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Abstract. The McKay conjecture asserts that for every finite group G and
every prime p, the number of irreducible characters of G having p′-degree
is equal to the number of such characters of the normalizer of a Sylow
p-subgroup of G. Although this has been confirmed for large numbers
of groups, including, for example, all solvable groups and all symmetric
groups, no general proof has yet been found. In this paper, we reduce
the McKay conjecture to a question about simple groups. We give a list
of conditions that we hope all simple groups will satisfy, and we show
that the McKay conjecture will hold for a finite group G if every simple
group involved in G satisfies these conditions. Also, we establish that our
conditions are satisfied for the simple groups PSL2(q) for all prime powers
q ≥ 4, and for the Suzuki groups Sz(q) and Ree groups R(q), where
q = 2e or q = 3e respectively, and e > 1 is odd. Since our conditions are
also satisfied by the sporadic simple group J1, it follows that the McKay
conjecture holds (for all primes p) for every finite group having an abelian
Sylow 2-subgroup.

1. Introduction

As usual, we write Irr(G) to denote the set of irreducible (complex) charac-
ters of a finite group G. Also, if p is a prime number, we write Irrp′(G) for
the set of those characters in Irr(G) whose degree is not divisible by p. The
well known McKay conjecture asserts that if G is an arbitrary finite group
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and p is any prime, then |Irrp′(G)| = |Irrp′(N)|, where N is the normalizer
in G of a Sylow p-subgroup of G.

The McKay conjecture is known to be true for all solvable groups (for
all primes) and for all p-solvable groups (for the prime p). In addition,
it is known to be true (for all primes) for symmetric groups, general linear
groups, sporadic simple groups and various other classes of simple or almost
simple groups.

Since the conjecture is completely general, it is natural to hope that some
argument might exist that would prove it for all groups simultaneously, but
unfortunately, no one seems to have an inkling of how such a proof might
proceed. Failing that, one could try to reduce the problem to a question about
simple groups, which could then, in principle, be settled on a case-by-case
basis. Indeed, in the early 1990s, E.C. Dade, announced that he had found
such a reduction.

In [3] and [4], Dade proposed a series of conjectures that relate the
irreducible character degrees of a group G with those of certain of its
p-local subgroups. One of these, Dade’s “projective conjecture”, implies
the McKay conjecture (and also much more). Dade asserted that the most
“complex and delicate” of his conjectures, the “final conjecture” has the
property that if it holds for all simple groups, then it automatically holds
for arbitrary finite groups. Since Dade’s final conjecture is a refinement of
his projective conjecture, it too implies McKay. If Dade is correct, there-
fore, and it really does suffice to check the final conjecture for simple
groups, this provides a potential route toward a proof of the McKay con-
jecture: check the final conjecture for all simple groups. Unfortunately, no
proof seems to have been published that establishes Dade’s assertion that
it suffices to check the final conjecture for simple groups only. Also, it
seems that checking Dade’s final conjecture for simple groups is a daunting
task.

For Dade’s projective conjecture, however, there has been progress to-
ward a reduction to simple groups. Although a full reduction has not been
attained, G.R. Robinson and C.W. Eaton have shown that in a minimal
counterexample, the Fitting subgroup would be central, and there would be
a single conjugacy class of components. (See [18] and [6].)

Our goal in this paper is somewhat more modest: we present a reduction
to simple groups that is specifically tailored to the McKay conjecture.
Although much work remains to be done in order to establish that every
nonabelian simple group satisfies our conditions for every prime, we do
show that these conditions are met for all of the following simple groups:
PSL2(q), where q is any prime power exceeding 3; the Suzuki simple groups
Sz(2e), and the Ree groups R(3e), where in the latter two cases, of course,
e must be odd and at least 3.

Our conditions are fairly complex; they involve automorphism groups
and perfect central extensions, and not just the simple group itself. (We men-
tion the analogy with another of Dade’s conjectures, his “invariant conjec-
ture”, which refines the projective conjecture to give compatibility with
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automorphisms.) Of course, for each isomorphism type of simple group,
there are only finitely many perfect central extensions, and so there are just
finitely many things to check.

We certainly do not claim that to establish the McKay conjecture in
general, it suffices to check it for simple groups. Nevertheless, we shall
see in Lemma 10.3 that if a simple group X has a trivial Schur multiplier
and a trivial outer automorphism group, then X automatically satisfies our
conditions if the McKay conjecture holds for X. In particular, Lemma 10.3
applies to the simple group J1, which therefore satisfies our conditions. (It is
well known that J1 has trivial Schur multiplier and trivial outer automorph-
ism group, and by [24], the McKay conjecture holds for all sporadic simple
groups, including J1.) Our conditions, therefore, hold for every simple group
that has an abelian Sylow 2-subgroup since by [23], the only such groups
are J1, the groups R(3e), and certain of the groups PSL2(q). This enables us
to prove the following.

Theorem A. Let G be a group with the property that each nonabelian
composition factor is either of the form PSL2(q) or is one of the Suzuki
groups Sz(q) or Ree groups R(q) mentioned above. Then the McKay con-
jecture holds in G for all primes p. Also, the McKay conjecture holds for
all primes p for all finite groups that have an abelian Sylow 2-subgroup.

The statement of Theorem A may be somewhat misleading because in
general, it is not sufficient to check composition factors. To establish the
McKay conjecture for a group G, we require that every nonabelian simple
group involved in G should satisfy our conditions. (Recall that a group X
is said to be “involved” in G if there exist subgroups H � K ⊆ G such
that K/H ∼= X.) But each simple group involved in G is involved in some
composition factor of G, and since all nonabelian simple groups involved
in any of the groups in the above list are also in the list, it is enough to check
composition factors in Theorem A.

Given a prime p, we describe (in Sect. 10) a list of conditions that
a nonabelian simple group X of order divisible by p must satisfy in order
to qualify as being “good” for the prime p. We establish the following
Theorem B, and then, once we show that the simple groups we listed
previously are good for all primes that divide their orders, Theorem A is an
immediate consequence.

Theorem B. Fix a prime p and let G be a finite group. Suppose that every
nonabelian simple group that is involved in G and has order divisible by p
is good for p. Then the McKay conjecture holds in G for the prime p.

Of course, Theorem B includes the fact that the McKay conjecture
is valid for the prime p in a p-solvable group, but we do not give an
independent proof of this. Indeed, as we shall see, our proof of Theorem B
relies on a strong form (due to T.R. Wolf) of the p-solvable case of the
McKay conjecture.
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A number of generalizations of the McKay conjecture have been pro-
posed. The earliest of these was due to Alperin [1], who suggested
a block-theoretic version. This Alperin–McKay conjecture is also a con-
sequence of Dade’s projective conjecture, and it too is known to hold in
many cases, including p-solvable groups. (See [17].)

More recently, Isaacs and Navarro [11] proposed a refinement of the
McKay conjecture that subdivides each of the sets Irrp′(G) and Irrp′(N) into
(p − 1)/2 subsets depending on the degrees of the characters modulo p.
The refined conjecture then asserts that the cardinalities of the correspond-
ing subsets of Irrp′(G) and Irrp′(N) are equal. More recently still, Navarro
proposed [16] a version of the McKay conjecture involving Galois auto-
morphisms, and Turull [21] has refined that to a statement involving fields
of character values and Schur indices. But for the purpose of this paper, we
ignore all of that and we revert to the basic McKay conjecture that we stated
earlier. We would expect, however, that methods similar to those we present
here might also reduce some of these refinements to questions about simple
groups.

But there is one refinement of the McKay conjecture that we do not want
to ignore. Indeed, it is the key to our inductive argument. Given L � G and
a character ν ∈ Irr(L), we write Irr(G|ν) to denote the set of characters
χ ∈ Irr(G) that lie over ν. (This means that ν is a constituent of the
restriction χL .) Of course, Irrp′(G|ν) is the set of these characters that have
p′-degree.

Conjecture C (Relative McKay). Let L � G and fix a prime p. Choose
P/L ∈ Sylp(G/L) and suppose that ν ∈ Irr(L) is P-invariant. Then if
N = NG(P), we have |Irrp′(G|ν)| = |Irrp′(N|ν)|.

Of course, we can recover the original McKay conjecture from this
relative version by taking L = 1 (and ν the principal character of L). It
is known that the relative McKay conjecture is valid if G is p-solvable.
(See Theorem 1.14 of Wolf’s paper [25].) Our main result extends Wolf’s
theorem by showing that Conjecture C holds if every nonabelian simple
group that has order divisible by p and is involved in G/L is good for p.

In order to outline the two key steps in our argument, suppose that we
are in the situation of Conjecture C and that all nonabelian simple groups
involved in G/L are good for p. Our first major reduction proceeds by
induction on |G/L|. Appealing repeatedly to the inductive hypothesis, we
show that we can assume L is a central, cyclic p′-group and that G/L has
a unique minimal normal subgroup K/L , where K/L is nonabelian and has
order divisible by p. In this situation, of course, L = Z(G) and K/L is
a direct product of isomorphic simple groups. Also, these simple factors
have order divisible by p, and by hypothesis, they are good for p. In other
words, the first reduction brings us to the following situation. (We mention
that a result related to our first reduction has recently been published by
M. Murai [15].)
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Hypothesis D. Let X be a nonabelian simple group of order divisible by p,
and let Z(G) ⊆ K � G, where Z(G) is a cyclic p′-group and K/Z(G) is
a direct product of isomorphic copies of X.

The second, and more technical step is summarized in the following
theorem.

Theorem E. Fix a prime p and assume Hypothesis D, where the simple
group X is good for p. Let Q ∈ Sylp(K ) and fix a faithful linear character ν
of Z(G). Then there exists a subgroup M of G and a mapping ( )∗ of
characters such that the following hold.
(a) NG(Q) ⊆ M < G.
(b) θ �→ θ∗ is a bijection from Irrp′(K |ν) onto Irrp′((K ∩ M)|ν), and ( )∗ de-

fines an isomorphism of the permutation actions of M on these two sets.
(c) |Irrp′(G|θ)| = |Irrp′(M|θ∗)| for all characters θ ∈ Irrp′(K |ν).

The organization of this paper is as follows. In Sect. 2, we temporarily
set aside the definition of a good simple group and consider instead the
class X of nonabelian simple groups X (of order divisible by p) for which
the conclusion of Theorem E is valid. (Theorem E can thus be paraphrased
as “every good simple group lies in X”.) We then prove that Conjecture C
holds if every nonabelian simple group involved in G/L and having order
divisible by p lies in X. In particular, this proves a version of Theorem B,
where the condition that the relevant simple groups are “good” is replaced
by the assumption that they lie in X. To complete the proof of Theorem B,
therefore, it remains to show that all good simple groups actually do lie
in X, and this is the content of Theorem E.

In Sect. 3 through 9, we develop some facts about factor sets and co-
homology elements associated with invariant irreducible characters of nor-
mal subgroups of a group G. (Some of this material, especially in Sect. 3,
is known.) In Sect. 10, we end the mystery and define what it means for
a simple group X to be good for a prime p. Then in Sects. 11, 12 and 13, we
prove a somewhat more general form of Theorem E, thereby establishing
that all good simple groups are in the class X. (The point here is that it
suffices to check only finitely many things to establish that a simple group
X is good, while it is not clear how one might establish directly that X lies
in X.) In Sect. 14, we prove a fairly elementary lemma about Schur mul-
tipliers of certain groups constructed from fields and Galois groups. Then
finally, in Sects. 15, 16 and 17, we show that the simple groups PSL2(q),
Sz(2e) and R(3e) are good for all primes that divide their orders, and this
establishes Theorem A.

We mention that since the final sections of this paper were written, the
second author has proved that all alternating and sporadic simple groups are
good for all primes, as are all simple groups of Lie type with exceptional
Schur multipliers. (See [13].) Furthermore, considerable progress has been
made toward proving that all simple groups of Lie type are good for all
non-defining primes. (See the work of Malle [14] and B. Späth [19].)



38 I.M. Isaacs et al.

2. The first reduction

Fix a prime p. In this section, we assume Theorem E and use it to prove
the relative McKay conjecture (Conjecture C) for the prime p. To be more
precise, recall that we have defined X to be the class of all nonabelian simple
groups of order divisible by p for which the conclusion of Theorem E is
valid. We prove the following:

(2.1) Theorem. Let L � G and assume that every nonabelian simple group
involved in G/L and of order divisible by p lies in the class X. Let P/L ∈
Sylp(G/L) and suppose that ν ∈ Irr(L) is P-invariant. Then |Irrp′(G|ν)| =
|Irrp′(N|ν)|, where N = NG(P).

Proof. We proceed in a number of steps, working by induction on |G/L|.
Step 1. We can assume that ν is G-invariant.

Proof. Let T = Gν be the stabilizer of ν in G. By hypothesis, P ⊆ T ,
and thus |G : T | and |N : N ∩ T | are not divisible by p. By the Clifford
correspondence, we know that induction defines bijections Irr(T |ν) →
Irr(G|ν) and Irr((T ∩ N)|ν) → Irr(N|ν), and since the indices of T in G
and T ∩ N in N are p′-numbers, we see that |Irrp′(G|ν)| = |Irrp′(T |ν)|
and |Irrp′(N|ν)| = |Irrp′((N ∩ T )|ν)|. If T < G, the inductive hypothesis
guarantees that |Irrp′(T |ν)| = |Irrp′((T ∩ N)|ν)|, and the result follows. We
can thus assume that T = G, as claimed.

Step 2. We can assume that L ⊆ Z(G), that L is a p′-group and that ν is
faithful.

Proof. First, observe that if each character in Irr(P|ν) has degree divisible
by p, then the same is true about the sets Irr(G|ν) and Irr(N|ν), and thus
|Irrp′(G|ν)| = 0 = |Irrp′(N|ν)|, and there is nothing further to prove. We
can assume, therefore, that some member of Irr(P|ν) has p′-degree. In
particular, ν(1) is not divisible by p.

By standard facts about character triples as in [9], the triple (G, L, ν) is
isomorphic to a triple (G∗, L∗, ν∗), where L∗ ⊆ Z(G∗) and ν∗ ∈ Irr(L∗)
is faithful. In particular, G/L ∼= G∗/L∗, and we let P∗/L∗ and N∗/L∗ be
the subgroups of G∗/L∗ corresponding to P/L and N/L respectively. Then
P∗/L∗ is a Sylow p-subgroup of G∗/L∗ and since N/L = NG/L(P/L), it
follows that N∗/L∗ = NG∗/L∗(P∗/L∗), and we have N∗ = NG∗(P∗). The
original hypotheses on G, N, P and L , therefore, are reproduced with the
corresponding subgroups in G∗.

By the definition of an isomorphism of character triples, we have bijec-
tions Irr(G|ν) → Irr(G∗|ν∗) and Irr(N|ν) → Irr(N∗|ν∗). Also, we know
that if θ and θ∗ are characters that correspond under either of these bijections,
then θ(1)/ν(1) = θ∗(1)/ν∗(1) = θ∗(1). Since p does not divide ν(1), we
conclude that |Irrp′(G|ν)| = |Irrp′(G∗|ν∗)| and |Irrp′(N|ν)| = |Irrp′(N∗|ν∗)|.
It therefore suffices to prove the theorem with G∗ replacing G, and so we
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can assume that L ⊆ Z(G) and that the linear character ν ∈ Irr(L) is
faithful. It remains to be shown that we can assume that |L| is a p′-number.

We are assuming that there exists a character α ∈ Irr(P|ν) having p′-
degree. Since |P/L| is a p-group and L is abelian, α must have p-power
degree, and thus α is linear and ν extends to P. Now write ν = µλ, where µ
has p′-order and λ has p-power order in the group of linear characters of L .
Then λ is a power of ν, and hence λ extends to P. But P/L is a full Sylow
p-subgroup of G/L and λ has p-power order, and thus λ has an exten-
sion τ ∈ Irr(G). (See, for example, Theorem 6.26 of [9].)

Multiplication by τ−1 defines a bijection Irrp′(G|ν) → Irrp′(G|µ) and
similarly, multiplication by (τN )−1 defines a bijection Irrp′(N|ν) →
Irrp′(N|µ). In this case, we see that it suffices to prove the theorem with µ
in place of ν, and with L/ker(µ) in place of L . Since |L/ker(µ)| = o(µ) is
a p′-number, the proof of Step 2 is complete.

Step 3. We can assume that G/L has a unique minimal normal subgroup
K/L and that K P � G. Also, L = Z(G) and K/L is nonabelian and has
order divisible by p.

Proof. We can certainly assume that L < G, and we fix a minimal normal
subgroup K/L of G/L . Write S = K P and M = NG(S), and assume
that M < G. Since N ⊆ M, the inductive hypothesis yields |Irrp′(M|ν)| =
|Irrp′(N|ν)|, and so it suffices to prove that |Irrp′(G|ν)| = |Irrp′(M|ν)|.

Observe that S permutes the set Irrp′(K |ν), and that M permutes the
subset of this set consisting of the S-invariant members. Now let χ ∈
Irrp′(G|ν), and note that the irreducible constituents of χK lie in Irrp′(K |ν),
and similarly, if ψ ∈ Irrp′(M|ν), the irreducible constituents of ψK lie
in Irrp′(K |ν). We argue that both χK and ψK have S-invariant irreducible
constituents and that, in fact, the set of S-invariant irreducible constituents
of each of these characters forms a single M-orbit. (Of course, the latter
statement is clear for ψ since ψ ∈ Irr(M), and so it requires proof only
for χ.)

Since S/K is a p-group and K acts trivially on Irrp′(K |ν), it follows
that all orbits in the action of S on Irrp′(K |ν) have p-power size. But the
S-invariant characters χK and ψK have p′-degree, and so we see that each of
them must have some S-invariant irreducible constituent. Suppose now that
θ and θ ′ are S-invariant constituents of χK . Then θ ′ = θg for some element
g ∈ G, and thus both S and Sg are contained in the stabilizer T of θ ′ in G.
Since S/K is a Sylow subgroup of T/K , it follows that Sgt = S for some
element t ∈ T . Then gt ∈ M and θ ′ = θgt , and thus θ ′ and θ lie in the same
M-orbit, as claimed.

Now let ∆ be a set of representatives for the M-orbits of S-invariant
characters in Irrp′(K |ν). We have seen that each member of Irrp′(G|ν) and
of Irrp′(M|ν) lies over a unique member of ∆. It follows that

|Irrp′(G|ν)| =
∑

δ∈∆

|Irrp′(G|δ)| and |Irrp′(M|ν)| =
∑

δ∈∆

|Irrp′(M|δ)|.
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But |G/K | < |G/L|, and so we can apply the inductive hypothesis with K ,
S and δ in place of L , P and ν to conclude that |Irrp′(G|δ)| = |Irrp′(M|δ)|
for each character δ ∈ ∆. The result follows in this case, and so we can
assume that M = G. Then S � G, and in particular, G/K is p-solvable.

Since we are done in the case that G/L has a minimal normal subgroup
K/L such that G/K fails to be p-solvable, we can assume that every factor
group of G/L by a minimal normal subgroup is p-solvable. On the other
hand, if G/L is p-solvable, we know that |Irrp′(G|ν)| = |Irrp′(N|ν)| by
Wolf’s theorem [25]. We can thus assume that G/L is not p-solvable, and
hence it has a unique minimal normal subgroup K/L . Also, K/L is not
p-solvable, and so it is not abelian, and its order is divisible by p. Finally,
Z(G) contains L and is normal in G, but it does not contain K since K/L
is nonabelian. Then Z(G) = L , as required.

At this point, we know that L = Z(G) is a cyclic p′-group with a faithful
linear character ν. Also, K/L is a direct product of isomorphic simple
groups in the class X. Since P/L ∈ Sylp(G/L), we see that we can write
P ∩ K = L × Q, where Q ∈ Sylp(K ), and thus N ⊆ NG(Q). By definition
of the class X, we know that there exists a subgroup M and a character
map ( )∗ satisfying Conditions (a)–(c) of Theorem E.

Now L ⊆ N ⊆ NG(Q) ⊆ M < G, and so by the inductive hypoth-
esis, we have |Irrp′(M|ν)| = |Irrp′(N|ν)|. Since KNG(Q) = G, we have
KM = G, and we see that if we let ∆ be a set of representatives for the
M-orbits on Irrp′(K |ν), then each member of Irrp′(G|ν) lies over a unique
member of ∆. Also, since ( )∗ defines an M-permutation isomorphism, it
follows that ∆∗ = {θ∗ | θ ∈ ∆} is a set of representatives for the M-orbits
on Irrp′((K ∩ M)|ν), and so each member of Irrp′(M|ν) lies over a unique
member of ∆∗. Finally, we have

|Irrp′(G|ν)| =
∑

θ∈∆

|Irrp′(G|θ)| =
∑

θ∈∆

|Irrp′(N|θ∗)|

= |Irrp′(M|ν)| = |Irrp′(N|ν)|,
where the second equality follows by Condition (c) of Theorem E. The
result now follows. ��

3. Factor sets

We begin work now toward the definition of “good” simple groups and
the proof of Theorem E. In this section we review some basic material
about projective representations, factor sets and cohomology elements; we
establish the notation that will be needed for the more technical material
that follows, and we prove some preliminary results.

Let K � G, and suppose that θ ∈ Irr(K ) is G-invariant. As is well
known, θ determines a unique element in the Schur multiplier M(G/K ) =
H2(G/K,C×), and we write [θ]G/K to denote this cohomology element. The
element [θ]G/K , together with information about the group G/K , determines
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the number of characters χ ∈ Irr(G|θ) for which the degree ratio χ(1)/θ(1)
is any given integer, and in particular if θ(1) is a p′-number, then [θ]G/K
determines |Irrp′(G|θ)|.

The usual approach to defining the cohomology element [θ]G/K is to start
with a representation of K affording θ and to extend it to an appropriate pro-
jective representation of G. This projective representation is associated with
a certain factor set (i.e. 2-cocycle), which is a complex-valued function f
defined on G × G and satisfying f(x, y) f(xy, z) = f(x, yz) f(y, z) for all
elements x, y, z ∈ G. It is possible to choose the projective representation
so that the factor set is constant on cosets of K in each variable, and thus it
defines a factor set of G/K . The corresponding element of H2(G/K,C×)
is [θ]G/K . (See, for example, Chapter 11 of [9].)

For our purposes, it is more convenient to carry out the construction in
the language of modules. But since the phrase “projective module” is taken,
we will define a quasimodule to be the module analog of a projective
representation. Specifically, if G is any group and V is a C-space, we say
that V is a G-quasimodule if for each element g ∈ G, there is an invertible
linear operator v �→ v . g defined on V such that for s, t ∈ G, we have
(v . s) . t = f(s, t)v . (st) for some (nonzero) scalar f(s, t). In this situation,
it is easy to see that the function f : G × G → C is a factor set, and we say
that the dot map is a quasiaction of G on V .

Now let K � G and suppose that the dot action of K on the G-
quasimodule V makes V into a genuine K -module. (When this happens,
we write vk in place of v . k for v ∈ V and k ∈ K .) Assume in addition that

(1) (vk) . g = v . (kg) and
(2) (v . g)k = v . (gk).

In this situation, we say that the G-quasimodule V is well behaved with
respect to the normal subgroup K , and we refer to it as a well behaved
quasiextension of the K -module V . Note that if f is the factor set associated
with a G-quasimodule V , then V is well behaved with respect to K � G if
and only if f(k, g) = 1 = f(g, k) for all k ∈ K and g ∈ G. The significance
of this is apparent in the following.

(3.1) Lemma. Let K � G and let f be a factor set of G such that f(k, g) =
1 = f(g, k) for all k ∈ K and g ∈ G. Then f(kx, ly) = f(x, y) for all
k, l ∈ K and x, y ∈ G. In other words, f is constant on cosets of K, and
hence it defines a factor set on the group G/K.

