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Abstract. We prove that stable ergodicity is Cr open and dense among
conservative partially hyperbolic diffeomorphisms with one-dimensional
center bundle, for all r ∈ [2,∞].

The proof follows the Pugh–Shub program [29]: among conservative
partially hyperbolic diffeomorphisms with one-dimensional center bundle,
accessibility is Cr open and dense, and essential accessibility implies ergo-
dicity.

1. Introduction

In the second half of the 19th century Boltzmann introduced the term
ergodic within the context of the study of gas particles. Since then, even
though in its initial formulation the ergodic hypothesis was ambiguous,
ergodic theory grew up to be a useful tool in many branches of mathematics
and physics.

Subsequent reformulations and developments turned the original ergodic
hypothesis into the statement: time average equals space average for typical
orbits, that is

lim
n →∞

1

n

n−1∑

k=0

φ( f k(x)) =
∫

M
φ dµ µ − a.e. x.

A system is µ-ergodic if it satisfies the hypothesis above for all C0 ob-
servables φ, or equivalently, if only full or null µ-volume sets are invariant
under the dynamics. Around 1930, right after the first ergodic theorems
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appeared – [23,3,4] – it was conjectured that most conservative systems
were ergodic.

With the Kolmogorov–Arnold–Moser (KAM) phenomenon (1954) it
came out that there were full open sets of conservative non-ergodic sys-
tems [21]. Indeed, KAM theory presents, for small perturbations of inte-
grable systems (elliptic dynamics), positive volume sets of invariant tori,
which prevents ergodicity. These are examples of a stably non ergodic
system.

On the other end of the spectrum, the work of Hopf [19], and later
Anosov–Sinai [1,2], gave full open sets of ergodic systems, a fact that was
unknown up to that time. Anosov systems, also called completely hyperbolic
dynamics, were for some time the only known examples of stably ergodic
systems. By stably ergodic is meant a diffeomorphism in the interior of the
set of the ergodic ones.

Almost three decades later, Grayson, Pugh and Shub got the first non-
hyperbolic example of a stably ergodic system [17]. These examples have
a partially hyperbolic dynamics [8,18]: there are strong contracting and
strong expanding invariant directions, but a center direction also appears.
Since then, the area became quite active and many stably ergodic examples
appeared, see [30] for a survey. Let us also mention that there are already
examples of conservative stably ergodic systems that are not partially hyper-
bolic [35].

In this new context, Pugh and Shub have proposed the following:

Conjecture 1. Stable ergodicity is Cr dense among volume preserving par-
tially hyperbolic diffeomorphisms, for all r ≥ 2.

As far as we know, the conjecture above was first stated in 1995, at
the International conference on dynamical systems held in Montevideo,
Uruguay [27]. We thank Keith Burns for this information.

In this paper, we prove this conjecture is true in case the center bundle
is one dimensional:

Theorem (Main). Stable ergodicity is Cr dense among volume preserving
partially hyperbolic diffeomorphisms with one dimensional center distribu-
tion, for all r ≥ 2.

In [29], Pugh and Shub proposed a program for the proof of this con-
jecture. This approach was based on the notion of accessibility: A diffeo-
morphism f has the accessibility property if the only non void set con-
sisting of whole stable leaves and whole unstable leaves is the manifold
M itself. It has the essential accessibility property if every measurable
set consisting of whole stable leaves and whole unstable leaves has full
or null volume. Clearly, accessibility implies essential accessibility. When
talking about stable and unstable leaves we are referring to the leaves of
the unique foliations tangent to the contracting and expanding directions,
respectively.
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Pugh and Shub suggested the following conjectures:

Conjecture 2. Stable accessibility is dense among Cr partially hyperbolic
diffeomorphisms, volume preserving or not, r ≥ 2.

In the case dim Ec = 1, the accessibility property is always stable [15].
For the sake of simplicity, let us denote by PHr

m(M) the set of partially hyper-
bolic Cr diffeomorphisms of M, preserving a smooth probability measure m.
In this paper, we prove:

Theorem A. Accessibility is open and dense in PHr
m(M), for all 1 ≤ r ≤ ∞,

if the center distribution is one dimensional.

In fact, we obtain that accessibility is C1 open and C∞ dense. Observe
that the conjecture is established here only for the conservative case. The
conjecture is settled in the general non conservative case also for center
dimension one in [10] by extending the technics in this work.

Let us make some comments about the history of Conjecture 2. Anosov
diffeomorphism are easily shown to have the accessibility property. In [33]
Sacksteder gave the first example of an accessible non Anosov diffeomorph-
ism. This was an affine diffeomorphism of a 3 dimensional nilmanifold.
Brin and Pesin proved in [8] that the time one map of the k-frame flow
over a surface of negative curvature is accessible and proved a theorem
about the stable accessibility for some partially hyperbolic systems [8, The-
orem 4.1.]. Grayson, Pugh and Shub proved in [17] that the time one map
of the geodesic flow over a surface of negative curvature is stably ergodic.
Later, Wilkinson extended this to the variable curvature case in [36]; then
Katok and Kononenko extended this to the case of the time one map of
a contact Anosov flow in [20]; and Burns, Pugh and Wilkinson proved
in [9] stable accessibility for mixing Anosov flows. In [24], Niţică and A.
Török proved stable accessibility is Cr dense for one-dimensional center
bundle, under certain hypotheses (for instance, dynamical coherence and
compact center leaves). Didier has proven in [15] that accessibility is an
open property when the central dimension is 1. For any central dimension,
Pugh and Shub proved in [28] that accessibility is stable whenever the strong
bundles are smooth. Also, Burns and Wilkinson proved Cr density of stable
accessibility among skew products in [11]. Shub and Wilkinson showed
in [34] that ergodic linear automorphisms on tori can be Cr perturbed to
become stably accessible and the first author proved in [32] that some of
them are stably essentially accessible when the central dimension is 2. Fi-
nally, in [16], stable accessibility is shown by Dolgopyat and Wilkinson to
be dense in the C1 topology with no assumption on the dimension of the
center bundle.

The second conjecture of the Pugh-Shub program is:

Conjecture 3. Essential accessibility implies ergodicity among C2 volume
preserving partially hyperbolic diffeomorphisms.

We also prove this conjecture in case the center dimension is one.
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Theorem B. Essential accessibility implies Kolmogorov (in particular,
ergodicity) in PH2

m(M), if the center distribution is one-dimensional.

Let us mention that K. Burns and A. Wilkinson have recently presented
a proof of Theorem B in [13, Corollary 0.2]. In fact, they deduce Theorem B
from a more general theorem involving a technical condition named center
bunching that is trivially satisfied when the dimension of the center bundle
is 1 (see the beginning of Sect. 4 for detailed definitions). Let us state their
theorem:

Theorem 1 [13, Theorem 0.1]. Let f be C2, volume-preserving, partially
hyperbolic and center bunched. If f is essentially accessible, then f is
ergodic, and in fact has the Kolmogorov property.

Let us mention a little bit of the history of the proof of Theorem B. The
first attempt to prove Conjecture 3 appeared in [17], where M. Grayson,
C. Pugh and M. Shub also proved the stable ergodicity of the time one map
of the geodesic flows over surfaces of constant negative curvature. In this
case, the center bunching condition was global over M in contrast to the
point-wise condition in Theorem 1. They also needed another hypothesis
called dynamical coherence which essentially means that the center-stable
and center-unstable bundles are integrable. Subsequently, in the papers [36,
28,29] the center bunching condition was improved, still in the global
setting while the hypothesis of dynamical coherence was not touched at
all. In [12] K. Burns and A.Wilkinson jumped from the global center-
bunching condition to a point-wise, improved one, with the gain that now
the condition is trivially satisfied when the central dimension is 1. But the
dynamical coherence was still needed. Finally, in [13] they removed the
dynamical coherence condition using the notion of fake foliations. The fake
foliations consist, roughly speaking, of families of local foliations which
are almost invariant and almost tangent to the invariant spaces.

In our case, when the central foliation is one dimensional, we were
able to remove the dynamical coherence condition in [12] in a different
manner. Instead of using fake disks, we use true integral curves of the
center bundle. This integral curves are much easier to handle since they are
everywhere tangent to the central bundle. We found this way of removing
the dynamical coherence condition (when dim Ec = 1) independently and
simultaneously with [13]. So, for completeness, and because the proof in
our case is a little bit simpler than in [13] we decided to include it here. See
proof of Theorem B.

