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Abstract. We initiate the study of the monoid of right-veering diffeomorph-
isms on a compact oriented surface with nonempty boundary. The monoid
strictly contains the monoid of products of positive Dehn twists. We explain
the relationship to tight contact structures and open book decompositions.

1. Introduction

Let S be a compact oriented surface with nonempty boundary. Denote
by Aut(S, ∂S) the group of (isotopy classes of) diffeomorphisms of S
which restrict to the identity on ∂S. (Such diffeomorphisms are auto-
matically orientation-preserving.) In this paper we introduce the monoid
Veer(S, ∂S) ⊂ Aut(S, ∂S) of right-veering diffeomorphisms of S, and ex-
plore how it is different from the monoid Dehn+(S, ∂S) ⊂ Aut(S, ∂S)
of products of positive Dehn twists. Informally said, a diffeomorphism
h ∈ Aut(S, ∂S) is right-veering if every properly embedded arc α on S is
mapped “to the right” under h – see Sect. 2 for a precise definition.

Our primary motivation for studying right-veering diffeomorphisms
on S comes from Giroux’s work [Gi2], which relates contact structures
and open book decompositions. Giroux showed that there is a 1-1 corres-
pondence between isotopy classes of contact structures on a closed oriented
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3-manifold M and equivalence classes of open book decompositions on M
modulo a certain stabilization operation. We will denote an open book de-
composition by (S, h), where S is a compact oriented surface with boundary
(the page) and h ∈ Aut(S, ∂S) is the monodromy map. Our first theorem is
the following:

Theorem 1.1. A contact structure (M, ξ) is tight if and only if all of its open
book decompositions (S, h) have right-veering h ∈ Aut(S, ∂S).

As usual, we assume that 3-manifolds are oriented, and contact structures are
cooriented. Theorem 1.1 is an improvement of the “sobering arc” criterion
for overtwistedness given by Goodman [Go1].

Theorem 1.1 indicates that there is a gulf between Veer(S, ∂S) and
Dehn+(S, ∂S), in view of the characterization by Giroux of Stein fillable
contact structures as those admitting (S, h) with h ∈ Dehn+(S, ∂S) and the
existence of tight non-fillable contact structures. In [HKM2] we will show
how to detect certain differences between Veer(S, ∂S) and Dehn+(S, ∂S)
without resorting to contact topology.

2. Right-veering

Let S be a compact oriented surface with nonempty boundary, and let α and β
be isotopy classes (relative to the endpoints) of properly embedded oriented
arcs [0, 1] → S with a common initial point α(0) = β(0) = x ∈ ∂S. We
will often blur the distinction between isotopy classes of arcs/curves and
the individual arcs/curves if there is no danger of confusion. Let π : S̃ → S
be the universal cover of S (the interior of S̃ will always be R2 since S has
at least one boundary component), and let x̃ ∈ ∂ S̃ be a lift of x ∈ ∂S. Take
lifts α̃ and β̃ of α and β with α̃(0) = β̃(0) = x̃. The arc α̃ divides S̃ into two
regions – the region “to the left” (where the boundary orientation induced
from the region coincides with the orientation on α̃) and the region “to the
right”. We say that β is to the right of α, denoted α ≥ β, if either α = β
(and hence α̃(1) = β̃(1)), or β̃(1) is in the region to the right. (If we want
to disallow the possibility of α = β, we say β is strictly to the right of α
and write α > β.)

Alternatively, isotop α and β, while fixing their endpoints, so that they
intersect transversely (this include the endpoints) and with the fewest pos-
sible number of intersections (we refer to this as intersecting efficiently).
Assume that α �= β. Then in the universal cover S̃, α̃ and β̃ will meet only
at x̃. If not, subarcs of α̃ and β̃ would cobound a disk D in S̃, and we could
use an innermost disk argument on π(D) ⊂ S to reduce the number of
intersections of α and β by isotopy. Then α ≥ β if int(β̃) lies in the region
to the right. As an alternative to passing to the universal cover, we simply
check to see if the tangent vectors (β̇(0), α̇(0)) define the orientation on S
at x.
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Definition 2.1. Let h : S → S be a diffeomorphism that restricts to the
identity map on ∂S. Then h is right-veering if for every choice of basepoint
x ∈ ∂S and every choice of properly embedded oriented arc α starting at x,
the image h(α) is to the right of α (at x). If C is a boundary component of S,
we say is h is right-veering with respect to C if h(α) is to the right of α for
all α starting at a point on C.

Remark. We will tacitly assume that our arcs α are not boundary-parallel
(i.e., cannot be isotoped into the boundary relative to the endpoints), al-
though the inclusion of such arcs will not affect the definition of a right-
veering diffeomorphism.

Remark. A notion equivalent to right-veering (see Theorem 2.2) was con-
sidered by Amorós–Bogomolov–Katzarkov–Pantev in [ABKP]. The notion
of “veering to the right” in the universal cover can be traced at least as far
back as Thurston’s proof of the left orderability of the braid group (a fact
originally due to Dehornoy [De]). Right-veering diffeomorphisms are called
diffeomorphisms with “protected boundary” in Goodman’s thesis [Go2]. In
particular, Goodman shows that there are overtwisted contact structures
which have monodromy maps which are right-veering; this is similar to our
Proposition 6.1.

We denote the set of isotopy classes of right-veering diffeomorph-
isms by Veer(S, ∂S) ⊂ Aut(S, ∂S). Since the composition of two right-
veering diffeomorphisms is again right-veering, Veer(S, ∂S) is a submonoid
of Aut(S, ∂S).