Proof. It suffices to show that f(kx, y) = f(x, y) and f(x, yk) = f(x, y)
for all x, y ∈ G and k ∈ K . Since f(k, x) = 1 = f(k, xy), we have

f(kx, y) = f(k, x) f(kx, y) = f(k, xy) f(x, y) = f(x, y),

as wanted. Similarly,

f(x, yk) = f(x, yk) f(y, k) = f(xy, k) f(x, y) = f(x, y),

and the proof is complete. ��
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Now let V be a quasimodule for G that is well behaved with respect
to K � G. Let g ∈ G and write σ to denote the linear operator on V defined
by v �→ v . g, for v ∈ V . Then

v(gkg−1)σ = (v(gkg−1)) . g = v . (gkg−1g)

= v . (gk) = (v . g)k = (vσ)k,

where the second and fourth equalities follow from the assumption that V
is well behaved with respect to K . This calculation motivates the following
definition.

If K � G and V is a K -module, we shall say that an invertible linear
operator σ : V → V is compatible with an element g in G (with respect
to K ) if

v(gkg−1)σ = (vσ)k

for all k ∈ K and v ∈ V . Note that to test whether or not σ : V → V is
compatible with g, it suffices to know the automorphism of K induced by g;
the actual element g is irrelevant.

Our calculation shows that if V is a G-quasimodule that is well behaved
with respect to K � G, then the dot-action of each element g ∈ G on V is
compatible with g with respect to K . To construct a well behaved quasiex-
tension of a given K -module V , therefore, it is necessary that we find for
each element g ∈ G, a linear operator on V that is compatible with g with
respect to K .

(3.2) Lemma. Let V be a K-module, where K � G, and let σ, τ : V → V.

(a) If σ is compatible with s ∈ G, then σ−1 is compatible with s−1.
(b) If σ and τ are compatible respectively with s, t ∈ G, then στ is com-

patible with st.
(c) If V is irreducible as a K-module and σ and τ are both compatible with

s ∈ G, then τ = ασ for some nonzero scalar α.

Proof. If σ is compatible with s, we have v(sks−1)σ = vσk for all k ∈ K
and v ∈ V . We can rewrite this by substituting k for sks−1 and v for vσ , and
we obtain (vσ−1)kσ = v(s−1ks). Then v(s−1ks)σ−1 = vσ−1k, and so σ−1

is compatible with s−1, proving (a).
In situation (b), we have

v(stkt−1s−1)στ = vσ(tkt−1)τ = vστk,

where the first equality is valid since σ is compatible with s and the second
holds because τ is compatible with t. This proves that στ is compatible
with st, as wanted.

Finally, for (c), we assume that σ and τ are both compatible with s.
Then τ−1 is compatible with s−1 by (a), and we deduce from (b) that στ−1 is
compatible with 1 ∈ G. In other words, στ−1 commutes with the action of K
on the irreducible K -module V , and thus στ−1 is a scalar multiplication.

��
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Return now to the situation where K � G and θ ∈ Irr(K ) is G-invariant,
and let V be a K -module affording θ. Our goal is to construct a well behaved
quasiextension of the K -module V . In other words, we want a quasiaction
of G on V that extends the K -action and that is well behaved with respect
to K . (We shall consistently abuse language in this context and refer to V
as a quasiextension of the character θ.)

Given x ∈ G, the maps v �→ v(xkx−1) for k ∈ K make V into a K -
module affording the character θx = θ. There is thus an invertible linear
operator σ : V → V that defines an isomorphism between these K -module
structures on V . In other words, we have v(xkx−1)σ = vσk for all k ∈ K and
v ∈ V , and thus σ is compatible with x on V . This shows that compatible
operators exist for all elements x ∈ G.

For each element x ∈ G, fix a compatible operator σx on V . Then σxy is
compatible with xy for all x, y ∈ G, and by Lemma 3.2(b), so too is σxσy.
By Lemma 3.2(c), it follows that σxσy = f(x, y)σxy for some nonzero-
scalar-valued function f . If we now define v . x = vσx for all x ∈ G, we
see that this defines a quasiaction of G on V . Our task now is to choose the
linear operators σx so that the resulting quasiaction will be well behaved
with respect to K .

If σ : V → V is a linear operator and k ∈ K , write kσ to denote the
operator v �→ (vk)σ and σk for the operator v �→ (vσ)k. Since the map
v �→ vk is clearly compatible with k, it follows from Lemma 3.2(b) that
if σ is compatible with g ∈ G, then kσ is compatible with kg and σk is
compatible with gk.

Now fix a transversal T for the cosets of K in G. (Here and whenever
we choose a coset transversal, we will always assume that it contains the
identity element.) For each element t ∈ T , choose an invertible linear
operator σt on V compatible with t, and do this so that σ1 is the identity
map. Now if g ∈ G, we can write g = kt, with k ∈ K and t ∈ T . Because
this decomposition is unique, we can define v . g = (vk)σt .

(3.3) Corollary. The above construction defines a well behaved quasiex-
tension of θ to G.

Proof. Since the linear operator σg = kσt is compatible with g = kt for
all g ∈ G, we know that the map v �→ v . g = vσg makes V into a G-
quasimodule. Also, since 1 ∈ T and σ1 is the identity, the quasiaction of G
on V extends the original action of K .

What remains is to show that (vl) . g = v . (lg) and (v . g)l = v . (gl)
for all g ∈ G and l ∈ K . Writing g = kt, as before, we have lg = lkt, and
thus

v . (lg) = v(lk)σt = (vl) . (kt) = (vl) . g,

as wanted. Finally, we have gl = ktl = k(tlt−1)t, and thus

v . (gl) = v(ktlt−1)σt = (vk)(tlt−1)σt = (vk)σtl = (v . g)l,
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where the third equality holds because σt is compatible with t. The proof is
now complete. ��

It follows now that the original K -module V affording the G-invariant
character θ has a well behaved quasiextension to G, with a factor set f
defined on G × G and satisfying f(g, k) = 1 = f(k, g) for all elements
k ∈ K and g ∈ G. Then f is constant on cosets of K , and thus it defines
a factor set of G/K . We define the cohomology element [θ]G/K to be the
cohomology class of G/K determined by f , when f is viewed as a factor
set of G/K . The following shows that [θ]G/K is well defined.

(3.4) Lemma. All well behaved quasiextensions of K-modules affording
the G-invariant character θ ∈ Irr(K ) yield the same cohomology element
of G/K.

Proof. Let V1 and V2 be well behaved quasiextensions of K -modules af-
fording θ. Then V1 and V2 are isomorphic as K -modules, and so we can
identify these spaces and assume that we have two quasiactions v . g and
v∗g of G on a single vector space V , where both quasiactions are well
behaved with respect to K , and so in particular, v . k = vk = v∗k for all
v ∈ V and k ∈ K .

We know that both maps v �→ v . g and v �→ v∗g are compatible with g.
Since V affords an irreducible character of K , it follows by Lemma 3.2(c)
that v∗g = α(g)v . g, for some scalar α(g), depending on g but not on v. It
is routine to check that the factor set f associated with the dot-action and
the factor set f ∗ associated with the star-action are related by the formula

f ∗(x, y) = α(x)α(y)

α(xy)
f(x, y),

and thus f and f ∗ are cohomologous as factor sets of G. To complete
the proof, we must show that f and f ∗ are cohomologous when they are
viewed as factor sets of G/K , and for this purpose, it suffices to show that α
is constant on cosets of K .

Using the fact that both quasiactions are well behaved with respect to K ,
we have

α(kg)v . (kg) = v∗(kg) = (vk)∗g = α(g)(vk) . g = α(g)v . (kg).

Thus α(kg) = α(g) and α is constant on cosets of K , as required. ��
Next, we present an observation that will allow us to compute the fac-

tor set f associated with a well behaved quasiextension of a K -module,
where K � G. Note that since f is constant on cosets of K , it suffices to
compute f(s, t), where s and t run over a transversal for the cosets of K
in G.

(3.5) Lemma. Let K � G and let V be a G-quasimodule that is well behaved
with respect to K. Fix a transversal T for K in G and let σt : V → V be
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the linear operator v �→ v . t for t ∈ T . Now given s, t ∈ T , write st = ku,
where k ∈ K and u ∈ T depend on s and t. Then

f(s, t)vkσu = vσsσt

for all v ∈ V.

Proof. By the definition of f , we know that

f(s, t)v . (st) = (v . s) . t = vσsσt.

and the result follows because v . (st) = v . (ku) = (vk) . u = vkσu . ��
Let K � G, as before. Suppose that N ⊆ G with KN = G, and let H =

K ∩ N. Let θ ∈ Irr(K ) and θ ′ ∈ Irr(H) be stabilized by N. (Note that θ
is N-invariant if and only if it is G-invariant.) In this situation, we have
cohomology elements [θ]G/K and [θ ′]N/H , which, of course, lie in different
cohomology groups. But G/K and N/H are naturally isomorphic, and so
we can identify their Schur multipliers via the natural map. It is therefore
meaningful to compare [θ]G/K and [θ ′]N/H , and in particular, we can ask
if these cohomology elements are equal. (Finding conditions where such
equality holds is the main goal of the next several sections of this paper.) Note
that if equality does hold, then there is a bijection from Irr(G|θ) to Irr(N|θ ′)
such that if χ and χ ′ correspond, we have χ(1)/θ(1) = χ ′(1)/θ ′(1).

An easy example where we have equality of cohomology elements is
the following, which we will use later.

(3.6) Lemma. Let K� G and suppose N ⊆ G and KN = G. Let θ ∈ Irr(K )
be G-invariant and suppose that θH = θ ′ is irreducible, where H = K ∩ N.
Then [θ]G/K = [θ ′]N/H .

Proof. Let V be a K -module affording θ and choose a well behaved quasiex-
tension to G, with factor set f . The restriction of the quasiaction of G to N
yields a well behaved quasiextension to N of V , where now we view V as
an H-module that affords θ ′. The restriction of f to N is a factor set f ′ of N
that is constant on cosets of H in N. Now view f as a factor set of G/K
and f ′ as a factor set of N/H .

The natural isomorphism from N/H to G/K maps a coset of H in N to
the coset of K in G that contains it. It follows that under this identification,
we have f = f ′, and thus [θ]G/K = [θ ′]N/H as wanted. ��

Suppose that V is a well behaved quasiextension to G of θ ∈ Irr(K ),
where K� G and θ is G-invariant. Let C ⊆ CG(K) and suppose c ∈ C. Since
the linear operator v �→ v . c on V is compatible with c and c centralizes K ,
we see that this operator commutes with the action of K on V . Because V
is irreducible as a K -module, it follows that v . c = ρ(c)v for some scalar
ρ(c) depending on c (but not on v).

We define the C-type of the quasimodule V to be an ordered pair
consisting of two complex-valued functions. The first of these is the
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function ρ : C → C that we have just defined. The second component of the
C-type of V is the function of two variables defined on (CK/K ) × (G/K )
and obtained by viewing the factor set f associated with V as being de-
fined on (G/K ) × (G/K ) and then restricting the first variable to the sub-
group CK/K . The C-type of a quasiextension of θ will play an important
role in what follows.

The following technical lemma will be useful.

(3.7) Lemma. Let K � G and C � G with [K, C] = 1, and let Z = K ∩ C,
so that Z ⊆ Z(K ). Let N ⊆ G such that KN = G and C ⊆ N, and
write H = K ∩ N. Let ν ∈ Irr(Z) and suppose that θ ∈ Irr(K ) and θ ′ ∈
Irr(H) both lie over ν. Assume that both θ and θ ′ are N-invariant, so that θ
is actually G-invariant. Then there exist well behaved quasiextensions V
and V ′ of θ and θ ′ to G and N such that V and V ′ have identical C-types.

Of course, for this to make sense, we must consider the factor set f for V
as defined on G/K and the factor set f ′ for V ′ as being defined on N/H ,
and then we must identify G/K = N/H via the natural isomorphism.

Proof. Let V and V ′ be modules affording θ and θ ′ on K and H respectively.
Choose a transversal R for Z = H ∩ C in C and a transversal S for HC
in N. Then the set T = RS is a transversal for H in N and also for K
in G. It suffices to construct quasiextensions of V and V ′ with factor sets
f and f ′ such that f(r, qs) = f ′(r, qs) for all elements r, q ∈ R and s ∈ S
and to check that each element c ∈ C acts via the same scalar on both V
and V ′.

To construct our quasiextensions, we choose for each element t ∈ T ,
a linear operator σt on V and a linear operator σ ′

t on V ′ such that σt and σ ′
t are

compatible with t with respect to K and H , respectively. Since the elements
of R centralize K and H , we see that every linear operator on V or V ′ that
is compatible with s ∈ S will also be compatible with rs for all r ∈ R.
We can thus choose our linear operators such that σrs = σs for all elements
r ∈ R and s ∈ S, and similarly for the operators σ ′ on V ′. (Recall that
we are assuming that 1 ∈ R so that S ⊆ T .) Also, we assume that 1 ∈ S
and that σ1 and σ ′

1 are identity maps, and thus σr and σ ′
r are identity maps

for all r ∈ R. These choices determine well behaved quasiextensions of θ
and θ ′ and we let f and f ′ be the corresponding factor sets of G and
of N.

Now let r, q ∈ R. We can then write rq = z p for elements z ∈ Z
and p ∈ R. If s ∈ S, we have r(qs) = z(ps), and hence by Lemma 3.5, we
have

f(r, qs)vzσps = vσrσqs.

But σr is the identity and σps = σs = σqs. Also, z acts on V via the sca-
lar ν(z). It follows that f(r, qs)ν(z)v = v, and thus f(r, qs) = ν(z)−1.
A similar calculation shows that f ′(r, qs) = ν(z)−1, and so f(r, qs) =
f ′(r, qs), as wanted.
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Now if c ∈ C is arbitrary, we can write c = zr for some element z ∈ Z
and r ∈ R. Then for v ∈ V , we have

v . c = v . zr = (vz) . r = ν(z)vσr = ν(z)v,

and thus ρ(c) = ν(z) for the quasimodule V . A similar calculation yields
the same result for V ′ and the proof is complete. ��

4. Factor set induction

Let G0 ⊆ G, where G is an arbitrary finite group, and fix a transversal T
for the right cosets of G0 in G. The action of G on the right cosets of G0
induces an action of G on T , and we indicate this action with a dot. If t ∈ T
and x ∈ G, therefore, then t . x is the unique element of T in the coset
(G0)tx. Of course, this is really an action, and so we have (t . x) . y = t . xy
for all elements t ∈ T and x, y ∈ G. Note also that tx(t . x)−1 is in G0 for
all t ∈ T and x ∈ G.

Now suppose that f is a factor set on G0. We define the induced
function f G on G × G by setting

f G(x, y) =
∏

t∈T

f(tx(t . x)−1, (t . x)y(t . xy)−1).

We will see that f G is a factor set on G, and that the map f �→ f G

defines a map on cohomology groups. Since this is really the standard
corestriction map, we should, perhaps, refer to f G as the “corestricted”
function associated with f . We will see, however, that there is a connection
between f G and tensor induction of modules, and so from our view, it seems
more natural to refer to f G as the “induced” function.

We show now that f G is a factor set of G. To see this, let x, y, z ∈ G and
write ut = tx(t . x)−1, vt = (t . x)y(t . xy)−1 and wt = (t . xy)z(t . xyz)−1.
Note that utvt = txy(t . xy)−1 and that vtwt = (t . x)yz(t . xyz)−1. We
compute

f G(x, y) f G(xy, z) =
∏

t∈T

f(ut, vt) f(utvt, wt)

=
∏

t∈T

f(ut, vtwt) f(vt, wt)

= f G(x, yz) f G(y, z),

and it follows that f G is a factor set on G, as claimed.
Suppose now that K � G with K ⊆ G0, and assume that f is constant

on cosets of K in G0. It follows easily that f G is constant on cosets of K
in G. In this situation, if we view f as a factor set on G0/K and we induce
to G/K using the image of the transversal T modulo K , the resulting factor
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set of G/K is just the factor set f G viewed as a factor set of G/K . In other
words, when f G is viewed as a factor set of G/K , it is equal to f G/K .

Now if g is another factor set of G0 that is cohomologous with f , we
claim that f G and gG are cohomologous as factor sets of G. To see this,
write f = gh, where h(u, v) = a(u)a(v)a(uv)−1 and a is some scalar-
valued function on G0. Clearly, then f G = gGhG . To compute hG , we
define

b(x) =
∏

t∈T

a(tx(t . x)−1)

for elements x ∈ G. We then have

hG(x, y) =
∏

t∈T

h(tx(t . x)−1, (t . x)y(t . xy)−1)

=
∏

t∈T

a(tx(t . x)−1)a((t . x)y(t . xy)−1)a(txy(t . xy)−1)−1

= b(x)b(y)b(xy)−1.

This shows that hG is cohomologously trivial, and thus f G and gG are
cohomologous, as claimed.

We mention also that if f is a factor set of G0 and we compute f G using
two different transversals for the right cosets of G0 in G, then the resulting
induced factor sets are cohomologous. But since we will not have occasion
to vary our choice of transversal, we will not actually need this observation.

Next, we generalize the process of tensor induction of modules to quasi-
modules. Suppose that K � G with K ⊆ G0, and let V be a G0-quasimodule
that is well behaved with respect to K and has factor set f . Assign an ar-
bitrary but fixed order to the members of the right transversal T of G0 in
G. We can then write T = {t1, t2, . . . , te}, where e = |T | = |G : G0|.
Write V ⊗G = V ⊗ V ⊗ · · · ⊗ V , where there are e factors. If a vector
vt ∈ V is selected for each element t ∈ T , we shall write

⊗
t∈T

vt to denote
the vector vt1 ⊗ vt2 ⊗ · · · ⊗ vte .

Now we make V ⊗G into a G-quasimodule by setting

( ⊗

t∈T

vt
) . g =

⊗

t∈T

wt,

where wt ∈ V is defined for all t ∈ T by the formula

wt . g = (vt) . (tg(t . g)−1).

(Note that for each element g ∈ G, this uniquely determines an invertible
linear operator on V ⊗G . We will show that what results is a quasiaction of G
on V ⊗G .) In the following computation we use dots to denote three different
things: the given quasiaction of G0 on V , the quasiaction of G on V ⊗G that
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we have just defined and the action of G on the transversal T , as before. We
trust that this will not cause too much confusion.

If x, y ∈ G, and vectors ut ∈ V are arbitrary, we compute ((
⊗

ut) . x) . y.
Write (

⊗
ut) . x = ⊗

vt and (
⊗

vt) . y = ⊗
wt . We then have

vt . x = (ut) . (tx(t . x)−1)

and

wt . y = (vt) . (ty(t . y)−1).

Substitute t . x for t in the latter equation to get

wt . xy = (vt . x) . ((t . x)y(t . xy)−1)

= (
(ut) . (tx(t . x)−1)

) . ((t . x)y(t . xy)−1)

= f(tx(t . x)−1, (t . x)y(t . xy)−1)ut . (txy(t . xy)−1).

On the other hand, the (t . xy)-factor of (
⊗

ut) . (xy) is ut . (txy(t . xy)−1).
It follows that

(( ⊗
ut

) . x
) . y =

∏

t∈T

f(tx(t . x)−1, (t . x)y(t . xy)−1)
( ⊗

ut
) . (xy).

We see now that this construction makes V ⊗G into a G-quasimodule with
factor set f G . We refer to this as the tensor-induced quasimodule.

Recall now that we have K � G with K ⊆ G0 and that the G0-quasi-
module V is well behaved with respect to K . If k ∈ K , then t . k = t,
and hence tk(t . k)−1 = tkt−1 ∈ K . It follows that f G(k, x) = 1 for all
x ∈ G, and similarly, f G(x, k) = 1 for all x ∈ G. We conclude that our G-
quasimodule V ⊗G is well behaved with respect to K . In particular, V ⊗G is
a K -module. Also, we see that if k ∈ K then

(⊗
ut

)
k =

⊗
ut(tkt−1),

and it follows that the character θ of K afforded by V ⊗G is exactly
∏
t∈T

βt ,
where β is the character of K afforded by V .

Finally, suppose that β and θ are irreducible characters of K , and let
C � G with C ⊆ CG0(K). Recall that the C-type of V consists of two
functions. One of these is simply the factor set f (viewed on G0/K ) with
the first variable restricted to elements of KC/K . The other component
of the C-type is the scalar-valued function ρ on C defined by the for-
mula v . c = ρ(c)v. Now to compute the C-type of f G , we let c ∈ C and
g ∈ G and we compute

f G(c, g) =
∏

t∈T

f(tc(t . c)−1, (t . c)g(t . cg)−1).
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But C � G and C ⊆ G0, and it follows that t . c = t for all t ∈ T . Also
tct−1 ∈ C, and so each factor in the above product is known if we know the
C-type of V . Also, since t . c = t for t ∈ T and c ∈ C, we see that

( ⊗
vt

) . c =
⊗(

vt . (tct−1)
)

and so c acts via the scalar
∏

t∈T ρ(tct−1). We have proved the following.

(4.1) Theorem. Let K � G and suppose that β ∈ Irr(K ) has stabilizer
G0 in G and that the product of the |G : G0| distinct G-conjugates of β
is a character θ ∈ Irr(K ). Let V be a well behaved quasiextension to G0
of a K-module affording β, and let f be the corresponding factor set. Fix
a transversal for the right cosets of G0 in G. Then V ⊗G is a well behaved
quasiextension of a K-module affording θ, and f G is the corresponding
factor set. Also if C� G centralizes K, then the C-type of V ⊗G is determined
by the C-type of V and the choice of transversal. ��

We stress that we have computed a specific factor set corresponding to
the tensor-induced quasimodule, and not just its cohomology class. This
will be significant in what follows.

5. Central products

In this short section, we review some known material. Suppose that K/Z(K )
is a direct product of nonabelian simple subgroups. (We saw this situation
in Sect. 1, but there, the simple factors were all isomorphic, which we are
not assuming now.) Write Z = Z(K ) and K/Z = ∏

Ui/Z, where the
product is direct and Ui/Z is simple for all subscripts i. If i �= j, we have
[Ui, Uj] ⊆ Ui ∩ Uj = Z, and thus [Ui, Uj, Uj] = 1. It follows by the three-
subgroups lemma that Ui centralizes (Uj)

′. Because Uj/Z is nonabelian and
simple, however, we have Uj = (Uj)

′Z, and thus Ui centralizes Uj .
Now consider a more general situation. Suppose that a group K is

a product of subgroups Ui , and let Z = ⋂
Ui . We say that K is the central

product of the Ui provided that K/Z is the direct product of its subgroups
Ui/Z and [Ui, Uj] = 1 for i �= j. It is clear in this situation that Z ⊆ Z(K )
and that Ui � K for all i.

An important special case is where a group K factors as a product of
just two subgroups. If K = AB, where [A, B] = 1, then K is automatically
the central product of A and B.

We need to consider the irreducible characters of central products. The
basic facts are summarized in the following (known) result.

(5.1) Lemma. Let K =
e∏

i=1
Ui be a central product with Z = ⋂

Ui, and

let ν be a linear character of Z. Given characters θi ∈ Irr(Ui|ν), there exists
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a unique character χ ∈ Irr(K |ν) such that χUi is a multiple of θi for all i.
Also, if ui ∈ Ui, then

χ(u1u2 · · · ue) = θ1(u1)θ2(u2) · · · θe(ue).

Furthermore, every character χ ∈ Irr(K ) arises in this way.

Proof. Let K∗ be the external direct product of the groups Ui and ob-
serve that there is a natural surjection from K∗ to K carrying the e-tuple
(u1, . . . , ue) to the product u1 · · · ue. Every character χ ∈ Irr(K ), there-
fore, can be lifted to a unique character χ∗ ∈ Irr(K∗). But K∗ is a direct
product, and so we can write χ∗ = θ1 × · · · × θe, where θi ∈ Irr(Ui). We
thus have

χ(u1 · · · ue) = χ∗((u1, . . . , ue)) = θ1(u1) · · · θe(ue).

In particular, χ(1) = ∏
θi(1) and we see that χUi is a multiple of θi .

