
DOI: 10.1007/s00222-007-0089-3
Invent. math. 171, 543–615 (2008)

Renormalization and blow up for charge one
equivariant critical wave maps

J. Krieger1, W. Schlag2, D. Tataru3,�

1 Harvard University, Dept. of Mathematics, Science Center, 1 Oxford Street,
Cambridge, MA 02138, USA (e-mail: jkrieger@math.harvard.edu)

2 Department of Mathematics, The University of Chicago, 5734 South University Avenue,
Chicago, IL 60637, USA (e-mail: schlag@math.uchicago.edu)

3 Department of Mathematics, The University of California at Berkeley, Evans Hall,
Berkeley, CA 94720, USA (e-mail: tataru@math.berkeley.edu)

Oblatum 9-X-2006 & 25-IX-2007
Published online: 15 November 2007 – © Springer-Verlag 2007

Abstract. We prove the existence of equivariant finite time blow-up solu-
tions for the wave map problem from R2+1 → S2 of the form u(t, r) =
Q(λ(t)r) + R(t, r) where u is the polar angle on the sphere, Q(r) =
2 arctan r is the ground state harmonic map, λ(t) = t−1−ν , and R(t, r)
is a radiative error with local energy going to zero as t → 0. The number
ν > 1

2 can be prescribed arbitrarily. This is accomplished by first “renor-
malizing” the blow-up profile, followed by a perturbative analysis.

1. Introduction

We consider wave maps U : R2+1 → S2 which are equivariant with
co-rotation index 1. Specifically, they satisfy U(t, ωx) = ωU(t, x) for
ω ∈ SO(2,R), where the latter group acts in standard fashion on R2, and
the action on S2 is induced from that on R2 via stereographic projection.
Wave maps are characterized by being critical with respect to the functional

U �→
∫
R2+1

〈
∂αU, ∂αU

〉
dσ, α = 0, 1, 2
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with Einstein’s summation convention being in force, ∂α = mαβ∂β, mαβ =
(mαβ)−1 the Minkowski metric on R2+1, and dσ the associated volume
element. Also, 〈 · , · 〉 refers to the standard inner product on R3 if we
use ambient coordinates to describe u, ∂αu etc. Recall that the energy is
preserved:

E(u) =
∫
R2

〈DU( · , t), DU( · , t)〉 dx = const.

If one instead uses spherical coordinates, and lets u stand for the longitudinal
angle, and similarly use polar coordinates r, θ on R2, we describe the wave
map by (t, r, θ) �→ (u(t, r), θ), where now u(t, r), a scalar function, satisfies
the equation

−utt + urr + ur

r
= sin(2u)

2r2
.(1.1)

The problem at hand is energy critical, meaning that the conserved energy
is invariant under the natural re-scaling U → U(λt, λx) (using the ori-
ginal coordinates and meaning of U). By contrast, the analogous wave
map problem on Rn+1, n ≥ 3 is energy-supercritical in the sense that the
natural scale-invariant Sobolev space is then Ḣ

n
2 , and the corresponding

norm ‖u‖
Ḣ

n
2

is not expected to be controlled globally-in-time for general
initial data, which leads to the general belief that in this case, there should
not be a good well-posedness theory for general initial data, irrespective
of the target. Indeed, singular wave maps stemming from C∞-data have
been constructed on background R3+1 with target S3 in Shatah [23], and
with origin Rn+1, n ≥ 4 and for more general targets in Cazenave, Shatah,
Tahvildar-Zadeh [4].

In the critical case, global well-posedness is expected for hyperbolic
targets, while singularity development is expected for certain positively
curved targets, such as S2. More precisely, numerical evidence in Bizon,
Tabor [2], and Isenberg, Liebling [9] strongly suggests singularity develop-
ment for equivariant wave maps of co-rotation index one from R2+1 to S2

with smooth data, while wave maps fromR2+1 to H2, and more generally Hk ,
k ≥ 2, are expected to preserve the regularity1 of the initial data. Further
evidence for possible singularity development in the co-rotation one equi-
variant case was recently found by Cote [6] in the form of an instability
result. We note that a fairly satisfactory understanding has been achieved
for small-energy wave maps from R2+1 to general targets, see Tao [29],
Tataru [30–32], and Krieger [11], as well as for rotationally invariant wave
maps and general initial data by Christodoulou, Tahvildar-Zadeh [5], and
Struwe [27]. In particular, it is known that the latter never develop singular-
ities [27], and that for equivariant wave maps of co-rotation index 1, regular-
ity breakdown can only occur in an energy concentration scenario, see

1 By this we mean that if initial data have regularity H1+δ, δ > 0, the wave map can be
uniquely globally extended in this class.
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Struwe [28]. For equivariant wave maps, it is known that regularity of the
initial data is preserved (see previous footnote) provided the target satisfies
a geodesic convexity condition, see Shatah, Tahvildar-Zadeh [24,25].

Our objective in this paper is to rigorously demonstrate regularity break-
down for equivariant wave maps u : R2+1 → S2 of co-rotation index 1 with
certain H1+ regular initial data. More precisely, the data (u, ut) will be of
class H1+δ × Hδ for some δ > 0. It is well-known that such data result
in unique local solutions of the same regularity until possible breakdown
occurs via an energy-concentration scenario. We note that a result of Struwe
shows that if the solution is indeed C∞-smooth before breakdown,2 such
a scenario can only happen by the bubbling off of a harmonic map [28]:
specifically, let Q(r) : R2 → S2 be an equivariant harmonic map, which
can be constructed for every co-rotation index k ∈ Z (for example, for
k = 1 stereographic projection will do). We shall identify Q(r) with the
longitudinal angle, as above. Then according to [28], if an equivariant wave
map u of co-rotation index k = 1, again identified with the longitudinal
angle, with smooth initial data at some time t0 > 0 breaks down at time
T = 0, then energy focuses at the origin, and there is a decomposition

u(t, r) = Q(λ(t)r) + ε(t, r),
Q(r) a co-rotation k = 1 index equivariant harmonic map

where there is a sequence of times ti → 0, ti < 0, i = 1, 2, . . . , with
λ(ti)|ti | → ∞, such that the rescaled functions u(ti,

r
λ(ti)

) converge to Q(r)
in the strong energy topology.

This is borne out by our main theorem. We let Q(r) represent the standard
harmonic map of co-rotation k = 1, i.e., Q(r) = 2 arctan r. Recall that in
the equivariant formulation the energy is

E(u) =
∫
R2

[
1

2

(
u2

t + u2
r

) + sin2(u)

2r2

]
r dr.

The local energy relative to the origin is defined as

Eloc(u) =
∫

r<t

[
1

2

(
u2

t + u2
r

) + sin2(u)

2r2

]
r dr.

It is well-known that for equivariant wave-maps singularities can only de-
velop at the origin and this happens at time zero iff

lim inf
t→0

Eloc(u)(t) > 0.

The following theorem is the main result of this paper. Note that we need
to “renormalize” the profile3 Q(rλ(t)) by means of a large perturbation

2 This result most likely can be adapted to solutions of lesser smoothness.
3 While this usage of the term “renormalize” may be at odds with the physics literature,

it is quite common in applied mathematics and perturbation theory. What we mean here is
that we can apply perturbative arguments only after a non-perturbative step that changes Q
to Q + ue, see Theorem 1.1.



546 J. Krieger et al.

(denoted ue below). We find it convenient to solve backwards in time, with
blow-up as t → 0+.

Theorem 1.1. Let ν > 1
2 be arbitrary and t0 > 0 be sufficiently small.

Define λ(t) = t−1−ν and fix a large integer N. Then there exists a function4

ue satisfying

ue ∈ Cν+1/2−({t0 > t > 0, |x| ≤ t}),
Eloc(u

e)(t) � (tλ(t))−2|log t|2 as t → 0

and a blow-up solution u to (1.1) in [0, t0] which has the form

u(t, r) = Q(λ(t)r) + ue(t, r) + ε(t, r), 0 ≤ r ≤ t

where ε decays at t = 0; more precisely,

ε ∈ tN H1+ν−
loc (R2), εt ∈ tN−1 Hν−

loc (R2), Eloc(ε)(t) � tN as t → 0

with spatial norms that are uniformly controlled as t → 0. Also, u(0, t) = 0
for all 0 < t < t0. The solution u(t, r) extends as an H1+ν− solution to all
of R2 and the energy of u concentrates in the cuspidal region 0 ≤ r � 1

λ(t)
leading to blow-up at r = t = 0.

A somewhat surprising feature of our theorem is that the blow-up rate is
prescribed as λ(t) = t−1−ν. This is in stark contrast to the usual modulation
theoretic approach where the rate function is used to achieve orthogonality
to all unstable modes of the linearized problem. Heuristically speaking, there
are two types of instabilities which typically arise in linearized problems:
those due to symmetries of the nonlinear equation (typically leading to
algebraic growth of the linear evolution) and those that produce exponential
growth in the linear flow (due to some kind of discrete spectrum). For
example, the latter arises in the recent work on “center-stable manifolds”,
see Schlag [22], Krieger, Schlag [12,13] whereas for the former see [14].
Both types can lead to blow up. Here we do not have any discrete spectrum
in the linearized equation, but rather a zero-energy resonance which is due
to the scaling symmetry. Intuitively speaking, it is unclear at this point
which role the resonance plays in the formation of the blow-up, since our
approach is based on a crucial non-perturbative component – the elliptic
profile modifier produces a large perturbation of the basic profile Q. The
perturbative component of our proof then deals with the removal of errors
produced by the elliptic profile modifier (it is essential that these errors
decay rapidly in time).

4 We refer to this as an “elliptic profile modifier”; see Sect. 3 for a detailed explanation
of this notion. Also, Cβ for noninteger β means C[β],β−[β].
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Perelman [20] used a modulation theoretic approach to construct solu-
tions of the one-dimensional L2-critical nonlinear Schrödinger equation that
blow up like

|∇u|L2 ∼
(∣∣log |log(T − t)|∣∣

T − t

)1
2

.

Moreover, she showed that this rate is stable under small perturbations
relative to a suitable norm. In a series of remarkable papers, Merle and
Raphael [16–19] made a very detailed study of this phenomenon; independ-
ently and by a different method they obtained the same result (in arbitrary
dimensions) as Perelman and also gave sufficient conditions on the energy
and mass that ensure this rate (their data are an open set in the energy
norm). Their proof is only partially based on the modulation method; an
essential ingredient is a “nonlinear dispersive estimate” on the radiation
part that they obtain from the virial identity (as well as subtle applications
of positivity or monotonicity). In a similar spirit, the recent remarkable
paper by Rodnianski, Sterbenz [21] constructs generic sets of initial data
(including smooth data) resulting in blow-up with a rate5

λ(t) ∼
√|log t|

t

for equivariant wave maps from R2+1 to S2 with co-rotation index k ≥ 4.
These data can be chosen arbitrarily close to the corresponding co-ro-
tation k harmonic map with respect to a suitable norm stronger than ‖ · ‖H1 .
The “nonlinear dispersive estimate” in this context is furnished by a suitable
Morawetz bound. We remark that the conclusions of this paper were reached
at about the same time as those of [21]. On a technical level, note that the
linearized wave map operator has zero energy as an eigenvalue for co-ro-
tation index k > 1 but for k = 1 zero energy becomes a resonance (indeed,
∂λQk(λr)|λ=1 ∈ L2(0,∞) if and only if k > 1 where Qk(r) = 2 arctan(rk)).
It appears that due to this (and/or other reasons) the co-rotation one blow-up
is markedly different from the blow-up with k > 1.

Due to the large error ∂tt Q(λ(t)r) with λ(t) = t−1−ν, there is no hope of
relying on purely perturbative techniques to prove Theorem 1.1. Moreover,
we need to compensate for the “rigidity” of prescribing the blow-up rate (in
contrast to the modulation method). Consequently, our argument is divided
into two parts (see Sect. 2 for a more detailed description of our entire
proof): first, we use a direct method, exploiting the algebraic fine structure
of the system, to find an approximate solution Q(λ(t)r) + ue(t, r) where ue

cannot be made small at a given time. Roughly speaking, one may think
of ue( · , · ) as being obtained by a finite sequence of approximations which
alternately improve the accuracy near the light cone and near the origin. To

5 This rate had been derived before by Bizon, Ovchinnikov, Sigal [3] via a formal perturb-
ative analysis.
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model the solution near the light cone, one introduces the coordinates (a, t)
where a = r

t and reduces to solving an elliptic problem in a by neglecting
time derivatives. More precisely, one treats time derivatives as error source
terms, which get decimated by iterating the elliptic construction. Similarly,
one improves accuracy near the origin r = 0 by working with the co-
ordinates (R, t) where R = λ(t)r, again reducing to an elliptic problem
by neglecting time derivatives. This process does not lead to an actual
solution, as one “keeps losing time derivatives”, which leads to worse and
worse implicit constants. Thus, in a second stage, we construct a parametrix
for the wave equation which is obtained by passing to coordinates (R, τ)
where R = λ(t)r, τ = 1

ν
t−ν . This in turn relies on a careful analysis of

the spectral and scattering theory of the Schrödinger operator which arises
by linearizing around Q(r). The remaining error is then iterated away by
continued application of the wave parametrix.

Finally, we remark that the methods of this paper also apply to the H1

critical semi-linear wave equation

utt − ∆u − u5 = 0 in R1+3
t,x ,(1.2)

see [15]. For this equation, the positive function W(x) = (1+r2/3)− 1
2 plays

the role of the ground state harmonic map Q. Thus, in [15] we establish the
existence of a radial blow-up solution in the energy class (or better) of the
form

u(t, r) = λ(t)
1
2 W(λ(t)r) + η(t, r), r ≤ t

where η(t, r) has local energy tending to zero as t → 0 and λ(t) = t−1−ν

fixed with ν > 1
2 arbitrary. It is also shown that u(t, r) blows up exactly

at r = t = 0. The fact that we have the same condition on ν as in Theorem 1.1
is a coincidence – in both cases we expect blow-up solutions to exist for
all ν > 0. There are a number of important differences from the wave
map case of this paper; the most important perhaps being the exponential
instability of the linearized operator H of (1.2) – indeed, H = −∆−5W4 has
negative spectrum. See [13] for details, as well as Karageorgis, Strauss [10]
for blow-up results on the equation

utt − ∆u − |u|5 = 0 in R1+3
t,x ,

via convexity arguments. These authors prove that above the tangent plane
of the (local) center-stable manifold constructed in [13] blow-up takes place,
which is an interesting step towards proving that above the manifold itself
blow-up takes place.

Acknowledgements: The authors thank two anonymous referees for their numerous sugges-
tions and comments.
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2. An overview of the proof of Theorem 1.1

The fact that we prescribe the blow-up rate λ(t) = t−1−ν a priori differs from
other constructions of blow-up solutions, such as Merle, Raphael [16–19],
Bizon, Ovchinnikov, Sigal6 [3], and Rodnianski, Sterbenz [21], which are
(partially) based on a modulation theoretic approach. This refers to the
fact that an ODE for λ(t) is derived from an orthogonality condition which
forces the radiation term to be perpendicular to the zero modes of the linear-
ized operator (more precisely, the root space in the case of the nonlinear
Schrödinger equation). The latter are typically generated by symmetries –
in our case, the dilation symmetry with associated zero mode

∂λ|λ=1 Q(λr) = rQ′(r) = 2r

1 + r2
.

Such an approach (if it works) is expected to lead to stable rates in the
sense that one obtains an open set of data (ideally, in the energy topology
or somewhat weaker, with weights) which lead to solutions blowing up at
that rate (at least to leading order).

We proceed differently here and establish a new phenomenon, namely
the existence of a continuum of blow-up rates, albeit non-stable ones (the
stability will probably require staying on a finite co-dimension manifold
of data). The construction hinges on the construction of approximate solu-
tions which are essentially designed to remove the large error ∂tt Q(λ(t)r).
More precisely, in Sect. 3 we show that for every k ≥ 1 there exists,
with R = λ(t)r,

u2k−1(t, r) = Q(R) + ck

(tλ)2
R log(1 + R2) + O

(
R−1(log(1 + R2))2

(tλ)2

)

so that the error

e2k−1(t, r) :=
(

−∂2
t + ∂2

r + 1

r
∂r

)
u2k−1 − sin(2u2k−1)

2r2

satisfies

e2k−1(t, r) = O

(
R(log(2 + R))2k−1

t2(tλ)2k

)
(2.1)

with O( · ) terms that are uniform in 0 ≤ r ≤ t and 0 < t < t0 (where t0 is
a fixed small constant). This is proved by means of an iterative procedure
that improves the error at each step – actually, double step; indeed, at each
step we approximately solve the wave equation first close to r = 0 and
then close to the light-cone r = t. In both cases it suffices to solve an ODE
– in the former case in the variable r and in the latter in the self-similar

6 This paper develops a formal perturbation theory but obtains the correct rate as later
verified by Rodnianski, Sterbenz.
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variable a = r
t . In both cases the ODE is a Sturm–Liouville equation, in

the latter case singular at a = 1, hence the name “elliptic” profile modifier.
The condition ν > 1

2 ensures that the solution remains sufficiently regular
at a = 1. More specifically, it turns out that e2k−1 has a singularity of the
form (1 − a)ν− 1

2 logm(1 − a) for some m ≥ 1 close to r = t.
In Sect. 4 we make the ansatz u(t, r) = u2k−1(t, r) + ε(t, r) which leads

to the PDE

−εtt + εrr + 1

r
εr − cos(2Q(λr))

r2
ε = N2k−1(ε) + e2k−1(2.2)

with the nonlinear term

−N2k−1(v) = cos(2u0) − cos(2u2k−1)

r2
v + sin(2u2k−1)

2r2
(1 − cos(2v))

(2.3)

+ cos(2u2k−1)

2r2
(2v − sin(2v)).

We change variables according to

dτ

dt
= λ(t), ε̃(τ, R) := R

1
2 ε(t(τ), λ−1 R).

Thus t → 0 corresponds to τ → ∞. This leads to the main equation(
−

(
∂τ + λτ

λ
R∂R

)2

+ 1

4

(
λτ

λ

)2

+ 1

2
∂τ

(
λτ

λ

))
ε̃ − Lε̃(2.4)

= λ−2 R
1
2
(
N2k−1(R− 1

2 ε̃) + e2k−1
)

with the linearized operator

L := −∂2
R + 3

4R2
− 8

(1 + R2)2
.

We shall solve (2.4) subject to the “terminal condition” ε̃ = 0 at τ = ∞
(in fact, we obtain an arbitrary rate of decay ‖ε̃(τ)‖ � τ−N here relative to
a suitable Sobolev norm in space – N grows with k from the renormalization
step).

Viewed as a symmetric operator on C∞
comp((0,∞)) ⊂ L2(0,∞), L is

referred to as a strongly singular Sturm–Liouville operator since the poten-
tial is not L1

loc([0,∞)), see Gesztesy, Zinchenko [8] for a recent treat-
ment of this class. What we will need specifically from [8] is the Fourier
representation relative to the (generalized) eigenbasis of L and the associ-
ated Plancherel theorem: in Sect. 5 we show that for every ξ > 0 there exists
a unique (up to a scalar multiple) φ( · , ξ) �≡ 0 which is in L2

loc((0,∞)) and
satisfies Lφ( · , ξ) = ξφ( · , ξ); after a suitable normalization of φ( · , ξ) the
Fourier transform

F : f �→ f̂ (ξ) = lim
b→∞

∫ b

0
φ(r, ξ) f(r) dr



Renormalization and blow up for charge one equivariant critical wave maps 551

is a unitary operator from L2(R+) to L2(R+, ρ) where ρ is the spectral
measure of L and its inverse is given by

F −1 : f̂ �→ f(r) = lim
µ→∞

∫ µ

0
φ(r, ξ) f̂ (ξ) ρ(ξ) dξ.