Let us now interpret the notion of right-veering in terms of the circle
at infinity. Assume the Euler characteristic χ(S) is negative, i.e., S is not
a disk or an annulus. We endow S with a hyperbolic metric for which ∂S is
geodesic. The universal cover π : S̃ → S can then be viewed as a subset of
the Poincaré disk D2 = H2 ∪ S1∞, see Fig. 1. Now let C be a component of
∂S and L be a component of π−1(C). If h ∈ Aut(S, ∂S), let h̃ be the lift of h
that is the identity on L . Now the closure of S̃ in D2 is a starlike disk. One
portion of ∂ S̃ is L , and its complement in ∂ S̃ will be denoted L∞. Orient L∞
using the boundary orientation of S̃ and then linearly order the interval L∞
via an orientation-preserving homeomorphism with R. The lift h̃ induces

Fig. 1. S̃ as a subset of the Poincaré disk
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a homeomorphism h∞ : L∞ → L∞. Also, given two elements a, b in
Homeo+(R), the group of orientation-preserving homeomorphisms of R,
we write a ≥ b if a(z) ≥ b(z) for all z ∈ R and a > b if a(z) > b(z) for
all z ∈ R. The homeomorphism a is said to be nonincreasing if id ≥ a, and
strictly decreasing if id > a.

We have the following theorem, whose proof will occupy the next
section:

Theorem 2.2. Let S be a hyperbolic surface with geodesic boundary and
h ∈ Aut(S, ∂S). Then the following are equivalent:

(1) h is right-veering with respect to the boundary component C.
(2) h sends every (properly) immersed geodesic arc α which begins on C

to the right.
(3) id ≥ h∞. (Here h∞ is defined with respect to C.)

Observe that our definition of α ≥ β also makes sense for immersed
geodesic arcs α and β.

The following is a useful way to show that certain diffeomorphisms are
right-veering:

Lemma 2.3. Let h ∈ Aut(S, ∂S) be a right-veering diffeomorphism. Sup-
pose S′ is obtained from S by attaching a 1-handle B, and h ′ = h ∪ idB,
namely h ′ is the extension of h by the identity map on B. Then h ′ is right-
veering.

Proof. Assume that S is hyperbolic with geodesic boundary. (This excludes
the cases that S is a disk or an annulus, but it is easy to furnish a proof in
these cases.) Attaching a 1-handle B is equivalent to gluing a pair-of-pants P
(taken to be hyperbolic with geodesic boundary) to S along some common
boundary components (1 or 2). Let S′ = S ∪ P. If α is a properly embedded
essential arc of S′ with both endpoints on ∂S, write it as a decomposition
into subarcs (in order) α1, β1, α2, β2, . . . , βn−1, αn , where αi , i = 1, . . . , n,
are arcs on S and βi , i = 1, . . . , n − 1, are arcs in P. The case when
α has at least one endpoint on P is similar and will be omitted. Since h
is right-veering on S, each h(αi) is to the right of αi . We assume that α
and h(α) are piecewise geodesic, namely each αi , βi , h(αi), and h(βi) is
geodesic.

Now lift α and h ′(α) to the universal cover π : S̃′ → S′ so that they
have the same initial point x̃ ∈ π−1(∂S). Assume inductively that h ′(α2) ∗
h ′(β2) ∗ · · · ∗ h ′(βn−1) ∗ h ′(αn) is to the right of α2 ∗ β2 ∗ · · · ∗ βn−1 ∗ αn .
Here ∗ denotes concatenation of arcs. Then we prove that h ′(α) is to the
right of α. If the lifts α̃1 and h̃(α̃1) (with the same initial points) have
terminal points on different connected components of π−1(∂S), then h ′(α)
is immediately to the right of α. If the terminal points lie on the same
connected component of π−1(∂S), then either α1 = h(α1) (and the terminal
points coincide) or the terminal point of h̃(α̃1) is to the right of the terminal
point of α̃1. Hence, the lift of h ′(α2)∗h ′(β2)∗· · ·∗h ′(βn−1)∗h ′(αn) starting
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at the terminal point ỹ2 of the lift of h ′(α1) ∗ h ′(β1) is to the right of the lift
of h ′(α2) ∗ h ′(β2) ∗ · · · ∗ h ′(βn−1) ∗ h ′(αn) starting at the terminal point ỹ1
of the lift of α1 ∗ β1, which, by the inductive hypothesis, is to the right of
α2 ∗ β2 ∗ · · · ∗ βn−1 ∗ αn starting at ỹ1. 
�
Corollary 2.4. Let S be a compact surface with nonempty boundary, ob-
tained by gluing two compact surfaces S1 and S2 along some collection of
boundary components in such a way that ∂Si ∩ ∂S �= ∅ for i = 1, 2. If
hi ∈ Veer(Si, ∂Si), i = 1, 2, then h = h1 ∪ h2 ∈ Veer(S, ∂S).

Proof. The condition in the Corollary assures us that S can be obtained from
each of Si, i = 1, 2, by consecutively attaching 1-handles. By Lemma 2.3,
idS1 ∪ h2 and h1 ∪ idS2 are both right-veering. Their composition is clearly
right-veering as well. 
�

There is another monoid Dehn+(S, ∂S)which is well-known in symplec-
tic geometry, namely the monoid of products of positive Dehn twists. More
precisely, if γ is a closed, homotopically nontrivial curve on S, let Rγ denote
the positive (= right-handed) Dehn twist about γ . Then h ∈ Dehn+(S, ∂S)
if and only if h can be written as Rγ1 ◦ · · · ◦ Rγk , where k may be zero.
Although every element of the mapping class group on a closed surface can
be written as a product of positive Dehn twists (hence Dehn+(S) = Aut(S)
if S is closed), the same does not hold for Dehn+(S, ∂S) and Aut(S, ∂S) due
to the existence of the boundary. We have the following:

Lemma 2.5. Dehn+(S, ∂S) ⊂ Veer(S, ∂S).

Proof. Let A be an annulus and Rγ be a positive Dehn twist along the core
of this annulus. It is easy to verify that Rγ ∈ Aut(A, ∂A) is right-veering.
Now, by repeated application of Lemma 2.3, we see that a positive Dehn
twist Rγ along an essential curve is right-veering, provided γ is either (i)
nonseparating or (ii) separates S into two components, each of which non-
trivially contains a component of ∂S. Now, a positive Dehn twist Rγ along
a curve γ that does not satisfy either (i) or (ii) can be written as a product
of positive Dehn twists about nonseparating curves. Finally, observe that
Veer(S, ∂S) is closed under composition. 
�

One of the goals of this paper is to understand to what extent Veer(S, ∂S)
and Dehn+(S, ∂S) differ.

