
shall use the notation

‖S‖Hl(U ) =
( n∑

i1,...,is=1

n∑
j1,..., jr=1

∑
|α|≤l

∫
x(U )

∣∣∂αSi1···is
j1··· jr

◦ x−1
∣∣2

dx1 · · · dxn

)1/2

,

where the components of S are computed with respect to x and the deriva-
tives are with respect to x. When we write ‖S‖Hl(U ), we shall take it to be
understood that there are coordinates x as above. Below, we shall use δ to
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denote the Kronecker delta with respect to the x coordinates. In particular,
we shall use the notation

‖g − aδ‖Hl(U ) =
( n∑

i, j=1

∑
|α|≤l

∫
x(U )

∣∣∂α(gij − aδij ) ◦ x−1
∣∣2

dx1 · · · dxn

)1/2

.

Theorem 2. Let V be a smooth function such that V(0) = V0 > 0,
V ′(0) = 0 and V ′′(0) > 0. Let H, χ > 0 be defined by (10) and (11)
respectively and let n ≥ 3. There is an ε > 0, depending on n and V , such
that if (Σ, h, κ, φ0, φ1) are initial data for (12) and (13) with dim Σ = n,
x : U → B1(0) are coordinates as above and

‖h − 16H−2δ‖Hk0+1(U ) + ‖κ − 16H−1δ‖Hk0 (U )

+ ‖φ0‖Hk0+1(U ) + ‖φ1‖Hk0 (U ) ≤ ε, (19)

where k0 is the smallest integer satisfying k0 > n/2+1, the maximal globally
hyperbolic development (M, g, φ) has the property that if i : Σ → M is the
associated embedding, then all causal geodesics that start in i{x−1 [B1/4(0)]}
are future complete. Furthermore, there is a t− < 0 and a smooth map

ψ : (t−,∞) × B5/8(0) → M, (20)

which is a diffeomorphism onto its image such that all causal curves that
start in i{x−1[B1/4(0)]} remain in the image of ψ to the future and g and φ
have expansions (21)–(31) in the solid cylinder [0,∞) × B5/8(0) when
pulled back by ψ. Finally, ψ(0, p) = i ◦ x−1(p) for p ∈ B5/8(0). In the
formulas below, Latin indices refer to the natural Euclidean coordinates
on B5/8(0) and t is the natural time coordinate on the solid cylinder. Define
ζ = 4χ/n2, λ = n[1 − (1 − ζ)1/2]/2 for ζ ∈ (0, 1), λ = n/2 for ζ ≥ 1 and
λm = min{1, λ}. There is a smooth Riemannian metric ρ on B5/8(0) and
constants Kl such that

‖e2Htgij (t, · ) − ρij‖Cl + ∥∥e−2Ht gij(t, · ) − ρij

∥∥
Cl ≤ Kle

−2λm Ht, (21)∥∥e−2Ht∂tgij (t, · ) − 2Hρij

∥∥
Cl ≤ Kle

−2λm Ht, (22)

for every l ≥ 0, where ρij are the components of the inverse. Here Cl denotes
the Cl norm on B5/8(0). Concerning g0m, there is an α > 0 and constants Kl
such that for all l ≥ 0,∥∥∥g0m(t, · ) − 1

(n − 2)H
ρijγimj

∥∥∥
Cl

+ ‖∂0g0m(t, · )‖Cl ≤ Kle
−αHt , (23)

where γimj are the Christoffel symbols of the metric ρ. Let k(t, · ) be the
second fundamental form induced on {t} × B5/8(0). The estimates for g00
and kij depend on the value of λm. If λm < 1, we have

‖g00(t, · ) + 1‖Cl + ‖∂0g00(t, · )‖Cl ≤ Kle
−2λm Ht, (24)∥∥e−2Htkij(t, · ) − Hρij

∥∥
Cl ≤ Kle

−2λm Ht, (25)
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but for λm = 1, we have

‖[∂0g00 + 2λm H(g00 + 1)](t, · )‖Cl ≤ Kle
−2Ht, (26)

‖g00(t, · ) + 1‖Cl ≤ Kl(1 + t2)1/2e−2Ht, (27)∥∥e−2Htkij(t, · ) − Hρij

∥∥
Cl ≤ Kl(1 + t2)1/2e−2Ht . (28)

Concerning φ there are three cases to consider. Let us define ϕ = eλHtφ.
If ζ < 1, then there is a smooth function ϕ0 such that

‖ϕ(t, · ) − ϕ0‖Cl + ‖∂0ϕ‖Cl ≤ Kle
−αHt . (29)

If ζ = 1, there are smooth functions ϕ0 and ϕ1 such that

‖∂0ϕ(t, · ) − ϕ1‖Cl + ‖ϕ(t, · ) − ϕ1t − ϕ0‖Cl ≤ Kle
−αHt . (30)

Finally, if ζ > 1, there is an anti symmetric matrix A, given by

A =
(

0 δH
−δH 0

)
,

where δ = n(ζ − 1)1/2/2, and smooth functions ϕ0 and ϕ1 such that∥∥∥∥e−At

(
δHϕ
∂0ϕ

)
(t, · ) −

(
ϕ0
ϕ1

)∥∥∥∥
Cl

≤ Kle
−αHt . (31)

Remark. Since the metric h is essentially 16H−2δ with respect to the x-co-
ordinates, the ball of radius 1 with respect to the x-coordinates is approxi-
mately a ball of radius 4H−1 with respect to h. Recall the discussion con-
cerning the linear wave equation on a background of the form (4). In order
to predict what happens to geodesics that start inside a ball of radius H−1,
we need to control the initial data in a ball of radius 3H−1, cf. (5). In fact,
we then control the behaviour in a cylinder of radius 2H−1, t ≥ t0. In our
case, we make assumptions on a ball of radius 4H−1, the reason being that
we need a margin, which we have arbitrarily chosen to be H−1 in the above
statement. If one is interested in having a smaller margin or only interested
in getting conclusions in a smaller region, one can reformulate the theorem
accordingly. It would be nice to have a result with purely geometric con-
ditions and it should be possible to reformulate the theorem in such a way
using harmonic coordinates. However, that would require an unwarranted
effort, since the statement is technical anyway and a geometric formulation
is not needed in the applications. It is of interest to note that the estimates
break down as χ → 0+; in this limit, ζ → 0+ so that λ, λm → 0+. In
other words, we certainly need the condition V ′′(0) > 0. The reason the
condition on the initial data involves more than n/2 + 2 derivatives of the
metric is that we need this condition in the global existence proof. Let us
note that the expansions obtained here are not complete in the sense that
the number of free functions appearing in the expansions is less than the
number of free functions one gets to specify as initial data. For a thorough
analysis of the question of asymptotic expansions in the case of a positive
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cosmological constant, we refer the reader to the work of Alan Rendall [28].
Note, however, that this analysis is based on a Gaussian foliation, which is
not the type of foliation we obtain in the above result, cf. (23). For a dis-
cussion of asymptotics on a formal level in the case of curvature coupled
scalar field models, we refer the reader to [7]. Finally, let us observe that the
example (6) is such that regardless of the choice of Cauchy hypersurface Σ
in (MR, gR) and of the choice of open set U in Σ, the above theorem is not
applicable to U and the initial data induced on Σ by gR. The reason is as
follows. Assume the theorem were applicable and let γ be an inextendible
causal curve in (MR, gR), i.e. the maximal globally hyperbolic development
of Σ with the appropriate induced initial data, passing through the subset
of U corresponding to B1/4(0) under x. Then the proof of the theorem im-
plies that J−(γ) ∩ Σ would be contained in a set diffeomorphic to a 3-ball,
in contradiction with Lemma 21.

The proof of the above theorem is to be found in Sect. 16. In [15], no
results of the above form were stated, but it should be possible to derive
a result such as Theorem 2, possibly with more detailed information con-
cerning the asymptotics, for Einstein’s equations with a positive cosmo-
logical constant using the results of [15]. The reason it should be possible is
that the main tool that is needed is the stability of metrics of the form (4) to
the future. In fact, one needs to have a hyperbolic reduction of the equations
which is such that one can prove stability even for data that do not satisfy
the constraints. Since global non-linear stability from the point of view of
Friedrich’s conformal field equations corresponds to local stability, this is
not a problem.

One consequence of the above result is that if one perturbs initial data
corresponding to solutions of the form (3), for any dimension n ≥ 3, inside
the class of models we are considering, one gets a causally geodesically
complete spacetime with asymptotic behaviour of the form given in the
statement of Theorem 2 both to the future and to the past.

Theorem 3. Let V be a smooth function such that V(0) = V0 > 0,
V ′(0) = 0 and V ′′(0) > 0. Let H, χ > 0 be defined by (10) and (11) respect-
ively. Finally, let Σ be an n ≥ 3 dimensional compact manifold and assume
that it admits a Riemannian metric gΣ such that Ric[gΣ] = (n − 1)H2gΣ .
Given t0 and a fixed choice of Sobolev norms ‖ · ‖Hl on tensors on Σ, there
is an ε > 0 such that if (Σ, h, κ, φ0, φ1) are initial data for (12) and (13)
satisfying∥∥h − cosh2(Ht0)gΣ

∥∥
Hk0+1 + ‖φ0‖Hk0+1 + ‖φ1‖Hk0

+ ‖κ − H sinh(Ht0) cosh(Ht0)gΣ‖Hk0 ≤ ε

where k0 is the smallest integer satisfying k0 > n/2 + 1, then the max-
imal globally hyperbolic development associated with (Σ, h, κ, φ0, φ1) is
causally geodesically complete and admits expansions as stated in The-
orem 2 both to the future and to the past.
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Remark. The metric (3) is a solution to (12) and (13) with φ = 0. Con-
cerning the definition of Sobolev norms on tensorfields on manifolds, we
refer the reader to Subsect. 3.4. The above statement constitutes a general-
ization of some of the stability results of [15] and [1], but we are of course
not able to prove any results starting at infinity. The statement that there
are expansions to the future should be interpreted as saying that there is
a Cauchy hypersurface S in the maximal globally hyperbolic development
of (Σ, h, κ, φ0, φ1) such that for every p ∈ S, there is a neighbourhood of p
to which Theorem 2 applies. The statement concerning the past is similar. In
particular, all the spacetimes M constructed in the above theorem have the
property that late time observers in M are completely oblivious to topology.

The proof of the above theorem is to be found at the end of Sect. 17.
Let us consider spatially locally homogeneous solutions to Einstein’s

equations with a positive cosmological constant. Concerning this situation,
there are results due to Wald, cf. [33], in the case of n = 3. Since the next
theorem is partly based on the results of [33], we shall thus restrict our
attention to the dimension n = 3 for the remainder of this subsection. Due
to the analysis presented in [33], one would expect most spatially locally
homogeneous solutions to Einstein’s equations with a positive cosmological
constant to have the property that at a “late enough” Cauchy hypersurface,
Theorem 2 would be applicable in a neighourhood of every point. The pos-
sible exceptions would be spacetimes whose Cauchy hypersurfaces have
universal covering spaces diffeomorphic to S3 or S2 × R, cf. (6) and the
remark made after the statement of Theorem 2. In this paper, we shall
only consider spatially locally homogeneous spacetimes that have com-
pact spatial topology, and we shall exclude solutions whose Cauchy hyper-
surfaces have universal covering spaces diffeomorphic to S3 or S2 × R. One
could of course also consider the case of non-compact spatial topology, but
as far as we know, there are no methods that would guarantee the existence
of suitable non-trivial perturbations of homogeneous initial data that do not
admit a compact quotient.

Theorem 4. Let V be a smooth function such that V(0) = V0 > 0,
V ′(0) = 0 and V ′′(0) > 0. Let H, χ > 0 be defined by (10) and (11)
respectively, let M be a connected and simply connected 3-dimensional
manifold and let (M, g, k) be initial data for Einstein’s equations with
a positive cosmological constant Λ = 3H2. Assume, furthermore, that one
of the following conditions are satisfied:

– M is a unimodular Lie group different from SU(2) and g and k are left
invariant under the action of this group.

– M = H3, where Hn is n-dimensional hyperbolic space, and the initial
data are invariant under the full isometry group of the standard metric
on H3.

– M = H2 × R and the initial data are invariant under the full isometry
group of the standard metric on H2 × R.
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Assume finally that trg k > 0. Let Γ be a cocompact subgroup of M in the
case that M is a unimodular Lie group and a cocompact subgroup of the
isometry group otherwise. Let Σ be the compact quotient. Then (Σ, g, k)
are initial data. Make a choice of Sobolev norms ‖ · ‖Hl on tensorfields
on Σ. Then there is an ε > 0 such that if (Σ, ρ, κ, φ0, φ1) are initial data
for (12) and (13) satisfying

‖ρ − g‖Hk0+1 + ‖k − κ‖Hk0 + ‖φ0‖Hk0+1 + ‖φ1‖Hk0 ≤ ε,

where k0 is the smallest integer satisfying k0 > n/2 + 1, then the maximal
globally hyperbolic development corresponding to (Σ, ρ, κ, φ1 , φ0) is future
causally geodesically complete and there are expansions of the form given
in the statement of Theorem 2 to the future.

Remark. If M is a 3-dimensional unimodular Lie group it contains a co-
compact subgroup Γ , cf. [26]. Concerning the definition of Sobolev norms
on tensorfields on manifolds, we refer the reader to Subsect. 3.4. The state-
ment that there are expansions to the future should be interpreted as saying
that there is a Cauchy hypersurface S in the maximal globally hyperbolic
development of (Σ, ρ, κ, φ0, φ1) such that for every p ∈ S, there is a neigh-
bourhood of p to which Theorem 2 applies. As a consequence, all the
spacetimes M constructed in the above theorem have the property that late
time observers in M are completely oblivious to topology.

The proof of the above theorem is to be found in Sect. 17.
The proof of Theorem 4 is based on Theorem 2 and illustrates the useful-

ness of a result in which local (in space) assumptions yield global (in time)
conclusions; one can ignore the global topology of the compact spacelike
hypersurfaces in the argument. Since Theorem 2 could probably have been
proved in the case of a positive cosmological constant using the methods
of [15], Theorem 4 could reasonably also have been proved in that context
quite some time ago. The latter theorem constitutes a quite general stability
result for spatially locally homogeneous solutions to Einstein’s equations
with a positive cosmological constant and compact Cauchy hypersurfaces.
It should also be noted that the spacetimes resulting from the perturbed
initial data are not only future causally geodesically complete; they also
have asymptotics “similar” to those of the spacetimes around which one is
perturbing, cf. the asymptotics obtained as a result of Theorem 2. Note that
the corresponding result is not to be expected in the case of a vanishing
cosmological constant. As a justification for this statement, let us quote
the following result from [31] (based on the results of [29]). Consider the
maximal globally hyperbolic development (M, g) of left invariant vacuum
initial data on S̃l(2,R), the universal covering group of Sl(2,R) (which is
a unimodular Lie group). Let Σ be a Cauchy hypersurface of homogeneity
and for p ∈ M, let tΣ(p) be the proper time distance from Σ to p. Define

ηΣ = sup
{
a ≥ 0

∣∣ ∃C < ∞ : ∣∣(ta
Σ Rαβγδ Rαβγδ

)
(p)

∣∣ ≤ C ∀p ∈ J+(Σ)
}
.
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Then ηΣ = 6 if the initial data have an extra rotational symmetry and
ηΣ = 2 if not. In particular, ηΣ does not depend on Σ. This proves that
the initial data with an additional rotational symmetry lead to developments
with radically different behaviour from those corresponding to initial data
without this symmetry.

Let us make a brief comment concerning the topologies allowed in
Theorem 4. In the case of H2 ×R, the resulting topologies are trivial circle
bundles over a higher genus surface, in the case of H3 one gets compact
3-dimensional hyperbolic manifolds, and in the case that the initial data are
left invariant under the group action of a unimodular Lie group, we refer the
reader to [26] for a discussion of the resulting topologies. The restriction
to cocompact subgroups of unimodular Lie groups is in a sense artificial.
Most unimodular Lie groups admit metrics with a 4-dimensional isometry
group, and such metrics admit a much larger class of cocompact subgroups
of the isometry group. The reason we have excluded these possibilities is
mainly technical; complications arise when analyzing how isometries of
the development resulting from isometries of the data relate to the specific
foliation under consideration. Since these technical issues are not the main
subject of this paper, we shall not treat them here, though there is no reason
to believe that it could not be done. Note, however, that restricting one’s
attention to more symmetric metrics reduces the freedom in specifying
initial data.

The above result is only intended to give an example of results that
follow from Theorem 2. As another example, Alan Rendall has obtained
results concerning spatially homogeneous solutions to exactly the type of
model considered in this paper, cf. [27]. Combining those results with the
ones obtained in this paper, it should be possible to prove stability results
for spatially locally homogeneous spacetimes with compact spatial Cauchy
hypersurfaces for which the scalar field is not necessarily small initially.

In Sect. 18 we demonstrate that there are initial data on manifolds of
arbitrary compact topology that yield future causally geodesically complete
maximal globally hyperbolic developments.

1.5. Outline of the proof of Theorem 2

As we shall explain in more detail below, the essential problem is that of
proving stability of the metric (4) on R×Tn. In order to obtain a hyperbolic
problem, we shall use gauge source functions, cf. [18]. The idea is to
replace Rµν in (12) with R̂µν given by (47), where Fµ are the gauge source
functions. In other words, we have the relations (49) and (50). The Fµ are
allowed to depend on the spacetime coordinates and on the metric, but not on
any derivatives of the metric. The modified system, obtained by replacing
Rµν with R̂µν in (12) and (13), is then a system of hyperbolic PDE’s. If
the constraint equations are satisfied originally and the initial data for the
modified system are set up in the right way, one can prove that Dµ, defined
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in (50), vanishes where the solution is defined so that one obtains solutions
to the original equations by solving the modified system, cf. Sect. 4 for
the details. However, for practical reasons, we shall be interested in initial
data that do not satisfy the constraint equations. The most naive choice of
gauge source functions would be the contracted Christoffel symbols of the
background. When considering a solution such as Minkowski space, there
is a natural candidate, namely Fµ = 0. In the case of the metric (4), there
are, however, at least two choices. For (4), Γ0 = −nH and Γi = 0 with
respect to the standard coordinates on R × Tn. As a consequence, there
are two naive choices; either one fixes Fµ to be the contracted Christoffel
symbols of the background with indices upstairs or one fixes Fµ to be the
contracted Christoffel symbols of the background with indices downstairs.
It turns out to be useful to choose the former of these possibilities; our
choice Fµ = nHg0µ yields

∇(µFν) = 1

2
nH∂0gµν,

cf. the proof of Lemma 4 (for the case under discussion here, ω = H),
which acts as a damping term. Unfortunately, it turns out to be insufficient
to only use gauge source functions, we need to add corrections as well,
cf. (53) and (54), where the Mµν and Mφ vanish when Dµ vanishes and
contain at most first derivatives of the metric and scalar field. The reason
we need to add these corrections is because we are interested in initial data
that violate the constraints. The specific choices we make, cf. (51) and (52),
lead to (144)–(147), where u = g00 + 1, ui = g0i and hij = e−2Ht gij . In
order to indicate on a heuristic level why these equations are to be preferred
over the ones obtained without using the corrections, let us consider the
equations that result, starting with (144)–(147), when we ignore terms that
are quadratic in expressions that vanish for the background solution and
when we replace gαβ∂α∂β with −∂2

t + e−2Ht∆, where ∆ is the ordinary
Laplace operator on Tn (these equations give a rough impression of the
asymptotic behaviour, but they do not give the correct decay rates). The
corresponding equations for u, hij and φ then decouple and we obtain
exponential decay for u and φ and convergence for h using straightforward
energy estimates. Let us illustrate how one obtains decay by considering
the idealized equation for u:

utt − e−2Ht∆u + (n + 2)H∂0u + 2nH2u = 0. (32)

One can find positive constants, γ , δ, ζ , η such that

E = 1

2

∫
Tn

[
u2

t + e−2Ht|∇u|2 + 2γHuut + δH2u2]dx,

where ∇ is the ordinary gradient on Tn, satisfies

∂tE ≤ −ηHE, E ≥ ζ

∫
Tn

[
u2

t + e−2Ht|∇u|2 + H2u2]dx.
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The argument to prove this is similar to, but simpler than, the proof of
Lemma 15. As a consequence, E decays exponentially and by applying
spatial derivatives to (32), we can use the same argument to obtain expo-
nential decay of u in any Cl norm. The equation for ui does not decouple, but
it is possible to use the information already obtained concerning the other
components of the metric to analyze its behaviour. If we had not added
the corrections, we would not have obtained this structure. Considering the
proof of Lemma 6, we see that if we had not added the term M00, then
the equation for u obtained after ignoring quadratic terms etc. would have
coupled to both um and hij . Similarly, had we not added M0i , the equation
for ui resulting after the above idealizations would have been even less
decoupled than before. However, the worst aspect of not adding the cor-
rections would be that the “damping structure” of the equations for u and ui
would be lost, where by “damping structure” we mean the second and third
terms on the left hand side of (144) and (145) (note also that in order to get
this damping structure, we need to have n ≥ 3 due to (145)).

When proving future global existence of solutions to (144)–(147), the
main problem is of course to find bootstrap assumptions that

– make it easy to estimate the non-linear terms that are quadratic in ex-
pressions that vanish on the background (in the end we devise a method
whereby it is enough to compute the number of spatial indices of such
a term and the number of derivatives it contains in order to estimate it in
the Sobolev space of interest),

– can be expressed naturally in terms of energies that, in their turn, fit
together naturally with the structure of the equations (144)–(147).

Ideally, one would like the bootstrap assumptions to be such that they
yield optimal control of the solutions. However, it is difficult to see how that
could be achieved in the present situation due to the fact that the leading
order part of the energies naturally associated with the equations is, up to
some factor, equivalent to

Elo,l =
∑
|α|≤l

∫
Tn

[(
∂α∂tv

)2 + gij
(
∂i∂

αv
)(

∂j∂
αv

)]
dx, (33)

where v should be thought of as one of u, ui , hij and φ. The problem
arises due to the fact that gij is of the order of magnitude e−2Ht . This
has as a consequence that for a given bound on Elo,l, we typically obtain
a much worse estimate for the highest order spatial derivatives of v than
for the spatial derivatives of v of order l (in the latter case, integration of
the estimate for the first part of the integrand in (33) typically produces
an improved estimate). However, there is no reason to expect the spatial
derivatives of order l + 1 to have worse decay than the spatial derivatives
of order l, and, in the end, this is of course not the case. The bootstrap
assumptions are therefore not optimal and, in particular, they allow for an
exponentially increasing g0i , even though g0i can be proved to converge
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after global existence has been proved. In fact, the main motivation for the
particular bootstrap assumptions we have chosen is that they ensure that it is
easy to estimate the non-linear terms, as opposed to bootstrap assumptions
chosen to fit the actual behaviour.

