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Abstract. We prove that the essential dimension and p-dimension of
a p-group G over a field F containing a primitive p-th root of unity is
equal to the least dimension of a faithful representation of G over F.

The notion of the essential dimension ed(G) of a finite group G over
a field F was introduced in [5]. The integer ed(G) is equal to the smallest
number of algebraically independent parameters required to define a Galois
G-algebra over any field extension of F. If V is a faithful linear representa-
tion of G over F then ed(G) < dim(V) (cf. [2, Prop. 4.15]). The essential
dimension of G can be smaller than dim(V') for every faithful represen-
tation V of G over F. For example, we have ed(Z/3Z) = 1 over Q or
any field F of characteristic 3 (cf. [2, Cor. 7.5]) and ed(S3) = 1 over C
(cf. [5, Th. 6.5]).

In this paper we prove that if G is a p-group and F is a field of character-
istic different from p containing p-th roots of unity, then ed(G) coincides
with the least dimension of a faithful representation of G over F (cf. The-
orem 4.1).

We also compute the essential p-dimension of a p-group G introduced
in [15]. We show that ed,(G) = ed(G) over a field F containing p-th roots
of unity.
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1. Preliminaries

In the paper the word “scheme” means a separated scheme of finite type
over a field and ““variety” an integral scheme.

1.1. Severi-Brauer varieties. (cf.[1]) Let A be a central simple algebra of
degree n over a field F. The Severi—Brauer variety P = SB(A) of A is the
variety of right ideals in A of dimension n. For a field extension L/F, the
algebra A is split over L if and only if P(L) # ¢ if and only if P, ~ IF’Z_I.

The change of field map deg : Pic(P) — Pic(P.) = Z for a splitting
field extension L/F identifies Pic(P) with eZ, where e is the exponent
(period) of A. In particular, P has divisors of degree e. The algebra A is
split over L if and only if P, has a prime divisor of degree 1 (a hyperplane).

1.2. Groupoids and gerbes. (cf. [4]) Let X be a groupoid over F in the
sense of [19]. We assume that for any field extension L/ F, the isomorphism
classes of objects in the category X (L) form a set which we denote by X (L).
We can view X as a functor from the category Fields/F of field extensions
of F to Sets.

Example 1.2.1. If G is an algebraic group over F, then the groupoid BG
is defined as the category of G-torsors over a scheme over F. Hence the
functor BG takes a field extension L/ F to the set of all isomorphism classes
of G-torsors over L.

Special examples of groupoids are gerbes banded by a commutative
group scheme C over F. There is a bijection between the set of isomorphism
classes of gerbes banded by C and the Galois cohomology group H*(F, C)
(cf. [7, Ch. 4] and [13, Ch. 4, § 2]). The split gerbe BC corresponds to the
trivial element of H2(F, C).

Example 1.2.2 (Gerbes banded by w,). Let A be a central simple F-algebra
and n an integer with [A] € Br,(F) = H?(F, u,). Let P be the Severi—
Brauer variety of A and S a divisor on P of degree n. Denote by X4
the gerbe banded by u, corresponding to [A]. For a field extension L/F,
the set X4 (L) has the following explicit description (/gf. [4]D: Xa(L) is
nonempty if and only if P is split over L. In this case X 4(L) is the set of
equivalence classes of the set

{f € L(P)* : div(f) =nH — S;, where H is a hyperplane in PL},

and two functions f and f’ are equivalent if f* = fh" forsome h € L(P)*.

1.3. Essential dimension. Let T : Fields/F — Sets be a functor. For
a field extension L/F and an element t € T(L), the essential dimension
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of t, denoted ed(?), is the least tr.deg (L) over all subfields L C L over F
such that r belongs to the image of the map T(L’) — T(L). The essential
dimension ed(T) of the functor T is the supremum of ed(z) over all t € T(L)
and field extensions L/ F.

Let p be a prime integer and ¢t € T(L). The essential p-dimension of t,
denoted ed (1), is the least tr.deg, (L") over all subfields L” C L’ over F,
where L’ is a finite field extension of L of degree prime to p such that the
image of ¢ in T(L’) belongs to the image of the map T(L") — T(L’). The
essential p-dimension ed,(T) of the functor T is the supremum of ed,(7)
over all # € T(L) and field extensions L/F. Clearly, ed(T) > ed,(T).

Let G be an algebraic group over F. The essential dimension ed(G)
of G (respectively the essential p-dimension ed(G)) is the essential dimen-
sion (respectively the essential p-dimension) of the functor taking a field
extension L/ F to the set of isomorphism classes of G-torsors over Spec L.

If G is a finite group, we view G as a constant group over a field F.
Every G-torsor over Spec L has the form Spec K where K is a Galois
G-algebra over L. Therefore, ed(G) is the essential dimension of the functor
taking a field L to the set of isomorphism classes of Galois G-algebras
over L.

Example 1.3.1. Let X be a groupoid over F. The essential dimension of X,
denoted by ed (X), is the essential dimension ed (X) of the functor X defined
in Sect. 1.2. The essential p-dimension of ed,(X) is defined similarly. In
particular, ed(BG) = ed(G) and ed,(BG) = ed,(G) for an algebraic group
G over F.