3. Proof of Theorem 2.2

In this section we give a proof of Theorem 2.2. (In fact, we will prove much
more!) Along the way we will discuss Thurston’s classification of surface
diffeomorphisms [Th] (also see [FLP,CB,Bo]), and then give a criterion for
determining precisely when pseudo-Anosov homeomorphisms and periodic



432 K. Honda et al.

homeomorphisms are right-veering (Propositions 3.1 and 3.2). Let us first
dispense with the easy observations:

(2)⇒(1) is immediate.
(3)⇒(2): Suppose z ≥ h∞(z) for all z ∈ L∞. Given any point x ∈ C

and properly immersed geodesic arc α on S with α(0) = x, consider its
lift α̃ with α̃(0) = x̃, where x̃ ∈ L ∩ π−1(x). Then h̃ takes α̃(1) to ˜h(α)(1)

(this follows from the definition of h̃). Now, α̃(1) ≥ h̃(α̃(1)) = ˜h(α)(1).
Hence α ≥ h(α).

3.1. Thurston classification of surface homeomorphisms. We now de-
scribe Thurston’s classification, which improved upon earlier work of
Nielsen [Ni1,Ni2,Ni3]. A diffeomorphism h : S → S is reducible if there
exists an essential multicurve γ , none of whose components is parallel to
a component of ∂S, such that h(γ) = γ . Here, a multicurve is a union
of pairwise disjoint simple closed curves, and a multicurve is essential if
no component of S − γ is a disk or an annulus. If h is not isotopic to
a reducible diffeomorphism, then it is said to be irreducible, and is freely
isotopic a homeomorphism ψ of one of the following two types:

(1) A periodic homeomorphism, i.e., there is an integer n > 0 such that
ψn = id.

(2) A pseudo-Anosov homeomorphism.

3.2. Pseudo-Anosov case. Suppose that S is a hyperbolic surface with
geodesic boundary (in other words, S is not an annulus). We will first
consider the pseudo-Anosov case. A pseudo-Anosov homeomorphism ψ
is equipped with the stable and unstable measured geodesic laminations
(Λs, µs) and (Λu, µu) (here Λs and Λu are the laminations and µs and µu

are the transverse measures) such that ψ(Λs) = Λs and ψ(Λu) = Λu .
The lamination Λ (= Λs or Λu) is minimal (i.e., does not contain any
sublaminations), does not have closed or isolated leaves, is disjoint from
the boundary ∂S, and every component of S − Λ is either an open disk or
a semi-open annulus containing a component of ∂S. In particular, every leaf
of Λ is dense in Λ. We also have ψ(Λs, µs) = (Λs, τµs) and ψ(Λu, µu) =
(Λu, τ−1µu) for some real number τ > 1.

Let C be a boundary component of S. Then the connected com-
ponent of S − Λs containing C is a semi-open annulus A whose metric
completion Â has geodesic boundary consisting of n infinite geodesics
λ1, . . . , λn. Suppose that the λi are numbered so that i increases (modulo n)
in the direction given by the boundary orientation on C. Now let Pi ⊂ A be
a semi-infinite geodesic which begins on C, is perpendicular to C, and runs
parallel to λi and λi+1 (modulo n) along the “spike” that is “bounded” by λi
and λi+1. These Pi will be referred to as the prongs. Let xi = Pi ∩ C be the
endpoint of Pi on C. We may assume that ψ permutes (rotates) the prongs
and, in particular, that there exists an integer k so that ψ : xi �→ xi+k for
all i.
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Now, given a diffeomorphism h ∈ Aut(S, ∂S) which is isotopic to
a pseudo-Anosov homeomorphism ψ, let H : S ×[0, 1] → S be an isotopy
from h to ψ. Define β : C × [0, 1] → C × [0, 1] by sending (x, t) �→
(H(x, t), t). It follows that the arc β(xi ×[0, 1]) connects (xi , 0) and (xi+k , 1),
where k is as above. We call β a fractional Dehn twist by an amount c ∈ Q,
where c ≡ k/n modulo 1 is the number of times β(xi ×[0, 1]) circles around
C × [0, 1] (here circling in the direction of C is considered positive). Form
the union of C ×[0, 1] and S by gluing C ×{1} and C ⊂ ∂S. By identifying
this union with S, we construct the homeomorphism β ∪ ψ on S which is
isotopic to h, relative to ∂S. (We will assume that h = β ∪ ψ, although ψ is
usually just a homeomorphism, not a diffeomorphism.) For a surface with
multiple boundary components Cj , we produce fractional Dehn twists βj by
amounts cj . See Fig. 2.

Fig. 2. A diffeomorphism h with fractional Dehn twist c = 1/3

Remark. The difference between the automorphism h ∈ Aut(S, ∂S) and its
pseudo-Anosov representative ψ with respect to a boundary component was
originally exploited by Gabai. (See [GO] for the relationship to essential
laminations and Dehn fillings and [Ga] for a discussion and open questions
regarding the degeneracy slope of a knot.)

Proposition 3.1. If h is isotopic to a pseudo-Anosov homeomorphism, then
the following are equivalent:

(1) h is right-veering with respect to C.
(2) c > 0 for the boundary component C.
(3) id ≥ h∞ for the boundary component C.

Proof. We use the notation from the paragraph preceding the statement of
Theorem 2.2. Suppose S is hyperbolic with geodesic boundary. Let C be
a component of ∂S for which the fractional Dehn twist is by an amount c.
Let P1, . . . , Pn be the geodesic prongs that end on C = C×{0}. Their union
is preserved by ψ (on its domain of definition), and the Pi are subjected to
the fractional Dehn twist β along C ×[0, 1]. For convenience, for any j ∈ Z
we write Pj to indicate Pi , where i ≡ j modulo n and 1 ≤ i ≤ n.
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Suppose that c > 0. Then h∞ : L∞ → L∞ maps the terminal point
of P̃i to the terminal point of h̃(P̃i), which is the same as the terminal point
of P̃i+cn . (Here P̃j , j ∈ Z, is a lift of Pj with initial point on L , where
j increases in the direction given by the orientation on L , which in turn
is induced by the orientation on S̃.) If we denote the terminal point of P̃i
in L∞ by ai , then the interval [ai , ai+1) gets mapped to [ai+cn , ai+cn+1)
by the monotonicity. Therefore, h∞ is a strictly decreasing function (i.e.,
id > h∞), and all three notions of right-veering in Theorem 2.2 coincide in
this case.

