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Abstract. We prove that the essential dimension and p-dimension of
a p-group G over a field F containing a primitive p-th root of unity is
equal to the least dimension of a faithful representation of G over F.

The notion of the essential dimension ed(G) of a finite group G over
a field F was introduced in [5]. The integer ed(G) is equal to the smallest
number of algebraically independent parameters required to define a Galois
G-algebra over any field extension of F. If V is a faithful linear representa-
tion of G over F then ed(G) ≤ dim(V ) (cf. [2, Prop. 4.15]). The essential
dimension of G can be smaller than dim(V ) for every faithful represen-
tation V of G over F. For example, we have ed(Z/3Z) = 1 over Q or
any field F of characteristic 3 (cf. [2, Cor. 7.5]) and ed(S3) = 1 over C
(cf. [5, Th. 6.5]).

In this paper we prove that if G is a p-group and F is a field of character-
istic different from p containing p-th roots of unity, then ed(G) coincides
with the least dimension of a faithful representation of G over F (cf. The-
orem 4.1).

We also compute the essential p-dimension of a p-group G introduced
in [15]. We show that edp(G) = ed(G) over a field F containing p-th roots
of unity.
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1. Preliminaries

In the paper the word “scheme” means a separated scheme of finite type
over a field and “variety” an integral scheme.

1.1. Severi–Brauer varieties. (cf. [1]) Let A be a central simple algebra of
degree n over a field F. The Severi–Brauer variety P = SB(A) of A is the
variety of right ideals in A of dimension n. For a field extension L/F, the
algebra A is split over L if and only if P(L) �= ∅ if and only if PL � Pn−1

L .
The change of field map deg : Pic(P) → Pic(PL) = Z for a splitting

field extension L/F identifies Pic(P) with eZ, where e is the exponent
(period) of A. In particular, P has divisors of degree e. The algebra A is
split over L if and only if PL has a prime divisor of degree 1 (a hyperplane).

1.2. Groupoids and gerbes. (cf. [4]) Let X be a groupoid over F in the
sense of [19]. We assume that for any field extension L/F, the isomorphism
classes of objects in the category X(L) form a set which we denote by ̂X(L).
We can view ̂X as a functor from the category Fields/F of field extensions
of F to Sets .

Example 1.2.1. If G is an algebraic group over F, then the groupoid BG
is defined as the category of G-torsors over a scheme over F. Hence the
functor ̂BG takes a field extension L/F to the set of all isomorphism classes
of G-torsors over L .

Special examples of groupoids are gerbes banded by a commutative
group scheme C over F. There is a bijection between the set of isomorphism
classes of gerbes banded by C and the Galois cohomology group H2(F, C)
(cf. [7, Ch. 4] and [13, Ch. 4, § 2]). The split gerbe BC corresponds to the
trivial element of H2(F, C).

Example 1.2.2 (Gerbes banded by µn). Let A be a central simple F-algebra
and n an integer with [A] ∈ Brn(F) = H2(F, µn). Let P be the Severi–
Brauer variety of A and S a divisor on P of degree n. Denote by XA
the gerbe banded by µn corresponding to [A]. For a field extension L/F,
the set ̂XA(L) has the following explicit description (cf. [4]): ̂XA(L) is
nonempty if and only if P is split over L . In this case ̂XA(L) is the set of
equivalence classes of the set

{

f ∈ L(P)× : div( f ) = nH − SL, where H is a hyperplane in PL
}

,

and two functions f and f ′ are equivalent if f ′ = fhn for some h ∈ L(P)×.

1.3. Essential dimension. Let T : Fields/F → Sets be a functor. For
a field extension L/F and an element t ∈ T(L), the essential dimension



Essential dimension of finite p-groups 493

of t, denoted ed(t), is the least tr.degF(L ′) over all subfields L ′ ⊂ L over F
such that t belongs to the image of the map T(L ′) → T(L). The essential
dimension ed(T ) of the functor T is the supremum of ed(t) over all t ∈ T(L)
and field extensions L/F.

Let p be a prime integer and t ∈ T(L). The essential p-dimension of t,
denoted edp(t), is the least tr.degF(L ′′) over all subfields L ′′ ⊂ L ′ over F,
where L ′ is a finite field extension of L of degree prime to p such that the
image of t in T(L ′) belongs to the image of the map T(L ′′) → T(L ′). The
essential p-dimension edp(T ) of the functor T is the supremum of edp(t)
over all t ∈ T(L) and field extensions L/F. Clearly, ed(T ) ≥ edp(T ).

Let G be an algebraic group over F. The essential dimension ed(G)
of G (respectively the essential p-dimension ed(G)) is the essential dimen-
sion (respectively the essential p-dimension) of the functor taking a field
extension L/F to the set of isomorphism classes of G-torsors over Spec L .

If G is a finite group, we view G as a constant group over a field F.
Every G-torsor over Spec L has the form Spec K where K is a Galois
G-algebra over L . Therefore, ed(G) is the essential dimension of the functor
taking a field L to the set of isomorphism classes of Galois G-algebras
over L .

Example 1.3.1. Let X be a groupoid over F. The essential dimension of X,
denoted by ed(X), is the essential dimension ed(̂X) of the functor ̂X defined
in Sect. 1.2. The essential p-dimension of edp(X) is defined similarly. In
particular, ed(BG) = ed(G) and edp(BG) = edp(G) for an algebraic group
G over F.

1.4. Canonical dimension. (cf. [3], [11]) Let F be a field and C a class of
field extensions of F. A field E ∈ C is called generic if for any L ∈ C there
is an F-place E � L .

The canonical dimension cdim(C) of the class C is the minimum of the
tr.degF E over all generic fields E ∈ C.