The essence of the proof of global existence is in proving that the
bootstrap assumptions can be improved if the initial data are close enough
to what one is perturbing around. The means by which one achieves this
goal are (144)–(147). It is very important to note that, given the bootstrap
assumptions, these equations have a hierarchical structure. The bootstrap
assumptions can be used to estimate ∆00, . . . ,∆φ appearing in (144)–(147),
to estimate the commutators that appear when differentiating these equations
with respect to the spatial variables and to estimate various terms arising in
connection with the time differentiation of the energies. As a consequence,
the equations for u, hij and φ can in practice be treated as if though they were
decoupled, and it is possible to improve the bootstrap assumptions for the
energies associated with these quantities before turning to the improvement
of the energy associated with ui . In other words, it is here crucial that we
are dealing with a system of hyperbolic equations as opposed to a scalar
hyperbolic equation.

Concerning the asymptotics, let us note that it is necessary to improve
what one obtains in the bootstrap argument significantly after having proved
global existence, cf. Sect. 14.

The rough idea of the proof of Theorem 2 is to take the given initial
data with respect to the local coordinates assumed to exist and to interpret
them as the components of initial data on a subset of Tn with respect to
standard coordinates. By using a cut-off function, one obtains a metric and
a second fundamental form on Tn coinciding with the original data on an
open subset, say U , and which are close to the initial data corresponding
to (4). As a consequence of the construction, the constraints will typically
be violated outside of U . However, the stability argument on Tn described
above works even for initial data violating the constraints, so that one
obtains a global solution to the future, and this is the main step. In the
Cauchy development of U , one obtains a solution to the Einstein-scalar
field equations, and this can be used as one patch in the construction of
a globally hyperbolic development of the initial data given in the statement
of Theorem 2. This globally hyperbolic development can then be embedded
into the maximal globally hyperbolic development (MGHD) by the abstract
properties of the MGHD.

Let us compare the arguments carried out here with other proofs of
stability in the case of Einstein’s equations. Beyond the work of Helmut
Friedrich, which has already been mentioned, it is natural to mention
the work of Christodoulou and Klainerman [11], the work of Andersson
and Moncrief [3] and the work of Lindblad and Rodnianski [22,23]. The
methods used in the work of Friedrich, in [11] and in [3] are very different
from the ones used in the present work and consequently, making a com-
parison is not very fruitful. In the case of [22], the situation studied is very
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different. In particular, [22] represents a more subtle situation due to the
fact that the rate of decay is on the borderline of what can be handled; it
is necessary to find additional structure in the non-linearity such as a null-
condition, cf. [10,21] or weak null condition, cf. [22,23]. Consequently, as
far as the rate of decay is concerned, the present situation is easier to deal
with. Nevertheless, there are similarities between the present argument and
the one presented in [22]. Let us focus on two aspects: the fact that the
equations under consideration are systems, as opposed to scalar equations,
and the use of the wave coordinate condition in the case of [22]. In [22],
the metrics of interest are close to that of Minkowski space, and it turns out
that derivatives tangential to the future Minkowski light cones have better
decay than the derivatives transverse to these cones. As a consequence, it is
natural to divide the equation for the components of the metric into differ-
ent parts with respect to a null frame and pay special attention to the terms
that correspond to two vectors transverse to the future light cone. In this
process, two important observations are made in [22]. First, the solutions
obtained obey not only the Einstein equations but also the wave coordi-
nate condition; this can be used to improve the decay estimates for certain
components of the metric. Second, the components can be divided into two
groups, let us call them “good” and “bad”. Acting with the wave operator
on the good components yields terms for which there are good estimates,
and acting with the wave operator on the bad components yields terms for
which there are good estimates and terms that can be estimated in terms
of the good components. In other words, there is a hierarchy similar to
the one described above; one can improve one’s knowledge concerning the
good components first, and then turn to the bad components. We refer the
reader to [22] for a careful discussion of these issues, cf. in particular (2.19)
and (2.20) of [22]. There are also some similarities as far as the importance
of the wave coordinate condition is concerned. In our case, we wish to study
the equations in a setting where the constraint equations are violated, and
consequently, we cannot assume that we have the condition analogous to
the wave coordinates gauge. However, the corrections fill a function similar
to that of using the wave coordinates condition. If we were to solve the
equations on Tn and were to assume that the constraints were satisfied, it
would not be necessary to add the corrections; we could simply use the
fact that the gauge source functions in that case would equal the contracted
Christoffel symbols. It would be of interest to know if one could add correc-
tions to the equations in [22], similar to the ones used in the present paper,
in such a way that one could avoid using the wave coordinates condition
and prove a stability result for initial data violating the constraints. Such
a result might be of interest to numerical analysts. Finally, let us note that in
recent numerical work concerning Einstein’s equations, methods similar to
the use of gauge source functions have been employed, cf. [25]. However,
there is one significant difference; in the present paper, as well as in [22], the
gauge source functions are given explicitly in terms of the metric whereas
in [25], the gauge source functions obey certain equations, so that one ob-
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tains a coupled system for the metric components, the scalar field and the
gauge source functions.

1.6. Further applications

In this paper we discuss the case of a non-linear scalar field with a potential
satisfying V(0) > 0, V ′(0) = 0 and V ′′(0) > 0. The methods developed
here can, however, be used as a basis for proving similar stability results
in the case that the potential is of the form V(φ) = V0 exp(−λφ) where
λ <

√
2 for n = 3, as we shall demonstrate in a future paper. These types

of scalar fields have been used by physicists as a mechanism for generating
accelerated expansion.

2. Linear algebra

The proof that certain causal geodesics are future complete is based on
a PDE argument in which the basic unknowns are the scalar field and the
components of the metric. It will be natural to divide the latter part of the
unknowns into three different types according to their asymptotic behaviour,
and in the present section, we wish to specify the notation and make some
observations that will be of use in making this division.

Let g be a symmetric (n + 1) × (n + 1)-dimensional real valued matrix
with components gµν, µ, ν = 0, . . . , n. We shall denote the n × n-matrix
with components gij , i, j = 1, . . . , n, by g� and if g is invertible, we shall
denote the components of the inverse by gµν , µ, ν = 0, . . . , n and the
n × n-matrix with components gij , i, j = 1, . . . , n, by g�. We shall use v[g]
to denote the n-vector with components g0i , i = 1, . . . , n and for any
symmetric and positive definite n × n-matrix ξ and any n-vector v, we shall
write

|v|ξ =
( n∑

i, j=1

ξijv
iv j

)1/2

.

We shall also use the notation |v| = |v|δ, where δij is the Kronecker delta.
Furthermore, if A is an n × n real valued matrix (not necessarily sym-
metric), we shall denote the (n + 1) × (n + 1)-dimensional matrix with
00-component 1, 0i and i0-components 0 and ij components given by Aij
by MA. Finally, if ρ is a symmetric, real valued (n + 1) × (n + 1)-matrix
with one negative eigenvalue and n positive ones, we shall say that it is
a Lorentz matrix.

Lemma 1. Let ρ be a symmetric (n + 1) × (n + 1) real valued matrix.
Assume that ρ00 < 0 and that ρ� is positive definite. Then ρ is a Lorentz
matrix.
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Proof. Let A be an orthogonal n × n-matrix diagonalizing ρ� and h =
Mt

AρMA. Then h� = Atρ� A is diagonal, with diagonal elements λi > 0,
i = 1, . . . , n. Furthermore h00 = ρ00 < 0 and the eigenvalues of ρ and h
coincide. If we compute the determinant of h − λId, we obtain

p(λ) =
(

ρ00 − λ − h2
01

λ1 − λ
− . . . − h2

0n

λn − λ

)
(λ1 − λ) · · · (λn − λ).

Let us define

f(λ) = ρ00 − λ − h2
01

λ1 − λ
− . . . − h2

0n

λn − λ
.

If we differentiate this function, we obtain

f ′(λ) = −1 − h2
01

(λ1 − λ)2
− . . . − h2

0n

(λn − λ)2
.

Note that λ1, . . . , λn are all positive. Let us denote the smallest of the λi
by λmin. For λ belonging to the interval (−∞, λmin), we obtain the conclusion
that f ′(λ) < 0. Furthermore, f(−∞) = ∞ and f(0) < 0. Thus there is
a unique negative value of λ, say λ0, for which f(λ) = 0. This is clearly an
eigenvalue of h. Since it is easy to see that p′(λ0) �= 0, we see that λ0 is a root
with multiplicity one to the polynomial equation p(λ) = 0. There is in other
words only one eigenvalue in the interval (−∞, λmin). Since h is a symmetric
matrix, it only has real eigenvalues, so the remaining n eigenvalues have to
be positive. ��
Lemma 2. Let g be a symmetric (n + 1) × (n + 1) real valued matrix.
Assume g00 < 0 and that g� is positive definite. Then g is a Lorentz ma-
trix,

g00 = 1

g00 − d2
, (34)

where d = |v[g]|g−1
�

, g� is positive definite, with

g00

g00 − d2
|w|2

g−1
�

≤ |w|2g� ≤ |w|2
g−1
�

(35)

for any w ∈ Rn and

v[g−1] = 1

d2 − g00
g−1

� v[g]. (36)

Note that g00 is negative, since g00 is negative, and that there is an upper
bound on this quantity depending only on g00 and d.
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Proof. The first statement of the lemma is a direct consequence of Lemma 1.
To prove the remaining statements, let A be the square root of g−1

� , i.e. the
positive definite, symmetric matrix with the property that A2 = g−1

� . Then
At g� A = Id. Consider h = Mt

AgMA. Then h00 = g00, h� = Id and
v[h] = Atv[g]. Let B be an orthogonal matrix such that

Bt Atv[g] = |Atv[g]|e1, (37)

where e1 = (1, 0, . . . , 0)t . Note that

|Atv[g]| = |v[g]|g−1
�

= d. (38)

Consider ρ = Mt
B Mt

AgMA MB. Then ρ00 = g00, ρ� = Id and v[ρ] = de1.
Note that the inverse of the 2 × 2-matrix with components ρµν, µ, ν = 0, 1
is given by

1

g00 − d2

(
1 −d

−d g00

)
.

Since

g−1 = MA MBρ−1 Mt
B Mt

A,

and the matrices MA and MB preserve the 00-component of a matrix, we
obtain (34). Furthermore

g� = ABρ�Bt At .

We are interested in the supremum and infimum, for w �= 0, of

|w|2g�

|w|2
g−1
�

= (g�w,w)

(Aw, Aw)
= (ρ�Bt Atw, Bt Atw)

(Bt Atw, Bt Atw)
,

where we have used the fact that B is orthogonal and A is symmetric.
Since ρ� is diagonal with 11-component equal to g00/(g00 − d2) ≤ 1 and
the ii-components equal 1 for i > 1, we obtain (35). Since

v[ρ−1] = − d

g00 − d2
e1, dBe1 = Atv[g],

where we have used (37), (38) and the fact that B is orthogonal to obtain
the second equality, we obtain

v[g−1] = ABv[ρ−1] = − 1

g00 − d2
A2v[g] = − 1

g00 − d2
g−1

� v[g],

which implies (36). Note that one could also have obtained this equality by
applying g−1

� to

g0igij + g00g0 j = 0

and using the fact that (34) holds. ��
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3. Background material

In this section we state the background material we shall be needing. For
most statements, we shall not provide any proofs, but we wish to make pre-
cise statements. Let us start by local existence of non-linear wave equations.

3.1. Standard local existence

Let g be a smooth function from RnN+2N+n+1 to the set of symmetric real
valued (n +1)× (n +1)-matrices. We shall denote the components gµν and
assume that for every multiindex α = (α1, . . . , αnN+2N+n+1) and compact
interval I = [T1, T2], there is a continuous, increasing function hI,α : R→ R

such that ∣∣(∂αgµν

)
(t, x, ξ)

∣∣ ≤ hI,α(|ξ|) (39)

for all µ, ν = 0, . . . , n, t ∈ I , x ∈ Rn and ξ ∈ RnN+2N . Assume that there
are constants a1, a2, a3 > 0 such that g00 ≤ −a1, g� ≥ a2 and |gµν| ≤ a3,
with notation as in Sect. 2. Then g is a Lorentz matrix valued function due
to Lemma 1 and we shall denote the components of the inverse by gµν.
As a consequence of our assumptions, the components of the inverse are
bounded, and there are constants b1, b2 > 0 such that g00 ≤ −b1 and
g� ≥ b2. Given a C1 function u : Ω → R

N for some Ω ⊆ Rn+1, we
define g[u] to be the function on Ω given by

g[u](t, x) = g{t, x, u(t, x), ∂0u(t, x), . . . , ∂nu(t, x)}.
Let f be a smooth function from RnN+2N+n+1 to RN satisfying an estimate
of the form (39). We shall use similar conventions concerning f as we do
concerning g, in particular we shall write f [u], the meaning being analogous
to the case of g. Sometimes it will be convenient to view f as the sum of
two functions, f = fa + fb, where fb only depends on t and x and fa has
the property that fa(t, x, 0, . . . , 0) = 0. Given the above division, we shall
assume that fb is of locally x-compact support; a function h : Rn+1 → R

m

is said to be of locally x-compact support if for any compact interval [T1, T2]
there is a compact set K such that h(t, x) = 0 if t ∈ [T1, T2] and x /∈ K .
Note that a smooth function u : Rn+1 → R

m of locally x-compact support
can be viewed as an element of Cl[R, Hk(Rn,Rm)] for any l, k. This is
no longer true if we consider smooth functions with the property that for
every fixed t, u(t, · ) has compact support. A simple counterexample is
obtained by taking φ ∈ C∞

0 (Rn) which is not identically zero and defining
u(t, x) = φ(x1 − 1/t, x2, . . . , xn) for t > 0 and u(t, x) = 0 for t ≤ 0.

Consider the initial value problem

gµν∂µ∂νu = f, (40)
u(0, · ) = U0 (41)

∂tu(0, · ) = U1, (42)

where we write g instead of g[u] and f instead of f [u].
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Theorem 5. Let U0, U1 ∈ C∞
0 (Rn,RN). Then there are T− < 0 < T+ and

a unique solution u ∈ C∞[(T−, T+)×Rn,RN ] to (40)–(42). The solution is
of locally x-compact support and T+ can be chosen so that either T+ = ∞
or

lim
τ→T+−

sup
0≤t≤τ

∑
|α|+ j≤2

sup
x∈Rn

∣∣∂α∂
j
t u(t, x)

∣∣ = ∞,

where the α are spatial multiindices α = (α1, . . . , αn). The statement con-
cerning T− is similar.

This can be proved e.g. along the lines of [20, Theorem 6.4.11].

3.2. Causality

Let us remind the reader of the basic causality concepts in Lorentz geometry,
cf. [24, Chap. 14]. If (M, g) is a time oriented Lorentz manifold, we shall
use the notation that p < q if there is a future pointing causal curve from p
to q and p ≤ q if p < q or p = q. Given a subset A of M, define

J+(A) = {p ∈ M | ∃q ∈ A : q ≤ p},
J−(A) = {p ∈ M | ∃q ∈ A : p ≤ q}.

The sets J+(A) and J−(A) are called the causal future and past of A respect-
ively. The strong causality condition is said to hold at p ∈ M provided that
given any neighbourhood U of p there is a neighbourhood V ⊆ U of p
such that every causal curve segment with endpoints in V lies entirely
in U . A Lorentz manifold is said to be globally hyperbolic if the strong
causality condition holds at each of its points and if for each pair p < q, the
set J(p, q) = J+(p) ∩ J−(q) is compact. The assumption that a Lorentz
manifold M be globally hyperbolic has many consequences, e.g. if p, q ∈ M
and p ≤ q, then there is a causal geodesic from p to q such that no causal
curve from p to q can have greater length, cf. [24, Proposition 19, p. 411].
Furthermore, the causality relation ≤ is closed on M, i.e. if pn → p, qn → q
and pn ≤ qn , then p ≤ q, cf. [24, Lemma 22, p. 412].

A subset A of a Lorentz manifold (M, g) is said to be achronal if there
is no pair of points p, q ∈ A that can be connected by a timelike curve and
it is said to be acausal if no pair of points in A can be connected by a causal
curve. Given an achronal subset A of M, the future Cauchy development of A
is the set D+(A) of all points p of M such that every past inextendible causal
curve through p meets A. The past Cauchy development D−(A) is defined
analogously and we write D(A) = D+(A)∪D−(A). A Cauchy hypersurface
in M is a subset S that is met exactly once by every inextendible timelike
curve in M. Then D(S) = M due to Lemma 29, p. 415 of [24]. One can
prove that a Lorentz manifold is globally hyperbolic if and only if it admits
a Cauchy hypersurface, cf. [24, Corollary 39, p. 422] and [19]. Furthermore,
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a globally hyperbolic Lorentz manifold admits a smooth spacelike Cauchy
hypersurface, cf. [4–6].

In the end, we shall need the following, somewhat more technical, state-
ments.

Lemma 3. Let (M, g) be a Lorentz manifold and assume it admits a smooth
spacelike Cauchy hypersurface S. Then, for p ∈ J+(S), J−(p) ∩ J+(S) is
compact. If S is compact and Ω ⊆ S is open, with respect to the topology
induced on S, then D(Ω) is open. If U ⊆ M is open, q ∈ J+(S) and
J−(q) ∩ J+(S) ⊆ U, then if qi ∈ J+(S) are such that qi → q, we have
J−(qi) ∩ J+(S) ⊆ U for i large enough. If Ω ⊆ S is closed, then D(Ω) is
closed. If qi ≤ q, q ∈ I+(S) and qi → q, then the closure of the union of
the J−(qi) ∩ J+(S) is J−(q) ∩ J+(S).

Proof. The first statement follows from Lemma 40, p. 423 of [24]. Assume
Ω ⊆ S is open with respect to the topology induced on S and that D(Ω) is
not open. Then there is a q ∈ D(Ω) and qi → q such that qi /∈ D(Ω). We
conclude that there are ri ∈ S − Ω such that ri ≤ qi or vice versa. Assume,
without loss of generality, that ri ≤ qi for all i. Since S −Ω is compact, we
can assume ri → r ∈ S − Ω. Since the relation ≤ is closed on a globally
hyperbolic manifold, r ≤ q, contradicting the fact that q ∈ D(Ω). In order to
prove the third statement, let p be such that there is a future directed timelike
curve from q to p. Then J−(p) ∩ J+(S) is compact and J−(p) contains q
in its interior, cf. [24, Lemma 3, p. 403]. Since qi → q, J−(qi) ⊆ J−(p)
for i large enough. Assuming the desired statement is not true, there is
a subsequence qik and points rik ∈ J−(qik )∩ J+(S) such that rik /∈ U . Since
the rik are in the compact set J−(p) ∩ J+(S) − U for k large enough, we
can assume that they converge to a point r. Then r ∈ J−(q) ∩ J+(S) − U ,
a contradiction. To prove the fourth statement, assume, in order to obtain
a contradiction, that qi ∈ D(Ω) and qi → q /∈ D(Ω). Assume, without loss
of generality, that q, qi ∈ J+(S) and let p ∈ S − Ω be such that p ≤ q.
Then, due to the time reversal of the third statement, there is an r in the
timelike past of p such that J+(r) does not intersect Ω. Thus q is in the
timelike future of r, cf. [24, Corollary 1, p. 402], so that qi ∈ J+(r) for i
large enough, so that qi /∈ D(Ω), contradicting the assumptions. To prove
the last statement, let p ∈ J−(q). If p ∈ I+(S), let pk → p be such that
pk ∈ J+(S) is in the timelike past of p. Then q is in the timelike future
of pk . Thus there is an ik such that qik is in the timelike future of pk . Thus
all the pk are in the union of the J−(qi), so that p is in the closure of the
union of J−(qi) ∩ J+(S). Assume p ∈ S ∩ J−(q). Let pk � p be such that
pk → p, let ik be such that qik is in the timelike future of pk and let γk be
a timelike curve from pk to qik . Denote the point of intersection between γk
and S by p′

k . Since p′
k ∈ J−(q) ∩ J+(S), which is compact, we can choose

a subsequence so that it converges to, say, r. Since pk ≤ p′
k and pk converges

to p, we conclude that p ≤ r. Since p ∈ S and S is a spacelike Cauchy
hypersurface, we have to have p = r. The conclusion follows. ��
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3.3. Uniqueness

We shall need the following uniqueness result.

Theorem 6. Let (M, g) be a globally hyperbolic n+1-dimensional Lorentz
manifold and let S be a smooth spacelike Cauchy hypersurface. Let Ω ⊆ S
and assume that U is an open set containing D+(Ω). Assume u : U → R

l

is a smooth solution to the equation

∇α∇αu + Xu + cu = 0,

where X is an l × l-matrix of smooth vectorfields on U and c is a smooth
l × l-matrix valued function on U. Assume furthermore that u and grad u
vanish on Ω. Then u and grad u vanish on D+(Ω).

Remark. The equation need only be satisfied in D+(Ω). There is a similar
statement concerning D−(Ω).

3.4. Stability

In order to prove Theorems 3 and 4, we need to have a Cauchy stability
result. Let us start by specifying the topology we shall be using.

Definition 3. Let M be a compact n-dimensional manifold, and assume φi ,
i = 1, . . . , l is a finite partition of unity such that supp φi ⊂ Ui for
open sets Ui. Assume furthermore that (xi, Ui) are coordinates. Given
T ∈ T r

s (M), define

‖T‖Hk =
( l∑

i=1

n∑
j1,..., jr=1

n∑
i1,...,is=1

∑
|α|≤k

∫
Ui

φi

∣∣∂αT j1··· jr
i1···is

∣∣2
dx1

i · · · dxn
i

)1/2

(43)

where T j1··· jr
i1 ···is are the components of T relative to the coordinates xi and ∂α

signifies differentiation with respect to xi .

Remark. In order not to get too cumbersome notation we abuse notation
by not clearly indicating with respect to which coordinates we compute
components of tensors etc.

Note that (43) defines a norm on the space of smooth tensorfields T r
s (M).

If one uses a different partition of unity one clearly gets a different norm, but
they are all equivalent. Consequently, they define the same topology, and it
makes sense to say that Tj → T with respect to Hk without any reference
to a partition of unity.

In order to make a precise statement concerning stability, we need to be
specific concerning the requirements of the background solution.
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Definition 4. Let M be a compact n-dimensional manifold. Let g be
a smooth Lorentz metric on I × M where I = (T−, T+). Assume that ∂t is
timelike and that the hypersurfaces {τ} × M are spacelike with respect to g
for τ ∈ I . Finally, assume that there is a φ ∈ C∞(I × M) such that φ
and g satisfy (12) and (13). Then we shall call (I × M, g, φ) a background
solution.

Definition 5. Let g be a Lorentz metric on I × M, with I = (T−, T+), let
φ ∈ C∞(I × M) and let τ ∈ I . Assume {τ} × M is spacelike with respect
to g and let i : M → I × M be defined by i(p) = (τ, p). Let h be the
Riemannian metric on M obtained by using i to pull back the Riemannian
metric induced on {τ}× M by g, let k be the covariant 2-tensor obtained by
using i to pull back the second fundamental form induced on {τ} × M by g,
let φ0 = φ ◦ i and let φ1 = (Nφ) ◦ i, where N is the future directed unit
normal to {τ} × M with respect to g. Then we shall refer to (h, k, φ0, φ1)
as the initial data induced on {τ} × M by (g, φ), or simply the initial data
induced on {τ} × M if the solution is understood from the context.