Similarly, if c < 0, then id < h∞ and h moves every properly embedded
essential arc α on S strictly to its left.

Now suppose that c = 0. The pseudo-Anosov property implies that
the ai are attracting fixed points for ψ∞ : L∞ → L∞. It follows that there
are points z ∈ L∞ for which z ≥ h∞(z) and others for which z ≤ h∞(z).
To prove the proposition, however, we need to do better – we need to find
a properly embedded arc α in S which starts at C and is strictly sent to the left
by h. We construct α as follows: Take an embedded arc α1 which starts at C
and transversely crosses an infinite boundary leaf of ∂ Â, say λ1, and ends
on a nearby leaf λ. (For example, it could be a subarc of a prong for Λu .)
Let β be the subarc of α1 from λ1 to λ. At λ∩α1, veer left, and follow λ until
the first return to β – call this arc α2. The existence of a point of first return
is guaranteed by the minimality of Λs (λ is dense in Λs). At α2 ∩ β, either
turn to the left or to the right so that we return to C by moving parallel to α1
– this gives us α3. Now let α = α1 ∗α2 ∗α3. We observe that α is embedded
and that α is not boundary-parallel. Now, by the pseudo-Anosov property,
h contracts the interval β by a factor strictly between 0 and 1, and moves λ
strictly to the left along β. Hence h(α) is either equal to α or h(α) ≥ α.
To eliminate the possibility h(α) = α, observe that a pseudo-Anosov map
cannot fix any closed curves, in particular γ obtained by closing up α2 with
a subarc of β. 
�

3.3. Periodic case. Next consider the case when h is freely isotopic to
a periodic map ψ. As in the pseudo-Anosov case, we consider the trace
β : ∂S × [0, 1] → ∂S × [0, 1] of an isotopy from h to ψ on ∂S and write
h = β ∪ ψ. Let C0, . . . , Ck be the boundary components of S, and ci ∈ Q,
i = 1, . . . , k, be the amount of boundary twisting on the component Ci .

Proposition 3.2. If h is freely isotopic to a periodic homeomorphism, then
the following are equivalent:

(1) h is right-veering with respect to the boundary component C0.
(2) c0 > 0 or else c0 = 0 and ci ≥ 0 for all i = 1, . . . , k.
(3) id ≥ h∞ for the boundary component C0.

Proof. We use the same notation as before. First observe that if x < y
on L∞, then h∞(x) < h∞(y) since h∞ is orientation-preserving. Hence
if z > h∞(z) (resp. z < h∞(z)), then z > hn∞(z) (resp. z < hn∞(z)).
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We therefore conclude that z > h∞(z) (resp. z = h∞(z), z < h∞(z)) is
equivalent to z > hn∞(z) (resp. z = hn∞(z), z < hn∞(z)) for any n > 0.

Next observe that, since ψ is periodic, there exists a positive integer n
for which ψn = id and hn = Rn0

γ0
◦ · · · ◦ Rnk

γk
, where γi is a parallel, disjoint

copy of Ci , the γi are pairwise disjoint, and ni ∈ Z. Moreover, ni = cin.
Suppose c0 > 0, or, equivalently, n0 > 0. We claim that z > h∞(z) for

all z ∈ L∞. In fact, take a properly embedded arc β starting at C = C0 and
ending at Ci , i ∈ {0, . . . , k}, and consider its lifts β̃j , j ∈ Z, which start at L .
Here j increases in the direction given by the orientation of L . Now let Lj

be the component of π−1(Ci) which contains the endpoint β̃j(1). Observe
that Lj and L j+1 are distinct. (If not, then Li = Lj for all i, j, which leads
to the contradiction that Li = Lj = L .) Then hn∞ maps Lj to L j+n0 and
moves the interval between Lj and L j+n0 to the right of L j+n0 . (In other
words, hn∞ is a strict monotonically decreasing function.) Hence id > hn∞
and therefore id > h∞.

Similarly, if c0 < 0, then id < h∞.
Next suppose that c0 = 0 (or n0 = 0). If L ′ ⊂ L∞ is a component of

π−1(Ci) for some i, then hn∞ maps L ′ to itself. If all the ni ≥ 0, then hn∞
either fixes the points on L ′ or moves them to the right. Since the union of
(∪k

i=0π
−1(Ci)) ∩ L∞ is dense in L∞, it follows that id ≥ hn∞ and id ≥ h∞.

On the other hand, if ni < 0 for some i, then we can easily find a properly
embedded arc β from C = C0 to Ci which is sent strictly to the left via hn.
If hn(β) > β, then h(β) > β. 
�

3.4. Reducible case. Suppose h ∈ Aut(S, ∂S) is reducible. Then there
exists a (nonempty) essential multicurve γ which satisfies h(γ) = γ .
Assume that γ is maximal among all such multicurves. Fix a component C
of ∂S. Then let Sγ be the component of the metric closure of S − γ which
contains C = C0. The other boundary components of Sγ will be called
C1, . . . , Ck. The automorphism h may permute the components of Ci ,
i = 1, . . . , k. Now, by the Nielsen-Thurston classification, h|Sγ

is either
periodic or pseudo-Anosov.

Suppose that h is right-veering. We will show that id ≥ h∞. But first we
have the following lemma:

Lemma 3.3. Let S be a hyperbolic surface with geodesic boundary and
g ∈ Aut(S, ∂S). Let S′

� S be a subsurface, also with geodesic boundary,
and let C be a common boundary component of S and S′. If g is the identity
map when restricted to S′, δ is a closed curve parallel to and disjoint from C,
and m is a positive integer, then id > (Rm

δ g)∞ with respect to C.