Let p be a prime integer. A field E in a class C is called p-generic if
for any L ∈ C there is a finite field extension L ′ of L of degree prime
to p and an F-place E � L ′. The canonical p-dimension cdimp(C) of the
class C is the least tr.degF E over all p-generic fields E ∈ C. Obviously,
cdim(C) ≥ cdimp(C).

Let T : Fields/F → Sets be a functor. Denote by CT the class of split-
ting fields of T , i.e., the class of field extensions L/F such that T(L) �= ∅.
The canonical dimension (p-dimension) of T , denoted cdim(T ) (respect-
ively cdimp(T )), is the canonical dimension (p-dimension) of the class CT .

If X is a scheme over F, we write cdim(X) and cdimp(X) for the
canonical dimension and p-dimension of X viewed as a functor L 
→
X(L) = MorF(Spec L, X).

Example 1.4.1. Let X be a groupoid over F. We define the canonical
dimension cdim(X) and p-dimension cdimp(X) of X as the canonical
dimension and p-dimension of the functor ̂X.
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Example 1.4.2. If X is a regular and complete variety over F viewed as
a functor then cdim(X) is equal to the smallest dimension of a closed
subvariety Z ⊂ X such that there is a rational morphism X ��� Z (cf. [11,
Cor. 4.6]). If p is a prime integer then cdimp(X) is equal to the smallest
dimension of a closed subvariety Z ⊂ X such that there are dominant
rational morphisms X ′ ��� X of degree prime to p and X ′ ��� Z for some
variety X ′ (cf. [11, Prop. 4.10]).

Remark 1.4.2 (A relation between essential and canonical dimension). Let
T : Fields/F → Sets be a functor. We define the “contraction" functor
T c : Fields/F → Sets as follows. For a field extension L/F, we have
T c(L) = ∅ if T(L) is empty and T c(L) is a one element set otherwise. If X
is a regular and complete variety over F viewed as a functor then one can
show that ed(Xc) = cdim(X) and edp(Xc) = cdimp(X).

1.5. Valuations. Let K/F be a regular field extension, i.e., for any field
extension L/F, the ring K ⊗F L is a domain. We write KL for the quotient
field of K ⊗F L .

Let v be a valuation on L over F with residue field R. Let O be the
associated valuation ring and M its maximal ideal. As K ⊗F R is a domain,
the ideal ˜M := K ⊗F M in the ring ˜O := K ⊗F O is prime. The localization
ring ˜O

˜M is a valuation ring in KL with residue field KR. The corresponding
valuation ṽ of KL is called the canonical extension of v on KL. Note that the
groups of values of v and ṽ coincide.

We shall need the following lemma.

Lemma 1.1 (cf. [11, Lemma 3.2]). Let v be a discrete valuation (of rank 1)
of a field L with residue field R and L ′/L a finite field extension of degree
prime to p. Then v extends to a discrete valuation of L ′ with residue field R′
such that the ramification index and the degree [R′ : R] are prime to p.

Proof. If L ′/L is separable and v1, . . . , vk are all the extensions of v on L ′
then [L ′ : L] = ∑

ei[Ri : R] where ei is the ramification index and Ri is
the residue field of vi (cf. [20, Ch. VI, Th. 20 and p. 63]). It follows that the
integer ei[Ri : R] is prime to p for some i.

If L ′/L is purely inseparable of degree q then the valuation v′ of L ′
defined by v′(x) = v(xq) satisfies the desired properties. The general case
follows. �


2. Canonical dimension of a subgroup of Br(F)

Let F be an arbitrary field, p a prime integer and D a finite subgroup
of Brp(F) of dimension r over Z/pZ. In this section we determine the
canonical dimension cdim D and the canonical p-dimension cdimp D of
the class of common splitting fields of all elements of D. We say that
a basis {a1, a2, . . . , ar} of D is minimal if for any i = 1, . . . , r and any
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element d ∈ D outside of the subgroup generated by a1, . . . , ai−1, we have
ind d ≥ ind ai .

One can construct a minimal basis of D by induction as follows. Let a1
be a nonzero element of D of minimal index. If the elements a1, . . . , ai−1
are already chosen for some i ≤ r, we take for the ai an element of D of
the minimal index among the elements outside of the subgroup generated
by a1, . . . , ai−1.

In this section we prove the following

Theorem 2.1. Let F be an arbitrary field, p a prime integer, D ⊂ Brp(F)
a subgroup of dimension r and {a1, a2, . . . , ar} a minimal basis of D. Then

cdimp(D) = cdim(D) =
(

r
∑

i=1

ind ai

)

− r .

We prove Theorem 2.1 in several steps.
Let {a1, a2, . . . , ar} be a minimal basis of D. For every i = 1, 2, . . . , r,

let Pi be the Severi–Brauer variety of a central division F-algebra Ai repre-
senting the element ai ∈ Brp F. We write P for the product P1×P2×· · ·×Pr .
We have

dim P =
r

∑

i=1

dim Pi =
(

r
∑

i=1

ind ai

)

− r.

Moreover, the classes of splitting fields of P and D coincide, hence cdim(D)
= cdim(P) and cdim p(D) = cdimp(P). Thus, the statement of Theorem 2.1
is equivalent to the equality cdimp(P) = cdim(P) = dim(P).