As Z ⊆ Z(K ), we know that χ ∈ Irr(K |ν) for some linear character ν
of Z, and thus χ(z) = χ(1)ν(z) for all z ∈ Z. In the formula of the previous
paragraph, we can choose i arbitrarily and set ui = z and uj = 1 for j �= i.
This yields

χ(1)ν(z) = χ(z) = θi(z)
∏

j �=i

θ j(1) = χ(1)

θi(1)
θi(z),

and thus θi(z) = θi(1)ν(z). Thus θi ∈ Irr(Ui|ν), as wanted.
To complete the proof, we must show that if we choose θi ∈ Irr(Ui|ν)

arbitrarily, then the character χ∗ = θ1 × · · · × θe in Irr(K∗) is the lift of
some character of K . We must show, in other words, that if (u1, . . . , ue) is
in the kernel of our surjection K∗ → K , then this element lies in ker(χ∗).
We have u1 · · · ue = 1, and since

∏
Ui/Z is direct, it follows that ui ∈ Z

for all i, and thus θi(ui) = θi(1)ν(ui). We have

χ∗((u1, . . . , ue)) =
∏

θi(ui) =
∏

θi(1)
∏

ν(ui)

= χ(1)ν
( ∏

ui

)
= χ(1),

and we are done. ��
In the situation of Lemma 5.1, we refer to χ as the dot product of the

characters θi and we write χ = θ1 . · · · . θe.
Although we shall need this generality later, we specialize now to the

case where there are just two factors. Let K = AB be a central product, and
write Z = A∩B. Let ν ∈ Irr(Z) and suppose that α ∈ Irr(A) and β ∈ Irr(B)
lie over ν. Given a module V affording α and a module W affording β, there
is a natural way to make V ⊗ W into a K -module affording α .β. We define
(v ⊗ w)(ab) = va ⊗ wb for a ∈ A and b ∈ B. (In other words, the linear
operator on V ⊗ W induced by ab is σ ⊗ τ , where σ and τ are the linear
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operators on V and W induced by a and b.) To see that this is well defined,
suppose that ab = a′b′ with a′ ∈ A and b′ ∈ B. Then a−1a′ = b(b′)−1

lies in Z, and so if we write z to denote this element, we know that z acts
like the scalar ν(z) on both V and W . It follows for v ∈ V and w ∈ W
that va′ = ν(z)va and wb′ = ν(z)−1wb, and thus va′ ⊗ wb′ = va ⊗ wb,
as required.

6. Central products and factor sets

In this section, we suppose that K � G and C � G with [K, C] = 1, and
we write K ∩ C = Z. Let θ ∈ Irr(K ) and γ ∈ Irr(C) be G-invariant and
lie over a common linear character ν of Z. In this case, KC is a central
product and the character θ . γ is defined and is G-invariant. We study the
cohomology element [θ . γ ]G/KC.

Recall that if V and W afford θ and γ , then V ⊗ W affords θ . γ with
the (well defined) action (v ⊗ w)(kc) = vk ⊗ wc for k ∈ K and c ∈ C. We
construct a particular well behaved quasiextension of V ⊗ W to G, and we
compute the corresponding factor set f of G/KC.

(6.1) Lemma. Assume the above notation and let t ∈ G. If σ : V → V
and τ : W → W are linear operators compatible with t, then σ ⊗ τ is
compatible with t on V ⊗ W.

Proof. We have

(v ⊗ w)(t(kc)t−1)(σ ⊗ τ) = (v ⊗ w)(tkt−1)(tct−1)(σ ⊗ τ)

= v(tkt−1)σ ⊗ w(tct−1)τ

= vσk ⊗ wτc
= (v ⊗ w)(σ ⊗ τ)(kc),

as required, where v ∈ V , w ∈ W , k ∈ K and c ∈ C are arbitrary. ��
We need the following elementary lemma about tensor products over

fields.

(6.2) Lemma. Let V and W be nonzero vector spaces. Let µ and µ′ be
linear operators on V and let ν and ν′ be linear operators on W, where µ′
and ν′ are invertible. Suppose that µ ⊗ ν = µ′ ⊗ ν′ as linear operators on
V ⊗ W. Then there exists a nonzero scalar α such that µ = αµ′ and ν =
(1/α)ν′.

Proof. It is no loss to assume that µ′ and ν′ are the identity operators on V
and W . Then vµ ⊗ wν = v ⊗ w for all v ∈ V and w ∈ W .

Suppose that v and vµ are linearly independent for some vector v ∈ V .
Then the equation v⊗w = vµ⊗wν forces w = 0. Since W �= 0, we deduce
that µ maps every one-dimensional subspace of V into itself. But µ is linear,
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and this forces µ to be multiplication by some scalar α. Also, α �= 0 since
there exist v and w with v ⊗ w nonzero. The result now follows. ��

Now let K � G and C� G be as before, with [K, C] = 1, and Z = K ∩C.
Also as before, let θ ∈ Irr(K ) and γ ∈ Irr(C) be G-invariant and lie over
the linear character ν of Z, and let V and W afford θ and γ , respectively, so
that V ⊗ W affords θ . γ on KC.

To compute [θ . γ ]G/KC, we build a well behaved quasiextension of
V ⊗ W to G as in Sect. 3. We choose a transversal T for the cosets of KC
in G (with 1 ∈ T ) and for each element t ∈ T , we construct an operator
on V ⊗ W that is compatible with t. To do this, we choose (and hold fixed)
linear operators σt on V and τt on W , each of them compatible with t. (And
we take σ1 and τ1 to be identity operators.) By Lemma 6.1, the operator
σt ⊗ τt is compatible with t on the KC-module V ⊗ W , and we use these
operators to determine our quasiextension.

To compute the corresponding factor set f , which will be constant on
cosets of KC, it suffices to determine f(s, t) for s, t ∈ T .

(6.3) Lemma. Assume the above notation. Let s, t ∈ T and write st = (kc)u,
where k ∈ K, c ∈ C and u ∈ T . We can then write f(s, t) = αβ, where α
and β are complex numbers that are uniquely determined by the equations

(a) vσsσt = αvkσu and
(b) wτsτt = βwcτu

for v ∈ V and w ∈ W.

Observe that the elements s, t ∈ T uniquely determine u and kc, but
that in general, k and c are not unique. But once the elements k ∈ K and
c ∈ C are chosen for each pair s, t ∈ T , the equations given in (a) and (b)
of Lemma 6.3 uniquely determine the scalars α and β, as claimed.

Proof of Lemma 6.3. By Lemma 6.1, the linear operator σt ⊗ τt on the KC-
module V ⊗ W is compatible with t, and thus we can use these operators
to construct a well behaved quasiextension of θ . γ with factor set f . By
Lemma 3.5 we have

f(s, t)(v ⊗ w)(kc)(σu ⊗ τu) = (v ⊗ w)(σs ⊗ τs)(σt ⊗ τt),

and thus

vkσu ⊗ f(s, t)(wcτu) = (vσsσt) ⊗ (wτsτt)

for all v ∈ V and w ∈ W .
We can now apply Lemma 6.2 with µ = σsσt , µ′ = kσu , ν = τsτt and

ν′ = f(s, t)cτu . We conclude that there exists a nonzero scalar α such that
µ = αµ′ and ν = (1/α)ν′. In particular,

vσsσt = αvkσu,
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for all v ∈ V , as wanted. Also,

wτsτt = (1/α) f(s, t)wcτu,

for all w ∈ W , and so we take β = f(s, t)/α to complete the proof. ��
Before we proceed with our principal applications of Lemma 6.3, we

digress to discuss the special case where KC is a direct product (and not
merely a central product.)

(6.4) Corollary. Let N � G and suppose N = K × C is a direct product,
where each of K and C is normal in G. Let ϕ ∈ Irr(N) be G-invariant,
and write, as we may, ϕ = θγ , where θ, γ ∈ Irr(N) and C ⊆ ker(θ)
and K ⊆ ker(γ). Then [ϕ]G/N = [θ]G/N [γ ]G/N.

Note that θ and γ are G-invariant, and so they do determine cohomology
elements. The assertion of the corollary thus makes sense.

Proof of Corollary 6.4. Let V and W be N-modules corresponding to θ
and γ , respectively, and construct well behaved quasiextensions to G. Fix
a transversal T for N in G and for each element t ∈ T , let σt and τt
be the linear operators determined by the quasiactions of t on V and W ,
respectively. Each of these operators, therefore, is compatible with t.

Now to put ourselves into the situation of Lemma 6.3, observe that we can
identify θ and γ with characters of K and C respectively, and we can view
V and W as modules for K and C corresponding to these characters. From
this point of view, we have ϕ = θ . γ and Lemma 6.3 applies. Following
the notation of that lemma, we can write f(s, t) = αβ for s, t ∈ T , where α
and β are scalars determined by Equations (a) and (b) of Lemma 6.3 and
depending on s and t.

Recall that in the general situation of Lemma 6.3, the elements k ∈ K
and c ∈ C were not uniquely determined by s and t; only their product kc
was unique. Once k and c were fixed, however, the scalars α and β were
uniquely determined. In the present situation, k and c are determined by kc,
and so α and β are well-defined functions on T × T . We can thus view α
and β as functions defined on G × G that are constant on cosets of N.

Since C acts trivially on the N-module V , we can replace the element k
in Equation (a) of Lemma 6.3 by kc (and similarly, in Equation (b), we can
replace c by kc). Now (a) becomes

vσsσt = α(s, t)v(kc)σu,

where st = (kc)u. Comparison of this with the formula of Lemma 3.5
shows that the function α is exactly the factor set corresponding to the
quasiextension V of θ. Similarly, β is the factor set corresponding to W ,
and since f = αβ, the result follows. ��

As an application of Corollary 6.4, we show how it is possible to establish
equality of cohomology elements of invariant characters when the factor
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group G/N is metacyclic. (Although we will not actually use this result, it
seems natural to include it.)

(6.5) Theorem. Let N1 � G1 and N2 � G2, and let η : G1/N1 → G2/N2 be
an isomorphism. Suppose that N1 ⊆ C1 � G1, where C1/N1 and G1/C1 are
cyclic, and let C1g1 be a generator for G1/C1. Let C2/N2 = η(C1/N1) and
choose an element g2 in the coset η(N1g1). Let θi ∈ Irr(Ni ) be Gi-invariant
and choose extensions ϕi ∈ Irr(Ci ) of θi . Now (ϕi)

gi = λiϕi for some
uniquely determined linear character λi of Ci/Ni and we suppose that the
isomorphism η carries λ1 to λ2. Then [θ1]G1/N1 = [θ2]G2/N2 , where we
identify the Schur multipliers of the groups Gi/Ni via the isomorphism η.

It seems appropriate to make a few remarks. First, the extensions ϕi exist
since the characters θi are Ci-invariant and the groups Ci/Ni are cyclic.
Since (ϕi)

gi is another extension of θi , it follows via Gallagher’s theorem
that (ϕi)

gi = λiϕi for some linear character λi as claimed. It also follows
easily by Gallagher’s theorem that the linear characters λi do not depend on
the choices of the extensions ϕi . Finally, we mention that λi depends on the
choice of the generating coset Cigi but not on the specific element gi .

We need a preliminary result that is probably well known.

(6.6) Lemma. Let θ ∈ Irr(N) be G-invariant, where N � G. Then [θ]G/N =
([θ]G/N)−1.

Proof. Recall that if σ is a linear operator on a vector space V , then its
adjoint σ∗ is the operator on the dual space V ∗ defined by (σ∗(λ))(v) =
λ(σ(v)) for v ∈ V and λ ∈ V ∗.

Now let V be a well behaved quasiextension of θ to G with factor set f .
We will make the dual space V ∗ into a quasimodule for G by letting x ∈ G
act on V ∗ via the adjoint of the linear operator induced on V by x−1. In
other words, we have (λ . x)(v) = λ(v . x−1) for λ ∈ V ∗ and v ∈ V .

To show that this defines a quasiaction and to compute its factor set,
let x, y ∈ G. Given λ ∈ V ∗, we want to show that (λ . x) . y is a scalar
multiple of λ . (xy), and we want to find the scalar. We compute that

((λ . x) . y)(v) = (λ . x)(v . y−1)

= λ((v . y−1) . x−1)

= f(y−1, x−1)λ(v . (y−1x−1))

= f(y−1, x−1)λ(v . (xy)−1)

= f(y−1, x−1)(λ . (xy))(v).

This shows that indeed, our construction makes V ∗ into a quasimodule and
that the associated factor set g is given by the formula g(x, y) = f(y−1, x−1).
In particular, g(1, x) = 1 = g(x, 1) for all x ∈ G, and thus V ∗ is a well
behaved quasiextension of V ∗, viewed as an N-module.
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Since it is well known that V ∗ affords the character θ of N, all that
remains is to show that the cohomology class of g is the inverse of that of f
in the Schur multiplier of G/N. To do this, define α(x) = f(x, x−1) and
observe that

α(xy) f(x, y)g(x, y) = f(xy, y−1x−1) f(x, y)g(x, y)

= f(x, yy−1x−1) f(y, y−1x−1)g(x, y)

= α(x) f(y, y−1x−1) f(y−1, x−1)

= α(x) f(yy−1, x−1) f(y, y−1)

= α(x)α(y),

where the second and fourth equalities hold because f is a factor set. This
shows that the factor set fg is cohomologically trivial on G. But f , g and α
are constant on cosets of N, and so the result follows. ��
Proof of Theorem 6.5. Let G be the subgroup of G1 × G2 consisting of all
ordered pairs (x, y) such that η(N1x) = N2 y. Then G has a normal subgroup
N = N1 × N2, and (viewing the Ni as subgroups of G) we have a natural
isomorphism G/N1

∼= G2 with N/N1 mapping to N2. (And similarly, of
course, with the subscripts interchanged.) Also, since η(C1/N1) = C2/N2,
there is a subgroup C � G such that C maps to C1 and to C2 under these
isomorphisms. In particular, C1/N1

∼= C/N ∼= C2/N2 is cyclic and the
linear characters λi of Ci/Ni both correspond to the same linear character λ
of C/N. Finally, let g = (g1, g2), so that g ∈ G and Cg generates the cyclic
group G/C.

Now view θ1 and θ2 as characters of N and note that ϕ1 and ϕ2 can be
viewed as characters of C that extend θ1 and θ2, respectively. Let ψ = θ1θ2
and note that ξ = ϕ1ϕ2 is an extension of ψ to C. It is easy to see that
(ϕi)

g = λϕi , and since λλ is trivial, it follows that ξg = ξ . Then ξ is G-
invariant, and as G/C is cyclic, we see that ξ extends to G. We conclude
that ψ extends to G, and so

1 = [ψ]G/N = [θ1]G/N [θ2]G/N = [θ1]G/N([θ2]G/N)−1.

Here, of course, the second equality is a consequence of Theorem 6.4 and
the third holds by Lemma 6.6. We now have [θ1]G/N = [θ2]G/N , and the
result follows. ��

We return now to the general case. Let G, K , C and T , be as be-
fore, where K and C are normal in G and centralize each other, and T is
a transversal for the cosets of KC in G. Also let θ, γ , V and W be as before,
where θ ∈ Irr(K ) and γ ∈ Irr(C) are G-invariant, and where V and W are
modules affording θ and γ , respectively. Recall that we are assuming that θ
and γ both lie over a common linear character ν of Z = K ∩ C, and thus
θ . γ ∈ Irr(KC) is defined.

Fix a well behaved (with respect to the action of K ) quasiaction of G
on V , and let h be the associated factor set. (Recall that we can choose to
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view h either as a factor set of G, constant on cosets of K , or as a factor
set of G/K .) In Lemma 6.3, choose the operators σt on V to be the maps
v �→ v . t for t ∈ T and choose arbitrary operators τt of W compatible
with t ∈ T . As in Lemma 6.3, we use the maps σt and τt , to construct
a quasiextension of the KC-module V ⊗ W , with factor set f . Our next
goal is to compute the factor set h/ f of G using as little information as
possible. (Note that h lies in the cohomology class [θ]G/K and f lies in the
cohomology class [θ . γ ]G/KC, but both can be viewed as factor sets of G
or of G/K , and so h/ f can be viewed as a factor set of either G or G/K .)

Given the transversal T for the cosets of KC in G, we know that for
s, t ∈ T , there are uniquely determined elements u ∈ T and n ∈ KC such
that st = nu. We view n and u as functions from T × T into KC and into T
respectively, and we write n = n(s, t) and u = u(s, t). Also, we recall that
the C-type of the G-quasiextension V of θ consists of two complex-valued
functions. One of these is ρ, defined on C and determined by the formula
v . c = ρ(c)v for v ∈ V . The second component of the C-type of V is the
factor set h corresponding to V , with the first variable restricted to C.

We can now state our result.

(6.7) Theorem. In the above situation, the factor set h/ f of G is determined
by the choice of the transversal T , the group C, the automorphisms of
C induced by the elements of T , the functions n and u on T × T , the
C-module W, the operators τt on W for t ∈ T , the linear character ν of Z,
and the C-type of the G-quasimodule V .

What we do not need to know is the actual G-quasimodule V or its factor
set h. To some extent, even the group K is irrelevant, as in the following.

(6.8) Corollary. Let K � G and C � G, with [K, C] = 1, and suppose that
C ⊆ N ⊆ G and KN = G. Let H = K ∩ N and Z = K ∩C, so that Z ⊆ H
and Z ⊆ Z(K ). Let θ ∈ Irr(K ) and γ ∈ Irr(C) be G-invariant and lie over
a linear character ν of Z, and let θ ′ ∈ Irr(H) also lie over ν, where θ ′
is N-invariant. Suppose that V and V ′ are well behaved quasiextensions
of θ and θ ′ to G and N that have the same C-type, and let h and h ′ be
the corresponding factor sets of G/K and N/H, which we identify. Then
there exist factor sets f and f ′ of G/KC = N/HC lying in the cohomology
classes [θ . γ ]G/KC and [θ ′ . γ ]N/HC, respectively, such that h/ f = h ′/ f ′
as factor sets of G/K = N/H.

Proof. Choose a transversal T for the cosets of HC in N and observe that T
is also a transversal for KC in G. Of course, in this situation, the function
n : T × T → KC actually maps into HC. Since we can use the same
operators τt on W to compute the factor sets f and f ′, the result follows via
Theorem 6.7. ��

We mention that the assumption in Corollary 6.8 that the quasiexten-
sions V and V ′ of θ and θ ′ have identical C-types is not a burden. By
Lemma 3.7, such quasiextensions necessarily exist.
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Proof of Theorem 6.7. Given an arbitrary element x ∈ G, write σx to denote
the linear operator v �→ v . x on V . (We have already defined σt for t ∈ T ;
this simply extends that definition.)

If c ∈ C, then by definition of the factor set h, we have h(c, t)σct = σcσt .
Also, since c ∈ C, we know that the operator σc is simply multiplication
by some scalar ρ(c), and we have σct = (ρ(c)/h(c, t))σt. Since the element
ct ∈ CT uniquely determines c and t, we can define the function δ on the
subset CT by δ(ct) = ρ(c)/h(c, t), and we have σct = δ(ct)σc. The key
observation here is that δ depends only on the transversal T and the C-type
of V . In particular, it is determined by the given information.

Fix a transversal R for Z = K ∩ C in C, and observe that RT is
a transversal for K in G. We want to use Lemma 3.5 with the transversal
RT to compute the factor set h. To do this, let ps, qt ∈ RT , where p, q ∈ R
and s, t ∈ T . We can write (ps)(qt) = l(ru), where l ∈ K , r ∈ R and u ∈ T .
Also, (ps)(qt) lies in the same coset of KC as st, and thus u = u(s, t) and
we can write st = kcu, where k ∈ K , c ∈ C and kc = n(s, t). (As usual, kc
is uniquely determined by s and t, but k and c need not be. We can, however,
fix a choice of k and c for each pair s, t ∈ T .)

Now

l(ru) = (ps)(qt) = pqs−1
st = pqs−1

kcu.

Canceling u and using the fact that K and C centralize each other, we
see that lk−1 = pqs−1

r−1 ∈ K ∩ C = Z. Furthermore, the element lk−1

(depending on s, t ∈ T ) is determined by the given data and the choices we
have made.

By Lemma 3.5, we have

h(ps, qt)vlσru = vσpsσqt

for v ∈ V . Since σru = δ(ru)σu and similarly for σps and σqt , we can rewrite
this equation as

h(ps, qt)δ(ru)vlσu = δ(ps)δ(qt)vσsσt.

By Lemma 6.3, we can write f(s, t) = αβ where

(a) vσsσt = αvkσu and
(b) wτsτt = βwcτu

for all v ∈ V and w ∈ W . In particular the scalar β (depending on s and t)
is determined from the given data and our choices.

This yields

h(ps, qt)δ(ru)vlσu = δ(ps)δ(qt)αvkσu ,

and thus since lk−1 acts on V via the scalar ν(lk−1), we have

h(ps, qt)δ(ru)ν(lk−1) = αδ(ps)δ(qt).
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Finally, since f(s, t) = αβ, we obtain the formula

h(ps, qt) = αδ(ps)δ(qt)

δ(ru)ν(lk−1)
= f(s, t)

δ(ps)δ(qt)

βδ(ru)ν(lk−1)
.

Now f is constant on cosets of KC in G, and so f(s, t) = f(ps, qt), and
we deduce that

h(ps, qt)

f(ps, qt)
= δ(ps)δ(qt)

βδ(ru)ν(lk−1)
.

Each factor on the right side of this equation is determined by the given data
and the choices we have made, and so the result follows. ��

In the previous proof, we chose the transversal R and for each pair
s, t ∈ T , we chose elements k ∈ K and c ∈ C so that kc = n(s, t). It is
perhaps worrisome that the calculation of the factor set ratio h/ f appears
to depend on these arbitrary choices, since neither h nor f is dependent on
them. In fact, a little thought shows that the dependence is illusory. Suppose,
for example, that p is replaced by another representative z p of the coset Z p.
This has the effect of multiplying δ(ps) by ν(z). But another consequence
is that the element lk−1 is multiplied by z, and so there is no net effect.
Similarly, there is no effect if q and r are replaced by other representatives
of their cosets. Also, k could be changed to kz, where z ∈ Z, but then c
would become cz−1 and this would change β to βν(z), and again there
would be no net effect.

7. Related characters

In order to apply the theory of the previous sections, we make some def-
initions. Suppose Z ⊆ H ⊆ K , where Z ⊆ Z(K ), and let ν ∈ Irr(Z).
In this situation, we say that (K, H, ν) is an admissible triple. (We sup-
press explicit mention of Z in this notation since Z is determined implicitly
by ν: it is the domain of the linear character ν.) We shall say that a pair
of characters θ ∈ Irr(K ) and θ ′ ∈ Irr(H) belongs to the admissible triple
(K, H, ν) if both θ and θ ′ lie over ν.

In the above situation, suppose that K is a normal subgroup of some
group G, and let N ⊆ G be a subgroup such that KN = G and K ∩ N = H .
Let C � G and assume that [K, C] = 1, that C ⊆ N and that C ∩ K = Z.
Under all of these conditions, we say that (G, N, C) lies over the admissible
triple (K, H, ν). Note that H � N in this situation, and thus N acts on the
set Irr(H).

Let (G, N, C) lie over the admissible triple (K, H, ν) and suppose that
(θ, θ ′) is a pair of characters that belongs to (K, H, ν). We are especially
interested in the case where θ is G-invariant and θ ′ is N-invariant, and in this
situation, we simply say that the pair (θ, θ ′) is invariant in (G, N, C). (Note
that if θ is N-invariant, it is automatically G-invariant since KN = G.)
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It is convenient to restate Lemma 3.7 in this language. The lemma says
that if (θ, θ ′) belongs to (K, H, ν) and is invariant in (G, N, C), which lies
over (K, H, ν), then there exist well behaved quasiextensions V and V ′ of θ
and θ ′ to G and N such that V and V ′ have identical C-types.

We can also restate Corollary 6.8 in this situation. Let h and h ′ be the
factor sets associated with V and V ′, and assume that there exists a character
γ ∈ Irr(C) that lies over ν and is G-invariant. Then 6.8 asserts that there exist
factor sets f and f ′ in the cohomology classes [θ . γ ]G/KC and [θ ′ . γ ]N/HC
such that h/ f = h ′/ f ′.