Proof. Let L be the component of π−1(C) which is fixed under the lift g̃.
Let α be a properly embedded essential arc in S′ starting on C and ending
on C ′ �= C. By hypothesis, g̃ is also the identity on the lifts α̃j , j ∈ Z,
of α with initial points on L . Order α̃j along L so that j increases in the
direction given by the orientation of L . Let Lj the component of π−1(C ′)
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that α̃j ends on. Then ˜Rm
δ g maps Lj to L j+m. (Note that the Lj are distinct.)

This implies that any point on L∞ between Lj and L j+m gets mapped to the
right of L j+m. Hence id > (Rm

δ g)∞. 
�
We state the following corollary of Lemma 3.3, which will become

useful in Sect. 6:

Corollary 3.4. Let S be a hyperbolic surface with geodesic boundary and
g ∈ Aut(S, ∂S). Let C be a component of ∂S and C′ be an embedded closed
geodesic in S (which also may be a component of ∂S). Suppose we have
the following: (i) g(C′) = C ′, and (ii) there is a properly embedded arc α
that starts on C and ends on C ′ so that g(α) is isotopic to α (via an isotopy
which takes C′ to itself but does not necessarily fix each point of C ′). If δ
is a closed curve parallel to and disjoint from C, then id > (Rδg)∞ with
respect to C.

Proof. Consider the union C ∪α∪C′. Its neighborhood S′ is a pair-of-pants
on which we may take h to be the identity after isotopy (relative to ∂S). In
particular, any Dehn twists about curves parallel to C′ can be pushed away
from S′. Now apply Lemma 3.3. 
�

Let us consider the case h|Sγ
= Rm

δ , where δ is a closed curve parallel
to and disjoint from C, and m ∈ Z. Suppose first that m = 0. By appealing
to the universal cover, it is not difficult to see that id ≥ h∞ if and only if
id ≥ (h|S−Sγ

)∞ with respect to any of the components Ci , i = 1, . . . , k.
It follows that if h is right-veering with respect to C, then h|S−Sγ

is also
right-veering with respect to Ci , i = 1, . . . , k. We may inductively excise
such Sγ with h|Sγ

= id from S. Next suppose that m > 0. Then we are in
the case of Lemma 3.3 and id > h∞. If m < 0, then id < h∞.

Now assume that h|Sγ
is not the identity and is either periodic or pseudo-

Anosov. Note that by the maximality of γ , there are no arcs from C0 to Ci

which are preserved by h. Let L be a lift of C0 in the universal cover S̃γ ,
and L∞ be the complement of L in ∂ S̃γ . If α is an arc from C0 to Ci , then the
terminal point of its lift α̃ must lie on a different component of π−1(∪Ci)

from that of h̃(α̃). Since h(α) cannot be to the left of α (this would contradict
the right-veering property for any extension of α to S), h|Sγ

is right-veering.
It remains to show that h|Sγ

is right-veering implies id ≥ h∞.
Suppose h|Sγ

is pseudo-Anosov. Then there exist prongs Pi in Sγ which
end along C as in the proof of Proposition 3.1, and h rotates the prongs by
c > 0, according to Proposition 3.1. This fact immediately forces h∞ to be
strictly decreasing. Note that Proposition 3.1 is still valid even when only
C = C0 is fixed and the Ci , i = 1, . . . , k, are permuted.

Next suppose h|Sγ
is periodic and not the identity. Recalling that id ≥ hn∞

if and only if id ≥ h∞, we only deal with hn . If the amount of rotation is
c > 0, then hn∞ is strictly decreasing. Suppose now that c = 0. Then we may
take hn to be the identity on Sγ after isotopy. Again, we can excise such Sγ ,
thereby inductively shrinking S. This completes the proof of Theorem 2.2.
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4. Open book decompositions

In this section we review the fundamental work of Giroux (building on
work of Thurston–Winkelnkemper [TW], Bennequin [Be], Eliashberg–
Gromov [EG], and Torisu [To]), which relates contact structures and open
book decompositions. For more details, we refer the reader to Etnyre’s
survey article [Et].

Let (S, h) be a pair consisting of an oriented surface S and a diffeomorph-
ism h : S → S which restricts to the identity on ∂S, and let K be a link in
a closed oriented 3-manifold M. An open book decomposition for M with
binding K is a homeomorphism between ((S ×[0, 1])/∼h , (∂S ×[0, 1])/∼h )
and (M, K ). The equivalence relation ∼h is generated by (x, 1) ∼h (h(x), 0)
for x ∈ S and (y, t) ∼h (y, t′) for y ∈ ∂S. We will often identify M with
(S × [0, 1])/∼h ; with this identification St = S × {t}, t ∈ [0, 1], is called
a page of the open book decomposition and h is called the monodromy
map. Two open book decompositions are equivalent if there is an ambient
isotopy taking binding to binding and pages to pages. We will denote an
open book decomposition by (S, h), although, strictly speaking, an open
book decomposition is determined by the triple (S, h, K ). There is a slight
difference – if we do not specify K ⊂ M, we are referring to isomorphism
classes of open books instead of isotopy classes.

Every closed 3-manifold has an open book decomposition, but it is not
unique. One way of obtaining inequivalent open book decompositions is
to perform a positive or negative stabilization: (S′, h ′) is a stabilization of
(S, h) if S′ is the union of the surface S and a band B attached along the
boundary of S (i.e., S′ is obtained from S by attaching a 1-handle along ∂S),
and h ′ is defined as follows. Let γ be a simple closed curve in S′ “dual” to
the cocore of B (i.e., γ intersects the cocore of B at exactly one point) and
let idB ∪ h be the extension of h by the identity map to B ∪ S. Then for
a positive stabilization h ′ = Rγ ◦ (idB ∪ h), and for a negative stabilization
h ′ = R−1

γ ◦ (idB ∪ h). It is well-known that if (S′, h ′) is a positive (negative)
stabilization of (S, h), and (S, h) is an open book decomposition of (M, K ),
then (S′, h ′) is an open book decomposition of (M, K ′) where K ′ is obtained
by a Murasugi sum of K (also called the plumbing of K ) with a positive
(negative) Hopf link.