Let r ≥ 1 and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nr be integers and K =
K(n1, . . . , nr) the subgroup of the polynomial ring Z[x] in r variables
x = (x1, . . . , xr) generated by the monomials pe( j1,..., jr)x j1

1 . . . x jr
r for all

j1, . . . , jr ≥ 0, where the exponent e( j1, . . . , jr) is 0 if all the j1, . . . , jr
are divisible by p, otherwise e( j1, . . . , jr) = nk with the maximum k such
that jk is not divisible by p. In fact, K is a subring of Z[x].
Remark 2.2. Let A1, . . . , Ar be central division algebras over some field
such that for any non-negative integers j1, . . . , jr , the index of the tensor
product A⊗ j1

1 ⊗ · · · ⊗ A⊗ jr
r is equal to pe( j1,..., jr). The group K can be

interpreted as the colimit of the Grothendieck groups of the product over
i = 1, . . . , r of the Severi–Brauer varieties of the matrix algebras Mli (Ai)
over all positive integers l1, . . . , lr .

We set h = (h1, . . . , hr) with hi = 1 − xi ∈ Z[x].
Proposition 2.3. Let bhi1

1 . . . hir
r be a monomial of the lowest total degree

of a polynomial f in the variables h lying in K. Assume that the integer b
is not divisible by p. Then pn1 |i1, . . . , pnr |ir .

Proof. We recast the proof for r = 1 given in [8, Lemma 2.1.2] to the case
of arbitrary r.
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We proceed by induction on m = r + n1 + · · · + nr . The case m = 1
is trivial. If m > 1 and n1 = 0, then K = K(n2, . . . , nr)[x1] and we are
done by induction applied to K(n2, . . . , nr). In what follows we assume
that n1 ≥ 1.

Since K(n1, n2, . . . , nr) ⊂ K(n1 − 1, n2, . . . , nr), by the induction
hypothesis pn1−1|i1, pn2 |i2, . . . , pnr |ir . It remains to show that i1 is div-
isible by pn1 .

Consider the additive operation ϕ : Z[x] → Q[x] which takes a poly-
nomial g ∈ Z[x] to the polynomial p−1x1 · g′, where g′ is the partial
derivative of g with respect to x1. We have

ϕ(K ) ⊂ K(n1 − 1, n2 − 1, . . . , nr − 1) ⊂ K(n1 − 1)[x2, . . . , xr]
and

ϕ
(

h j1
1 h j2

2 · · · h jr
r

) = −p−1 j1h j1−1
1 h j2

2 · · · h jr
r + p−1 j1h j1

1 h j2
2 · · · h jr

r .

Since bhi1
1 · · · hir

r is a monomial of the lowest total degree of the poly-
nomial f , it follows that −bp−1i1hi1−1

1 hi2
2 · · · hir

r is a monomial of ϕ( f )
considered as a polynomial in h. As

ϕ( f ) ∈ K(n1 − 1)[x2, . . . , xr ] ,

we see that −bp−1i1hi1−1
1 is a monomial of a polynomial from K(n1 − 1).

It follows that p−1i1 is an integer and by Lemma 2.4 below, this integer is
divisible by pn1−1. Therefore pn1 |i1. �

Lemma 2.4. Let g be a polynomial in h1 lying in K(m) for some m ≥ 0. Let
bhi−1

1 be a monomial of g such that i is divisible by pm. Then b is divisible
by pm.

Proof. We write h for h1 and x for x1. Note that hi ∈ K(m) since i
is divisible by pm . Moreover, the quotient ring K(m)/(hi) is additively
generated by pe( j )x j with j < i. Indeed, the polynomial xi − (−h)i =
xi − (x − 1)i is a linear combination with integer coefficients of pe( j )x j

with j < i. Consequently, for any k ≥ 0, multiplying by pe(k)xk , we see
that the polynomial pe(i+k)xi+k = pe(k)xi+k modulo the ideal (hi) is a linear
combination with integer coefficients of the pe( j )x j with j < i + k.

Thus, K(m)/(hi) is additively generated by pe( j )(1 − h) j with j < i.
Only the generator pe(i−1)(1 − h)i−1 = pm(1 − h)i−1 has a nonzero hi−1-
coefficient and that coefficient is divisible by pm . �


Let Y be a scheme over the field F. We write CH(Y ) for the Chow group
of Y and set Ch(Y ) = CH(Y )/p CH(Y ). We define Ch(Y) as the colimit
of Ch(YL) where L runs over all field extensions of F. Thus for any field
extension L/F, we have a canonical homomorphism Ch(YL) → Ch(Y ).
This homomorphism is an isomorphism if Y = P, the variety defined
above, and L is a splitting field of P.



Essential dimension of finite p-groups 497

We define Ch(Y ) to be the image of the homomorphism Ch(Y ) →
Ch(Y ).

Proposition 2.5. We have Ch
j
(P) = 0 for any j > 0.

Proof. Let K0(P) be the Grothendieck group of P. We write K0(P) for the
colimit of K0(PL) taken over all field extensions L/F. The group K0(P) is
canonically isomorphic to K0(PL) for any splitting field L of P. Each of the
groups K0(P) and K0(P) is endowed with the topological filtration. The
subsequent factor groups G jK0(P) and G jK0(P) of these filtrations fit into
the commutative square

CH j(P) �� G jK0(P)

CH j(P)

OO

�� G jK0(P)

OO

where the top map is an isomorphism. Therefore it suffices to show that the
image of the homomorphism G jK0(P) → G jK0(P) is divisible by p for
any j > 0.

The ring K0(P) is identified with the quotient of the polynomial ringZ[h]
by the ideal generated by h ind a1

1 , . . . , h ind ar
r . Under this identification, the

element hi is the pull-back to P of the class of a hyperplane in Pi over
a splitting field and the j-th term K0(P)( j ) of the filtration is generated
by the classes of monomials of degree at least j. The group G jK0(P) is
identified with the group of all homogeneous polynomials of degree j.