Here lim refers to the L2(R+, ρ), respectively the L2(R+), limit. Much of
Sect. 5 is devoted to a detailed asymptotic analysis of φ(R, ξ) and ρ(dξ).
We record here that the zero energy resonance of L (which is a result of
the dilation symmetry of the wave map) renders the spectral density ρ(ξ)
singular at ξ = 0. In fact,

ρ(ξ) �
{

1
ξ(log ξ)2 ξ � 1

ξ ξ � 1

see Proposition 5.7. Moreover, for all R2ξ ≥ 1, the basis functions φ(R, ξ)
exhibit oscillatory behavior

φ(R, ξ) ∼ Re(b(ξ)eiRξ
1
2
)

with a suitable weight b(ξ), whereas for R2ξ ≤ 1, we show that φ(R, ξ) ∼
φ(R, 0) = R

3
2

1+R2 (up to important logarithmic corrections – see Prop-
osition 5.4).

By means of this Fourier transform, we now rewrite (2.4) as an equation
for x(τ, ·) = F ε̃(τ, ·). By the inversion formula this gives

ε̃(τ, R) =
∫ ∞

0
x(τ, ξ)φ(R, ξ)ρ(ξ) dξ.

This new PDE, which we again solve under a vanishing condition at τ = ∞,
is of the form

−
(

∂τ − λτ

λ
2ξ∂ξ

)2

x − ξx(2.5)

= 2
λτ

λ
K

(
∂τ − λτ

λ
2ξ∂ξ

)
x + λ2

τ

λ2

(
K2 + 2[ξ∂ξ,K])x

−
(

1

4

(
λτ

λ

)2

+ 1

2
∂τ

(
λτ

λ

))
x

+ λ−2FR
1
2
(
N2k−1(R− 1

2 F −1x) + e2k−1
)
.

It exhibits non-local terms involving the operatorK , which arises as follows:
to deal with R∂R in (2.4) we introduce the transference identity7

R̂∂Ru = −2ξ∂ξ û + K û.

7 It transfers derivatives from R to ξ .
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Using the asymptotic expansion of φ(R, ξ) we can then show that, see
Sect. 6:

K = −
(

3

2
+ ηρ′(η)

ρ(η)

)
δ(ξ − η) + K0

where the kernel of K0 is of Hilbert-transform type

K0(η, ξ) = ρ(ξ)

ξ − η
F(ξ, η),

see Theorem 6.1 for bounds on F. As a singular integral operator, K0 and
the commutator [K0, ξ∂ξ] satisfy the following weighted L2((0,∞)) esti-
mates that are essential for the contraction argument solving (2.5), see
Proposition 6.2:

‖K0 f ‖
L

2,α+ 1
2

ρ

≤ C‖ f ‖L2,α
ρ

, ‖[K0, ξ∂ξ] f ‖L2,α
ρ

≤ C‖ f ‖L2,α
ρ

with the weighted norms

‖ f ‖L2,α
ρ

:=
(∫ ∞

0
| f(ξ)|2〈ξ〉2αρ(ξ) dξ

)1
2

.

Section 6 is based on the asymptotic expansions of Sect. 5 which are needed
in order to obtain the necessary point-wise estimates on the operator kernel.
This then allows one to apply the T(1)-theorem from Calderon–Zygmund
theory (see Stein [26]), as well as other simpler techniques like Hilbert–
Schmidt bounds, to conclude the desired weighted L2-boundedness.

Let H(τ, σ) denote the backward fundamental solution of the differential
operator on the left-hand side of (2.5), and by H(τ, σ) its kernel. I.e.,

x(τ) =
∫ ∞

τ

H(τ, σ) f(σ) dσ

solves [(
∂τ − 2

λτ

λ
ξ∂ξ

)2

+ ξ

]
x(τ, ξ) = f(τ, ξ).(2.6)

Somewhat inaccurately, we refer to this as a transport equation since the
first order operator ∂τ − 2λτ

λ
ξ∂ξ has characteristics (τ, λ−2(τ)ξ); thus, the

Fourier coefficients x(τ, ξ) are transported along these curves. Hence, (2.6)
takes the form [

∂2
τ + λ−2(τ)ξ

]
x(τ, λ−2(τ)ξ) = f(τ, λ−2ξ)

which we solve via the associated backward fundamental solution S(τ, σ, ξ):

x(τ, λ−2(τ)ξ) = −
∫ ∞

τ

S(τ, σ, ξ) f(σ, λ−2(σ)ξ) dσ.
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Since

∂2
τ + λ−2(τ)ξ = ∂2

τ + τ−2τ− 2
ν ξ

we estimate S(τ, σ, ξ) by distinguishing between τ− 2
ν ξ > 1 and τ− 2

ν ξ ≤ 1;
in the latter case we use WKB, whereas in the former, we apply a power-
series ansatz to conclude that

|S(τ, σ, ξ)| � σ

(
σ

τ

)C

(1 + λ−2(τ)ξ)− 1
2 ,

|∂τ S(τ, σ, ξ)| �
(

σ

τ

)C

, 1 � τ < σ,

where C is some (large) constant, see Lemma 8.1 of Sect. 8. These in turn
easily imply the following crucial estimates: for any α ≥ 0 there exists
some (large) constant C = C(α) so that

‖H(τ, σ)‖L2,α
ρ →L2,α+1/2

ρ
� τ

(
σ

τ

)C

(2.7)

∥∥∥∥
(

∂τ − λτ

λ
2ξ∂ξ

)
H(τ, σ)

∥∥∥∥
L2,α

ρ →L2,α
ρ

�
(

σ

τ

)C

uniformly in σ ≥ τ . For the spaces L∞,N L2,α
ρ with norm

‖ f ‖L∞,N L2,α
ρ

:= sup
τ≥1

τN‖ f(τ)‖L2,α
ρ

the bounds from (2.7) imply the following: given α ≥ 0, let N be large
enough. Then

‖Hb‖L∞,N−2 L2,α+1/2
ρ

+
∥∥∥∥
(

∂τ − 2
λτ

λ
ξ∂ξ

)
Hb

∥∥∥∥
L∞,N−1 L2,α

ρ

≤ C0N−1‖b‖L∞,N L2,α
ρ

(2.8)

with a constant C0 that depends on α but does not depend on N. Here
N−1 on the right-hand side is a crucial smallness factor needed for the
final contraction argument. On the other hand, the nonlinear operator N2k−1
from (2.3) has the following mapping properties, as we show in Sect. 9:
assume that N is large enough and ν

2 + 3
4 > α > 1

4 . Then the map

x �→ λ−2FR
1
2
(
N2k−1(R− 1

2 F −1x)
)

is locally Lipschitz from L∞,N−2 L2,α+1/2
ρ to L∞,N L2,α

ρ . With these bounds
in place, a fixed point argument in the norm

‖x‖
L∞,N−2 L

2,α+ 1
2

ρ

+
∥∥∥∥
(

∂τ − 2
λτ

λ
ξ∂ξ

)
x

∥∥∥∥
L∞,N−1 L2,α

ρ
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yields a solution of (2.5) (note that the powers of λτ

λ
∼ τ−1 appearing on

the right-hand side of (2.5) exactly compensate for the losses in powers
of τ in (2.8)). This is the point at which the form and size of the error e2k−1

from (2.1) become relevant: relative to the Sobolev norm ‖ f ‖Hβ
ρ

:= ‖ f̂ ‖Lβ
ρ

one has
∥∥λ−2 R

1
2 e2k−1(t(τ), λ

−1 R)
∥∥

Hα
ρ
� τ−2k+2.

Indeed, for this use the bound from (2.1), the fact that the singularity of
e2k−1 close to r = t is of the form (1 − a)ν− 1

2 logm(1 − a) with a = r/t (see
Sect. 3), and finally that

‖u‖
H

α
2

ρ

� ‖eiθ
√

R u(R)‖Hα(R2)

where the Sobolev space on the right-hand side is the usual one in R2

(Lemma 10.1) and we are writing z = eiθ R for the variable in R2. Retracing
our steps back to our main PDEs (2.4) and thus, finally, (2.2) then finishes
our construction – see Sect. 10 for details.

3. Approximate solutions

3.1. The elliptic profile modifier. In this section we show how to con-
struct an arbitrarily good approximate solution to the wave map equation as
a perturbation of a time-dependent harmonic map profile

u0 = Q(R), R = rλ(t)

with the polynomial timescale

λ(t) = t−1−ν.

To describe the approximate solution we use the time variable, the variable R
which corresponds to the harmonic map scale, and the self-similar variable
a = r/t which is useful in analyzing the behavior near the cone. The only
trade off in this construction is that we need to allow singularities of the
form

(1 − a2)ν(log(1 − a2))k

as we approach the cone. Thus, the larger the parameter ν, the better the
regularity of the approximate solutions. For the sake of readability, it is
worth noting that only Theorem 3.1 as well as the finer representation of the
error as specified in Remark 3.2 will be used in the proof (more precisely,
in the final Sect. 10). If desired, and up to these statements, this section can
be considered as a black box.



Renormalization and blow up for charge one equivariant critical wave maps 555

Theorem 3.1. Let k ∈ N. There exists an approximate solution u2k−1
for (1.1) of the form

u2k−1(t, r) = Q(λ(t)r) + ck

(tλ)2
R log(1 + R2) + O

(
R−1(log(1 + R2))2

(tλ)2

)

so that the corresponding error has size

e2k−1 = O

(
R(log(2 + R))2k−1

t2(tλ)2k

)
.

Here the O( · ) terms are uniform in 0 ≤ r ≤ t and 0 < t < t0 where t0 is
a fixed small constant.

Remark 3.2. In the proof we obtain u2k−1 and e2k−1 which are analytic
inside the cone and C

1
2 +ν−, respectively C− 1

2 +ν− on the cone, with a good
asymptotic expansion both on the R scale and near the cone.

More precisely, using our notations defined below we have

u2k−1 ∈ Q(λ(t)r) + 1

(tλ)2
IS3(R log R,Qk)

while the error satisfies

t2e2k−1 ∈ 1

(tλ)2k
IS1

(
R(log R)2k−1,Q′

k−1

)
.

Proof. We iteratively construct a sequence uk of better approximate solu-
tions by adding corrections vk,

uk = vk + uk−1.

The error at step k is

ek =
(

−∂2
t + ∂2

r + 1

r
∂r

)
uk − sin(2uk)

2r2
.

To construct the increments vk we first make a heuristic analysis. If u were
an exact solution, then the difference

ε = u − uk−1

would solve the equation
(

−∂2
t + ∂2

r + 1

r
∂r

)
ε − cos(2uk−1)

2r2
sin(2ε)(3.1)

+ sin(2uk−1)

2r2
(1 − cos(2ε)) = ek−1.
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In a first approximation we linearize this equation around ε = 0 and substi-
tute uk−1 by u0. Then we obtain the linear approximate equation

(
−∂2

t + ∂2
r + 1

r
∂r − cos(2u0)

r2

)
ε ≈ ek−1.(3.2)

For r � t we expect the time derivative to play a lesser role so we neglect
it and we are left with an elliptic equation with respect to the variable r,

(
∂2

r + 1

r
∂r − cos(2u0)

r2

)
ε ≈ ek−1, r � t.(3.3)

For r ≈ t we can approximate cos(2u0) by 1 and rewrite (3.2) in the form
(

−∂2
t + ∂2

r + 1

r
∂r − 1

r2

)
ε ≈ ek−1.

Here the time and spatial derivatives have the same strength. However, we
can identify another principal variable, namely a = r/t and think of ε as
a function of (t, a). As it turns out, neglecting a “higher order” part of ek−1
which can be directly included in ek , we are able to use scaling and the
exact structure of the principal part of ek−1 to reduce the above equation to
a Sturm–Liouville problem in a which becomes singular at a = 1.

The above heuristics lead us to a two step iterative construction of
the vk’s. The two steps successively improve the error in the two regions
r � t, respectively r ≈ t. To be precise, we define vk by

(
∂2

r + 1

r
∂r − cos(2u0)

r2

)
v2k+1 = e0

2k(3.4)

respectively
(

−∂2
t + ∂2

r + 1

r
∂r − 1

r2

)
v2k = e0

2k−1(3.5)

both equations having zero Cauchy data8 at r = 0. Here at each stage the
error term ek is split into a principal part and a higher order term (to be made
precise below),

ek = e0
k + e1

k .

The successive errors are then computed as

e2k = e1
2k−1 + N2k(v2k), e2k+1 = e1

2k − ∂2
t v2k+1 + N2k+1(v2k+1)

8 The coefficients are singular at r = 0, therefore this has to be given a suitable interpret-
ation.
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where

−N2k+1(v) = cos(2u0) − cos(2u2k)

r2
v + sin(2u2k)

2r2
(1 − cos(2v))(3.6)

+ cos(2u2k)

2r2
(2v − sin(2v))

respectively

−N2k(v) = 1 − cos(2u2k−1)

r2
v + sin(2u2k−1)

2r2
(1 − cos(2v))(3.7)

+ cos(2u2k−1)

2r2
(2v − sin(2v)).

To formalize this scheme we need to introduce suitable function spaces
in the cone

C0 = {(t, r) : 0 ≤ r < t, 0 < t < t0}
for the successive corrections and errors. We first consider the a dependence.
For the corrections vk we use

Definition 3.3. For i ∈ N we let j(i) = i if ν is irrational, respectively
j(i) = 2i2 if ν is rational.

a) Q is the algebra of continuous functions q : [0, 1] → R with the
following properties:
(i) q is analytic in [0, 1) with an even expansion at 0.
(ii) Near a = 1 we have an absolutely convergent expansion of the form

q = q0(a) +
∞∑

i=1

(
(1 − a)(2i−1)ν+ 1

2

j(2i−1)∑
j=0

q2i−1, j(a)(log(1 − a)) j

+ (1 − a)2iν+1
j(2i)∑
j=0

q2i, j (a)(log(1 − a)) j

)

with analytic coefficients q0, qij .
b) Qm is the algebra which is defined similarly, with the additional require-

ment that

qij (1) = 0 if i ≥ 2m + 1, odd.

For the errors ek we introduce

Definition 3.4. a) With j(i) as above, Q′ is the space of continuous func-
tions q : [0, 1] → R with the following properties:
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(i) q is analytic in [0, 1) with an even expansion at 0.
(ii) Near a = 1 we have a convergent expansion of the form

q = q0(a) +
∞∑

i=1

(
(1 − a)(2i−1)ν− 1

2

j(2i−1)∑
j=0

q2i−1, j (a)(log(1 − a)) j

+ (1 − a)2iν
j(2i)∑
j=0

q2i, j(a)(log(1 − a)) j

)

with analytic coefficients q0, qij .
b) Q′

m is the space which is defined similarly, with the additional require-
ment that

qij(1) = 0 if i ≥ 2m + 1, odd.

Next we define the class of functions of R:

Definition 3.5. Sm(Rk(log R)�) is the class of analytic functions v :
[0,∞) → R with the following properties:

(i) v vanishes of order m at R = 0 and v(R) = Rm
∑∞

j=0 cj R2 j for small R.
(ii) v has a convergent expansion near R = ∞,

v =
∑

0≤ j≤�+i

cij Rk−2i(log R) j .

We also introduce another auxiliary variable,

b = (log(2 + R2))2

(tλ)2
.(3.8)

Since we seek solutions inside the cone we can restrict b to a small interval
[0, b0]. We combine these three components in order to obtain the full
function class which we need:

Definition 3.6. a) Sm(Rk(log R)�,Qn) is the class of analytic functions
v : [0,∞) × [0, 1] × [0, b0] → R so that
(i) v is analytic as a function of R, b,

v : [0,∞) × [0, b0] → Qn.

(ii) v vanishes of order m at R = 0 and is of the form

v ≈ Rm
∞∑
j=0

cj(a, b)R2 j

around R = 0.
(iii) v has a convergent expansion at R = ∞,

v(R, · , b) =
∑

0≤ j≤�+i

cij ( · , b)Rk−2i (log R) j(3.9)



Renormalization and blow up for charge one equivariant critical wave maps 559

where the coefficients cij : [0, b0] → Qm are analytic with respect
to b.

b) ISm(Rk(log R)�,Qn) is the class of analytic functions w on the cone C0
which can be represented as

w(t, r) = v(R, a, b), v ∈ Sm
(
Rk(log R)�,Qn

)
.

We note that the representation of functions on the cone as in Part (b) is
in general not unique since R, a, b are dependent variables. Later we shall
exploit this fact and switch from one representation to another as needed.
We shall prove by induction that the successive corrections vk and the
corresponding error terms ek can be chosen with the following properties:
For each k ≥ 1,

v2k−1 ∈ 1

(tλ)2k
IS3(R(log R)2k−1,Qk−1

)
(3.10)

t2e2k−1 ∈ 1

(tλ)2k
IS1

(
R(log R)2k−1,Q′

k−1

)
(3.11)

v2k ∈ 1

(tλ)2k+2
IS3

(
R3(log R)2k−1,Qk

)
(3.12)

(3.13) t2e2k ∈ 1

(tλ)2k

[
IS1

(
R−1(log R)2k,Qk

) + bIS1
(
R(log R)2k−1,Q′

k

)]
.

Moreover, for k = 0,

t2e0 ∈ S1(R−1).(3.14)

Step 0. We begin the analysis at k = 0, where we explicitly compute e0.

We have

e0 = −u0tt

= −|λ′(t)|2r2Q′′(R) − λ′′(t)rQ′(R)

= −
(

λ′

λ

)2

R2 Q′′(R) − λ′′

λ
RQ′(R)

= 1

t2

(
(ν + 1)2 4R3

(1 + R2)2
− (ν + 1)(ν + 2)

2R

1 + R2

)

= 1

t2

(
−(ν + 1)2 4R

(1 + R2)2
+ ν(ν + 1)

2R

1 + R2

)
.

With our notations

t2e0 ∈ S1(R−1)

as claimed. It remains to complete the induction step. Hence, we assume we
know the above relations hold up to k − 1 with k ≥ 1, and construct v2k−1,
respectively v2k, so that they hold for the index k.
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Step 1. Begin with e2k−2 satisfying (3.13) or (3.14) and choose v2k−1 so
that (3.10) holds.

If k = 1, then define e0
0 := e0. If k > 1, we define the principal part

e0
2k−2 of e2k−2 by setting b = 0, i.e.,

e0
2k−2(R, a) := e2k−2(R, a, 0).

For the difference we can pull out a factor of b and conclude that

t2e1
2k−2 ∈ b

(tλ)2k−2

[
IS1

(
R−1(log R)2k−2,Qk−1

) + IS1
(
R(log R)2k−3,Q′

k−1

)]

⊂ 1

(tλ)2k
IS1(R(log R)2k−1,Q′

k−1

)

which can be included in e2k−1, cf. (3.11).
We define v2k−1 as in (3.4) neglecting the a dependence of e0

2k−2. In other
words, a is treated as a parameter. Changing variables to R in (3.4) we need
to solve the equation

(tλ)2Lv2k−1 = t2e0
2k−2 ∈ 1

(tλ)2k−2
IS1(R−1(log R)2k−2,Qk−1

)

where the operator L is given by

L = ∂2
R + 1

R
∂R − cos(2u0)

R2
= ∂2

R + 1

R
∂R − 1

R2

1 − 6R2 + R4

(1 + R2)2
.

Then (3.10) is a consequence of the following ODE lemma.

Lemma 3.7. Let k ≥ 1. Then the solution v to the equation

Lv = f ∈ S1(R−1(log R)2k−2), v(0) = v′(0) = 0

has the regularity

v ∈ S3(R(log R)2k−1).

Proof. Since f is analytic at 0 with a linear leading term, one can easily
write down a Taylor series for v at 0 with a cubic leading term.

It remains to determine the asymptotic behavior of v at infinity. For this it
is convenient to remove the first order derivative in L (to achieve constancy
of the Wronskian). Thus, we seek a solution of

L̃
√

Rv = √
R f, L̃ = ∂2

R − 3

4R2
+ 8

(1 + R2)2
.