Theorem 7. Let (I × M, g, φ) be a background solution. Let (ρ, κ, φ0, φ1)
be the initial data induced on {T0} × M by (g, φ). Assume ρj is a sequence
of Riemannian metrics on M, κj a sequence of covariant 2-tensors and ψ0, j
and ψ1, j are a sequence of smooth functions such that ρj and ψ0, j converge
to ρ and φ0 respectively in Hl+1 and κj and ψ1, j converge toκ and φ1 respect-
ively in Hl, where l > n/2 + 1. Assume furthermore that (ρj, κj, ψ0, j, ψ1, j)
satisfy the constraint equations (17) and (18) with (h, k, φ0, φ1) replaced
by (ρj, κj, ψ0, j, ψ1, j). Then there are Tj,− < T0 < Tj,+, a Lorentz metric hj

on M̄j = (Tj,−, Tj,+) × M and a smooth function ψj on M̄j such that
(hj, ψj) satisfy (12) and (13) on M̄j . Furthermore, the initial data induced
on {T0} × M by (hj, ψj) are (ρj, κj, ψ0, j, ψ1, j), ∂t is timelike with respect
to hj and {τ} × M is a spacelike Cauchy hypersurface with respect to hj for
all τ ∈ (Tj,−, Tj,+). If T ∈ I , then T ∈ (Tj,−, Tj,+) for j large enough and the
initial data induced on {T } × M by (hj, ψj) converge to the corresponding
initial data of (g, φ).

Remark. The topology we have in mind when we speak of convergence of
the initial data induced on {T } × M is the same as we used for the data
induced on {T0} × M. In other words, Hl+1 for the induced metric and
scalar field and Hl for the second fundamental form and time derivative of
the scalar field.

4. Equations on Tn

In the introduction, we formulated the initial value problem for a general Σ.
In practice, due to the causal structure of the type of spacetimes we are inter-
ested in, the global topology of Σ will turn out to be irrelevant. For conveni-
ence we shall thus assume Σ = Tn and consider the equations on R× Tn.
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On this manifold, we have coordinates x = (x0, . . . , xn); xµ giving the µth
coordinate. Strictly speaking, these coordinates are of course not globally
well defined, but in the end, we are only interested in ∂xµ = ∂µ, and these
vectorfields are globally well defined. In what follows, we shall take for
granted that everything is computed with respect to these coordinates, or, to
be more precise, with respect to the frame given by ∂µ.

Let us start by describing the type of metric around which we wish to
perturb. The model metric is given by

g = −dt2 + e2Ωδij dxi ⊗ dx j , (44)

where Ω is a smooth function of t. For the purposes of the present paper,
it is enough to think of Ω as being Ht where H is a constant, but in a later
paper, we shall apply the same methods to the case Ω = p ln t, where p > 1
is constant. We shall also use the notation

ω = Ω̇. (45)

A metric of the form (44) has the property that Γ 0 = nω and Γ i = 0, where,
as always, Latin indices range from 1 to n, Greek indices range from 0 to n
and where

Γ µ = 1

2
gαβgµν(∂αgβν + ∂βgαν − ∂νgαβ).

Let us define

Fµ = nωg0µ (46)

and, following the ideas of [18], let

R̂µν = −1

2
gαβ∂α∂βgµν + ∇(µFν)

+ gαβgγδ[ΓαγµΓβδν + ΓαγµΓβνδ + ΓαγνΓβµδ], (47)

where

Γαγβ = 1

2
(∂αgβγ + ∂βgαγ − ∂γ gαβ),

∇µFν = ∂µFν − Γ α
µν Fα (48)

and a parenthesis denotes symmetrization, i.e.

∇(µFν) = 1

2
(∇µFν + ∇ν Fµ).

In other words,

R̂µν = Rµν + ∇(µDν), (49)
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where

Dµ = Fµ − Γµ. (50)

Observe that the notation (48) is somewhat questionable since Fµ will not
in general be the components of a covector. We shall, however, use it.
Note that R̂µν , considered as a differential operator acting on the metric, is
hyperbolic.

Let us define

M00 = −2ωg0µDµ, M0i = 2ωDi, (51)
Mij = 0, Mφ = −gµνDµ∂νφ, (52)

and consider the equations

R̂µν − ∇µφ∇νφ − 2

n − 1
V(φ)gµν + Mµν = 0 (53)

gαβ∂α∂βφ − Γ µ∂µφ − V ′(φ) + Mφ = 0. (54)

Note that the system (53) and (54) is a quasi-linear system of hyperbolic
PDE’s for the metric and the scalar field. In other words, if we specify gµν,
∂0gµν , φ and ∂0φ at t = 0, we obtain a unique local solution to the system
(at least if we assume g00 < 0 and gij to be the components of a positive
definite matrix initially). Let us assume we have solutions to (53) and (54).
Due to (53), we have

Gµν − Tµν = −∇(µDν) + 1

2

(∇γDγ

)
gµν − Mµν + 1

2

(
gαβ Mαβ

)
gµν. (55)

Furthermore, Gµν is divergence free due to the Bianchi identities and Tµν

satisfies

∇µTµν = −Mφ∇νφ

due to (54). Consequently, taking the divergence of (55), we obtain

∇µ∇µDν + R µ
ν Dµ = −2Mφ∇νφ − 2∇µMµν + gαβ∇ν Mαβ. (56)

Assuming that there are smooth solutions to (53) and (54) on some set
(T−, T+) × Rn with T− < 0 < T+, we see that there are smooth functions
Aαβγ and Bαβ such that D satisfies

gαβ∂α∂βDµ + A αβ
µ ∂αDβ + B α

µ Dα = 0. (57)

If it is possible to set up initial data for (53) and (54) in such a way that Dµ

and ∂0Dµ are zero for t = 0, we are thus allowed to conclude that Dµ is
zero where the solution is defined. Consequently, Mµν and Mφ are also zero,
and we get a solution to (12) and (13).
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4.1. Initial data

In practice, we shall be interested in initial data that do not satisfy the
constraint equations on the entire initial manifold. We shall thus assume
that we are given (h, κ, φ0, φ1) on Tn , where h is a Riemannian metric, κ is
a covariant 2-tensor and φ0, φ1 are smooth functions on Tn. Furthermore,
we shall assume that (17) and (18) are satisfied on S ⊆ Tn . Starting with
these initial data, let us construct initial data for (53) and (54). The spatial
part of the metric, gij is determined by h:

gij |t=0 = h(∂i, ∂j), (58)

for i, j = 1, . . . , n. However, g00 and g0i are not specified by the initial
data. Let us choose them to satisfy

g00|t=0 = −1, g0i|t=0 = 0. (59)

Due to this choice, the future directed unit normal to the hypersurface t = 0
is ∂t , so that if we had a metric g whose second fundamental form were κ,
we would have

κij = 1

2
∂0gij .

It is thus natural to require that

∂0gij |t=0 = 2κ(∂i, ∂j). (60)

Concerning φ, we require

φ|t=0 = φ0, (∂tφ)|t=0 = φ1, (61)

since ∂t is the future directed unit normal to {0} × Tn. The only objects
that remain to be determined are ∂0g00 and ∂0g0i . We shall let the condition
Dµ|t=0 = 0 determine these quantities. Assuming we had a metric g, we
would obtain, for t = 0,

Γ0 = −1

2
∂0g00 − tr κ

where we have used (59) and (60). We thus require

∂0g00|t=0 = −2F0|t=0 − 2 tr κ. (62)

Note that since F0 only depends on the coordinates and on the metric, the
right hand side has already been defined for t = 0. We also have, assuming
we had a metric g,

Γl = −∂0g0l + 1

2
gij(2∂i gjl − ∂lgij).

Consequently we require

∂0g0l|t=0 =
[
−Fl + 1

2
gij(2∂i gjl − ∂lgij)

]∣∣∣
t=0

. (63)
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4.2. Development of the data

Due to (62) and (63), we know that Dµ = 0 for t = 0. However, in order to
be allowed to conclude that Dµ is zero, we need to know that ∂0Dµ is zero
for t = 0. On the other hand, we have no more freedom left in specifying
initial data. However, it will turn out that the last condition is a consequence
of the constraint equations. We thus obtain the following result.

Proposition 1. Let (h, κ, φ0, φ1) be given on Tn, where h is a Riemannian
metric, κ is a covariant 2-tensor and φ0, φ1 are functions. Assume

(h, κ) ∈ Hk+1
[
T

n, Mn(R)
] × Hk

[
T

n, Mn(R)
]
,

(φ0, φ1) ∈ Hk+1(Tn) × Hk(Tn),

where k > n/2+1. Define gµν|t=0 by (58) and (59), (∂tgµν)|t=0 by (60), (62)
and (63) and define φ|t=0, (∂tφ)|t=0 by (61). Then there are T− < 0 < T+
and a unique solution

g ∈ C2
[
I × Tn, Mn+1(R)

]
, φ ∈ C2[I × Tn,R] (64)

to (53) and (54), where I = (T−, T+), such that g00 < 0 and gij are the
components of a positive definite matrix. Furthermore

g ∈ L∞{
I, Hk+1[

T
n, Mn+1(R)

]}
, φ ∈ L∞[I, Hk+1(Tn)] (65)

∂tg ∈ L∞{
I, Hk

[
T

n, Mn+1(R)
]}

, ∂tφ ∈ L∞[I, Hk(Tn)]. (66)

Let Tmax be the supremum of the times T+ > 0 such that there is a solu-
tion (g, φ) on [0, T+) satisfying the above conditions. If Tmax < ∞ one
of the following two statements have to be true. 1. There is a sequence
(tl, xl) ∈ [0, Tmax) × Tn such that either g00(tl, xl) → 0 or the smallest
eigenvalue of {gij(tl, xl)} tends to zero as l tends to infinity. 2. We have the
following limit:

lim
t→Tmax−

sup
0≤τ≤t

∑
|α|+ j≤2

sup
x∈Tn

[∥∥∂α∂
j
t g(τ, x)

∥∥ + ∣∣∂α∂
j
t φ(τ, x)

∣∣] = ∞.

There is an analogous statement concerning Tmin which is defined analo-
gously to Tmax. In particular, Tmax and Tmin are independent of k. If we
assume the initial data to be smooth, we get a unique smooth solution
(g, φ) to (53) and (54) on Imax = (Tmin, Tmax) such that g00 < 0 and gij
are the components of a positive definite matrix. Then g is a smooth
Lorentz metric on M = Imax × Tn and {t} × Tn are Cauchy hypersur-
faces in the Lorentz manifold (M, g) for t ∈ Imax. If we furthermore assume
that (17) and (18) are satisfied on an open subset S ⊆ Tn, then (g, φ)
satisfy (12) and (13) on D(S), where D(S) is defined with respect to the
metric g.
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Remark. Here Mn(R) denotes the set of n × n-matrices and we think of h
and k as such matrices whose elements are given by the corresponding
components with respect to the standard basis {∂i} of the tangent space
of Tn . Furthermore, we think of g as being Mn+1(R) valued, the elements of
the matrix being the the components of g with respect to {∂µ}. The regularity
condition in the existence statement is of course far from optimal. However,
with the methods we use to close the bootstrap, we need this degree of
regularity. When we write D(S), we, strictly speaking, mean D({0} × S),
cf. the notation of Subsect. 3.2.

Proof. The existence result and continuation criterion can, up to small
modifications, be found in standard textbooks on non-linear hyperbolic
PDE’s, so we shall take this for granted. Since g00 < 0 and gij are the
components of a positive definite metric, a linear algebra argument suf-
fices to conclude that gµν are the components of a Lorentz metric and
that g00 < 0, cf. Lemma 2. This means that the gradient of the func-
tion t : M → R defined by t(x0, . . . , xn) = x0 is past directed timelike
(here we use the convention that ∂t is future directed). Consequently, if
γ : (s−, s+) → M is a future directed causal curve, t ◦ γ is a strictly
monotonically increasing function. Thus a causal curve can intersect the
hypersurfaces {t} × Tn at most once. If the image of γ is contained in
the past of, say, {t} × Tn , then γ([s0, s+)) is contained in a compact
subset of M for s0 ∈ (s−, s+). Using this fact, the causality of γ , the
fact that g00 < 0 and the fact that gij are the components of a posi-
tive definite metric, one can conclude that γ is extendible to the future.
We conclude that all the hypersurfaces {t} × Tn are Cauchy hypersur-
faces.

In order to prove that (g, φ) satisfy (12) and (13) on D(S), all we need
to prove is that Dµ and ∂0Dµ equal zero on S. The reason for this is that
on M, we have (57). Given that the initial data for Dµ are zero on S, stan-
dard uniqueness results for linear equations on globally hyperbolic Lorentz
manifolds yield the desired conclusion, cf. Theorem 6. We already know
that Dµ = 0 initially due to our choice of initial data, but we need to prove
that ∂0Dµ = 0 initially.

The solution we obtain solves (55). Note that in this equation, Mαβ = 0
initially, since Dµ = 0 initially. Let us contract (55) with Nµ Xν for t = 0,
where X is orthogonal to N. Then, on S, the left hand side is zero since the
constraints are fulfilled and the right hand side is

−1

2
Nµ Xν(∂µDν + ∂νDµ).

Note that the part of the covariant derivative involving Christoffel symbols
vanishes due to the fact that Dµ = 0 initially. Since Xν∂νDµ = 0 for t = 0,
we obtain

∂0Di = 0
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on S for t = 0, i = 1, . . . , n. If we contract (55) with Nµ Nν , we ob-
tain

∂0D0 = 0

on S by a similar argument. The proposition follows. ��

4.3. The equations

To sum up, we shall in the end restrict our attention to the equations

R̂00 + 2ωΓ 0 − 2nω2 − (∂tφ)2 − 2

n − 1
V(φ)g00 = 0 (67)

R̂0i − 2ω(Γi − nωg0i) − ∂tφ∂iφ − 2

n − 1
V(φ)g0i = 0 (68)

R̂ij − ∂iφ∂jφ − 2

n − 1
V(φ)gij = 0 (69)

gαβ∂α∂βφ − nω∂0φ − V ′(φ) = 0, (70)

where the indices i, j run from 1 to n and R̂µν is given by (47). Furthermore,
we shall only consider these equations on R× Tn and one should not think
of any of the objects appearing as tensors but rather as the components with
respect to the standard basis for the tangent space of R×Tn . The advantage
of this system is that it behaves well even when the initial data do not satisfy
the constraints, cf. the comments made in the introduction.

5. The modified Ricci tensor

Lemma 4. Let R̂µν be given by (47), where Fµ is defined in (46). Then

R̂µν = −1

2
gαβ∂α∂βgµν + ng0(µ∂ν)ω + 1

2
nω∂0gµν + Aµν,

where

Aµν = gαβgγδ[∂αgνγ ∂βgµδ − ΓανγΓβµδ].

Proof. Consider

∇µFν = ∂µFν − Γ α
µν Fα.

Note that

Γ α
µν Fα = nωg0αΓ

α
µν = nωΓµ0ν = 1

2
nω(∂µg0ν + ∂νg0µ − ∂0gµν).

Since

∂µFν = nω(∂µω)g0ν + nω∂µg0ν,
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we obtain

∇(µFν) = ng0(ν∂µ)ω + 1

2
nω∂0gµν.

Let us turn to the squares of the Christoffel symbols. The expression of
interest is

Aµν = gαβgγδ[ΓαγµΓβδν + ΓαγµΓβνδ + ΓαγνΓβµδ].
Since

Γβδν + Γβνδ = ∂βgδν,

we have

Aµν = gαβgγδ[Γαγµ∂βgδν + ΓαγνΓβµδ]
= gαβgγδ[Γβδµ∂αgγν + ΓαγνΓβµδ]
= gαβgγδ[∂βgµδ∂αgγν + (Γαγν − ∂αgγν)Γβµδ]
= gαβgγδ[∂βgµδ∂αgγν − ΓανγΓβµδ],

where the second step only involves a renaming of indices. The lemma
follows. ��

Note that we can write

Aµν = Iµν + IIµν + IIIµν + IVµν + Vµν + VIµν,

where

Iµν = g00g00(∂0g0µ∂0g0ν − Γ0µ0Γ0ν0) (71)

IIµν = g00g0p[∂0g0µ(∂0gpν + ∂pg0ν) + ∂0g0ν(∂0gpµ + ∂pg0µ)

− 2Γ0µ0Γ0νp − 2Γ0ν0Γ0µp] (72)

IIIµν = g00gpl(∂0gpµ∂0glν + ∂pg0µ∂lg0ν − 2Γ0µpΓ0νl) (73)

IVµν = g0 j g0p[∂0g0µ∂jgpν + ∂0gpµ∂j g0ν + ∂jg0µ∂0gpν + ∂j gpµ∂0g0ν

− Γ0µ0Γjνp − 2Γ0µpΓ0ν j − ΓjµpΓ0ν0] (74)

Vµν = gplg0 j(∂0gpµ∂jglν + ∂j gpµ∂0glν + ∂lg0µ∂pgjν + ∂lgjµ∂pg0ν

− 2Γ0µpΓjνl − 2ΓjµpΓ0νl) (75)

VIµν = gplgij(∂igpµ∂jglν − ΓiµpΓjνl). (76)

Before we start separating the relevant parts from the irrelevant ones in these
terms, let us comment on what can be considered to be small and what has
to be taken into account. In the end, we shall be perturbing around a metric
of the form (44). For the metric (44), ∂tgij = 2ωgij . Consequently, from
a perturbation point of view, all terms that involve spatial derivatives can
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be considered to be small, as well as g00 + 1, g00 + 1, g0i , g0i , ∂0g00, ∂0g0i
and ∂0gij − 2ωgij . The relevant part of Aµν is the one which involves terms
consisting of at most one small factor. From this point of view, we see that
Iµν, IIµν and IVµν do not contain any relevant terms.

Lemma 5. Given the definitions (71)–(76), we have

III0m = 2ωg00
(
∂0g0m − 1

2
∂mg00

)
+ ∆III,0m, (77)

IIIij = 2ωg00∂0gij − 2ω2g00gij + ∆III,ij , (78)

V0m = −2ω2g00g0m + ∆V,0m, (79)

VI00 = nω2 − ωgij∂0gij + 2ωgij∂igj0 + ∆VI,00, (80)

VI0m = ωgijΓimj + ∆VI,0m, (81)

where ∆III,0m, ∆III,ij , ∆V,0m ∆VI,00 and ∆VI,0m are given by (82)–(86)
respectively.

Remark. In the end, we shall not need to know much concerning the struc-
ture of the non-linear terms in order to be able to estimate them in Hk. In
fact, it will be enough to count that the number of factors that are “small”,
cf. the discussion prior to the statement of the lemma, is two or greater,
something which is automatically true due to our definition of error terms,
and to count the number of downstairs spatial indices minus the number of
upstairs spatial indices, something which is also clear from the context, in
order to be able to write down the estimate in Hk immediately.

Proof. The result is obtained by straightforward computations. The irrele-
vant terms are given by

∆III,0m = g00
(
gpl∂0glm − 2ωδp

m

)(
∂0gp0 − 1

2
∂pg00

)

+ 1

2
g00gpl∂pg00(∂lg0m + ∂mg0l), (82)

for III0m ,

∆III,ij = g00gpl
[
∂pg0i∂lg0 j − 1

2
(∂pg0i − ∂ig0p)(∂lg0 j − ∂jg0l)

]

− 1

2
g00

[(
gpl∂0gip − 2ωδl

i

)
(∂lg0 j − ∂jg0l)

+ (
gpl∂0gjl − 2ωδ

p
j

)
(∂pg0i − ∂ig0p)

]
+ ωg00(gjlg

pl − δ
p
j

)
∂0gip + 1

2
g00(gpl∂0gip − 2ωδl

i

)
(∂0gjl − 2ωgjl),

(83)
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for IIIij (note that gjlgpl − δ
p
j = −gj0gp0),

∆V,0m = gplg0 j(∂0gp0∂j glm + ∂jgp0∂0glm + ∂lg00∂pgjm

+ ∂lgj0∂pg0m − 2Γ00pΓjml)

− gplg0 j
[
(∂jgp0 + ∂pgj0)Γ0ml − 1

2
∂0gjp(∂lg0m − ∂m g0l)

]

+ ωg0l(∂0gml − 2ωgml) + 1

2
g0 j

(
gpl∂0gjp − 2ωδl

j

)
∂0gml (84)

for V0m,

∆VI,00 = gij gpl∂igp0∂j gl0 + 1

2
gpl

(
gij∂0gip − 2ωδ j

p

)
(∂j gl0 + ∂lgj0)

− 1

4
gij gpl(∂igp0 + ∂pgi0)(∂j gl0 + ∂lgj0)

− 1

4

(
gij∂0gip − 2ωδ j

p

)(
gpl∂0gjl − 2ωδ

p
j

)
(85)

for VI00 and

∆VI,0m = gplgij
[
∂igp0∂j glm − 1

2
(∂igp0 + ∂pgi0)Γjml

]

+ 1

2
gij

(
gpl∂0gpi − 2ωδl

i

)
Γjml (86)

for VI0m . ��
Let

∆I,µν = Iµν, ∆II,µν = IIµν, ∆IV,µν = IVµν, ∆III,00 = III00,

∆V,00 = V00, ∆V,ij = Vij , ∆VI,ij = VIij ,

and

∆A,µν = ∆I,µν + . . . + ∆VI,µν. (87)

Then

A00 = nω2 − ωgij∂0gij + 2ωgij∂igj0 + ∆A,00

A0m = 2ωg00∂0g0m − 2ω2g00g0m − ωg00∂mg00 + ωgijΓimj + ∆A,0m

Aij = 2ωg00∂0gij − 2ω2g00gij + ∆A,ij . (88)

Let us turn our attention to the correction terms introduced.
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Lemma 6. We have

A00 + 2ωΓ 0 − 2nω2 = ω∂0g00 + nω2(g00 + 1) + nω2g00

+ ∆A,00 + ∆C,00 (89)

A0m − 2ω(Γm − nωg0m) = 2(n − 1)ω2g0m − ωgijΓimj + ∆A,0m + ∆C,0m,

(90)

where ∆C,00 and ∆C,0m are given by (92) and (93) respectively.