The group K0(P) is isomorphic to the direct sum of K0(B), where
B = A⊗ j1

1 ⊗ · · · ⊗ A⊗ jr
r , over all ji with 0 ≤ ji < ind ai (cf. [14, § 9]). The

image of the natural map K0(B) → K0(BL) = Z, where L is a splitting
field of B, is equal to ind(a j1

1 · · · a jr
r )Z. The image of the homomorphism

K0(P) → K0(P) (which is in fact an injection) is generated by

ind
(

a j1
1 · · · a jr

r

)

(1 − h1)
j1 · · · (1 − hr)

jr

over all j1, . . . , jr ≥ 0.
We embed K0(P) into the polynomial ring Z[x] = Z[x1, . . . , xr] as

a subgroup by identifying a monomial h j1
1 · · · h jr

r where 0 ≤ ji < ind ai

with the polynomial (1 − x1)
j1 · · · (1 − xr)

jr . As the elements a1, . . . , ar

form a minimal basis of D, the index ind(a j1
1 · · · a jr

r ) is a power of p with
the exponent at least e(logp ind a1, . . . , logp ind ar). Therefore,

K0(P) ⊂ K(logp ind a1, . . . , logp ind ar) ⊂ Z[x].
An element of K0(P)( j ) with j > 0 is a polynomial f in h of degree at
least j. The image of f in G jK0(P) is the j-th homogeneous part f j of f .
As the degree of f with respect to hi is less than ind ai , it follows from
Proposition 2.3 that all the coefficients of f j are divisible by p. �
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Let d = dim P and α ∈ CHd(P× P). The first multiplicity mult1(α) of α
is the image of α under the push-forward map CHd(P×P) → CH0(P) = Z
given by the first projection P × P → P (cf. [10]). Similarly, we define the
second multiplicity mult2(α).

Corollary 2.6. For any element α ∈ CHd(P × P), we have

mult1(α) ≡ mult2(α) modulo p.

Proof. We follow the proof of [9, Th. 2.1]. The homomorphism

f : CHd(P × P) → (Z/pZ)2,

taking an α ∈ CHd(P × P) to (mult1(α), mult2(α)) modulo p, factors

through the group Ch
d
(P× P). Since for any i, any projection Pi × Pi → Pi

is a projective bundle, the Chow group Ch
d
(P × P) is a direct some of

several copies of Ch
i
(P) for some i’s and the value i = 0 appears once. By

Proposition 2.5, the dimension over Z/pZ of the vector space Ch
d
(P × P)

is equal to 1 and consequently the dimension of the image of f is at most 1.
Since the image of the diagonal class under f is (1, 1), the image of f is
generated by (1, 1). �

Corollary 2.7. Any rational map P ��� P is dominant.

Proof. Let α ∈ CHd(P × P) be the class of the closure of the graph of
a rational map P ��� P. We have mult1(α) = 1. Therefore, by Corollary 2.6,
mult2(α) �= 0, and it follows that the rational map is dominant. �

Corollary 2.8. cdimp P = cdim P = dim P.

Proof. As cdimp P ≤ cdim P ≤ dim P, it suffices to show that cdimp P =
dim P. Let Z ⊂ P be a closed subvariety and f : P′ ��� P and g : P′ ��� Z
dominant rational morphisms such that deg f is prime to p. Let α be the class
in CHd(P× P) of the closure in P× P of the image of f ×g : P′ ��� P×Z.
As mult1(α) = deg f is prime to p, by Corollary 2.6, we have mult2(α) �= 0,
i.e., Z = P. By Example 1.4.2, cdimp P = dim P. �


The corollary completes the proof of Theorem 2.1.

Remark 2.9. Theorem 2.1 can be generalized to the case of any finite
subgroup D ⊂ Br(F) consisting of elements of p-primary orders. Let
{a1, a2, . . . , ar} be elements of D such that their images {a′

1, a′
2, . . . , a′

r} in
D/Dp form a minimal basis, i.e., for any i = 1, . . . r and any element d ∈ D
with the class in D/Dp outside of the subgroup generated by a′

1, . . . , a′
i−1,

the inequality ind d ≥ ind ai holds. In particular, {a1, a2, . . . , ar} gener-
ate D. Then, as in Theorem 2.1, we have

cdimp(D) = cdim(D) =
(

r
∑

i=1

ind ai

)

− r.
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Indeed, the group D and the variety P = P1 × · · · × Pr , where Pi for
every i = 1, . . . , r is the Severi–Brauer variety of a central division alge-
bra representing the element ai , have the same splitting fields. Therefore,
cdim(D) = cdim(P) and cdimp(D) = cdimp(P). Corollaries 2.6, 2.7
and 2.8 hold for P since K0(P) ⊂ K(logp ind a1, . . . , logp ind ar).

Remark 2.10. One can compute the canonical p-dimension of an arbitrary
finite subgroup of D ⊂ Br(F) as follows. Let D′ be the Sylow p-subgroup
of D. Write D = D′⊕D′′ for a subgroup D′′ ⊂ D and let L/F be a finite field
extension of degree prime to p such that D′′ is split over L . Then DL = D′

L
and cdimp(D) = cdimp(DL) = cdimp(D′

L) = cdimp(D′) = cdim(D′).

3. Essential and canonical dimension of gerbes banded by (µp)
s

In this section we relate the essential and canonical (p-)dimensions of gerbes
banded by (µp)

s where s ≥ 0. The following statement is a generalization
of [4, Th. 7.1].

Theorem 3.1. Let p be a prime integer and X a gerbe banded by (µp)
s

over an arbitrary field F. Then

ed(X) = edp(X) = cdimp(X) + s = cdim(X) + s.