We use this fundamental system of solutions for L̃:

φ(R) = R
3
2

1 + R2
, θ(R) = −1 + 4R2 log R + R4

√
R(1 + R2)

.
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Their Wronskian is W(φ, θ) = 2. This allows us to obtain an integral
representation for v using the variation of parameters formula, which gives

v = 1

2
R− 1

2 θ(R)

∫ R

0
φ(R′)

√
R′ f(R′) dR′

− 1

2
R− 1

2 φ(R)

∫ R

0
θ(R′)

√
R′ f(R′) dR′.

Carrying out the integration shows that the right-hand side grows like
R(log R)2k−1 as claimed. ��

As a special case of the above computation we also note the represen-
tation for v1,

v1 = 1

(tλ)2
V(R), V ∈ S3(R log R).(3.15)

Step 2. Show that if v2k−1 is chosen as above then (3.11) holds.

Thinking of v2k−1 as a function of t, R and a we can write e2k−1 in the
form

e2k−1 = N2k−1(v2k−1) + Etv2k−1 + Eav2k−1.

Here N2k−1(v2k−1) accounts for the contribution from the nonlinearity and
is given by (3.6). Etv2k−1 contains the terms in

∂2
t v2k−1(t, R, a)

where no derivative applies to the variable a, while Eav2k−1 contains the
terms in (

−∂2
t + ∂2

r + 1

r
∂r

)
v2k−1(t, R, a)

where at least one derivative applies to the variable a. We begin with the
terms in N2k−1. We first note that, by summing the vj over 1 ≤ j ≤ 2k − 2,

u2k−2 − u0 ∈ 1

(tλ)2
IS3(R log R,Qk−1).(3.16)

To switch to trigonometric functions we need

Lemma 3.8. Let

v ∈ 1

(tλ)2
IS3(R log R,Qk−1).

Then

sin v ∈ 1

(tλ)2
IS3(R log R,Qk−1), cos v ∈ IS0(1,Qk−1).
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Proof. We write
sin v = vg(v2)

with g an entire function. Then it suffices to show that g(v2) ∈ IS0(1,Qk−1).
We begin with

v2 ∈ 1

(tλ)4
IS6(R2(log R)2,Qk−1

) ⊂ R2

(tλ)2

1

(tλ)2
IS4((log R)2,Qk−1

)
.

But a2 = R2(tλ)−2 and the remaining (tλ)−2 together with up to two log R
factors combines to give one b factor. We conclude that

v2 ∈ a2bIS2(1,Qk−1) ⊂ IS2(1,Qk−1).

For w ∈ S2(1,Qk−1) we evaluate g(w). Since g is analytic we conclude that
g(w) is analytic in R, b when interpreted as

g(w) : [0,∞) × [0, b0] → Qk−1.

We consider the asymptotic expansion at R = ∞. Since we have an abso-
lutely convergent asymptotic expansion for w and a convergent Taylor
series for g at 0, we obtain an absolutely convergent asymptotic expansion
for g(w). This gives

g(w) ∈ S0(1,Qk−1)

and concludes the proof of the lemma. ��
Using Lemma 3.8 and (3.16) we compute

cos(2u0) − cos(2u2k−2) = 2 cos(2u0) sin2(u2k−2 − u0)

+ 2 sin(2u0) sin(u2k−2 − u0) cos(u2k−2 − u0)

∈ 1

(tλ)4
IS6

(
R2(log R)2,Qk−1

)

+ 1

(tλ)2
IS4(log R,Qk−1).

Hence,

t2 cos(2u0) − cos(2u2k−2)

r2
v2k−1

∈ (tλ)2

R2

(
1

(tλ)2
IS4(log R,Qk−1) + 1

(tλ)4
IS6(R2(log R)2,Qk−1

))

× 1

(tλ)2k
IS3

(
R(log R)2k−1,Qk−1

)

⊂ 1

(tλ)2k

(
IS5(R−1(log R)2k,Qk−1

) + 1

(tλ)2
IS7(R(log R)2k+1,Qk−1

))

⊂ 1

(tλ)2k
IS5

(
R(log R)2k−1,Qk−1

)
.
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where at the last step we have pulled a b factor out of the second term
whereas for the first term note that giving away R2 allows us to save on
factor of log R, cf. (3.9). Similarly, we have

t2 sin(2u2k−2)

2r2
(1 − cos(2v2k−1))

∈ (tλ)2

R2

(
IS1(R−1,Qk−1

) + 1

(tλ)2
IS3(R log R,Qk−1

))

×
(

1

(tλ)2k
IS3

(
R(log R)2k−1,Qk−1

))2

= 1

(tλ)2k

(
1

(tλ)2k−2
IS5(R−1(log R)4k−2,Qk−1

)

+ 1

(tλ)2k
IS7

(
R(log R)4k−1,Qk−1

))

⊂ 1

(tλ)2k
IS5

(
R(log R)2k−1,Qk−1

)

where we have used a power of bk to pass to the final inclusion. Finally,

t2 cos(2u2k−2)

r2
(2v2k−1 − sin(2v2k−1))

∈ (tλ)2

R2
IS0(1,Qk−1)

(
1

(tλ)2k
IS3

(
R(log R)2k−1,Qk−1

))3

⊂ 1

(tλ)6k−2
IS7(R(log R)6k−3,Qk−1

)

⊂ 1

(tλ)2k
IS7

(
R(log R)2k−1,Qk−1

)
.

This concludes the analysis of N2k−1(v2k−1). We continue with the terms
in Etv2k−1, where we can neglect the a dependence. Therefore, it suffices
to compute

t2∂2
t

(
1

(tλ)2k
IS3(R(log R)2k−1)

)
⊂ 1

(tλ)2k
IS1(R(log R)2k−1).

Finally, we consider the terms in Eav2k−1. For

v2k−1(t, r) = 1

(tλ)2k
w(R, a), w ∈ S3(R(log R)2k−1,Qk−1

)

we have

t2 Eav2k−1 = 1

(tλ)2k

[
2kνawa(R, a) − (ν + 1)RawRa(R, a)

+ 2Ra−1wRa(R, a) + a−1wa(R, a)

+ (1 − a2)waa(R, a) − awa(R, a)
]
.



564 J. Krieger et al.

Since Qk−1 are even in a we conclude that

a∂a, a−1∂a, (1 − a2)∂2
a : Qk−1 → Q′

k−1.

Also the R−1 factor simply removes one order of vanishing at R = 0. Hence,
we easily obtain

t2 Eav2k−1 ∈ 1

(tλ)2k
IS1

(
R(log R)2k−1,Q′

k−1

)
.

This concludes the proof of (3.11). We remark that for the special case of
k = 1, i.e., with v1 as in (3.15), these arguments yield

t2e1 ∈ (tλ)−2S3(R log R).(3.17)

Step 3. Define v2k so that (3.12) holds.

We begin the analysis with e2k−1 replaced by its main asymptotic com-
ponent f2k−1 at R = ∞ for b = 0. This has the form

t2 f2k−1 = R

(tλ)2k

2k−1∑
j=0

qj(a)(log R) j , qj ∈ Q′
k−1

which we rewrite as

t2 f2k−1 = 1

(tλ)2k−1

2k−1∑
j=0

aqj(a)(log R) j .

We remark that (3.17) implies that t2 f1(a) = (tλ)−1a log R. Consider (3.5)
with f2k−1 on the right-hand side,

t2

(
−∂2

t + ∂2
r + 1

r
∂r − 1

r2

)
w2k = t2 f2k−1.

Homogeneity considerations suggest that we should look for a solution w2k
which has the form

w2k = 1

(tλ)2k−1

2k−1∑
j=0

W j
2k(a)(log R) j .

The one-dimensional equations for W j
2k are obtained by matching the powers

of log R. This gives the system of equations

t2

(
−∂2

t + ∂2
r + 1

r
∂r − 1

r2

)(
1

(tλ)2k−1
W j

2k(a)

)
= 1

(tλ)2k−1
(aqj(a) − Fj(a))
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where

Fj(a) = ( j + 1)
[
((ν + 1)ν(2k − 1) + a−2)W j+1

2k(3.18)

+ (a−1 − (1 + ν)a)∂aW j+1
2k

]
+ ( j + 2)( j + 1)((ν + 1)2 + a−2)W j+2

2k .

Here we make the convention that W j
2k = 0 for j ≥ 2k. Then we solve the

equations in this system successively for decreasing values of j from 2k −1
to 0.

Conjugating out the power of t we get

t2

(
−

(
∂t + (2k − 1)ν

t

)2

+ ∂2
r + 1

r
∂r − 1

r2

)
W j

2k(a) = aqj(a) − Fj(a)

which we rewrite as an equation in the a variable,

L (2k−1)νW j
2k = aqj(a) − Fj(a)(3.19)

where the one-parameter family of operators Lβ is defined by

Lβ = (1 − a2)∂2
a + (a−1 + 2aβ − 2a)∂a + (−β2 + β − a−2).(3.20)

We claim that solving this system with 0 Cauchy data at a = 0 yields
solutions which satisfy

W j
2k ∈ a3Qk, j = 0, 2k − 1.(3.21)

To prove this we need the following

Lemma 3.9. Let 0 ≤ m( j) � j2 be strictly increasing. Let f be an analytic
function in [0, 1) with an odd expansion at 0 and an absolutely convergent
expansion near a = 1 of the form

f(a) = f0(a) +
∞∑
j=1

[
(1 − a)(2 j−1)ν− 1

2

m(2 j−1)∑
m=0

f2 j−1,m(a)[log(1 − a)]m

(3.22)

+ (1 − a)2 jν
m(2 j)∑
m=0

f2 j,m(a)[log(1 − a)]m

]

with fi, j analytic near a = 1. Then there is a unique solution w to the
equation

L (2k−1)νw = f, w(0) = 0, ∂aw(0) = 0(3.23)



566 J. Krieger et al.

with the following properties:

(i) w is an analytic function in [0, 1)
(ii) w is cubic at 0 and has an odd expansion at 0
(iii) w has an absolutely convergent expansion near a = 1 of the form

w(a) = w0(a) +
∞∑
j=1

[
(1 − a)(2 j−1)ν+ 1

2

�(2 j−1)∑
�=0

w2 j−1,�(a)[log(1 − a)]�
(3.24)

+ (1 − a)2 jν+1
�(2 j)∑
�=0

w2 j,�(a)[log(1 − a)]�
]

with wi, j analytic near a = 1 and �(i) = m(i) with one exception, namely
�(2k−1) = m(2k−1)+1. If however f2k−1,m(2k−1)(1) = 0, then �(2k−1) =
m(2k − 1). In that case also w2k−1,�(1) = 0 if � > 0, but not necessarily
when � = 0. Finally, if f2i−1, j(1) = 0 for all i > k and all j, then also
w2i−1,�(1) = 0 for all i > k and all �.

Proof. Denote β = (2k−1)ν. Since k ≥ 1 and ν > 1
2 , also β > 1

2 . Matching
coefficients in Lβw = f with

f(a) =
∞∑
j=1

fja
2 j−1, w(a) =

∞∑
j=2

wja
2 j−1

yields

2 j(2 j − 2)wj = (2 j(2 j − 1) − (4 j − 1)β + β2)wj−1 + fj−1

where we take w1 = 0. The coefficient of wj is always nonzero; this allows
us to successively compute the coefficients wj . The convergence of the
series for w easily follows from the convergence of the series for f .

It remains to study the solution w near a = 1. The behavior of Lβ at 1
is well approximated by

L1
β = 2(1 − a)∂2

a + (2β − 1)∂a + (β − β2 − 1)

= 2(1 − a)β+ 1
2 ∂a

[
(1 − a)−β+ 1

2 ∂a
] + (β − β2 − 1)

in the sense that

Lβ = L1
β + (a − 1)

[
(1 − a)∂2

a + (2(β − 1) − a−1)∂a + (a + 1)a−2](3.25)

=: L1
β + (a − 1)L2

β.

The differential operator

2(1 − a)β+ 1
2 ∂a

[
(1 − a)−β+ 1

2 ∂a
]

(3.26)
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annihilates 1 and (1 − a)β+ 1
2 . Therefore, we seek a fundamental system

for L1
β y = 0 of the form

φ1(a) = 1 +
∞∑

�=1

µ�(1 − a)�, φ2(a) = (1 − a)β+ 1
2

[
1 +

∞∑
�=1

µ̃�(1 − a)�

]
.

(3.27)

This leads to the conditions, for � ≥ 1,

µ1(1 − 2β) + β − β2 − 1 = 0,(3.28)

µ�+1(� + 1)(2� + 1 − 2β) + (β − β2 − 1)µ� = 0

µ̃1(2β + 3) + β − β2 − 1 = 0,(3.29)

µ̃�+1(� + 1)(2� + 3 + 2β) + (β − β2 − 1)µ̃� = 0.

Clearly, (3.29) always has a solution whereas (3.28) requires β − 1
2 /∈ Z+;

in the latter case, the series in (3.27) define entire functions. If, on the other
hand, �0 := β − 1

2 ∈ Z+, then φ1 is modified to

φ1(a) = 1 +
∞∑

�=1

µ�(1 − a)� + c1φ2(a) log(1 − a)(3.30)

with the unique choice c1 = −(2β + 1)−1(β − β2 − 1)µ�0 . Here (3.28) is
unchanged and can be solved for µ� up to � ≤ �0; for � > �0 this equation is
then modified by the terms from the φ2 series (in particular, for � = �0+1 the
choice of c1 assures the validity of the equation, whereas for all � > �0 + 1
we can again solve for µ�). Finally, observe that the same process also leads
to a fundamental system for Lβ; indeed, the remainder (a − 1)L2

β in (3.25)
does not change the coefficients of µ�+1 or µ̃�+1 in (3.28) and (3.29). In
conclusion, the preceding power series argument leads to a fundamental
system of Lβ y = 0, which we again denote by φ1(a) and φ2(a).

Modulo a linear combination of φ1, φ2 it suffices to find one solution to
the inhomogeneous equation Lβw = f near a = 1. At this point, it will be
convenient to write Lβ as a Sturm–Liouville operator. Thus, we write

Lβ = q−1
1 (a)∂a(q2(a)∂a) + q3(a)

with, cf. (3.20),

q−1
1 q2(a) = 1 − a2, q−1

1 q′
2(a) = a−1 + 2a(β − 1),

q3(a) = −β2 + β − a−2.

One checks that for a close to 1 the first two equations admit solutions

q2(a) = (1 − a)−β+ 1
2 [1 + (1 − a)q̃1(a)],

q1(a) = 1

2
(1 − a)−β− 1

2 [1 + (1 − a)q̃2(a)]
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with q̃1, q̃2 analytic near a = 1. The Wronskian can now be computed as

q2(a)[φ1(a)φ′
2(a) − φ′

1(a)φ2(a)] = −(β + 1/2).

Thus, a particular solution of the inhomogeneous problem is given by

w(a) = −(β + 1/2)−1φ1(a)

∫ 1

a
φ2(a

′)q1(a
′) f(a′) da′(3.31)

− (β + 1/2)−1φ2(a)

∫ a

a0

φ1(a
′)q1(a

′) f(a′) da′

where a0 < 1 is some number close to 1. For the first integral, note that
φ2(a′)q1(a′) is an analytic function in the neighborhood of a′ = 1. Let
γ �= −1 and m be a positive integer. Iterating the relation∫ 1

a
(1 − a′)γ [log(1 − a′)]m da′(3.32)

= 1

γ + 1
[log(1 − a)]m(1 − a)γ+1

− m

γ + 1

∫ 1

a
(1 − a′)γ [log(1 − a′)]m−1 da′

shows that each summand on the right-hand side of (3.22), inserted into
the first integral in (3.31), makes an admissible contribution to w in the
sense of (3.24) (for this it does not matter whether φ takes the form (3.27)
or (3.30)). The analysis of the second integral in (3.31) is again based
on (3.32) provided j �= k, since then γ �= −1. If j = k, then we encounter∫ a

a0

(1 − a′)−1[log(1 − a′)]m da′ = −(m + 1)−1[log(1 − a)]m+1 + C

which explains why we obtain an extra log-factor when j = k. Clearly,
if f2k−1,m(2k−1)(1) = 0 then there is no extra log-factor and the lemma is
proved. In that case also we write, with

f = (1 − a)β− 1
2

m(2k−1)∑
m=0

f2k−1,m(a)[log(1 − a)]m

the second integral in (3.31) as

φ2(a)

∫ a

a0

φ1(a
′)q1(a

′) f(a′) da′ = φ2(a)

∫ 1

a0

φ1(a
′)q1(a

′) f(a′) da′

− φ2(a)

∫ 1

a
φ1(a

′)q1(a
′) f(a′) da′.

The first term on the right-hand side here is just a multiple of φ2(a), whereas
the second one possesses the extra vanishing at a = 1, as claimed. The final
claim of the lemma follows similarly. ��
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Before turning to the proof of (3.21) in full generality, we first discuss
the special case k = 1. This will also serve to explain how the algebra Qk
arises at all in the iteration. If k = 1, then (3.19) reduces to the system

LνW1
2 (a) = a,

LνW0
2 (a) = −(ν(ν + 1) + a−2)W1

2 (a) − (a−1 − (ν + 1)a)∂aW1
2 (a)

due to t2 f1(a) = (tλ)−1a log R. In view of the solution formula (3.31) with
β = ν, provided ν − 1

2 /∈ Z+,

W1
2 (a) = g0(a) + g1(a)(1 − a)ν+ 1

2

W0
2 (a) = h0(a) + h1(a)(1 − a)ν+ 1

2 + h2(a)(1 − a)ν+ 1
2 log(1 − a)

where gj(a), hj(a) are analytic around a = 1. Note that the term
(1−a)ν+ 1

2 log(1−a) appears in W0
2 due to ∂a W1

2 . Similarly, if ν − 1
2 ∈ Z+,

then

W1
2 (a) = g0(a) + g1(a)(1 − a)ν+ 1

2 + g2(a)(1 − a)ν+ 1
2 log(1 − a)

W0
2 (a) = h0(a) + (1 − a)ν+ 1

2

2∑
�=0

h�+1(a)[log(1 − a)]�

+ (1 − a)2ν+1
2∑

�=0

h�+4(a)[log(1 − a)]�,

with analytic gj, hj . The terms involving the (1 − a)2ν+1 factor in W0
2 are

due to the modified φ, see (3.30). Thus, we see that in all cases W j
2 ∈ Q1

for j = 0, 1 and a near 1.
We now continue with the proof of (3.21) for general k. At first we

consider the easier case when ν is irrational. We apply the lemma in (3.19)
using for the right-hand side the fact that q2k−1 ∈ Q′

k−1. This implies that
the coefficient of (1 − a)(2k−1)ν− 1

2 in q2k−1 vanishes at a = 1. The lemma
gives a similar expansion for W2k−1

2k with the required vanishing conditions.
Hence, W2k−1

2k ∈ Qk, with one extra (1 − a)(2k−1)ν+ 1
2 term (this is the

w2k−1,0(1) �= 0 statement of the lemma) – we refer to this as the “free term”
in what follows.

Next we reiterate the argument for the remaining W j
2k which solve (3.19).

At each step we have to compute Fj , see (3.18). Since W j+1
2k and W j+2

2k have
an odd Taylor expansion at 0 beginning with a cubic term, it follows that
Fj has an odd Taylor expansion at 0 beginning with a linear term. The
expansion of Fj around a = 1 is similar to the one for W j+1

2k except that one
(1 − a) factor is lost in the “free term”. For j = 2k − 2 this produces the
term (1−a)(2k−1)ν+ 1

2 log(1−a) in W j
2k etc. At the conclusion of the iteration

we have gained at most 2k − 1 logarithms in the free term for the W j
2k’s.