Proof. Note that

(g00 + 1)g00 = g00g00 + g0i g0i − g0ig0i + g00 = g00 + 1 − g0ig0i,

so that

g00 + 1 = 1

g00

(
g00 + 1 − g0i g0i

)
. (91)

Using this observation, one can compute that

2ωΓ 0 = ω∂0g00 + ωgij∂0gij + 2nω2(g00 + 1) − 2ωgij∂jgi0 + ∆C,00,

where

∆C,00 = −2nω2

g00

[
(1 + g00)

2 − g0ig0i
] − ω(g00 + 1)

(
gij∂0gij − 2nω

)
+ 2ω(g00 + 1)gij∂igj0 + ω(g00g00 − 1)∂0g00

+ 2ωg00g0i(Γ0i0 + 2Γ00i) + 4ωg0ig0 jΓ0 ji + 2ωgij g0pΓipj. (92)

Thus we obtain (89). Let us compute

−2ω(Γm − nωg0m) = −2ωg00∂0g0m + ωg00∂mg00 + 2ω2g00g0m

− 2ωgijΓimj + 2(n − 1)ω2g0m + ∆C,0m,

where

∆C,0m = 2ω2(g00 + 1)g0m − 2ωg0i(∂0gmi − 2ωgmi + ∂igm0 − ∂mgi0).
(93)

Consequently, (90) holds. ��

6. Rough control

The precise form of the equations depends on the particular potential, and
therefore we wish to postpone writing down the equations for as long as
possible. Some of the bootstrap assumptions we shall make in the end do,
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however, have consequences independent of the potential, and so we wish
to begin with them.

Assume we have a solution to (67)–(70) on some time interval [t0 , T ). On
this interval we make the following bootstrap assumptions. Assume that
there are constants K and c1 > 1 such that, using the notation u[g] = g00+1
and the notation of Sect. 2,

c−1
1 |w|2 ≤ e−2Ω−2K |w|2g�

≤ c1|w|2, (94)

|u[g]| ≤ η, (95)

|v[g]|2 ≤ ηc−1
1 e2Ω−2r+2K , (96)

for all w ∈ Rn , and all (t, x) ∈ [t0, T ) × Tn. Here Ω and r are non-negative
functions of t in [t0,∞) and η ∈ (0, 1) is a constant. At a later stage, we
shall impose more strict conditions on these quantities. Due to the bootstrap
assumptions (94) and (95) and Lemma 1, we conclude that gµν are the
components of a Lorentz metric. Thus we can speak of the inverse of g and
we denote the components of the inverse by gµν.

Lemma 7. Let gµν be the components of a matrix valued function on
[t0, T ) × Tn satisfying the conditions (94)–(96) where Ω, r ≥ 0 for t ≥ t0.
Then g is a Lorentz metric and there is a numerical constant η0 > 0 such
that if we assume η ≤ η0 in (95) and (96), we have

|v[g−1]| ≤ 2c1e−2Ω−2K |v[g]| (97)

|(v[g], v[g−1])| ≤ 2c1e−2Ω−2K |v[g]|2 (98)

|u[g−1]| ≤ 4η, (99)
2

3c1
|w|2 ≤ e2Ω+2K |w|2g� ≤ 3c1

2
|w|2 (100)

for all w ∈ Rn, t ∈ [t0, T ) and x ∈ Tn. Here we use the notation (ξ, ζ) for
the ordinary scalar product of ξ, ζ ∈ Rn.

Proof. Let A be the square root of g−1
� . Using (94), we get

|v[g−1]|2 ≤ c1e−2Ω−2K |v[g−1]|2g�
.

However, multiplying (36) with A−1 and taking absolute values, we get

|v[g−1]|2g�
= 1(

d2 − g00
)2 |Av[g]|2 ≤ c1e−2Ω−2K

(
d2 − g00

)2 |v[g]|2,

where we have also used (94). Combining these two inequalities, we get

|v[g−1]|2 ≤ c2
1e−4Ω−4K

(
d2 − g00

)2 |v[g]|2.
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Since 1/(d2 − g00)
2 ≤ 1/g2

00, which can be assumed to be arbitrarily close
to 1 by imposing conditions on η0, we get (97). The estimate (98) is then an
immediate consequence of this.

In order to prove (99), let us first note that

d2 = |v[g]|2
g−1
�

= |Av[g]|2 ≤ c1e−2Ω−2K |v[g]|2 ≤ η, (101)

where we have used (94), (96) and the fact that r ≥ 0. Using (34) we get

|u[g−1]| ≤ |u[g]| + d2

d2 − g00
.

Combining this estimate with (95) and (101), we see that for η0 small
enough, (99) holds.

Finally, note that due to (35) and (94), we have

|w|2g� ≤ |w|2
g−1
�

= |Aw|2 ≤ c1e−2Ω−2K |w|2.

Similarly,

|w|2g� ≥ g00

g00 − d2
|w|2

g−1
�

≥ g00

g00 − d2
c−1

1 e−2Ω−2K |w|2.

Since g00/(d2−g00) can be assumed to be arbitrarily close to 1 by demanding
that η0 be small enough, the lemma follows. ��

7. Energies

The exact form of the energies will in the end depend on the particular
potential, but in the cases we are interested in, they will be equivalent to
objects we now define. In some cases, the background scalar field converges
to zero, but in others it tends to infinity. Consequently, it is sometimes
necessary to subtract the background solution.

Definition 6. Assume that the scalar field corresponding to the background
solution around which we are perturbing is φ0. Then we let

ψ = φ − φ0. (102)

Furthermore, we define

u = g00 + 1, ui = g0i, hij = e−2Ωgij . (103)
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Let us also introduce the notation

‖ f ‖Hk =
( ∑

|α|≤k

∫
Tn

(∂α f )2dx
)1/2

,

where

∂α f = ∂|α| f
∂(x1)α1 · · · ∂(xn)αn

,

and α is a multiindex, α = (α1, . . . , αn) for non-negative integers αi . Even
when f ∈ C∞(I ×Tn) for some interval I , we shall take it to be understood
that ∂α f only means differentiation with respect to the last n variables.
When we write ∂µ f on the other hand, we take it to be understood that µ is
a number from 0 to n.

We shall express the estimates in terms of the following quantities

Elp,k = 1

2

∑
|α|≤k

∫
Tn

{(
∂α∂tu

)2 + (
∂α∂tψ

)2 + gij
(
∂α∂iu∂α∂ju + ∂α∂iψ∂α∂jψ

)

+ ω2[(∂αu)2 + (∂αψ)2]}dx

Es,k = 1

2

∑
|α|≤k

∑
i

∫
Tn

[(
∂α∂tui

)2 + glm∂α∂lui∂
α∂mui + ω2(∂αui

)2]
dx

Em,k = 1

2

∑
|α|≤k

∑
i, j

∫
Tn

[(
∂α∂thij

)2 + glm∂α∂lhij∂
α∂mhij

+ aαω
2e−2r

(
∂αhij

)2]
dx,

where aα = 0 for α = 0 and aα = 1 otherwise. The reason we have to
introduce aα is that we want all of these quantities to be zero for the solution
around which we are perturbing. The reason we include the factor e−2r is
that we want Em to decay, which is also not to be expected without this
added factor. It will be more natural to express the bootstrap assumptions
in terms of the following quantities:

Êlp,k = ω−2e2r Elp,k, Ês,k = ω−2e−2Ω+2r−2K Es,k,

Êm,k = ω−2e2r−4K Em,k. (104)

We shall also use the notation

Êk = Êlp,k + Ês,k + Êm,k.

The main bootstrap assumption we shall be making in the end is that

Ê1/2
k0

(t) ≤ ε (105)

for some k0 > n/2 + 1, ε ≤ 1 and for all t in some time interval [t0, T ).



162 H. Ringström

Lemma 8. Assuming (94)–(96) hold on [t0, T ) × Tn where η ≤ η0, n ≥ 3
and Ω, r ≥ 0 for t ≥ t0, we have, on [t0, T ) × Tn:

er
[‖ψ‖Hk + ω−1‖∂tψ‖Hk + e−Ω−K ω−1‖∂iψ‖Hk

] ≤ CÊ1/2
lp,k

(106)

er
[‖u‖Hk + ω−1‖∂tu‖Hk + e−Ω−K ω−1‖∂iu‖Hk

] ≤ CÊ1/2
lp,k

(107)

e−Ω+r−K
[‖um‖Hk + ω−1‖∂tum‖Hk + e−Ω−K ω−1‖∂ium‖Hk

] ≤ CÊ1/2
s,k

(108)

e−2Ω+r−2K
[
ω−1‖∂tgij − 2ωgij‖Hk + e−Ω−K ω−1‖∂lgij‖Hk

] ≤ CÊ1/2
m,k

(109)

e−2Ω−2K
∥∥∂αgij

∥∥
2 ≤ CÊ1/2

m,k
(110)

where the last estimate is valid for 0 < |α| ≤ k and the constants depend
on c1.

Remark. The constant η0 is the one appearing in the statement of Lemma 7.
There is structure in the above estimates which is worth keeping in mind.
The number of (−Ω − K)’s appearing in the exponent corresponds to the
number of spatial indices downstairs inside the Hk norm, including spatial
derivatives. Note also that there is a gain of er in all the estimates except
one, namely (110). All the norms appearing on the left hand side are on
a fixed time slice. In other words, when we write ‖ψ‖Hk , we strictly speaking
mean ‖ψ(t, · )‖Hk . Below, we shall quite consistently abuse notation in this
fashion.

Proof. Using (100), the estimates are immediate consequences of the defin-
itions. Note for instance that

∂thij = e−2Ω(∂tgij − 2ωgij ).

The lemma follows. ��

8. Sobolev estimates for the inverse

Let us turn to estimating the derivatives of the components of the inverse of
the metric. We shall use the following standard result, where ‖ · ‖p signifies
the L p norm of a measurable function defined on Tn.

Theorem 8. Assume f1, . . . , fl ∈ Hm(Tn) ∩ L∞(Tn). Then there is a con-
stant C depending on n, m and l such that if β1, . . . , βl are multiindices
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with |β1| + . . . + |βl| = m, then

∥∥∂β1 f1 · · · ∂βl fl

∥∥
2 ≤ C

l∑
i=1

∏
j �=i

‖ fj‖∞
∑

|β|=m

∥∥∂β fi

∥∥
2.

Due to this theorem and the bootstrap assumptions, we obtain estimates
for the inverse of the metric.

Lemma 9. Let gµν be the components of a matrix valued function on
[t0, T )×Tn satisfying the conditions (94)–(96), where η ≤ η0 and Ω, r ≥ 0
for t ≥ t0. Then g is a Lorentz metric, and if we denote the components of
the inverse by gµν, we have, for 0 < |α| ≤ k,

er‖∂αg00‖2 ≤ CÊ1/2
k , (111)

e2Ω+2K‖∂αglm‖2 ≤ CÊ1/2
k , (112)

eΩ+r+K ‖g0l‖Hk ≤ CÊ1/2
k . (113)

Proof. Note that

∂ig
λσ = −gµλgσν∂igµν.

In general, ∂αgλσ is, up to numerical factors, a sum of terms of the form

gµ1λgµ2ν1 · · · gµlνl−1 gσνl∂α1 gµ1ν1 · · · ∂αl gµlνl , (114)

where α1 + . . . + αl = α, and αi �= 0 (note that here α1, . . . , αl are
multiindices, not the components of α). Let us introduce the notation that
the number of g00 factors in (114) is la, the number of g0i factors is lb and the
number of gij factors is lc. Furthermore, let us denote the number of factors
of the form ∂βg00 for some multiindex β by l1, the number of factors of the
form ∂βg0i by l2 and the number of factors of the form ∂βgij by l3. It is of
interest to analyze how these numbers change when we apply ∂i to (114).
If ∂i hits a factor of the form ∂βgµν , then the numbers do not change. If ∂i

hits a factor of the form g00, there are three possibilities for how the numbers
can change

(la, l1) �→ (la + 1, l1 + 1) (115)
(lb, l2) �→ (lb + 1, l2 + 1) (116)

(la, lb, l3) �→ (la − 1, lb + 2, l3 + 1). (117)

By this notation we mean that only the numbers that appear on the left
hand side are changed. Thus in the first case, l2, l3, lb, lc remain unchanged.
Consider the case when ∂i hits a g0l factor. There are four cases to consider:

(la, l1) �→ (la + 1, l1 + 1) (118)
(lb, l2) �→ (lb + 1, l2 + 1) (119)
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(lc, l3) �→ (lc + 1, l3 + 1) (120)
(la, lb, lc, l2) �→ (la + 1, lb − 1, lc + 1, l2 + 1). (121)

Finally, let us assume ∂i hits a glm factor. We have

(lb, lc, l1) �→ (lb + 2, lc − 1, l1 + 1) (122)
(lb, l2) �→ (lb + 1, l2 + 1) (123)
(lc, l3) �→ (lc + 1, l3 + 1). (124)

Note that l1, l2, l3 are monotonically increasing, but that la, lb, lc are not.
Let us estimate an expression of the form (114) using Theorem 8. Due

to (96), (97), (99) and (100), we have the estimates

‖g00‖∞ ≤ 5, ‖g0i‖∞ ≤ Ce−Ω−r−K , ‖gij‖∞ ≤ Ce−2Ω−2K ,

where C is a constant depending on c1. For this reason, we rewrite the
factors of the form gµν in the following way:

g0i = e−Ω−r−K (eΩ+r+K g0i), gij = e−2Ω−2K (e2Ω+2K gij ).

Since we have the estimates

|g00| ≤ 2, |g0i| ≤ CeΩ−r+K , |gij | ≤ Ce2Ω+2K ,

due to (94)–(96), we shall also rewrite the factors of the form ∂βgµν accord-
ing to

∂βg0i = eΩ−r+K
(
e−Ω+r−K ∂βg0i

)
, ∂βgij = e2Ω+2K

(
e−2Ω−2K∂βgij

)
.

We get the estimate∥∥gλµ1 gµ2ν1 · · · gµlνl−1 gνlσ∂α1 gµ1ν1 · · · ∂αl gµlνl

∥∥
2

≤ C exp{−(Ω + K )[2(lc − l3) + lb − l2] − r(lb + l2)}
×

∑
|β|=|α|

(
l1

∥∥∂βg00

∥∥
2 + l2e−Ω+r−K

∑
l

∥∥∂βg0l

∥∥
2

+ l3e−2Ω−2K
∑
l,m

∥∥∂βglm

∥∥
2

)
,

where α = α1 + . . . + αl (note that before applying Theorem 8, we take
out all the gµν factors in the L∞-norm). The reason we have included the
factors li is that we wish to distinguish between the cases li = 0 and li > 0.
The point is to consider how the expressions

lH = lb − l2 + 2(lc − l3), lD = lb + l2 (125)

change when applying ∂i to (114). Due to (115)–(124), we conclude that lH
is conserved, but that lD is monotonically increasing. That lH is conserved is
not so surprising since it simply counts the number of upstairs spatial indices
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minus the number of downstairs spatial indices (disregarding derivatives).
Note that the operations that increase lD are (116), (117), (119), (122)
and (123).

Let us estimate ∂αg00 for some α �= 0. Note that

∂ig
00 = −g00g00∂ig00 − 2g00g0l∂ig0l − g0lg0m∂iglm . (126)

Let us start with g00g00∂ig00. In this case, lH = lD = 0. However, if,
when differentiating, we are supposed to obtain a term with a factor of the
form ∂j g0l or ∂j glm , then we have to go through one of the processes (116)
or (117) both of which increase lD by 2. Consequently, we get an estimate

∥∥∂α
(
g00g00∂ig00

)∥∥
2 ≤ C

∑
|β|=|α|+1

(∥∥∂βg00

∥∥
2 + e−Ω−r−K

∑
l

∥∥∂βg0l

∥∥
2

+ e−2Ω−2r−2K
∑
l,m

∥∥∂βglm

∥∥
2

)
.

For the other two terms in the right hand side of (126), lH = 0 initially and
lD = 2. The estimates for the last two terms are thus better than the estimate
for the first term. Adding up, we obtain

er‖∂αg00‖2 ≤ CSk,

where

Sk =
∑

0<|β|≤k

(
er

∥∥∂βg00

∥∥
2 + e−Ω+r−K

∑
l

∥∥∂βg0l

∥∥
2

+ e−2Ω−2K
∑
l,m

∥∥∂βglm

∥∥
2

)
.

In fact, we obtain a somewhat better result as far as the factors of er in front
of different terms are concerned, but we shall have no reason to use this
improvement. Using (107), (108) and (110), this proves (111). Let us turn
to ∂αg0l. We have

∂i g
0l = −g00g0l∂ig00 − g0mg0l∂i g0m − g00glm∂ig0m − g0 j glm∂igjm.

For all the terms in the right hand side except for the second one, we have
lH = 1 and lD = 1. For the second term, we have lH = 1 and lD = 3, but
this improvement will not be of any use to us. We thus obtain

eΩ+K+r‖∂αg0l‖2 ≤ CSk,

which, in combination with (97) and (108) (note that these are necessary to
deal with the case α = 0), implies (113). Finally,

∂i g
lm = −gl0gm0∂ig00 − glpgm0∂i gp0 − gl0gmp∂igp0 − glpgmq∂igpq.

We obtain (112) by arguments similar to ones presented above. ��
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9. Estimates for the non-linearity

In this section we shall be making the bootstrap assumptions that (105)
holds as well as (94)–(96), where η ≤ η0 and Ω, r ≥ 0 for t ≥ t0. Before
we write down the consequences of these assumptions, let us observe that
due to Theorem 8, we have an estimate of the form

‖ f1 · · · fl‖Hk

≤ C
( ∑

0<|α|≤k

l−1∑
i=1

∥∥∂α fi

∥∥
2

∏
j �=i

‖ fj‖∞ + ‖ f1‖∞ · · · ‖ fl−1‖∞‖ fl‖Hk

)
. (127)

The point of this estimate is that the only function we estimate in L2 is fl,
cf. (111) and (112), which are only valid for |α| > 0. It will be of interest
to estimate e.g. 1/g00 in Hk and in order to be able to do that, we need the
following result.

Lemma 10. Let F ∈ C∞(I ) for some open interval I and let f ∈ Hk(Tn)∩
L∞(Tn), where k > 0. Let J = [a, b], where a is the essential infimum
and b is the essential supremum of f and assume that J ⊂ I . Then there
is a constant, depending on k, the supremum of F and its derivatives up to
order k on J and on ‖ f ‖∞ such that for any α with |α| = k,

‖∂αF ◦ f ‖2 ≤ C
∑
|β|=k

‖∂β f ‖2.

Remark. The case α = 0 is special. If F(0) = 0, it can be dealt with
similarly, but not otherwise.

Proof. The result follows from the fact that ∂αF ◦ f is, up to numerical
factors, a sum of terms of the form

(∂lF) ◦ f ∂α1 f · · · ∂αl f,

where α1 + · · · + αl = α. ��
Lemma 11. Let gµν be the components of a matrix valued function satisfy-
ing (105) and (94)–(96) where η ≤ η0 and Ω, r ≥ 0 for t ≥ t0. Then gµν are
the components of a Lorentz metric and we have the following estimates:

e−2Ω−2Kω−1‖∂t glm‖C1 ≤ C, (128)

e−2Ω−2Kω−1
∥∥∂α∂tglm

∥∥
2 ≤ CÊ1/2

m,k, (129)

the last inequality being valid for 0 < |α| ≤ k. Furthermore,

erω−1
∥∥gij∂tgjm − 2ωδi

m

∥∥∞ ≤ Cε, (130)

erω−1
∥∥gij∂tgjm − 2ωδi

m

∥∥
Hk ≤ CÊ1/2

k , (131)
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er‖g00 + 1‖Hk ≤ CÊ1/2
k , (132)

er‖g00 + 1‖∞ ≤ Cε, (133)

er

∥∥∥∥∂α

(
1

g00

)∥∥∥∥
2

≤ CÊ1/2
lp,k, (134)

for 0 < |α| ≤ k. Note that the constants in the estimates are allowed to
depend on c1. Finally,

er−2K
[
ω−1‖∂thij‖Hk + e−Ω−K ω−1‖∂mhij‖Hk

] ≤ CÊ1/2
m,k, (135)

er−2K
[
ω−1‖∂t∂lhij‖∞ + e−Ω−K ω−1‖∂m∂lhij‖∞

] ≤ Cε. (136)

Proof. The estimate (128) follows from (94), (105), (109), (110) and
Sobolev embedding (note that k0 > n/2 + 1). The inequality (129) follows
from (110) and (109). Note that

gij∂tgjm − 2ωδi
m = gij (∂tgjm − 2ωgjm) − 2ωgi0gm0.

Using (100), (105), (108), (109), (112), (113) and (127), we obtain (130)
and (131). If we apply Lemma 10 with F( f ) = 1/ f and f = g00,
keeping (95) in mind, we obtain (134) for 0 < |α| ≤ k. Due to (91), we
conclude that (132) and (133) hold. Finally, (135) and (136) are immediate
consequences of the definition of the energies and (105). ��

9.1. Algorithm for estimating the non-linear terms

Let us write down a general algorithm for dealing with the non-linear terms,
assuming the bootstrap assumptions hold as stated in the beginning of the
present section. A general term will consist of factors of the form F(g00),
G(g00) and R(ψ), where F, G and R are smooth in the intervals g00, g00

and ψ belong to. Furthermore, there will be la, lb, lc, ld, le and l f factors of
the form gij , g0i , 1 + g00, 1 + g00, g0i and gij respectively. Finally, let us
denote the number of ∂tgij , ∂tg00, ∂ig00, ∂tg0i , ∂ig0 j , ∂i gjl, gij∂tgjl − 2ωδi

l ,
∂tgjm − 2ωgjm, ψ, ∂tψ and ∂iψ factors by l1, . . . , l11 respectively.

Step 1. Rescale all the factors. The relevant factor to take out is

(e−2Ω−2K )la(e−Ω−r−K )lb(e−r)lc(e−r)ld (eΩ−r+K )le(e2Ω+2K)l f

× (ωe2Ω+2K )l1(ωe−r)l2(ωeΩ−r+K )l3(ωeΩ−r+K )l4(ωe2Ω−r+2K )l5

× (ωe3Ω−r+3K )l6(ωe−r)l7(ωe2Ω−r+2K )l8(e−r)l9(ωe−r)l10(ωeΩ−r+K )l11 .

Note that F(g00), G(g00), R(ψ), e2Ω+2K gij , e−2Ω−2K gij as well as
e−2Ω−2Kω−1∂t gij are bounded in L∞. All the remaining factors are bounded
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by Cε in L∞ and by CÊ1/2
k in Hk after rescaling. Let us define

lε = lb + lc + ld + le + l2 + . . . + l11

lh = −2la − lb + le + 2l f + 2l1 + l3 + l4 + 2l5 + 3l6 + 2l8 + l11,

l∂ = l1 + . . . + l8 + l10 + l11.

Note that lh coincides with the number of downstairs spatial indices minus
the number of upstairs spatial indices, including derivatives, and that l∂ is
the number of factors that are derivatives (note that we e.g. regard terms of
the form ∂tgij − 2ωgij as derivatives). With this notation, the factor we have
taken out is

ωl∂ elh (Ω+K )−lεr .

Step 2. Assume lε ≥ 1 and ε ≤ 1. Then the rescaled quantity is bounded in
the Hk-norm by CRk , where

Rk = Ê1/2
k εlε−1. (137)

In order to prove this statement, let us apply (127) to the rescaled quantity
with fl chosen to be one of the factors that contribute to lε. In other words,
if we have to estimate one of

F(g00), G(g00), R(ψ), e2Ω+2K gij , e−2Ω−2K gij , e−2Ω−2Kω−1∂tgij

in anything but L∞, there will always be a derivative hitting these factors.
If the derivatives hit one of

F(g00), G(g00), R(ψ),

we can estimate the result by Ce−rεRk. If the derivatives hit one of

e2Ω+2K gij , e−2Ω−2K gij , e−2Ω−2Kω−1∂tgij ,

we get an estimate CεRk . The remaining terms are bounded by CRk . Since
ε ≤ 1 and r ≥ 0, we obtain the desired conclusion.