Let us mention that in [13] they also prove that differentiability condition
in Theorem B can be improved to C1+Hölder. We thank A. Wilkinson for this
information.

Acknowledgements. We want to thank M. Shub for his support in a difficult moment. We
also want to thank K. Burns for reading early versions of this manuscript and for useful
remarks. We are also grateful to C. Pugh for many valuable suggestions. Also we would like
to thank the two referees for all the corrections and comments.
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2. Preliminaries, notation and sketch of the proof

Let M be a compact Riemannian manifold, and m be a smooth probabil-
ity measure on M. Denote by Diffr

m(M) the set of Cr volume preserving
diffeomorphisms. In what follows we shall consider a partially hyperbolic
f ∈ Diffr

m(M), that is, a diffeomorphism admitting a non trivial Df-invariant
splitting of the tangent bundle TM = Es ⊕Ec⊕Eu , such that all unit vectors
vσ ∈ Eσ

x (σ = s, c, u) with x ∈ M satisfy:
∥∥Tx fvs

∥∥ <
∥∥Tx fvc

∥∥ <
∥∥Tx fvu

∥∥

for some suitable Riemannian metric. It is also required that ‖T f |Es‖ < 1
and ‖T f −1|Eu ‖ < 1. We shall denote by PHr

m(M) the family of Cr volume
preserving partially hyperbolic diffeomorphisms of M.

It is a known fact that there are foliations Wσ tangent to the distributions
Eσ for σ = s, u (see for instance [8]). A set X will be called σ-saturated if
it is a union of leaves of Wσ , σ = s, u.

In this paper we will consider the case dim Ec = 1. Due to the existence
of solutions of differential equations with continuous vector fields, we can
find small curves passing through each x ∈ M that have everywhere nonzero
tangent vector and are everywhere tangent to the bundle Ec. We shall call
these curves center curves through x, and denote them by Wc

loc(x) in order
to distinguish them from the true foliations Wσ , σ = s, u, since a priori
they are not the unique integral curves tangent to Ec. It is easy to see that f
takes center curves into center curves.

We shall denote by Wσ (x) the leaf of Wσ through x for (σ = s, u) and
will write Wσ

loc(x) for a small disk in Wσ (x) centered in x. For any choice
of Wc

loc(x), the sets

Wσc
loc(x) = Wσ

loc

(
Wc

loc(x)
) =

⋃

y∈Wc
loc(x)

Wσ
loc(y) σ = s, u

are C1 (local) manifolds everywhere tangent to the sub-bundles Eσ ⊕ Ec

for σ = s, u (see, for instance [7, Proposition 3.4.]). The sets above depend
on the choice of Wc

loc(x).

Remark 2.1. Observe that for all choices of Wsc
loc(x) and y ∈ Wsc

loc(x), there
exists a center curve Wc

loc(y) through y contained in Wsc
loc(x) (see [7]).

Observe also the following key property of the central manifolds that is
a consequence of the continuity and transversality of the invariant bundles.

Lemma 2.1. For each small ε > 0 there exists δ > 0 such that if d(z, y) < δ
then W s

ε (W
c
loc(y))∩W u

ε (z) 	= ∅ or ,what is equivalent, Wc
loc(y)∩W s

ε (W
u
ε (z))

	= ∅ for any choice of center curve through y.

2.1. Proof of Theorem A. Let us say that a set Γ is σ-saturated if Γ
is a union of leaves of Wσ , σ = s, u. For the proof of Theorem A,
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we will see that Cr-generically, the accessibility class of a point x, that
is, the minimal s- and u-saturated set that contains x, is the whole of
M if the center bundle is one-dimensional. This property is known as
the accessibility property and is open in PH1

m(M) if the center bundle is
one-dimensional [15].

The proof focuses on the open accessibility classes, and the first step
is showing that for any periodic point, a perturbation can be made so that
its accessibility class becomes open (unweaving lemma). Secondly, we
obtain periodic points for any dynamics in PHr

m(M) having non trivial open
accessibility classes that do not cover M. A Kupka–Smale type genericity
argument allows us to conclude:

Proposition A.1. Cr-generically in PHr
m(M), r ≥ 2, either one of the

following properties holds:

(1) f has the accessibility property or
(2) Per( f ) = ∅ and the distribution Es ⊕ Eu is integrable.

One would expect the second possibility is quite unstable under pertur-
bations and, indeed, this is the case:

Proposition A.2. Situation (2) described above is meager in PHr
m(M).

We show that the unweaving lemma mentioned above also holds for non
recurrent points. In this way, integrability of Es ⊕ Eu can be broken by
small perturbations.

In both cases, to have some control on how perturbations affect local
invariant manifolds, we need the existence of points whose orbits keep away
from the support of the perturbation (Keepaway lemma A.4.2).

The two statements together imply Theorem A. This part is developed
in Sect. 3.

2.2. Proof of Theorem B. For the proof of Theorem B, we shall mainly
follow the lines in [17,29] and [12]. This theorem was obtained inde-
pendently of [13], though Burns and Wilkinson’s result is more general.
We decided to include Theorem B here for completeness, and because
our proof is simpler in the sense that it uses true integral curves in-
stead of fake foliations, which are a difficult technical step (see discussion
after statement of Theorem B). Also, it takes three steps to characterize
Lebesgue density points instead of the seven equivalences in §4 of [13].
We think that using the weak integrability notion defined in [7], it should
be possible to push our argument to the case of center bundles of higher
dimensions.

Question 2.1. Is it possible to use the techniques here and avoid the fake
foliations in case the bunching conditions in [13] hold and Ec is weakly
integrable, that is, there are center leaves everywhere tangent to Ec at every
point?
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Indeed, Proposition 3.4. of [7] says that when the center bundle is one
dimensional, then it is weakly integrable, and this is what allows us to avoid
the use of the fake foliations.

Let us consider a diffeomorphism f having the essential accessibility
property, that is, such that each measurable s- and u-saturated set is of full or
null measure. In order to prove that f is ergodic (each invariant set is of full
or null measure) it suffices to show, due to Birkhoff’s ergodic theorem, that

φ±(x) = lim sup
n →∞

1

n

n∑

k=1

φ( f ±k(x)) =
∫

M
φ dm m a.e. x

for all C0 observables φ : M →R. It is not hard to see that, for each c ∈ R,
the set S(c) = φ−1

+ (c,∞) is s-saturated, and the set U(c) = φ−1
− (c,∞)

is u-saturated. Since m(S(c)�U(c)) = 0 due to Birkhoff’s theorem, we
have that the set S(c) ∩ U(c) differs in a set of null measure from an s-
saturated set, and also from a u-saturated set. In general, we shall say that
a measurable set X is essentially σ -saturated if there exists a measurable σ -
saturated set Xσ (an essential σ -saturate of X) such that m(X�Xσ ) = 0. In
short, S(c)∩U(c) is essentially s- and essentially u-saturated (with essential
s- and u-saturates S(c) and U(c), respectively).

Pugh and Shub’s adaptation of the usual Hopf’s argument goes on by
showing that the set of Lebesgue density points of any essentially s- and
essentially u-saturated set X is in fact s- and u-saturated, whence the es-
sential accessibility property directly implies ergodicity. When the strong
invariant bundles are smooth this follows directly from the differentiability
of holonomies. However, in the general case the holonomy maps are not
differentiable and this problem is overcome using other notions of density
points called julienne density points introduced by Pugh and Shub.

Proposition B.1. The Lebesgue density points of any essentially s- and
essentially u-saturated set X form an s- and u-saturated set.

That is, Lebesgue density points of essentially s- and essentially u-satur-
ated sets flow through stable and unstable leaves. As we have said before,
Pugh and Shub had suggested in [29] that certain shapes called juliennes
would be more natural, rather than merely Riemannian balls, in order to
treat preservation of density points. Here we follow this line and use certain
solid juliennes instead of balls.

Of course, these new neighborhood bases will define different sets of
density points. We will consider the following generalization of Lebesgue
density points:

Let us say that a point x is a Cn-density point of a set X if {Cn(x)}n is
a local neighborhood basis of x, and

lim
n →∞

m(X ∩ Cn(x))

m(Cn(x))
= 1.
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In particular, the Lebesgue density points will be the {Brn(x)}n≥1-density
points, where Brn(x) is the Riemannian ball centered at x with radius rn,
r ∈ (0, 1). The choice of r is irrelevant, since x is a Brn-density point of X
if and only if

lim
ε→ 0

m(X ∩ Bε(x))

m(Bε(x))
= 1.