Then (3.21) follows.
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Next we consider the case when ν is rational. This is more difficult since
now the term (1 − a)(2k−1)ν− 1

2 can also arise in expressions of the form

f2 j−1,m(a)(1 − a)(2 j−1)ν− 1
2 [log(1 − a)]m or

f2 j,m(a)(1 − a)2 jν[log(1 − a)]m

using the notations of the lemma. This leads to more logarithms than in the
irrational case. The first term above will be of interest if 2(k − j)ν is an
integer, while the second needs to be considered if (2k − 2 j − 1)ν − 1

2 is an
integer. The worst case is j = k−1. Then we can have m(2k−2) logarithms
in the second term above, while 2k more logarithms are produced by the 2k
applications of the lemma. Hence, we need the relation

m( j) ≥ m( j − 1) + j + 1

which is verified e.g. by m( j) = j2 (we pick nj = 2 j2 because of j = 1,
see above).

We cannot use w2k for v2k due to the singularity of log R at R = 0.
However, we define instead

v2k := 1

(tλ)2k−1

2k−1∑
j=0

W j
2k(a)

(
1

2
log(1 + R2)

)j

.

In doing this we add an additional component to the error. This is large near
R = 0, but this is not so important since the aim of this correction is to
improve the error for large R. Since a3 = R3/(tλ)3, pulling a cubic factor a3

out of the W’s it is easy to see that (3.12) holds.

Step 4. For v2k defined as above we show that the corresponding error e2k
satisfies (3.13).

We can write e2k in the form

t2e2k = t2(e2k−1 − e0
2k−1

)

+ t2

(
e0

2k−1 −
(

−∂2
t + ∂2

r + 1

r
∂r − 1

r2

)
v2k

)
+ t2 N2k(v2k)

where N2k is defined by (3.7) and

t2e0
2k−1 = R

(tλ)2k

2k−1∑
j=0

qj(a)

(
1

2
log(1 + R2)

)j

.

We begin with the first term in e2k, which has the form

t2(e2k−1 − e0
2k−1

) ∈ 1

(tλ)2k

[
IS1(R−1(log R)2k,Q′

k−1

)

+ bIS1
(
R(log R)2k−1,Q′

k−1

)]
.
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The second term is contained in the second term of (3.13). It remains to
show that

IS1
(
R−1(log R)2k,Q′

k−1

) ⊂ IS1
(
R−1(log R)2k,Qk−1

)
(3.33)

+ bIS1
(
R(log R)2k−1,Q′

k−1

)
.

For w ∈ IS1(R−1(log R)2k,Q′
k−1) we write

w = (1 − a2)w + 1

(tλ)2
R2w.

Then

(1 − a2)w ∈ IS1
(
R−1(log R)2k,Qk−1

)
,

1

(tλ)2
R2w ∈ bIS1

(
R(log R)2k−1,Q′

k−1

)

as desired. The second term in e2k would equal 0 if we were to replace
1
2 log(1+ R2) by log R in both e0

2k and v2k. Hence, the difference is obtained
when we replace the derivatives of 1

2 log(1 + R2) by derivatives of log R in
the expression

t2

(
−∂2

t + ∂2
r + 1

r
∂r

)
v2k

= t2

(
−∂2

t + ∂2
r + 1

r
∂r

)(
1

(tλ)2k−1

2k−1∑
j=0

W j
2k(a)

(
1

2
log(1 + R2)

)j)
.

Computing these differences one finds that the second term in e2k is a sum
of expressions of the form

1

(tλ)2k−1

2k−1∑
j=0

W j
2k(a)

a2
[S(R−2)(log(1 + R2)) j−1 + S(R−2)(log(1 + R2)) j−2]

+ ∂aW j
2k(a)

a
S(R−2)(log(1 + R2)) j−1.

Since W j
2k are cubic at 0 it follows that we can pull out an a factor and see

that this part of the error is in

1

(tλ)2k
IS1(R−1(log R)2k−2,Q′

k

)

which is admissible by (3.33).
Finally, we consider the nonlinear terms in N2k . Again the a, b depend-

ence is uninteresting since Qk is an algebra. We shall use that

u2k−1 − u0 ∈ 1

(tλ)2
IS3(R log R,Qk).
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By Lemma 3.8, for the linear term we therefore have

t2 1 − cos(2u2k−1)

r2
v2k

∈ (tλ)2

R2

(
IS1

(
R−1,Qk

) + 1

(tλ)2
IS3(R log R,Qk)

)2

× 1

(tλ)2k+2
IS3

(
R3(log R)2k−1,Qk

)

⊂ 1

(tλ)2k

(
IS3(R−1(log R)2k−1,Qk

) + 1

(tλ)2
IS5(R(log R)2k,Qk

)

+ 1

(tλ)4
IS7

(
R3(log R)2k+1,Qk

))

⊂ 1

(tλ)2k

(
IS3(R−1(log R)2k−1,Qk

) + b

(tλ)2
IS5(R(log R)2k−1,Qk

))
.

For the quadratic term we obtain

t2 sin(2u2k−1)

2r2
(1 − cos(2v2k))

∈ (tλ)2

R2

(
IS1

(
R−1,Qk

) + 1

(tλ)2
IS3(R log R,Qk)

)

×
(

1

(tλ)2k+2
IS3(R3(log R)2k−1,Qk

))2

⊂ 1

(tλ)2k

(
1

(tλ)2k+2
IS5(R3(log R)4k−2,Qk

)

+ 1

(tλ)2k+4
IS7

(
R5(log R)4k−1,Qk

))

⊂ 1

(tλ)2k

(
IS1(R−1(log R)2k,Qk

) + bIS3(R(log R)2k−1,Qk
))

.

Finally, the cubic term is

t2 cos(2u2k−1)

r2
(2v2k − sin(2v2k))

∈ (tλ)2

R2

(
1

(tλ)2k+2
IS3

(
R3(log R)2k−1,Qk

))3

⊂ 1

(tλ)2k

1

(tλ)4k+4
IS7

(
R7(log R)6k−3,Qk

)

⊂ a6b4k−2

(tλ)2k
IS1

(
R(log R)2k−1,Qk

) ⊂ b

(tλ)2k
IS1

(
R(log R)2k−1,Q′

k

)
.

This concludes the proof of Theorem 3.1. ��
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4. The perturbed equation

We now need to complement the approximate solution found in the first
section to an actual solution. The mechanism for achieving this will rely
on the construction of an approximate parametrix for a suitable wave-type
equation. We now set about deriving this equation: we seek an exact solution
of the form

u(t, r) = u2k−1(t, r) + ε(t, r)

where u2k−1 is as in the previous section and ε will be obtained by means
of an iteration procedure. To motivate this procedure, note that we need to
solve the following equation, see (3.1),

−εtt + εrr + 1

r
εr − cos(2Q(λr))

r2
ε = N2k−1(ε) + e2k−1(4.1)

where N2k−1 is defined in (3.6) but with u2k−2 replaced by u2k−1.
In order to remove the time dependence of the potential in (4.1), we now

introduce new coordinates: first, the new time is to satisfy the relation

∂

∂τ
= 1

λ(t)

∂

∂t
.

Specifically, we may put τ = ∫ 1
t λ(s) ds − 1

ν
= 1

ν
t−ν . Thus, the singularity

now corresponds to τ = ∞. Next, introduce the new dependent variable
v(τ, R) := ε(t(τ), λ−1 R), where we now understand λ as a function of τ .
Then we have

∂

∂τ
v = t′(τ)εt(t(τ), λ

−1 R) − λτ

λ2
Rεr(t(τ), λ

−1 R),

∂

∂R
v = λ−1εr(t(τ), λ

−1 R).

This entails that
(

∂τ + λτ

λ
R∂R

)
v = λ−1εt(t(τ), λ

−1 R).

From here we get

(
∂τ + λτ

λ
R∂R

)2

v =
(

∂τ + λτ

λ
R∂R

)[
λ−1εt

]

= λ−2εtt − λτ

λ2
εt = λ−2εtt − λτ

λ
∂τv −

[
λτ

λ

]2

R∂Rv.
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We conclude that we may recast the wave equation (4.1) in the following
way:

−
[(

∂τ + λτ

λ
R∂R

)2

+ λτ

λ

(
∂τ + λτ

λ
R∂R

)]
v

+
(

∂2
R + 1

R
∂R − cos[2Q(R)]

R2

)
v = 1

λ2
[N2k−1(ε) + e2k−1](t(τ), λ−1 R).

In order to turn the above second order elliptic operator in R into
a selfadjoint operator relative to L2(R+, dR) we introduce the new vari-
able ε̃(τ, R) := R

1
2 v(τ, R). This leads to

(
∂τ + λτ

λ
R∂R

)
ε̃ = R

1
2

(
∂τ + λτ

λ
R∂R

)
v + 1

2
R

1
2
λτ

λ
v(τ, R)

(
∂τ + λτ

λ
R∂R

)2

ε̃ = R
1
2

(
∂τ + λτ

λ
R∂R

)2

v + R
1
2
λτ

λ

(
∂τ + λτ

λ
R∂R

)
v

+ 1

2
R

1
2 ∂τ

(
λτ

λ

)
v + 1

4
R

1
2

(
λτ

λ

)2

v.

One checks that

R
1
2

(
∂τ + λτ

λ
R∂R

)2

v + R
1
2
λτ

λ

(
∂τ + λτ

λ
R∂R

)
v

=
(

∂τ + λτ

λ
R∂R

)2

ε̃ − 1

4

(
λτ

λ

)2

ε̃ − 1

2
∂τ

(
λτ

λ

)
ε̃

as well as

R
1
2

(
∂2

R + 1

R
∂R − cos[2Q(R)]

R2

)
v =

(
∂2

R − 3

4R2
+ 8

(1 + R2)2

)
ε̃.

Combining these observations with (4.1), we now obtain the wave equation
(

−
(

∂τ + λτ

λ
R∂R

)2

+ 1

4

(
λτ

λ

)2

+ 1

2
∂τ

(
λτ

λ

))
ε̃ − Lε̃(4.2)

= λ−2 R
1
2
(
N2k−1(R− 1

2 ε̃) + e2k−1
)

where

L := −∂2
R + 3

4R2
− 8

(1 + R2)2
.(4.3)

Equation (4.2) is the main equation which we need to solve in this paper. As
a first step, in the following section we will carefully analyze the spectral
properties of the underlying linear operator L.
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5. The analysis of the underlying strongly singular Sturm–Liouville
operator

The goal of this section is to develop the scattering theory of L from (4.3).
We start with the basic9

Definition 5.1. Let

L0 := − d2

dr2
+ 3

4r2
, L := L0 − 8

(1 + r2)2
=: L0 + V

be half-line operators on L2(0,∞). They are self-adjoint with the same
domain, namely

Dom(L) = Dom(L0)

= {
f ∈ L2((0,∞)) : f, f ′ ∈ ACloc((0,∞)),L0 f ∈ L2((0,∞))

}
.

It is important to realize that because of the strong singularity of the
potential at r = 0 no boundary condition is needed there to ensure self-
adjointness. Technically speaking, this means that L0 and L are in the limit
point case at r = 0, see Gesztesy, Zinchenko [8]. It is worth noting that the
potential 3

4r2 is critical with respect to this property – any number smaller
than 3

4 leads to an operator which is in the limit circle case at r = 0. We
remark that L0 and L are in the limit point case at r = ∞ by a standard
criterion (sub-quadratic growth of the potential).

Lemma 5.2. The spectrum of L is purely absolutely continuous and equals
spec(L) = [0,∞).

Proof. That L has no negative spectrum follows from

Lφ0 = 0, φ0(r) = r3/2

1 + r2
(5.1)

with φ0 positive (by the Sturm oscillation theorem, see [7]). And since
φ0 /∈ L2((0,∞)), zero is not an eigenvalue. The pure absolute continuity of
the spectrum of L is an immediate consequence of the fact that the potential
of L is integrable at infinity. ��

Since φ0 /∈ L2((0,∞)), one refers to zero energy as a resonance. Heur-
istically speaking, this notion can be thought of as follows: by inspection,
L0r− 1

2 = 0 and L0r
3
2 = 0. A “generic” perturbation L̃ = L0 + Ṽ with Ṽ

bounded, smooth, and nicely decaying, will have zero energy solutions that

9 In this section we use the variable r > 0 for the independent variable. The reader should
note that this now plays the role of R in the previous section.



576 J. Krieger et al.

behave just like r− 1
2 and r

3
2 , respectively. However, in some cases Ṽ is such

that these two L0 solutions will be “in resonance” and produce a globally
bounded zero energy solution of L̃ which behaves like r

3
2 around zero

and r− 1
2 around infinity – just like φ0.

For the parametrix construction in the following sections the relevance
of the zero energy resonance lies with the singularity of the spectral meas-
ure of L at zero energy. Indeed, for L0 the density of the spectral meas-
ure behaves like ξ as ξ → 0, whereas for L we will show that it be-
haves like (ξ log2 ξ)−1 as ξ → 0. We now briefly summarize the results
from [8] relevant for our purposes, see Sect. 3 in their paper, in particular
Example 3.10.

Theorem 5.3. a) For each z ∈ C there exists a fundamental system φ(r, z),
θ(r, z) for L − z which is analytic in z for each r > 0 and has the
asymptotic behavior

φ(r, z) ∼ r
3
2 , θ(r, z) ∼ 1

2
r− 1

2 as r → 0.(5.2)

In particular, their Wronskian is W(θ( · , z), φ( · , z)) = 1 for all z ∈ C.
We remark that φ( · , z) is the Weyl–Titchmarsh solution10 of L − z at
r = 0. By convention, φ(·, z), θ(·, z) are real-valued for z ∈ R.

b) For each z ∈ C, Im z > 0, let ψ+(r, z) denote the Weyl–Titchmarsh
solution of L − z at r = ∞ normalized so that

ψ+(r, z) ∼ z− 1
4 eiz

1
2 r as r → ∞, Im z

1
2 > 0.

If ξ > 0, then the limit ψ+(r, ξ + i0) exists point-wise for all r > 0 and
we denote it by ψ+(r, ξ). Moreover, define ψ−( · , ξ) := ψ+( · , ξ). Then
ψ+(r, ξ), ψ−(r, ξ) form a fundamental system of L − ξ with asymptotic

behavior ψ±(r, ξ) ∼ ξ− 1
4 e±iξ

1
2 r as r → ∞.

c) The spectral measure of L is absolutely continuous and its density is
given by

ρ(ξ) = 1

π
Im m(ξ + i0)χ[ξ>0](5.3)

with the “generalized Weyl–Titchmarsh” function

m(z) = W(θ( · , z), ψ+( · , z))

W(ψ+( · , z), φ( · , z))
, Im z ≥ 0.(5.4)

10 Our φ( · , z) is the φ̃(z, · ) function from [8] where the analyticity is only required in
a strip around R – but here there is no need for this restriction.
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d) The distorted Fourier transform defined as

F : f �→ f̂ (ξ) = lim
b→∞

∫ b

0
φ(r, ξ) f(r) dr

is a unitary operator from L2(R+) to L2(R+, ρ) and its inverse is given
by

F −1 : f̂ �→ f(r) = lim
µ→∞

∫ µ

0
φ(r, ξ) f̂ (ξ)ρ(ξ) dξ.

Here lim refers to the L2(R+, ρ), respectively the L2(R+), limit.

Needless to say, Part b) above has nothing to do with [8] and is standard.
Most relevant for our computations are (5.4) (which is [8, (3.22)]), as well
as the Fourier inversion theorem in this context (see [8, Theorem 3.5]).

Theorem 5.3 of course also holds for L0 instead of L. In that case we
have a Bessel equation with solutions

φ(r; z) = 2z−1/2r1/2 J1(z
1/2r)(5.5)

θ(r; z) = π

4
z1/2r1/2[−Y1(z

1/2r) + π−1 log(z)J1(z
1/2r)

]

ψ(r; z) = z1/2r1/2
[−Y1(z

1/2r) + i J1(z
1/2r)

] = z1/2r1/2iH (1)
1 (z1/2r)

= θ(r; z) + m(z)φ(r; z)

m(z) = π

4
z[i − π−1 log(z)], z ∈ C \ R+.

The last formula shows that for strongly singular potentials the Weyl–
Titchmarsh function ceases to be Herglotz, see [8] for further discussion.
Although we shall make no use of these formulas for L0, the reader should
note the similarities between the asymptotic expansions on φ, θ and ψ+ we
derive below and the classical ones for the Bessel functions, cf. [33].

5.1. Asymptotic behavior of φ and θ. Beginning with two explicit solu-
tions for L f = 0, namely

φ0(r) = r
3
2

1 + r2
,

θ0(r) = 1 − 4r2 log r − r4

2r
1
2 (1 + r2)

= r− 1
2 (1 − r2)/2 − 2φ0(r) log r

we shall construct power series expansions for φ and θ from (5.2) in z ∈ C
when r > 0 is fixed.
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Proposition 5.4. For any z ∈ C the fundamental system φ(r, z), θ(r, z)
from Theorem 5.3 admits absolutely convergent asymptotic expansions

φ(r, z) = φ0(r) + r− 1
2

∞∑
j=1

(r2z) jφj(r
2)

θ(r, z) = r− 1
2

(
1 − r2 −

∞∑
j=1

(r2z) jθj(r
2)

)/
2 − (2 + z/4)φ(r, z) log r

where the functions φj , θj are holomorphic in U = {
Re u > − 1

2

}
and satisfy

the bounds

|φj(u)| ≤ 3C j

( j − 1)! log(1 + |u|), |φ1(u)| >
1

2
log u if u � 1

|θ1(u)| ≤ C|u|, |θj(u)| ≤ C j

( j − 1)! (1 + |u|), u ∈ U.

In particular, φj(0) = 0 and |φ′
j(0)| ≤ 3C j

( j−1)! for all j ≥ 1. Furthermore,

φ1(u) =
{

− 1
4 log u + 1

2 + O(u−1 log2 u) as u → ∞
− u

8 + u2

12 + O(u3) as u → 0.
(5.6)

Proof. We begin with φ. We formally write

φ(r, z) = r− 1
2

∞∑
j=0

z j fj(r).

This becomes rigorous once we verify the convergence of the series in any
reasonable sense. The functions fj should solve

L
(
r− 1

2 fj
) = r− 1

2 fj−1, f−1 = 0.

The forward fundamental solution for L is

H(r, s) = 1

2
(φ0(r)θ0(s) − φ0(s)θ0(r))1[r>s].

Hence, we have the iterative relation

fj(r) = 1

2

∫ r

0
r

1
2 s− 1

2 (φ0(r)θ0(s) − φ0(s)θ0(r)) fj−1(s) ds, f0(r) = r2

1 + r2
.

Using the expressions for φ0, θ0 we rewrite this as

fj(r) =
∫ r

0

r2(−1 + 4s2 log s + s4) − s2(−1 + 4r2 log r + r4)

2s(1 + r2)(1 + s2)
fj−1(s) ds.
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We claim that all functions fj extend to even holomorphic functions in any
even simply connected domain not containing ±i, vanishing at 0. Indeed,
we now suppose that fj−1 has these properties and we shall prove them
for fj . Clearly, fj extends to a holomorphic function in any even simply
connected domain not containing ±i and 0. We first show that at 0 there is at
most an isolated singularity. For this we consider a branch of the logarithm
which is holomorphic in C \ R− and show that fj(r + i0) = fj(r − i0) for
r < 0. Disregarding the terms not involving logarithms, we need to show
that for any holomorphic function g we have
∫ r+i0

0
(log s − log(r + i0))g(s) ds =

∫ r−i0

0
(log s − log(r − i0))g(s) ds.

This is obvious since for s < 0 we have

log(s + i0) − log(r + i0) = log(s − i0) − log(r − i0).

The singularity at 0 is a removable singularity. Indeed, for s close to 0
we have | fj−1(s)| � |s| which by a crude bound on the denominator in the
above integral leads to | fj(r)| � |r| (again with r close to 0). This also
shows that fj vanishes at 0.

The fact that fj is even is obvious if we substitute 2 log s and 2 log r by
log s2 respectively log r2 in the integral. This is allowed since due to the
above discussion we can use any branch of the logarithm. Indeed, denoting
f̃ j−1(s2) = f j−1(s) the change of variable s2 = v yields the iterative relation

f̃ j(u) =
∫ u

0

u(−1 + 2v log v + v2) − v(−1 + 2u log u + u2)

4v(1 + u)(1 + v)
f̃ j−1(v) dv,

(5.7)

f̃0(u) = u

1 + u
.