Step 3. The estimate we obtain in the end is

Cωl∂ elh (Ω+K )−lεr Ê1/2
k εlε−1. (138)

Assuming lε ≥ 2 and ε ≤ 1, we obtain

Cεωl∂ elh (Ω+K )−lεr Ê1/2
k . (139)

Algorithm. Given a term of the above type, compute that lε ≥ 1. Note
that one obtains lε simply by adding all the factors that are assumed small
in the perturbation argument. After that, compute lh , i.e. the number of
downstairs spatial indices minus the number of upstairs spatial indices,
including derivatives. Finally, compute l∂ , the number of derivatives. The
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estimate for the corresponding term is then of the form (138) if lε = 1 and
of the form (139) if lε ≥ 2.

9.2. Estimates for the non-linearity

The algorithm we have developed makes it trivial to estimate ∆A,µν , ∆C,00
and ∆C,0m.

Lemma 12. Let gµν be the components of a smooth matrix valued function
on [t0, T ) × Tn satisfying (105) and (94)–(96) where η ≤ η0 and Ω, r ≥ 0
for t ≥ t0. Then

‖∆A,00‖Hk + ‖∆C,00‖Hk ≤ Cεω2e−2r Ê1/2
k

‖∆A,0m‖Hk + ‖∆C,0m‖Hk ≤ Cεω2eΩ+K−2r Ê1/2
k

‖∆A,ij‖Hk ≤ Cεω2e2Ω+2K−2r Ê1/2
k ,

where ∆A,µν , ∆C,00 and ∆C,0m are given by (87), (92) and (93) respectively.

Proof. By construction, for any term appearing in ∆A,µν or ∆C,µν, lh is
simply the number of spatial indices in the set {µ, ν}. That lε ≥ 2 is again
true by construction. The reason for the factor ω2 on the right hand side
is that whenever a derivative is missing it is compensated for by a factor
of ω. ��

One object one has to estimate is the commutator between �̂g =
−gµν∂µ∂ν and ∂α, acting on some suitable function, say v. In order to
be able to do so one needs to know something about �̂gv. However, since
we do not wish to write down the equations, we shall make assumptions
on �̂gv in the statement of the lemma.

Lemma 13. Let gµν be the components of a smooth matrix valued function
on [t0, T ) × Tn satisfying (105) and (94)–(96) where η ≤ η0 and Ω, r ≥ 0
for t ≥ t0. Let v be a smooth function on [t0, T ) × Tn such that

ω−1‖∂tv‖Hk + e−Ω−K ω−1‖∂iv‖Hk + ω−2‖�̂gv‖Hk ≤ Celh(Ω+K )−r Ê1/2
k
(140)

for some k > n/2 + 1. Then, for 0 < |α| ≤ k,
∥∥[
�̂g, ∂

α
]
v
∥∥

2 ≤ Cεω2elh (Ω+K )−2r Ê1/2
k , (141)

where the constant depends on

sup
t∈[t0,T )

ω−1e−Ω−K+r , (142)

which we assume to be finite.
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Proof. Note that
[
∂α, gµν∂µ∂ν

]
v

is, up to constant factors, a sum of terms of the form

∂α1∂ig
µν∂α2∂µ∂νv,

where |α1| + |α2| = |α| − 1. It is natural to divide these terms into two
different categories. Either µ = ν = 0 or one of µ,ν �= 0. Let us consider
the second case first. Assuming |α| ≤ k, we have the estimate∥∥∂α1∂ig

jν∂α2∂j∂νv
∥∥

2

≤ C
∑

j

[∥∥∂ig
jν
∥∥∞‖∂νv‖Hk + ‖∂j∂νv‖∞

∥∥∂ig
jν
∥∥

Hk−1

]
, (143)

where we take it to be understood that we sum over ν and over j in the left
hand side. Due to (112) and (113), we obtain

∥∥∂α1∂ig
jν∂α2∂j∂νv

∥∥
2

≤ Ce−Ω−K
∑

j,l

[
ε
(
e−r‖∂tv‖Hk + e−Ω−K ‖∂lv‖Hk

)

+ (
e−r‖∂j∂tv‖∞ + e−Ω−K ‖∂j∂lv‖∞

)
Ê1/2

k

]
where we have used the bootstrap assumptions and Sobolev embedding, in
view of the fact that k0 > n/2 + 1. Due to (140), the fact that r ≥ 0 and the
fact that (142) is bounded, we obtain an estimate of the form (141).

In order to deal with the case µ = ν = 0, we rewrite the corresponding
term

∂α1∂ig
00∂α2∂2

t v = −∂α1∂ig
00∂α2

[
1

g00

(
2g0 j∂j∂tv + g jl∂j∂lv + F

)]
,

where F = �̂gv and |α1 + α2| = |α| − 1 ≤ k − 1. Let us consider the term

∂α1∂ig
00∂α2

[
1

g00
g0 j∂j∂tv

]

= ωe(lh−1)(Ω+K )−3r∂α1
(
er∂ig

00)
× ∂α2

[
1

g00
(eΩ+r+K g0 j)

(
ω−1e−lh (Ω+K )+r∂j∂tv

)]
.

We can estimate this expression in L2 by

ωe(lh−1)(Ω+K )−3rε2 Ê1/2
k .
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Using the fact that ε ≤ 1, that r ≥ 0 and that we allow the constants
to depend on an upper bound of (142), we get the desired estimate. The
argument to deal with

∂α1∂ig
00∂α2

[
1

g00
g jl∂j∂lv

]

is similar, though the estimate is somewhat worse. Finally, using (127),
(111), (140) and the bootstrap assumptions, we can estimate∥∥∥∥∂α1∂ig

00∂α2

[
1

g00
F

]∥∥∥∥
2

as desired. ��

10. Equations

From now on, we shall restrict our attention to potentials of the form de-
scribed in connection with (10) and (11). In the general setup we have
been considering up till now, the background metric is given by (44) with
Ω = Ht, where H > 0 is defined by (10). Consequently ω = H is con-
stant. We shall choose r = aHt for some constant a > 0, which is to be
determined. From now on, we shall also let t0 = 0, so that the conditions
that r,Ω ≥ 0 will be satisfied automatically. The background φ0 around
which we are perturbing is 0, and we shall use the variables defined in (102)
and (103).

Lemma 14. Let V ∈ C∞(R) be such that V(0) > 0, V ′(0) = 0 and
V ′′(0) > 0 and define H > 0 and χ by (10) and (11). Then (67)–(70) are
equivalent to

�̂gu + (n + 2)H∂0u + 2nH2u + ∆00 = 0, (144)

�̂gum + nH∂0um + 2(n − 2)H2um − 2HgijΓimj + ∆0m = 0, (145)

�̂ghij + nH∂0hij + ∆ij = 0, (146)

�̂gφ + nH∂0φ + H2χφ + ∆φ = 0, (147)

where ∆00, . . . ,∆φ are given by (151)–(154) and we use the notation

�̂g = −gαβ∂α∂β.

Proof. Let us define

∆φ,µν = −∂µφ∂νφ − 2

n − 1
[V(φ) − V0]gµν (148)

∆̂φ = V ′(φ) − H2χφ, (149)
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where χ was defined in (11). Letting ∆C,ij = 0,

∆̂µν = ∆A,µν + ∆C,µν + ∆φ,µν, (150)

and using Lemma 4, Lemma 6 and (88), the equations (67)–(70) take the
form

−1

2
gαβ∂α∂βg00 + 1

2
(n + 2)H∂0g00 + nH2(g00 + 1) + ∆̂00 = 0

−1

2
gαβ∂α∂βg0m + 1

2
nH∂0g0m + (n − 2)H2g0m − HgijΓimj + ∆̂0m = 0

−1

2
gαβ∂α∂βgij + 1

2
nH∂0gij + 2Hg00∂0gij − 2H2g00gij − nH2gij + ∆̂ij = 0

−gαβ∂α∂βφ + nH∂0φ + H2χφ + ∆̂φ = 0.

We obtain (144)–(147), where ∆00, . . . ,∆φ are given by

∆00 = 2∆̂00 (151)

∆0m = 2∆̂0m (152)

∆ij = −4Hg0p∂phij + 2e−2Ht∆̂ij (153)

∆φ = ∆̂φ. (154)

Here ∆̂µν is defined in (150), in which ∆φ,µν is defined by (148), and ∆̂φ is
defined by (149). ��

11. Energy estimates

Lemma 15. Consider a solution to the equation

�̂gv + αH∂0v + βH2v = F, (155)

where α > 0 and β ≥ 0. Then there are constants ηc, ζ > 0 and γ, δ ≥ 0,
depending on α and β, such that if

|g00 + 1| ≤ ηc, (156)

and

Eγ,δ[v] = 1

2

∫
Tn

[−g00(∂0v)
2 + gij∂iv∂jv − 2γHg00v∂0v + δH2v2

]
dx,

(157)
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then

Eγ,δ[v] ≥ ζ

∫
Tn

[
(∂0v)

2 + gij∂iv∂jv + ιβ H2v2
]
dx, (158)

where ιβ = 0 if β = 0 and ιβ = 1 if β > 0. Furthermore

dEγ,δ

dt
≤ −ηc HEγ,δ +

∫
Tn

{(∂0v + γHv)F + ∆E,γ,δ[v]}dx,

where ∆E,γ,δ[v] is given by (159).

Remark. If β = 0, then γ = δ = 0.

Proof. If β > 0, choose γ = α/2 and δ = β + α2/2. Then γ 2 < δ, and it
is clear that there is a constant ζ > 0 such that (158) holds, assuming g00 is
close enough to 1. If β = 0, we simply let γ = δ = 0, and the existence of
a ζ > 0 such that (158) holds again follows from the assumption that g00 is
close enough to 1. Compute

dEγ,δ

dt
=

∫
Tn

{−(α − γ)H(∂0v)
2 + (δ − β − γα)H2v∂0v − βγH3v2

− (1 + γ)Hgij∂iv∂jv + (∂0v + γHv)F + ∆E,γ,δ[v]
}
dx,

where

∆E,γ,δ[v] = −γH
(
∂ig

ij
)
v∂jv − 2γH

(
∂ig

0i
)
v∂0v − 2γHg0i∂iv∂0v

− (
∂ig

0i
)
(∂0v)

2 − (
∂j g

ij
)
∂iv∂0v − 1

2

(
∂0g00

)
(∂0v)

2

+
(

1

2
∂0gij + Hgij

)
∂iv∂jv − γH∂0g00v∂0v

− γH(g00 + 1)(∂0v)
2. (159)

Due to our choices, we have, assuming β > 0,

dEγ,δ

dt
= −1

2
H

∫
Tn

[
α(∂0v)

2 + (α + 2)gij∂iv∂jv + αβH2v2]dx

+
∫
Tn

{(∂0v + γHv)F + ∆E,γ,δ[v]}dx.

Since the opposite inequality to (158) also holds, provided we replace ζ
by ζ−1 for ζ small enough, we obtain the conclusion of the lemma for
β > 0. The conclusion in the case β = 0 follows for similar reasons. ��
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Corollary 1. Under the assumptions of Lemma 15, let

Ek =
∑
|α|≤k

Eγ,δ[∂αv].

Then

dEk

dt
≤ −ηc HEk

+
∑
|α|≤k

∫
Tn

{(
∂0∂

αv + γH∂αv
)(

∂αF + [
�̂g, ∂

α
]
v
) + ∆E,γ,δ[∂αv]}dx.

Proof. Given that v satisfies (155), ∂αv satisfies

�̂g(∂
αv) + αH∂0(∂

αv) + βH(∂αv) = ∂αF + [
�̂g, ∂

α
]
v.

The statement follows from Lemma 15. ��
We are now in a position to define the energies with which we shall be

working. Note that all the equations (144)–(147) are of the form considered
in Lemma 15. In the case of (144), (145) and (147), we simply identify the
first three terms on the left hand side with the terms on the left hand side
of (155) and identify the remaining terms with −F. In the case of (146), we
proceed similarly, but in this case, β = 0. With u, um , hij and φ, we can thus
associate constants (αl, βl), (αs, βs), (αm, βm) and (αsf, βsf) respectively.
Due to Lemma 15 we get γ , δ, ηc and ζ with corresponding indices (we
replace the index c with the corresponding index as well). Note that all these
constants only depend on n and χ. From now on we shall assume η ≤ ηmin
in (95) and (96), where

ηmin := min{1, η0, ηl, ηs, ηm, ηsf}/4. (160)

Note that if (94)–(96) are satisfied with η ≤ ηmin, then (156) is satisfied
with ηc replaced by ηl, . . . ,ηsf due to (99). Note also that ηmin only depends
on n and χ. Let us define

Hl,k =
∑
|α|≤k

Eγ l,δl[∂αu], Hs,k =
∑

i

∑
|α|≤k

Eγs,δs

[
∂αui

]
,

Hsf,k =
∑
|α|≤k

Eγsf ,δsf [∂αφ].

Since there is no advantage in separating u and φ, let us introduce

Hlp,k = Hl,k + Hsf,k

and ηlp = min{ηl, ηsf}. Finally, let us introduce

Hm,k =
∑
i, j

∑
|α|≤k

[
Eγm,δm

[
∂αhij

] + 1

2

∫
Tn

aα H2e−2aHt
(
∂αhij

)2
dx

]
, (161)
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where aα = 0 if α = 0 and aα = 1 otherwise, γm = δm = 0, cf. the proof
of Lemma 15, and a is given by

a := 2ηmin

3
. (162)

Note that, since ηmin ≤ 1/4, we have a ≤ 1/6. Note also that Elp,k and Hlp,k
are equivalent in the sense that there is a constant cE > 1 depending on n
and χ such that

c−1
E Elp,k ≤ Hlp,k ≤ cE Elp,k

assuming (94)–(96) are satisfied with η ≤ ηmin. Similarly, Es,k and Hs,k
are equivalent and Em,k and Hm,k are equivalent. Let us rescale similarly
to (104). Since ω = H , r = aHt and Ω = Ht, we define

Ĥlp,k = H−2e2aHt Hlp,k, Ĥs,k = H−2e−2Ht+2aHt−2K Hs,k,

Ĥm,k = H−2e2aHt−4K Hm,k.

Finally, we let

Ĥk = Ĥlp,k + Ĥs,k + Ĥm,k. (163)

Note that in the current context, Êk and Ĥk are equivalent.

12. Differential inequalities

The purpose of this section is to prove the differential inequalities that will
be the essential tools for proving future global existence. When we say
that the bootstrap assumptions hold, we here mean that we have smooth
solutions gµν and φ to (144)–(147) such that (94)–(96) hold on some time
interval [0, T ), where η ≤ ηmin, cf. (160), and that

Ĥ1/2
k0

(t) ≤ ε (164)

on the same time interval for some ε and k0 such that ε ≤ 1 and k0 >

n/2 + 1. Note that under these assumptions, Ĥk and Êk are equivalent, the
relevant constants only depending on n and χ, so that we, for all practical
purposes, can assume that (105) holds. Recall that r,Ω ≥ 0 for t ≥ 0 by
construction in the current setting. Let us write down the estimates that will
be of relevance.

Lemma 16. Assume that the bootstrap assumptions hold. Then

‖∆00‖Hk ≤ CH2εe−2aHt Ĥ1/2
k ,

‖∆0m‖Hk ≤ CH2εeHt+K−2aHt Ĥ1/2
k ,

‖∆ij‖Hk ≤ CH2εe2K−2aHt Ĥ1/2
k ,

‖∆φ‖Hk ≤ CH2εe−2aHt Ĥ1/2
k ,
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where the constants depend on n, k, χ, c1 and the Ck+3 norm of V/V0 in
a neighbourhood of 0.

Remark. The bootstrap assumptions, via Sobolev embedding, imply a bound
for φ only depending on n and χ (recall that ε ≤ 1). This bound corresponds
to the neighbourhood mentioned in the lemma.

Proof. Let us first consider ∆̂µν. The terms arising from ∆A,µν and ∆C,µν

are already under control due to Lemma 12. Concerning ∆φ,µν, note that

V(φ) − V0 = H2φ2 R(φ),

where

R(φ) = n(n − 1)

2V0

∫ 1

0

∫ s

0
V ′′(τφ)dτds.

Since R is a smooth function, we can use the algorithm for estimating ∆φ,µν.
The argument to deal with ∆φ is similar. This yields all the estimates except
the one for ∆ij . The first term on the right hand side of (153) is the only term
we have not yet estimated, but it can be dealt with using the algorithm. ��
Lemma 17. Assume that the bootstrap assumptions hold. Then∥∥[

�̂g, ∂
α
]
u
∥∥

2 ≤ CH2εe−2aHt Ĥ1/2
k ,∥∥[

�̂g, ∂
α
]
um

∥∥
2 ≤ CH2εeHt+K−2aHt Ĥ1/2

k ,∥∥[
�̂g, ∂

α
]
hij

∥∥
2 ≤ CH2εe2K−2aHt Ĥ1/2

k ,∥∥[
�̂g, ∂

α
]
φ
∥∥

2 ≤ CH2εe−2aHt Ĥ1/2
k ,

for all |α| ≤ k, where the constants depend on n, k, χ, c1, the Ck+3 norm
of V/V0 in a neighbourhood of 0 and on an upper bound on H−1e−K .

Proof. This follows from Lemma 13, Lemma 16, (144)–(147), (106)–(110)
and the algorithm (138) (note that we have used a ≤ 1). Strictly speaking,
the estimate for [�̂g, ∂

α]hij is obtained by applying Lemma 13 to e−2K hij . ��
In preparation for the final estimate, let us note that the following esti-

mates hold.

Lemma 18. Assume that the bootstrap assumptions hold. Then∥∥∥∥1

2
∂0gij + Hgij

∥∥∥∥∞
≤ CHεe−2Ht−2K e−aHt,

∥∥∂0g00
∥∥∞ ≤ CHεe−aHt.

Proof. The estimates follow in a straightforward way from estimates we
have already written down. ��
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Finally, we need the following estimates.

Lemma 19. Assume that the bootstrap assumptions hold. Then∥∥∆E,γ l,δl[∂αu]∥∥1 ≤ CHεe−aHt Hl,k, (165)∥∥∆E,γs,δs

[
∂αum

]∥∥
1 ≤ CHεe−aHt Hs,k, (166)∥∥∆E,γm,δm

[
∂αhij

]∥∥
1 ≤ CHεe−aHt Hm,k, (167)∥∥∆E,γsf ,δsf [∂αφ]∥∥1 ≤ CHεe−aHt Hsf,k, (168)

for |α| ≤ k, where ∆E,γ,δ is defined in (159) and the constants depend
on n, χ and an upper bound for H−1e−K .

Proof. Let Eγ,δ be defined as in Lemma 15, ∆E,γ,δ be defined as in (159)
and recall that γm = δm = 0. If the bootstrap assumptions hold, we see that

‖∆E,γ,δ[v]‖1 ≤ CHεe−aHtEγ,δ[v].
This proves the lemma. ��
Lemma 20. Assume that the bootstrap assumptions hold. Then

dĤlp,k

dt
≤ −4aHĤlp,k + CHεe−aHt Ĥ1/2

k Ĥ1/2
lp,k, (169)

dĤs,k

dt
≤ −4aHĤs,k + CHĤ1/2

m,k Ĥ1/2
s,k + CHεe−aHt Ĥ1/2

k Ĥ1/2
s,k , (170)

dĤm,k

dt
≤ He−aHt Ĥm,k + CHεe−aHt Ĥ1/2

k Ĥ1/2
m,k, (171)

where the constants depend an upper bound on H−1e−K , n, k, χ, c1, and
the Ck+3 norm of V/V0 in a neighbourhood of 0.

Proof. Recall that a is defined by (162), so that e.g. ηl ≥ 6a, a fact we shall
use. The inequalities (169) and (171) follow from the estimates we have
written down so far. In the derivation of (171), recall that γm = δm = 0 and
note that when ∂t hits the last factor in the last term of (161), the estimate

aα H2e−2aHt∂αhij∂t∂
αhij ≤ 1

2
He−aHtaα

[
H2e−2aHt

(
∂αhij

)2 − g00
(
∂t∂

αhij
)2

+ (g00 + 1)
(
∂t∂

αhij
)2]

is of use. If the second to last term on the left hand side of (145) did not
exist, we would get (170) without the middle term on the right hand side.
What remains to be estimated is a constant times

H−2e−2Ht+2aHt−2K H1/2
s,k

∥∥HgijΓimj

∥∥
Hk = e−Ht+aHt−K Ĥ1/2

s,k

∥∥gijΓimj

∥∥
Hk .
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Note that
∥∥gijΓimj

∥∥
Hk ≤ C

[
‖gij‖∞‖Γimj‖Hk +

∑
0<|α|≤k

‖∂αgij‖2‖Γimj‖∞
]
.

In order to estimate the right hand side, let us use (110), (109) and (112).
We use (110), the bootstrap assumptions and the fact that k0 > n/2 + 1 to
estimate ‖Γimj‖∞. We then obtain

∥∥gijΓimj

∥∥
Hk ≤ Ce(1−a)Ht+K HĤ1/2

m,k + CεĤ1/2
k .

The lemma follows. ��

13. Global existence

We are now in a position to prove global existence of solutions to
(144)–(147), given that the initial energy is small enough.

Theorem 9. Let V be a smooth function such that V(0) = V0 > 0,
V ′(0) = 0 and V ′′(0) > 0. Let H, χ > 0 be defined by (10) and (11) respect-
ively. Let (ρ, κ, φ0, φ1) be given on Tn, where ρ is a smooth Riemannian
metric, κ is a smooth covariant 2-tensor and φ0, φ1 are smooth func-
tions. Define gµν|t=0 by (58) and (59) (with h replaced by ρ), (∂tgµν)|t=0
by (60), (62), and (63) (with Fµ given by (46) where ω = H), and
define φ|t=0, (∂tφ)|t=0 by (61). This defines initial data for (144)–(147).
Assume that there are constants c1 > 2 and K such that

2

c1
|v|2 ≤ e−2K gij(0, x)viv j ≤ c1

2
|v|2, (172)

for all v ∈ Rn and x ∈ Tn. Let k0 > n/2 + 1 and define Ĥk0 by (163). There
are ε0, c0 ∈ (0, 1), where ε0 and c0 should be small enough, depending on
an upper bound on H−1e−K , on χ, n, k0, c1 and the sup norm of V (i)/V0,
i = 1, . . . , k0 + 3 in a neighbourhood of zero, such that if

Ĥ1/2
k0

(0) ≤ c0ε, (173)

for some ε ≤ ε0, then the solution to (144)–(147) with initial data specified
as above exists for all future times, (94)–(96) are satisfied with η = ηmin
for all t ≥ 0 and

Ĥ1/2
k0

(t) ≤ ε (174)

for all t ≥ 0.