A cu-julienne Jcu
n (x) of x is a dynamically defined local unstable saturation

of a center curve, its radius depending on x and n, and going to 0 subject
to certain rates related to contraction rates in the bundles (see precise defi-
nitions in Sect. 4.1, formulas (4.4)). We shall define a solid julienne Jscu

n (x)
of x as a local stable saturation of some cu-julienne (precise definitions in
Sect. 4.3). Let us point out that the definition of Jscu

n (x) is not symmetric
under exchange of u and s and dual juliennes Jusc

n (x) will also be used. The
family {Jscu

n (x)}n≥1 is a measurable neighborhood basis of x. For this family
we obtain

Proposition B.2. The set of Jscu
n -density points of an essentially s-saturated

set X is s-saturated.

By changing the neighborhood basis, we have solved the problem of
preserving density points, that is we have established Proposition B.1 but
for julienne density points. However, we need to know now what the rela-
tionship is between the julienne density points, and Lebesgue density points.
Given a family M of measurable sets, let us say that two systems {Cn}n and
{En}n are Vitali equivalent over M, if the set of Cn-density points of X equals
(as sets, not only a.e.) the set of En-density points of X for all X ∈ M. The
argument is completed by showing that

Proposition B.3. The family {Jscu
n (x)} is Vitali equivalent to Lebesgue over

essentially u-saturated sets.

Hence, over essentially s- and u-saturated sets, the set of Lebesgue
density point is s-saturated. A symmetric argument shows it is also u-satur-
ated.

This ends the proof of Proposition B.1 and, actually, it shows essential
accessibility implies ergodicity. To show that, in fact, it implies Kolmogorov
property, [25] states that it suffices to see that the Pinsker algebra (the largest
subalgebra for which the entropy is zero) is trivial. But after [8], sets in the
Pinsker algebra are essentially s- and essentially u-saturated, which proves
Theorem B.

3. Accessibility is Cr open and dense

Let AC(x) denote the accessibility class of the point x. We will show that
the set

D = {
f ∈ PHr

m(M) : AC(x) is open for all x ∈ Per( f )
}



Accessibility and stable ergodicity 361

is Cr generic, where Per( f ) denotes the set of periodic points of f . Af-
terwards, as stated in Proposition A.1, it will be shown that D may be
decomposed into a disjoint union

D = A ∪ B(3.1)

where A consists of diffeomorphisms with the accessibility property and B
consists of diffeomorphisms without periodic points and satisfying that the
distribution Es ⊕ Eu is integrable. Moreover, B will be shown to be meager.
This will prove Proposition A.2 and, in fact, Theorem A.

We shall set for a given subset X ⊂ M,

Wσ
loc(X) =

⋃

x∈X

Wσ
loc(x) with σ = s, u.

3.1. A lamination in the complement of open accessibility classes. Fix
f ∈ PHr

m(M), and let U( f ) be the set of points whose accessibility classes
are open, and Γ( f ) = M \ U( f ) be the complement of U( f ). We say that
a partition L of a set N ⊂ M by disjoint pathwise-connected subsets is
a lamination if for every x ∈ N there is a neighborhood of x, Ux ⊂ N,
a set Tx ⊂ N containing x, called a transversal, and a homeomorphism
φx : Tx × D → Ux where D ⊂ Rk is a neighborhood of 0, such that for
every z ∈ Tx ,

φx(z, 0) = z, φx(z × D) ⊂ L(z)

and φx(z × D) is the connected component of L(z) ∩ Ux containing z,
here L(y) denotes the element of the partition containing y. We say that
each element of the partition is a lamina or a leaf. Observe that, even
though we do not require any smoothness of the lamination, in our case
the leaves will be C1 manifolds. But we shall not need this property
here.

Proposition A.3. Γ( f ) is a compact, invariant set laminated by the acces-
sibility classes.

Let us begin the proof with the following general proposition valid for
any center dimension.

Proposition A.4. For a given point x ∈ M the following statements are
equivalent

(1) AC(x) is open.
(2) AC(x) has non empty interior.
(3) AC(x) ∩ Wc

loc(x) has nonempty interior for any choice of Wc
loc(x).

The idea of the proof of this proposition is already in [32, Sect. 5].
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Proof. We shall prove that 2) ⇒ 1) ⇒ 3) ⇒ 2).
To begin with the proof, let us see that 2) ⇒ 1). Let y be in the interior

of AC(x), take z ∈ AC(x) and let us see that z is in the interior of AC(x).
Take an su-path joining z and y. Let z = x0, x1, . . . , xn−1, xn = y be points
in the su-path such that xi and xi+1 are in the same σ -leaf (for σ either s
or u). Take U ⊂ AC(x) an open neighborhood of y. Let us define inductively
Un = U and Ui = Wσ (Ui+1), i = 1, . . . , n, where σ is s or u depending on
whether the xi is in the s or u-leaf of xi+1 respectively. Observe that xi ∈ Ui
for every i and that Ui is open for every i since the strong manifolds Wσ

form C0 foliations. Hence, since Ui ⊂ AC(x) for every i we get that z ∈ U0
and U0 ⊂ AC(x) and hence z is in the interior of AC(x) (see Fig. 1).

Fig. 1. An su path from z to y

1) ⇒ 3) follows from definition of relative topology since x ∈ AC(x)
and AC(x) is open.

So let us prove that 3) ⇒ 2). Take Wc
loc(x) and assume that there is an

open set V ⊂ Wc
loc(x) ∩ AC(x). To prove that AC(x) has nonempty interior,

let us define, for

Wsc
loc(x) = W s

loc

(
Wc

loc(x)
)

and Wusc
loc (x) = W u

loc

(
Wsc

loc(x)
)

the map

pus : Wusc
loc (x)→ Wc

loc(x)

that is obtained by first projecting along W u and then along W s (see Fig. 2).
The map is continuous because the strong foliations are C0. Also because
Wσ

loc(x) depends continuously on x, it follows that Wusc
loc (x) is an open set. So

we have that p−1
us (V ) is open and p−1

us (V ) ⊂ AC(x). But p−1
us (V ) is clearly

inside AC(x), hence AC(x) has nonempty interior. ��
Proof of Proposition A.3. Let ACx(y) denote the connected component of
AC(y) ∩ Wusc

loc (x) containing y. We shall also make use of the following:

Theorem 2 [18]. If f ∈ PHr
m(M) then there are continuous functions

γ σ : M → Embr(Dσ , M), σ = s, u, where Embr(Dσ , M) is the set of
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Fig. 2. A point in U( f ) (open accessibility class)

Cr embeddings from the disk of dimension σ into M, such that Wσ
loc(z) =

γ σ(z)(Dσ) for σ = s, u.

Let us see that the partition AC(x) forms a lamination of Γ( f ). Given
a point x ∈ Γ( f ) let us fix a center curve through x, Wc

loc(x), and take the
neighborhood Ûx = Wusc

loc (x). Take the transversal T̂x = Wc
loc(x), and the

disk D = Ds × Du where Dσ is as in Theorem 2, σ = s, u. Define the
homeomorphism φ : T̂x × D → Ûx by

φ(z, t) = γ u(γ s(z)(ts))(tu),

where t = (ts, tu). φ is continuous since γ σ are continuous. φ is clearly
onto. Let us see that φ is 1 to 1. Assume that φ(z, t1) = φ(z′, t2) = y, where
ti = (ts

i , tu
i ), i = 1, 2. Then we have that z = z′ since pus(φ(z, t)) = z for

every z and t. By transversality we have that

γ s(z)
(
ts
i

) = W u
loc(y) ∩ Wsc

loc(c)

for i = 1, 2 and hence γ s(z)(ts
1) = γ s(z)(ts

2) and hence ts
1 = ts

2 because
γ s(z) is injective. So we get that

γ u
(
γ s(z)

(
ts
1

))(
tu
1

) = γ u
(
γ s(z)

(
ts
1

))(
tu
2

)

and this implies again that tu
1 = tu

2 by injectivity of γ u(γ s(z)(ts
1)). Hence

φ is a homeomorphism by the invariance of domain theorem. Clearly
φ(z, 0) = z. So, if we set Ux = Ûx ∩ Γ( f ) the neighborhood of x in
Γ( f ), and Tx = T̂x ∩ Γ( f ) the transversal, we get that the restriction of
φ : Tx × D → Ux is a homeomorphism. Observe that

φ(z × D) = W u
loc

(
W s

loc(z)
) = p−1

us (z).
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Let us see that φ(z × D) = ACx(z). This is done in the following lemma.