One of our goals is to find conditions that guarantee that the cohomology
elements [θ . γ ]G/KC and [θ ′ . γ ]N/HC are equal in the above situation. Spe-
cifically, given that (θ, θ ′) belongs to (K, H, ν) and is invariant in (G, N, C),
which lies over (K, H, ν), we would like to have [θ . γ ]G/KC = [θ ′ . γ ]N/HC ,
where γ ∈ Irr(C|ν) is G-invariant. If this equality of cohomology elements
holds, we will say that θ and θ ′ are related in (G, N, C) with respect to γ .

We investigate what happens when C is replaced by a smaller sub-
group D. Note that if (G, N, C) lies over (K, H, ν) and Z ⊆ D ⊆ C with
D � G, then (G, N, D) also lies over (K, H, ν). (Here, as usual, Z is the
domain of ν.)

Theorem 7.1 (Going down). Let (θ, θ ′) belong to (K, H, ν) and let Z be
the domain of ν. Suppose that (G, N, C) lies over (K, H, ν) and that (θ, θ ′)
is invariant in (G, N, C). Let γ ∈ Irr(C|ν) be G-invariant, and assume
that θ and θ ′ are related in (G, N, C) with respect to γ . Suppose that
Z ⊆ D ⊆ C, where D � G, and let τ ∈ Irr(D|ν) be G-invariant. Then θ
and θ ′ are related in (G, N, D) with respect to τ .

Observe that Theorem 7.1 has content even when D = C. In that case,
the theorem asserts that the G-invariant character γ ∈ Irr(C|ν) can be
replaced by any other G-invariant character τ in this set without affecting
the equality of the appropriate cohomology elements. In other words, the
equality [θ . γ ]G/KC = [θ ′ . γ ]N/HC is really an assertion about the pair
(θ, θ ′); the specific G-invariant character γ ∈ Irr(C) is irrelevant.

If (θ, θ ′) belongs to (K, H, ν) and is invariant in (G, N, C), which lies
over (K, H, ν), we say that the characters θ and θ ′ are related in (G, N, C)
if θ and θ ′ are related with respect to some (and hence every) choice of
a G-invariant character γ ∈ Irr(C|ν).

Of course, it does not make sense to ask if θ and θ ′ are related in
(G, N, C) unless the pair (θ, θ ′) is invariant in (G, N, C) and there exists
at least one G-invariant character γ ∈ Irr(C|ν). In this situation, we shall
say that (G, N, C) is a relatedness candidate for (θ, θ ′). We can thus
paraphrase Theorem 7.1 like this: if θ and θ ′ are related in (G, N, C) and
(G, N, D) is a relatedness candidate with Z ⊆ D ⊆ C, then θ and θ ′ are
related in (G, N, D).

Proof of Theorem 7.1. Construct quasimodules V and V ′ of G and N
extending θ and θ ′, and do this so that V and V ′ have identical C-types.
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(Recall that this is possible by Lemma 3.7.) Let h and h ′ be the factor sets
associated with V and V ′, and view them as factor sets of G/K and N/H ,
which we identify. By Corollary 6.8, we know that there exist factor sets f
and f ′ of G/K = N/H with the following properties

(a) f and f ′ are constant on cosets of KC/K = HC/H
(b) f and f ′ are in the cohomology classes [θ . γ ]G/KC and [θ ′ . γ ]N/HC

respectively, and
(c) h/ f = h ′/ f ′ as factor sets of G/K = N/H .

In particular, we have h/h ′ = f/ f ′.
Since D ⊆ C, the quasimodules V and V ′ also have identical D-types,

and so again by Corollary 6.8, we have h/h ′ = g/g′, where g and g′
lie in the cohomology classes [θ . τ]G/K D and [θ ′ . τ]N/HD , and we are
viewing g and g′ as factor sets of G/K and N/H that are constant on cosets
of KD/K = HD/H .

We conclude that f/ f ′ = g/g′, where we view all four of these functions
as factor sets of G/K , where f and f ′ are constant on cosets of KC/K in
this group, and g and g′ are constant on cosets of KD/K . By hypothesis,
f and f ′ are cohomologous when they are viewed as factor sets of G/KC.
In other words, f/ f ′ is a function of the form α(x)α(y)/α(xy), where α is
a function defined on G/K that is constant on cosets of KC/K in G/K .
But f/ f ′ = g/g′, and since D ⊆ C, we see that α is constant on cosets of
KD/K in G/K . It follows that g and g′ are cohomologous when viewed as
factor sets of G/KD. ��

The following rather technical theorem is an essential step in obtaining
our main result.

(7.2) Theorem. Let (θ, θ ′) belong to (K, H, ν) and suppose that (G, N, C)
is a relatedness candidate for this pair of characters. Let β ∈ Irr(K )
and β′ ∈ Irr(H) and assume that each of these characters has stabilizer
N0 in N, and that each of them lies over λ ∈ Irr(Z), where Z is the
domain of ν. Assume, furthermore, that θ is the product of the |N : N0|
distinct N-conjugates of β and that θ ′ is the product of the |N : N0|
distinct N-conjugates of β′. Write G0 = KN0 and note that (G0, N0, C)
lies over (K, H, λ). If β and β′ are related in (G0, N0, C), then θ and θ ′ are
related in (G, N, C).

Proof. Observe that (β, β′) belongs to (K, H, λ) and is invariant in
(G0, N0, C). Choose well behaved quasimodules V and V ′ of G0 and N0
corresponding to β and β′ and having the same C-type, and let g and g′ be
their factor sets, viewed as factor sets of G0/K = N0/H . Also, since we are
assuming that β and β′ are related in (G0, N0, C), we know that there exists a
G0-invariant character τ ∈ Irr(C|λ) such that [β . τ]G0/KC = [β′ . τ]N0/HC.

Let j and j ′ be factor sets of G0/K = N0/H that are constant on
cosets of KC/K = HC/H and such that when viewed as factor sets of
G0/KC = N0/HC, they lie in the cohomology classes [β . τ]G0/KC and
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[β′ . τ]N0/HC respectively. By Corollary 6.8, the factor sets j and j ′ can be
chosen so that g/ j = g′/ j ′. Also, since we are assuming that [β . τ]G0/KC =
[β′ . τ]N0/HC, it follows that j and j ′ are cohomologous as factor sets of
G0/KC = N0/HC.

By the results of Sect. 4, the tensor-induced quasimodules V ⊗G and
(V ′)⊗N are well behaved quasiextensions of θ and θ ′ that have identical
C-types. Let h and h ′ be the corresponding factor sets of G/K = N/H , so
that we have h = gG/K and h ′ = (g′)N/H .

By assumption, (G, N, C) is a relatedness candidate for (θ, θ ′), and so in
particular, there exists a G-invariant character γ ∈ Irr(C|ν). Let f and f ′ be
factor sets of G/K = N/H that are constant on cosets of KC/K = HC/H
and such that when viewed as factor sets of G/KC and N/HC, they lie
in the cohomology classes [θ . γ ]G/KC and [θ ′ . γ ]N/HC , respectively. By
Corollary 6.8, we can choose f and f ′ so that h/ f = h ′/ f ′. Our goal is to
show that f and f ′ are cohomologous as factor sets of G/KC = N/HC.

We have h = gG/K and h ′ = (g′)N/H . Identifying G/K = N/H and
using the fact that factor-set induction respects multiplication of factor sets,
we can write

h

h ′ =
(

g

g′

)G/K

.

Since h/h ′ = f/ f ′ and g/g′ = j/ j ′, we have

f

f ′ =
(

j

j ′

)G/K

.

Now j/ j ′ is a factor set of G0/K that is constant on cosets of the sub-
group KC/K . It follows that we can view j/ j ′ as a factor set of G0/KC
and furthermore, the induction to G/K can be viewed as induction to
G/KC. But by hypothesis, j/ j ′ is cohomologously trivial as a factor set of
G0/KC, and thus induction to G/KC yields a factor set of G/KC that is
also cohomologously trivial. This shows that f and f ′ are cohomologous
as factor sets of G/KC = N/HC, as required. ��

8. Equivalence

Let (K, H, ν) be an admissible triple. (Recall that this means that ν ∈ Irr(Z),
where Z ⊆ H ⊆ K and Z ⊆ Z(K ).) We will say that (K, H, ν) is self-
normalizing if H = NK (H). If (G, N, C) lies over (K, H, ν), then, by
definition, H = K ∩ N, and thus H � N. If (K, H, ν) happens to be self-
normalizing, however, we can say more. In this case N = NG(H). Also, the
condition that C ⊆ N in the definition of “lies over” is redundant if (K, H, ν)
is self-normalizing because in that case, C ⊆ CG(K) ⊆ NG(H) = N. Later
we will need one further condition, which for convenience we describe now:
we say that a self-normalizing admissible triple is strong if Z = Z(K ).
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Suppose that both (G1, N1, C1) and (G2, N2, C2) lie over (K, H, ν),
which we assume to be self-normalizing. Note that since Ci centralizes K
for i ∈ {1, 2}, all of the elements in each coset of Ci in Gi induce the
same automorphism of K . We will say that the triples (G1, N1, C1) and
(G2, N2, C2) are equivalent over (K, H, ν) if there exists an isomorphism
η : G1/C1 → G2/C2 such that

(1) η(C1k) = C2k for all k ∈ K and
(2) If η(C1x) = C2y, then x and y induce the same automorphism of K .

(In other words kx = ky for all k ∈ K .)

We say that η is an equivalence in this situation.

(8.1) Lemma. Suppose that (G1, N1, C1) and (G2, N2, C2) are equivalent
over a self-normalizing admissible triple (K, H, ν), and that η is an equiva-
lence. Then η maps N1/C1 onto N2/C2. Also if ϕ is an irreducible character
of either K or H, then ϕ is N1-invariant if and only if ϕ is N2-invariant.

Proof. Suppose η(C1x) = C2 y. Then x and y induce the same automorph-
ism of K , and so x stabilizes H if and only if y stabilizes H . Since
Ni = NGi (Hi ), it follows that x ∈ N1 if and only if y ∈ N2. The first
assertion now follows.

Now assume that x ∈ N1 and y ∈ N2. Then since x and y induce the
same automorphism on K , and hence also on H , we see that x stabilizes ϕ
if and only if y stabilizes ϕ. This completes the proof. ��

In particular, in the situation of Lemma 8.1, if (θ, θ ′) belongs to (K, H, ν),
then this pair of characters is invariant in (G1, N1, C1) if and only if it is
invariant in (G2, N2, C2).

If η is an equivalence between (G1, N1, C1) and (G2, N2, C2), then η
maps KC1/C1 to KC2/C2, and hence it induces an isomorphism from
G1/KC1 onto G2/KC2. Also, these groups are naturally isomorphic to
N1/HC1 and N2/HC2, and so we can identify these four factor groups for
the purpose of comparing cohomology elements.

(8.2) Theorem. Let (K, H, ν) be self-normalizing and suppose that
(G1, N1, C1) and (G2, N2, C2) are equivalent over it. Suppose that (θ, θ ′)
belongs to (K, H, ν) and is invariant in (Gi, Ni , Ci), and assume that
γi ∈ Irr(Ci|ν) is Gi-invariant for i ∈ {1, 2}. Then

[θ . γ1]G1/KC1

[θ ′ . γ1]N1/HC1

= [θ . γ2]G2/KC2

[θ ′ . γ2]N2/HC2

.

Proof. Choose a transversal T1 for HC1 in N1 and note that T1 is also
a transversal for KC1 in G1. We appeal to Lemma 6.3 to compute factor
sets f and f ′ associated with well behaved quasiextensions of θ . γ1 to G1
and θ ′ . γ1 to N1, respectively. We use the same transversal T1 to compute
both f and f ′, and also we use the same C1-module W affording γ1 and the
same linear operators τt on W , where τt is compatible with t ∈ T1.
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Given s, t ∈ T1, write st = kc1u, where k ∈ K , c1 ∈ C1 and u ∈ T1.
Then k ∈ N1 ∩ K = H , and in particular, we can use the same elements k
and c1 in the computations of both f and f ′. It follows that the scalar β
of Lemma 6.3 (depending on s and t) is the same in both computations.
We thus have f(s, t) = αβ and f ′(s, t) = α′β, where α and α′ are as in
Lemma 6.3, and hence f(s, t)/ f ′(s, t) = α/α′.

To compute α, we work with certain linear operators σt on a module V
affording θ, where σt is compatible with t ∈ T1. These operators are not
uniquely determined, but the compatibility conditions that they are required
to satisfy depend only on the conjugation actions of the elements of T1 on K
and the actions of the elements of K on the K -module V .

Once we have chosen the operators σt on V for all t ∈ T1, the scalar α
is determined by the equation vσsσt = αvkσu , where k ∈ K is as above.
The scalar α′ is determined similarly, with the various operators σ on V
replaced by operators σ ′ on an H-module V ′ affording θ ′, but using the
same elements k.

Now let η be an equivalence from (G1, N1, C1) to (G2, N2, C2). For each
element t ∈ T1, we know that η(C1t) is a coset of C2 in G2, and we choose
an arbitrary element of this coset. Let T2 be the set of elements chosen
in this way, one for each element of T1. In order to make this clearer, we
change notation slightly at this point: if t1 is an element of T1, we write t2
to denote the corresponding element of T2. Thus η(C1t1) = C2t2 for all
elements t1 ∈ T1.

Recall that the isomorphism η from G1/C1 onto G2/C2 maps KC1/C1 to
KC2/C2, and thus it induces an isomorphism from G1/KC1 onto G2/KC2.
The group G1/KC1 is exactly the set of cosets KC1t1 as t1 runs over T1, and
these cosets are distinct. Under the isomorphism from G1/KC1 to G2/KC2,
the coset KC1t1 maps to KC2t2, and thus the cosets KC2t2 are distinct as t1
runs over T1. It follows that the set T2 is a transversal for the cosets of KC2
in G2. (And in particular, the elements t2 are distinct for distinct elements
t1 ∈ T1.)

Because η is an equivalence, we know that t1 and t2 induce identical
automorphisms of K . Also, t1 ∈ N1, and so t1 stabilizes H . It follows that
t2 ∈ NG2(H) = N2, and thus T2 is a transversal for the cosets of HC2
in N2.

If we compute factor sets g and g′ corresponding to well behaved
quasiextensions of θ . γ2 and θ ′ . γ2 to G2 and N2 using the transver-
sal T2, we find that g(s2, t2)/g′(s2, t2) = α/α′, where we will show that
the scalars α and α′ are the same as those that we had in the computation of
f(s1, t1)/ f ′(s1, t1).

For each element t1 ∈ T1, we had a corresponding compatible linear
operator σ : V → V . We observe that since the conjugation actions of t1
and t2 on K are identical, the operator σ , which was chosen to be compatible
with t1, will also be compatible with t2 . In other words, we can use exactly the
same linear operators σ to compute the factor set g that we used previously
to compute f .
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The ingredients used to compute the scalar α in Lemma 6.3 were the vari-
ous linear operators σ on V associated with the elements of the transversal
and also the elements k ∈ K chosen for pairs of elements of the transversal.
Suppose then, that s1, t1 ∈ T1, and that we have written s1t1 = kc1u1, where
c1 ∈ C1, k ∈ K and u1 ∈ T1. Recalling that η(C1k) = C2k, we compute

C2s2t2 = (C2s2)(C2t2) = η(C1s1)η(C1t1) = η(C1s1t1) = η(C1ku1)

= η(C1k)η(C1u1) = (C2k)(C2u2) = C2ku2.

We can thus write s2t2 = c2ku2 for some element c2 ∈ C2, and we see
that when computing the factor set g, we can use the same element k that
we used previously, when we computed the factor set f . It follows that the
computations of f(s1, t1) and g(s2, t2) involve exactly the same scalar α.
Similarly, the computations of f ′(s1, t1) and g′(s2, t2) involve the same
scalar α′, and hence f/ f ′ = g/g′, as required. ��
(8.3) Corollary. Suppose that (θ, θ ′) belongs to (K, H, ν), where (K, H, ν)
is self-normalizing. Let (G1, N1, C1) and (G2, N2, C2) be equivalent related-
ness candidates for (θ, θ ′) over (K, H, ν). Then θ and θ ′ are related in
(G1, N1, C1) if and only if they are related in (G2, N2, C2).

Proof. Since the ratios in the statement of Theorem 8.2 are equal, it follows
that the ratio on the left equals 1 if and only if the ratio on the right equals 1.
In other words, θ and θ ′ are related in (G1, N1, C1) if and only if they are
related in (G2, N2, C2). ��

Observe that in the case where (K, H, ν) is self-normalizing, The-
orem 8.2 provides an alternative proof of the fact that if (θ, θ ′) belongs
to (K, H, ν) and is invariant in (G, N, C), which lies over (K, H, ν), then
the question of whether or not [θ . γ ]G/KC is equal to [θ ′ . γ ]N/HC is in-
dependent of the particular G-invariant character γ ∈ Irr(C|ν). In fact,
by Theorem 8.2, the ratio of these two cohomology elements is constant,
independent of γ .

9. More related characters

We begin with a general group-theoretic lemma.

(9.1) Lemma. Let G = KR, where K � G and K ∩ R = 1. Suppose
that I � R is a subgroup such that the natural map I → Aut(K) (defined
by conjugation in G) is an isomorphism from I onto the group of inner
automorphisms of K. For each element k ∈ K, let k∗ ∈ I be the element
that induces the inner automorphism of K induced by k. Let D = CKI (K)
and write Z = D ∩ K = Z(K ). The following then hold.

(a) D � G.
(b) Write σ(k) = k−1k∗ for k ∈ K. Then σ is an R-isomorphism from K

onto D, and σ(z) = z−1 for all z ∈ Z.
(c) CG(K) = D × CR(K).
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Proof. Since I � R, we see that R normalizes D. Also, K centralizes D,
and so D � KR = G, proving (a).

Since k and k∗ induce the same automorphism of K , we see that σ(k) =
k−1k∗ centralizes K , and thus σ maps K into CKI(K) = D. Note that if
x, y ∈ K , then x∗y∗ induces the same automorphism on K as xy, and thus
since x∗y∗ ∈ I , we have x∗y∗ = (xy)∗. Because σ(x) centralizes K , we
have

σ(x)σ(y) = σ(x)(y−1y∗) = y−1σ(x)y∗

= y−1x−1x∗y∗ = (xy)−1(xy)∗ = σ(xy),

and so σ is a homomorphism from K into D.
To show that σ maps onto D, let d ∈ D. As d ∈ KI , we can write

d = k−1r, where k ∈ K and r ∈ I . But d centralizes K , and thus k and r
induce the same automorphism of K and we have r = k∗. Then d = σ(k)
and σ(K ) = D, as required.

Next, to check that σ is injective, suppose that x ∈ ker(σ). Then x =
x∗ ∈ K ∩ I = 1, and so σ is an isomorphism from K to D. If z ∈ Z, then
z∗ = 1, and so σ(z) = z−1, as wanted.

To complete the proof of (b), we must show that σ(kr) = σ(k)r for all
k ∈ K and r ∈ R. We show first that (kr)∗ = (k∗)r . Certainly, (k∗)r ∈ I
since I � R, and so it suffices to show that (k∗)r and kr induce the same
automorphism on K . Every element of K has the form xr for some element
x ∈ K , and we compute

(xr)kr = (xk)r = (xk∗
)r = (xr)(k∗)r

as required. We thus have

σ(kr) = (kr)−1(kr)∗ = (k−1)r(k∗)r = (k−1k∗)r = σ(k)r,

and (b) is proved.
We observe next that D ∩ R = 1. This follows since if k−1k∗ ∈ R for

some element k ∈ K , then because k∗ ∈ I ⊆ R, we have k ∈ R. Thus
k ∈ K ∩ R = 1, and hence k−1k∗ = 1.

Now write M = CR(K) and note that M � G and M ∩ D = 1. We have
DM ⊆ CG(K), and so to prove (c) it suffices to show that we have equality
here. Let c ∈ CG(K) and write c = k−1r with k ∈ K and r ∈ R. Since c
acts trivially on K , we see that k and r induce the same automorphism
of K , and thus k∗ and r induce the same automorphism. We have (k∗)−1r ∈
CR(K) = M, and hence c = (k−1k∗)((k∗)−1r) ∈ DM. This completes the
proof. ��
(9.2) Corollary. Assume the situation of Lemma 9.1. Let λ ∈ Irr(Z) and
ϕ ∈ Irr(K |λ), and let D ⊆ E ⊆ CG(K), where E � G. Then there exists
a character γ ∈ Irr(E|λ) such that the stabilizer Rϕ of ϕ in R also stabi-
lizes γ .
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Proof. Since CG(K) = D × CR(K), we see that we can write E = D × U ,
where U = E ∩ CR(K) � R. If we can find τ ∈ Irr(D|λ) such that τ is
stabilized by Rϕ, then the character γ = τ × 1U lies in Irr(E|λ) and is
stabilized by Rϕ, as required.

We have an R-isomorphism σ : K → D, where σ inverts Z, and thus
the image under σ of the character ϕ lies in Irr(D|λ−1) and is stabilized
by Rϕ. We can thus take τ to be the complex conjugate of this character.

��
As in the previous section, let (K, H, ν) be a self-normalizing admissible

triple, and let Z be the domain of the linear character ν. Then Z ⊆ H ⊆ K
and Z ⊆ Z(K ), and also H = NK(H). (Note that the containment Z ⊆ H
follows automatically in this self-normalizing situation, and so it need not
be assumed explicitly.)

Now let (θ, θ ′) belong to (K, H, ν), where (K, H, ν) is strong. Suppose
that (G, N, C) lies over (K, H, ν) and that it is a relatedness candidate
for (θ, θ ′). (Recall that this means that (θ, θ ′) is invariant in (G, N, C) and
that there exists at least one G-invariant character in Irr(C|ν).) We seek con-
ditions sufficient to guarantee that θ and θ ′ are related in (G, N, C). (In other
words, we want the cohomology elements [θ . γ ]G/KC and [θ ′ . γ ]N/HC to
be equal for some, and hence for every, G-invariant character γ ∈ Irr(C|ν).)

We need one more definition. Suppose that (G, N, C) lies over a self-
normalizing admissible triple (K, H, ν), and recall that C ⊆ CG(K). We
say that (G, N, C) is faithful over (K, H, ν) if C = CG(K). Note that
Z = K ∩ C, and so if (G, N, C) is faithful over (K, H, ν), then Z = Z(K ),
and the triple (K, H, ν) is strong. (Recall that we defined a strong triple to
be a self-normalizing triple for which Z = Z(K ).)

Suppose that (G, N, C) lies over the strong triple (K, H, ν), but do
not assume that it is faithful. Let U = CG(K), so that U ⊇ C. Now
U ⊆ NG(H) = N and U ∩ K = Z(K ) = Z, and thus (G, N, U) lies over
(K, H, ν). In fact, we see that (G, N, U) is faithful over (K, H, ν).

(9.3) Theorem. Let (θ, θ ′) belong to the strong triple (K, H, ν). Assume
that θ and θ ′ are related in every faithful relatedness candidate lying over
(K, H, ν). Then θ and θ ′ are related in every relatedness candidate lying
over (K, H, ν).

If (G, N, C) is a relatedness candidate for (θ, θ ′) in the situation of
Theorem 9.3, let U = CG(K). Then (G, N, U) lies faithfully over (K, H, ν)
and of course, (θ, θ ′) is invariant in (G, N, U). If (G, N, U) is a relatedness
candidate for (θ, θ ′), then by hypothesis, θ and θ ′ are related in (G, N, U),
and thus they are also related in (G, N, C) by Theorem 7.1, the Going Down
Theorem. This does not, however, prove Theorem 9.3 since in general,
(G, N, U) may not be a relatedness candidate for θ and θ ′. The problem,
of course, is that Irr(U|ν) may not contain any G-invariant characters. We
will use the following lemma to overcome this difficulty.
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(9.4) Lemma. Suppose that (θ, θ ′) belongs to the strong triple (K, H, ν)
and that (G, N, C) is a relatedness candidate for (θ, θ ′). Then there exist
two new relatedness candidates (G∗, N∗, F) and (G∗, N∗, E) for (θ, θ ′)
such that the following hold.