Next, we obtain bounds on the functions f̃ j . To avoid the singularity at −1
we restrict ourselves to the region U = {

Re u > − 1
2

}
. We claim that the f̃ j

satisfy the bound

| f̃ j(u)| ≤ 3C j

( j − 1)! |u| j log(1 + |u|).

The kernel above can be estimated by
∣∣∣∣u(−1 + 2v log v + v2) − v(−1 + 2u log u + u2)

2v(1 + u)(1 + v)

∣∣∣∣ ≤ C
|u|
|v|

for all |v| ≤ |u|. We have

| f̃0(u)| ≤ 3
|u|

1 + |u|
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which yields

| f̃1(u)| ≤ 3C|u|
∫ |u|

0

1

1 + x
dx = 3C|u| log(1 + |u|).

From here on we use induction, noting that
∫ |u|

0
x j−1 log(1 + x) dx ≤ 1

j
|u| j log(1 + |u|).

To conclude the proof, we note that the functions φj are given by φj(u) =
u− j f̃ j(u) and satisfy the desired pointwise bound. Finally, (5.6) follows by
an asymptotic evaluation of the explicit integral (5.7) with j = 1, which we
leave to the reader.

The argument for the function θ is similar. The ansatz

θ(r, z) = r− 1
2

(
1 − r2 −

∞∑
j=1

z j gj(r)

)/
2 − (2 + z/4)φ(r, z) log r

= r− 1
2

(
1 − r2 −

∞∑
j=1

z j gj(r)

)/
2

− (2 + z/4)

(
φ0(r) +

∞∑
j=1

z jr− 1
2 fj(r)

)
log r

yields a recurrence relation for the gj via (L − z)θ = 0. Indeed, for j = 1,

L
(
r− 1

2 g1(r)
) = θ0(r) − L

(
1

2
φ0(r) log r + 4r− 1

2 f1(r) log r

)

= r− 1
2

[
r2 − r2(3 + r2)

(1 + r2)2
− 8

r2
f1(r) + 8

r
f ′
1(r)

]

where the important fact is that the quantity in brackets is even analytic
around 0 and vanishes at 0. A similar computation yields for j ≥ 2

L
(
r− 1

2 gj(r)
) = r− 1

2
[
gj−1(r) − r−2 f j−1(r) + r−1 f ′

j−1(r)

− 8r−2 fj(r) + 8r−1 f ′
j (r)

]
.

The same considerations as in the case of fj show that each gj is an
even holomorphic function in any even simply connected domain not con-
taining ±i. Also, the same bound for the fundamental solution for L leads
to |g1(r)| ≤ Cr4 and more generally, for j ≥ 2,

|gj(r)| ≤ C j

( j − 1)!r
2 j(1 + r2)

The proof of the proposition is concluded. ��
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Remark 5.5. The logarithmic behavior of φ1(u) for large u is inherited
by φ(r, ξ); indeed, suppose that 1 � ξ > 0 and r = δξ− 1

2 where δ > 0 is
small. Then the proposition shows that

φ(r, ξ) � r− 1
2 log r.

The size of δ here only depends on various constants in the expansion of φ
and is thus itself an absolute constant. We remark that the appearance of
the log r term is a specific feature of L – it does not occur for L0, see (5.5)
– indicative of the fact that L is a long range perturbation of L0. We shall
see later that the logarithm in φ produces crucial logarithmic factors in
the small ξ asymptotics of thespectral density of L, see Proposition 5.7
below.

We note that although the above series for φ converges for all r, z, we
can only use it to obtain various estimates for φ in the region |z|r2 � 1. On
the other hand, in the region ξr2 � 1 where z = ξ > 0, we will represent φ
in terms of ψ+ and use the ψ+ asymptotic expansion, described in what
follows.

5.2. The asymptotic behavior of ψ+. The following result provides good
asymptotics for ψ+ in the region r2ξ � 1.

Proposition 5.6. For any ξ > 0, the solution ψ+( · , ξ) from Theorem 5.3 is
of the form

ψ+(r, ξ) = ξ− 1
4 eirξ

1
2
σ(rξ

1
2 , r), r2ξ � 1

where σ admits the asymptotic series approximation

σ(q, r) ≈
∞∑
j=0

q− jψ+
j (r), ψ+

0 = 1, ψ+
1 (r) = 3i

8
+ O

(
1

1 + r2

)

with zero order symbols ψ+
j (r) that are analytic at infinity,

sup
r>0

∣∣(r∂r)
kψ+

j (r)
∣∣ < ∞

in the sense that for all large integers j0, and all indices α, β, we have

sup
r>0

∣∣∣∣(r∂r)
α(q∂q)

β

[
σ(q, r) −

j0∑
j=0

q− jψ+
j (r)

]∣∣∣∣ ≤ cα,β, j0q− j0−1

for all q > 1.
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Proof. With the notation

σ(q, r) = ξ
1
4 ψ+(r, ξ)e−irξ

1
2

we need to solve the conjugated equation(
−∂2

r − 2iξ
1
2 ∂r + 3

4r2
− 8

(1 + r2)2

)
σ(rξ

1
2 , r) = 0.(5.8)

We look for a formal power series solving this equation,

∞∑
j=0

ξ− j
2 fj(r).(5.9)

This yields a recurrence relation for the fj’s,

2i∂r fj =
(

−∂2
r + 3

4r2
− 8

(1 + r2)2

)
fj−1, f0 = 1

which is solved by

fj = i

2
∂r fj−1 + i

2

∫ ∞

r

(
3

4s2
− 8

(1 + s2)2

)
fj−1(s) ds.

Extending this into the complex domain, it is easy to see that the functions fj
are holomorphic in C \ [−i, i]. They are also holomorphic at ∞, and the
leading term in the Taylor series at ∞ is r− j . At 0, on the other hand, fj are
singular. The worst singularity is of power type, namely r− j ; however,
weaker terms contain logarithms and powers of logarithms so it is not easy
to obtain a complete expansion. Instead we contend ourselves with a weaker
estimate, namely ∣∣(r∂r)

k fj

∣∣ ≤ cjkr
− j ∀ r > 0

which is easy to establish inductively. The functions

ψ+
j (r) := r j fj(r)

now satisfy the desired bounds due to the bounds above on fj .
Unlike in the expansion for small r, here we make no effort to obtain

a uniform estimate on the size of the derivatives of ψ+
j . This is because we

do not expect the formal series (5.9) to converge, on account of the fact that
derivatives are lost in the iterative construction of the fj’s. Instead we can
construct an approximate sum, i.e., a function σap(q, r) with the property
that for each j0 ≥ 0 we have

∣∣∣∣(r∂r)
α(q∂q)

β

[
σap(q, r) −

j0∑
j=0

q− jψ+
j (r)

]∣∣∣∣ ≤ cα,β, j0q− j0−1.(5.10)
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The construction of σap(q, r) is standard in symbol calculus; indeed, we can
set

σap(q, r) :=
∞∑
j=0

q− jψ+
j (r)χ(qδj)

where δj → 0 sufficiently fast and χ is a cut-off function which vanishes
around zero and is equal to one for large arguments. The bound (5.10)
implies that σap(rξ

1
2 , r) is a good approximate solution for (5.8) at infinity,

namely the error

e(rξ
1
2 , r) =

(
−∂2

r − 2iξ
1
2 ∂r + 3

4r2
− 8

(1 + r2)2

)
σap(r, ξ)

satisfies for all indices α, β, j∣∣(r∂r)
α(q∂q)

βe(q, r)
∣∣ ≤ cα,β, jr

−2q− j .

To conclude the proof it remains to solve the equation for the difference
σ1 = −σ + σap,

(
−∂2

r − 2iξ
1
2 ∂r + 3

4r2
− 8

(1 + r2)2

)
σ1(rξ

1
2 , r) = e(rξ

1
2 , r)

with zero Cauchy data at infinity. We claim that the solution σ1 satisfies∣∣(r∂r)
α(q∂q)

βσ1(q, r)
∣∣ ≤ cα,β, jq

− j, j ≥ 2.

Note that this finishes the proof by defining σ = σap − σ1. A change of
variable allows us to switch from the pair of operators (r∂r, q∂q) to (r∂r, ξ∂ξ)
with comparable bounds. We rewrite the above equation as a first order
system for (v1, v2) = (σ1, r∂rσ1):

∂r

(
v1
v2

)
−

(
0 r−1

3
4r − 8r

(1+r2)2 r−1 − 2iξ
1
2

)(
v1
v2

)
=

(
0
re

)
.

Then we have

d

dr
|v|2 � −r−1|v|2 − r|v| |e|

which gives

d

dr
|v| ≥ −C(r−1|v| + r|e|)

and by Gronwall

|v(r)| ≤
∫ ∞

r

(
s

r

)C

s|e(s)| ds.
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Then for large j we have

|e| � ξ− j
2 r− j−2 �⇒ |v| � ξ− j

2 r− j = q− j .(5.11)

To estimate derivatives of v we commute them with the operator. For deriva-
tives with respect to r we have

∂r(r∂r)

(
v1
v2

)
−

(
0 1

r
3
4r − 8r

(1+r2)2
1
r − 2iξ

1
2

)
(r∂r)

(
v1
v2

)

=
(

0 − 1
r

− 3
4r + 8r(3r2−1)

(1+r2)3 − 1
r

)(
v1
v2

)
+

(
0

r∂r(re)

)
.

But the right-hand side is bounded by r− j−1 from the previous step and the
hypothesis on e, therefore as above r∂rv is bounded by r− j .

We argue similarly for the ξ derivatives. We have

∂r(ξ∂ξ)

(
v1
v2

)
−

(
0 1

r
3
4r − 8r

(1+r2)2
1
r − 2iξ

1
2

)
(ξ∂ξ)

(
v1
v2

)

=
(

0 0
0 iξ

1
2

)(
v1
v2

)
+

(
0

ξ∂ξ(re)

)
.

The only difference is in the first term on the right, for which we write
ξ

1
2 = r−1q and we use the decay property of v with j replaced by j + 1:

∣∣ξ 1
2 v2

∣∣ � ξ
1
2 q− j−1 � r−1q− j , |ξ∂ξ(re)| � r−1q− j

as desired. Finally, higher order derivatives are estimated by induction using
the above arguments at each step. ��

5.3. Structure of the spectral measure of L. We begin by relating the
functions φ, θ and ψ±. By examining the asymptotics at r = 0 we see that

W(θ, φ) = 1.(5.12)

Also by examining the asymptotics as r → ∞ we obtain

W(ψ+, ψ−) = −2i.(5.13)

Hence, we can express the L− ξ solutions in either the φ, θ basis or the ψ±
basis. On the other hand, φ, θ are real-valued while the real and imaginary
parts of ψ± are equally strong. Hence, the two bases are quite separated.
These are the main ingredients of the next result.
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Proposition 5.7. a) We have

φ(r, ξ) = a(ξ)ψ+(r, ξ) + a(ξ)ψ+(r, ξ)(5.14)

where a is smooth, always nonzero, and has size11

|a(ξ)| �
{−ξ

1
2 log ξ ξ � 1

ξ− 1
2 ξ � 1.

Moreover, it satisfies the symbol type bounds
∣∣(ξ∂ξ)

ka(ξ)
∣∣ ≤ ck|a(ξ)| ∀ ξ > 0.

b) The spectral measure ρ(ξ) dξ has density

ρ(ξ) = 1

π
|a(ξ)|−2

and therefore satisfies

ρ(ξ) �
{

1
ξ(log ξ)2 ξ � 1

ξ ξ � 1.

Proof. a) Since φ is real-valued, due to (5.13), (5.14) above holds with

a(ξ) = − i

2
W(φ( · , ξ), ψ−( · , ξ)).

We evaluate the Wronskian in the region where both the ψ+(r, ξ) and φ(r, ξ)
asymptotics are useful, i.e., where r2ξ ≈ 1 (as for ψ+(r, ξ), we are only
asking for derivative bounds and not for convergence). By Proposition 5.4
we obtain that both φ(ξ− 1

2 , ξ) and (r∂rφ)(ξ− 1
2 , ξ) can be expressed in the

form ξ
1
4 f(ξ−1) with f(u) holomorphic and satisfying

| f(u)| � log(1 + |u|).

On the other hand, it follows from Proposition 5.6 that both ψ+(ξ− 1
2 , ξ) and

(r∂rψ
+)(ξ− 1

2 , ξ) can be expressed in the form ξ− 1
4 h(ξ− 1

2 ) with h satisfying
symbol type bounds

∣∣(r∂r)
kh(r)

∣∣ ≤ ck.

11 a � b means that for some constant C one has C−1a < b < Ca.
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Combining the two expressions above, it follows that a is a sum of terms of
the form ξ

1
2 f(ξ−1)h(ξ− 1

2 ) with f, h as above. The bounds from above on a
and its derivatives follow.

It remains to prove the bound from below on a, which is more delicate.
By (5.13) we have

Im(ψ+(r, ξ)∂rψ
−(r, ξ)) = −1.

Since φ is real-valued, this gives

Im[∂rψ
+(r, ξ)W(φ( · , ξ), ψ−( · , ξ))] = −∂rφ(r, ξ)

which implies that for all r we have

|a(ξ)| ≥ |∂rφ(r, ξ)|
2|∂rψ

+(r, ξ)| .

We use this relation for r = δξ− 1
2 with a small constant δ. Then by Prop-

osition 5.4 we have

|∂rφ(r, ξ)| � r− 3
2 log(1 + r2)

while by Proposition 5.6

|∂rψ
+(r, ξ)| � ξ

1
4 (r2ξ)− j0.

This give the desired bound from below on a.
b) By (5.12) we can express ψ+ in terms of θ and φ by

ψ+ = −φW(ψ+, θ) + θW(ψ+, φ).

Since both φ and θ are real-valued, by inserting this into (5.13) we obtain
the relation

Im(W(ψ+, θ)W(ψ−, φ)) = −1.

Inserting this in the expression for the spectral measure (5.3) and taking (5.4)
into account we obtain

ρ(ξ) = 1

π

Im(W(ψ+, θ)W(ψ−, φ))

|W(ψ+, φ)|2 = 1

π
|W(ψ+, φ)|−2 = 1

π|a(ξ)|2
as desired. ��

6. The transference identity

Returning to the radiation part ε̃ in (4.2), the idea is to expand it in terms
of the generalized Fourier basis12 φ(R, ξ) associated with the operator

12 We now return to the variable R as the independent spatial variable instead of r as in
the previous section.
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L = −∂2
R + 3

4R2 − 8
(1+R2)2 , i.e., write

ε̃(τ, R) =
∫ ∞

0
x(τ, ξ)φ(R, ξ)ρ(ξ) dξ

and deduce a transport equation for the Fourier coefficients x(τ, ξ). The
main difficulty in doing this is caused by the operator R∂R which is not
diagonal in the Fourier basis. Our strategy for dealing with this is to replace
it with 2ξ∂ξ modulo an error which we treat perturbatively. The operator

R∂R − 2ξ∂ξ is natural since it annihilates the expressions e±iξ
1
2 R arising in

the asymptotic expansion of φ(R, ξ) for large R. Consequently, we define
the error operator K by

R̂∂Ru = −2ξ∂ξ û + K û(6.1)

where f̂ = F f is the “distorted Fourier transform” from Theorem 5.3.
Using the expressions for the direct and inverse Fourier transform in that
theorem we obtain

K f(η) =
〈 ∫ ∞

0
f(ξ)R∂Rφ(R, ξ)ρ(ξ) dξ, φ(R, η)

〉
L2

R

+
〈 ∫ ∞

0
2ξ∂ξ f(ξ)φ(R, ξ)ρ(ξ) dξ, φ(R, η)

〉
L2

R

.

Integrating by parts with respect to ξ in the second expression we obtain

K f(η) =
〈 ∫ ∞

0
f(ξ)[R∂R − 2ξ∂ξ]φ(R, ξ)ρ(ξ) dξ, φ(R, η)

〉
L2

R

(6.2)

− 2
(

1 + ηρ′(η)

ρ(η)

)
f(η)

where the scalar product is to be interpreted in the principal value sense
with f ∈ C∞

0 ((0,∞)). A priori we have

K : C∞
0 ((0,∞)) → C∞((0,∞))

therefore we can write

K f(η) =
∫ ∞

0
K(η, ξ) f(ξ) dξ

for a distribution valued function η → K(η, ξ). We refer to (6.1) as the trans-
ference identity to indicate that we are transferring derivatives from R to ξ .
To asses its usefulness we need to understand the boundedness properties
of the operator K . We begin with a description of the kernel K(η, ξ).
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Theorem 6.1. The operator K can be written as

K = −
(

3

2
+ ηρ′(η)

ρ(η)

)
δ(ξ − η) + K0(6.3)

where the operator K0 has a kernel K0(η, ξ) of the form13

K0(η, ξ) = ρ(ξ)

ξ − η
F(ξ, η)(6.4)

with a symmetric function F(ξ, η) of class C2 in (0,∞) × (0,∞) satisfying
the bounds

|F(ξ, η)| �
{

ξ + η ξ + η ≤ 1

(ξ + η)− 3
2 (1 + |ξ 1

2 − η
1
2 |)−N ξ + η ≥ 1

|∂ξ F(ξ, η)| + |∂ηF(ξ, η)| �
{

1 ξ + η ≤ 1

(ξ + η)−2(1 + |ξ 1
2 − η

1
2 |)−N ξ + η ≥ 1

sup
j+k=2

∣∣∂ j
ξ ∂

k
η F(ξ, η)

∣∣ �
{|log(ξ + η)|3 ξ + η ≤ 1

(ξ + η)− 5
2 (1 + |ξ 1

2 − η
1
2 |)−N ξ + η ≥ 1

where N is an arbitrarily large integer.

Proof. We first establish the off-diagonal behavior of K , and later return to
the issue of identifying the δ-measure that sits on the diagonal. We begin
with (6.2) with f ∈ C∞

0 ((0,∞)). The integral

u(R) =
∫ ∞

0
f(ξ)[R∂R − 2ξ∂ξ]φ(R, ξ)ρ(ξ) dξ

behaves like R
3
2 at 0 and is a Schwartz function at infinity. The second

factor φ(R, η) in (6.2) also decays like R
3
2 at 0 but at infinity it is only

bounded with bounded derivatives. Then the following integration by parts
is justified:

ηK f(η) = 〈u,Lφ(R, η)〉L2
R

= 〈Lu, φ(R, η)〉L2
R
.

Moreover,

Lu =
∫ ∞

0
f(ξ)[L, R∂R]φ(R, ξ)ρ(ξ) dξ

+
∫ ∞

0
f(ξ)(R∂R − 2ξ∂ξ)ξφ(R, ξ)ρ(ξ) dξ

13 The kernel below is interpreted in the principal value sense.
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=
∫ ∞

0
f(ξ)[L, R∂R]φ(R, ξ)ρ(ξ) dξ

+
∫ ∞

0
ξ f(ξ)(R∂R −2ξ∂ξ)φ(R, ξ)ρ(ξ) dξ − 2

∫ ∞

0
ξ f(ξ)φ(R, ξ)ρ(ξ) dξ

with the commutator

[L, R∂R] = 2L + 16

(1 + R2)2
− 32R2

(1 + R2)3
=: 2L + W(R).

Thus,

Lu =
∫ ∞

0
f(ξ)W(R)φ(R, ξ)ρ(ξ) dξ

+
∫ ∞

0
ξ f(ξ)(R∂R − 2ξ∂ξ)φ(R, ξ)ρ(ξ) dξ.

Hence, we obtain

ηK f(η) − K(ξ f )(η) =
〈 ∫ ∞

0
f(ξ)W(R)φ(R, ξ)ρ(ξ) dξ, φ(R, η)

〉
L2

R

.