Proof. The gerbe X is given by an element in H2(F, (µp)
s) = Brp(F)s, i.e.,

by an s-tuple of central simple algebras A1, A2, . . . , As with [Ai ] ∈ Brp(F).
Let P be the product of the Severi–Brauer varieties Pi := SB(Ai) and D
the subgroup of Brp(F) generated by the [Ai ], i = 1, . . . , s. As the classes
of splitting fields for X, D and P coincide, we have

cdim(X) = cdim(P) = cdim(D) = cdimp(D)(1)
= cdimp(P) = cdimp(X)

by Theorem 2.1. We shall prove the inequalities edp(X) ≥ cdim(P) + s ≥
ed(X).

Let Si be a divisor on Pi of degree p. Let L/F be a field extension and
fi ∈ L(Pi)

× with div( fi) = pHi − (Si)L , where Hi is a hyperplane in (Pi)L

for i = 1, . . . , s. We write 〈 fi〉s
i=1 for the corresponding element in ̂X(L)

(cf. Sect. 1.2).
By Example 1.4.2, there is a closed subvariety Z ⊂ P and a rational

dominant morphism P ��� Z with dim(Z) = cdim(P) = cdimp(P). We
view F(Z) as a subfield of F(P). As P(L) �= ∅ and P is regular, there is an
F-place γ : F(P)� L (cf. [11, § 4.1]). Since Z is complete, the valuation
ring of the restriction γ |F(Z) : F(Z)� L dominates a point in Z. It follows
that Z(L) �= ∅. Choose a point y ∈ Z such that F ′ := F(y) ⊂ L .

Since P(F ′) �= ∅, the Pi are split over F ′, hence Pic(Pi)F ′ = Z and
there are functions gi ∈ F ′(Pi)

× with div(gi) = pH ′
i − (Si)F ′ , where H ′

i is
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a hyperplane in Pi for i = 1, . . . , s. As Pic(Pi)L = Z, there are functions
hi ∈ L(Pi)

× with div(hi) = (H ′
i )L − Hi . We have

div(gi)L = div( fi) + div
(

h p
i

)

,

hence

ai gi = fih
p
i

for some ai ∈ L×. It follows that 〈 fi〉s
i=1 = 〈ai gi〉s

i=1 in X(L), therefore
〈 fi〉s

i=1 is defined over the field F ′(a1, a2, . . . , as). Hence

ed〈 fi〉s
i=1 ≤ tr.degF(F ′) + s ≤ dim(Z) + s = cdim(P) + s,

and therefore ed(X) ≤ cdim(P) + s.
We shall prove the inequality edp(X) ≥ cdim(P)+ s. As P(F(Z)) �= ∅,

there are functions fi ∈ F(Z)(Pi)
× with div( fi) = pHi −(Si)F(Z), where Hi

is a hyperplane in (Pi)F(Z). Let L := F(Z)(t1, t2, . . . , ts), where the ti are
variables, and consider the point 〈ti fi〉s

i=1 ∈ ̂X(L).
We claim that edp〈ti fi〉s

i=1 ≥ cdim(P) + s. Let L ′ be a finite extension
of L of degree prime to p and L ′′ ⊂ L ′ a subfield such that the image of
〈ti fi〉s

i=1 in ̂X(L ′) is defined over L ′′, i.e., there are functions gi ∈ L ′′(Pi)
×

and hi ∈ L ′(Pi)
× with ti fi = gih

p
i . We shall show that tr.degF(L ′′) ≥

cdim(P) + s.
Let Li := F(Z)(ti, . . . , ts) and vi be the discrete valuation of Li corres-

ponding to the variable ti for i = 1, . . . , s. We construct a sequence of field
extensions L ′

i/Li of degree prime to p and discrete valuations v′
i of L ′

i for
i = 1, . . . , s by induction on i as follows. Set L ′

1 = L ′. Suppose the fields
L ′

1, . . . , L ′
i and the valuations v′

1, . . . , v
′
i−1 are constructed. By Lemma 1.1,

there is a valuation v′
i of L ′

i with residue field L ′
i+1 extending the discrete

valuation vi of L ′
i with the ramification index ei and the degree [L ′

i+1 : Li+1]
prime to p.

The composition v′ of the discrete valuations v′
i is a valuation of L ′ with

residue field of degree over F(Z) prime to p. A choice of prime elements in
all the L ′

i identifies the group of values of v′ with Zs. Moreover, for every
i = 1, . . . , s, we have

v′(ti) = eiεi +
∑

j>i

aijε j

where the εi’s denote the standard basis elements of Zs and aij ∈ Z.
Write v′′ for the restriction of v′ on L ′′. Let K = F(P). We extend

canonically the valuations v′ and v′′ to valuations ṽ′ and ṽ′′ of KL′ and
KL′′ respectively (cf. Sect. 1.5). Note that fi ∈ K(Z)×, gi ∈ (KL′′)× and
hi ∈ (KL′)×. We have

eiεi +
∑

j>i

aijε j = v′(ti) = ṽ′(ti fi) ≡ ṽ′′(gi) (mod p).
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Since ei are prime to p, the elements ṽ′′(gi) generate a subgroup of Zs

of finite index. It follows that the value group of ṽ′′ is of rank s, hence
rank(v′′) = rank(ṽ′′) = s.

Let R′′ and R′ be residue fields of v′′ and v′ respectively. We have the
inclusions R′′ ⊂ R′ ⊃ F(Z) and [R′ : F(Z)] is prime to p. By [20, Ch. VI,
Th. 3, Cor. 1],

tr.degF(L ′′) ≥ tr.degF(R′′) + rank(v′′) = tr.degF(R′′) + s.(2)

As P(L ′′) �= ∅, there is an F-place F(P) � L ′′. Composing it with the
place L ′′ � R′′ given by v′′, we get an F-place F(P) � R′′. As P is
complete, we have P(R′′) �= ∅, i.e., R′′ is a splitting field of P.