A contact structure ξ is said to be supported by the open book decom-
position (S, h, K ) if there is a contact 1-form α which:

(1) induces a symplectic form dα on each fiber St;
(2) K is transverse to ξ , and the orientation on K given by α is the same as

the boundary orientation induced from S coming from the symplectic
structure.

Thurston and Winkelnkemper [TW] showed that any open book decom-
position (S, h, K ) of M supports a contact structure ξ . Moreover, the contact
planes can be made arbitrarily close to the tangent planes of the pages (away
from the binding).
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The following result is the converse (and more), due to Giroux [Gi2].

Theorem 4.1 (Giroux). Every contact structure (M, ξ) on a closed 3-mani-
fold M is supported by some open book decomposition (S, h, K ). Moreover,
two open book decompositions (S, h, K ) and (S′, h ′, K ′) which support the
same contact structure (M, ξ) become equivalent after applying a sequence
of positive stabilizations to each.

In the framework of open book decompositions, the holomorphically
fillable contact structures admit a simple characterization, as a result of
work by Loi–Piergallini [LP], combined with the relative version of the
above theorem. (Also see [AO].)

Corollary 4.2 (Loi–Piergallini, Giroux). A contact structure ξ on M is
holomorphically fillable if and only if ξ is supported by some open book
(S, h, K ) with h ∈ Dehn+(S, ∂S).

Remark. Note that the result does not state that any open book (S, h, K )
for a holomorphically fillable contact structure has monodromy in
Dehn+(S, ∂S), just that there is at least one such. It is an open question
to determine whether all supporting open books (S, h, K ) for a holomorph-
ically fillable (M, ξ) have monodromy in Dehn+(S, ∂S).

Our Theorem 1.1 is a characterization of tightness in this framework of
open book decompositions and contact structures. The ultimate goal is to
be able to determine whether (M, ξ) is tight, fillable, etc., just by looking at
a single (S, h) – from that perspective, we still fall short of the goal. . . .

5. Proof of Theorem 1.1

In this section we prove Theorem 1.1. The proof is based on the following
idea: Recall that a bypass (cf. [H1]) can be thought of as half of an over-
twisted disk. Suppose we glue two contact manifolds M1 and M2 along
a common boundary Σ. The most elementary way for M1 ∪ M2 to be over-
twisted is for a Legendrian arc in Σ to be an arc of attachment for a bypass
on each side of Σ. This might appear to be a very special kind of obstruc-
tion to a tight gluing of the two contact manifolds, and that we can match
bypasses from M1 and M2 only in very special cases. However, there is
a simple operation called bypass rotation which enables us to match up
bypasses from M1 and M2 if h : S → S is not right-veering.

We now discuss bypass rotation, which first appeared in [HKM3]. Let Σ
be a boundary component of a contact 3-manifold (N, ζ); we assume Σ
is convex in the sense of Giroux. (See [Gi1] for definitions of convex
surfaces and dividing sets.) Although slightly awkward, we give Σ the
opposite orientation to the induced orientation from N. (In particular, in
Fig. 3, the boundary orientation points into the page.) Let δ1 and δ2 be
disjoint Legendrian arcs in Σ that have three transverse intersections with
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the dividing set ΓΣ, including their endpoints. The arcs δ1 and δ2 are arcs
of attachment for potential bypasses, which are to be attached “from the
front”. Suppose there is an embedded rectangle R, where two of the sides
are subarcs of δ1 and δ2, and the other two sides are subarcs γ1 and γ2
of ΓΣ. Assume δ1 and δ2 both start on γ2, extend beyond γ1 and do not
reintersect ∂R. If R, δ1, and δ2 are as in Fig. 3, that is, with the orientation
induced from R (which in turn is induced from that of Σ), γ1 starts on δ2
and ends on δ1, then we say that δ1 lies to the left of δ2. Note that Fig. 3 only
represents the local picture near R ∪ δ1 ∪ δ2; in particular, any of the four
dividing arcs may be part of the same dividing curve in ΓΣ.

Fig. 3. δ2 is to the right of δ1, viewed from the interior of N

Lemma 5.1 (Bypass rotation). Let (N, ζ) be a contact 3-manifold with
convex boundary, and let δ1 and δ2 be disjoint arcs on a boundary com-
ponent Σ of N. If δ1 is to the left of δ2, and δ2 is an arc of attachment for
a bypass inside N, then δ1 is also an arc of attachment for a bypass inside N.

Proof. Suppose there exists a bypass B ⊂ N along δ2. Then let Σ′ be the
surface obtained by “attaching” B onto Σ, i.e., isotoping Σ across B. After
the bypass attachment, δ1 becomes a trivial arc of attachment with respect
to ΓΣ′ . Here, an arc of attachment δ on a convex surface S is trivial if
(i) a closed subarc δ′ of δ and a closed subarc of ΓS cobound a closed disk D
such that D ∩ δ = δ′, and (ii) the dividing sets before attachment and after
attachment are isotopic. By the Right-to-Life Principle ([H2, Lemma 2.9]
or [HKM, Proposition 2.2]) (i.e., bypasses always exist along trivial arcs of
attachment), there exists a bypass along δ1. 
�

The ability to rotate bypasses will be coupled with the following lemma:

Lemma 5.2. If α and β are oriented, properly embedded arcs in S such
that α ≥ β, then there exists a sequence of oriented, properly embedded
arcs α = α0 ≥ · · · ≥ αn = β where αi and αi+1 have disjoint interiors
for i = 0, . . . , n − 1. Here we require the initial points αi(0) to be the same,
but the terminal points αi(1) do not need to coincide.

Proof. Let us denote by #(α, β) the geometric intersection number of α
and β, with the exception of the endpoints. (Hence #(α, β) = 0 if they
have no interior intersection points.) We will show that, given α and β
in S for which α ≥ β, α �= β and #(α, β) �= 0, there always exists an
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arc α′ such that α ≥ α′ ≥ β and #(α, α′) < #(α, β), #(α′, β) < #(α, β).
By recursively applying the above procedure, we construct the sequence
α = α0 ≥ · · · ≥ αn = β with #(αi, αi+1) = 0 for i = 1, . . . , n − 1.