1.4. Canonical dimension. (cf. [3],[11]) Let F be a field and C a class of
field extensions of F. A field E € C is called generic if for any L € C there
is an F-place E ~~ L.

The canonical dimension cdim(C) of the class € is the minimum of the
tr.deg E over all generic fields E € C.

Let p be a prime integer. A field E in a class C is called p-generic if
for any L € C there is a finite field extension L’ of L of degree prime
to p and an F-place E ~» L'. The canonical p-dimension cdim,(C) of the
class C is the least tr.deg, E over all p-generic fields E € C. Obviously,
cdim(C) > cdim,(C).

Let T : Fields/F — Sets be a functor. Denote by Cr the class of split-
ting fields of T, i.e., the class of field extensions L/F such that T(L) # #.
The canonical dimension (p-dimension) of T, denoted cdim(7") (respect-
ively cdim (7)), is the canonical dimension (p-dimension) of the class Cr.

If X is a scheme over F, we write cdim(X) and cdim,(X) for the
canonical dimension and p-dimension of X viewed as a functor L +
X (L) = Morg(Spec L, X).

Example 1.4.1. Let X be a groupoid over F. We define the canonical
dimension cdim(X) and p-dimension cdim,(X) of X as the canonical

dimension and p-dimension of the functor X.
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Example 1.4.2. If X is a regular and complete variety over F viewed as
a functor then cdim(X) is equal to the smallest dimension of a closed
subvariety Z C X such that there is a rational morphism X --» Z (cf. [11,
Cor. 4.6]). If p is a prime integer then cdim,(X) is equal to the smallest
dimension of a closed subvariety Z C X such that there are dominant
rational morphisms X’ --+ X of degree prime to p and X’ --+ Z for some
variety X’ (cf. [11, Prop. 4.10]).

Remark 1.4.2 (A relation between essential and canonical dimension). Let
T : Fields/F — Sets be a functor. We define the “contraction" functor
T¢ : Fields/F — Sets as follows. For a field extension L/F, we have
T¢(L) = ¥if T(L) is empty and T¢(L) is a one element set otherwise. If X
is a regular and complete variety over F viewed as a functor then one can
show that ed(X¢) = cdim(X) and ed,(X¢) = cdim,(X).

1.5. Valuations. Let K/F be a regular field extension, i.e., for any field
extension L/ F, the ring K ®r L is a domain. We write KL for the quotient
field of K @ L

Let v be a valuation on L over F with residue field R. Let O be the
associated valuation rmg and M its maximal ideal. As K ®r R is a domain,
the ideal M:=K ®r M in the ring 0:=K ®F O is prime. The localization
ring Oi 77 18 a valuation ring in KL with residue field KR. The corresponding
valuation v of KL is called the canonical extension of v on KL. Note that the
groups of values of v and ¥ coincide.

We shall need the following lemma.

Lemma 1.1 (cf.[11, Lemma3.2]). Let v be a discrete valuation (of rank 1)
of a field L with residue field R and L'/ L a finite field extension of degree
prime to p. Then v extends to a discrete valuation of L’ with residue field R'
such that the ramification index and the degree [R’ : R] are prime to p.

Proof. Tf L'/ L is separable and vy, ..., v, are all the extensions of v on L’
then [L’' : L] = ) _e;[R; : R] where ¢; is the ramification index and R; is
the residue field of v; (cf. [20, Ch. VI, Th. 20 and p. 63]). It follows that the
integer ¢;[R; : R] is prime to p for some i.

If L'/L is purely inseparable of degree g then the valuation v of L’
defined by v'(x) = v(x9) satisfies the desired properties. The general case
follows. O

2. Canonical dimension of a subgroup of Br(F)

Let F be an arbitrary field, p a prime integer and D a finite subgroup
of Br,(F) of dimension r over Z/pZ. In this section we determine the
canonical dimension cdim D and the canonical p-dimension cdim, D of
the class of common splitting fields of all elements of D. We say that
a basis {aj, az, ..., a,} of D is minimal if for any i = 1,...,r and any
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element d € D outside of the subgroup generated by ay, ..., a;_1, we have
indd > ind g;.

One can construct a minimal basis of D by induction as follows. Let a;
be a nonzero element of D of minimal index. If the elements ay, ..., a;_;
are already chosen for some i < r, we take for the a; an element of D of
the minimal index among the elements outside of the subgroup generated
by ai,...,a;_1.

In this section we prove the following

Theorem 2.1. Let F be an arbitrary field, p a prime integer, D C Br,(F)
a subgroup of dimension r and {a,, a,, . .., a,} a minimal basis of D. Then

cdim (D) = cdim(D) = (Xr:ind a,'> —r.
i=1

We prove Theorem 2.1 in several steps.