Lemma A.4.1. If z ∈ Γ( f ) ∩ Wc
loc(x) then p−1

us (z) = ACx(z).

Proof. Since ACx(z) is connected and pus is continuous we have that
pus(ACx(z)) is a connected subset of Wc

loc(x), see Fig. 2. Thus if
pus(ACx(z)) contains more than one point, it would have non empty in-
terior since Wc

loc(x) is one dimensional. Hence, by Proposition A.4 AC(z)
would be open, contradicting that z ∈ Γ( f ). Since z is clearly in ACx(z)
and pus(z) = z we have that pus(ACx(z)) = z and hence ACx(z) ⊂ p−1

us (z).
The other inclusion follows since p−1

us (z) = W u
loc(W

s
loc(z)) is connected and

p−1
us (z) ⊂ AC(z) ∩ Wusc

loc (x) . ��
So we get that Γ( f ) is laminated by the accessibility classes and this

ends the proof of Proposition A.3. ��
Let us observe the following consequence of our proof.

Remark 3.1. There is an ε > 0 such that if x ∈ Γ( f ), y ∈ W u
loc(x) and

z ∈ W s
loc(x) are ε-close to x then

W s
loc(y) ∩ W u

loc(z) 	= ∅,

see Fig. 3.

Fig. 3. A point in Γ( f )

Proof. Let us first see that given two points, a and b such that a ∈ Γ( f )
and b ∈ W u

ε (a), we have that W s
ε (b) ⊂ W u

loc(W
s
loc(a)). In fact, for some

ε > 0 small, W s
ε (b) ⊂ Wusc

loc (a), hence, since b ∈ W u
loc(a), we get that

W s
ε (b) ⊂ ACa(a) and so pus(W

s
ε (b)) = a, that is, W s

ε (b) ⊂ W u
loc(W

s
loc(a)).

So, taking a = y and b = x we have proved that W s
ε (x) ⊂ W u

loc(W
s
loc(y)).

Hence, if z ∈ W s
ε (x), then z ∈ W u

loc(r) for some r ∈ W s
loc(y). But then,

r ∈ W u
loc(z) and r ∈ W s

loc(y), and hence r ∈ W s
loc(y) ∩ W u

loc(z) 	= ∅. ��
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3.2. Keepaway lemma. Let f be a diffeomorphism preserving a foli-
ation W tangent to a continuous sub-bundle E ⊂ TM. Call W(x) the
leaf of W through x and Wε(x) the set of points that are reached from x
by a curve contained in W(x) of length less than ε. Given a (small) disk
V transverse to W whose dimension equals the codimension of E, define
Bε(V ) = ⋃{Wε(y); y ∈ V }; also define Cε(V ) = B5ε(V ) \ Bε(V ).

The following lemma was already proved by R. Mañé in [22, Lemma 5.2.]
when the dimension of E is 1. His proof generalizes to higher dimensions
with some changes and here we present this generalization.

Lemma A.4.2 (Keepaway lemma). Let us assume that ‖T f −1|E‖ <
µ < 1. Let N be such that µ−N > 5. Given V a small disk transverse
to W and ε > 0, if

f n(Cε(V )) ∩ Bε(V ) = ∅ ∀n = 1, . . . , N

then given y ∈ V there is z ∈ W5ε(y) \ Wε(y) such that f n(z) /∈ Bε(V ) for
all n ≥ 0.

Proof. Let y ∈ V and w ∈ W5ε(y) be such that Wε(w) ⊂ Cε(V ). Set
D0 = Wε(w). We shall construct, by induction, a sequence of closed disks
Dn such that f −1(Dn) ⊂ Dn−1 ∀n > 0 and Dn ∩ Bε(V ) = ∅. Thus z
will be any point in

⋂{ f −n(Dn); n ∈ N} (in fact in our construction this
intersection will consist of a unique point).

For the following construction, observe that for any δ and x ∈ M we
have that Wδ( f(x)) ⊂ Wµ−1δ( f(x)) ⊂ f(Wδ(x)). The construction is as
follows:

(1) If n < N put Dn = f n(D0).
(2) For the Nth iterate, observe that still f N(D0) ∩ Bε(V ) = ∅ but f N(D0)

contains a round ball around f N(w) of radius 5ε, that is,

W5ε( f N(w)) ⊂ f N(D0).

So we may change from iterates of D0 to round balls, that is, put
Dn = W5ε( f n(w)) for n = N, . . . , n1 − 1 where n1 is the first iterate
such that W5ε( f n1(w)) ∩ Bε(V ) 	= ∅. Observe that Dn ⊂ f(Dn−1) and
Dn ∩ Bε(V ) = ∅ for n = 0, . . . , n1 − 1.

(3) For the nth
1 iterate, we can not take W5ε( f n1(w)), since this disk in-

tersects Bε(V ). So, either the intersection Wε( f n1(w)) ∩ Bε(V ) is
empty or not. If it is empty then take the point wn1 = f n1(w) and
Dn1 = Wε(wn1). If it is nonempty, then any point wn1 ∈ W5ε( f n1(w))

with d(wn1, f n1(w)) = 4ε will satisfy Wε(wn1) ⊂ Cε(V ), see Fig. 4,
so take this point wn1 and take Dn1 = Wε(wn1). Observe that in either
case

f(Dn1−1) ⊃ W5ε( f n1(w)) ⊃ Dn1 .
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Fig. 4. Keepaway lemma

(4) Now, to continue the construction, go to Step 1, replace D0 by Dn1

and w by wn1 .

This algorithm gives the desired sequence of disks, and hence the point z,
proving the lemma. ��

We would like to thank Keith Burns for pointing out some inaccuracies
in first versions of the proof of the keepaway lemma and the the following
corollary.

We have the following corollary of the keepaway lemma that deals with
the abundance of nonrecurrent points.

Corollary A.1. Let f : M → M leave invariant an expanding foliation W .

(1) For every x ∈ M the set of points {y ∈ W(x) : y /∈ ω(y)} is dense in
W(x), that is, the points that are nonrecurrent in the future are dense
in W(x) for every x.

(2) If f is partially hyperbolic then for every x ∈ M and for every ε > 0
there is a point y ∈ W s

ε (W
u
ε (x)) such that y /∈ ω(y) and y /∈ α(y),

in particular, the nonrecurrent points (for the future and the past) are
dense in M and can be found in any accessibility class.

Proof. Let us prove the first property. Take a point x and le us prove that the
points that are not recurrent in the future are dense in W(x). Take z ∈ W(x)
and let us approach it inside W(x) by points nonrecurrent in the future. We
may assume z is not periodic since periodic points can always be approached
by non-periodic ones inside the same W leaf. If z /∈ ω(z) then z approaches
itself. So, let us assume that z ∈ ω(z).
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Take ε0 such that the ε0 ball around z does not return in the first N
iterates, where N is the N of the keepaway lemma (this is always possible
since z is not periodic). Let us fix ε much smaller than ε0, something like
ε0/100. Now, since z is forward recurrent, take a very big positive iterate
f n(z) such that the distance between z and f n(z) is so small that if we take
a small transversal V through f n(z), Cε(V ) ⊂ Bε0(z). Moreover, we may
require also that Bε/2(z) ⊂ Bε( f n(z)).

Using the keepaway lemma, take a point ȳ in W5ε( f n(z)) such that the
positive orbit of ȳ do not enter Bε( f n(z)). Take y = f −n(ȳ) and observe that
y is as close as wanted to z because n is as big as we want, so, in particular,
we may assume y is in Bε/2(z). Finally, y cannot be forward recurrent since
if it were recurrent then the forward orbit of ȳ will approach y and hence
should enter Bε/2(z) ⊂ Bε( f n(z)).

The second property is an application of the first and of the fact that if
a point y does not return in the future to a small neighborhood of y, then
points in its stable manifold do not return either. ��
Set I = { f ∈ PHr

m M; Es ⊕ Eu is integrable}. Observe that I is a closed
set and B ⊂ I (see definition of B in p. 361).

In the partially hyperbolic setting the Keepaway lemma A.4.2 has as
corollaries that I has empty interior and that, given a periodic point x, f can
be perturbed in such a way that the accessibility class of x for the perturbed
diffeomorphism is open. This is shown in the following subsections.