Suppose α ≥ β and α �= β. We may assume that α and β inter-
sect transversely and efficiently. Then let α ∩ β = {p0, p1, . . . , pn} =
{q0, q1, . . . , qn}, where pi = α(ti), 0 = t0 ≤ t1 ≤ · · · ≤ tn < 1 and
qi = β(si), 0 = s0 ≤ s1 ≤ · · · ≤ sn < 1. We will analyze several cases
depending on the nature of the intersection of α and β at p1:

Case 1. Assume that p1 = qr and at p1 the tangent vectors to β and α (in
that order) determine the orientation on S. (See Fig. 4).

Fig. 4.

Let α′ be the curve obtained by following α until p1 and then veering
right and following β from that point on; in other words, α′ = α|[0,t1]∗β|[sr ,1].
Then #(α, α′) = #(α, β) − r, and #(α′, β) = 0.

Since it is an important point, we will explain why α ≥ α′ ≥ β. The
condition α′ ≥ β holds because α′ is to the left of β near their common initial
point and α′ and β never reintersect (hence α′ and β intersect efficiently).
We have α ≥ α′ since α′ starts to the right of α and smoothing the piecewise
geodesic arc α|[0,t1] ∗ β|[sr ,1] into a (smooth) geodesic arc with the same
endpoints pushes α′ further to the right.

Case 2. Assume that p1 = qr , r > 1, and at p1 the local intersection is such
that the tangent vectors to α and β determine the orientation on S.

Let pr′ be the last point on α where α intersects β|[0,sr ]. Say pr′ = qr′′ .
Case 2 is split into two subcases, depending on the orientation of the curves
at pr′ = qr′′ .

Case 2A. First suppose the tangent vectors to β and α determine the orien-
tation on S at pr′ = qr′′ . Then let α′ = β|[0,sr′′ ] ∗ α|[tr′ ,1], that is, we follow β
until we hit pr′ and veer left and travel along α for the rest of the journey.
(See Fig. 4). It is clear that #(α, α′) < #(α, β) and #(α′, β) < #(α, β). We
claim that α ≥ α′ ≥ β. Assuming α and β are geodesics, we pass to the
universal cover π : S̃ → S. Let α̃ and β̃ be lifts of α and β which start at the
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same basepoint x̃ ∈ ∂ S̃. Then the lift α̃′ of α′ which starts at x̃ is a piecewise
geodesic arc which follows β̃ until it hits a lift of pr′ and goes left along
a lift of α. Thus α̃′ clearly ends to the left of β̃ and hence α′ ≥ β. Now, α̃′
starts to the right of α̃ (along β̃), and then switches to a different component
of π−1(α) from α̃. Hence α̃′ ends to the right of α̃ and α ≥ α′. (Whether
the switch is to the right or to the left is not important – rather, it’s the fact
that we switch to a different component of π−1(α). Distinct lifts of α never
self-intersect!)

Case 2B. Next suppose that the tangent vectors to α and β determine the
orientation on S at pr′ = qr′′ . Then let α′ = α|[0,t1] ∗ (β|[sr′′ ,sr ])−1 ∗ α|[tr′ ,1],
i.e., we follow α until we hit p1, veer right and travel backwards along β until
we reach pr′ , and then veer left and travel along α until the end. (See Fig. 4).
Again, it is clear that #(α, α′), #(α′, β) < #(α, β). To see that α ≥ α′ ≥ β,
consider the universal cover S̃ as in the previous paragraph; let α̃ and β̃ be
as before. The arc α̃′ follows α̃ until it hits a lift of p1, makes a right turn
and follows a lift β̃

∗
(�= β̃) of β until it hits a lift α̃∗ (�= α̃) of α, at which it

makes a left turn. Therefore, we conclude that α ≥ α′ and α′ ≥ β.

Case 3. Assume that at p1 = qr the tangent vectors to α and β determine
the orientation on S and that r = 1.

Case 3A. Assume that γ = β|[0,s1] ∗ (α|[0,t1])−1 separates S. Let R ⊂ S
be the subsurface cut off by γ such that the orientation of γ equals the
boundary orientation of R.

Suppose first that there is a component C of ∂S which is contained in R.
In this case, we take α′ to be an arc in R which connects p0 = q0 to C
without intersecting the interior of α or β. Then #(α, α′) = #(α′, β) = 0
and it is evident that α ≥ α′ ≥ β.

If there are no boundary components of S in R, then there is an arc
δ ⊂ R which starts at p0, runs over a handle in R and ends at p1, and
whose interior does not intersect α or β. Let α′ = δ ∗ β|[s1,1]. In this case,
#(α′, β) = 0 and α′ is clearly to the left of β. Also α′ is to the right of α,
since α′ is initially to the right of α, and α′ and α intersect efficiently, i.e., no
subarc of α′ cobounds a disk with a subarc of α. (This is inherited from the
efficient intersection of α and β.) However, we apparently have not gained
anything since we still have #(α, α′) = #(α, β). This is not a problem, as
we will now be in Case 3B where γ is nonseparating. See Fig. 5.

Case 3B. Assume that γ = β|[0,s1] ∗ (α|[0,t1])−1 is nonseparating.
Consider the connected component R of S − α − β such that γ is

a component of ∂R and the orientations of γ and ∂R agree. Since γ is non-
separating, R must have at least two boundary components. If a component
C �= γ of ∂R nontrivially intersects ∂S, then take α′ to be an arc from p0 to
C ∩ ∂S, and we are done.

Otherwise, each C �= γ is a union of subarcs of α and β. Since neither α
nor β can be all of C, the component C is the union of at least one subarc
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Fig. 5.