Let {a;, ay, ..., a,} be a minimal basis of D. Foreveryi =1,2,...,r,
let P; be the Severi—Brauer variety of a central division F-algebra A; repre-
senting the elementa; € Br, F. We write P for the product P; x Py x- - - X P,.
We have

r

dimP =Y dimP, = <Zinda,-) —r
i=1 i=1
Moreover, the classes of splitting fields of P and D coincide, hence cdim(D)
= cdim(P) and cdim, (D) = cdim,(P). Thus, the statement of Theorem 2.1
is equivalent to the equality cdim,(P) = cdim(P) = dim(P).
Letr > 1and 0 < n; < ny < --- < n, be integers and K =
K(ny,...,n,) the subgroup of the polynomial ring Z[x] in r variables

Jis -5 jr = 0, where the exponent e(ji, ..., j,) is O if all the ji, ..., j,
are divisible by p, otherwise e(jy, ..., j,) = n; with the maximum k such
that j; is not divisible by p. In fact, K is a subring of Z[x].

Remark 2.2. Let Ay, ..., A, be central division algebras over some field
such that for any non-negative integers ji, ..., j., the index of the tensor
product A®"' @ --- ® AP” is equal to p°Ut-i). The group K can be
interpreted as the colimit of the Grothendieck groups of the product over
i =1,...,r of the Severi-Brauer varieties of the matrix algebras M;, (A;)
over all positive integers [y, ..., [,.

Weseth = (hy,...,h,) withh; =1 —x; € Z[x].

Proposition 2.3. Let bh'i‘ ... h" be a monomial of the lowest total degree
of a polynomial f in the variables h lying in K. Assume that the integer b
is not divisible by p. Then p"'|iy, ..., p™ |i,.

Proof. We recast the proof for » = 1 given in [8, Lemma 2.1.2] to the case
of arbitrary r.
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We proceed by induction on m = r +n; 4+ --- + n,. The case m = 1

is trivial. If m > 1 and n; = 0, then K = K(n,,...,n,)[x;] and we are
done by induction applied to K(ny, ..., n,). In what follows we assume
that n; > 1.

Since K(ny,ny,...,n,) C Km; — 1,n,,...,n,), by the induction
hypothesis p™ =iy, p™lis, ..., p™|i.. It remains to show that i; is div-
isible by p"!.

Consider the additive operation ¢ : Z[x] — Q[x] which takes a poly-
nomial g € Z[x] to the polynomial p~'x; - g/, where g’ is the partial

derivative of g with respect to x;. We have

oKy c Kny—1,n,—1,...,n,—1) C K(ny — D[x2,...,x,]
and

(B - h) = —p R B+ g

Since bh'il -+~ h" is a monomial of the lowest total degree of the poly-

nomial f, it follows that —bp~'i\ A% "'hZ ... h'r is a monomial of ¢(f)
considered as a polynomial in /. As

(p(f) € K(nl - 1)[X2, e ’xr] )

we see that —bp‘li]h"l‘fl is a monomial of a polynomial from K(n; — 1).
It follows that p~'i; is an integer and by Lemma 2.4 below, this integer is
divisible by p"1~!. Therefore p"!|i;. O

Lemma 2.4. Let g be a polynomial in h, lying in K(m) for some m > 0. Let
bh’f] be a monomial of g such that i is divisible by p™. Then b is divisible
by p™.

Proof. We write h for h; and x for x;. Note that i’ € K(m) since i
is divisible by p™. Moreover, the quotient ring K(m)/(h') is additively
generated by p‘(f )x/ with j < i. Indeed, the polynomial x' — (—h)' =
x' — (x — 1)" is a linear combination with integer coefficients of p°V/)x/
with j < i. Consequently, for any k > 0, multiplying by p*®@x*, we see
that the polynomial p¢U+h xi+* = pe® xi+k modulo the ideal (k) is a linear
combination with integer coefficients of the p*“)x/ with j < i + k.

Thus, K(m)/(h') is additively generated by p*‘/)(1 — h)/ with j < i.
Only the generator p¢‘~1 (1 — h)'~! = p™(1 — h)"~! has a nonzero h'~!-
coefficient and that coefficient is divisible by p™. O

Let Y be a scheme over the field . We write CH(Y') for the Chow group
of Y and set Ch(Y) = CH(Y)/p CH(Y). We define Ch(Y) as the colimit
of Ch(Y.) where L runs over all field extensions of F. Thus for any field
extension L/F, we have a canonical homomorphism Ch(Y;) — Ch(Y).
This homomorphism is an isomorphism if ¥ = P, the variety defined
above, and L is a splitting field of P.
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We define Ch(Y) to be the image of the homomorphism Ch(Y) —
Ch(Y).

Proposition 2.5. We have ﬁj(P) = 0forany j > 0.

Proof. Let Ky(P) be the Grothendieck group of P. We write K, (P) for the
colimit of Ko(P,) taken over all field extensions L/F. The group Ko(P) is
canonically isomorphic to Ky( P, ) for any splitting field L of P. Each of the
groups Ko(P) and K (P) is endowed with the topological filtration. The
subsequent factor groups G/Ky(P) and G/K| (P) of these filtrations fit into
the commutative square

CH/(P) —= G/Ky(P)

! |

CH/(P) — G/Ky(P)

where the top map is an isomorphism. Therefore it suffices to show that the
image of the homomorphism G/Ky(P) — G’/Ky(P) is divisible by p for
any j > 0.