3.3. D is generic. After the following property, genericity of D follows
from a Baire type argument like in the proof of Kupka–Smale theorem:

Lemma A.4.3 (Unweaving lemma). For each x ∈ Per( f ) there exists g
Cr-close to f such that x ∈ Per(g) and ACg(x) is open.

Proof. Assume that AC f (x) is not open for some periodic point x of period k.
Then, as stated in Remark 3.1, for all y ∈ W u

loc(x) and all z ∈ W s
loc(x) ε-close

to x, W s
loc(y) ∩ W u

loc(z) 	= ∅ .
The idea is to perturb a small neighborhood of x, so that x ∈ Per(g) and

W s
g,loc(y′) ∩W u

g,loc(z
′) = ∅ for some y′ ∈ W u

g,loc(x) and z′ ∈ W s
g,loc(x) close

to x. This will obviously prove ACg(x) is open.
We shall use the Keepaway lemma A.4.2 to find these points. To find

a suitable transversal V let us state the following:

Theorem 3 ([18] Center-stable manifold). Given a periodic point of period
k whose derivative admits an invariant by D f j(x) f k splitting T f j (x)M =
Es

f j (x)
⊕ Ec

f j (x)
⊕ Eu

f j (x)
, for j = 0, . . . , k − 1, which is partially hyperbolic,

there are center-stable manifolds Wcs
loc( f j(x)) tangent to Es

f j (x)
⊕ Ec

f j (x)

at f j(x) satisfying the following: for every N > 0 there is δ > 0 such
that if 0 ≤ j ≤ N, then f j(Wcs

δ (x)) ⊂ Wcs
loc( f j(x)) where we denote by
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Wcs
δ ( f j(x)) the center-stable manifold Wcs

loc( f j(x)) intersected with the ball
centered at f j(x) and radius δ.

So we shall take V = Wcs
δ (x) where δ is as in the center-stable manifold

theorem for the N of the keepaway lemma. Observe that Wcs
loc(x) is a priori

different from Wsc
loc(x) and hence we know it is tangent to Ec ⊕ Es only at x,

but this is enough because we only require V to be transversal to Eu .
Now, if we take ε small in the keepaway lemma, it is not hard to see

that V satisfies its hypotheses. Hence, we obtain a point y ∈ W u
5ε(x) such

that its forward orbit does not intersect Bε(V ). Analogously, applying the
keepaway lemma to f −1, we obtain a point z ∈ W s

5ε(x) that does not return
for the past to a similar neighborhood of x, say Bε(V̂ ).

Now, if we take j big enough, for some δ > 0 small, we have that
f − jk(y) and f jk(z) are very close to x and hence W u

δ ( f jk(z))∩W s
δ ( f − jk(y))

is not empty by Remark 3.1; let us denote the point of intersection by w,
see the left figure in Fig. 5. Let y′ = f − jk(y) and z′ = f jk(z). We may
assume that δ > 0 is so small that W s

δ (y′), W u
δ (z′) and w are contained in

Bε := Bε(V ) ∩ Bε(V̂ ).

Fig. 5. Unweaving lemma: Before and after perturbing around a periodic point x

Since y ∈ W u
5ε(x) does not return to Bε(V ) in the future and z ∈ W s

5ε(x)
does not return to Bε(V̂ ) in the past, we can choose U , a sufficiently small
neighborhood of w, in such a way that f n(W s

δ (y′)) and f −n(W u
δ (z′)) does

not intersect U for all n ≥ 1. Also we can require U not to intersect
Wσ

ε ( f n(x)) for σ = u, s, (see Fig. 6).
We now show that if we perform any perturbation whose support is in U

then W s
ε (x), W u

ε (x), W u
δ (z′) and f(W s

δ (y′)) do not change, i.e. if g = f ◦ h
for some diffeomorphism h satisfying h(a) = a for every a /∈ U then

W s
ε (x, g) = W s

ε (x, f ), W u
ε (x, g) = W u

ε (x, f ), W u
δ (z′, g) = W u

δ (z′, f )

and W s
δ (y′, g) = h−1(W s

δ (y′, f )).
In fact, observe that if a set A is such that f n(A)∩U = ∅ for every n ≥ 0,

then f n|A = gn|A for every n ≥ 1. In the same way, if f −n(A) ∩ U = ∅
for every n ≥ 1, then f −n|A = g−n|A for every n ≥ 1. This, plus the
characterization of the strong invariant manifolds and the choice of U gives
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Fig. 6. Unweaving lemma: the neighborhood U

us the first three identities. The fourth one follows essentially in the same
manner. In fact, by the characterization of the strong invariant manifolds,
to prove the forth identity it is enough to see that gn(h−1(W s

δ (y′, f ))) =
f n(W s

δ (y′, f )) for every n ≥ 1. This is obvious for n = 1 by definition of g,
and for n ≥ 2 because f n( f(W s

δ (y′, f ))) ∩ U = ∅ for n ≥ 0.
So, let us take h to be the time t map of a flow generated by a C∞

divergence free vector-field X which is 0 outside U and such that X(w) is
a unit vector transverse to Es ⊕ Eu at w. h is clearly volume preserving and
if t is small enough we have that h is C∞ close to the identity and hence g
is C∞ close to f .

Moreover, since X(w) is transverse to Es ⊕ Eu at w, if t is small
enough, we get that h(W u

δ (z′, f )) ∩ W s
δ (y′, f ) = ∅. Since W s

δ (y′, g) =
h−1(W s

δ (y′, f )) this implies that W u
δ (z′, g)∩W s

δ (y′, g) = ∅ and this implies,
using Remark 3.1, that the periodic point x cannot be in Γ(g) and hence
that its accessibility class ACg(x) is open. ��

Using a Baire type argument like the one in the proof of Kupka–Smale
theorem, we g et, using the unweaving lemma above, that Cr-generically

Per( f ) ⊂ U( f ).

This means, the set D is Cr-generic. The following proposition shows that,
in case Γ( f ) is a proper subset, there are always periodic points in Γ( f ).
This situation is meager.

Proposition A.5. If ∅ � Γ( f ) � M, then Per( f ) ∩ Γ( f ) 	= ∅.

For the proof of this proposition let us state the following reformulation
of Lemma 2.1 in p. 357.
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Lemma A.5.1. For each small ε > 0 there exists δ > 0 such that if
d(y, z) < δ and z ∈ Wc

δ (x), then Wc
loc(y) ∩ W s

ε (W
u
ε (x)) 	= ∅, regardless of

the choice of center leaves of x and y, see Fig. 7.

Fig. 7. Lemma A.5.1, case x ∈ Γ( f )

Note that in Fig. 7 x ∈ Γ( f ), but the lemma holds for all x ∈ M.

Proof of Proposition A.5. Let us prove there is a periodic point in the
boundary ∂Γ( f ) of Γ( f ). Observe that ∂Γ( f ) is a compact, f -invariant,
su-saturated set. We will assume M and Ec are orientable. Indeed, by taking
a double covering if necessary, we can assume M is orientable. If Ec is not
orientable, we take again a double covering M̃ of M in such a way that Ẽc,
the lift of Ec, is orientable. Let f̃ be a lift of f to M̃, then f̃ 2 is partially
hyperbolic, Ẽc is its center bundle and f̃ 2 preserves the orientation of Ẽc.
Any point x ∈ Γ( f ) lifts to a point x̃ ∈ Γ̃( f̃ 2) ⊂ M̃. The set Γ̃( f̃ 2) is locally
diffeomorphic to Γ( f ), and is f̃ 2 invariant. So a periodic point for f̃ 2 in
Γ̃( f̃ 2) will project to a periodic point for f in Γ( f ). So we shall assume
that M and Ec are orientable, and that f preserves orientation of Ec.

Given any center curve Wc
loc(x), we shall identify it with an interval in

the line in such a way that the orientation of Ec coincides with the standard
orientation in the line. Take a point x ∈ ∂Γ( f ) such that there is an open
interval I = (ax, cx) ⊂ Wc

loc(x) \ Γ( f ) with ax = x, and cx /∈ Γ( f ). Take
ε > 0 so small that V = W s

ε (W
u
ε (I )) verifies

V ∩ Γ( f ) = W s
ε

(
W u

ε (x)
) ⊂ ∂Γ( f ).(3.2)

In what follows, we shall reduce the interval I to an interval of the form
(ax, bx), with bx < cx . However, Equality (3.2) holds for any such interval.
Note that f k(V )∩Γ( f ) = ∅ for all k ∈ Z. Let δ > 0 be as in Lemma A.5.1,
and consider the set U = V ∩ Bδ(x). We lose no generality in assuming
I ⊂ U . Given y ∈ U and a choice of Wc

loc(y), let us denote by (ay, by) the
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connected component of the set Wc
loc(y) ∩ V containing y. Lemma A.5.1

implies that Wc
loc(y) ∩ W s

ε (W
u
ε (z)) 	= ∅ for all z ∈ I . Since ay is the left

end point of the interval (ay, by) with respect to the orientation of Ec then
ay ∈ W s

ε (W
u
ε (x)). Note that (ay, by) ∩ Γ( f ) = ∅.