(a) (G∗, N∗, F) is faithful over (K, H, ν).
(b) Z(K ) ⊆ E ⊆ F.
(c) (G∗, N∗, E) is equivalent to (G, N, C).
(d) G∗ splits over K and a complement contains a normal subgroup that

acts faithfully on K and induces the group of inner automorphisms of K.

Before we prove Lemma 9.4, we deduce Theorem 9.3 from it.

Proof of Theorem 9.3. Let (G∗, N∗, F) and (G∗, N∗, E) be as in Lemma 9.4.
Since (G∗, N∗, F) is a faithful relatedness candidate, it follows by hypothe-
sis that θ and θ ′ are related in (G∗, N∗, F). By Theorem 7.1, the Going Down
Theorem, we conclude that θ and θ ′ are also related in (G∗, N∗, E). Finally,
since (G∗, N∗, E) is equivalent to (G, N, C), we conclude by Corollary 8.3
that θ and θ ′ are related in (G, N, C). ��
Proof of Lemma 9.4. Let Z = Z(K ) � G and write G = G/Z. Then G acts
on K , and we let G∗ = K �G be the semidirect product. (As is customary,
we identify K and G with their images in the semidirect product and write
G∗ = KG.) If X is any subgroup of G, then X ⊆ G, and we view X as
a subgroup of G∗ contained in the complement G of K .

Note that the complement G contains K as a normal subgroup, and K
acts faithfully on K and induces the group of inner automorphisms on K ,
as is required for (d). Also, this enables us to apply Lemma 9.1 with I = K ,
and as in that lemma, we let D = CKI(K). By Lemma 9.1(b), we know
that D = {k−1k | k ∈ K}.

Let U = CG(K) and note that U = CG(K). Let F = CG∗(K). By
Lemma 9.1(c), we can write F = D × U, and we have Z ⊆ D � G∗
by 9.1(a). Also C ⊆ U , and so C ⊆ U and we let E = D × C ⊆ F and
N∗ = NG∗(H). We will show that (G∗, N∗, E) and (G∗, N∗, F) lie over
(K, H, ν) and that they are relatedness candidates for θ and θ ′. Also, we
will show that (G∗, N∗, E) is equivalent to (G, N, C).

We construct an isomorphism η : G∗/E → G/C such that η carries Ek
to Ck for all elements k ∈ K , and such that for each coset X of E in G∗,
the elements of X and the elements of η(X) induce the same automorphism
of K .

Let α be the the restriction to K of the canonical homomorphism G →
G/C, so that α(k) = Ck for k ∈ K . Also, define the homomorphism
β : G → G/C by β(g) = Cg. (This is well-defined since Z ⊆ C.) For
k ∈ K and g ∈ G, we see that

α(kg ) = α(kg) = (Ck)Cg = α(k)β(g).
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It follows that there is a homomorphism ξ from the semidirect product
G∗ = K �G into G/C defined by ξ(kg) = α(k)β(g). In particular, we see
that ξ(kg) = (Ck)(Cg) = C(kg).

Now ξ maps G∗ onto G/C, and we compute ker(ξ). Observe that k−1g ∈
ker(ξ) if and only if k−1g ∈ C. In particular, if this happens, we have

k−1g = (k−1k)(k−1g) ∈ DC = E,

and so ker(ξ) ⊆ E. Conversely, every element of E = DC has the form e =
(k−1k)(c) with k ∈ K and c ∈ C. Then e = k−1kc, and since (k−1)(kc) ∈ C,
it follows that e ∈ ker(ξ). Thus ker(ξ) = E and ξ induces an isomorphism
η : G∗/E → G/Z, as wanted.

If x = kg ∈ G∗, then η(Ex) = ξ(x) = Ckg, and the elements of this
coset of C induce the same automorphism of K as does x, as required.
Finally, we observe that if k ∈ K , then η(Ek) = ξ(k) = Ck, and thus η has
the desired properties.

Now Z(K ) = Z ⊆ D ⊆ E ⊆ F = CG∗(K), and so E∩K = Z = F∩K .
In order to show that both (G∗, N∗, E) and (G∗, N∗, F) lie over (K, H, ν),
there are just two more things we need to check: that K ∩ N∗ = H and
that KN∗ = G∗. The first of these is clear since H = NK(H). To prove the
second statement, recall that the elements of a coset X of E in G∗ induce
the same automorphism of K as do the elements of the coset η(X). Since
N = NG(H) and N∗ = NG∗(H), it follows that η(N∗/E) = N/C. Also, we
know that η(KE/E) = KC/C, and since (N/C)(KC/C) = G/C, it follows
from the fact that η is an isomorphism that (N∗/E)(KE/E) = G∗/E. Thus
N∗ K = G∗, as needed.

Since (G, N, C) and (G∗, N∗, E) are equivalent, it follows from the fact
that θ and θ ′ are N-invariant that they are also N∗-invariant. To complete
the proof, all that remains is to show that Irr(F|ν) and Irr(E|ν) contain
G∗-invariant characters. In fact, it suffices to show that each of these sets
contains a G-invariant character because K centralizes E and F. But K
certainly contains a G-invariant character, namely θ, and thus we are done
by Corollary 9.2. ��

10. Good simples and perfect groups

Finally, we are ready to define what it means for a nonabelian simple group
of order divisible by p to be “good” for p. We give that definition here,
and then in the following three sections, we prove that simple groups that
are good for p must lie in the class X, which was defined in Sect. 1. In
particular, this will prove Theorem E.

Fix a prime p. Given a nonabelian simple group X of order divisible
by p, we consider perfect groups S such that S/Z ∼= X, where Z = Z(S) is
cyclic with order not divisible by p. We are about to state several conditions
that we want the group S to satisfy, and by definition, the simple group X
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is good for the prime p if all of these conditions hold for every choice of S.
(Note that up to isomorphism, there are just finitely many such groups S
for each simple group, and thus in principle, it is a finite problem to decide
whether or not the given simple group X is good for p.)

Fix a faithful linear character ν of Z and a Sylow p-subgroup Q of S.
(Since all possibilities for ν are Galois-conjugate and all possibilities for Q
are conjugate in S, it will be clear that the particular choice of the faithful
character ν and the Sylow subgroup Q are irrelevant to the conditions we
will state.)

Let A be the subgroup of Aut(S) consisting of all automorphisms that
act trivially on Z and stabilize Q. We require that there exists a subgroup T
of S such that

(1) T is stabilized by A.
(2) NS(Q) ⊆ T < S.
(2) There is a bijection θ �→ θ∗ from Irrp′(S|ν) to Irrp′(T |ν).

Note that Condition (3) makes sense since Z ⊆ NS(Q) ⊆ T by (2). Our
remaining conditions refer to this subgroup T and the bijection ( )∗.

Observe that A fixes ν, and so A acts on the sets Irrp′(S|ν) and Irrp′(T |ν).
We require that

(4) The map ( )∗ is A-equivariant.

This means that ( )∗ defines a permutation isomorphism between the actions
of A on Irrp′(S|ν) and on Irrp′(T |ν). In other words, (θa)∗ = (θ∗)a for all
characters θ ∈ Irrp′(S|ν) and all automorphisms a ∈ A.

Before we state our remaining conditions, we make the following
observation.

(10.1) Lemma. Assume the above notation and that Conditions (1), (2),
(3) and (4) are satisfied. Suppose that S is normal in some group G and
that Z ⊆ Z(G). Let N = NG(T ). Then G = SN and T = S ∩ N. Also, the
character bijection ( )∗ is N-equivariant.

Proof. Let M = NG(Q) and observe that conjugation by an element of M
induces an automorphism of S that lies in the group A. By Condition (1),
therefore, M ⊆ NG(T ) = N, and by Condition (4), the map ( )∗ is M-
equivariant. Since G = SM by the Frattini argument, we have G = SN,
as required. Also, N = TM by the Frattini argument, and since T acts
trivially on characters of S and on characters of T , it follows that ( )∗ is
N-equivariant. Finally, by Dedekind’s lemma, S ∩ N = T(S ∩ M) = T ,
since S ∩ M ⊆ T by Condition (2). ��

Returning now to our definition of “good”, we fix θ ∈ Irrp′(S|ν). We
require that the remainder of our conditions hold for every choice of θ. Let
B = Aθ , the stabilizer of θ in A, and note that by Condition (4), B is also
the stabilizer of θ∗ in A.
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We require next that S can be normally embedded in some group G
(which may depend on θ) such that G has several additional properties. The
first of these is the following.

(5) Z ⊆ Z(G) and B is exactly the group of automorphisms of S induced
by the conjugation action of the subgroup M = NG(Q) on S.

In particular, since θ is B-invariant, it is M-invariant, and hence it is G-
invariant because G = SM by the Frattini argument. We mention that the
existence of a group G satisfying (5) is automatic. It is not hard to see, for
example, that the semidirect product S � B has the desired properties.

We continue to assume that θ is given, that B = Aθ , and that we have
chosen and fixed a group G such that S � G and Condition (5) holds. The
remaining conditions will be stated in terms of G and θ. We require that

(6) The subgroup C = CG(S) is abelian.
(7) The set Irr(C|ν) contains a G-invariant character γ .

Our final requirement is that certain cohomology elements are equal.
To state this condition precisely, let N = NG(T ) and observe that C ⊆ N.
By Lemma 10.1, we have SN = G and S ∩ N = T , and so there is
a natural isomorphism G/SC ∼= N/TC, and this enables us to identify
the Schur multipliers of these groups. Also, θ is G-invariant, and thus θ∗
is N-invariant by Lemma 10.1. Then θ . γ ∈ Irr(SC) is G-invariant and
θ∗ . γ ∈ Irr(TC) is N-invariant, where γ is as in Condition (7). We require
that

(8) [θ . γ ]G/SC = [θ∗ . γ ]N/TC .

We can restate most of this in the language that we established in the
foregoing sections. We have Z = Z(S) ⊆ T ⊆ S and ν ∈ Irr(Z), and thus
(S, T, ν) is an admissible triple. Also, T = S∩ N = NS(T ), and so the triple
(S, T, ν) is self-normalizing, and in fact, it is strong since Z is the full center
of S. Also, G = SN and S ∩ N = T , and we have C ∩ S = Z(S) = Z,
and thus (G, N, C) lies over (S, T, ν). In fact, (G, N, C) is faithful over
(S, T, ν) since C = CG(S). Furthermore, (θ, θ∗) belongs to (S, T, ν) and
is invariant in (G, N, C). Finally, (G, N, C) is a relatedness candidate for
(θ, θ∗) because of Condition (7), and θ and θ∗ are related in (G, N, C) by
Condition (8).

These conditions guarantee that a somewhat stronger version of Con-
dition (8) holds.

(10.2) Lemma. Let S ⊆ G0 ⊆ G in the above situation, and define N0 =
N ∩ G0 and C0 = C ∩ G0. Then (G0, N0, C0) lies over (S, T, ν) and θ
and θ∗ are related in (G0, N0, C0).

Proof. It is clear that (G0, N0, C0) lies over (S, T, ν) and that (θ, θ∗) is
invariant in (G0, N0, C0). Also, since C is abelian by Condition (6), we
know that the G-invariant character γ of Condition (7) is linear, and thus
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its restriction γ0 = γC0 is irreducible, and of course, it is G0-invariant. In
other words, (G0, N0, C0) is a relatedness candidate for (θ, θ∗).

Under the identification of G/SC with N/TC, the subgroups G0C/SC
and N0C/TC correspond. Since [θ . γ ]G/SC = [θ∗ . γ ]N/TC , it is immediate
(by restriction of factor sets) that [θ . γ ]G0C/SC = [θ∗ . γ ]N0C/TC. Observe
that G0C/SC is naturally isomorphic to G0/SC0 and that the character
θ . γ ∈ Irr(SC) restricts to θ . γ0 ∈ Irr(SC0). Since this restriction is ir-
reducible, it follows by Lemma 3.6 that [θ . γ ]G0C/SC = [θ . γ0]G0/SC0

and similarly, [θ∗ . γ ]N0C/TC = [θ∗ . γ0]N0/TC0. Combining our equalities,
we get [θ . γ0]G0/SC0 = [θ∗ . γ0]N0/TC0, and thus θ and θ∗ are related in
(G0, N0, C0), as claimed. ��

We close this section with the following observation.

(10.3) Lemma. Let X be a simple group that has trivial Schur multiplier and
trivial outer automorphism group, and assume that the McKay conjecture
holds for X with respect to some prime divisor p of |X|. Then X is good
for p.

Proof. Since the Schur multiplier of X is trivial, it follows that the group Z
in the statement of our conditions is trivial, and thus S = X and ν is the
principal character of Z. Also, since all automorphisms of X are inner, we see
that A is exactly the group of automorphisms of X induced by conjugation
by elements of NX(Q), where Q ∈ Sylp(X). Take T = NX(Q), so that
Conditions (1) and (2) hold. Condition (3) is exactly the assumption that X
satisfies the McKay conjecture for the prime p. Also, since A acts trivially
on Irr(X) and Irr(T ), Condition (4) holds.

Now fix θ ∈ Irrp′(X), and note that B = Aθ = A. We can take G = X,
and we observe that Condition (5) holds. The group C of Condition (6)
is trivial, and hence (6) holds. Also (7) holds, with γ being the principal
character of the trivial group C. Finally, the groups G/SC and N/TC of
Condition (8) are trivial, and thus the cohomology elements of (8) are both
trivial, and hence they are equal. ��

11. Correspondence subgroups

Suppose X is a simple group that is good for the prime p. As in the previous
section, let S be perfect with S/Z ∼= X, where Z = Z(S) is a cyclic p′-
group. Also, fix Q ∈ Sylp(S) and ν ∈ Irr(Z), where ν is faithful. Since we
are assuming that X is good for p, we know (by definition) that there exists
at least one subgroup T of S and a corresponding bijection θ �→ θ∗ from
Irrp′(S|ν) to Irrp′(T |ν) with the properties we enumerated. We refer to T as
a correspondence subgroup for S, Q and ν, and we call the map ( )∗ the
associated correspondence.

We do not claim that the correspondence subgroup T is uniquely deter-
mined by S, Q and ν, nor do we claim that the associated correspondence
( )∗ is unique. To remedy this potential ambiguity, consider the equiva-
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lence relation on triples (S, Q, ν) defined by declaring (S1, Q1, ν1) to be
equivalent to (S2, Q2, ν2) if there is a group isomorphism τ : S1 → S2
such that τ(Q1) = Q2 and (with the obvious meaning) τ(ν1) = ν2. Choose
a representative in each equivalence class of triples, and for each such rep-
resentative, choose and fix one correspondence subgroup and its associated
correspondence.

Using the isomorphisms among the members of an equivalence class, we
can now define correspondence subgroups and associated correspondences
unambiguously for all members of the class. To see that this can be done,
we must show that if τ and σ are two isomorphisms from S1 to S2, and
both carry Q1 to Q2 and ν1 to ν2, then both τ and σ carry a correspondence
subgroup T1 ⊆ S1 to the same subgroup T2 of S2. We must also show, of
course, that the associated correspondences defined by τ and σ are identical.

To check these conditions, note that σ followed by τ−1 is an automorph-
ism of S1 that centralizes Z1 and stabilizes Q1, and hence it lies in the
group A1 (corresponding to the group that was previously called A). But
then by Conditions (1) and (4), it follows that T1 and ( )∗ are stabilized by
this automorphism, and this establishes what we need.

We have now defined a particular correspondence subgroup T and a par-
ticular correspondence ( )∗ for each choice of S, Q and ν. We write
T = T(S, Q, ν), but to avoid notational clutter, we will not attempt to
indicate the dependence of the associated correspondence on the initial
data. Instead, we use the generic notation ( )∗ in all cases. Because of
the way we have selected our correspondence subgroups, we know that if
τ : S1 → S2 is an isomorphism taking Q1 to Q2 and ν1 to ν2, as above,
then τ carries T(S1, Q1, ν1) to T(S2, Q2, ν2) and τ respects the associated
correspondences.

If T = T(S, Q, ν), we see that NS(Q) ⊆ T by Condition (2) of the pre-
vious section, and thus T is self-normalizing in S by the Frattini argument.
Since Z = Z(S), it follows that (S, T, ν) is a strong triple.

(11.1) Theorem. Let S, Q, Z and ν be as above, and write T = T(S, Q, ν).
Let θ ∈ Irrp′(S|ν) and suppose that (G, N, C) is a relatedness candidate
for (θ, θ∗) over (S, T, ν). Then θ and θ∗ are related in (G, N, C).

We stress that G, N and C in Theorem 11.1 are not necessarily the
groups with those names that were discussed in the previous section. Here,
(G, N, C) is an arbitrary relatedness candidate for (θ, θ∗), and in particular,
we are not assuming that it is faithful or that C is abelian.

Proof of Theorem 11.1. To prove that θ and θ∗ are related in (G, N, C), it
suffices by Theorem 9.3 to show that θ and θ∗ are related in every faithful
relatedness candidate over (S, T, ν). It is therefore no loss to assume that
(G, N, C) is faithful, and so we assume that C = CG(S).

Since θ is N-invariant and G = SN, we see that θ is G-invariant.
Thus θ is invariant under M = NG(S), and hence it is also invariant under
the group B0 of automorphisms of S induced by conjugation via elements
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of M. Observe that B0 is a subgroup of the full stabilizer B of θ in the group
of all automorphism of S that stabilize Q and act trivially on Z.

By Condition (5) of the definition of “good”, S is normal in a certain
group that was called G in the previous section, but which we call G1
here. We know that Z ⊆ Z(G1) and that certain additional properties hold,
and in particular, the subgroup M1 = NG1(Q) induces the full group B of
automorphisms on S. Let C1 = CG1(S) and N1 = NG1(T ), and observe that
(G1, N1, C1) lies over (S, T, ν). (This follows by Lemma 10.1.)

Let M0 ⊆ M1 be the subgroup consisting of all elements of M1 that
induce automorphisms of S that lie in the group B0. Since B0 ⊆ B and M1
induces the full group B on S, we see that M0 induces the group B0 on S.
Let N0 = TM0, G0 = SM0 and C0 = C1 ∩G0 = CG0(S). It is easy to check
that this puts us into the situation of Lemma 10.2, and hence θ and θ∗ are
related in (G0, N0, C0).

By Corollary 8.3, it suffices to show that (G, N, C) and (G0, N0, C0)
are equivalent over (S, T, ν). To establish this, we need an isomorphism
η : G/C → G0/C0 such that

(1) Cx and η(Cx) induce identical automorphisms of S for all x ∈ G and
(2) η(Cs) = C0s for all elements s ∈ S.

Since (G, N, C) lies faithfully over (S, T, ν), we know that G/C is
isomorphic to the group U of automorphisms of S induced by G. Also,
since G = SM by the Frattini argument and M induces the group B0 on S,
we have U = IB0, where I is the group of inner automorphisms of S.
Since M0 also induces the group B0 and G0 = SM0, it follows that the
group of automorphisms of S induced by G0 is also IB0 = U . Then G/C
and G1/C1 are both isomorphic to the same group U of automorphisms
of S, and therefore there exists an isomorphism η : G/C → G1/C1 such
that (1) holds.

Since the coset C0s is the full set of elements of G0 that induce the inner
automorphism induced by s, it follows that η(Cs) = C0s and (2) holds also.
This completes the proof. ��

12. Groups that may not be perfect

Fix a prime p and let X be a simple group that is good for p. Suppose that
S/Z ∼= X, where Z = Z(S) is a cyclic p′-group, and choose a faithful linear
character ν of Z and a Sylow subgroup Q ∈ Sylp(S). In the previous sec-
tion we considered the case where S is perfect, and we defined a correspon-
dence subgroup T = T(S, Q, ν) and an associated character correspondence
θ �→ θ∗ from Irrp′(S|ν) onto Irrp′(T |ν). Our goal here is to do the same thing,
but without assuming that S is perfect.

Given S, Q and ν as above, let U = S′ and write Y = U ∩ Z. Since
S/Z is simple, we have S = ZU , and so U = S′ = U ′ and U is perfect.
Also, Y = Z(U) is a cyclic p′-group and U/Y ∼= S/Z ∼= X. Furthermore,
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since Z is a p′-group, the index |S : U| is not divisible by p, and thus Q ∈
Sylp(U). Finally, writing µ = νY , we see that µ is a faithful linear character
of Y , and so the correspondence subgroup V = T(U, Q, µ) is defined, and
we write T = ZV . We can now extend our previous definitions to not-
necessarily-perfect groups by writing T(S, Q, ν) = T . We refer to T as a
correspondence subgroup for S (with respect to Q and ν).

Observe that

U ∩ T = U ∩ ZV = (U ∩ Z)V = YV = V.

Since we know that V < U by Condition (2) of Sect. 10, it follows
that T < S. Also, if S is normal in some group G, then U� G and Z� G and it
follows from the equations T = ZV and V = U ∩ T that NG(T ) = NG(V ).
In particular, NS(T ) = NS(V ) = ZV = T , where the second equality fol-
lows from the fact that V = NU(V ). We conclude that (S, T, ν) is a strong
triple.

Next, we construct a bijection Irrp′(S|ν) → Irrp′(T |ν). Since S = ZU is
a central product and Y = U ∩ Z, the map α �→ α . ν is a degree-preserving
bijection from Irr(U|µ) to Irr(S|ν). In particular, this map defines a bijec-
tion from Irrp′(U|µ) to Irrp′(S|ν). Similarly, T = ZV is a central product
and the map β �→ β . ν defines a bijection from Irrp′(V |µ) to Irrp′(T |ν).
Furthermore, since V is a correspondence subgroup for U , we have an asso-
ciated correspondence ( )∗ from Irrp′(U|µ) to Irrp′(V |µ). We can combine
these maps to define a bijection from Irr(S|ν) to Irr(T |ν). (We also call this
map ( )∗ and refer to it as the associated correspondence.) To be precise,
we have (α . ν)∗ = α∗ . ν.

The properties of correspondence subgroups and their associated corres-
pondences that we established in the previous section also hold in this
generality. For example, if τ : S1 → S2 is an isomorphism that carries
Sylow p-subgroup Q1 to Sylow p-subgroup Q2 and linear character ν1
of Z1 = Z(S1) to linear character ν2 of Z2 = Z(S2), then it should be
clear that τ maps T(S1, Q1, ν1) to T(S2, Q2, ν2) and τ respects the relevant
character bijections.

(12.1) Theorem. Let S, Q, Z and ν be as before, where S is not necessarily
perfect, and write T = T(S, Q, ν). Let θ ∈ Irrp′(S|ν) and suppose that
(G, N, C) is a relatedness candidate for (θ, θ∗) over (S, T, ν). Then θ and θ∗
are related in (G, N, C).

Proof. As before, we let U = S′, Y = U ∩ Z, µ = νY and V = T(U, Q, µ),
so that we have T = ZV , and V = T ∩ U , and thus N = NG(V ). We argue
first that (G, N, C) lies over (U, V, µ). We have G = NS = NZU = NU ,
and also, V = T ∩ U = (N ∩ S)∩ U = N ∩ U . Of course, C centralizes U
and Y = Z ∩ U = (C ∩ S) ∩ U = C ∩ U , as required.

Write θ = α . ν and recall that θ∗ = α∗ . ν, where (α, α∗) belongs
to (U, V, µ). Also, observe that α and α∗ are the restrictions of θ and θ∗ to
U and V , and thus (α, α∗) is invariant in (G, N, C). Since by assumption,
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(G, N, C) is a relatedness candidate for (θ, θ∗), we know that there is a G-
invariant character γ ∈ Irr(C|ν) ⊆ Irr(C|µ), and it follows that (G, N, C)
is a relatedness candidate for (α, α∗).

By Theorem 11.1, the characters α and α∗ are related in (G, N, C), and
so if we identify G/UC = N/VC, we can write [α . γ ]G/UC = [α∗ . γ ]N/VC .