Thering K (P) is identified with the quotient of the polynomial ring Z[}]

inda;

by the ideal generated by A““!, ..., hi"®_ Under this identification, the
element #; is the pull-back to P of the class of a hyperplane in P; over
a splitting field and the j-th term Ko(P)Y) of the filtration is generated
by the classes of monomials of degree at least j. The group G/Ky(P) is
identified with the group of all homogeneous polynomials of degree ;.
The group Ko(P) is isomorphic to the direct sum of Ky(B), where

B=AY"®. ..® A%, overall j; with 0 < j; < inda; (cf. [14, § 9]). The
image of the natural map Ko(B) — Ko(Br) = Z, where L is a splitting
field of B, is equal to ind(aj' - - - a;")Z. The image of the homomorphism
Ko(P) — Ky(P) (which is in fact an injection) is generated by

ind (a]' ---a)(1 — hy)' - (1 — h)
overall ji,..., j, > 0.

We embed KO(F) into the polynomia] ring Z[x] = Z[x1,...,x,] as
a subgroup by identifying a monomial A" --- k" where 0 < j; < inda;

with the polynomial (I — x;)/'--- (1 — x,)". As the elements aj, ..., a,
form a minimal basis of D, the index ind(a{l ---al") is a power of p with
the exponent at least e(log ,ind ay, .. ., log,, ind a,). Therefore,

Ko(P) C K(log,inday, ..., log,inda,) C Z[x].

An element of Ko(P)Y) with j > 0 is a polynomial f in h of degree at
least j. The image of f in G/K,(P) is the j-th homogeneous part fjof f.
As the degree of f with respect to k; is less than ind g;, it follows from
Proposition 2.3 that all the coefficients of f; are divisible by p. O



498 N.A. Karpenko, A.S. Merkurjev

Letd = dim P and @ € CHY(P x P). The first multiplicity mult, (&) of «
is the image of o under the push-forward map CHY(Px P) - CH"(P) =7
given by the first projection P x P — P (cf. [10]). Similarly, we define the
second multiplicity mult; (o).

Corollary 2.6. For any element o € CHY(P x P), we have

mult; (o) = multy(«) modulo p.

Proof. We follow the proof of [9, Th. 2.1]. The homomorphism
f:CHYP x P) — (Z/pZ)*,

taking an o € CHY(P x P) to (mult;(e), mult,(«)) modulo p, factors
through the group @d(P x P). Since for any i, any projection P; X P; — P;
is a projective bundle, the Chow group Ch (P x P) is a direct some of
several copies of Ch'(P) for some i’s and the value i = 0 appears once. By

Proposition 2.5, the dimension over Z/ pZ of the vector space Ch (P x P)
is equal to 1 and consequently the dimension of the image of f is at most 1.
Since the image of the diagonal class under f is (1, 1), the image of f is
generated by (1, 1). m|

Corollary 2.7. Any rational map P --+ P is dominant.

Proof. Let « € CHY(P x P) be the class of the closure of the graph of
arationalmap P --» P.Wehave mult; («) = 1. Therefore, by Corollary 2.6,
mult, () # 0, and it follows that the rational map is dominant. O

Corollary 2.8. cdim, P = cdim P = dim P.

Proof. As cdim, P < cdim P < dim P, it suffices to show that cdim, P =
dim P.Let Z C Pbeaclosedsubvarietyand f : P’ --+ Pandg : P’ --» Z
dominant rational morphisms such that deg f is prime to p. Let « be the class
in CH?(P x P) of the closure in P x P of the image of f xg : P’ —-» Px Z.
As mult; () = deg f is prime to p, by Corollary 2.6, we have mult, (o) # 0,
ie., Z = P.By Example 1.4.2, cdim, P = dim P. O

The corollary completes the proof of Theorem 2.1.

Remark 2.9. Theorem 2.1 can be generalized to the case of any finite
subgroup D C Br(F) consisting of elements of p-primary orders. Let
{ai, az, ..., a } be elements of D such that their images {a}, d}, ..., a.} in
D/ D? form a minimal basis, i.e., forany i = 1, ...r and any elementd € D
with the class in D/D? outside of the subgroup generated by a, ..., a;_,,
the inequality indd > inda; holds. In particular, {a;, ay, ..., a,} gener-
ate D. Then, as in Theorem 2.1, we have

r

cdim, (D) = cdim(D) = <Zindai> —r.

i=1
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Indeed, the group D and the variety P = P; X --- x P,, where P; for
every i = 1,...,r is the Severi—Brauer variety of a central division alge-
bra representing the element a;, have the same splitting fields. Therefore,
cdim(D) = cdim(P) and cdim,(D) = cdim,(P). Corollaries 2.6, 2.7
and 2.8 hold for P since Ky(P) C K(logp inday, ..., logp ind a,).

Remark 2.10. One can compute the canonical p-dimension of an arbitrary
finite subgroup of D C Br(F) as follows. Let D’ be the Sylow p-subgroup
of D. Write D = D'@ D" forasubgroup D" C D andlet L/ F be afinite field
extension of degree prime to p such that D" is split over L. Then D; = D}
and cdim, (D) = cdim,(D;) = cdim,(D;) = cdim,(D’) = cdim(D’).

3. Essential and canonical dimension of gerbes banded by ()"

In this section we relate the essential and canonical ( p-)dimensions of gerbes
banded by (p,)* where s > 0. The following statement is a generalization
of [4, Th. 7.1].