We prove that R′′ is a p-generic splitting field of P. Let M be a splitting
field of P. A regular system of parameters at the image of a morphism
α : Spec M → P yields an F-place F(P) � M that is a composition
of places associated with discrete valuations (cf. [11, § 1.4]). By [11,
Lemma 3.2] applied to the restriction of α to F(Z), there is a finite field
extension M′ of M and an F-place R′ � M′. Restricting to R′′ we get an
F-place R′′ � M′, i.e., R′′ is a p-generic splitting field of P.

By the definition of the canonical p-dimension,

cdim(P) = tr.degF F(Z) = tr.degF R′ ≥ tr.degF(R′′) ≥ cdimp(P).

It follows that tr.degF(R′′) = cdim(P) by (1) and therefore, tr.degF(L ′′) ≥
cdim(P) + s by (2). The claim is proved.

It follows from the claim that edp(X) ≥ cdim(P) + s. �


4. Main theorem

The main result of the paper is the following

Theorem 4.1. Let G be a p-group and F a field of characteristic different
from p containing a primitive p-th root of unity. Then edp(G) over F is
equal to ed(G) over F and coincides with the least dimension of a faithful
representation of G over F.

The rest of the section is devoted to the proof of the theorem. As was
mentioned in the introduction, we have edp(G) ≤ ed(G) ≤ dim(V ) for
any faithful representation V of G over F. We shall construct a faithful
representation V of G over F with edp(G) ≥ dim(V ).

Denote by C the subgroup of all central elements of G of exponent p
and set H = G/C, so we have an exact sequence

1 → C → G → H → 1.(3)

Let E → Spec F be an H-torsor and Spec F → BH be the corres-
ponding morphism. Set XE := BG ×BH Spec F. Then XE is a gerbe
over F banded by C and its class in H2(F, C) coincides with the image
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of the class of E under the connecting map H1(F, H) → H2(F, C)
(cf. [13, Ch. 4, § 2]). An object of XE over a field extension L/F is a pair
(E ′, α), where E ′ is a G-torsor over L and α : E ′/C ∼→ EL is an isomorph-
ism of H-torsors over L .

Alternatively, XE = [E/G] with objects (over L) G-equivariant morph-
isms E ′ → EL , where E ′ is a G-torsor over L (cf. [19]).

A lower bound for ed(G) was established in [4, Prop. 2.20]. We give
a similar bound for edp(G).

Theorem 4.2. For any H-torsor E over F, we have edp(G) ≥ edp(X
E ).

Proof. Let L/F be a field extension and x = (E ′, α) an object of XE(L).
Choose a field a field extension L ′/L of degree prime to p and a subfield
L ′′ ⊂ L ′ over F such that tr.deg(L ′′) = edp(E ′) and there is a G-torsor E ′′
over L ′′ with E ′′

L ′ � E ′
L ′ .

We shall write Z for the (zero-dimensional) scheme of isomorphisms
IsoL ′′(E ′′/C, EL ′′) of H-torsors over L ′′. The image of the morphism
Spec L ′ → Z over L ′′ representing the isomorphism αL ′ is a one point
set {z} of Z. The field extension L ′′(z)/L ′′ is algebraic since dim Z = 0.

The isomorphism αL ′ descends to an isomorphism of the H-torsors
E ′′/C and E over L ′′(z). Hence the isomorphism class of xL ′ belongs to the
image of the map ̂XE(L ′′(z)) → ̂XE(L ′). Therefore,

edp(G) ≥ edp(E ′) = tr.deg(L ′′) = tr.deg(L ′′(z)) ≥ edp(x).

It follows that edp(G) ≥ edp(X
E ). �


Let C∗ := Hom(C, Gm) denote the character group of C. An H-torsor E
over F yields a homomorphism

βE : C∗ → Br(F)

taking a character χ : C → Gm to the image of the class of E under the
composition

H1(F, H)
∂−→ H2(F, C)

χ∗−→ H2(F, Gm) = Br(F),

where ∂ is the connecting map for the exact sequence (3). Note that as
µp ⊂ F×, the intersection of Ker(χ∗) over all characters χ ∈ C∗ is trivial.
It follows that the classes of splitting fields of the gerbe XE and the subgroup
Im(βE ) coincide. It follows that

cdimp(X
E ) = cdimp(Im(βE )).(4)

Let χ1, χ2, . . . , χs be a basis of C∗ over Z/pZ such that {βE(χ1), . . . ,
βE(χr)} is a minimal basis of Im(βE ) for some r and βE(χi) = 1 for i > r.
By Theorem 2.1, we have

cdimp(Im(βE )) =
(

r
∑

i=1

ind βE(χi)
)

− r =
(

s
∑

i=1

ind βE(χi)
)

− s.(5)
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In view of (4) and Theorems 3.1 and 4.2, we shall find an H-torsor E
(over a field extension of F) so that the integer in (5) is as large as possible.
Let U be a faithful representation of H and X an open subset of the affine
space A(U) of U where H acts freely. Set Y := X/H . Let E be the generic
fiber of the H-torsor π : X → Y . It is a “generic” H-torsor over the function
field L := F(Y ).

Let χ : C → Gm be a character and Rep(χ)(G) the category of all finite
dimensional representations ρ of G such that ρ(c) is multiplication by χ(c)
for any c ∈ C. Fix a representations ρ : G → GL(W ) in Rep(χ)(G). The
conjugation action of G on B := End(W ) factors through an H-action. By
descent (cf. [13, Ch. 1, § 2]), there is (a unique up to canonical isomorphism)
Azumaya algebra A over Y and an H-equivariant algebra isomorphism
π∗(A) � BX := B × X. Let A be the generic fiber of A; it is a central
simple algebra over L = F(Y ).