Remark. The size of the neighbourhood on which we need to estimate V/V0
is determined by n and χ, cf. the remark following Lemma 16.
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Proof. Let A denote the set of s ∈ [0,∞) such that

– there exists a smooth solution to (144)–(147) on [0, s),
– (94)–(96) are satisfied on [0, s) with η = ηmin,
– (174) is satisfied on [0, s).

Note that if s ∈ A, then the conditions necessary for deriving the different
inequalities above are satisfied on [0, s). In particular, (169)–(171) hold.
Note also that (144)–(147) are equivalent to (67)–(70), which, in their turn,
are equivalent to (53) and (54), given the choices (46), (51) and (52). Thus,
due to Proposition 1, we have a unique smooth solution to (144)–(147) on
some interval (Tmin, Tmax). Assume c0 ≤ 1/2. Then (174) is satisfied with
a margin for t = 0 and so it will be satisfied on an open interval containing 0.
Since (172) holds, as well as g00 = −1 and g0i = 0 for t = 0, (94)–(96)
are satisfied on an open interval containing 0. We conclude that there is
a T > 0 such that T ∈ A. That A is closed and connected follows from the
definition. What remains to be proved is that it is open.

Assume 0 < T < ∞ is such that T ∈ A. Note that the bootstrap
assumptions together with the equations ensure that the C2 norms of g
and φ do not blow up and that g00 and the smallest eigenvalue of {gij}
stay bounded well away from zero on [0, T ). Consequently, T < Tmax
due to Proposition 1. We thus have a smooth solution beyond T , and we
conclude that (94)–(96), with η = ηmin, and (174) hold on [0, T ]. In order
to go beyond T , let us first prove that an improvement of (94)–(96) holds
in [0, T ]. Due to (174) and Sobolev embedding, we obtain

H−1eaHt−2K‖∂0hij‖∞ ≤ Cε.

Consequently,
∥∥e−2Ht−2K gij(t, · ) − e−2K gij (0, · )∥∥∞ ≤ Ca−1ε (175)

for all t ∈ [0, T ]. By assuming ε to be small enough, we obtain (94) with c1
replaced by 2c1/3. By assuming ε to be small enough, we also obtain (95)
and (96) with ηmin replaced by ηmin/2, due to the definition of the energies
and Sobolev embedding. Thus (94)–(96) hold in an open neighbourhood
of T . In the interval [0, T ], we have, due to (169) and (174),

dĤlp,k0

dt
≤ CHε3e−aHt.

Integrating this inequality and assuming ε to be small enough, we get,

Ĥ1/2
lp,k0

(t) ≤ 2c0ε (176)

for all t ∈ [0, T ]. Note that the bound on ε depends on c0 which we have not
specified. We shall, however, specify c0 in the end and it will only depend
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on the mentioned constants, so that this is not a problem. In order to get an
estimate for Ĥm,k0 , let us define

f = exp

[
1

a
(e−aHt − 1)

]
.

Note that exp(−1/a) ≤ f ≤ 1 for all t ∈ [0, T ]. Defining H̃m,k0 = f Ĥm,k0 ,
we get, using (171) and (174),

dH̃m,k0

dt
≤ CHε3e−aHt,

so that

Ĥm,k0(t) ≤ e1/a Ĥm,k0(0) + e1/aCa−1ε3.

Assuming ε to be small enough, depending on the quantities mentioned
and c0, we obtain

Ĥ1/2
m,k0

(t) ≤ Cmc0ε, (177)

where Cm = 2 exp[1/(2a)]. Consider (170). In the last term, there is one
part which can be written

CHεe−aHt Ĥs,k0 .

By assuming ε to be small enough, we can absorb this term in the first one,
at the price of reducing the constant. All that remains of the last two terms
in (170) can be estimated by

Cs Hc0εĤ1/2
s,k0

due to (176) and (177). We get

dĤs,k0

dt
≤ −3aHĤs,k0 + Cs Hc0εĤ1/2

s,k0
.

Thus Ĥs,k0 decays as soon as 3aĤ1/2
s,k0

(t) ≥ Csc0ε. Assuming c0 to be small
enough, only depending on a, Cs and Cm and ε to be small enough only
depending on the stated quantities, we obtain (174) with ε in the right hand
side replaced by ε/2. Thus A is open. ��

The conclusions of Theorem 9 are global existence and that we have
estimates of the form (174). It is, however, of interest to obtain estimates
for the higher derivatives.

Theorem 10. Consider a solution to (144)–(147) corresponding to smooth
initial data satisfying the conditions of Theorem 9. Then for every k, there
is a constant Ck such that

Ĥ1/2
k (t) ≤ Ck (178)

for all t ≥ 0.
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Proof. Since we have (174) and (94)–(96), with η = ηmin, for all t ≥ 0, we
have (169)–(171) for all k and all t ≥ 0. Let us define

H̃s,k = e−aHt Ĥs,k.

Then

dH̃s,k

dt
≤ −5aHH̃s,k + CHe−aHt/2 Ĥ1/2

m,k H̃1/2
s,k + CHεe−3aHt/2 Ĥ1/2

k H̃1/2
s,k .

Due to this inequality, (169) and (171), we obtain

dHk

dt
≤ CHe−aHt/2Hk,

where

Hk = Ĥl,k + H̃s,k + Ĥm,k + Ĥsf,k.

ConsequentlyHk is bounded. This leads to the conclusion that Ĥlp,k and Ĥm,k
are both bounded. If we insert this information into (170), we get

dĤs,k

dt
≤ −4aHĤs,k + CHe−aHt Ĥs,k + CHĤ1/2

s,k .

By assuming t to be great enough, the second term on the right hand side
can be absorbed in the first. The inequality that results immediately implies
that Ĥs,k is bounded, since it implies that Ĥs,k decays as soon as it exceeds
a certain value. The theorem follows. ��

14. Asymptotics

The estimates we have obtained so far, i.e. (178), are what naturally comes
out of the bootstrap assumptions, and they are far from optimal. Let us try
to improve them.

Proposition 2. Consider a solution to (144)–(147) corresponding to smooth
initial data satisfying the conditions of Theorem 9. Let us define ζ = 4χ/n2

and

λ = n

2
[1 − (1 − ζ)1/2]

for ζ ∈ (0, 1) and λ = n/2 for ζ ≥ 1. We shall also need the notation λm =
min{1, λ}. There is a smooth Riemannian metric ρ on Tn and constants Kl
such that

‖e2Htgij (t, · ) − ρij‖Cl + ∥∥e−2Ht gij(t, · ) − ρij

∥∥
Cl ≤ Kle

−2λm Ht, (179)∥∥e−2Ht∂tgij(t, · ) − 2Hρij

∥∥
Cl ≤ Kle

−2λm Ht, (180)
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for every l ≥ 0 and t ≥ 0, where ρij are the components of the inverse.
Here and below, we shall, for the sake of brevity, write Cl instead of Cl(Tn).
Concerning g0m, there is an α > 0 and constants Kl such that for all l ≥ 0
and t ≥ 0,

∥∥∥g0m(t, · ) − 1

(n − 2)H
ρijγimj

∥∥∥
Cl

+ ‖∂0g0m(t, · )‖Cl ≤ Kle
−αHt , (181)

where γimj are the Christoffel symbols of the metric ρ. The estimates for g00
and kij , the components of the second fundamental form induced on the
hypersurfaces t = const. with respect to the standard coordinates on Tn,
depend on the value of λm. If λm < 1, there are constants Kl such that for
every l ≥ 0 and t ≥ 0,

‖g00(t, · ) + 1‖Cl + ‖∂0g00(t, · )‖Cl ≤ Kle
−2λm Ht,∥∥e−2Htkij (t, · ) − Hρij

∥∥
Cl ≤ Kle

−2λm Ht

and if λm = 1, there are constants Kl such that for every l ≥ 0 and t ≥ 1,

‖[∂0g00 + 2λm H(g00 + 1)](t, · )‖Cl ≤ Kle
−2Ht,

‖g00(t, · ) + 1‖Cl ≤ Klte
−2Ht,∥∥e−2Htkij (t, · ) − Hρij

∥∥
Cl ≤ Klte

−2Ht .

Concerning φ there are three cases to consider. Let us define ϕ = eλHtφ.
If ζ < 1, then there is a smooth function ϕ0 and constants Kl, α > 0 such
that for all l ≥ 0 and t ≥ 0,

‖ϕ(t, · ) − ϕ0‖Cl + ‖∂0ϕ‖Cl ≤ Kle
−αHt . (182)

If ζ = 1, there are smooth functions ϕ0 and ϕ1 and constants Kl, α > 0
such that for all l ≥ 0 and t ≥ 0,

‖∂0ϕ(t, · ) − ϕ1‖Cl + ‖ϕ(t, · ) − ϕ1t − ϕ0‖Cl ≤ Kle
−αt . (183)

Finally, if ζ > 1, there is an anti symmetric matrix A, given in (193), where
δ = n(ζ − 1)1/2/2, smooth functions ϕ0 and ϕ1 and constants Kl, α > 0
such that for all l ≥ 0 and t ≥ 0,

∥∥∥∥e−At

(
δHϕ
∂0ϕ

)
(t, · ) −

(
ϕ0
ϕ1

)∥∥∥∥
Cl

≤ Kle
−αt . (184)

Remark. In the above proposition all constants are allowed to depend on H .
The statement is certainly not a complete result concerning the asymptotics;
it is possible to get more information. However, we shall be content with
the above estimates.
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Proof. Note that due to (178), we have

e2Ht‖gij‖Cl + e−2Ht‖gij‖Cl + eHt+aHt‖g0i‖Cl + e−Ht+aHt‖g0i‖Cl ≤ Kl,
(185)

and similarly for other quantities. Note in particular that we do not lose any
decay by taking derivatives; in order to bound ∂ig0m in Hl, we use the fact
that Ĥl+1 is bounded. Our first goal is to prove that Hs,l is bounded. Let us
estimate ∆0m . We wish to prove that

‖∆0m‖Hl ≤ Ce−bHt
(
1 + H1/2

s,l

)
, (186)

for some b > 0. Since φ, ∂iφ and ∂tφ are decaying exponentially in any Cl

norm, we have this sort of estimate for ∆φ,0m (in this case we can in fact
choose b = 2a). Using the fact that

g0i = − 1

g00
gij g0 j , (187)

we obtain a similar estimate for ∆C,0m. Before we turn to estimating ∆A,0m ,
let us consider the case that we have the type of term dealt with by the
algorithm for estimating the non-linearity with lε ≥ 2 and lh = 1, and let
us assume that the term includes a factor g0i . By rewriting g0i according
to (187) and considering what remains after taking away the factor g0 j , we
get a term such as the ones estimated by the algorithm with lε ≥ 1 and
lh = 0. In other words, the term we started with is g0 j times something
which decays exponentially in any Cl norm, cf. (138). This allows us to
estimate II0m , IV0m and ∆V,0m by the right hand side of (186). That I0m ,
∆III,0m and ∆VI,0m satisfy the same sort of estimate follows from (178).
Consequently (186) holds. We conclude that

‖�̂gum‖Hl ≤ C + CH1/2
s,l .

By arguments similar to, but simpler than, the proof of Lemma 13, we
conclude that for |α| ≤ l,∥∥[

�̂g, ∂
α
]
um

∥∥
2 ≤ Ce−bHt

(
1 + H1/2

s,l

)
.

Finally note that we have (166) and that

‖F0m‖Hl ≤ C + Ce−bHt H1/2
s,l ,

where −F0m is given by the last two terms on the left hand side of (145),
cf. (185). Combining these observations with Corollary 1, we conclude that

dHs,l

dt
≤ −ηs HHs,l + CH1/2

s,l + Ce−bHt Hs,l,

which proves that Hs,l remains bounded to the future. Note that as a con-
sequence, e2Ht‖g0i‖Cl is bounded.
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Let us turn to φ. Note that if we introduce ϕ = eλHtφ, (147) can be
rewritten

−g00∂2
0ϕ + (n − 2λ)H∂0ϕ + (λ2 − nλ + χ)H2ϕ = R, (188)

where

R = (g00 + 1)
(−2λH∂0ϕ + λ2 H2ϕ

) − eλHt∆φ

+ 2g0i∂i(∂0ϕ − λHϕ) + gij∂i∂jϕ.

Let us introduce the quantity

Ll = 1

2

∑
|α|≤l

[(
∂α∂0ϕ

)2 + e−2bHt(∂αϕ)2],
where b is a positive constant such that for every m ≥ 0, there are con-
stants Cm such that

‖g00(t, · ) + 1‖Cm + ‖g00(t, · ) + 1‖Cm + ‖φ(t, · ) + 1‖Cm ≤ Cme−2bHt

for all t ≥ 0. Assume furthermore that there are constants Cm, c such that

‖ϕ‖Cm + ‖∂0ϕ‖Cm ≤ Cme(c+2)Ht (189)

for all m and t ≥ 0. Then, for all |α| ≤ l,

|∂αR| ≤ Ce−bHtL1/2
l + CecHt. (190)

Note that, due to (188), for |α| ≤ l,∣∣∂α∂2
0ϕ

∣∣ ≤ CebHt L1/2
l + CecHt.

Thus ∂α[(g00 + 1)∂2
0ϕ] can be estimated by the right hand side of (190) for

|α| ≤ l and (188) turns into

∂2
0ϕ + (n − 2λ)H∂0ϕ + (λ2 − nλ + χ)H2ϕ = R̂, (191)

where we have modified R in an obvious way in order to obtain R̂ and R̂
satisfies an estimate of the form (190). Let us introduce ζ by n2ζ/4 = χ.
Then the solutions to the equation λ2 − nλ + χ = 0 are given by

λ± = n

2
[1 ± (1 − ζ)1/2].

If we consider the ODE that results by putting the right hand side of (191)
to zero, the behaviour is quite different depending on whether ζ ∈ (0, 1),
ζ = 1 or ζ > 1. Let λ be defined as in the statement of the proposition and
let us consider the first case. Letting δ = n(1 − ζ)1/2, (191) turns into

∂2
0ϕ + δH∂0ϕ = R̂.
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Consequently

dLl

dt
≤ −2 min{δ, b}HLl + Ce−bHtLl + CecHtL1/2

l . (192)

Since δ and b are positive, the second term on the right hand side can be
absorbed by the first. We conclude that for c > 0, Ll can be estimated
by Ce2cHt , and for c < 0, Ll is exponentially decaying. If c > 0, ∂0ϕ can
be estimated by CecHt in any Cl norm. By integrating this estimate, we
get the same conclusion for ϕ. In other words, if c > 0 and we have the
estimate (189), we can improve this estimate and replace c by c − 2. By
carrying out this argument a finite number of times, we get the conclusion
that Ll decays exponentially. Thus ∂0ϕ decays exponentially in any Cl norm
and there is a smooth function ϕ0 such that (182) holds. In the case ζ = 1,
we still have (192), but in that case, δ = 0. All the same, for c > 0, we get
the conclusion that Ll can be estimated by Ce2cHt . Thus we can improve
the estimate (189) until c becomes negative. Since δ = 0, (192) only yields
the conclusion that Ll is bounded for c < 0. Consequently eλHtφ may grow
linearly. This is, however, not a great surprise, since t is a solution of the
ODE resulting by putting the right hand side of (191) to zero. On the other
hand, by inserting the fact that Ll is bounded into the equation, we get the
conclusion that ∂2

0ϕ converges to zero exponentially in any Cl norm, so that
there are smooth ϕ0 and ϕ1 such that (183) holds. Let us turn to the case
ζ > 1. Letting δ = n(ζ − 1)1/2/2, (191) turns into

∂2
0ϕ + δ2 H2ϕ = R̂.

Defining u0 = δHϕ and u1 = ∂0ϕ, we obtain

∂tu = Au + R,

where

A =
(

0 δH
−δH 0

)
, u =

(
u0
u1

)
, R =

(
0
R̂

)
. (193)

Letting û = e−Atu, we obtain

∂tû = e−AtR. (194)

Note that e−At is an orthogonal matrix and define

Ml = 1

2

∑
|α|≤l

(∂αû)t(∂αû).

Assuming that (189) holds, we obtain

∂t Ml ≤ Ce−bHtMl + CecHt M1/2
l ,
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by arguments similar to ones given above. After using this a finite number of
times, we conclude that we can assume c in (189) to be negative. After a finite
number of iterates, we thus get the conclusion that Ml is bounded. Con-
sequently (189) holds with c = −2. Inserting this information into (194),
we obtain the existence of two smooth functions ϕ0 and ϕ1 such that (184)
holds.

Let us improve our control of um . Note that since ∂0hij converges to zero
exponentially in any Cl norm, there are smooth functions ρij such that∥∥e−2Htgij (t, · ) − ρij

∥∥
Cl ≤ Kle

−αt . (195)

Note that for a given x, ρij(x) are necessarily the components of a symmetric
positive semi definite matrix. One can also check that ∂0(e2Ht gij) converges
to zero exponentially in any Cl norm. Consequently, we have an estimate
similar to (195), and we shall use the notation ρij for the limit of e2Htgij .
Since gij gjk + gi0g0k = δi

k and gi0g0k converges to zero exponentially in
any Cl norm, we conclude that ρijρjk = δi

k. In other words, ρij must be the
components of a positive definite matrix and ρij are the components of its
inverse. If we let

γijk = 1

2
(∂iρk j + ∂kρij − ∂jρik),

we thus get ∥∥(
gijΓimj

)
(t, · ) − ρijγimj

∥∥
Cl ≤ Kle

−αt .

Note that due to (186) and the fact that Hs,l is bounded for any l, ∆0m decays
exponentially in any Cl norm. By (145), we conclude that ∂2

0um is bounded
in any Cl norm, which leads to the conclusion that (g00 + 1)∂2

0um is
exponentially decaying in any Cl norm. The same is true of gij∂i∂jum

and g0i∂0∂ium . We conclude from (145) that

∂2
0 ûm + nH∂0ûm + 2(n − 2)H2ûm = R,

where R decays exponentially in any Cl norm and

ûm = um − 1

(n − 2)H
ρijγimj.

Consequently ûm and ∂0ûm converge to zero exponentially, so that (181)
holds.

Let us study the behaviour of hij in greater detail. The contribution of
the scalar field to ∆ij is 2e−2Ht∆φ,ij . If we let λm = min{1, λ}, we get

e−2Ht‖∆φ,ij‖Cl ≤ Kle
−2λm Ht

for any l. Since ∆C,ij = 0, let us turn to ∆A,ij . It is clear that VIij is bounded
in any Cl norm, but there is no better bound. It is easy to see that Iij , IIij ,
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IVij and Vij are bounded in any Cl norm as well. What remains is ∆III,ij ,
given by (83). The only term we do not already know to be bounded in
any Cl norm is the last one. However, this term can be written as a factor
times ∂0hij where the factor can be bounded by e2Ht−bHt in any Cl norm.
We conclude that if we define

Nl = 1

2

∑
|α|≤l

∑
i, j

(
∂α∂0hij

)2
,

we get, for |α| ≤ l, ∣∣∂α∆ij

∣∣ ≤ Ce−2λm Ht + Ce−bHt N1/2
l , (196)

since the first term on the right hand side of (153) is, up to constants,
bounded by e−2Ht with respect to any Cl norm. We conclude from (146)
that

−g00∂2
0hij + nH∂0hij = Rij ,

where Rij satisfies an estimate of the form (196). From this we conclude
that (g00 + 1)∂2

0hij satisfies the same sort of estimate so that

∂2
0hij + nH∂0hij = R̂ij ,

where R̂ij satisfies the same sort of estimate as Rij . Consequently,

∂t Nl ≤ −2nHNl + Ce−2λm Ht N1/2
l + Ce−bHtNl.

As a consequence,

Nl ≤ Ce−4λm Ht .

In particular, (179) and (180) hold.
Let us turn to g00. Letting

Pl =
∑
|α|≤l

[(
∂α∂0u

)2 + H2(∂αu)2
]
,

one can, by arguments similar to ones given above, prove that

∂2
0u + (n + 2)H∂0u + 2nH2u = R0,

where, for |α| ≤ l, ∣∣∂αR0

∣∣ ≤ Ce−2λm Ht + Ce−bHt P1/2
l .

Changing variables to v = eλm Htu, we obtain

∂2
0v + (n + 2 − 2λm)H∂0v + [

λ2
m − (n + 2)λm + 2n

]
H2v = eλm Ht R0.

(197)
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Note that if we consider the factor in front of H2v as a polynomial in λm,
it has zeros at 2 and at n. Below and above it is positive and in between
it is negative. Since λm ≤ 1, the factor in front of H2v is thus positive.
Consequently, there are γ and δ such that

P̂l = 1

2

∑
|α|≤l

[(
∂α∂0v

)2 + 2γH∂αv∂α∂0v + δH2(∂αv)2]

is equivalent to e2λm Ht Pl and

∂t P̂l ≤ −ηHP̂l + Ce−λm Ht P̂1/2
l + Ce−bHt P̂l

for some η > 0. We conclude that P̂l is bounded (in fact we’re allowed to
conclude that it decays to zero exponentially). This leads to the improved
estimate

‖R0‖Cl ≤ Ce−2λm Ht.

Changing variables again to v̂ = e2λm Htu, we obtain (197) with λm replaced
by 2λm. Since λm ≤ 1, the factor in front of H2v is still non-negative,
but if λm = 1 it is zero. The factor in front of H∂0v is, however, always
positive, assuming n ≥ 3. Regardless of whether λm = 1 or not, we get the
conclusion that

∥∥∂0(e
2λm Htu)

∥∥
Cl ≤ Kl.

In the case that λm < 1, we get the additional conclusion that

‖e2λm Htu‖Cl ≤ Kl.

Finally, let us turn to the second fundamental form. Note that the future
directed unit normal is given by

N = −(−g00)−1/2g0µ∂µ.

Thus

kij = 〈∇∂i N, ∂j〉 = −∂i[(−g00)−1/2g0µ]gµ j − (−g00)−1/2g0µΓijµ,

so that ∥∥∥∥
[

kij − 1

2
(−g00)1/2∂0gij

]
(t, · )

∥∥∥∥
Cl

≤ Kl.

The proposition follows from the inequalities already derived. ��
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15. Causal structure

Let us first prove the statements made in the introduction concerning the
metric (6).

Lemma 21. Let Λ > 0, H = Λ1/2 and let gR be the metric given by (6) and
defined on MR = R×S1 ×S2. Then (MR, gR) is causally geodesically com-
plete and satisfies Einstein’s vacuum equations with a cosmological con-
stant Λ. Furthermore, if Σ is an arbitrary Cauchy hypersurface in (MR, gR)
and γ is an arbitrary inextendible causal curve, then the intersection of the
causal past of γ with Σ is not contained in a subset of Σ homeomorphic to
a 3-ball.