Theorem 3.1. Let p be a prime integer and X a gerbe banded by ()’
over an arbitrary field F. Then

ed(X) =ed,(X) = cdim,(X) + s = cdim(X) + s.

Proof. The gerbe X is given by an element in H?(F, (1,)%) = Br,(F)’,ie.,
by an s-tuple of central simple algebras Ay, A, ..., A; with [A;] € Br,(F).
Let P be the product of the Severi—Brauer varieties P; := SB(A;) and D
the subgroup of Br,(F) generated by the [A;],i =1, ..., s. As the classes
of splitting fields for X, D and P coincide, we have

(D) cdim(X) = cdim(P) = cdim(D) = cdim,(D)
= cdim, (P) = cdim,(X)

by Theorem 2.1. We shall prove the inequalities ed,(X) > cdim(P) +s >
ed(X0).

Let S; be a divisor on P; of degree p. Let L/F be a field extension and
fi € L(P;)* withdiv(f;) = pH; — (S;)L, where H; is a hyperplane in (FP;);,
fori = 1,...,s. We write (f;);_, for the corresponding element in X (L)
(cf. Sect. 1.2).

By Example 1.4.2, there is a closed subvariety Z C P and a rational
dominant morphism P --+ Z with dim(Z) = cdim(P) = cdim,(P). We
view F(Z) as a subfield of F(P). As P(L) # J and P is regular, there is an
F-place y : F(P) ~» L (cf. [11, § 4.1]). Since Z is complete, the valuation
ring of the restriction y|pz) : F(Z) ~» L dominates a point in Z. It follows
that Z(L) # @. Choose a point y € Z such that F’ := F(y) C L.

Since P(F') # (), the P; are split over F’, hence Pic(P;)p = Z and
there are functions g; € F'(P;)* with div(g;) = pH] — (S;) r/, where H is
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a hyperplane in P; fori = 1,...,s. As Pic(P;), = Z, there are functions
hi € L(P,)>< with le(hl) = (H/)L — H,. We have

div(g;)r = div(f;) + div (hf),
hence
a8 = fihf
for some a; € L*. It follows that (f;);_, = (a;gi);_, in X (L), therefore
(fi)i_, is defined over the field F'(a;, a2, . .., a,). Hence
ed(f;)_; < trdeg(F')+s <dim(Z) + s = cdim(P) + s,

i=1 —=

and therefore ed(X) < cdim(P) + s.

We shall prove the inequality ed,(X) > cdim(P) +s. As P(F(Z)) # ¥,
there are functions f; € F(Z)(P;)™ withdiv(f;) = pH;—(Si) rz), where H;
is a hyperplane in (P;)pz). Let L := F(Z)(1, 1o, . . ., Iy), where the 1; are
variables, and consider the point (t; f;);_, € X (L).

We claim that ed, (#; f;);_, = cdim(P) + s. Let L’ be a finite extension
of L of degree prime to p and L"” C L’ asubfield such that the image of
(ti fi)l_, in XX(L’) is defined over L”, i.e., there are functions g; € L"(P;)*
and h; € L'(P,)* with ; f; = g;h!. We shall show that tr.deg,(L") >
cdim(P) + s.

Let L; := F(Z)(t;, ..., t) and v; be the discrete valuation of L; corres-
ponding to the variable ¢; fori = 1, ..., s. We construct a sequence of field
extensions L:/L; of degree prime to p and discrete valuations v} of L} for
i =1,...,s by induction on i as follows. Set L} = L’. Suppose the fields
L\, ..., L} and the valuations v}, ..., v;_, are constructed. By Lemma 1.1,
there is a valuation v; of L; with residue field L}, extending the discrete
valuation v; of L] with the ramification index e; and the degree [L;, | : L;11]
prime to p.

The composition v of the discrete valuations v; is a valuation of L" with
residue field of degree over F(Z) prime to p. A choice of prime elements in
all the L identifies the group of values of v" with Z°. Moreover, for every
i=1,...,s, wehave

U/(li) = ¢;& + Zaijgj
j>i
where the ¢;’s denote the standard basis elements of Z° and a;; € Z.
Write v” for the restriction of v" on L”. Let K = F(P). We extend
canonically the valuations v' and v” to valuations ?" and ?” of KL’ and

KL" respectively (cf. Sect. 1.5). Note that f; € K(Z)*, g; € (KL")* and
h; € (KL')*. We have

eiei+ Yy aje; =v'(t;) =Vt ) =1'(g:) (mod p).

Jj>i
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Since e; are prime to p, the elements 9”(g;) generate a subgroup of Z°
of finite index. It follows that the value group of ¥” is of rank s, hence
rank (v”) = rank(?") = s.

Let R” and R’ be residue fields of v” and v respectively. We have the
inclusions R” C R’ D F(Z) and [R’ : F(Z)] is prime to p. By [20, Ch. VI,
Th. 3, Cor. 1],

(2)  trdegp(L") > tr.deg;(R") + rank(v") = tr.deg(R") +s.

As P(L") # ), there is an F-place F(P) ~» L”. Composing it with the
place L” ~~» R” given by v”, we get an F-place F(P) ~» R”. As P is
complete, we have P(R”) # ¢, i.e., R” is a splitting field of P.