Now SC = ZUC = UC and TC = ZVC = VC, and since γ lies over ν,
we have θ . γ = α . γ and similarly, θ∗ . γ = α∗ . γ . The result now follows.

��

13. Semisimple quotients

Let K be a finite group and let Z = Z(K ), where Z is cyclic of order not
divisible by p. In the previous two sections we considered the case where
K/Z is a simple group that is good for p, but now we relax that condition
and assume instead that K/Z is a direct product of simple groups, each of
which is good for p. As before, we let ν be a faithful linear character of Z,
and we fix a Sylow subgroup Q ∈ Sylp(K ).

The main result of this section is the following, which includes The-
orem E of the introduction. (The subgroup N of Theorem 13.1 is the sub-
group whose existence was asserted in Theorem E, but which was called M
in that theorem.)

(13.1) Theorem. Let K, Z, Q and ν be as above. Then there exists a sub-
group H of K and a character correspondence ( )∗ from Irrp′(K |ν) to
Irrp′(H|ν) such that

(a) NK (Q) ⊆ H < K.

Now suppose that K is normal in some group G with Z ⊆ Z(G), and write
N = NG(H). The following then hold.

(b) KN = G and K ∩ N = H.
(c) NG(Q) ⊆ N < G.
(d) The bijection ( )∗ is N-equivariant.
(e) |Irrp′(G|θ)| = |Irrp′(N|θ∗)| for all characters θ ∈ Irrp′(K |ν).

Recall that in the statement of Theorem E, we assumed Hypothesis D,
which was that K/Z(G) is the direct product of simple groups all of which
are isomorphic to some group X, where X is good for p. The hypothesis of
Theorem 13.1 is more general in two respects: we do not require Z to be
the full center of G and we do not require that the simple direct summands
of K/Z are all isomorphic.

Since Theorem 13.1 includes Theorem E, a consequence is that every
simple group that is good for p lies in the class X, which was defined
in Sect. 1. It follows by Theorem 2.1 that the relative McKay conjecture
(Conjecture C) holds for L � G if all nonabelian simple groups involved
in G/L and having order divisible by p are good for p. In particular, this
proves Theorem B.
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We now begin work toward a proof of Theorem 13.1. Since K/Z is
a direct product of good (for p) simple groups and these, by definition, are
nonabelian, we know that K/Z is the direct product of the groups S/Z,
where S runs over the collection S consisting of all subgroups of K such
that Z ⊆ S� K and S/Z is simple. Note that Z = Z(S) for all groups S ∈ S.
Also, as we saw in Sect. 5, the distinct members of S centralize each other,
and so K is the central product of the members of S. Let e = |S|.

If S ∈ S, then Q ∩ S ∈ Sylp(S), and since S/Z is good for the prime p,
there exists a correspondence subgroup T = T(S, Q ∩ S, ν), and an asso-
ciated character correspondence ( )∗ from Irrp′(S|ν) to Irrp′(T |ν). Since we
are holding Q and ν fixed throughout this discussion, we can remove some
clutter from our notation and simply write T = T(S). (As usual, we call all
of our character correspondences ( )∗.)

We can now define the subgroup H of K appearing in Theorem 13.1
by setting H = ∏

S∈S T(S). Note that H is a central product of the sub-
groups T(S), and it is easy to see that T(S) = H∩S for each member S ∈ S.
The following lemma establishes the purely group-theoretic parts of The-
orem 13.1 for this subgroup H .

(13.2) Lemma. Let K, Q and H be as above. Then

(a) NK (Q) ⊆ H < K.

Now suppose that K is normal in some group G with Z ⊆ Z(G), and write
N = NG(H). The following then hold.

(b) KN = G and K ∩ N = H.
(c) NG(Q) ⊆ N < G.

Proof. Since S∩ H = T(S) < S, we have H < K , as required. To complete
the proof of (a), let k ∈ NK (Q) and observe that k normalizes each of the
subgroups Q ∩ S for S ∈ S. Now k is a product of elements of the various
members S of S , and each component of k, except possibly the S-component,
centralizes S and thus normalizes Q ∩ S. It follows that the S-component
of k must also normalize Q ∩ S. We know, however, that NS(Q ∩ S) ⊆
T(S, Q ∩ S, ν) = T(S), and it follows that k ∈ ∏

S∈S T(S) = H . Thus
NK(Q) ⊆ H , proving (a).

Now suppose K � G with Z ⊆ Z(G), and let M = NG(Q). If m ∈ M
and S ∈ S, then Sm ∈ S and conjugation by m defines an isomorphism from
S to Sm that is trivial on Z and carries Q ∩ S to Q ∩ Sm. It follows that
conjugation by m maps T(S) to T(Sm), and thus M permutes the subgroups
T(S) for S ∈ S. We conclude that M normalizes H , proving part of (c).

By the Frattini argument, G = MK ⊆ NK , and so G = NK , as
wanted. Also N ∩ K = NK (H) = H , where the second equality holds
because H contains a Sylow normalizer in K . This proves (b). Also, since
N ∩ K = H < K , we have N < G, and this completes the proof of (c). ��

We need a map θ �→ θ∗ from Irrp′(K |ν) to Irrp′(H|ν). To construct
it, it is convenient to enumerate the members of S, and so we write S =
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{S1, S2, . . . , Se}, and we set Ti = T(Si). Since K is the central product
of the Si, it follows by Lemma 5.1 that every character θ ∈ Irr(K |ν) is
uniquely of the form θ = θ1 . θ2 . · · · . θe, with θi ∈ Irr(Si|ν). Similarly, H
is the central product of the Ti , and all members of Irr(H|ν) can be obtained
by taking dot products of characters in Irr(Ti |ν). Given θ ∈ Irrp′(K |ν), the
factors θi lie in Irrp′(Si|ν), and so the characters θ∗

i ∈ Irrp′(Ti|ν) are defined.
We now set θ∗ = θ∗

1
. θ∗

2
. · · · . θ∗

e , and it should be clear that this defines
a bijection from Irrp′(K |ν) to Irrp′(H|ν).

Now let A be the group of automorphisms of K that stabilize Q and
centralize Z.

(13.3) Lemma. The map θ �→ θ∗ defined above is A-equivariant. Also,
Part (d) of Theorem 13.1 holds for this map.

Proof. Let a ∈ A and observe that a permutes the subgroups S ∈ S. If a
carries Si to Sj , then it carries Ti to Tj and also, if θi ∈ Irrp′(Si|ν), then
(θi)

a ∈ Irrp′(Sj|ν). Since a fixes ν and carries Q ∩ Si to Q ∩ Sj , we know
that ((θi)

∗)a = ((θi)
a)∗, and it follows easily that ( )∗ is A-equivariant, as

desired.
Now assume the situation of Theorem 13.1 and write N = NG(H)

and M = NG(Q). By Lemma 13.2(c), we have M ⊆ N, and by the Frattini
argument, N = MH . To prove that the map ( )∗ is N-equivariant, therefore,
it suffices to prove that it is M-equivariant. But M induces automorphisms
in A, and so this is clear. ��

The following is the analog of Theorems 11.1 and 12.1 in this situation.

(13.4) Theorem. Let K, H, Q and ν be as above. Let θ ∈ Irrp′(K |ν) and
suppose that (G, N, C) is a relatedness candidate for (θ, θ∗). Then θ and θ∗
are related in (G, N, C).

Proof. We work by induction on the number e = |S|. The set S is permuted
by G, and we assume first that this action is not transitive. We can then
write K as a central product, K = K1 K2, where Ki � G and each of K1
and K2 is the product of fewer than e members of the set S. In particular,
we have Z = Z(Ki ) and K1 ∩ K2 = Z, and thus we can write θ = θ1 . θ2,
where θi ∈ Irrp′(Ki |ν).

Each of the groups Ki satisfies the original hypotheses on K (with
a smaller value of e), and so there exist subgroups Hi ⊆ Ki defined analo-
gously to the construction of H in K . Also, we have associated bijections ( )∗
from Irrp′(Ki |ν) to Irrp′(Hi|ν). We see that H = H1 H2 is a central product
with H1 ∩ H2 = Z, and we have Hi = H ∩ Ki . Furthermore, it follows from
the construction of the various ( )∗ maps that θ∗ = θ∗

1
. θ∗

2 .
Since (G, N, C) is a relatedness candidate for (θ, θ∗), we know that θ

and θ∗ are N-invariant, and it is immediate that each of θ1, θ2, θ∗
1 and θ∗

2
is also N-invariant. Also, there exists a G-invariant character γ ∈ Irr(C|ν),
and our goal is to show that [θ . γ ]G/KC = [θ∗ . γ ]N/HC . Observe that
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KC = K1 K2C is the central product of the three subgroups K1, K2 and
C, and thus we can write θ . γ = (θ1 . θ2) . γ = θ1 . θ2 . γ , and there is
no ambiguity caused by dropping the parentheses. Similarly, we can write
θ∗ . γ = θ∗

1
. θ∗

2
. γ

The subgroup Hi is self-normalizing in Ki , and so if we write Ni =
NG(Hi), we see that N1 ∩ K = H1K2 and N2 ∩ K = K1 H2. Also
N1 ∩ N2 = NG(H) = N. Furthermore, since G = NK and N ⊆ N1,
we have N1 = N(N1 ∩ K ) = NH1 K2 = NK2, and similarly, N2 = NK1.
It follows that N1 K1 = NK1 K2 = NK = G, and similarly, N2 K2 = G.
The groups G/K , N1/H1K2, N2/K1 H2 and N/H are naturally isomorphic,
and it is easy to see that four groups G/CK , N1/CH1K2, N2/CK1 H2 and
N/CH are also naturally isomorphic, and so we can identify them.

Now (K1, H1, ν) is a strong triple, and we observe that (G, N1, CK2)
lies over it. To see this, we must check that N1 K1 = G, that N1 ∩ K1 = H1,
that CK2 centralizes K1 and that K1 ∩ CK2 = Z. All of this is clear.

We argue that (G, N1, CK2) is a relatedness candidate for (θ1, θ
∗
1 ). To

see this, observe that since θ1 is G-invariant, it is certainly N1-invariant,
and thus θ∗

1 is also N1-invariant, as required. Furthermore, we know that
γ ∈ Irr(C|ν) is G-invariant. Since CK2 is a central product with C∩K2 = Z,
the character γ . θ2 ∈ Irr(CK2|ν) is defined and G-invariant, and this shows
that (G, N1, CK2) is a relatedness candidate for (θ1, θ

∗
1 ), as asserted.

By the inductive hypothesis applied with K1 in place of K , it follows
that θ1 and θ∗

1 are related in (G, N1, CK2), and thus

[θ1 . (γ . θ2)]G/CK = [θ∗
1
. (γ . θ2)]N1/CH1K2 .

Since CK = CK1 K2 and CH1 K2 are triple central products, we can suppress
the parentheses and rearrange the factors in the above character dot products.
We thus have

[θ1 . θ2 . γ ]G/CK = [θ∗
1
. θ2 . γ ]N1/CH1K2 .

Next, we observe that (N1 , N,CH1) lies over the strong triple (K2 , H2,ν).
For this we must check that NK2 = N1, that N ∩ K2 = H2, that CH1
centralizes K2, and that CH1 ∩ K2 = Z. Here too, all of this is clear.

In fact, (N1, N, CH1) is a relatedness candidate for (θ2, θ
∗
2 ). That θ2

and θ∗
2 are N-invariant is clear, and we have the N1-invariant character

γ . θ∗
1 ∈ Irr(CH1|ν), as needed.

Now we apply the inductive hypothesis in the group N1, with K2 in place
of K , and we deduce that θ2 and θ∗

2 are related in (N1, N, CH1). We thus
have

[θ2 . (γ . θ∗
1 )]N1/CH1 K2 = [θ∗

2
. (γ . θ∗

1 )]N/CH ,

and again, we can suppress parentheses and rearrange factors. We obtain

[θ∗
1
. θ2 . γ ]N1/CH1K2 = [θ∗

1
. θ∗

2
. γ ]N/CH .
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Combining this with our previous equality of cohomology elements, we get

[θ . γ ]G/CK = [θ1 . θ2 . γ ]G/CK = [θ∗
1
. θ2 . γ ]N1/CH1 K2

= [θ∗
1
. θ∗

2
. γ ]N/CH = [θ∗ . γ ]N/CH ,

and thus θ and θ∗ are related in (G, N, C), as required.
We can now assume that G acts transitively on the set S. (In particular,

the base case of our induction, where e = 1, is included here.) Again, it
is convenient to enumerate the set S, and we write S = {S1, . . . , Se}. As
before, we write θ = θ1 . · · · . θe with θi ∈ Irrp′(Si|ν), and we observe that
the character θi can be identified as the unique irreducible constituent of θSi .
Also, by definition, θ∗ = θ∗

1
. · · · . θ∗

e , and so θ∗
i is the unique irreducible

constituent of (θ∗)Ti , where we have written Ti = T(Si).
By Corollary 8.3, we know that to prove that θ and θ∗ are related in

(G, N, C), it is no loss to replace (G, N, C) with a relatedness candidate
equivalent to it. By Lemma 9.4(c) and (d), therefore, we can assume that G
splits over K . In fact, we can assume that there is a complement R containing
a normal subgroup that acts (by conjugation) on K like the group of inner
automorphisms of K . (Note that this change of our group G does not affect
the set of automorphisms of K induced by G, and thus G is still transitive
on S.)

Next, as we did in Sect. 5, we build the group K∗ as the (external) direct
product of the groups Si. Viewing each factor as a subgroup of K∗, the
centers Zi of the subgroups Si are distinct subgroups of K∗, each of them
isomorphic to Z. Define subgroups Z∗ and H∗ of K∗ by setting Z∗ = ∏

Zi
and H∗ = ∏

Ti . Note that Z∗ = Z(K∗) and Z∗ ⊆ H∗. Also, since Ti is
self-normalizing in Si, we see that H∗ is self-normalizing in K∗.

The natural homomorphism from K∗ onto K , mapping an e-tuple in K∗
to the product of its components in K , carries H∗ to H and Z∗ to Z. We
can thus view the characters θ ∈ Irr(K ), θ∗ ∈ Irr(H) and ν ∈ Irr(Z) as
characters of K∗, H∗ and Z∗, respectively. Note that (K∗, H∗, ν) is a strong
triple, but ν is no longer faithful.

The conjugation action of the complement R on K in G induces a natural
action of R on the direct product K∗, and we let G∗ = K∗ R be the semidirect
product. It is easy to check that there is a unique surjection from G∗ to G
that extends both the natural surjection from K∗ to K and the identity map
on R. If we write N∗ = NG∗(H∗), we see that N∗ is the full preimage
in G∗ of N = NG(H). (This is because the kernel of our homomorphism
from G∗ to G is contained in Z∗ ⊆ H∗.) Also, since G = KN, it follows
that G∗ = K∗N∗, and we have K∗ ∩ N∗ = NK∗(H∗) = H∗. Furthermore,
since θ and θ∗ are invariant under the action of N, we see that θ and θ∗ are
also invariant under N∗.

We argue next that the full preimage C∗ of C in G∗ centralizes K∗. To see
this, note that each element of G∗ has the form xr, with x ∈ K∗ and r ∈ R.
If xr lies in C∗, then the image of xr in G lies in C, and it has the form yr,
where y is the image of x in K . Now yr centralizes K , and so r−1 induces
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on K the inner automorphism induced by y. In particular, r−1 normalizes
each member S ∈ S. Also, r−1 induces on S the automorphism induced by y,
which is the same as the automorphism induced by x. It follows that the
element xr of C∗ centralizes each factor S of K∗, and thus C∗ centralizes K∗,
as claimed. Thus C∗ = CG∗(K∗) and C∗ ∩ K∗ = Z(K∗) = Z∗. We see,
therefore, that (G∗, N∗, C∗) lies over the strong triple (K∗, H∗, ν). We
know that (θ, θ∗) is invariant in (G∗, N∗, C∗), and in fact, we claim that
(G∗, N∗, C∗) is a relatedness candidate for (θ, θ∗). This is because the given
G-invariant character γ of C can be viewed as a G∗-invariant character of C∗
lying over ν.

We work now to show that the characters θ and θ∗ are related in
(G∗, N∗, C∗). This will complete the proof because in general, if M � G
and ψ ∈ Irr(M) is G-invariant, then the cohomology element [ψ]G/M is the
same as the cohomology element that would be obtained if we first factored
out by a normal subgroup of G contained in ker(ψ).

Let F = CG∗(K∗) and observe that F ⊆ NG∗(H∗) = N∗. Corollary 9.2
applies in this situation, and since Irr(K∗|ν) contains the R-invariant char-
acter θ, it follows that Irr(F|ν) also contains an R-invariant character. But
G∗ = K∗ R and K∗ centralizes F, and hence every R-invariant character
of F is also G∗-invariant. It follows that (G∗, N∗, F) is a relatedness can-
didate for (θ, θ∗), and so by Theorem 7.1 (Going Down), it suffices to show
that θ and θ∗ are related in (G∗, N∗, F). (We will explain later why we have
to abandon C∗ and work with F instead.)

Since K∗ is the direct product of its subgroups Si, we can (uniquely)
factor θ = ∏

ξi , where ξi ∈ Irr(K∗) and Sj ⊆ ker(ξi) for j �= i. Also ξi
restricts irreducibly to Si and we can identify (ξi)Si as the unique irreducible
constituent of θSi . In particular, we have (ξi)Si = θi . Also, since H∗ is the
direct product of its subgroups Ti , we can apply similar reasoning, and we
write θ∗ = ∏

ηi , where ηi ∈ Irr(H∗) and Tj ⊆ ker(ηi) for j �= i. We have
(ηi)Ti = θ∗

i .
Factor ν = ∏

λi , where λi ∈ Irr(Z∗) and Z j ⊆ ker(λi) for j �= i.
Let µi = (λi)Zi . (Recall that each of the groups Zi is “really” our original
group Z. From this point of view, the character µi is just our original
character ν, but since we have changed the definition of ν, which we now
view as a character of Z∗, we need to distinguish µi from ν.) Observe that
ξi ∈ Irr(K∗|λi) and that ηi ∈ Irr(H∗|λi ).

Now R transitively permutes the set S, and we write R1 to denote the
stabilizer of S1 in this action. Working in G∗, we set G1 = K∗ R1 and
N1 = N∗ ∩ G1, and we observe that G1 = K∗N1 and H∗ = K∗ ∩ N1. Also,
G1 = NG∗(S1), and hence F = CN∗(K∗) ⊆ N1. Furthermore, we see that
G1 is the stabilizer of ξ1 in G∗ and N1 is the stabilizer of both ξ1 and η1
in N∗. Thus (G1, N1, F) lies over the strong triple (K∗, H∗, λ1) and (ξ1, η1)
belongs to this triple and is invariant in (G1, N1, F).

We claim that (G1, N1, F) is a relatedness candidate for (ξ1, η1). To see
this, we must show that there is a G1-invariant character in τ ∈ Irr(F|λ1).
But G1 = K∗ R1 and K∗ centralizes F, and so it suffices to find an R1-
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invariant character in Irr(F|λ1). The existence of such a character is guar-
anteed by Corollary 9.2, however, since Irr(K∗|λ1) contains the R1-invariant
character ξ1. (Note that we could not apply 9.2 if we were working with C∗
instead of F, and so it is not clear that (G1, N1, C) is a relatedness candidate
for (ξ1, η1).)

Recall that N1 is the stabilizer of both ξ1 and η1 in N∗. Also, we know
that θ is the product of the e = |N∗ : N1| distinct N∗-conjugates of ξ1
and θ∗ is the product of the e distinct N∗-conjugates of η1. It follows by
Theorem 7.2 that to prove that θ and θ∗ are related in (G∗, N∗, F), it suffices
to show that ξ1 and η1 are related in (G1, N1, F). To complete the proof,
therefore, it suffices to show that the cohomology elements [ξ1 . τ]G1/K∗F
and [η1 . τ]N1/H∗F are equal. For notational convenience now, we write
ξ = ξ1 and η = η1.

Observe that (K∗F)N1 = G1 and (K∗F) ∩ N1 = H∗F. Let N1 ⊆ M
⊆ G1 and set D = (K∗F) ∩ M, so that M/D is naturally isomorphic to
both G1/K∗F and N1/H∗F. We will choose an appropriate subgroup M
and an appropriate M-invariant character δ ∈ Irr(D) such that

[ξ . τ]G1/K∗F = [δ]M/D = [η . τ]N1/H∗F,

and this will establish the desired equality of cohomology elements.
Let M = NG1(T1). Now T1 = H∗∩S1, and since N1 normalizes both H∗

and S1, we have N1 ⊆ M ⊆ G1, as wanted. To compute D = K∗F ∩ M
conveniently, we define L = ∏

j>1 Sj . Then K∗ = S1 × L and since T1 is
self-normalizing in S1, we see that NK∗(T1) = T1L . This yields

D = K∗F ∩ M = (K∗ ∩ M)F = NK∗(T1)F = T1L F.

Next, observe that L ∩ F = ∏
j>1 Z j . Then L ∩ F ⊆ ker(λ1), and hence

L ∩ F ⊆ ker(τ). It follows that τ has a unique extension σ ∈ Irr(L F) such
that L ⊆ ker(σ). Now D = T1(L F) is a central product of T1 and L F,
and we see that T1 ∩ L F = Z1. Also, both θ∗

1 and σ lie over µ1 ∈ Irr(Z1),
and so θ∗

1
. σ ∈ Irr(D) is defined, and we take δ = θ∗

1
.σ . Note that δ is

M-invariant because it is N1-invariant.
Now K∗ = S1L , and so K∗F = S1(L F), and this is a central product

of S1 and L F. Also, S1 ∩ L F = Z1 and both θ1 ∈ Irr(S1) and σ ∈ Irr(L F)
lie over µ1 ∈ Irr(Z1). Thus θ1 . σ is a well defined character of K∗F, and we
argue that θ1 .σ = ξ . τ . To establish this, let x ∈ K∗F and write x = sl f ,
where s ∈ S1, l ∈ L and f ∈ F. Then

(θ1 . σ)(x) = θ1(s)σ(l f ) = ξ(sl)τ( f ) = (ξ . τ)(x),

as wanted. (The second equality holds because L ⊆ ker(ξ) and ξS1 = θ1.)
Next, we observe that (G1, M, L F) lies over the strong triple (S1,T1,µ1).

Also, σ ∈ Irr(L F|µ1) is uniquely determined by τ , and so it is G1-
invariant, and hence (G1, M, L F) is a relatedness candidate for (θ1, θ

∗
1 ).

But T1 = T(S1), and so by Theorem 12.1, we see that θ1 and θ∗
1 are related
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in (G1, M, µ1). Recalling that K∗F = S1(L F), and that ξ . τ = θ1 .σ , we
see that

[ξ . τ]G1/K∗F = [θ1 .σ ]G1/S1(L F) = [θ∗
1
.σ ]M/T1(L F) = [δ]M/D,

as wanted.
Finally, to show that [δ]M/D = [η . τ]N1/H∗F , it suffices by Lemma 3.6

to show that δ restricts irreducibly to H∗F and that the restriction is equal
to η . τ . Let x ∈ H∗F and note that H∗ = T1(H∗ ∩ L). Write x = tlf, where
t ∈ T1, l ∈ H∗ ∩ L and f ∈ F. Then

δ(x) = (θ∗
1
.σ)(tl f ) = θ∗

1 (t)σ(l f ) = η(tl)τ( f ) = (η . τ)(x),

as wanted. (Here, the third equality holds because H∗ ∩ L ⊆ ker(η),
ηT1 = θ∗

1 and σ(l f ) = τ( f ) by the definition of σ .) This completes the
proof. ��
Proof of Theorem 13.1. Assume the notation of Theorem 13.1, let H be
as before, and let θ ∈ Irrp′(K |ν). All that remains to be shown is that
|Irrp′(G|θ)| = |Irrp′(N|θ∗)|.