Consider the homomorphism βE : C∗ → Br(L).

Lemma 4.3. The class of A in Br(L) coincides with βE(χ).

Proof. Consider the commutative diagram

1 �� C

��
χ

�� G

��
ρ

�� H

��
α

�� 1

1 �� Gm
�� GL(W ) �� PGL(W ) �� 1

The image of the H-torsor π : X → Y under α is the PGL(W )-torsor

E ′ := PGL(W )X/H → Y

where PGL(W )X := PGL(W )× X and H acts on PGL(W )X by h(a, x) =
(ah−1, hx). The conjugation action of PGL(W ) on B gives rise to an iso-
morphism between PGL(W )X and the H-torsor IsoX(BX, End(W )X) of
isomorphisms between the (split) Azumaya OX-algebras BX and End(W )X .
Note that this isomorphism is H-equivariant if H acts by conjugation on BX
and trivially on End(W )X . By descent,

E ′ � IsoY (A, End(W )Y ).

Therefore, the image of the class of the torsor E ′ → Y under the connecting
map for the bottom row of the diagram coincides with the class of the
Azumaya algebra A. Restricting to the generic fiber yields [A] = βE(χ).

�

Theorem 4.4. For any character χ ∈ C∗, we have ind βE(χ) = min dim(V )

over all representations V in Rep(χ)(G).

Proof. We follow the approach given in [12]. Let H act on a scheme
Z over F. We also view Z as a G-scheme. Denote by M(G, Z) the
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(abelian) category of left G-modules on Z that are coherent OZ-modules
(cf. [18, § 1.2]). In particular, M(G, Spec F) = Rep(G), the category off
all finite dimensional representations of G.

Note that C acts trivially on Z. For a character χ : C → Gm, let
M(χ)(G, Z) be the full subcategory of M(G, Z) consisting of G-modules
on which C acts via χ. For example, M(χ)(G, Spec F) = Rep(χ)(G).

We write K0(G, Z) and K (χ)

0 (G, Z) for the Grothendieck groups of
M(G, Z) and M(χ)(G, Z) respectively.

Every M in M(G, Z) is a direct sum of unique submodules M(χ) of M
in M(χ)(G, Z) over all characters χ of C. It follows that

K0(G, Z) =
∐

K (χ)

0 (G, Z).

Let q be the order of G. By [17, Th. 24], every irreducible representation
of G is defined over the field F(µq). Since F contains p-th roots of unity, the
degree [F(µq) : F] is a power of p. Hence the dimension of any irreducible
representation of G over F is a power of p. It follows by Lemma 4.3
that it suffices to show ind(A) = gcd dim(V ) over all representations V
in Rep(χ)(G).

The image of the map dim : K0(A) → Z given by the dimension over L
is equal to ind(A) · dim(W ) ·Z. To finish the proof of the theorem it suffices
to construct a surjective homomorphism

K0(Rep(χ)(G)) → K0(A)(6)

such that the composition K0(Rep(χ)(G)) → K0(A)
dim−−→ Z is given by the

dimension times dim(W ).
First of all we have

K0(Rep(χ)(G)) � K (χ)

0 (G, Spec F).(7)

Recall that X an open subset ofA(U) where H acts freely. By homotopy
invariance in the equivariant K -theory [18, Cor. 4.2],

K0(G, Spec F) � K0(G,A(U)).

It follows that

K (χ)

0 (G, Spec F) � K (χ)

0 (G,A(U)).(8)

By localization [18, Th. 2.7], the restriction homomorphism

K (χ)

0 (G,A(U)) → K (χ)

0 (G, X).(9)

is surjective.
Denote by M(1)(G, X, BX ) the category of left G-modules M on X that

are coherent OX-modules and right BX-modules such that C acts trivially
on M and the G-action on M and the conjugation G-action on BX agree.
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The corresponding Grothendieck group is denoted by K (1)
0 (G, X, BX ). For

any object L in M(χ)(G, X), the group C acts trivially on L ⊗F W∗ and B
acts on the right on L ⊗F W∗. We have Morita equivalence

M(χ)(G, X) ∼→ M(1)(G, X, BX )

given by L 
→ L ⊗F W∗ (with the inverse functor M 
→ M ⊗B W). Hence

K (χ)

0 (G, X) � K (1)
0 (G, X, BX ).(10)

Now, as C acts trivially on X and BX , the category M(1)(G, X, BX ) is
equivalent to the category M(H, X, BX) of left H-modules M on X that are
coherent OX-modules and right BX-modules such that the G-action on M
and the conjugation G-action on BX agree. Hence

K (1)
0 (G, X, BX ) � K0(H, X, BX).(11)

Recall that Y = X/H . By descent, the category M(H, X, BX) is equi-
valent to the category M(Y,A) of coherent OY -modules that are right
A-modules. Hence

K0(H, X, BX) � K0(Y,A).(12)

The restriction to the generic point of Y gives a surjective homomorphism

K0(Y,A) → K0(A).(13)

The homomorphism (6) is the composition of (7), (8), (9), (10), (11),
(12) and (13). It takes the class of a representation V to the class in K0(A)
of the generic fiber of the vector bundle ((V ⊗ W∗) × X)/H over Y of rank
dim(V ) · dim(W ). �

Remark 4.5. The theorem holds with min replaced by the gcd (with the
same proof) in a more general context when the sequence (3) is an arbitrary
exact sequence of algebraic groups with C a central diagonalizable subgroup
of G.