We prove that R” is a p-generic splitting field of P. Let M be a splitting
field of P. A regular system of parameters at the image of a morphism
o : Spec M — P yields an F-place F(P) ~» M that is a composition
of places associated with discrete valuations (cf. [11, § 1.4]). By [11,
Lemma 3.2] applied to the restriction of o to F(Z), there is a finite field
extension M’ of M and an F-place R’ ~» M’. Restricting to R” we get an
F-place R” ~~ M, i.e., R” is a p-generic splitting field of P.

By the definition of the canonical p-dimension,

cdim(P) = tr.deg, F(Z) = tr.deg, R > tr.deg,(R") > cdim,(P).

It follows that tr.deg(R"”) = cdim(P) by (1) and therefore, tr.deg, (L") >
cdim(P) + s by (2). The claim is proved.
It follows from the claim that ed,(X) > cdim(P) + s. |

4. Main theorem

The main result of the paper is the following

Theorem 4.1. Let G be a p-group and F a field of characteristic different
from p containing a primitive p-th root of unity. Then ed,(G) over F is
equal to ed(G) over F and coincides with the least dimension of a faithful
representation of G over F.

The rest of the section is devoted to the proof of the theorem. As was
mentioned in the introduction, we have ed,(G) < ed(G) =< dim(V) for
any faithful representation V of G over F. We shall construct a faithful
representation V of G over F with ed,(G) > dim(V).

Denote by C the subgroup of all central elements of G of exponent p
and set H = G/C, so we have an exact sequence

3) 1-C—-G— H-—1.

Let E — Spec F be an H-torsor and Spec ' — BH be the corres-
ponding morphism. Set X% := BG xpy Spec F. Then X% is a gerbe
over F banded by C and its class in H*>(F, C) coincides with the image
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of the class of E under the connecting map H'(F, H) — H*(F,C)
(cf. [13, Ch. 4, § 2]). An object of X ¥ over a field extension L/F is a pair
(E', @), where E’ is a G-torsor over L and « : E'/C = E is an isomorph-
ism of H-torsors over L.

Alternatively, X* = [E/G] with objects (over L) G-equivariant morph-
isms £’ — E;, where E’ is a G-torsor over L (cf. [19]).

A lower bound for ed(G) was established in [4, Prop. 2.20]. We give
a similar bound for ed, (G).

Theorem 4.2. For any H-torsor E over F, we have ed,(G) > ed,,(.')CE).

Proof. Let L/F be a field extension and x = (E’, «) an object of X£(L).
Choose a field a field extension L’/L of degree prime to p and a subfield
L” C L' over F such that tr.deg(L"”) = ed,(E’) and there is a G-torsor E”
over L” with E7, ~ E},.

We shall write Z for the (zero-dimensional) scheme of isomorphisms
Iso,»(E"/C, Er») of H-torsors over L”. The image of the morphism
Spec L' — Z over L” representing the isomorphism «;/ is a one point
set {z} of Z. The field extension L"(z)/L” is algebraic since dim Z = 0.

The isomorphism «;: descends to an isomorphism of the H-torsors
E”/C and E over I;\”(z). Hence the isomorphism class of x;/ belongs to the
image of the map X*(L"(z)) — X%(L’). Therefore,

ed,(G) > ed,(E") = tr.deg(L") = tr.deg(L"(2)) > ed,(x).
It follows that ed ,(G) > ed,(XF). |

Let C* := Hom(C, Gy,) denote the character group of C. An H-torsor E
over F yields a homomorphism
BE . C* — Br(F)

taking a character x : C — Gy, to the image of the class of E under the
composition

H'(F, H) > HX(F, C) 2> H*(F, Gy) = Br(F),
where 9 is the connecting map for the exact sequence (3). Note that as

up C F*, the intersection of Ker(x,) over all characters x € C* is trivial.

It follows that the classes of splitting fields of the gerbe X and the subgroup
Im(B*) coincide. It follows that

4) cdim, (%) = cdim, (Im(B%)).

Let x1, X2, ..., Xs be a basis of C* over Z/ pZ such that {8 (x1), ...,
BE(x,)} is a minimal basis of Im(B%) for some r and BE(x;) = 1 fori > r.
By Theorem 2.1, we have

r N

(5) cdim,(m(8)) = (Y ind BEG)) —r = (D ind BE(x)) .

i=1 i=1
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In view of (4) and Theorems 3.1 and 4.2, we shall find an H-torsor £
(over a field extension of F') so that the integer in (5) is as large as possible.
Let U be a faithful representation of H and X an open subset of the affine
space A(U) of U where H acts freely. Set Y := X/H. Let E be the generic
fiber of the H-torsor 7 : X — Y.Itis a “generic” H-torsor over the function
field L := F(Y).

Let x : C — Gy, be a character and Rep® (G) the category of all finite
dimensional representations p of G such that p(c) is multiplication by x(c)
for any ¢ € C. Fix a representations p : G — GL(W) in Rep(X)(G). The
conjugation action of G on B := End(W) factors through an H-action. By
descent (cf. [13, Ch. 1, § 2]), there is (a unique up to canonical isomorphism)
Azumaya algebra 4 over Y and an H-equivariant algebra isomorphism
m*(A) ~ By := B x X. Let A be the generic fiber of +4; it is a central
simple algebra over L = F(Y).