Let G0 be the stabilizer of θ in G and write N0 = G0 ∩ N. By Con-
clusion (d) of the theorem, which has already been established, we know
that N0 is the stabilizer in N of θ∗. Also, character induction defines bi-
jections from Irr(G0|θ) to Irr(G|θ) and from Irr(N0|θ∗) to Irr(N|θ∗). Now
|G : G0| = |N : N0| by Conclusion (b), and if this number is divisible
by p, then both Irrp′(G|θ) and Irrp′(N|θ∗) are empty, and there is nothing
further to prove. We may suppose, therefore, that the stabilizer indices are
not divisible by p, and hence induction defines bijections from Irrp′(G0|θ)
to Irrp′(G|θ) and from Irrp′(N0|θ∗) to Irrp′(N|θ∗). It suffices, therefore, to
show that |Irrp′(G0|θ)| = |Irrp′(N0|θ∗)|.

Now (G0, N0, Z) lies over (K, H, ν) and is clearly a relatedness candi-
date for (θ, θ∗), where the G0-invariant character in Irr(Z|ν) is, of course, ν
itself. We know by Theorem 13.4 that θ and θ∗ are related in (G0, N0, Z),
and thus [θ]G0/K = [θ∗]N0/H . (We are using the fact that θ . ν = θ and simi-
larly for θ∗.) It follows from the theory of projective representations that
there is a bijection from Irr(G0|θ) to Irr(N0|θ∗) such that if χ corresponds
to χ∗, then χ(1)/θ(1) = χ∗(1)/θ∗(1). In particular, since θ(1) and θ∗(1)
are not divisible by p, this bijection carries Irrp′(G0|θ) to Irrp′(N0|θ∗). This
completes the proof of the theorem. ��

14. Fields and automorphisms

In this short section, we prove the following result, which we shall need
when we show that the simple groups PSL2(q) are good for all primes that
divide their orders.
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(14.1) Theorem. Let E be a finite field and write E× to denote its multi-
plicative group. If S is a group of automorphisms of E, then the Schur
multiplier of the semidirect product (E×)� S is trivial.

We begin by recalling a general and standard lemma.

(14.2) Lemma. Assume that A � G, where A is abelian and G/A is cyclic.
Then |G′| = |A : A ∩ Z(G)|.

Our theorem will follow from the following general result, which can
be used to show that for certain metacyclic groups G, the Schur multipliers
M(G) are trivial. In particular, we mention that this lemma shows that the
multipliers of semidihedral and generalized quaternion groups are trivial.

(14.3) Lemma. Let G = CB, where B and C are cyclic and C � G. If B
contains C ∩ Z(G), then M(G) = 1.

Proof. Clearly, C ∩ B ⊆ C ∩ Z(G), and so by hypothesis, we have equality
here. By Lemma 14.2, therefore, |G′| = |C : C ∩ B|.

Our goal is to show that if G = H/Z, where Z ⊆ H ′∩Z(H), then Z = 1.
In this situation, let V and U , respectively, be the preimages in H of C and B.
Then U and V are abelian and UV = H , and thus V ∩ U ⊆ Z(H). Also,
V � H and H/V is cyclic. Since H ′/Z = G′, Lemma 14.2 yields

|Z||G′| = |H ′| = |V : V ∩ Z(H)| ≤ |V : V ∩ U| = |C : C ∩ B| = |G′|,

and the result follows. ��

We also need the following standard result from field theory, which can
be proved using Hilbert’s Theorem 90. (See the note following Problem 23.8
of [10].)

(14.4) Lemma. Let F ⊆ E be finite fields. Then the norm map E× → F×
is surjective.

Proof of Theorem 14.1. Since E× and S are cyclic, we can choose generators
and write E× = 〈e〉 and S = 〈s〉. Let F be the fixed field of S in E and
write m = |S|. Now let Y = 〈se〉 and note that Y is cyclic and G = E×Y .
By Lemma 14.3, therefore, it suffices to show that Y contains E× ∩Z(G) =
CE×(S) = F×.

Now (se)m = smesm−1
esm−2 · · · ese, and since sm = 1, we see that (se)m

is the norm of e in F×. But e generates E×, and since the image of the norm
map is F×, it follows that (se)m generates F×. Thus F× ⊆ Y , as wanted. ��
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15. The groups PSL2(q)

We are now ready to begin studying specific simple groups, working toward
a proof of Theorem A. We show first that simple groups of the form PSL2(q)
are “good” in the sense of Sect. 10 (for all primes dividing their order).
Since every simple group involved in a group of this type is again of this type,
it will follow, as we explained in the introduction, that the McKay conjecture
holds for all primes for groups in which all nonabelian composition factors
are of the form PSL2(q). In the following two sections, we will handle the
Suzuki groups Sz(2e) and the Ree groups R(3e), thereby completing the
proof of Theorem A.

Let q = r f , where r is prime, and let X = PSL2(q) with q ≥ 5. (Recall
that the groups PSL2(q) are solvable for q ≤ 3 and PSL2(4) ∼= PSL2(5).)
In order to prove that X is good for all prime divisors p of its order, we
need to verify certain properties of the irreducible characters of the various
covering groups of X, as in Sect. 10. Note that apart from the case q = 9,
when X is isomorphic to the alternating group A6, the group SL2(q) (which
we denote S) is the universal covering group of X, and thus it suffices to
consider the irreducible characters of S. The exceptional cases of faithful
characters of 3 . A6 and 6 . A6 are dealt with later.

(15A) The irreducible characters of GL2(q) and SL2(q). We start by re-
calling the parametrization of irreducible characters of GL2(q) and SL2(q).
The group G̃ = GL2(q) has two conjugacy classes of maximal tori. A rep-
resentative H̃1 of the first class consists of the diagonal matrices in G̃, while
a representative H̃2 of the second class can be obtained by embedding F×

q2

via its linear action (by multiplication) on the Fq-vector space Fq2 of dimen-
sion 2. In particular, |H̃1| = (q − 1)2 and |H̃2| = q2 − 1. The intersection
H̃1 ∩ H̃2 is independent of the particular conjugates chosen, and coincides
with the center Z(G̃), consisting of all scalar matrices.

We now choose a group G̃∗ in duality with G̃, and in G̃∗, we choose
maximal tori H̃∗

i in duality with H̃i for i = 1, 2. It is well known that in

our situation, G̃∗ ∼= G̃ = GL2(q). (See for example [2, Sect. 4.4].) Also,
we have induced isomorphisms δi : Irr(H̃i ) → H̃∗

i . (See Proposition 4.4.1
of [2].) We may (and will) use these isomorphisms to identify H̃∗

i = Irr(H̃i),

and we think of elements s ∈ H̃∗
i as irreducible characters of H̃i .

Note that each semisimple element of G̃∗ is conjugate to an element of
H̃∗

1 ∪ H̃∗
2 . Let s ∈ H̃∗

i . According to the fundamental construction of Deligne
and Lusztig, there is an associated generalized character R̃i(s) of G̃, defined
by R̃i(s) = RG̃

H̃i
(s), and this depends only on the G̃∗-class of s and the

choice of i. (See Sect. 7 of [2].)
Furthermore, ±R̃i(s) is irreducible if and only if the centralizer of s

in G̃∗ is exactly the maximal torus H̃∗
i , or equivalently, if s /∈ Z(G̃∗).
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(See Corollary 7.3.5 of [2].) If s ∈ Z(G̃∗) then R̃i(s) has two irreducible
constituents: an extension of the principal character of SL2(q) to G̃, and
an extension of the Steinberg character of SL2(q) to G̃, the later having
degree q. Thus in particular,

±R̃i : (H̃∗
i \ Z(G̃∗)) → Irr(G̃), i = 1, 2,

are 2-to-1 maps, with two elements having the same image if and only if
they are conjugate under the normalizer NG̃∗(H̃∗

i ).
Now let S∗ = PGL2(q) and let π : G̃∗ → S∗ denote the natural epi-

morphism. Then S∗ is in duality with the subgroup S = SL2(q) of GL2(q),
and H∗

i = π(H̃∗
i ) is in duality with Hi = H̃i ∩ SL2(q) for i = 1, 2. In

particular π induces identifications Irr(Hi) = H∗
i .

Again, each semisimple element of S∗ is conjugate to an element of
H∗

1 ∪ H∗
2 . To s ∈ H∗

i , there is associated a Deligne–Lusztig generalized
character Ri(s) = RS

Hi
(s), and we have the following compatibility with

respect to restriction:

R̃i(s)SL2(q) = Ri(π(s)) for all s ∈ H̃∗
i , i = 1, 2.

This restriction Ri(π(s)) is (up to sign) an irreducible character of S if and
only if R̃i(s) itself is irreducible and in addition, the preimages under π of
π(s) lie in q − 1 different conjugacy classes. (See [12].) Note that R̃i(s) is
irreducible precisely when s /∈ Z(G̃∗). Also, an easy calculation shows that
the preimages of π(s) lie in distinct classes if and only if the order of π(s)
is larger than 2. In this case, the characters R̃i(t) with π(t) = π(s) are the
different extensions of Ri(π(s)) to G̃. We then write χπ(s) for the irreducible
character ±Ri(π(s)). Thus in particular

±Ri : (
H∗

i \ {s | s2 = 1}) → Irr(S), i = 1, 2,

are 2-to-1 maps, where two elements have the same image if and only if
they are conjugate under the normalizer NS∗(H∗

i ). The generalized charac-
ters Ri(1) have two irreducible constituents: the principal character 1S and
the Steinberg character St of degree q. These are the so-called unipotent
characters of S. If q is odd, S∗ contains two classes of involutions, one
with representative a ∈ H∗

1 , the other with representative b ∈ H∗
2 . Then

R1(a) = χ+
a + χ−

a has two irreducible constituents of degree (q + 1)/2
each, and similarly −R2(b) = χ+

b + χ−
b has two irreducible constituents of

degree (q − 1)/2 each. In this way we have obtained a parametrization of
Irr(S) via a map from Irr(S) to the set of conjugacy classes in S∗. The fibers
of this map have size at most two, and all but at most three of the fibers have
size one.

The data on Irr(S) are collected in Table 1. Note that the semisimple
elements of order dividing q ± 1 are conjugate to their inverses in S∗; this
explains the numbers of characters given in the last two columns.
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Table 1. Irreducible characters of SL2(q)

θ θ(1) number (q odd) number (q even)

1G 1 1 1

St q 1 1

χs sq−1 = 1, s2 �= 1 q + 1 1
2 (q − 3) 1

2 (q − 2)

χt tq+1 = 1, t2 �= 1 q − 1 1
2 (q − 1) 1

2 q

χ±
a

1
2 (q + 1) 2 0

χ±
b

1
2 (q − 1) 2 0

Next, for odd q, we describe the restrictions of irreducible characters
of G̃ and S to the respective centers. By [12, Sect. 8], there is a natural
isomorphism G̃∗/[G̃∗, G̃∗] ∼= Irr(Z(G̃)), and the restriction to Z(G̃) is then
the composite with the natural map

Irr(H̃i ) ∼= H̃∗
i → H̃∗

i /(H̃∗
i ∩ [G̃∗, G̃∗]).

Thus the restriction map

z̃ : H̃∗
1 ∪ H̃∗

2 → Irr(Z(G̃))

to Z(G̃) factors through G̃∗/[G̃∗, G̃∗], so that the restriction of s only de-
pends on the determinant, that is, the constant coefficient of the characteristic
polynomial of s.

Since Deligne–Lusztig induction preserves central characters, we have
that R̃i(s) also lies over z̃(s), see [12]. Clearly π(s) lies over the restriction
z̃(s)Z(S), so the map giving central characters for S is just the determinant
modulo squares. Since we saw that Ri(π(s)) = R̃i(s)S, it follows that
Ri(π(s)) lies over z̃(s)Z(S). In particular, χs is faithful on Z(S) if and only if
det(π−1(s)) is not a square, that is, if s lies outside of the subgroup PSL2(q)
of PGL2(q), or equivalently, when s is not a square in PGL2(q). For example,
χ±

a is faithful precisely when q ≡ 3 (mod 4), and χ±
b is faithful precisely

when q ≡ 1 (mod 4).

(15B) Automorphisms and extendibility. Next, we describe the action of
outer automorphisms on the irreducible characters of X and S. We write
Ĝ = ΓL2(q) for the extension of GL2(q) by the group of field automorphisms
Aut(Fq) acting on the entries of matrices in GL2(q). Then S is normal in Ĝ,
and Ĝ induces the full group of automorphisms on both S and X = S/Z(S).
Indeed, for q even, X = S has cyclic outer automorphism group consisting
of the field automorphisms induced by Aut(Fq), while for odd q, the outer
automorphism group of X is generated by the field automorphisms together
with the diagonal automorphism induced by the embedding of X = PSL2(q)
into PGL2(q). In any case, Aut(X) ∼= PΓL2(q) = Ĝ/Z(GL2(q)).
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Recall that ΣL2(q) is the subgroup of ΓL2(q) generated by SL2(q)
and the group of field automorphisms Aut(Fq). Note also that Ĝ/S ∼=
F

×
q
.Aut(Fq) is metacyclic. (In fact, it is cyclic if q = r).

(15.1) Lemma. Let θ ∈ Irr(S) and denote by Ĝθ the inertia group of θ

in Ĝ. If θ ∈ {χ±
a , χ±

b } then Ĝθ = ΣL2(q)Z(GL2(q)), while otherwise
GL2(q) ⊆ Ĝθ .

Proof. By Lusztig’s construction of the irreducible characters as constituents
of suitable Deligne–Lusztig-characters, the cyclic group Aut(Fq) ∼=
ΓL2(q)/GL2(q) of field automorphisms acts on characters χ(±)

s of S via
their labels, that is, on the coefficients of their characteristic polynomials.
(See [12].) Thus, in particular, it fixes the unipotent characters 1 and St of S,
as well as the characters χ±

a and χ±
b .

The diagonal automorphisms are induced by the embedding of S
into GL2(q). By what we said in Sect. (15A) χ(±)

s extends to GL2(q) if
and only if the class of s in PGL2(q) has precisely q − 1 preimages under
the natural map π : GL2(q) → PGL2(q). Thus by our above parametriza-
tion, the outer diagonal automorphism of order 2 just interchanges χ+

a with
χ−

a and χ+
b with χ−

b . It fixes all other irreducible characters of S. The claim
follows. ��

We now study the extendibility of a character θ ∈ Irr(S) to its inertia
group in Ĝ = ΓL2(q).

(15.2) Lemma. Let θ ∈ Irr(S). Then the inertia factor group of θ in Ĝ has
trivial Schur multiplier, and in particular, θ extends to its inertia group Ĝθ

in Ĝ.

Proof. By Theorem 11.7 of [9], we are done if we can show that the inertia
factor group of θ has trivial Schur multiplier. For θ ∈ {χ±

a , χ±
b } the inertia

factor group Ĝθ/S is cyclic, and the claim follows from Corollary 11.21
of [9].

For the remaining characters θ, we saw above that the inertia group is
an extension of GL2(q) with a group of field automorphisms, and hence
the inertia factor group is an extension of Ŝ/S ∼= F×

q with a group of
field automorphisms. By Theorem 14.1, every such group has trivial Schur
multiplier. ��

The case q = 9 illustrates an interesting point. Here, S = SL2(9) ∼=
2 . A6, the 2-fold cover of the alternating group A6. Now A6 has a unique
irreducible character θ of degree 10, which we view as a (nonfaithful)
character of S. The uniqueness of θ guarantees that it is invariant in ΓL2(9),
and in particular, by Lemma 15.1 (or by the data in Table 1) we see that θ
is not one of the characters χ±

a or χ±
b . (In fact, θ = χs, where s ∈ PSL2(9)

has order 4.) Thus Ĝθ = ΓL2(9). In this case, the inertia factor group is
semidihedral of order 16 and θ extends to Ĝθ by Lemma 15.2.
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On the other hand, if we view θ as a character of A6 instead of 2 . A6,
it is well known that θ does not extend to Aut(A6). (Here the inertia factor
group is the Klein 4-group, with nontrivial Schur multiplier.) This example
shows that the passage to the larger group ΓL2(9) can simplify questions of
extendibility.

We can now begin the proof of the main result of this section.

(15.3) Theorem. Let X = PSL2(q), where q = r f ≥ 4. Then the simple
group X is good for all primes p that divide its order.

Proof. According to the definitions in Sect. 10, for each prime p dividing |X|
and each irreducible character θ of a covering group of X, we have to
produce a group G = G(θ) satisfying certain conditions. As we remarked
at the beginning of this section, there is only one non-trivial covering group
of X, namely S = SL2(q) for q odd. (The exceptional covering groups in
the case q = 9 will be treated separately at the end of the proof.) Instead of
treating the faithful characters of S and the characters of X in two separate
arguments, we consider the latter characters as (non-faithful) characters
of S, and we check both cases at once. Thus, our notation here will be such
that for any fixed character θ ∈ Irr(S) the groups S, G, T , N and C occurring
in Sect. 10 are the quotients by the kernel of θ of the groups with the same
name in this proof. Also, we will denote the character bijections with ι since
the notation ( )∗ is being used to denote dual groups. We hope that this slight
deviation from the notation in Sect. 10 will not cause confusion.

Given θ ∈ Irr(S), we let G(θ) = Ĝθ . Thus, in the notation of Sect. 10,
G = G(θ)/ker(θ). Let C = CG(θ)(S), and note that C is a subgroup of
Z(GL2(q)), and hence is cyclic. This establishes Condition (6) of Sect. 10.
By Lemma 15.1 above, G(θ) is the full inertia group of θ in Ĝ, which in
turn induces the full automorphism group of S, proving Condition (5).

Now θ extends to G(θ) by Lemma 15.2, and we let θ̂ denote such an
extension. Let ν ∈ Irr(Z(S)) lie under θ, and let µ ∈ Irr(C) lie under θ̂ . Then
clearly µ is a G(θ)-invariant extension of ν. Furthermore, θ̂ is an extension
of θ .µ to G(θ), as required in (7).

Now for all prime divisor p of |S| we are left with two tasks. First,
we must construct a subgroup T of S containing the normalizer NS(Q) of
a Sylow p-subgroup Q of S satisfying Conditions (1) and (2). Note that

NĜ/Z(S)(QZ(S)/Z(S)) = NĜ(Q)/Z(S)

for all primes p, so that Conditions (1) and (2) are satisfied for T in S if and
only if they are satisfied for T/Z(S) in X. Secondly, we need to establish an
A-equivariant bijection

ιp : Irrp′(S) → Irrp′(T )

between the characters of S with p′-degree and those of T with p′-degree,
where A = NĜ(Q), and we must verify Condition (8). In order to estab-
lish (8) we will show that all characters in Irrp′(T ) extend to their inertia
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groups in NĜ(T ). (This is only an issue when q is odd, since otherwise,
Out(X) is cyclic.)

We have |S| = q(q2 − 1), and we will subdivide into cases according
to whether p divides q − 1, q + 1 or q, and we will treat the case p = 2
separately.

(15C) Odd primes dividing q − 1. Let p be an odd prime divisor of q − 1.
Then the Sylow p-subgroup Q of the maximal torus H1 of order q − 1
consisting of the diagonal matrices in S is also a Sylow p-subgroup of S.
Its normalizer T = NS(Q) is an extension of H1 by the cyclic group of
order 2, acting by inversion. By construction, T satisfies Conditions (1)
and (2). Note that all irreducible characters of T have degree 1 or 2, and so
they have p′-degree.

Recall our identification of the irreducible characters of H1 with the dual
torus H∗

1
∼= F×

q of S∗ = PGL2(q). The characters of order at most 2 in H∗
1

are precisely those that extend to T , while all others induce to characters
of degree 2. Thus, for q odd we have four linear characters 1+, 1−, ψ+

a ,
and ψ−

a in Irr(T ) and also (q − 3)/2 induced characters ψs = (s)T ∈ Irr(T )

of degree 2, indexed by s ∈ H∗
1 (modulo T -conjugation), with s2 �= 1. For

even q, we have two linear characters 1+ and 1− and (q − 2)/2 induced
characters ψs = (s)T of degree 2 in Irr(T ). Hence induction from H1 to T
defines a 2-to-1 map

(
H∗

1 \ {s | s2 = 1}) → Irr(T ).

The restriction of ψs to Z(S) is a multiple of the restriction of s to Z(S),
and thus ψ(±)

s has Z(S) in its kernel if and only if s is a square.
On the other hand, by Table 1, the characters of S of p′-degree are the

unipotent characters and also the characters χ(±)
s , with s ∈ H∗

1 (modulo
inversion). We obtain an obvious bijection

ιp : Irrp′(S) → Irr(T )

by sending

χs �→ ψs, χ±
a �→ ψ±

a , 1 �→ 1+, St �→ 1−,

and this respects central characters, as required by Condition (3). More-
over ιp satisfies congruences modulo q − 1 (hence modulo p) for the de-
grees.

Note that by the construction of the characters of degree q+1, the map ιp
is related to Deligne–Lusztig induction in the following way

ιp
(
RS

H1
(s)

) = (s)T
(
s ∈ H∗

1 , s2 �= 1
)

under our identification of H∗
1 with Irr(H1).

What remains is to verify Conditions (4) and (8) for the bijection ιp.
We first prove equivariance with respect to A = NĜ(Q). It is clear by our
description of Irr(T ) that the field automorphisms act on Irr(T ) via the
labels, and thus by the corresponding description for Irr(S), the bijection ιp
is equivariant with respect to field automorphisms.
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We now turn to diagonal automorphisms (which exist only if q is odd).
These are induced by the embedding of S into GL2(q). Here, the normalizer
T̃ = NGL2(q)(Q) of Q is the normalizer of the maximal torus H̃1, which has
order (q − 1)2 and consists of all diagonal matrices in GL2(q), and so T̃ is
a wreath product Cq−1 �C2. All degree 2 characters of T extend to T̃ , while the
two linear characters ψ±

a fuse. The action of the diagonal automorphisms
is thus compatible with ιp. Thus ιp preserves inertia subgroups, and this
proves (4).

Now fix a character θ = RS
H1

(s) ∈ Irr(S) of degree q+1. Then θ extends
to a character θ̂ of Ĝθ . Let θ̃ denote the restriction of θ̂ to GL2(q) ⊆ Ĝθ , so θ̃
is an extension of θ to GL2(q). Write C = Z(GL2(q)) = CĜθ

(S) and note
that Condition (6) is satisfied since C is abelian. Now θ̃ is an irreducible
Deligne–Lusztig character of GL2(q), and hence there exists an irreducible
character s̃ ∈ H̃∗

1 = Irr(H̃1) with

θ̃ = RGL2(q)

H̃1
( s̃ ).

Since θ̃ extends θ = RS
H1

(s), it follows that s̃ maps to s under the canon-
ical surjection GL2(q) → PGL2(q), i.e., s̃ ∈ H̃∗

1 = Irr(H̃1) extends
s ∈ H∗

1 = Irr(H1). By (15A), θ̃ lies over the central character γ = z̃( s̃ ),
which then is invariant in Ĝθ , as required by Condition (7). Moreover, θ̂ is
an extension of θ . γ to Ĝθ . Thus ψ s̃ = ( s̃ )T̃ is an extension of (s)T = ιp(θ)

to T̃ lying over γ . To verify Condition (8), therefore, it suffices to show that
ιp(θ) . γ extends to its stabilizer Aθ in A.

Since ψ s̃ = ( s̃ )T̃ is invariant in Aθ and Aθ/T̃ is cyclic, it follows that
ψ s̃ extends to Aθ , and thus ιp(θ) . γ also extends to Aθ . This establishes (8)
and completes the proof for odd primes p dividing q − 1.

(15D) Odd primes dividing q + 1. The case of odd primes p dividing
q + 1 is very similar to the previous one. We replace the maximal torus H1
by a maximal torus H2 of S of order q + 1, isomorphic to the subgroup of
norm 1 elements in F×

q2. We omit the details.