Proof. That (MR, gR) solves Einstein’s vacuum equations with a positive
cosmological constant Λ follows by a computation. Furthermore, for every
t ∈ R, St = {t} × S1 × S2 is a Cauchy hypersurface in (MR, gR). Let γ

be a future directed causal geodesic and let s0 be such that γ 0(s0) = 0.
The zeroth component of the geodesic equation then implies that γ̈

0
(s) ≤ 0

when s ≥ s0 and γ̈
0
(s) ≥ 0 when s ≤ s0. Thus 0 < γ̇ 0(s) ≤ γ̇ 0(s0), i.e. γ̇ 0 is

bounded. This implies that γ is complete, since γ has to intersect every St.
Let Σ and γ be as in the statement of the lemma. Then Σ is homeomorphic
to S1 × S2 due to Corollary 32, p. 417 of [24]. In particular, Σ is compact,
so that there is a τ such that Sτ is strictly to the future of Σ. Considering
the metric (6), it is clear that there is 0 < T ∈ R such that if (t, p, q) ∈ MR,
then {t − T }×{p}×S2 ⊆ J−({(t, p, q)}). Thus, since γ and Sτ+T intersect,
J−(γ) contains {τ} × {p} × S2 for some p ∈ S1. Assume J−(γ) ∩ Σ is
contained in a set B, homeomorphic to a 3-ball. Let f1 : S2 → {τ}×{p}×S2

be defined by f1(q) = (τ, p, q). Let f2 : {τ} × {p} × S2 → B be defined
by following the flow lines of ∂t; note that following the flow lines of ∂t to
the past from {τ} × {p} × S2 to Σ implies that we end up in Σ ∩ J−(γ),
i.e. in a subset of B. Let f3 : B → S

2 be defined by projection onto the S2

factor in MR. Due to Proposition 31, p. 417 of O’Neill, f2 is continuous.
Furthermore f3 ◦ f2 ◦ f1 is the identity on S2, so that our assumptions lead
to the conclusion that we have factored the identity map from S2 to itself
through the 3-ball. Since the second homology group of S2 is Z and the
second homology group of B is {0}, we obtain a contradiction, and the
lemma follows. ��

Let us turn to the causal structure of the metrics constructed in The-
orem 9.

Proposition 3. Consider a future directed causal curve γ with domain
[s0, smax) in the Lorentz manifold constructed in Theorem 9 such that
γ 0(s0) = 0. Let γµ denote the coordinates of this curve in the uni-
versal covering space of the spacetime, i.e. [0,∞) × Rn. Assuming ε
to be small enough (independent of K, H and γ ), γ̇ 0 > 0 and the length
of the spatial part of the curve with respect to the metric at t = 0



190 H. Ringström

satisfies ∫ smax

s0

[
gij(0, γr)γ̇

i γ̇ j
]1/2

ds ≤ d(ε)H−1, (198)

where d(ε) → 1 as ε → 0 and γr = π ◦ γ where π : [0,∞) × Tn → T
n

is given by π(t, x) = x. Finally, if γ is future inextendible, γ 0(s) → ∞
as s → smax.

Remark. The timelike vectorfield ∂t is defined to be future directed.

Proof. Due to causality, we have

gµνγ̇
µγ̇ ν ≤ 0, (199)

and the condition that the curve be future directed is equivalent to

g00γ̇
0 + g0i γ̇

i < 0. (200)

Let us work out the consequences of this. Due to (96), we have
∣∣2g0i γ̇

0γ̇ i
∣∣ ≤ η1/2|γ̇ 0|2 + η−1/2

∣∣g0i γ̇
i
∣∣2

≤ η1/2|γ̇ 0|2 + η1/2c−1
1 e2Ht+2K−2aHtδij γ̇

i γ̇ j .

Note that when we write t in this equation, we of course mean γ 0. Since the
last term can be bounded by η1/2gij γ̇

i γ̇ j , due to (94), we obtain

gij γ̇
i γ̇ j ≤ c(η)γ̇ 0γ̇ 0, (201)

where c(η) → 1 as η → 0 and we have used (95) and (199). Due to (94),
we conclude that

δij γ̇
i γ̇ j ≤ c1c(η)e−2Ht−2K γ̇ 0γ̇ 0. (202)

Combining (175) and (202), we obtain∣∣gij(0, γr)γ̇
i γ̇ j − e−2Ht gij γ̇

i γ̇ j
∣∣ ≤ Ca−1εc1c(η)e−2Ht γ̇ 0γ̇ 0.

This observation, together with (201), yields

gij(0, γr)γ̇
i γ̇ j ≤ d2(ε)e−2Ht γ̇ 0γ̇ 0, (203)

where d(ε) → 1 as ε → 0 (note that η → 0 as ε → 0). Consider (200).
Note that∣∣g0i γ̇

i
∣∣ ≤ [

e−2Ht−2Kδij g0i g0 j
]1/2[

e2Ht+2Kδij γ̇
i γ̇ j

]1/2 ≤ ξ(ε)|γ̇ 0|,
where ξ(ε) → 0 as ε → 0, due to (96) and (202). Assuming ε to be
small enough we conclude that γ̇ 0 > 0, which yields the first conclusion of
the proposition. Combining this observation with (203), we obtain (198).
Finally, let γ be future inextendible and assume γ 0 does not tend to ∞.
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Since γ̇ 0 > 0, γ 0 has to converge to a finite number and since we have (202),
the same holds for γ i . We have a contradiction. ��
Proposition 4. Consider a spacetime of the type constructed in Theorem 9.
Assuming ε to be small enough (independent of K and H), this spacetime
is future causally geodesically complete.

Proof. Let γ be a future directed causal geodesic (i.e. a map γ from an
open interval into the spacetime satisfying γ ′′ = 0) and assume that the
maximal existence interval is given by (smin, smax). We shall use the notation
t = γ 0(s). Due to the equation for a geodesic, we have

γ̈
0 + Γ 0

µνγ̇
µγ̇ ν = 0. (204)

Due to (174),∣∣Γ 0
00

∣∣ ≤ CεHe−aHt,
∣∣Γ 0

ij − Hgij

∣∣ ≤ CεHe2Ht+2K−aHt,∣∣Γ 0
0i

∣∣ ≤ CεHeHt+K−aHt.

Consequently, Γ 0
ij γ̇

i γ̇ j ≥ 0 for t large enough. Due to (202), we conclude
that ∣∣Γ 0

00γ̇
0γ̇ 0

∣∣ + 2
∣∣Γ 0

0i γ̇
0γ̇ i

∣∣ ≤ CεHe−aHt|γ̇ 0|2.
Combining these pieces of information with (204), we obtain

γ̈
0 ≤ CεHe−aHtγ̇ 0γ̇ 0

for s ≥ s1. Since γ̇ 0 > 0 assuming ε is small enough (independent of γ ), we
can divide by γ̇ 0 in this equation and integrate in order to obtain, for s ≥ s1,

ln
γ̇ 0(s)

γ̇ 0(s1)
=

∫ s

s1

γ̈
0
(σ)

γ̇ 0(σ)
dσ ≤ CεH

∫ s

s1

e−aHγ 0(σ)γ̇ 0(σ)dσ

= CεH
∫ γ 0(s)

γ 0(s1)

e−aHτdτ ≤ Cεa−1 exp
[
γ 0(s1)

]

(recall that t = γ 0(s)) so that γ̇ 0 is bounded for s ≥ s1. Thus

γ 0(s) − γ 0(s1) =
∫ s

s1

γ̇ 0(σ)dσ ≤ C|s − s1|.

Since γ 0(s) → ∞ as s → smax, we conclude that smax = ∞. ��

16. Proof of the main theorem

Proof of Theorem 2. Consider Tn to be [−π, π]n with the ends identified.

Construction of a global in time patch. Let us start by constructing
a patch of spacetime which is essentially the development of the piece of



192 H. Ringström

the data over which we have some control. Let fc ∈ C∞
0 [B1(0)] be such

that fc(p) = 1 for |p| ≤ 15/16 and 0 ≤ fc ≤ 1. Define initial data for
a Lorentz metric ḡ and a function Φ on {0} × Tn by

ḡ00(0, · ) = −1
ḡ0i(0, · ) = 0

ḡij(0, · ) = fchij ◦ x−1 + 16H−2(1 − fc)δij

∂t ḡij(0, · ) = 2 fcκij ◦ x−1 + 32H−1(1 − fc)δij

Φ(0, · ) = fcφ0 ◦ x−1

∂tΦ(0, · ) = fcφ1 ◦ x−1,

where the indices on the right hand side refer to the coordinates x assumed
to exist in the statement of the theorem, δij are the components of the
Kronecker delta and the indices on the left hand side refer to the standard
coordinates on Tn . Define, furthermore,

∂0ḡ00(0, · ) = [−2nHḡ00 − ḡij
∂t ḡij

]
(0, · )

∂0ḡ0l(0, · ) =
[
−nHḡ0l + 1

2
ḡij

(2∂i ḡjl − ∂l ḡij)
]
(0, · ).

Note that the last two equations are simply (62) and (63) given that we define
k̄ij = ∂t ḡij/2. For ε small enough, Theorem 9 applies to these initial data
and we get solutions to (144)–(147) on (t−,∞) × Tn for some t− < 0. Let
us justify this statement and check that the bound only depends on n and V .
By the assumptions, ḡij − 16H−2δij is small in Hk0+1(Tn). Assuming ε to
be small enough, we get (172) with c1 = 4 and e−2K = H2/16. In our
case, k0 is determined by n, so that the constants c0 and ε0 appearing in
the statement of Theorem 9 only depend on n and V . If we can prove that
Ĥk0(0) ≤ Cε for some C depending only on n and V , we are thus done.
However, for t = 0, Ĥk0 is equivalent to the sum of Hlp,k0 , Hs,k0 and Hm,k0 ,
with the constant only depending on H . On the other hand, by the arguments
given in Sect. 11, this sum is equivalent to the sum of Elp,k0 , Es,k0 and Em,k0

(recall that in the expressions for these quantities, r = aHt, ω = H and
ψ = φ). However, for t = 0, one sees that this sum is bounded by Cε, where
the constant only depends on n and V . The statement follows. Note that
we also get asymptotics as in the statement of Proposition 2. Furthermore,
on B15/16(0), the constraint equations are satisfied, and we have chosen ∂0 ḡ00
and ∂0ḡ0i in such a way that Dµ|t=0 = 0. Due to Proposition 1, we conclude
that in D[{0}× B15/16(0)], (ḡ,Φ) satisfy (12) and (13). If ε is small enough,
Proposition 3 implies that

(t−,∞) × B5/8(0) ⊆ D[{0} × B29/32(0)], (205)

where we increase t− if necessary. The reason for this is that, first of all, the
assumptions concerning h and Sobolev embedding yield

16H−2|v|2 ≤ d2
1(ε)ḡij(0, · )viv j
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for all v ∈ Rn, where d1(ε) → 1 as ε → 0. Due to (198), we then obtain

4H−1
∫ smax

s0

[
δij γ̇

i γ̇ j
]1/2

ds ≤ d(ε)d1(ε)H−1.

For ε small enough we thus get∫ smax

s0

[
δij γ̇

i γ̇ j
]1/2

ds ≤ 9

32
,

which implies (205). Note that due to Lemma 3,

U0,exc = D[{0} × B15/16(0)], U1,exc = D[{0} × B29/32(0)],
U2,exc = D[{0} × B̄29/32(0)]

are open, open and closed subsets of R× x(U) respectively. Consequently,
Wi,exc = (Id ×x−1)(Ui,exc) for i = 0, 1, 2 are also open, open and closed
respectively.

Construction of a reference metric. In order to prove that the patches that
we construct fit together to form a globally hyperbolic development, it is
convenient to construct a reference metric. Let

g̃ = (1 − fc ◦ x)(−dt2 + h) + ( fc ◦ x)(Id ×x)∗ ḡ.

Here h is the Riemannian metric on Σ given by the initial data. Note
that ∂t is timelike with respect to ḡ so that ∂t is timelike with respect to g̃.
The hypersurfaces {τ} × Σ are spacelike with respect to −dt2 + h and with
respect to (Id ×x)∗ḡ for τ ∈ (t−,∞), so that they are spacelike with respect
to g̃. As a consequence, g̃ is a Lorentz metric on (t−,∞)×Σ, cf. Lemma 1.

Construction of local patches. In order to construct a globally hyperbolic
development, we need to have patches starting with open subsets of the
initial data for which we have no control beyond the fact that the constraints
are satisfied. Let p ∈ Σ. Let O � p be an open subset of Σ such that
we have coordinates y1, . . . , yn on O and define coordinates y0, . . . , yn

on R× O by y0 = t. Consider the equations

R̂µν − ∇µφ∇νφ − 2

n − 1
V(φ)gµν = 0, (206)

∇µ∇µφ − V ′(φ) = 0, (207)

where

R̂µν = Rµν + ∇(µDν), Dµ = Fµ − Γµ, Fµ = gµνgαβΓ̃
ν

αβ, (208)

Γ̃
ν

αβ are the Christoffel symbols of the background metric g̃, the curvature is
computed for the unknown metric g, all indices are raised and lowered by g,
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etc. We would like to apply the local existence result given in Theorem 5,
but this result does not immediately apply to the present situation due to the
global restrictions on g made and the fact that a Lorentz metric on Rn+1 can
never have compact support. Let Q � p be an open set such that its closure
is compact and contained in O. Let Aµν be the components of a Lorentz
matrix valued function depending smoothly on the components gαβ of g
with respect to the coordinates y. Let A00 = g00 for all g00 ∈ [−3/2,−1/2]
and have the property that the range of A00 is contained in [−2,−1/4]. Let
A0i = g0i for g0i ∈ [−1, 1] and have the property that the range of A0i
is contained in [−2, 2]. Let U be an open subset of the set of symmetric
n ×n-matrices such that the matrices with components hij(q) for q ∈ Q̄ are
contained in U and that the closure of U in the set of all n × n-matrices
is compact and contained in the set of positive definite ones. Let Aij be
such that Aij = gij for {gij} ∈ U and Aij is everywhere positive definite
with a positive lower bound and an upper bound. Finally, assume that Aµν

is constant outside of a compact set. Note that A satisfies the conditions
described in Subsect. 3.1 (with g replaced by A). In particular, the derivative
estimates follow easily from the fact that the derivatives of A with respect
to the metric coefficients have compact support. Let θ1 ∈ C∞

0 [(−1, 1) × O]
be such that θ1(q) = 1 for q ∈ [−1/2, 1/2] × Q̄. In considering (206)
and (207), we replace gµν, wherever it appears, with Aµν , the components
of the inverse of A and we replace Γ̃

α

µν by θ1Γ̃
α

µν . With these modifications,
the resulting f , using the terminology of Subsect. 3.1, has the properties
required for applying Theorem 5. The reason is that f is a sum of terms
that are smooth functions of ξ times functions of t and x that have compact
support. Since V ′(0) = 0, fb = 0 using the terminology of Subsect. 3.1. As
initial data we would ideally like to prescribe that (58)–(63) hold. However,
that does not lead to an equation of the type considered in Theorem 5. Let
θ0 ∈ C∞

0 (O) be such that θ0(q) = 1 for all q ∈ Q̄. Modify all the initial
data by multiplying them with θ0. Let u be the vector which collects φ
and gµν for µ, ν = 0, . . . , n. We can consider the resulting equation as
an equation on Rn+1. Furthermore, it is of such a form that Theorem 5 is
applicable. We thus get a smooth local solution. Due to the smoothness of
the solution, there is an open neighbourhood W of p in R × Σ with the
property that θ1 = 1 and gαβ are such that Aµν = gµν in W . Furthermore, we
can assume that Σp := W ∩{0}×Σ ⊆ {0}× Q and that every inextendible
causal curve in W intersects Σp. Thus, (W, g) is globally hyperbolic with
a Cauchy hypersurface Σp (note that since g00 is negative, grad t is timelike
on W and the time coordinate is strictly monotonically increasing along any
causal curve so that causal curves intersect Σp at most once). Consequently,
J−(q) ∩ J+(Σp) is compact and contained in W for every q ∈ W with
positive t-coordinate and similarly for points of W with negative t-coordin-
ate, cf. Lemma 3. If we let Dµ = Fµ − Γµ, then Dµ = ∂0Dµ = 0 on Σp
by an argument similar to the one presented at the end of the proof of
Proposition 1 (in the present setting Mµν = Mφ = 0, which only simplifies
the argument). Furthermore, Dµ satisfies (56) with Mµν and Mφ set to zero.
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Applying Theorem 6 on (W, g), which is globally hyperbolic, we conclude
that Dµ = 0 in all of W . Let Wp be an open neighbourhood of p with the
same properties as W and whose closure is compact and contained in W .

Patching together. We would like to define the manifold M to be the union
of all the Wp and W1,exc. The first problem we are confronted with is that
of constructing a metric on M. In other words, proving that the metrics
we have constructed on the different patches coincide in the intersection.
Let us consider the intersection of Wp and Wq and comment on the changes
one has to make if one replaces Wp by W1,exc as we go along. Say that
Wp ∩ Wq �= ∅. The closures of Wp and Wq are compact and contained in
open sets W1, W2, with properties as above, on which we have coordinates
z = (z0, . . . , zn) and y = (y0, . . . , yn) respectively, where z0 = y0 = t. In
the exceptional case, note that W1,exc is contained in W2,exc, which is closed.
Consequently, we shall in the exceptional case replace Wp with W2,exc.
Furthermore, W2,exc ⊆ W0,exc and the latter set is open, so that in the excep-
tional case, we replace W1 with W0,exc. On W1 and W2, we have metrics g1
and g2 and smooth functions φa and φb respectively, both satisfying (206)
and (207) when expressed with respect to the coordinates z and y respect-
ively. Let us express both g1 and g2 with respect to the coordinates z in
W1 ∩ W2 and refer to the components as g1µν and g2µν respectively. Let us
also use the notation Σi = Wi ∩ {0} × Σ.

Both are solutions. Note that the equations (206) and (207) are geometric,
i.e. coordinate invariant. The reason is the following. Let ∇̃ be the Levi–
Civita connection associated with the reference metric g̃. Define A by

A(X, Y, η) = η(∇XY − ∇̃XY ), (209)

for vectorfields X, Y and a 1-form field η. We see that A is multilinear over
the functions, so that it is a tensor field. Writing it out in components, we
get

Aµ
αβ = A

(
∂α, ∂β, dxµ

) = Γ
µ
αβ − Γ̃

µ

αβ,

where

Γ̃
µ

αβ = 1

2
g̃µν(∂αg̃βν + ∂β g̃αν − ∂ν g̃αβ).

Compute

gµνgαβ Aµ
αβ = Γν − gµνgαβΓ̃

µ

αβ = Γν − Fν = −Dν.

The left hand side is clearly the components of a covector, so that Dν are
the components of a covector as well. Due to (208), we conclude that the
left hand sides of (206) and (207) transform as tensors under a change
of coordinates. We conclude that both g1µν, φa and g2µν, φb satisfy (206)
and (207). Furthermore, since Diµ are the components of a covector and
vanishes with respect to one of the coordinate systems, it vanishes with
respect to the other coordinate system.
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The initial data coincide. By the construction and the specific form of
the coordinate systems, it is clear that g1ij = g2ij , g100 = g200 and that
g20i = g10i for t = 0. Since Diµ = 0 and the metrics coincide for t = 0,
the contracted Christoffel symbols for g1 and g2 with respect to the z-co-
ordinates have to coincide. Since kij = ∂0gij/2, and the coordinates have
the above special form, we conclude that ∂tg1µν = ∂t g2µν for t = 0. Finally,
it is clear that φa = φb and ∂tφa = ∂tφb for t = 0.

The solutions coincide. We wish to prove that the solutions coincide in
Wp ∩ Wq. For t ≥ 0, let

St = [0, t] × Σ ∩ Wp ∩ Wq.

Note that St is compact, and this is still the case if we replace Wp by W2,exc.
Let A be the set of t ∈ [0,∞) such that g1 = g2 and φa = φb in St and that
for r ∈ St,

J−
1 (r) ∩ J+

1 (Σ1) = J−
2 (r) ∩ J+

2 (Σ2), (210)

where J−
1 (r) is the causal past of r with respect to the metric g1 in W1

etc. Note that 0 ∈ A, so that A is non-empty. Assume t ∈ A and r ∈ St
with r = (t, ξ). Note that J−

i (r) ∩ J+
i (Σi) ⊆ W1 ∩ W2. If τ > t is close

enough to t, the same is true with r replaced by (τ, ξ) due to Lemma 3.
Taking the difference of (206) and (207) for the two solutions, keeping in
mind that sg1 + (1 − s)g2 is a Lorentz metric for s ∈ [0, 1] due to the fact
that gi00 < 0 and gi� is positive definite for i = 1, 2, we conclude that
Theorem 6 is applicable with two choices for the coefficients of the highest
order derivatives; either gµν

1 or gµν

2 . We conclude that g1 = g2 and φa = φb
in

{J−
1 [(τ, ξ)] ∩ J+

1 (Σ1)} ∪ {J−
2 [(τ, ξ)] ∩ J+

2 (Σ2)}.
Consequently (210) holds with r replaced by (τ, ξ). This proves that A is
open, due to the following argument. Assume there is no ε > 0 such that
[t, t + ε] ⊆ A. Then there is a sequence ri = (ti, pi) such that ti → t+ and
either g1(ri) �= g2(ri), φa(ri) �= φb(ri) or (210) does not hold for r = ri .
Due to compactness, we can assume pi to converge to, say, p. Applying
the above argument with ξ = p, i.e. r = (t, p), we arrive at a contradiction
for i large enough. We conclude that [t, t + ε] ⊆ A for ε > 0 small enough.
The closedness is less complicated to prove, though some care is required
in the proof of (210). However, (210) follows from Lemma 3. Since A is
connected, we conclude that A = [0,∞) so that g1 = g2 and φa = φb in
Wp ∩Wq for t ≥ 0. Due to the same argument in the opposite time direction,
we conclude that we have a solution to (12) and (13) on M, defined to be
the union of all the Wp and W1,exc. The embedding i : Σ → M is simply the
inclusion i(p) = (0, p). By construction, it is clear that if K is the induced
second fundamental form, i∗g = h, i∗K = k, φ ◦ i = φ0 and (Nφ) ◦ i = φ1.
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Let γ be an inextendible causal curve in M. Then the image of γ has to
intersect some Wp and γ |γ−1(Wp) is an inextendible causal curve in Wp which
by construction has to intersect Σ. Since grad t is timelike by construction,
the t-coordinate of γ is strictly monotone, so that γ intersects Σ exactly
once.

Embedding into the maximal globally hyperbolic development. Above,
we have constructed a globally hyperbolic development of the initial data,
say (M, g, φ). Furthermore, all causal geodesics that start in {0} × B1/4(0)
are future complete in M due to Proposition 4 and there is an embedding ψ
of the form (20) due to the inclusion (205). Finally, this embedding has
the properties stated in the theorem. To get the desired conclusion, we
need only observe that by the definition of a maximal globally hyperbolic
development, there is an embedding of (M, g, φ) into the maximal globally
hyperbolic development (M̄, ḡ, φ̄). ��

17. Stability of locally spatially homogeneous spacetimes

Proof of Theorem 4. Given the initial data, let us start by constructing
a development.