Consider the homomorphism B : C* — Br(L).

Lemma 4.3. The class of A in Br(L) coincides with BE ().

Proof. Consider the commutative diagram

1 C G H 1

I T

1 — G, — GL(W) —=PGL(W) ——=1
The image of the H-torsor 7 : X — Y under « is the PGL(W)-torsor
E' :=PGL(W)x/H — Y

where PGL(W)x := PGL(W) x X and H acts on PGL(W)x by h(a, x) =
(ah~', hx). The conjugation action of PGL(W) on B gives rise to an iso-
morphism between PGL(W)y and the H-torsor Isox(By, End(W)x) of
isomorphisms between the (split) Azumaya Ox-algebras By and End(W)y.
Note that this isomorphism is H-equivariant if H acts by conjugation on By
and trivially on End(W)x. By descent,

E' >~ Isoy (A, End(W)y).

Therefore, the image of the class of the torsor E’ — Y under the connecting
map for the bottom row of the diagram coincides with the class of the
Azumaya algebra ». Restricting to the generic fiber yields [A] = BE(x).

[}

Theorem 4.4. Forany character x € C*, we haveind B£(x) = mindim(V)
over all representations V in Rep® (G).

Proof. We follow the approach given in [12]. Let H act on a scheme
Z over F. We also view Z as a G-scheme. Denote by M(G, Z) the
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(abelian) category of left G-modules on Z that are coherent (9z-modules
(cf. [18, § 1.2]). In particular, M (G, Spec F) = Rep(G), the category off
all finite dimensional representations of G.

Note that C acts trivially on Z. For a character x : C — Gy, let
M (G, Z) be the full subcategory of M (G, Z) consisting of G-modules
on which C acts via x. For example, M (G, Spec F) = Rep(X)(G).

We write Ko(G, Z) and K(()X)(G, Z) for the Grothendieck groups of
M(G, Z) and MX (G, Z) respectively.

Every M in M(G, Z) is a direct sum of unique submodules M of M
in M (G, Z) over all characters x of C. It follows that

Ko(G.2) =] [k’ (G. 2).

Let g be the order of G. By [17, Th. 24], every irreducible representation
of G is defined over the field F(u,). Since F contains p-th roots of unity, the
degree [F(uy) : F]is apower of p. Hence the dimension of any irreducible
representation of G over F is a power of p. It follows by Lemma 4.3
that it suffices to show ind(A) = geddim(V) over all representations V
in Rep?(G).

The image of the map dim : Ky(A) — Z given by the dimension over L
is equal to ind(A) - dim(W) - Z. To finish the proof of the theorem it suffices
to construct a surjective homomorphism

(6) Ko(Rep?(G)) — Ko(A)

such that the composition K (Rep(X)(G)) — Ky(A) di—m> Z is given by the
dimension times dim(W).
First of all we have

(7) Ko(Rep™? (G)) ~ K (G, Spec F).

Recall that X an open subset of A(U) where H acts freely. By homotopy
invariance in the equivariant K-theory [18, Cor. 4.2],

Ko(G, Spec F) ~ Ko(G, A(U)).
It follows that
(8) K$(G, Spec F) ~ K°(G, A(U)).
By localization [18, Th. 2.7], the restriction homomorphism
(9) K (G, AU)) — KJ(G, X).

is surjective.

Denote by MV (G, X, By) the category of left G-modules M on X that
are coherent Ox-modules and right By-modules such that C acts trivially
on M and the G-action on M and the conjugation G-action on By agree.
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The corresponding Grothendieck group is denoted by K(()l)(G, X, By). For
any object L in MY (G, X), the group C acts trivially on L ® p W* and B
acts on the right on L ® p W*. We have Morita equivalence

MG, X) = MV(G, X, By)
given by L — L ®p W* (with the inverse functor M — M ®p W). Hence
(10) K(G, X) ~ K"(G, X, By).

Now, as C acts trivially on X and By, the category MV(G, X, By) is
equivalent to the category M(H, X, By) of left H-modules M on X that are
coherent Oy-modules and right Bx-modules such that the G-action on M
and the conjugation G-action on By agree. Hence

(11) K$"(G, X, Bx) ~ Ko(H, X, By).

Recall that Y = X/H. By descent, the category M (H, X, By) is equi-
valent to the category M(Y, 4A) of coherent Oy-modules that are right
#A-modules. Hence

(12) KO(H’ X, BX) = KO(Y’ A)
The restriction to the generic point of Y gives a surjective homomorphism
(13) Ko(Y, A) — Ko(A).

The homomorphism (6) is the composition of (7), (8), (9), (10), (11),
(12) and (13). It takes the class of a representation V to the class in Ky(A)
of the generic fiber of the vector bundle ((V ® W*) x X)/H over Y of rank
dim(V) - dim(W). |
Remark 4.5. The theorem holds with min replaced by the gcd (with the
same proof) in a more general context when the sequence (3) is an arbitrary

exact sequence of algebraic groups with C a central diagonalizable subgroup
of G.