(15E) The prime p = 2. Now let p = 2 �= r, so that the Sylow 2-sub-
group Q of S is a quaternion group. First assume q ≡ 1 (mod 8). Then
Q is self-normalizing in S (and Q/Z(S) is self-normalizing in X). Instead
of considering this group, we take T to be the normalizer T = NS(H1)
of a maximal torus containing Q. It is easy to verify that the bijection
established above for odd prime divisors p of (q − 1) preserves characters
of 2′-degree, and thus we are done by the previous considerations. (Note
that this makes sense even if q − 1 is a power of 2, so that in fact there does
not exist an odd prime p dividing q − 1.)

If q ≡ 7 (mod 8), the argument is rather similar: we take T = NS(H2),
where H2 is the other maximal torus, and we proceed as before.
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If q ≡ 5 (mod 8), then Q is quaternion of order 8, with normalizer
T = NS(Q) isomorphic to SL2(3), and so T has four irreducible characters
of 2′-degree. On the other hand the characters of S of odd degree are 1,
St and χ±

a . The diagonal automorphisms in A extend T to GL2(3), and thus
only two of its four characters of 2′-degree are invariant under diagonal
automorphisms. On the other hand, T is centralized by all field automor-
phisms. Thus we obtain an obvious A-equivariant bijection from Irrp′(S) to
Irrp′(T ) in this case.

Finally, if q ≡ 3 (mod 8), we again take T = NS(Q), and again T
is isomorphic to SL2(3). In this case, the four irreducible characters of
2′-degree of S are 1, St, and χ±

b .

(15F) The prime p = r. Now let p = r, the defining characteristic.
(For groups with connected center like GL2(q), this case was first looked
at by Green, Lehrer and Lusztig in [7].) In all previous cases, there was
a natural candidate for the required bijection, coming from the fact that
Lusztig’s parametrization of characters by semisimple classes in the dual
group works both for S as well as for the centralizer of a Sylow subgroup.
In defining characteristic, there does not seem to be such a natural map, and
things become more complicated.

The subgroup U of S consisting of the upper unitriangular matrices
is a Sylow r-subgroup of S, with normalizer the Borel subgroup B of
invertible upper triangular matrices. Here U ∼= F+

q is elementary abelian of
order q = r f , and B/U ∼= F×

q acts by multiplication with squares:

F
+
q × F×

q → F
+
q , (u, t) �→ t2u.

In any case, B/UZ(S) acts semi-regularly on the non-trivial characters of U .
Thus B has q − 1 linear characters, trivial on U , and either one character λ0

of degree q−1 when q is even, or four characters λ
1,2,3,4
0 of degree (q−1)/2

when q is odd.
Note that B/U is isomorphic to the maximal torus H1 of S, so the linear

characters of B may be regarded as characters of H1, hence as elements
of H∗

1 . We also write λs for the irreducible character of B which equals
s ∈ H∗

1 on H1. Thus λs is trivial on the center Z(S) ⊆ B if and only
if s is a square in H∗

1 , and precisely two of the four characters λ
1,2,3,4
0

are trivial on Z(S). We summarize the description of Irr(B) in Table 2.
Here, “faithful” means “faithful on Z(S)”. The last three columns show the
number of characters in each case.

We proceed to check the conditions in Sect. 10. Let T = B = NS(U),
the Borel subgroup. Then (1) and (2) are satisfied. Comparison with the
situation in S, where Irrp′(S) = Irr(S) − {St}, shows that the numbers of
irreducible p′-degree characters of T and S are equal.

First assume that q is odd. We construct a NĜ(T )-equivariant bijection

ι : Irrp′(T ) → Irrp′(S)
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Table 2. Irreducible characters of B

θ θ(1) nonfaithful (q odd) faithful (q odd) (q even)

λs s ∈ F×
q 1 1

2 (q − 1) 1
2 (q − 1) q − 1

λ0 q − 1 0 0 1

λ
1,2,3,4
0

1
2 (q − 1) 2 2 0

as follows. The four induced characters λ
1,2,3,4
0 are mapped to χ±

a and χ±
b .

Since exactly two of λ
1,2,3,4
0 and of χ±

a and χ±
b are faithful on Z(S), this is

possible in a way such that central characters are respected. To define ι(λs),
note that the polynomials

{
x2 + 2x + s | s ∈ F×

q

}

constitute a set of representatives (modulo rescaling) of the degree 2 poly-
nomials

x2 + µ1x + µ2 ∈ Fq[x],
where µ1 and µ2 are nonzero. We then let ι(λs) = χt where t ∈ H∗

1 ∪ H∗
2 has

characteristic polynomial gs = x2 + 2x + s. By our previous observation,
this establishes a bijection from the linear characters of B to the semisimple
characters of S.

We now compare the corresponding central characters. As remarked
above, λs is trivial on Z(S) if and only if s is a square. We thus need to see
that gs labels a class consisting of squares if and only if s itself is a square.
If gs splits over Fq, then gs labels a class of squares if and only if the ratio
of its roots is a square in F×

q . If gs is irreducible over Fq, it labels a class of
squares if and only if the ratio of its roots in Fq2 is a square in the group of
norm 1 units of this field.

In the case where gs splits, its roots α and β lie in Fq, and we see that
s = αβ = β2(α/β), is a square if and only if α/β is a square, as required.
Assume now that gs is irreducible and let β be one of its roots inFq2. Then βq

is the other root, and their ratio is βq−1. It suffices to show, therefore, that
s is a square in Fq if and only if β(q−1)/2 has norm 1, or equivalently, that
β(q−1)(q+1)/2 = 1. But s = βq+1, and so β(q−1)(q+1)/2 = s(q−1)/2, and this is
equal to 1 if and only if s is a square, as wanted.

Next we consider the action of field automorphisms. On the linear char-
acters, which are just the characters of B/U ∼= F×

q , the action is via the
label s, and this is the same action as on the associated polynomial gs. On
the other hand, the induced characters are clearly invariant, as are χ±

a , χ±
b .

For odd q the diagonal automorphisms of B are induced by the embed-
ding into the Borel subgroup B̃ of GL2(q). This is just U extended by the
maximal torus H̃1 of G̃, isomorphic to a direct product of the Frobenius
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group F+
q
.F×

q with a cyclic group Cq−1. Since the latter has character de-
grees 1 and q − 1 only, all characters of B except for the four characters
of degree (q − 1)/2 extend to B̃. Since these correspond to χ±

a , χ±
b , the

bijection is equivariant with respect to diagonal automorphisms as well,
establishing (4). Applying Lemma 15.2, we see that all characters of B
extend to their inertia subgroups in NĜ(B)

To verify Condition (8), we lift the map H∗
1 → {x2 + 2x + s | s ∈ F×

q }
defined previously to a map

H̃∗
1 → {

x2 + ax + b | a, b ∈ F×
q

}

as follows. Elements of H̃∗
1 are diagonal matrices; to s = diag(s1, s2) we

associate the degree 2 polynomial gs = x2 + 2s1x + s1s2. This defines a bi-
jection between elements of H̃∗

1 and monic degree 2 polynomials over Fq
with all coefficients non-zero. Note that this map really is a lift of our previ-
ous map. By interpreting gs as the characteristic polynomial of a semisimple
element t ∈ G̃∗, this allows to associate an irreducible character of G̃ to s.
Namely, if t /∈ Z(G̃∗) then we take the irreducible character ±R̃i(t), while
if t ∈ Z(G̃∗) we take the irreducible constituent of R̃i(t) which is an exten-
sion of the principal character of S. Since the map preserves the constant
coefficient of the characteristic polynomial, it preserves the restrictions to
the center Z(G̃).

Now let λs ∈ Irr(B) indexed by s ∈ H∗
1 and ι(λs) = χt , where t has

characteristic polynomial g = x2 + 2x + s. Let i be such that t ∈ H∗
i . Let θ̃

be the restriction to G̃ of an extension of χt to G(θ). Then θ̃ is a Deligne–
Lusztig character ±R̃i ( t̃ ) for some preimage t̃ ∈ H̃∗

i of t under the canonical
epimorphism GL2(q) → PGL2(q). Denote by g̃ = x2 + ax + b the char-
acteristic polynomial of t̃. So s = 4b/a2, and t̃ lies over the character b
of Z(G̃). Let s̃ be the preimage of g̃ under the map defined above, then the
restriction of s̃ to H1 equals s. Thus s̃ is an extension of s, lying over b and
invariant under the same field automorphisms as θ̃, so (8) is satisfied.

For even q the situation is simpler since Z(S) = 1, and we need not
worry about central characters. This completes the proof in defining char-
acteristic.

(15G) Exceptional multipliers. The only exceptional Schur multipliers
for groups of the form PSL2(q) are C2 for q = 4 and C6 for q = 9. But
2 . PSL2(4) ∼= SL2(5), and so all that remains is to consider the 3-fold and
6-fold covers of PSL2(9) ∼= A6. From the Atlas, one sees that S = 3 . A6 has
10 faithful characters, with degrees (3, 3, 3, 3, 6, 6, 9, 9, 15, 15). Among
the outer automorphisms of A6 only the one called 23 in the Atlas lifts to
an automorphism of S that centralizes Z(S). That automorphism fixes the
faithful irreducible characters with degree exceeding 3.

We need to consider the primes p = 5 and p = 2. For p = 5, the Sylow
normalizer in S is isomorphic to 3 × (5 : 2), and in S . 23, it is 3 × (5 : 4).
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The required bijection is easily established, and Condition (8) holds because
the relevant factor groups are cyclic, and so invariant characters extend. For
p = 2 the Sylow normalizer in S is 3 × D8, and in S . 23, it is 3 × SD16.
(Here, D8 is dihedral of order 8 and SD16 is semidihedral of order 16.)
Again it is easy to find the required bijection, and again Condition (8) holds
automatically.

For the group S = 6 . A6, none of the outer automorphisms of A6
lifts to an automorphism centralizing Z(S), and so Conditions (4) and (8)
will be automatically satisfied for any bijection. The group S has eight
faithful characters of degrees (6, 6, 6, 6, 12, 12, 12, 12), and we only need
to consider p = 5. Here the Sylow 5-normalizer is 3 × H , where H is
a semidirect product of C5 with C4 such that |Z(H)| = 2. Clearly, this
group also has eight irreducible characters faithful on the center. We have
completed the proof of Theorem 15.3. ��

16. The Suzuki simple groups are good

In this section we verify the conditions in Sect. 10 for the family of simple
Suzuki groups X = Sz(q2) with q2 = 22 f +1, where f ≥ 1. (We follow
the usual convention, where q is the square root of an odd power of 2,
and hence is non-rational.) This group is its own universal covering group,
except when q2 = 8, where the Schur multiplier is a Klein four-group. We
have |X| = q4(q2 − 1)(q4 + 1).

(16A) The irreducible characters of Sz(q2). We begin by recalling the
parametrization of irreducible characters of X = Sz(q2), due to Suzuki [20].
(See also Theorem XI.5.10 of [8].) This group has four unipotent
characters χ1, . . . , χ4. Their degrees are χ1(1) = 1, χ2(1) = χ3(1) =√

2q(q2 −1)/2 and χ4(1) = q4. The other irreducible characters are best re-
garded as Deligne–Lusztig characters indexed by suitable conjugacy classes
of semisimple elements of X.

Let H1, H2 and H3 denote representatives for the conjugacy classes of
maximal tori of X, of orders q2 −1, q2−√

2q+1 and q2 + √
2q + 1, respect-

ively. Their normalizers Ni = NX(Hi ) are Frobenius groups of order 2|H1|,
4|H2|, 4|H3| respectively, and it follows that every nonidentity semisimple
element of X is conjugate either to two elements of H1 or to four elements of
H2 or to four elements of H3. (See [8, Theorem XI.3.10.]) The non-unipotent
irreducible characters of X, therefore, are indexed by the nonidentity elem-
ents s ∈ H1 ∪ H2 ∪ H3 modulo conjugation in X, and we write χs for the
character corresponding to s. We have that χs(1) = |X|2′/|Hi| if s ∈ Hi .
See Table 3 for an overview.

We mention that Table 3 remains valid even in the degenerate case where
q2 = 2 and the group X is the Frobenius group of order 20. In that case, the
only characters χs that exist are those of the third type, where 1 �= s ∈ H3
and |H3| = 5. There is just one such character in this situation.
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Table 3. Irreducible characters of Sz(q2)

θ θ(1) number

χ1 1 1

χ2, χ3 q(q2 − 1)/
√

2 2

χ4 q4 1

χs s ∈ H1, s �= 1 q4 + 1 (q2 − 2)/2

χs s ∈ H2, s �= 1 (q2 − 1)(q2 + √
2q + 1) (q2 − √

2q)/4

χs s ∈ H3, s �= 1 (q2 − 1)(q2 − √
2q + 1) (q2 + √

2q)/4

The group of outer automorphisms of X is cyclic of (odd) order 2 f + 1,
isomorphic to the group of field automorphisms of Fq2. A generator of
Out(X) acts on H1 by squaring. (This is the natural action on H1

∼= F×
q2.)

On H2 and H3, it acts by sending elements to their 24 = 16th power, as can
be seen by embedding them into F×

q8. In particular all inertia factor groups
in Aut(X) of characters θ ∈ Irr(X) are cyclic.

For θ ∈ Irr(X) we set G(θ) = Aut(X)θ , the inertia group of θ in Aut(X).
Since |Z(X)| = 1 this guarantees that Conditions (5), (6) and (7) of Sect. 10
hold. Since the inertia factor groups are cyclic, (8) will automatically be
satisfied for any bijection preserving inertia groups.

(16.1) Theorem. Let X = Sz(q2), where q2 = 22 f +1 ≥ 8. Then X is good
for all prime divisors of its order.

Proof. We treat the various prime divisors of |X| in separate subsections.

(16B) Odd primes. First, let p be a prime divisor of q2+√
2q+1, so that H3

contains a Sylow p-subgroup Q of X, and let T = NX(Q) = NX(H3). Then
T has four linear characters and (q2 + √

2q)/4 irreducible characters ψs of
degree 4, indexed by the T -classes of nontrivial elements s ∈ H3, and thus
by nonidentity elements s ∈ H3 modulo conjugation in X. We define

ιp : Irrp′(X) → Irrp′(T ) = Irr(T )

by sending the four unipotent characters to the four linear characters of T ,
and χs �→ ψs. Note that all other irreducible characters of X have degree
divisible by q2 + √

2q + 1, hence by p, and so this gives a bijection as in
Condition (3). It is immediate to verify that this bijection preserves degrees
modulo q2 + √

2q + 1, hence modulo p. The unipotent characters of X are
invariant under Aut(X) and the linear characters of T are invariant under
NAut(X)(Q), while the action on the χs is the same as on the ψs, so ι is
equivariant with respect to NAut(X)(Q), proving (4). Condition (8) holds
because the relevant factor groups are cyclic, and this completes the proof
for primes p dividing q2 + √

2q + 1.
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The cases of primes p dividing (q2 −√
2q + 1) and p dividing (q2 − 1)

are very similar and hence are omitted. (In the latter case, only two of
the unipotent characters have degree not divisible by p, and in this situ-
ation T = NX(H1) is dihedral of order 2|H1|, and so has just two linear
characters.)

(16C) The defining prime p = 2. Let Q be a Sylow 2-subgroup of X. The
structure of Q is described in [8, Sect. XI.3], for example. In particular, the
commutator factor group is isomorphic to F+

q2, and so is elementary abelian
of order q2. The normalizer B = NX(Q) is a Borel subgroup of X; it is
a split extension of Q with a cyclic group of order q2 −1 acting regularly on
the nonidentity elements of Q/Q′. (See [8, Lemma XI.5.9].) Thus Irrp′(B)

consists of q2 − 1 linear characters ψt , indexed by elements t ∈ F×
q2 and

one character ψ0 of degree q2 − 1. We choose T = B, so (1) and (2) are
satisfied, and we define

ι : Irrp′(X) → Irrp′(T )

by sending χ1 to ψ0 and the χs to the ψt as follows.
First, observe from Table 3 that the total number of characters χs (of odd

degree) of X is q2 − 1, and this is the same as the number of characters ψt
of B. To prove that there exists a NAut(X)(T )-equivariant bijection ι, it
suffices to show that each automorphism in NAut(X)(T ) fixes equal numbers
of characters χs and ψt . It suffices to consider outer automorphisms, which
we can identify with automorphisms of the field Fq2. We must show then,
that each field automorphism γ fixes equal numbers of characters χt of X
and ψt of B.

The ψt are indexed by nonzero field elements t, and γ fixes ψt precisely
when γ fixes t, and so the number of these is |K | − 1, where K ⊆ Fq2 is
the fixed field of γ . To count the characters χs that are fixed by γ , consider
the corresponding Suzuki group X(K ), viewed as a subgroup of our group
X = X(Fq2). (If |K | = 2, then X(K ) is not simple, but that will not
affect our count.) The characters χs that are fixed by γ are exactly those
whose index s lies in the subgroup X(K ), and we have already seen that the
number of these is exactly |K | − 1, as required. This shows that the map ι
can be constructed to be NAut(X)(T )-equivariant, as needed. This establishes
Condition (4), and as before, Condition (8) holds because the relevant factor
groups are cyclic. This completes the proof of Theorem 16.1 except in the
case q2 = 8, where there is an exceptional Schur multiplier.

(16D) The exceptional multiplier. The only exceptional Schur multiplier
for groups Sz(q2) is the Klein group when q = 8, and so it remains to
consider 2-fold covers of Sz(8). Note that all three of them are conjugate
under the outer automorphism of order 3, hence it suffices to treat just one
such cover. From the Atlas one sees that S = 2 . Sz(8) has eight faithful
characters, with degrees (40, 40, 40, 56, 56, 56, 64, 104). Since Out(S) is
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trivial in this case, we need not worry about outer automorphisms. The
relevant primes are p = 5, 7, 13, and in all three cases, the Sylow normalizer
T = NS(Q) in S is isomorphic to the direct product of the normalizer in
X = Sz(8) with the central subgroup of order 2. A quick check shows that
there is a bijection Irrp′(S) → Irrp′(T ) preserving degrees mod p in all three
cases. This completes the proof of Theorem 16.1. ��

17. The Ree simple groups R(q2) are good

In this section we verify the conditions in Sect. 10 for the family of simple
Ree groups X = R(q2) =2G2(q2), where q2 = 32 f +1 with f ≥ 1. (Thus q
is the square root of an odd power of 3.) The group R(3) is not simple; it is
isomorphic to Aut(PSL2(8)) which was considered before. These groups are
their own universal covering groups, and we have |X| = q6(q2 −1)(q6 +1).

The irreducible complex characters of R(q2) were determined by
Ward [22]. A convenient parametrization is obtained via Lusztig’s Jordan
decomposition of characters by semisimple conjugacy classes of X. The
trivial class gives rise to the eight unipotent characters χ1, . . . , χ8 and the
unique class of involutions gives rise to two characters χa, χ

′
a. Each remain-

ing semisimple element is regular, and so lies in a unique maximal torus of X,
and each of these classes parametrizes a single irreducible Deligne–Lusztig
character. There are four conjugacy classes of maximal tori, with represen-
tatives H1 of order q2 − 1, H2 of order q2 + 1, H3 of order q2 − √

3q + 1
and H4 of order q2 + √

3q + 1. These have indices 2, 6, 6 and 6 in their
respective normalizers, and hence a regular semisimple element in Hi lies
in a conjugacy class of length 2, 6, 6 and 6 respectively in NX(Hi). While
H1, H3 and H4 are cyclic, H2 is a direct product C(q2+1)/2 × C2.

We collect the degrees and numbers of characters in Table 4.
The group of outer automorphisms of X is cyclic of (odd) order 2 f + 1,

isomorphic to Aut(Fq2). A generator of Out(X) acts naturally on H1
∼= F×

q2.
On H2 it acts by sending elements to their 9th power, and on H3 and H4 by
sending elements to their 36 = 729th power, as can be seen by embedding
these tori into F×

q12. In particular all inertia factor groups in Aut(X) of
characters θ ∈ Irr(X) are cyclic.

(17.1) Theorem. Let X = R(q2), where q2 = 32 f +1 ≥ 27. Then X is good
for all prime divisors of its order.

Proof. First, we consider primes p dividing (q2 + √
3q + 1). Then the six

unipotent characters χ1, . . . , χ5 and χ8 and also another (q2 + √
3q)/6

Deligne–Lusztig characters are of p′-degree. A Sylow p-subgroup is con-
tained in H4, and its normalizer is T = NX(H4). Since T/H4 acts semiregu-
larly on the nonidentity elements of H4, we see that Irr(T ) has six linear
characters and (q2 + √

3q)/6 irreducible characters of degree 6, and there
is an obvious bijection ι : Irrp′(X) → Irrp′(T ). This is compatible with the
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Table 4. Irreducible characters of R(q2)

θ θ(1) number

χ1 1 1

χ2, χ3 q(q4 − 1)/
√

3 2

χ4, χ5 q(q2 − 1)(q2 − √
3q + 1)/(2

√
3) 2

χ6, χ7 q(q2 − 1)(q2 + √
3q + 1)/(2

√
3) 2

χ8 q6 1

χa q4 − q2 + 1 1

χ ′
a q2(q4 − q2 + 1) 1

χs s ∈ H1, s2 �= 1 q6 + 1 (q2 − 3)/2

χs s ∈ H2, s2 �= 1 (q2 − 1)(q4 − q2 + 1) (q2 − 3)/6

χs s ∈ H3, s �= 1 (q4 − 1)(q2 + √
3q + 1) (q2 − √

3q)/6

χs s ∈ H4, s �= 1 (q4 − 1)(q2 − √
3q + 1) (q2 + √

3q)/6

action of field automorphisms on both sets. Exactly the same arguments
apply to primes p dividing (q2 − √

3q + 1).
Now let p be an odd prime divisor of (q2 − 1). Then χ1, χ8, χa, χ

′
a

and a further (q2 − 3)/2 characters of X have p′-degree. The normalizer
T = NX(H1) is the normalizer of a Sylow p-subgroup of X. It acts on H1
by inversion, and so precisely two characters in Irr(H1) remain invariant,
while the others are interchanged in pairs. This gives four linear characters
and (q2 −3)/2 characters of degree 2 in Irr(T ). Again, the obvious bijection
is equivariant with respect to field automorphisms.

Next, let p be an odd prime divisor of (q2 + 1). Here Irrp′(X) contains
the eight characters χ1, χ4, . . . , χ8 and χa and χ ′

a and also (q2 − 3)/6
Deligne–Lusztig characters χs. The normalizer T = NX(H2) of H2 is the
normalizer of a Sylow p-subgroup of X, and it acts semiregularly on the set
of characters of H2 of order larger than 2, giving (q2 − 3)/6 characters of
degree 6 in Irr(T ). The characters of order 2 of H2 are permuted transitively,
yielding two characters of degree 3, and the trivial character of H2 has six
extensions to T . Again, the desired bijection is obvious.

For p = 2, we see that Irrp′(X) consists of χ1, χ4, . . . , χ8 and χa
and χ ′

a. A Sylow 2-subgroup Q of X is elementary abelian of order 8,
with normalizer quotient a Frobenius group of order 21. Thus the seven
non-trivial characters of Q give rise to three characters of degree 7 of the
normalizer T = NX(Q), while the trivial character has three extensions
and gives rise to two further characters of degree 3. Since T is already
contained in the group R(3) = Aut(PSL2(8)) over the prime field, all of
these characters are invariant under all field automorphisms, and so any
bijection from Irrp′(X) to Irrp′(T ) will do.



100 I.M. Isaacs et al.

For p = 3, the irreducible characters of p′-degree are the semisimple
characters. These are χ1, χa and the Deligne–Lusztig characters χs. The
unipotent radical U of a Borel subgroup B is a Sylow 3-subgroup of X,
and B, its normalizer, is a split extension of U by the maximal torus H1 acting
regularly on U/U ′. Thus B has q2 − 1 linear characters and one character
of degree q2 − 1. (See [5, Lemma 5].) In this situation, the existence of an
NAut(X)(B)-equivariant bijection was established by Eaton in the course of
proving Dade’s invariant conjecture for these groups. (See [5, Theorem 8].)
This completes the proof of Theorem 17.1. ��

We conclude by noting that in all cases, the bijections constructed above
satisfy congruences for the character degrees as proposed in [11].
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