Since the non-wandering set of f is M, there exists y ∈ U such that
f k(y) ∈ U for some k > 0. Now, f k(y) ∈ ( f k(ay), f k(by)) = f k(ay, by),
and f k(ay, by) ∩ Γ( f ) = ∅. So, ( f k(ay), f k(y)) ⊂ (af k(y), bf k(y)), whence
f k(ay) ∈ V . On the other hand, ay ∈ Γ( f ), so f k(ay) ∈ Γ( f ), see Fig. 8.
Therefore, (3.2) implies that f k(ay) ∈ W s

ε (W
u
ε (x)). In this way, we have

shown that there is ay ∈ M such that both ay and f k(ay) are in W s
ε (W

u
ε (x)).

Fig. 8. Finding periodic orbits – Proposition A.5

Finally, the proof follows from the following version of the Anosov
closing lemma (see for instance in [5, p. 76, Lemma 3.8] for a proof):

Lemma A.5.2 (Anosov’s closing lemma). There is ε0 > 0 such that if
x ∈ Γ( f ) satisfies f k(W s

ε0
(W u

ε0
(x))) ∩ W s

ε0
(W u

ε0
(x)) 	= ∅ for some k > 0,

then there is a periodic point in W s
ε0

(W u
ε0

(x)). ��
After Proposition A.5, we have the following possibilities for f ∈ D:

(1) Γ( f ) = ∅, that is, f has the accessibility property, i.e. f ∈ A
(2) Γ( f ) = M with Per( f ) = ∅, i.e. f ∈ B.

The situation ∅ � Γ( f ) � M cannot happen for f ∈ D, since it implies
there is a periodic point in Γ( f ). This proves Proposition A.1.

3.4. Proposition A.2. Recall that I = { f ∈ PHr
m(M); Es ⊕ Eu is inte-

grable} is a closed set and B ⊂ I , next proposition implies Proposition A.2.

Proposition A.6. I has empty interior.
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Proof. If there is a periodic point, then we apply the Unweaving
lemma A.4.3 and we get the proposition. So let us assume the set of periodic
points is empty.

The proof is similar to that of the Unweaving lemma A.4.3, but the
choice of the points is done in the opposite way. In fact, we first find the
point w, which is the point where the perturbation will be realized and then
we find the points x, y and z.

Using Corollary A.1 we can find a nonrecurrent point w. Let us then
assume that ε is such that f n(w) /∈ Bε(w) for every n 	= 0. Since w
is nonrecurrent and the N in the keepaway lemma is fixed, we can find,
for some ε′ < ε, points y ∈ W s

ε (w) and z ∈ W u
ε (w), y, z 	= w, such

that f −n(y) /∈ Bε′(w) and f n(z) /∈ Bε′(w) for n ≥ 1. Let us take x =
W u

loc(y) ∩ W s
loc(z).

Now, as in the unweaving lemma, we can find a small neighborhood
U ⊂ Bε(w) of w such that f n(W s

ε (y)) and f −n(W u
ε (z)) do not cut U for all

n ≥ 1. Also we can require U not to intersect f n(W s
loc(x)) and f −n(W u

loc(x))
for all n ≥ 0. Indeed, let us see how to get that f n(W s

ε (y)) does not cut U
for all n ≥ 1 and that f −n(W u

loc(x)) does not cut U for all n ≥ 0, the others
follow the same idea.

Taking U small enough, we have three possibilities: we have what we
want, f n(W s

ε (y)) cuts U infinitely many times, or w ∈ f n(W s
ε (y)) for some

n > 0. This last possibility can not occur since in this case we will get that
w ∈ f n(W s

ε (y)) ⊂ f n(W s(w)) and hence there will be a periodic point.
The second possibility can not occur either, because in this case we will get
that ω(y) ∩ U 	= ∅, but ω(y) = ω(w) and hence this contradicts that w is
nonrecurrent.

Taking U even smaller if necessary we will have what we want or that
f −n(W u

loc(x)), n ≥ 0, cuts U infinitely many times or that for some n ≥ 0,
w ∈ f −n(W u

loc(x)). In this last case, by the choice of y and z we have
that n 	= 0, so we will have that w ∈ f −n(W u

loc(x)) for some n > 0,
but this implies the existence of a periodic point by the Anosov Closing
lemma A.5.2. If f −n(W u

loc(x)), n ≥ 0, cuts U infinitely many times then
α(x) ∩ U 	= ∅ and since y ∈ W u

loc(x), then α(y) ∩ U 	= ∅, contradicting the
choice of y.

Once we get that the invariant manifolds do not return, the same pertur-
bation as in the unweaving lemma works. ��

4. Essential accessibility implies ergodicity

4.1. Definitions. Let us consider smooth functions ν, ν̂, γ, γ̂ : M →R+
satisfying, for all unit vectors vi ∈ Ei with i = s, c, u and x ∈ M,

∥∥Tx fvs
∥∥ < ν(x) < γ(x) <

∥∥Tx fvc
∥∥ < γ̂ (x)−1 < ν̂(x)−1 <

∥∥Tx fvu
∥∥
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where ν, ν̂ < 1 and ‖.‖ is an adapted Riemannian metric as at the beginning
of Sect. 2. We may also assume that d and ν, ν̂, γ, γ̂ satisfy:

d( f(x), f(x ′)) ≤ ν(x)d(x, x ′)
d( f −1(x), f −1(x ′)) ≤ ν̂( f −1(x))d(x, x ′)

for x ′ ∈ W s
loc(x)

for x ′ ∈ W u
loc(x)

(4.1)

d( f(x), f(x ′)) ≤ γ̂ (x)−1d(x, x ′)
d( f −1(x), f −1(x ′)) ≤ γ( f −1(x))−1d(x, x ′)

for x ′ ∈ Wc
loc(x)

for x ′ ∈ Wc
loc(x)

(4.2)

Remark 4.1. Inequalities (4.1) and (4.2) do not depend on the choice of the
center curve through x.

Note that ν, ν̂ < 1 and γ γ̂ < 1 for any partially hyperbolic diffeo-
morphism. Moreover, since dim Ec = 1, γ γ̂ may be chosen so close to 1
that ν < γ γ̂ and ν̂ < γ γ̂ . This is the center bunching condition. We can do
so since f acts on Ec conformally. If Ec is higher dimensional then this is
no longer the case, f may act far from conformally.

Let us introduce a smooth function σ : M →R satisfying

ν(x)

γ(x)
< σ(x) < min(1, γ̂ (x)).(4.3)

Consider, for α = ν, ν̂, γ, γ̂ , σ and n ≥ 0 the multiplicative cocycles:

αn(x) :=
n−1∏

i=0

α( f i(x)) α−n(x) := αn( f −n(x))−1

For each Wc
loc(x), define the set

Bc
n(x) = Wc

σn(x)(x)

and consider also:

Ju
n (x) = f −n

(
W u

νn(x)( f n(x))
)

and Jcu
n (x) =

⋃

y∈Bc
n(x)

Ju
n (y).(4.4)

The sets Jcu
n (x) will be called center-unstable juliennes of x or cu-juliennes.

We now state two lemmas which will be useful in what follows.

Lemma B.6.1. For any Hölder continuous α : M →R+, there is a fixed
constant C > 1 such that for all n ≥ 0, if y ∈ W s

loc(Bc
n(x)) ∪ Ju

n (x), then

1

C
≤ αn(x)

αn(y)
≤ C.

Proof. See for instance [12, Proposition 1.6]. ��
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The following is proved in [14, Theorem 0.2.]:

Proposition B.7. If f : M → M is C1+α partially hyperbolic with some
center bunching condition (trivially satisfied for one-dimensional center
bundle) then for any point x admitting a center-stable manifold Wsc

loc(x)
everywhere tangent to Es⊕Ec (manifold that always exists when dim Ec = 1,
see discussion before Remark 2.1) the stable foliation restricted to Wsc

loc(x)
is C1 with uniform bounds (here uniform means that do not depend on x).