The double integral on the right-hand side is absolutely convergent, therefore
we can change the order of integration to obtain

(η − ξ)K(η, ξ) = ρ(ξ)〈W(R)φ(R, ξ), φ(R, η)〉L2
R
.

This leads to the representation in (6.4) when ξ �= η with

F(ξ, η) = 〈W(R)φ(R, ξ), φ(R, η)〉L2
R
.

It remains to study its size and regularity. First, due to our pointwise bound
from the previous section, see Proposition 5.4,

(6.5)
sup
R≥0

|φ(R, ξ)| � 〈ξ〉− 3
4 ,

|R∂Rφ(R, ξ)| � min(Rξ− 1
4 , R

3
2 ) ∀ ξ > 1

|∂ξφ(R, ξ)| � min(Rξ− 5
4 , R

7
2 ) ∀ ξ > 1/2

|∂ξφ(R, ξ)| � min(R
3
2 log(1 + R2), ξ− 1

4 |log ξ|R) ∀ 0 < ξ < 1/2∣∣∂2
ξ φ(R, ξ)

∣∣ � min(R2ξ− 7
4 , R

11
2 ) ∀ ξ > 1/2

∣∣∂2
ξ φ(R, ξ)

∣∣ � min(R
7
2 log(1 + R2), ξ− 3

4 |log ξ|R2) ∀ 0 < ξ < 1/2

we always have the estimates
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|F(ξ, η)| � 〈ξ〉− 3
4 〈η〉− 3

4 ,(6.6)

|∂ξ F(ξ, η)| � 〈ξ〉− 5
4 〈η〉− 3

4 , |∂ηF(ξ, η)| � 〈ξ〉− 3
4 〈η〉− 5

4 ,∣∣∂2
ξηF(ξ, η)

∣∣ � 〈ξ〉− 5
4 〈η〉− 5

4 ∀ ξ + η � 1∣∣∂2
ξ F(ξ, η)

∣∣ � ξ− 7
4 η− 3

4 ∀ ξ > 1, η > 1∣∣∂2
η F(ξ, η)

∣∣ � ξ− 3
4 η− 7

4 ∀ ξ > 1, η > 1.

They are only useful when ξ and η are very close. To improve on them, we
consider two cases:

Case 1. 1 � ξ + η. To capture the cancelations when ξ and η are separated
we resort to another integration by parts,

ηF(ξ, η) = 〈W(R)φ(R, ξ),Lφ(R, η)〉
= 〈[L, W(R)]φ(R, ξ), φ(R, η)〉 + ξF(ξ, η).

Hence, evaluating the commutator,

(η − ξ)F(ξ, η) = −〈(2WR∂R + WRR)φ(R, ξ), φ(R, η)〉.(6.7)

Since WR(0) = 0 it follows that (2WR∂R + WRR)φ(R, ξ) has the same
behavior as φ(R, ξ) in the first region. Then we can repeat the argument
above to obtain

(η − ξ)2 F(ξ, η) = −〈[L, 2WR∂R + WRR]φ(R, ξ), φ(R, η)〉.
The second commutator has the form, with V(R) := −8(1 + R2)−2,

[L, 2WR∂R + WRR] = 4WRRL − 4WRRR∂R − WRRRR

+ 3R−2(R−1WR − WRR
) − 2WRVR − 4WRRV.

Since R−1WR(R) − WRR(R) = O(R2) this leads to

(η − ξ)2 F(ξ,η)

= 〈(
Wodd(R)∂R + Weven(R) + ξWeven(R)

)
φ(R, ξ), φ(R, η)

〉

where by Wodd, respectively Weven, we have generically denoted odd,
respectively even, nonsingular rational functions with good decay at in-
finity. Inductively, one now verifies the identity

(η − ξ)2k F(ξ, η)(6.8)

=
〈( k−1∑

j=0

ξ j Wodd
k j (R)∂R +

k∑
�=0

ξ�Weven
k� (R)

)
φ(R, ξ), φ(R, η)

〉

〈R〉∣∣Wodd
k j (R)

∣∣ + ∣∣Weven
k� (R)

∣∣ � 〈R〉−4−2k ∀ j, �.
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By means of the pointwise bounds on φ and ∂Rφ from (6.5) we infer from
this that

|F(ξ, η)| � ξk− 3
4 〈η〉− 3

4

(η − ξ)2k
∀ ξ � 1, η > 0.

Combining this estimate with (6.6) yields, for arbitrary N,

|F(ξ, η)| � (ξ + η)−
3
2 (1 + |ξ 1

2 − η
1
2 |)−N provided ξ + η � 1,

as claimed. For the derivatives of F we follow a similar procedure. If ξ
and η are comparable, then from (6.6), |∂ηF(ξ, η)| � 〈ξ〉−2. Otherwise we
differentiate with respect to η in (6.8). This yields

(η − ξ)2k∂ηF(ξ, η)

=
〈( k−1∑

j=0

ξ j Wodd
k j (R)∂R +

k∑
�=0

ξ�Weven
k� (R)

)
φ(R, ξ), ∂ηφ(R, η)

〉

− 2k(η − ξ)2k−1 F(ξ, η).

Using also the bound on F from above we obtain

|∂ηF(ξ, η)| � ξk− 3
4 η− 5

4

(η − ξ)2k
, 1 � ξ, η

respectively

|∂ηF(ξ, η)| � η− 5
4

(η − ξ)2k
ξ � 1 � η

and

|∂ηF(ξ, η)| � ξk− 3
4

(η − ξ)2k
η � 1 � ξ

which again yield the desired bounds. Finally, we consider the second order
derivatives with respect to ξ and η. For ξ and η close we again use the bound
from (6.6). Otherwise we differentiate twice in (6.8) and continue as before.
We note that it is important here that the decay of Wodd

k j and Weven
k� improves

with k. This is because the second order derivative bound at 0 has a sizeable
growth at infinity which has to be canceled,

∣∣∂2
ξ φ(R, 0)

∣∣ ≈ R
7
2 log R.

Case 2. ξ, η � 1. Our first observation is that F(0, 0) = 0. This is easy
to verify by direct integration, and is heuristically justified by the fact that
W = [L, R∂R]. The pointwise bound

|∂ξ F(ξ, η)| � 1
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follows by a direct computation. The second order derivative bound is,
however, more delicate. We have at our disposal the pointwise bounds

∣∣∂ j
ξ φ(R, ξ)

∣∣ �
{

R− 1
2 +2 j log(1 + R2) R < ξ− 1

2

ξ
1
4 − j/2|log ξ|R j R ≥ ξ− 1

2
, j = 0, 1, 2.

If η < ξ < 1/2, then these bounds imply that

∣∣∂2
ξηF(ξ, η)

∣∣ �
∫ ξ

− 1
2

0
〈R〉−4 R3(log(1 + R2))2 dR

+
∫ η

− 1
2

ξ
− 1

2

〈R〉−4 R
5
2 ξ− 1

4 |log ξ| log(1 + R2) dR

+
∫ ∞

η
− 1

2

〈R〉−2ξ− 1
4 η− 1

4 |log ξ| |log η| dR.

The main contribution comes from the first term. Integrating we obtain
∣∣∂2

ξηF(ξ, η)
∣∣ � |log ξ|3.

A similar computation yields, again when η < ξ < 1/2,

∣∣∂2
ξ F(ξ, η)

∣∣ �
∫ ξ

− 1
2

0
〈R〉−4 R3(log(1 + R2))2 dR

+
∫ η

− 1
2

ξ
− 1

2

〈R〉−4 R
3
2 ξ− 3

4 |log ξ| log(1 + R2) dR

+
∫ ∞

η
− 1

2

〈R〉−2ξ− 3
4 η

1
4 |log ξ| |log η| dR � |log ξ|3.

It remains to consider the expression ∂2
ξ F(ξ, η) for ξ � η < 1/2. Differen-

tiating in (6.7) we obtain

(η − ξ)∂2
ξ F(ξ, η) = 2∂ξ F(ξ, η) − 〈

∂2
ξ φ(R, ξ), (2WR∂R + WRR)φ(R, η)

〉
.

We differentiate and integrate with respect to η to obtain

(η − ξ)∂2
ξ F(ξ, η)(6.9)

=
∫ η

ξ

[
2∂2

ξζ F(ξ, ζ) − 〈
∂2
ξ φ(R, ξ), (2WR∂R + WRR)∂ζφ(R, ζ)

〉]
dζ.

Using also the bound

|∂R∂ζφ(R, ζ)| �
{

R
1
2 log(1 + R2) R < ζ− 1

2

ζ− 1
4 | log ζ | R ≥ ζ− 1

2
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we can evaluate the inner product in (6.9) as follows:
∣∣〈∂2

ξ φ(R, ξ), (2WR∂R + WRR)φζ (R, ζ)
〉∣∣

�
∫ ζ

− 1
2

0
〈R〉−6 R

7
2 log(1 + R2)R

3
2 log(1 + R2) dR

+
∫ ξ

− 1
2

ζ
− 1

2

〈R〉−6 R
7
2 log(1 + R2)ζ− 1

4 |log ζ |R dR

+
∫ ∞

ξ
− 1

2

〈R〉−6ξ− 3
4 |log ξ|R2ζ− 1

4 |log ζ |R dR � |log ζ |3.

Thus, (6.9) is controlled by

∣∣(η − ξ)∂2
ξ F(ξ, η)

∣∣ �
∣∣∣∣
∫ η

ξ

(log ζ)3 dζ

∣∣∣∣ � η|log η|3.

Since η � ξ this yields
∣∣∂2

η F(ξ, η)
∣∣ � |log η|3

which concludes the analysis of the off-diagonal part of the kernel.
Next, we extract the δ measure that sits on the diagonal of the kernel K

from the representation formula (6.2), see also (6.3). To do so, we can
restrict ξ, η to a compact subset of (0,∞). This is convenient, as we then
have the following asymptotics of φ(R, ξ) for Rξ

1
2 � 1:

φ(R, ξ) = Re

[
a(ξ)ξ− 1

4 eiRξ
1
2

(
1 + 3i

8Rξ
1
2

)]
+ O(R−2)

(R∂R − 2ξ∂ξ)φ(R, ξ) = −2 Re

[
ξ∂ξ(a(ξ)ξ− 1

4 )eiRξ
1
2

(
1 + 3i

8Rξ
1
2

)]
+ O(R−2)

where the O( · ) terms depend on the choice of the compact subset. The R−2

terms are integrable so they contribute a bounded kernel to the inner product
in (6.2). The same applies to the contribution of a bounded R region. Using
the above expansions, we conclude that the δ-measure contribution of the
inner product in (6.2) can only come from one of the following integrals:

(6.10)

−
∫ ∞

0

∫ ∞

0
f(ξ)χ(R) Re

[
ξ∂ξ(a(ξ)ξ− 1

4 )a(η)η− 1
4 eiR(ξ

1
2 +η

1
2 )

×
(

1 + 3i

8Rξ
1
2

)(
1 + 3i

8Rη
1
2

)]
ρ(ξ) dξ dR
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(6.11)

−1

2

∫ ∞

0

∫ ∞

0
f(ξ)χ(R)ξ∂ξ(a(ξ)ξ− 1

4 )ā(η)η− 1
4 eiR(ξ

1
2 −η

1
2 )

×
(

1 + 3i

8Rξ
1
2

)(
1 − 3i

8Rη
1
2

)
ρ(ξ) dξ dR

(6.12)

−1

2

∫ ∞

0

∫ ∞

0
f(ξ)χ(R)ξ∂ξ(ā(ξ)ξ− 1

4 )a(η)η− 1
4 e−iR(ξ

1
2 −η

1
2 )

×
(

1 − 3i

8Rξ
1
2

)(
1 + 3i

8Rη
1
2

)
ρ(ξ) dξ dR

where χ is a smooth cut-off function which equals 0 near R = 0 and 1
near R = ∞. In all of the above integrals we can argue as in the proof of
the classical Fourier inversion formula to change the order of integration.
Integrating by parts in the first integral (6.10) reveals that it cannot contribute
a δ-measure. Discarding the R−2 terms from (6.11) and (6.12) reduces us
further to the expressions

−
∫ ∞

0

∫ ∞

0
f(ξ)χ(R) Re

[
ξ∂ξ(a(ξ)ξ− 1

4 )ā(η)η− 1
4 eiR(ξ

1
2 −η

1
2 )

]
ρ(ξ) dξ dR

(6.13)

(6.14)

+ 3

8

∫ ∞

0

∫ ∞

0
f(ξ)χ(R) Im

[
ξ∂ξ(a(ξ)ξ− 1

4 )ā(η)η− 1
4 eiR(ξ

1
2 −η

1
2 )

]

× R−1(ξ− 1
2 − η− 1

2 )ρ(ξ) dξ dR.

The second integral (6.14) has both an R−1 and a (ξ− 1
2 − η− 1

2 ) factor so
its contribution to K is bounded. The first integral (6.13) contributes both
a Hilbert transform type kernel as well as a δ-measure to K . By inspection,
the δ contribution is

−1

2

∫ ∞

−∞
Re

[
ξ∂ξ(a(ξ)ξ− 1

4 )ā(η)η− 1
4 eiR(ξ

1
2 −η

1
2 )

]
ρ(ξ) dR

= −π Re
[
ξ∂ξ(a(ξ)ξ− 1

4 )ā(η)η− 1
4
]
ρ(ξ)δ(ξ

1
2 − η

1
2 )

= −2πξ
1
2 ρ(ξ) Re

[
ξ∂ξ(a(ξ)ξ− 1

4 )ā(ξ)ξ− 1
4
]
δ(ξ − η)

= −2πξ
1
2 ρ(ξ) Re

[
− 1

4
ξ− 1

2 |a(ξ)|2 + ξ
1
2 a(ξ)ā′(ξ)

]
δ(ξ − η)

=
[

1

2
+ ξρ′(ξ)

ρ(ξ)

]
δ(ξ − η)
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where we used that ρ(ξ)−1 = π|a|2 in the final step. Combining this with
the δ-measure in (6.2) yields (6.3). ��

Next we consider the L2 mapping properties for K . We introduce the
weighted L2 spaces L2,α

ρ with norm

‖ f ‖L2,α
ρ

:=
( ∫ ∞

0
| f(ξ)|2〈ξ〉2αρ(ξ) dξ

)1
2

.(6.15)

Then we have

Proposition 6.2. a) The operator K0 from (6.3) maps

K0 : L2,α
ρ → L2,α+1/2

ρ .

b) In addition, we have the commutator bound

[K0, ξ∂ξ] : L2,α
ρ → L2,α

ρ .

Both statements hold for all α ∈ R. In particular, K and [K, ξ∂ξ] are
bounded operators on L2,α

ρ .

Proof. a) This is equivalent to showing that the kernel

ρ
1
2 (η)〈η〉α+1/2 K0(η, ξ)〈ξ〉−αρ− 1

2 (ξ) : L2(R+) → L2(R+).

With the notation of the previous theorem, the kernel on the left-hand side is

K̃0(η, ξ) := 〈η〉α+1/2〈ξ〉−α

√
ρ(ξ)ρ(η)

ξ − η
F(ξ, η).

We first separate the diagonal and off-diagonal behavior of K̃0, considering
several cases.

Case 1. (ξ, η) ∈ Q := [0, 4] × [0, 4].
We cover the unit interval with dyadic subintervals Ij = [2 j−1, 2 j+1].

We cover the diagonal with the union of squares

A =
2⋃

j=−∞
Ij × Ij

and divide the kernel K̃0 into

1Q K̃0 = 1A∩Q K̃0 + 1Q\A K̃0.

Case 1a. Here we show that the diagonal part 1A∩Q K̃0 of K̃0 maps L2 to L2.
By orthogonality it suffices to restrict ourselves to a single square Ij × Ij . We
recall the T1 theorem for Calderon–Zygmund operators, see [26, p. 293]:
suppose the kernel K(η, ξ) on R2 defines an operator T : S → S′ and has
the following pointwise properties with some γ ∈ (0, 1] and a constant C0:
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(i) |K(η, ξ)| ≤ C0|ξ − η|−1.
(ii) |K(η, ξ)−K(η′, ξ)| ≤ C0|η−η′|γ |ξ−η|−1−γ for all |η−η′| < |ξ−η|/2.
(iii) |K(η, ξ)−K(η, ξ ′)| ≤ C0|ξ−ξ ′|γ |ξ−η|−1−γ for all |ξ−ξ ′| < |ξ−η|/2.

If in addition T has the restricted L2 boundedness property, i.e., for all
r > 0 and ξ0, η0 ∈ R, ‖T(ωr,ξ0)‖2 ≤ C0r

1
2 and ‖T ∗(ωr,η0)‖2 ≤ C0r

1
2 where

ωr,ξ0(ξ) = ω((ξ − ξ0)/r) with a fixed bump-function ω, then T and T ∗
are L2(R) bounded with an operator norm that only depends on C0.

Within the square Ij × Ij , Theorem 6.1 shows that the kernel of K̃0

satisfies these properties with γ = 1, and is thus bounded on L2.

Case 1b. Consider now the off-diagonal part 1Q\A K̃0. In this region, by
Theorem 6.1,

|K̃0(η, ξ)| � 1√
ξη |log ξ| |log η|

which is a Hilbert–Schmidt kernel on Q and thus L2 bounded.

Case 2. (ξ, η) ∈ Qc.

We cover the diagonal with the union of squares

B =
∞⋃
j=1

Ij × Ij

and divide the kernel K̃0 into

1Qc K̃0 = 1B∩Qc K̃0 + 1Qc\B K̃0.

Case 2a. Here we consider the estimate on B. As in Case 1a above, we
use Calderon–Zygmund theory. Evidently, |K̃0(η, ξ)| � |ξ − η|−1 on B by
Theorem 6.1. To check (ii) and (iii), we differentiate K̃0. It will suffice to
consider the case where the ∂ξ derivative falls on F(ξ, η). We distinguish
two cases: if |ξ 1

2 − η
1
2 | ≤ 1, then |ξ − η| � ξ

1
2 which implies that

ξ− 1
2 |ξ − ξ ′|
|ξ − η| � |ξ − ξ ′| 1

2

|ξ − η| 3
2

∀ |ξ − ξ ′| < |ξ − η|/2

if, on the other hand, |ξ 1
2 − η

1
2 | > 1, then

ξ− 1
2 |ξ − ξ ′|

|ξ − η| |ξ 1
2 − η

1
2 | �

|ξ − ξ ′|
|ξ − η|2 ∀ |ξ − ξ ′| < |ξ − η|/2

which proves Property (iii) on B with γ = 1
2 , and by symmetry also (ii).

The restricted L2 property follows from the cancelation in the kernel and
the previous bounds on the kernel. Hence, K̃0 is L2 bounded on B.
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Case 2b. Finally, in the exterior region Qc \ B we have the bound, with
arbitrarily large N,

|K̃0(η, ξ)| � (1 + ξ)−N(1 + η)−N

which is L2 bounded by Schur’s lemma.

b) A direct computation shows that the kernel Kcom
0 of the commutator

[ξ∂ξ, K0] is given by

Kcom
0 (η, ξ) = (η∂η + ξ∂ξ)K0(η, ξ) + K0(η, ξ) = ρ(ξ)

ξ − η
Fcom(ξ, η)

interpreted in the principal value sense and with Fcom given by

Fcom(ξ, η) = ξρ′(ξ)
ρ(ξ)

F(ξ, η) + (η∂η + ξ∂ξ)F(ξ, η).

By Theorem 6.1 this satisfies the same pointwise off-diagonal bounds as F.
Near the diagonal the bounds for Fcom and its derivatives are worse14 than
those for F by a factor of (1 + ξ)

1
2 . Then the proof of the L2 commutator

bound is similar to the argument in Part (a).
The statements concerning K follow by adding in the δ measure sitting

on the diagonal ξ = η. ��

7. The final equation

To rewrite (4.2) in a final form, we begin by expressing the operator R∂R in
terms of the kernel K in the transference identity (6.1). We have, with F
as in Theorem 5.3,

F

(
∂τ + λτ

λ
R∂R

)
=

(
∂τ + λτ

λ
(−2ξ∂ξ + K)

)
F

which gives

F

(
∂τ + λτ

λ
R∂R

)2

=
(

∂τ + λτ

λ
(−2ξ∂ξ + K)

)2

F

=
(

∂τ − λτ

λ
2ξ∂ξ

)2

F + 2
λτ

λ
K

(
∂τ − λτ

λ
2ξ∂ξ

)
F

+ λ2
τ

λ2

(
K2 + 2[ξ∂ξ,K])F .