Example 4.6 (cf. [6], [4, § 14], [16, Th. 7.3.8]). Let p be a prime integer,
F be a field of characteristic different from p and C,, the cyclic group
Z/p"Z.Let K = F(ty, ..., t,n) and C,, act on the variables #, ..., t,n by
cyclic permutations. Then K is a Galois C,,-algebra over K “». Assume that
F contains a primitive root of unity &,+ for some k. The image of the class
of K under the connecting map H'(F, C,,) — H*(F, Cy) ~ Br,«(F) for
the exact sequence
1->C,—>C,—>C, —> 1,

where n = k + m, is the class of the cyclic algebra A = (K/K", Epk).
The group C, acts F-linearly on F(§,~) by multiplication by roots of unity
making the F-space F(§,~) a faithful representation of C, of the smallest
dimension. By Theorem 4.4 and Remark 4.5, we have

ind(A) = [F(E,n) : F].
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We can now complete the proof of Theorem 4.1. By Theorem 4.4,
there are representations V; in Rep(Xf)(G) such that ind BE (x;) = dim(V}),
i=1,...,s. Let V be the direct sum of all the V;. By Theorem 4.2 (applied
to the group G over L and the generic torsor E), Theorem 3.1, (4) and (5),
we have

ed,(G) > ed,(GL) > ed,(X") = cdim,(X") + s = cdim,(Im(B8%)) + s

= indpF(x) = Y dim(V;) = dim(V).

i=1 i=1

Since x1, x2, ..., Xs generate C*, the restriction of V on C is faithful.
As every nontrivial normal subgroup of G intersects C nontrivially, the
G-representation V is faithful. We have constructed a faithful representa-
tion V of G over F with ed,(G) > dim(V). The theorem is proved.

Remark 4.7. The proof of Theorem 4.1 shows how to compute the essential
dimension of G over F. For every character y € C* choose a represen-
tation V, € Rep”’(G) of the smallest dimension. It appears as an irre-
ducible component of the smallest dimension of the induced representation
Indg( x). We construct a basis i, ..., x; of C* by induction as follows.
Let x; be a nonzero character with the smallest dim(V,,). If the characters
X1, .-, Xi—1 are already constructed for some i < s, then we take for y;
a character with minimal dim(V,,) among all the characters outside of the
subgroup generated by xi, ..., x;—1. Then V is a faithful representation of
the least dimension and ed(G) = Z‘;:l dim(V,,).

Remark 4.8. We can compute the essential p-dimension of an arbitrary
finite group G over a field F of characteristic different from p. (We
don’t assume that F contains p-th roots of unity.) Let G’ be a Sylow
p-subgroup of G. One can prove that ed,(G) = ed,(G’) and ed,(G")
does not change under field extensions of degree prime to p. In particular
ed,(G') = ed,(G',) where F' = F(u,). It follows from Theorem 4.1 that
ed,(G) coincides with the least dimension of a faithful representation of G’
over F'.

S. An application

Theorem 5.1. Let G| and G, be two p-groups and F a field of character-
istic different from p containing a primitive p-th root of unity. Then

ed(Gl X Gz) = Cd(Gl) + Cd(Gz)
Proof. The index j in the proof takes the values 1 and 2. If V; is a faithful

representation of G; then V| @ V; is a faithful representation of G| x G,.
Hence ed(G; x G,) < ed(Gy) + ed(G>,) (cf. [5, Lemma 4.1(b)]).
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Denote by C; the subgroup of all central elements of G; of exponent p.
Set C = C; x C,. We identify C* with C} & C5.

For every character x € C* choose a representation p, : G| X G, —
GL(V,)in Rep(X) (G1 x Gy) of the smallest dimension. We construct a basis
{x1, x2, - - -, x5} of C* following Remark 4.7. We claim that all the x; can
be chosen in one of the C;.‘. Indeed, suppose the characters xi, ..., xi—1
are already constructed, and let x; be a character with minimal dim(V,,)
among the characters outside of the subgroup generated by xi, ..., x;—1. Let
Xi = xi(]) + xi(z) with Xi(] ) e C;?‘. Denote by &1 and &, the endomorphisms of
G| x G, taking (g1, g2) to (g1, 1) and (1, g») respectively. The restriction of
the representation p,, o &; on C is given by the character Xl.(f ). We replace y;
by Xl.(f ) with Jj such that Xl.(f ) does not belong to the subgroup generated by
X1s---» Xi—1- The claim is proved.

Let W; be the direct sum of all the V,, with x; € C7. Then the restriction
of W; on C; is faithful, hence so is the restriction of W; on G;. It follows
that ed(G;) < dim(W;). As W; & W, = V, we have

ed(Gy) + ed(Gy) < dim(W;) + dim(W,) = dim(V) = ed(G; x G»). a

Corollary 5.2. Let F be a field as in Theorem 5.1. Then

N

ed(Z/p" Z x Z/p" L x -+ X L/ p" L) = Y [F(&pn) : FI.

i=1

Proof. By Theorem 5.1, it suffices to consider the case s = 1. This case has
been done in [6]. It is also covered by Theorem 4.1 as the natural represen-
tation of the group Z/p"Z in the F-space F(§,») is faithful irreducible of
the smallest dimension (cf. Remark 4.6). |
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