In [26, Theorem 2.1.] the reader may find the case when the diffeo-
morphism is C2 and the center dimension is 1.

4.2. Controlling stable holonomy. In this section we will prove that the
deformation suffered by the cu-juliennes under the stable holonomy can be
controlled in the following sense:

Proposition B.8. There exists k ∈ Z+ such that, if x ′ ∈ W s
loc(x), then for all

choices of Wc
loc(x) and Wc

loc(x
′) contained in Wsc

loc(x), the stable holonomy
map from Wuc

loc(x) to Wuc
loc(x

′) satisfies

Jcu
n+k(x

′) ⊂ hs
(
Jcu

n (x)
) ⊂ Jcu

n−k(x
′) ∀ n ≥ k.

The proof splits into two parts. On one hand, we prove that the holonomy
does not distort center leaves too much, as is seen in Lemma B.8.1. On the
other hand, each unstable fiber on a certain center leaf is transformed, under
the stable holonomy, into a curve contained in a larger julienne. This is seen
in Lemma B.8.2 and Fig. 9.

Lemma B.8.1. There exists k ∈ Z+, not depending on x, such that for
all choices Wc

loc(x), Wc
loc(x

′) of center curves through x, x ′ contained in
some Wsc

loc(x), with x ′ ∈ W s
loc(x), the stable holonomy map hs from Wc

loc(x)
to Wc

loc(x
′), satisfies

hs
(
Bc

n(x)
) ⊂ Bc

n−k(x
′) ∀n ≥ k.

Proof. Recall that by Proposition B.7 the stable holonomy between center
manifolds is C1. Let L be its Lipschitz constant. Let C > 1 be as in and
Lemma B.6.1. Take k > 0 such that σ−k(x) > LC for all x ∈ M (recall that
σ < 1), then

hs
(
Bc

n(x)
) ⊂ Wc

Lσn(x)(x
′) ⊂ Wc

LCσn(x′)(x
′) ⊂ Wc

σn−k(x′)(x
′) = Bc

n−k(x
′)

and the lemma follows. ��
The following lemma is the second part of the proof of Proposition B.8:

Lemma B.8.2. There exists k ∈ Z+, depending neither on x nor on
the choice of the center curves, such that, under the hypotheses of
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Proposition B.8, the stable holonomy map hs from Wuc
loc(x) to Wuc

loc(x
′)

satisfies

hs
(
Ju

n (z)
) ⊂ Jcu

n−k(x
′) ∀n ≥ k

for all z ∈ Bc
n(x).

Fig. 9. Lemma B.8.2

Proof. Consider x ′ ∈ W s
loc(x), and center curves Wc

loc(x), Wc
loc(x

′) through
x, x ′ respectively, contained in Wsc

loc(x). Consider y ∈ Ju
n (z), with z ∈ Bc

n(x),
and let y′ = hs(y), z′ = hs(z).

Let us find k > 0 satisfying:

(1) y′ ∈ Ju
n−k(w

′) ⊂ Jcu
n−k(x

′) with
(2) w′ ∈ Bc

n−k(x
′) ⊂ Wc

loc(x
′).

Since the point f n(y) is in W u
νn(z)( f n(z)), we have d( f n(y), f n(z)) ≤ νn(z).

On the other hand, y′ ∈ W s
loc(y) and z′ ∈ W s

loc(z) and since f contracts stable
manifolds by a factor of ν we have:

d( f n(y′), f n(z′)) ≤ d( f n(y′), f n(y))+d( f n(y), f n(z))+d( f n(z), f n(z′))
≤ νn(y′) + νn(z) + νn(z

′) ≤ Kνn(z
′)

for a fixed constant K > 0, not depending on z, z′, y, y′ (see Lemma B.6.1).
Let w′ ∈ W u

loc(y′) ∩ Wc
loc(x

′). Since the angle between Ec and Eu is
uniformly bounded from below and since the unstable foliation restricted to
Wuc

loc is uniformly C1, see Proposition B.7, it follows by projecting along un-
stable manifolds inside Wuc

loc( f n(x ′)) that there is a constant C′ > 0 such that

d( f n(y′), f n(w′)) ≤ C ′νn(y′) and d( f n(w′), f n(z′)) ≤ C ′νn(z
′).(4.5)
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Hence (1) follows from the first inequality above by taking any l0 > 0
satisfying ν−l0(y) > C ′ for all y ∈ M. Indeed,

d( f n−l(y′), f n−l(w′)) ≤ d( f n(y′), f n(w′)) ≤ C ′νn(y′) ≤ νn−l(y′)

for all l ≥ l0. Using Lemma B.6.1 again, one obtains k > 0 such that
ν−k(y) > C for all y ∈ M, and so y′ ∈ Ju

n−k(w
′).

From the second inequality in (4.5), and inequalities (4.2) and (4.3) in
Sect. 4.1 we derive

d(w′, z′) ≤ C ′γ−n(z
′)νn(z

′) ≤ C ′σn(z
′) ≤ σn−l(z

′).

Now, previous lemma implies z′ ∈ Bc
n−l(x

′) for some sufficiently large l > 0,
so using Lemma B.6.1 again and taking into account that z′ ∈ Bc

n−l(x
′), we

find a (uniform) k > 0 so that d(x ′, w′) ≤ σn−k(x ′) for all n ≥ k. ��

4.3. A characterization of Lebesgue density points. In this paragraph,
we shall see that the following three systems are Vitali equivalent over
essentially u-saturated sets:

(1) Qn(x) = ⋃
w∈Jsc

n (x) W
u
σn(x)(w) where Jsc

n (x) = ⋃
y∈Bc

n(x) W
s
σn(y)(y),

(2) Jusc
n (x) = ⋃

y∈Jsc
n (x) Ju

n (y),
(3) Jscu

n (x) = ⋃
y∈Jcu

n (x) W
s
σn(y)(y).

The first system Qn(x) consists of “cubic” balls, so it is not difficult to see it
is Vitali equivalent to Lebesgue. The second system Jusc

n (x) consists of dy-
namically defined local unstable saturation of local center-stable leafs. Both
systems are local unstable saturations of the same center-stable leaf, and in
both cases the local unstable fibers are “uniformly” sized, so over essentially
u-saturated sets, they have the same density points. This is a consequence
of absolute continuity of the unstable foliation. Finally, the systems Jusc

n (x)
and Jscu

n (x) are comparable, in the sense that they are nested, their volumes
preserving a controlled ratio. So the three systems are Vitali equivalent over
essentially u-saturated sets:

Lemma B.8.3. The system {Qn(x)}x∈M is Vitali equivalent to Lebesgue.

In the sequel the following characerizations of density bases will be
useful, its proof is left to the reader. We thank M. Hirayama for pointing us
a mistake in a previous statement of Proposition B.9.

Proposition B.9. Each of the following are sufficient conditions for two sys-
tems {Bn(x)}x and {Cn(x)}x to be Vitali equivalent over a given σ -algebra M:

(1) There exist k ∈ Z+ and D > 0 such that

Bn+k(x) ⊂ Cn(x) ⊂ Bn−k(x) with
m(Bn+k(x))

m(Bn(x))
≥ D for all x ∈ M.
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(2) There exists D > 0 such that

1

D
≤ m(X ∩ Bn(x)) m(Cn(x))

m(X ∩ Cn(x)) m(Bn(x))
≤ D ∀n ∈ Z+ ∀X ∈ M.

Proof of Lemma B.8.3. Observe that the system {Bσn(x)(x)} is Vitali equiva-
lent to Lebesgue since σn+1(x)/σn(x) = σ(x) and 1/C < σ(x) < C for
some C > 1. Observe also that, by Lemma B.6.1, if y ∈ Bc

n(x) then
1/C < σn(x)/σn(y) < C.

Now, if z ∈ Qn(x), then there are y ∈ Bc
n(x) and w ∈ W s

σn(y)(y) such
that z ∈ W u

σn(x)(w). So, we have that

d(z, y) ≤ d(z, w) + d(w, y) + d(y, x) ≤ σ(x) + σ(y) + σ(x)
≤ (2 + C)σ(x).

Hence, for some fixed k, that do not depend on n, nor on x, Qn(x) ⊂
Bσn−k(x)(x).

To get the other inclusion, Bσn(x)(x) ⊂ Qn−k(x) for some fixed k, that
does not depend on n or on x, we shall use the following lemma, which
appeared in [12, Lemma 1.1] and is a consequence of the uniform continuity
of the invariant bundles.