Example 4.6 (cf. [6], [4, § 14], [16, Th. 7.3.8]). Let p be a prime integer,
F be a field of characteristic different from p and Cm the cyclic group
Z/pm

Z. Let K = F(t1, . . . , tp m ) and Cm act on the variables t1, . . . , tp m by
cyclic permutations. Then K is a Galois Cm-algebra over KCm . Assume that
F contains a primitive root of unity ξp k for some k. The image of the class
of K under the connecting map H1(F, Cm) → H2(F, Ck) � Brp k (F) for
the exact sequence

1 → Ck → Cn → Cm → 1,

where n = k + m, is the class of the cyclic algebra A = (K/KCm , ξp k).
The group Cn acts F-linearly on F(ξp n ) by multiplication by roots of unity
making the F-space F(ξp n ) a faithful representation of Cn of the smallest
dimension. By Theorem 4.4 and Remark 4.5, we have

ind(A) = [F(ξp n ) : F].
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We can now complete the proof of Theorem 4.1. By Theorem 4.4,
there are representations Vi in Rep(χi )(G) such that ind βE(χi) = dim(Vi),
i = 1, . . . , s. Let V be the direct sum of all the Vi . By Theorem 4.2 (applied
to the group G over L and the generic torsor E), Theorem 3.1, (4) and (5),
we have

edp(G) ≥ edp(GL) ≥ edp(X
E ) = cdimp(X

E ) + s = cdimp(Im(βE )) + s

=
s

∑

i=1

ind βE(χi) =
s

∑

i=1

dim(Vi) = dim(V ).

Since χ1, χ2, . . . , χs generate C∗, the restriction of V on C is faithful.
As every nontrivial normal subgroup of G intersects C nontrivially, the
G-representation V is faithful. We have constructed a faithful representa-
tion V of G over F with edp(G) ≥ dim(V ). The theorem is proved.

Remark 4.7. The proof of Theorem 4.1 shows how to compute the essential
dimension of G over F. For every character χ ∈ C∗ choose a represen-
tation Vχ ∈ Rep(χ)(G) of the smallest dimension. It appears as an irre-
ducible component of the smallest dimension of the induced representation
IndG

C (χ). We construct a basis χ1, . . . , χs of C∗ by induction as follows.
Let χ1 be a nonzero character with the smallest dim(Vχ1). If the characters
χ1, . . . , χi−1 are already constructed for some i ≤ s, then we take for χi
a character with minimal dim(Vχi ) among all the characters outside of the
subgroup generated by χ1, . . . , χi−1. Then V is a faithful representation of
the least dimension and ed(G) = ∑s

i=1 dim(Vχi ).

Remark 4.8. We can compute the essential p-dimension of an arbitrary
finite group G over a field F of characteristic different from p. (We
don’t assume that F contains p-th roots of unity.) Let G′ be a Sylow
p-subgroup of G. One can prove that edp(G) = edp(G′) and edp(G′)
does not change under field extensions of degree prime to p. In particular
edp(G′) = edp(G′

F ′) where F ′ = F(µp). It follows from Theorem 4.1 that
edp(G) coincides with the least dimension of a faithful representation of G′
over F ′.

5. An application

Theorem 5.1. Let G1 and G2 be two p-groups and F a field of character-
istic different from p containing a primitive p-th root of unity. Then

ed(G1 × G2) = ed(G1) + ed(G2).

Proof. The index j in the proof takes the values 1 and 2. If Vj is a faithful
representation of G j then V1 ⊕ V2 is a faithful representation of G1 × G2.
Hence ed(G1 × G2) ≤ ed(G1) + ed(G2) (cf. [5, Lemma 4.1(b)]).



Essential dimension of finite p-groups 507

Denote by Cj the subgroup of all central elements of G j of exponent p.
Set C = C1 × C2. We identify C∗ with C∗

1 ⊕ C∗
2 .

For every character χ ∈ C∗ choose a representation ρχ : G1 × G2 →
GL(Vχ) in Rep(χ)(G1 ×G2) of the smallest dimension. We construct a basis
{χ1, χ2, . . . , χs} of C∗ following Remark 4.7. We claim that all the χi can
be chosen in one of the C∗

j . Indeed, suppose the characters χ1, . . . , χi−1

are already constructed, and let χi be a character with minimal dim(Vχi )
among the characters outside of the subgroup generated by χ1, . . . , χi−1. Let
χi = χ

(1)
i +χ

(2)
i with χ

( j )
i ∈ C∗

j . Denote by ε1 and ε2 the endomorphisms of
G1 ×G2 taking (g1, g2) to (g1, 1) and (1, g2) respectively. The restriction of
the representation ρχi ◦ε j on C is given by the character χ

( j )
i . We replace χi

by χ
( j )
i with j such that χ

( j )
i does not belong to the subgroup generated by

χ1, . . . , χi−1. The claim is proved.
Let Wj be the direct sum of all the Vχi with χi ∈ C∗

j . Then the restriction
of Wj on Cj is faithful, hence so is the restriction of Wj on G j . It follows
that ed(G j) ≤ dim(Wj). As W1 ⊕ W2 = V , we have

ed(G1) + ed(G2) ≤ dim(W1) + dim(W2) = dim(V ) = ed(G1 × G2). �

Corollary 5.2. Let F be a field as in Theorem 5.1. Then

ed(Z/pn1Z× Z/pn2Z× · · · × Z/pnsZ) =
s

∑

i=1

[F(ξp ni ) : F].

Proof. By Theorem 5.1, it suffices to consider the case s = 1. This case has
been done in [6]. It is also covered by Theorem 4.1 as the natural represen-
tation of the group Z/pn

Z in the F-space F(ξp n ) is faithful irreducible of
the smallest dimension (cf. Remark 4.6). �
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