14 The one derivative loss can be avoided by a more careful analysis, but this does not
seem necessary here.
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This leads to a transport type equation for the Fourier transform x(τ, ξ) of ε̃
by applying F to (4.2). Indeed, in view of the preceding

−
(

∂τ − λτ

λ
2ξ∂ξ

)2

x − ξx(7.1)

= 2
λτ

λ
K

(
∂τ − λτ

λ
2ξ∂ξ

)
x + λ2

τ

λ2

(
K2 + 2[ξ∂ξ,K])x

−
(

1

4

(
λτ

λ

)2

+ 1

2
∂τ

(
λτ

λ

))
x

+ λ−2FR
1
2
(
N2k−1(R− 1

2 F −1x) + e2k−1
)
.

We want to obtain solutions to (7.1) which decay as τ → ∞, which
means we need to solve the equation backward in time, i.e., with zero Cauchy
data at τ = ∞. We treat this problem iteratively, as a small perturbation of
the linear equation governed by the operator on the left-hand side. For this
we need to solve the following transport equation

−
[(

∂τ − 2
λτ

λ
ξ∂ξ

)2

+ ξ

]
x(τ, ξ) = b(τ, ξ).(7.2)

The name here derives from the fact that the characteristic curves of the
operator ∂τ −2λτ

λ
ξ∂ξ are (τ, λ−2(τ)ξ). We denote by H the backward funda-

mental solution for the operator

(
∂τ − 2

λτ

λ
ξ∂ξ

)2

+ ξ

and by H(τ, σ) its kernel, i.e., (7.2) has solution

x(τ) = −
∫ ∞

τ

H(τ, σ)b(σ) dσ

where we suppressed the ξ variable. The mapping properties of H are
described in the following result, which will be proven in the next section.

Proposition 7.1. For any α ≥ 0 there exists some (large) constant
C = C(α) so that the operator H(τ, σ) satisfies the bounds

‖H(τ, σ)‖L2,α
ρ →L2,α+1/2

ρ
� τ

(
σ

τ

)C

(7.3)

∥∥∥∥
(

∂τ − λτ

λ
2ξ∂ξ

)
H(τ, σ)

∥∥∥∥
L2,α

ρ →L2,α
ρ

�
(

σ

τ

)C

(7.4)

uniformly in σ ≥ τ .
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This leads us to introduce the spaces L∞,N L2,α
ρ with norm

‖ f ‖L∞,N L2,α
ρ

:= sup
τ≥1

τN‖ f(τ)‖L2,α
ρ

.

Then the above proposition immediately allows us to draw the following
conclusions:

Corollary 7.2. Given α ≥ 0, let N be large enough. Then

‖Hb‖L∞,N−2 L2,α+1/2
ρ

+
∥∥∥∥
(

∂τ − 2
λτ

λ
ξ∂ξ

)
Hb

∥∥∥∥
L∞,N−1 L2,α

ρ

≤ C0N−1‖b‖L∞,N L2,α
ρ

with a constant C0 that depends on α but does not depend on N.

The small factor N−1 is crucial here for our argument to work. On
the other hand, the nonlinear operator N2k−1 from (7.1) has the following
mapping properties:

Proposition 7.3. Assume that N is large enough and ν
2 + 3

4 > α > 1
4 . Then

the map

x �→ λ−2F
(
R

1
2 N2k−1(R− 1

2 F −1x)
)

is locally Lipschitz from L∞,N−2 L2,α+1/2
ρ to L∞,N L2,α

ρ .

The above two results, combined with Proposition 6.2, allow us to use
a contraction argument to solve (7.1). The next two sections are devoted to
proving Propositions 7.1 and 7.3. Finally, in the last section we close the
argument.

8. The transport equation

Here we consider the backward fundamental solution H for (7.2) and prove
Proposition 7.1. Observe that (7.2) implies[

∂2
τ + λ−2(τ)ξ

]
x(τ, λ−2(τ)ξ) = b(τ, λ−2(τ)ξ).

We introduce the operator

Lξ,τ := ∂2
τ + λ−2(τ)ξ

and the fundamental solutions S(τ, σ, ξ), U(τ, σ, ξ), which satisfy

Lξ,τ S(τ, σ, ξ) = 0, S(τ, τ, ξ) = 0, ∂τ S(τ, σ, ξ)|τ=σ = −1
Lξ,τU(τ, σ, ξ) = 0, U(τ, τ, ξ) = 1, ∂τU(τ, σ, ξ)|τ=σ = 0.

Then (7.2) may be solved via

x(τ, λ−2(τ)ξ) = −
∫ ∞

τ

S(τ, σ, ξ)b(σ, λ−2(σ)ξ) dσ.
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Given this representation, we note that the index α plays no role in (7.3)
and (7.4) since

(1 + λ−2(τ)ξ)α

(1 + λ−2(σ)ξ)α
�

(
σ

τ

)C

.

Hence, without loss of generality we set α = 0. Similarly, we can neglect
the measure of integration ρ(ξ) dξ which exhibits polynomial behavior at
infinity and the (ξ log2 ξ)−1 behavior at ξ = 0. Using the monotonicity of
the logarithm in the latter case we again arrive at

ρ(λ−2(τ)ξ)

ρ(λ−2(σ)ξ)
�

(
σ

τ

)C

.

Then the bounds (7.3) and (7.4) reduce to proving that

|S(τ, σ, ξ)| � σ

(
σ

τ

)C

(1 + λ−2(τ)ξ)− 1
2 ,

|∂τ S(τ, σ, ξ)| �
(

σ

τ

)C

, 1 � τ < σ.

Recalling that λ(τ) = τ1+ν−1
(we are ignoring a multiplicative constant

here), we strengthen the first bound and prove instead that

|S(τ, σ, ξ)| � σ

(
σ

τ

)C

(1 + τ− 2
ν ξ)− 1

2 ,(8.1)

|∂τ S(τ, σ, ξ)| �
(

σ

τ

)C

0 < τ < σ.

The advantage of doing this is that the last bound is scale invariant. Precisely,
one verifies directly the scaling relation

S(τ, σ, ξ) = ξ
ν
2 S(τξ− ν

2 , σξ− ν
2 , 1)

which leaves (8.1) unchanged. Hence, in what follows it suffices to
prove (8.1) in the case ξ = 1. We begin by constructing two special solutions
for the operator L1,τ . For small15 τ we use a standard WKB ansatz.

Lemma 8.1. a) (Large τ solutions) If ν is not an even integer then there
exist two analytic solutions φ0 and φ1 of L1,τφj = 0 with a series
representation

φj(τ) =
∞∑

k=0

cjkτ
j− 2k

ν , cj0 = 1

15 The reader should bear in mind that by this τ we mean the rescaled one, i.e, ξ− ν
2 τ ,

which can be arbitrarily close to zero.
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which is convergent for all τ > 0. If ν is an even integer then the result
still holds with a modification in the expression for φ1, namely

φ1(τ) = c1φ0(τ) log τ +
∞∑

k=0

c1kτ
1− 2k

ν , c10 = 1.

b) (Small τ solutions) There is a solution φ2 for L1,τ of the form

φ2(τ) = τ
1
2 + 1

2ν eiντ− 1
ν [1 + a(τ

1
ν )]

with a smooth and satisfying a(0) = 0.

Proof. a) We substitute the formal series in the equation
(
∂2
τ + τ−2− 2

ν

)
φj = 0

in the equation and identify the coefficients of the similar terms. This yields

cj,k

(
j − 2k

ν

)(
j − 1 − 2k

ν

)
+ cj,k−1 = 0 k ≥ 1.

Hence, the coefficients cjk can be iteratively computed and satisfy a bound
of the type

|cj,k| ≤ Ck

(k!)2

which implies that the series converges for all τ .
If j = 0 then the argument works for all ν > 0. If j = 1 then there is

an obstruction if ν is an even integer; indeed, this happens precisely when
2k = ν. As usual, this is compensated for by adding in the logarithmic term,
since

L1,τ(φ0(τ) log τ) = −τ−2φ0 + τ−12∂τφ0

has a nonzero coefficient on the τ−2 term.
b) In this case, we use the usual WKB-ansatz which we now recall in

a more general setting: we wish to solve the equation (∂2
τ + Q)ψ = 0

where Q(τ) is a smooth potential for τ > 0. Fix some (small) τ0 > 0. WKB
means that we seek a solution of the form ψ(τ) = ψ0(τ)[1 + a(τ)] with

ψ0(τ) = Q− 1
4 (τ)eiS(τ), S(τ) =

∫ τ

τ0

Q
1
2 (σ) dσ.

Since

∂2
τψ0 + Qψ0 = Vψ0, V = −1

4

Q′′

Q
+ 5

16

(
Q′

Q

)2

we obtain the following equation for a(τ):
(
a′ψ2

0

)′
(τ) = −Vψ2

0(τ)[1 + a(τ)]
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which we solve in the form

a(τ) = −
∫ τ

0

∫ τ ′

0
ψ−2

0 (τ ′)ψ2
0(σ)V(σ)[1 + a(σ)] dσ dτ ′

= i

2

∫ τ

0
Q− 1

2 (σ)[1 − e2i(S(σ)−S(τ))]V(σ)[1 + a(σ)] dσ

provided these integrals converge at zero. They do in our case: in fact,
Q(τ) = λ−2(τ) which implies that

ψ0(τ) = τ
1
2 + 1

2ν eiντ− 1
ν

a(τ) = ci
∫ τ

0
σ−1+ 1

ν [1 − e2iν(σ− 1
ν −τ− 1

ν )][1 + a(σ)] dσ(8.2)

or, after changing variables to a(τν) = ã(τ),

ã(τ) = icν
∫ τ

0
[1 − e2iν(σ−1−τ−1)][1 + ã(σ)] dσ.(8.3)

The constant c in (8.2) derives from the numerical constants in V as well as
the fact that λ(τ) = (ντ)1+ 1

ν . By the boundedness of the kernel, this Volterra
equation has a solution ã ∈ C([0,∞)) which is clearly then also smooth
for all τ > 0. We now claim that in fact ã ∈ C∞([0,∞)). Indeed, the zero
order iterate here is a smooth function at τ = 0:∫ τ

0
[1 − e2iν(σ−1−τ−1)] dσ =

∫ ∞

τ−1
[1 − e2iν(u−τ−1)] du

u2

= τ −
∫ ∞

τ−1
e2iν(u−τ−1) du

u2
=

m∑
j=1

cjτ
j + O(τm+1)

for any positive integer m by repeated integration by parts. One now pro-
ceeds to show the same for the higher Volterra iterates; alternatively, we
insert the ansatz

ã(τ) =
m∑

j=1

djτ
j + O(τm+1)

into (8.3) and solve for the coefficients dj . In either case, the conclusion is
that (8.3) has a smooth solution, as claimed. ��

We now use this lemma to prove (8.1), which will then conclude the
proof of Proposition 7.1. Considering the limits at infinity, respectively at 0,
one finds that

W(φ0, φ1) = 1, W(φ2, φ2) = −2i.

This allows us to express the backward fundamental solution S(τ, σ) in
terms of these bases. Note that we suppress the ξ variable as ξ = 1 is fixed.
We consider two cases.
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Case 1. σ > 1. Then we have

S(τ, σ) = φ1(σ)φ0(τ) − φ0(σ)φ1(τ).

If 1 ≤ τ ≤ σ , then (8.1) follows directly from the properties of φ0 and φ1.
If τ < 1 then we express φ0(τ) and φ1(τ) in terms of the {φ2, φ2} basis to
obtain

S(τ, σ) = Re(c(σ)φ2(τ)), |c(σ)| � σ.

This gives

|S(τ, σ)| � στ
1
2 + 1

2ν , |∂τ S(τ, σ)| � στ− 1
2 − 1

2ν .

Again (8.1) follows.

Case 2. σ < 1. Then we express S(τ, σ) in the {φ2, φ2} basis to obtain

S(τ, σ) = Im(φ2(σ)φ2(τ)).

This gives the bounds

|S(τ, σ)| � σ
1
2 + 1

2ν τ
1
2 + 1

2ν , |∂τ S(τ, σ)| � σ
1
2 + 1

2ν τ− 1
2 − 1

2ν

which imply (8.1).

9. The nonlinear terms

In this section we consider the nonlinear source terms, i.e., those given
by the right-hand side of (4.2), and prove Proposition 7.3. Recalling that
R = rλ, we write

λ−2 R
1
2 N2k−1(R− 1

2 ε̃) = cos(2u2k−1) − cos(2Q)

R2
2ε̃(9.1)

+ sin(2u2k−1)

2R

cos(2ε̃R− 1
2 ) − 1

R
1
2

+ cos(2u2k−1)
sin(2ε̃R− 1

2 ) − 2ε̃R− 1
2

2R
3
2

where the regularity of the coefficients above is computed as in Step 2 of
the proof of Theorem 3.1,

cos(2u2k−1) − cos(2Q)

R2
∈ τ−2IS2

(
R−2(log R)2,Qk−1

)
(9.2)

sin(2u2k−1)

2R
∈ IS0

(
R−2 log R,Qk−1

)
(9.3)

cos(2u2k−1) ∈ IS0(1,Qk−1)(9.4)
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where we used here that tλ(t) � τ and also that R � τ (recall the alge-
bras Q and Qk from Definition 3.3). Proposition 7.3 amounts to proving
multiplicative estimates in the context of the classical Sobolev spaces. Here
we use Sobolev spaces adapted to the operator L, namely

‖u‖Hα
ρ

:= ‖̂u‖L2,α
ρ

.

Restating Proposition 7.3 with this notation shows that we need to prove
that the map

ε̃ �→ λ−2 R
1
2 N2k−1(R− 1

2 ε̃)

is locally Lipschitz from L∞,N−2 Hα+1/2
ρ to L∞,N Hα

ρ . Note that (9.2) has an
explicit gain of τ−2 which explains why we can improve the time-decay of
the first (linear) term on the right-hand side of (9.1) from N − 2 to N. On
the other hand, there is no such gain in (9.3) and (9.4). What saves us here
is that both the second and third terms on the right-hand side of (9.1) are
truly nonlinear terms in ε̃.

As a technical tool we introduce an inhomogeneous Littlewood–Paley
decomposition

f =
∞∑

λ=1

Pλ f =
∑

λ

∫ ∞

0
pλ(ξ)φ(R, ξ) f̂ (ξ)ρ(ξ) dξ

corresponding to a smooth partition of unity {pλ} in the Fourier space. Here
λ ∈ {2 j}∞

j=0 and pλ is adapted to frequencies of size λ. Our first result is

Lemma 9.1. Let q ∈ S(1,Q) and |α| < ν
2 + 3

4 . Then

‖q f ‖Hα
ρ
� ‖ f ‖Hα

ρ
.

Proof. We decompose the multiplication operator into its Littlewood–Paley
pieces:

q =
∑
λ,µ

PλqPµ.

The diagonal sum corresponding to λ � µ is estimated using only the L∞
bound on q. For the off-diagonal component it suffices to show rapid decay.
In fact, we claim that

‖PλqPµ‖L2→L2 � (µ + λ)− 1
4 − ν

2 [log(µ + λ)]m, λ �= µ

where m is some large integer. The Fourier kernel of PλqPµ is

Kλ,µ(η, ξ) = √
ρ(ξ)ρ(η)pλ(ξ)pµ(η)

∫
q(R)φ(ξ, R)φ(η, R) dR
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in the sense that
√

ρ(η)F (PλqPµ f )(η) =
∫

Kλ,µ(η, ξ) f̂ (ξ)
√

ρ(ξ) dξ.

Therefore, the above L2 bound would follow from the pointwise estimate
(recall ρ(ξ) � ξ for ξ > 1)∣∣∣∣
∫

q(R)φ(ξ, R)φ(η, R) dR

∣∣∣∣ � 〈ξ〉−1〈η〉−1〈ξ + η〉− 1
4 − ν

2 [log(2 + ξ + η)]m .

In the regime ξ, η < 1 we use the Hilbert–Schmidt criterion and the inte-
grability of ρ(ξ). The function q exhibits symbol type behavior with respect
to R except near R = τ , where it has a power type singularity (1 − a)ν+ 1

2 ,
a = R/τ , possibly involving also logarithms.16 To separate this singularity
from the behavior at 0 we use a smooth cut-off to split q into (recall that τ
is a large parameter)

q = q<τ/2 + q>τ/2.

The first term is a symbol of order 0 with respect to R. To proceed, we recall
the calculations leading up to (6.8). The main tool there is the following
double commutator identity: if ξ �= η and U is a zero order symbol, then

(ξ − η)2〈U(R)φ(R, ξ), φ(R, η)〉(9.5)
= 〈[[U,L],L]φ(R, ξ), φ(R, η)〉
= 〈( − 4URRξ + 3R−2

(
URR − R−1UR

) + 4URRV

+ URRRR + 2URVR + 4URRR∂R

)
φ(R, ξ), φ(R, η)

〉
where the inner products exist in the principal value sense (recall that
V(R) = −8(1 + R2)−2). Iterating this identity k times yields

(ξ − η)2k〈q<τ/2(R)φ(R, ξ), φ(R, η)〉

=
〈[ k−1∑

j=0

ξ jqodd
j (R)∂R +

k∑
�=0

ξ�qeven
� (R)

]
φ(R, ξ), φ(R, η)

〉

where qodd
j and qeven

� are symbols of order at most −2k with odd, respectively
even, expansions around R = 0. For 1 + ξ �� 1 + η this gives

|〈q<τ/2(R)φ(R, ξ), φ(R, η)〉| � 〈ξ + η〉−k

for all k which is more than we need.
The second term q>τ/2 can be thought of as a function of a,

q>τ/2(R) = q1(a), a = R

τ

16 Strictly speaking, there is a multiplicative constant in a = cR/τ , but we ignore it.
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where q1 is supported in
[

1
2 , 2

]
and has a Q type singularity17 at a = 1. We

divide it into a singular and a nonsingular component,

q>τ/2 = qs
>τ/2 + qns

>τ/2, qs
>τ/2 := q>τ/2χ[|R−τ |<〈ξ+η〉− 1

2 ],

qns
>τ/2 := q>τ/2χ[|R−τ |>〈ξ+η〉− 1

2 ],

where the χ’s define a smooth partition of unity relative to the indicated
sets. For the singular component we bound the integral directly using the
pointwise bounds on φ(R, ξ) to obtain∣∣∣∣

∫
qs

>τ/2(R)φ(R, ξ)φ(R, η) dR

∣∣∣∣
�

∫ τ

τ
2

(1 − R/τ)ν+ 1
2 |log(1 − R/τ)|m1[|R−τ |<〈ξ+η〉− 1

2 ]〈ξ〉− 3
4 〈η〉− 3

4 dR

� 〈ξ〉− 3
4 〈η〉− 3

4 τ−ν− 1
2 〈ξ + η〉− ν

2 − 3
4 [log(2 + ξ + η)]m

� 〈ξ〉−1〈η〉−1〈ξ + η〉− ν
2 − 1

4 [log(2 + ξ + η)]m .

For the nonsingular component, a k-fold iteration of (9.5) yields

(ξ − η)2k
〈
qns

>τ/2(R)φ(R, ξ), φ(R, η)
〉

(9.6)

=
〈[ k−1∑

j=0

ξ jqodd
k, j (R)∂R +

k∑
�=0

ξ�qeven
k,� (R)

]
φ(R, ξ), φ(R, η)

〉

with

qodd
k, j (R) =

2k− j−1∑
i=0

rodd
k, j,i(R)∂2i+1

R qns
>τ/2(R),

qeven
k,� (R) =

2k−�∑
i=1

reven
k,�,i(R)∂2i

R qns
>τ/2(R)

where the coefficients are rational functions, smooth for all R ≥ 0, decaying
at rates ∣∣rodd

k, j,i(R)
∣∣ � R−2−(4k−2 j−2i),

∣∣reven
k,�,i(R)

∣∣ � R−4−(4k−2�−2i).