Lemma B.9.1. There are δ > 0 small and C > 0 such that given four
points, p0, p1, p2, p3 satisfying p1 ∈ Wc

loc(p0), p2 ∈ W s
loc(p1) and p3 ∈

W u
loc(p2) then, if d(p0, p3) < δ we have that d(pi , pi+1) ≤ Cd(p0, p3) for

i = 0, 1, 2.

Proof. The lemma follows by taking the line segments si from pi to pi+1,
i = 0, 1, 2 and proving that the tangent vectors to this segments are uni-
formly linearly independent and this is true since this vectors are close to
be in the corresponding bundles which form a uniform splitting. ��

Let us finish the proof of Lemma B.8.3. Take z ∈ Bσn(x)(x) and let
us take the points, w = W u

loc(z) ∩ Wsc
loc(x) and y = W s

loc(w) ∩ Wc
loc(x).

Then, applying Lemma B.9.1 to the points x, y, w, z in the position of
p0, p1, p2, p3 respectively we get that d(x, y), d(y, w) and d(w, z) are less
than some constant C times d(x, z) and hence less that Cσn(x). Hence
y ∈ Wc

Cσn(x)(x) so using Lemma B.6.1 we can take some C′ > C such that
Cσn(x) < C ′σn(y). Finally we get, taking k such that C′σn < σn−k for ever
n ≥ 0, that y ∈ Bc

n−k(x), w ∈ W s
σn−k(y)(y) and z ∈ W u

σn−k(x)(w), that is,
z ∈ Qn−k(x).

The proof now follows from item (1) of Proposition B.9. ��
Remark 4.2. Observe that the definition of Qn(x) depends on the choice
of Wc

loc(x), but Lemma B.8.3 gives us that any choice will give equivalent
basis and in fact equivalent to Lebesgue.
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Recall that a measurable set X is essentially u-saturated if there exists
a measurable u-saturated set Xu (an essential u-saturate of X) such that
m(X�Xu) = 0.

Proposition B.10. The systems {Jusc
n (x)}x∈M and {Qn(x)}x∈M are Vitali

equivalent over essentially u-saturated sets.

Proof. For measurable (small) sets X, let us denote by mu(X) and msc(X)
the induced Riemannian volume of X in W u

loc and Wsc
loc respectively (the

choice of Wsc
loc is fixed a priori). Since W u is absolutely continuous, given

any esentially u-saturated X, and any essential u-saturate Xu of X, we have

(1) m(Xu ∩ Qn(x)) = ∫
Xu∩Jsc

n (x) mu
(
W u

σn(x)(y)
)
dmsc(y),

(2) m(Xu ∩ Jusc
n (x)) = ∫

Xu∩Jsc
n (x) mu

(
Ju

n (y)
)
dmsc(y).

Observe that there exists a constant D > 1 such that, for all y ∈ Jsc
n (x),

1

D
≤ mu

(
Ju

n (y)
)

mu
(

Ju
n (x)

) ≤ D(4.6)

(see [12, Lemma 4.1.]). Hence, we have,

1

D2

msc
(
Xu ∩ Jsc

n (x)
)

msc
(
Jsc

n (x)
) ≤ m

(
Xu ∩ Jusc

n (x)
)

m
(

Jusc
n (x)

) ≤ D2 msc
(
Xu ∩ Jsc

n (x)
)

msc
(

Jsc
n (x)

) .

And also,

1

D2

msc
(
Xu ∩ Jsc

n (x)
)

msc
(

Jsc
n (x)

) ≤ m(Xu ∩ Qn(x))

m(Qn(x))
≤ D2 msc

(
Xu ∩ Jsc

n (x)
)

msc
(
Jsc

n (x)
) .

So

1

D4

m(X ∩ Qn(x))

m(Qn(x))
≤ m

(
X ∩ Jusc

n (x)
)

m
(

Jusc
n (x)

) ≤ D4 m(X ∩ Qn(x))

m(Qn(x))
.

The claim follows now from Proposition B.9, Part (2). ��
Proposition B.11. The system {Jscu

n (x)} is Vitali equivalent to {Jusc
n (x)}

over all measurable sets.

Proof. We shall find l ∈ Z+ and D > 0 such that

Jscu
n+l(x0) ⊂ Jusc

n (x0) ⊂ Jscu
n−l(x0) and

m
(

Jusc
n+l(x0)

)

m
(

Jusc
n (x0)

) ≥ D

for all x0 ∈ M and n > l. The proof follows then from item (1) of Prop-
osition B.9.
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Let us consider k1 > k, where k is the positive integer of Prop-
osition B.8.2, satisfying minx∈M σ−k1(x) > C2 where C is as in Lemma B.6.1.
If z ∈ Jusc

n (x0), then z ∈ Un(y), with y ∈ Jsc
n (x0). By Lemma B.8.1 and

the choice of k1, we have y ∈ Bc
n−k1

(x), with x ∈ W s
loc(x0). Applying

Lemma B.8.2 to the holonomy map hs going from Jcu
n−k1

(x) to Wuc
loc(x0),

we have hs(Jcu
n−k1

(x)) ⊂ Jcu
n−2k1

(x0). Then, from the fact that the angles be-
tween distributions is bounded from below, we have that, for some k2 > k1,
z ∈ Jcu

n−k1
(x) ⊂ Jscu

n−k2
(x0).

The other inclusion is simpler, since, for z ∈ Jscu
n (x0), we have z ∈

W s
σn(y)(y) with y ∈ Jcu

n (x0). But Wuc
loc(z) ∩ W s

loc(x0) = {x}, and hence
directly from Lemma B.8.2 we have that z, belonging to hs(Jcu

n (x0)), is
contained in Jcu

n−k1
(x). Hence z ∈ Jusc

n−k1
(x0).

To finish the proof, let us see that m(Jusc
n+l(x))/m(Jusc

n (x)) is bounded
from below for all n > 0 and x ∈ M. Proceeding as in Lemma B.10, we
obtain that there is a constant c > 0 such that, for all x ∈ M and n > 0

1

c
≤ m

(
Jusc

n (x)
)

mu
(
Ju

n (x)
)
ms

(
W s

σn(x)(x)
)
mc

(
Bc

n(x)
) ≤ c.

It is not hard to see that the ratios ms(W
s
σn+l(x)(x))/ms(W

s
σn(x)(x)) and

mc(Bc
n+k(x))/mc(Bc

n(x)) are uniformly bounded. Now, using Lemma B.6.1,
we have that

K−1
mu

(
W u

νn(x)( f n(x))
)

Jac( f n)′(x)|Eu
≤ mu

(
Ju

n (x)
) ≤ K

mu
(
W u

νn(x)( f n(x))
)

Jac( f n)′(x)|Eu

for some uniform K > 0, so mu(Ju
n+k(x))/mu(Ju

x (x)) is uniformly bounded
too. For a detailed proof of this last estimation see [12, Lemma 4.4]. ��

So let us prove Proposition B.3.

Proof of Proposition B.3. By Proposition B.11 we get that the system
{Jscu

n (x)} is Vitali equivalent to the system {Jusc
n (x)} over all measurable

sets. On the other hand, Proposition B.10 says that {Jusc
n (x)} is equivalent

to {Qn(x)} over u-saturated sets. Finally, by Lemma B.8.3 we know that
{Qn(x)} is equivalent to Lebesgue over all measurable sets. hence we get
that {Jscu

n (x)} is Vitali equivalent to Lebesgue over u-saturated sets. ��
Finally we finish with the proof of Proposition B.2.

Proof of Proposition B.2. Let Xs be an essential s-saturate of X. And assume
x is a Jscu

n -density point of X, hence of Xs. Calling ms(A) the induced
Riemannian volume of A in W s, and mcu(A) the induced Riemannian
volume of A in some (fixed a priori) Wuc

loc we have, due to the fact that Xs is
s-saturated:

1

K
≤ m

(
Xs ∩ Jscu

n (x)
)

σn(x)mcu
(
Xs ∩ Jcu

n (x)
) ≤ K.
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Now, due to Proposition B.8 we have

mcu
(
hs

(
Xs ∩ Jcu

n+k(x)
)) ≤ mcu

(
Xs ∩ Jcu

n (hs(x))
)

≤ mcu
(
hs

(
Xs ∩ Jcu

n−k(x)
))

.

The proof follows from the fact that

1

K
≤ mcu(hs(X))

mcu(X)
≤ K

for some uniform K > 0. ��
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