Construction of a development. Let us first consider the case in which
the background initial data are (G, g, k), where G is a simply connected
unimodular Lie group and the isometry group of the initial data contains
the left translations in G. The arguments presented below are based on
a formulation of Einstein’s equations, in the context of interest, that was
introduced by Ellis and MacCallum, cf. [12]. Our presentation, however,
follows the presentation given in the appendix of [30] quite closely. Let e′

i be
an orthonormal basis of the Lie algebra and define the structure constants γ i

jk
by the relation

[e′
j, e′

k] = γ i
jke

′
i .

The fact that G is unimodular is equivalent to γ i
ji = 0 which is equivalent

to the statement that there is a symmetric matrix ν such that γ i
jk = εjklν

li ,
where ε123 = 1 and εijk is antisymmetric in all its indices. In fact, one can
compute νij by the formula

νij = 1

2
γ

(i
kl ε

j)kl
, (211)

where the parenthesis signifies symmetrization. According to Lemma 21.1
of [30], one can apply an orthogonal matrix to the basis e′

i , so that νij with
respect to this new basis is diagonal. Let us denote this new basis by e′

i as
well and let kij = k(e′

i, e′
j). The content of the momentum constraint (18) is
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that {kij} and {νij} commute:

k l
i νl j − ν l

i kl j = 0 (212)

(note that φ0 = φ1 = 0 when we apply (18) here). In the above equation,
and below, we raise and lower indices with δij . In other words, there is no
difference between upstairs and downstairs indices, and the only reason for
making a distinction is aesthetical. As a consequence, we can assume e′

i to
be such that kij are the components of a diagonal matrix as well. Define
n(0) = ν, θ(0) = trg k and σij(0) = kij − θ(0)δij/3. Define n, θ, σ to be the
solution to

ṅij = 2nk(iσj)
k − 1

3
θnij (213)

σ̇ij = −θσij − sij (214)

θ̇ = −σijσ
ij − 1

3
θ2 + Λ. (215)

In these equations sij = bij − tr(b)δij/3, where bij = 2n l
i nl j − tr(n)nij .

Let (t−, t+) be the maximal existence interval. Note that, since V(0) = Λ,
(17) is equivalent to

σijσ
ij +

(
nijn

ij − 1

2
(tr n)2

)
+ 2Λ = 2

3
θ2 (216)

at t = 0. Due to (213)–(215) and the fact that (216) holds at t = 0, (216) is
satisfied at all times. The reason is that if you move all the terms in (216) to
the left hand side and denote the resulting expression by f , then (213)–(215)
imply ḟ = −2θ f/3. Let v be a vector collecting all the off-diagonal com-
ponents of n and σ . Using (213) and (214) one can derive an equation of
the form v̇ = Cv for some matrix C depending on the unknowns. Since
v(0) = 0, we conclude that v(t) = 0 for all t ∈ (t−, t+). In other words n
and σ remain diagonal. As a consequence, (212) holds for all t ∈ (t−, t+) if
we replace k with σ and ν with n.

Let us define fi by the condition that fi(0) = 1 and ḟi = (2σi − θ/3) fi ,
where σi denotes the diagonal components of σ . Define

ai = ( ∏
j �=i

fj
)−1/2

,

define ei = a−1
i e′

i (no summation on i) and e0 = ∂t . The point of this
definition is that the matrix ñ obtained from the basis ei using the right
hand side of (211), where γ i

kl are the structure constants associated with
the basis ei , coincides with n. Let M = (t−, t+) × G and define a metric
on M by requiring that eα be an orthonormal basis with e0 timelike and ei
spacelike. In other words,

ḡ = −dt2 +
3∑

i=1

a2
i (t)ξ

i ⊗ ξ i, (217)
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where the ξ i are the duals of the e′
i . Let ∇ be the associated Levi–Civita

connection and compute 〈∇e0ei, ej〉 = 0. If

θ̃(X, Y ) = 〈∇Xe0, Y 〉, θ̃µν = θ̃(eµ, eν),

then θ̃00 = θ̃0i = θ̃ i0 = 0. Furthermore,

aje0
(
a−1

j

)
δij = −θ̃ ij

(no summation over j) so that θ̃ ij is diagonal and tr θ̃ = θ. Finally,

−σ̃ii = −θ̃ ii + 1

3
θ = −σi.

Let us now check that (M, ḡ) is a globally hyperbolic development of the
initial data we started with. That the metric and second fundamental form
induced on {0} × G correspond to the initial data is clear from the con-
struction. That (M, ḡ) is globally hyperbolic and that all the hypersurfaces
{t}×G are Cauchy hypersurfaces follows by an argument which is identical
to the proof of Lemma 21.4 of [30]. What remains to be checked is that the
equations,

Ric[ḡ] = Λḡ,

are satisfied. However, (212), with kij replaced by θij and νij replaced by nij ,
is equivalent to the 0i components of Einstein’s equations, (215) is the 00
component of the equations, (214) is the traceless part of the ij components
of the equations and the trace part of the ij equations satisfy the correct
equation due to (215) and (216). We conclude that the constructed metric
satisfies Einstein’s equations with a positive cosmological constant.

Let us consider the case that the initial data are invariant under the
full isometry group of the standard metric on H3. Let q be a symmetric
covariant 2-tensor field on H3 with such invariance properties and assume
that at p = 0 ∈ B3,

qp = bijdxi |p ⊗ dx j |p,

where xi are the standard coordinates in the ball model. Since, for each
A ∈ O(3), there is an isometry of the standard metric of H3 that fixes p
and maps ∂i|p to A j

i ∂j|p, we conclude that b = AbAt for all A ∈ O(3). As
a consequence, b has to be a multiple of the identity (since b is symmetric
there is an orthogonal matrix diagonalizing it, so that b has to be diagonal,
and the fact that the diagonal components have to coincide then follows by
applying permutation matrices). Using the full isometry group, we see that
there must be a number β such that

q = βgH3, gH3 = 4
dx2 + dy2 + dz2

(1 − x2 − y2 − z2)2
.
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We conclude that the initial data are given by g = α2gH3 and k = βαgH3

where α, β are constants such that α, β > 0 since trg k > 0. The Hamiltonian
constraint (17) is equivalent to

−6
1

α2
+ 6

(
β

α

)2

= 2Λ

and the momentum constraint (18) is automatically satisfied. Let a satisfy

ä = 1

3
Λa (218)

a(0) = α

ȧ(0) = β.

Let I = (t−, t+) be the interval on which a > 0 and let

f =
(

ȧ

a

)2

− 1

a2
− 1

3
Λ.

Then ḟ = −2ȧ f/a, so that f = 0 on I , since it is zero initially. As
a consequence, a satisfies

2

(
ȧ

a

)2

− 2

a2
+ ä

a
= Λ. (219)

Using (218), (219) and [24, Formulas (1)–(3), p. 211], we conclude that

−dt2 + a2(t)gH3 (220)

is a solution to Einstein’s vacuum equations with a cosmological constant Λ.
Furthermore, the induced metric and second fundamental form on the t = 0
hypersurface give the initial data when pulled back toH3 using the standard
embedding. Note that

a(t) = α cosh(Ht) + βH−1 sinh(Ht),

where H = (Λ/3)1/2 and that I contains [0,∞). Consequently

lim
t→∞ e−Hta(t) = (α + βH−1)/2 > 0, lim

t→∞
ȧ(t)

a(t)
= H.

Let us consider the case that the initial data are invariant under the full
isometry group of H2 ×R. Let q be a symmetric covariant 2-tensor field on
H

2 ×Rwith such invariance properties and assume that at p = 0 ∈ B2 ×R,

qp = aijdxi |p ⊗ dx j |p + bi
(
dxi |p ⊗ dz|p + dz|p ⊗ dxi |p

) + cdz|p ⊗ dz|p

where x1, x2 are the standard coordinates on the open unit disc and z is the
standard coordinate on R. Due to the invariance properties of q, we see that
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bi = 0 and that aij must be the components of a multiple of the identity
matrix. Using the full isometry group, we conclude that

q = cH2 gH2 + cRdz2, gH2 = 4
dx2 + dy2

(1 − x2 − y2)2

for some constants cH2 and cR. As a consequence of the above observation,
we can assume that the initial data are given by

g = a2
0gH2 + b2

0dz2, k = a1a0gH2 + b1b0dz2,

where a0, b0 > 0. That the initial data satisfy the Hamiltonian constraint is
equivalent to

(
a1

a0

)2

+ 2
a1b1

a0b0
− 1

a2
0

= Λ.

Let the functions a and b be determined by

2
ä

a
+

(
ȧ

a

)2

− 1

a2
= Λ (221)

b̈

b
+ ä

a
+ ȧḃ

ab
= Λ (222)

(a(0), b(0)) = (a0, b0) (223)

(ȧ(0), ḃ(0)) = (a1, b1) (224)

and let I be the intersection of the maximal existence interval and the
maximal interval containing 0 on which a and b are both positive. Let

f =
(

ȧ

a

)2

+ 2
ȧḃ

ab
− 1

a2
− Λ, θ = ḃ

b
+ 2

ȧ

a
.

Then ḟ = −θ f so that f(t) = 0 ∀t ∈ I , since f(0) = 0. Define the metric ḡ
on I ×H2 × R by

ḡ = −dt2 + a2(t)gH2 + b2(t)dz2. (225)

Then ḡ satisfies Einstein’s equations with a cosmological constant Λ and
the metric and second fundamental form induced on the hypersurface t = 0
yield the initial data when pulled back toH2×R by the standard embedding.
The fact that f = 0 can be reformulated to

1

3
θ2 = Λ + 1

a2
+ 1

3

(
ȧ

a
− ḃ

b

)2

. (226)

Note that θ is the trace of the second fundamental form of the hypersurfaces
of constant t and that as a consequence of (226) and the assumption that
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θ(0) > 0, we have θ > 3H , where H = (Λ/3)1/2. Furthermore, as long
as θ remains finite, the solution to (221)–(224) cannot blow up, so that the
only obstruction to global existence to the future is finite in time blow up
of θ. The reason is as follows. Assume θ is bounded on [0, T ) ⊂ I for
some T < ∞. Then ȧ/a and ḃ/b are bounded on [0, T ) due to (226). As
a consequence, a and b are bounded and thus ȧ and ḃ are bounded. That a is
bounded away from 0 is clear from (226) and that b cannot converge to
zero as t → T− follows from the fact that there is a uniform bound on ḃ/b
on [0, T ); the assumption that b does converge to zero would lead to the
conclusion that b = 0 in all of [0, T ). We conclude that the solution can
be extended beyond T . Combining (221) with the fact that f = 0 yields
ä = ȧḃ/b. Combining this with (222) yields b̈/b+2ä/a = Λ, which implies

θ̇ = Λ − 1

3
θ2 − 2

3

(
ȧ

a
− ḃ

b

)2

. (227)

Since θ2/3 > Λ, we conclude that θ is strictly monotonically decreasing.
Consequently, it is bounded to the future, so that we have future global exis-
tence. By an argument which is identical to one given below in the Bianchi
class A case (unimodular Lie groups), cf. (230) and the two equations fol-
lowing it, we can use (226) and (227) to conclude that θ − 3H converges to
zero exponentially. As a consequence of (226), we conclude that ȧ/a − ḃ/b
converges to zero exponentially, whence

lim
t→∞

ȧ(t)

a(t)
= lim

t→∞
ḃ(t)

b(t)
= H, lim

t→∞ e−Hta(t) = α0, lim
t→∞ e−Htb(t) = β0

for some constants α0, β0 > 0.
Note that the n-dimensional hyperbolic space can be viewed as a Lie

group. Let Sn be the set of n×n-matrices of the following form: the first row
is any x ∈ Rn such that the first element of x is positive and the remaining
rows are the second to nth rows of the n × n identity matrix. Then Sn is
a group under matrix multiplication and we can identify it with the upper
half plane. If x and y are elements of the n-dimensional upper half plane,
so that the first components x1, y1 are positive, then the corresponding
product xy is given by first multiplying y by x1 and then translating the
last n − 1 components of the result by the last n − 1 components of x.
Thus the hyperbolic metric is a left invariant metric on the Lie group Sn . As
a consequence, (225) and (220) can be considered to be of the form (217),
where the ai’s satisfy (231). As in the unimodular case, we can then use an
argument which is identical to the proof of Lemma 21.4 of [30] in order to
prove that the metrics (220) and (225) yield globally hyperbolic spacetimes.

Analyzing the asymptotics. The analysis of the asymptotics of solutions
to (213)–(216) follows as in Wald [33]. Note first of all that nijnij −
(tr n)2/2 ≥ 0 unless all the ni (the diagonal components of nij ) are non-zero
and have the same sign. However, all the ni being non-zero and having the
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same sign corresponds to a universal covering group of SU(2), which we
have excluded. Since we assume that θ(0) > 0, (216) then implies that

θ(t) ≥ (3Λ)1/2 =: α (228)

for all t. Combining this with (215), we get the conclusion that

θ̇ ≤ −1

3
θ2 + Λ ≤ 0. (229)

Due to this equation, θ is bounded to the future. Combining this fact
with (216) and the fact that the expression involving the nij is non-negative,
we conclude that σij(t) is bounded to the future. Thus nij cannot blow up in
finite time to the future due to (213). Since none of θ, σij and nij can blow
up in a finite time to the future, we conclude that t+ = ∞. Concerning θ,
we have two possibilities. Either θ(t) > α for all t ∈ (t−, t+), or there is
a t0 ∈ (t−, t+) such that θ(t0) = α. Let us consider the second case first.
Then, due to (228) and (229), we conclude that θ(t) = α for all t ∈ [t0, t+).
Combining this fact with (216) and the fact that the expression involving
the nij is non-negative, we conclude that σij(t) = 0 for t ≥ t0. In the case
that θ(t) > α for all t, we can proceed as in [33]. Due to (229), we have

θ̇

θ2 − α2
≤ −1

3
. (230)

Integrating this inequality, we get

θ − α

θ + α
≤ ψ, ψ = exp

[
−2α

3
t + C

]
,

where C is an integration constant. For t large enough, ψ < 1, and then we
get

θ ≤ α
1 + ψ

1 − ψ
, 0 < θ − α ≤ α

2ψ

1 − ψ
.

As a consequence, θ → α and the error is exponentially small. Combin-
ing this observation with (216), we conclude that σij converges to zero
exponentially. Going through the definitions above, one then sees that
ai(t) = αi exp[αt/3 + ρi(t)], for some functions ρi that converge to zero
exponentially and that ȧi/ai → H . Note that this statement also holds if
θ(t0) = α for some t0 ∈ (t−, t+).

Stability. Let us assume we have a metric of the form

ḡ = −dt2 +
3∑

i=1

a2
i (t)ξ

i ⊗ ξ i,
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on I × G, where G is a 3-dimensional Lie group, I is an open interval
containing (t0,∞) for t0 large enough and ξ i are the duals of a basis {ei}
for the Lie algebra. Assume furthermore that

lim
t→∞ e−Htai(t) = αi, lim

t→∞
ȧi

ai
= H, (231)

where H is as in the statement of the theorem, and some αi > 0. Assume
finally that there is a group of diffeomorphisms Γ acting freely and properly
discontinuously on G such that Id ×Γ is a group of isometries of ḡ and such
that the quotient of G under Γ is compact (it is clear that the groups under
consideration in the theorem are of this type in the unimodular case, due to
our assumptions, and in the remaining cases due to the fact that the metrics
are either of the form (225) or of the form (220)). Let Σ denote the quotient
and let π : G → Σ be the covering projection. Let us define a reference
metric

h =
3∑

i=1

α2
i ξ

i ⊗ ξ i

on G. Note that since

ĥ = e−2Ht
3∑

i=1

a2
i (t)ξ

i ⊗ ξ i

converges to the metric h as t → ∞ and Γ is a group of isometries of ĥ,
Γ is a group of isometries of h. Consequently, h induces a metric on Σ.
In what follows it will be useful to compare ∂yi for some coordinates y
with the basis ei . Unfortunately, we cannot assume that the ei are well
defined on Σ, since the group Γ may contain diffeomorphisms that do not
map ei to itself. On the other hand, there is an ε0 > 0 such that if ε ≤ ε0
and p ∈ Σ, then Bε(p) (measured with respect to the metric h) is such
that π−1[Bε(p)] consists of a disjoint collection of open sets such that π,
restricted to any connected member of the disjoint union, is an isometry
onto Bε(p). One can use one of these isometries to push the basis ei (and
thus ξ i) forward to Bε(p). However, the result will in general depend on
the choice of connected member of π−1[Bε(p)]; below we shall speak of
a choice of ξ i on Bε(p). We now wish to prove that there is an ε > 0 and
a K > 0 such that for every p ∈ Σ, there are normal coordinates yi on Bε(p)
with respect to the metric h, and a choice of ξ i such that if ζ i

j = ξ i(∂y j), then
all the derivatives of ζ i

j with respect to yl up to order k0+1 are bounded by K
in the sup norm on Bε(p). In order to obtain a contradiction, let us assume
that the statement is not true. Given any n > 0 such that 1/n ≤ ε0 is smaller
than the injectivity radius of (Σ, h), there is thus a pn such that regardless
of the choice of ξ i and normal coordinates on B1/n(pn), there is a multi-
index α with |α| ≤ k0 +1 such that |∂αζ i

j | exceeds n on B1/n(pn). Since Σ is
compact, there is a subsequence of the pn , which we shall also denote by pn ,
converging to a point p ∈ Σ. There is an ε > 0 such that ε ≤ ε0 and B̄ε(p)
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is contained in a convex neighbourhood U of p. Let vi be an orthonormal
basis of the tangent space on U . For n large enough, B̄1/n(pn) ⊂ U . We
can define normal coordinates xi

n on U by letting xi
n(q) be the coefficients

of exp−1
pn

(q) with respect to vi|pn . We define normal coordinates xi on U
similarly by replacing pn by p. Since exp−1

p (q) is a smooth function in
both coordinates on a convex set, cf. [24, Lemma 9, p. 131], we conclude
that xi

n, considered as smooth functions on Bε(p), converge to xi with
respect to any Ck norm and coordinates that contain the closure of Bε(p)
in their domain of definition. For any choice of ξ i on Bε(p), ξ i(∂x j ) is
bounded in the Ck0+1 norm with respect to the coordinates xi on Bε/2(p).
Fix a choice of ξ i . For n large enough, this also corresponds to a choice of ξ i

on B1/n(pn), and by the above observation concerning the relation between
the coordinate systems xi and xi

n , we conclude that ξ i(∂x j
n
) is bounded

with respect to the Ck0+1 norm in the xi
n coordinates. This contradicts the

assumption.
Let ε > 0 and K > 0 be as above and p ∈ Σ. Let yi be normal

coordinates on Bε(p) with respect to the metric h, and make a choice of ξ i

such that if ζ i
j = ξ i(∂y j), then all the derivatives of ζ i

j with respect to yl up
to order k0 + 1 are bounded by K in the sup norm on Bε(p). The initial data
induced on the hypersurface {t} × G is given by

g =
3∑

i=1

a2
i (t)ξ

i ⊗ ξ i, k =
3∑

i=1

ȧi(t)ai(t)ξ
i ⊗ ξ i .

Let us introduce coordinates xi = HeHt yi/4. For t large enough, the range
of xi contain the ball of radius 1. Note that

gij = g(∂xi , ∂x j ) = 16H−2
3∑

l=1

e−2Hta2
l (t)(ξ

l ⊗ ξ l)(∂yi , ∂y j ).

Since e−Htai(t) → αi as t → ∞, h(∂yi , ∂y j ) = δij at p, the derivatives
of ξ l(∂yi) with respect to y j are bounded by K on Bε(p) and the ball of
radius 1 with respect to the xi coordinates corresponds to a ball of an
arbitrarily small radius with respect to the yi coordinates for t large enough,
we conclude that for t large enough (the bound being independent of p),
gij − 16H−2δij is arbitrarily small in the ball of radius 1 with respect to
the xi coordinates. Since

∂

∂xi
= 4H−1e−Ht ∂

∂yi
,

and ξ i(∂y j ) is bounded in Ck0+1, the spatial derivatives of gij with respect
to xl are arbitrarily small for t large enough (independent of p). Similarly,

kij = k(∂xi , ∂x j ) = 16H−2
3∑

l=1

e−2Ht ȧl(t)al(t)(ξ
l ⊗ ξ l)(∂yi , ∂y j ).



206 H. Ringström

Since, in addition to the above observations, e−2Ht ȧi(t) → Hαi , we conclude
that kij − 16H−1δij is arbitrarily small in a ball of radius 1 with respect to
the xi-coordinates. Furthermore, the derivatives of kij with respect to ∂xl are
arbitrarily small. To conclude, there is a t0 such that (g, k, 0, 0) for t = t0
satisfy (19) with ε replaced by ε/2, where the coordinates are of the form
described above (regardless of the point p). Using Theorem 7, we get the
desired stability statement. ��
Proof of Theorem 3. The proof is similar to the end of the proof of The-
orem 4, but easier. Let Σ and gΣ be as in the statement of the theorem.
The metric we wish to consider is of the form (3). Similarly to the above
proof, one can prove that there is an ε > 0 and a K > 0 such that for
every p ∈ Σ, there are normal coordinates yi on Bε(p) with the property
that all derivatives up to order k0 + 1 of gΣ(∂yi , ∂y j ) with respect to the
y-coordinates are bounded by K . Given this observation, the end of the
proof is essentially the same as the end of the above proof. ��

18. Appropriate initial data on an arbitrary manifold

Let (M, g) be a closed n-dimensional Riemannian manifold such that g has
constant scalar curvature. Let gα = eαg for α ∈ R. Then, if r is the scalar
curvature of g, rα = e−αr is the scalar curvature of gα. Let kβ = βgα. Then,
assuming all indices are raised and lowered with gα, we have

rα − kβij k
ij
β + (tr kβ)

2 − 2V(0) = e−αr − nβ2 + n2β2 − n(n − 1)H2.

Choose β to be the positive solution to

β2 = H2 − 1

n(n − 1)
e−αr,

which exists, assuming α to be big enough. Then (gα, kβ, 0, 0) satisfy (17)
and (18). Furthermore, for α large enough, the data will be such that The-
orem 2 is applicable in a neighbourhood of each p ∈ M, the argument being
similar to the end of the proof of Theorem 4. Thus they yield future causally
geodesically complete spacetimes and we have the expansions stated in
Theorem 2 to the future.

Assuming g is a Riemannian metric on a closed n-dimensional mani-
fold M with associated scalar curvature r (which is not necessarily constant),
let gα and kβ be as above. Let

εα = sup
p∈M

|rα(p)| + e−α.

Define

φ1,α = (εα + rα)
1/2, φ0,α = 0, β =

[
H2 + εα

n(n − 1)

]1/2

.
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Then (gα, kβ, φ0,α, φ1,α) satisfy (17) and (18), and if α is large enough,
there is a neighbourhood of each p ∈ M such that Theorem 2 applies to
that neighbourhood, the argument being similar to the end of the proof
of Theorem 4. In particular, the resulting spacetimes are future causally
geodesically complete and we obtain expansions to the future as stated in
Theorem 2.
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