The logic behind the numerology here is simple: a factor ξ j consumes 2 j
derivatives, so the remaining 4k derivatives need to hit either the symbol
qns

>τ/2(R) or the weight V (the latter leading to the rational functions).
We show how to apply these formulas for the case of the even weights,

the odd ones being analogous. As for the derivatives

∂2i
R qns

>τ/2(R) = ∂2i
R (q>τ/2χ[|R−τ |>〈ξ+η〉− 1

2 ])

17 q1 also has a nonsingular part, which by a slight abuse of notation we include in q<τ/2.
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it will suffice to consider two extreme cases: when all derivatives fall on the
symbol, or all fall on the cut-off function. The contribution by the latter to
|〈qns

>τ/2(R)φ(R, ξ), φ(R, η)〉| is bounded by (ignoring logs)

(ξ + η)−2k
∫

[|R−τ |�〈ξ+η〉− 1
2 ]

R−4−(4k−2�−2i)(1 − a)ν+ 1
2

× 〈ξ + η〉iξ�〈ξ〉− 3
4 〈η〉− 3

4 dR

� (ξ + η)−2kτ−3−(4k−2�−2i)τ−ν− 3
2 〈ξ + η〉− ν

2 − 3
4 +i〈ξ〉�− 3

4 〈η〉− 3
4

� 〈ξ〉−1〈η〉−1〈ξ + η〉− ν
2 − 1

4

as desired. The other cases are checked similarly and we skip them. ��
This allows us to deal with the coefficients in front of the ε̃ terms. As

remarked above, the τ decay for the first term in N2k−1 comes from the
τ−2 factor in the coefficient and from the quadratic (respectively, cubic)
expressions in ε̃ for the remaining terms. It remains to prove the follow-
ing:

Proposition 9.2. Let α > 1
4 . Then the maps

ε̃ �→ R− 1
2 (cos(2ε̃R− 1

2 ) − 1)(9.7)

ε̃ �→ R− 3
2 (sin(2ε̃R− 1

2 ) − 2ε̃R− 1
2 )(9.8)

are locally Lipschitz from Hα+1/2
ρ to Hα

ρ .

The proof will be split up into the following four lemmas. We first obtain
a pointwise bound for frequency localized L2 functions:

Lemma 9.3. For dyadic λ ≥ 1 we have

|Pλ f(R)| � λ min{R
3
2 , λ− 3

4 }‖ f ‖L2

for all f ∈ L2(R+).

Proof. Using the inversion formula we write

Pλ f(R) =
∫ ∞

0
pλ(ξ) f̂ (ξ)φ(R, ξ)ρ(ξ) dξ.

The pointwise bounds for φ,

|φ(R, ξ)| � min{R
3
2 , ξ− 3

4 }
and the Cauchy–Schwarz inequality finish the proof. ��
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We also have estimates for the derivative:

Lemma 9.4. For dyadic λ ≥ 1 we have

|∂R Pλ f(R)| � λmin{R
1
2 , λ− 1

4 }‖ f ‖L2

and
‖∂R Pλ f ‖L2 � λ

1
2 ‖ f ‖L2

for all f ∈ L2(R+).

Proof. The first estimate follows from the pointwise bounds on ∂Rφ. For
the second bound we can integrate by parts (justified by the first bound) to
obtain

λ‖Pλ f(R)‖2
L2 � 〈L f, f 〉 ≥ ‖∂R f ‖2

L2 + 3

4
‖R−1 f ‖2

L2 − C‖ f ‖2
L2

which leads to the desired conclusion. ��
Next we consider bilinear estimates but with a weight that is singular

at 0. This suffices in order to estimate the quadratic and the cubic terms
in the proposition. The logic behind Lemma 9.5 is the following: dividing
by R

3
2 should amount to a loss of ξ

3
4 on the Fourier side (since the scaling

relation is Rξ
1
2 = 1). Inspection of the following estimates shows that we

do indeed lose a combined 3
4 weight in ξ on the right-hand side.

Lemma 9.5. Let α > 1
4 . Then

‖R− 3
2 fg‖

H
α+ 1

4
ρ

� ‖ f ‖
H

α+ 1
2

ρ

‖g‖
H

α+ 1
2

ρ

respectively
‖R− 3

2 fg‖Hα
ρ
� ‖ f ‖

H
α+ 1

4
ρ

‖g‖
H

α+ 1
2

ρ

for all f, g so that the right-hand sides are finite.

Proof. We first use the above pointwise bound to obtain an L2 estimate,
∥∥R− 3

2 Pλ1 f Pλ2 g
∥∥

L2 � min{λ1, λ2}‖Pλ1 f ‖L2‖Pλ2 g‖L2 .

This suffices for both of the above estimates provided that the output is
measured at frequency σ � max{λ1, λ2}. Indeed, in that case∑

λ1,λ2

∑
σ<max(λ1,λ2)

σα+ 1
4
∥∥Pσ

[
R− 3

2 Pλ1 f Pλ2 g
]∥∥

2

�
∑

λ1>λ2

λ
α+ 1

4
1 λ2‖Pλ1 f ‖2‖Pλ2 g‖2 +

∑
λ1≤λ2

λ
α+ 1

4
2 λ1‖Pλ1 f ‖2‖Pλ2 g‖2

�
∑

λ1>λ2

λ
− 1

4
1 λ

1
2 −α

2 ‖ f ‖
H

α+ 1
2

ρ

‖g‖
H

α+ 1
2

ρ

which gives the desired bound since α > 1
4 .
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For larger σ , however, we need some additional decay. For this we
compute using integration by parts

〈
R− 3

2 Pλ1 f Pλ2 g, Pσ h
〉 = 〈

R− 3
2 Pλ1 f Pλ2 g,LkL−k Pσh

〉
= 〈

Lk
(
R− 3

2 Pλ1 f Pλ2 g
)
,L−k Pσ h

〉
.

To justify the integration by parts we observe that near R = 0 we have

Pλ1 f(R) = R
3
2 q(R2), q analytic.

Then the bilinear form is given by

R− 3
2 Pλ1 f Pλ2 g = R

3
2 q(R2), q analytic

which successively implies that (recall L0 R
3
2 = 0)

Lk
(
R− 3

2 Pλ1 f Pλ2 g
) = R

3
2 q(R2), q analytic.

We claim that we can estimate the left-hand side here in L2 by

∥∥Lk
(
R− 3

2 Pλ1 f Pλ2 g
)∥∥

L2 � min{λ1, λ2} max{λ1, λ2}k‖Pλ1 f ‖L2‖Pλ2 g‖L2.

(9.9)

Given the above integration by parts, this implies that
∣∣〈R− 3

2 Pλ1 f Pλ2 g, Pσ h
〉∣∣

� min{λ1, λ2} max{λ1, λ2}kσ−k‖Pλ1 f ‖L2‖Pλ2 g‖L2‖Pσ h‖L2

and further∥∥Pσ

(
R− 3

2 Pλ1 f Pλ2 g
)∥∥

L2 � min{λ1, λ2} max{λ1, λ2}kσ−k‖Pλ1 f ‖L2‖Pλ2 g‖L2

thus providing the additional decay for large σ .
It remains to prove (9.9). We assume that λ1 < λ2 and use different

bounds depending on whether R is small or large. Assume first that R < λ
− 1

2
2 .

Then we start from

(9.10)

Lk
(
R− 3

2 Pλ1 f(R)Pλ2 g(R)
)

=
∫ ∞

0

∫ ∞

0
pλ1(ξ)pλ2(η)Lk[R− 3

2 φ(R, ξ)φ(R, η)] f̂ (ξ)̂g(η)ρ(ξ)ρ(η) dξ dη.

Next, we claim that

‖Lk[R− 3
2 φ(R, ξ)φ(R, η)]‖

L2
(

0,λ
− 1

2
2

) � λk−1
2 .(9.11)
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If true, then combining (9.10) and (9.11) via Minkowski and Cauchy–
Schwarz yields

∥∥Lk
(
R− 3

2 Pλ1 f(R)Pλ2 g(R)
)∥∥

L2
(

0,λ
− 1

2
2

) � λk
2λ1‖Pλ1 f ‖2‖Pλ2 g‖2

as desired. To prove (9.11), consider first k = 0. Then

‖R− 3
2 φ(R, ξ)φ(R, η)‖

L2
(

0,λ
− 1

2
2

) �
( ∫ λ

− 1
2

2

0
R3 dR

)1
2

� λ−1
2 .

The higher k cases now follow from Proposition 5.4, which allows us to
write

R− 3
2 φ(R, ξ)φ(R, η) = R

3
2 q(R2, ξR2, ηR2), q analytic.

Then, following our previous discussion concerning applications of Lk, we
obtain

Lk(R− 3
2 φ(R, ξ)φ(R, η)) =

∑
�+m≤k

R
3
2 ξ�ηmq�m(R2, ξR2, ηR2), q�m analytic

which implies (9.11).
For large R we use the product rule to write

Lk
(
R− 3

2 Pλ1 f Pλ2 g
) =

∑
2i+2 j≤2k−�−m

�,m=0,1

W �m
ij (R)∂�

RLi Pλ1 f · ∂m
R L j Pλ2 g

∣∣W �m
ij (R)

∣∣ � R−2(k−i− j)+�+m− 3
2 .

Then we have∥∥Lk
(
R− 3

2 Pλ1 f Pλ2 g
)∥∥

L2
(
λ
− 1

2
2 ,∞

)
�

∑
2i+2 j≤2k−�−m

�,m=0,1

λ
(k−i− j)− �+m

2
2

∥∥R− 3
2 ∂�

RLi Pλ1 f · ∂m
R L j Pλ2 g

∥∥
L2 .

We use Lemmas 9.4 and 9.3 to bound the first factor in L∞ and the second
in L2. This gives

∥∥Lk
(
R− 3

2 Pλ1 f Pλ2 g
)∥∥

L2
(
λ
− 1

2
2 ,∞

) � λk
2λ1‖Pλ1 f ‖L2‖Pλ2 g‖L2

as desired. ��
Finally, in order to estimate the higher order terms in the Taylor expan-

sion of the sin and cos functions in the proposition we also prove a trilinear
estimate:
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Lemma 9.6. Let α > 0. Then

‖R−1 fgh‖Hα
ρ
� ‖ f ‖

H
α+ 1

2
ρ

‖g‖
H

α+ 1
2

ρ

‖h‖Hα
ρ

for all f, g, h so that the right-hand side is finite.

Proof. The pointwise bounds above imply the following L2 estimate,

(9.12)
∥∥R−1 Pλ1 f Pλ2 gPλ3h

∥∥
L2 � min

i �= j

{
λ

1
4
i λ

3
4
j

}‖Pλ1 f ‖L2‖Pλ2 g‖L2‖Pλ3h‖L2

which again suffices to estimate the output at frequency σ ≤ λ :=
max{λ1, λ2, λ3}. To see this, we write, with the summation variables σ , M,
λ1, λ2, λ3 ∈ {2 j}∞

j=0,
∑

λ1,λ2,λ3

∑
σ≤λ

Pσ

(
R−1 Pλ1 f Pλ2 gPλ3 h

) =
∑

M

∑
λ1,λ2,λ3

λ≥M

Pλ/M
(
R−1 Pλ1 f Pλ2 gPλ3h

)
.

On the right-hand side we distinguish the cases λ1 ≤ λ2 < λ3, λ1 ≤ λ3 ≤ λ2,
λ3 < λ1 ≤ λ2. We only treat the first case, the other two being similar and
easier. Thus, we estimate the right-hand side for fixed M as follows:
∥∥∥∥

∑
λ1≤λ2<λ3

λ3≥M

Pλ3/M
(
R−1 Pλ1 f Pλ2 gPλ3h

)∥∥∥∥
2

Hα
ρ

�
∑

λ3>M

(
λ3

M

)2α

‖Pλ3 h‖2
L2

( ∑
λ1≤λ2

λ
3
4
1 λ

1
4
2 ‖Pλ1 f ‖L2‖Pλ2 g‖L2

)2

�
∑

λ3>M

(
λ3

M

)2α

‖Pλ3 h‖2
L2

( ∑
λ1<λ2

λ
1
4 −α

1 λ
− 1

4 −α

2 ‖ f ‖
H

α+ 1
2

ρ

‖g‖
H

α+ 1
2

ρ

)2

� M−2α‖ f ‖2

H
α+ 1

2
ρ

‖g‖2

H
α+ 1

2
ρ

‖h‖2
Hα

ρ
.

The summation with respect to M is trivial.
For higher frequency outputs we need some additional decay,∥∥Pσ

(
R−1 Pλ1 f Pλ2 gPλ3h

)∥∥
L2

� min
i �= j

{
λ

1
4
i λ

3
4
j

}
max{λ1, λ2, λ3}kσ−k‖Pλ1 f ‖L2‖Pλ2 g‖L2‖Pλ3h‖L2.

This in turn is a consequence of the estimate∥∥Lk
(
R−1 Pλ1 f Pλ2 gPλ3h

)∥∥
L2

� min
i �= j

{
λ

1
4
i λ

3
4
j

}
max{λ1, λ2, λ3}k‖Pλ1 f ‖L2‖Pλ2 g‖L2‖Pλ3h‖L2

which is proved in the same manner as (9.9). ��
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These lemmas now imply Proposition 9.2. Indeed, we express the cosine-
map in (9.7) in the form

R− 1
2 (cos(2ε̃R− 1

2 ) − 1) = R− 3
2 ε̃2q(R−1ε̃2) q entire.

The first factor is bounded by

‖R− 3
2 ε̃2‖Hα

ρ
� ‖ε̃‖2

H
α+ 1

2
ρ

while for q we use its Taylor series together with Lemma 9.6, which shows
that as a multiplication operator the factor R−1ε̃2 can be bounded by

‖R−1ε̃2‖Hα
ρ →Hα

ρ
� ‖ε̃‖2

H
α+ 1

2
ρ

.(9.13)

Similarly, we write the sine-map from (9.8) in the form

R− 3
2 (sin(2ε̃R− 1

2 ) − 2ε̃R− 1
2 ) = R−3ε̃3q(R−1ε̃2).

For the first factor we apply Lemma 9.5 twice to estimate

‖R−3ε̃3‖Hα
ρ
� ‖R− 3

2 ε̃2‖
H

α+ 1
4

ρ

‖ε̃‖
H

α+ 1
2

ρ

� ‖ε̃‖3

H
α+ 1

2
ρ

while for the q factor we use again (9.13).

10. Proof of the main theorem

Here we summarize how to assemble together the elements of the proof.
Fixing ν > 1

2 we begin with the approximate solution u2k−1 given by
Theorem 3.1 and with the corresponding error e2k−1. The index k is chosen
sufficiently large, depending on ν. A priori both u2k−1 and e2k−1 are defined
only inside the cone {r ≤ t}. We can extend them to functions with similar
regularity supported in a double cone {r ≤ 2t}. This extension is done
crudely, without any reference to the equation but ensuring the matching on
the cone for all derivatives which are meaningful.

With these choices for u2k−1 and e2k−1 we seek to solve (4.2) backward
in τ and find a solution ε̃ so that

(10.1) ‖ε̃(τ)‖
H

α+ 1
2

ρ

� τ2−N ,

∥∥∥∥
(

∂τ + λτ

λ
R∂R

)
ε̃(τ)

∥∥∥∥
Hα

ρ

� τ1−N , N ≤ 2k.

Here the exponent α is chosen so that

1

4
< α <

ν

2
.
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To establish the bounds (10.1) it will be necessary to compare the Sobolev
spaces Hα

ρ with the usual ones Hβ(R2). For this we define the map

u(R) �→ Tu(R, θ) = eiθ R− 1
2 u(R)

where the right hand side is interpreted as a function in R2 expressed in
polar coordinates (R, θ). It is easy to see that this is an isometry

T : L2(R+) → L2(R2).

Then for the corresponding Sobolev spaces we have

Lemma 10.1. For any α ≥ 0 we have

‖u‖Hα/2
ρ (R+)

� ‖Tu‖Hα(R2)

in the sense that if one side is finite then the other is finite and they have
comparable sizes.

Proof. The spaces Hβ
ρ (R+) are defined using fractional powers of the oper-

ator L. However, we can also define them using fractional powers of the
operator L0 since the difference L−L0 is bounded in L2 and also in any Hβ

ρ .
This is easily seen if β is an integer, and for noninteger values it follows by
interpolation.

Then the conclusion of the lemma follows from the identity

∆Tu = TL0u

which is valid whenever u ∈ L2 and L0u ∈ L2. ��
We now return to (10.1). The bound from below for α is solely dictated

by estimates for the cubic term in the nonlinearity. The bound from above
for α is a consequence of the regularity of e2k−1; on the one hand, e2k−1 has
a singularity of type (1−a)ν− 1

2 logm(1−a) on the cone a = 1 which means
that locally around r = t we have e2k−1 ∈ Hβ as long as β < ν. On the
other hand,

t2e2k−1 ∈ 1

(tλ)2k
IS1(R(log R)2k−1,Q′

k−1

)

in the notation of Sect. 3. The S1 here means that around R = 0 one has an
expansion of the form

T
(
R

1
2 e2k−1

) = eiθ R
(
c0(τ) + c1(τ)R2 + c2(τ)R4 + · · · )

which is smooth around R = 0. Finally, taking the size of the error into
account, viz.

e2k−1 = O

(
R(log(2 + R))2k−1

t2(tλ)2k

)
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we conclude that for all α < ν/2,
∥∥λ−2 R

1
2 e2k−1(t(τ), λ

−1 R)
∥∥

Hα
ρ
� τ−2k+2.

Using the transference identity we recast (4.2) for ε̃ in the form (7.1) with
x = F ε̃. By virtue of Propositions 7.1, 7.3 and 6.2 we can solve (7.1) using
the contraction principle with respect to the norm

‖x‖
L∞,N−2 L

2,α+ 1
2

ρ

+
∥∥∥∥
(

∂τ − 2
λτ

λ
ξ∂ξ

)
x

∥∥∥∥
L∞,N−1 L2,α

ρ

.

Using again the transference identity and Proposition 6.2 we return back to ε̃,
which has the regularity (10.1). In order to return to the original coordinates
(t, r) as well as the function ε(t, r) we use Lemma 10.1. In fact, to pass
from u(τ, R), or alternatively u(t, r), to the co-rotational wave map in terms
of the ambient coordinates of R3 ⊃ S2, observe that these coordinates are
given by φ ◦ T(u), where φ : R2 → S2 ⊂ R3 is given by

φ(veiθ ) = (cos v, sin v cos θ, sin v sin θ).

It is then easily seen that φ ◦ T(u) ∈ H2α+1(R2), interpreted component-
wise. We have now constructed a wave map on the cone r ≤ t, 0 < t < t0,
which is of class H1+ν− on the closure of the cone. To get a solution
on all of R2+1, extend the solution ∂tu(t0, · ), u(t0, · ) at time t = t0 to
all of R2 within the same smoothness and equivariance class. Call the
corresponding wave map ũ(t, r). We claim that this wave map extends to
(0, t0] × R2 and is of class H1+ν− until breakdown at time t = 0. Indeed,
by finite propagation speed ũ(t, r) is given by u(t, r) on the light cone
r ≤ t, 0 < t ≤ t0. Furthermore, the ũ does not develop singularities on
the interval 0 < t < t0, as this could only happen outside the light cone,
where energy concentration is precluded by the equivariance condition. The
fact that singularity formation is tantamount to an energy concentration
scenario is a consequence of [24,25,29,32]. This concludes the proof of
Theorem 1.1.
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