α[ti,ti+1], i ≥ 1, of α and at least one subarc of β. (If i = 0, then C would
nontrivially intersect ∂S.) Now, take an arc δ in R from p0 to pi+1 = α(ti+1)
for some i ≥ 1. By construction, the interior of δ does not intersect β. Now
let α′ = δ∗α|[ti+1,1]. Then #(α, α′) = 0 and #(α′, β) ≤ #(α, β)−1. Since α′
is initially to the right of α and #(α, α′) = 0, it follows that α ≥ α′. On the
other hand, α′ is initially to the left of β and the concatenation δ ∗ α|[ti+1,1]
intersects β efficiently (i.e., there are no arcs of α′ which cobound disks
with β). Therefore, α′ ≥ β. See Fig. 5. 
�
Proof of Theorem 1.1. An open book decomposition (S, h, K ) gives rise to
a special Heegard decomposition of M. Denote by Hi , i = 1, 2, the two
handlebodies H1 = S × [0, 1

2 ]/∼h and H2 = S × [

1
2 , 1

]

/∼h . Writing St =
S×{t} as before, the oriented boundaries of H1 and H2 are Σ1 = S1/2∪−S0
and Σ2 = −S1/2 ∪ S1, respectively. See Fig. 6. The orientation-reversing
gluing map g : Σ2 → Σ1 is given by idS1/2 ∪ h, where the monodromy
map h is regarded as a map of S1 to S0. Observe that, if the neighborhood
N(K ) = K ×D2 of K has coordinates (z, r, θ) and St ∩(K ×D2) is θ = 2πt,
then the separating surface Σ

def= Σ1 = Σ2 of the Heegaard decomposition
is smooth.

Since (S, h) is adapted to ξ , the splitting surface Σ is a convex sur-
face whose dividing set ΓΣ is equal to the binding K . Let α ⊂ S be
an oriented, properly embedded arc and denote by αt the copy of α in
St = S × {t}. The boundaries of the compressing disks α × [0, 1/2] ⊂ H1

and α × [1/2, 1] ⊂ H2 are closed curves γ1 = α−1
0 ∗α1/2 and γ2 = α−1

1 ∗α1/2,
which we (not so) secretly view as parametrized by an interval. Now con-
sider the arc δi , obtained by “perturbing the endpoints of γi” as follows:
Let αL (resp. αR) be an oriented, properly embedded arc on S which has
the same initial point as α, is parallel to and disjoint from α with the ex-
ception of the initial point, and has final point slightly to the left (resp. right)
of α. Then let δ1 = (αL)−1

0 ∗ α1/2 and δ2 = (αR)−1
1 ∗ α1/2. By applying the

Legendrian realization principle [H1, Theorem 3.7], we may assume that
δi ⊂ Σ is Legendrian. (In order to apply Legendrian realization, one needs
to verify that that the curve or arc in consideration is nonisolating. This is
clear for δi .)
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Fig. 6.

We now claim that δi is an arc of attachment for a bypass in Hi . The closed
curve γi intersects the dividing set ΓΣi in exactly two points corresponding to
the two endpoints of α. Take a parallel copy γ ∗

i of γi (disjoint from δi) on Σ.
Apply the Legendrian realization principle to both γ ∗

i and δi (their union is
still nonisolating), and split Hi along a convex disk Di with boundary γ ∗

i .
(See Fig. 7.) Since #(ΓΣi ∩ γ ∗

i ) = 2, the dividing set ΓDi is a uniquely
determined single arc. After rounding the edges, we observe that δi is a trivial
arc of attachment on the cut-open manifold Hi \Di . The existence of a bypass
along δi now follows from the Right-to-Life Principle. Alternatively we can
argue that a convex handlebody H which admits a collection of compressing
disks D1, . . . , Dg satisfying #(Γ∂H ∩∂Di) = 2 and H\(D1∪· · ·∪Dg) = B3

is a standard neighborhood of a Legendrian graph, and the sought-after
bypass is equivalent to the stabilization of a Legendrian arc.

Suppose h is not right-veering. Then there exists an oriented, properly
embedded arc α ⊂ S for which h(α) is to the left of α. Suppose first that h(α)
and α have disjoint interiors. We start with the two arcs of attachment δ1
and δ2, along which there are bypasses from H1 and H2. We view δ2 on ∂H1

by mapping via g = h ∪ idS1/2 to g(δ2) = (h(αR))−1
0 ∗ α1/2. Then g(δ2)

will be to the right of δ1 with respect to the boundary orientation on ∂H1.
Since g(δ2) is an arc of attachment for a bypass coming from H2, it follows
from Lemma 5.1 that δ1 also is an arc of attachment for a bypass in H2.
The union of the two bypasses is an overtwisted disk. (Observe that if h is
the identity map, then g(δ2) will be slightly to the left of δ1 with respect
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Fig. 7. The disk decomposition and the trivial bypass

to the boundary orientation on ∂H1, and we are not able to construct an
overtwisted disk by gluing the bypasses. This is good, since the contact
manifold is the connected sum of S1 × S2’s with the unique tight contact
structure!)

If h(α) is to the left of α but the interiors are not disjoint, use Lemma 5.2
to produce a sequence α0 = h(α) ≥ α1 ≥ · · · ≥ αn = α so that αi and αi+1
have disjoint interiors for i = 0, . . . , n−1. We use this sequence to construct
a sequence of arcs of attachment (αi)

−1
0 ∗ α1/2 on ∂H1 where consecutive

arcs are disjoint, and (αi)
−1
0 ∗ α1/2 is to the right of (αi+1)

−1
0 ∗ α1/2 (with

respect to the boundary orientation on ∂H1). By applying a sequence of
bypass rotations, it follows that δ1 bounds a bypass in H2, giving rise to an
overtwisted disk in (M, ξ).

Conversely, suppose that (M, ξ) is overtwisted. We will show that there
is some open book decomposition (S, h) for (M, ξ) where h is not right-
veering. By Eliashberg’s classification of overtwisted contact structures
(see [El]), (M, ξ) is isotopic to the connected sum (M, ξ)#(S3, ξOT ), where
ξOT is the unique overtwisted contact structure on S3 which is homotopic
(as a tangent 2-plane field) to the standard one, and the connected sum is
done along a convex sphere S2 with one dividing curve. Now, we claim
that (S3, ξOT ) can be written as a connected sum (S3, ξ ′)#(S3, ξ ′′), where
(S3, ξ ′) has an open book decomposition (S′, h ′) with S′ an annulus, and h ′
is a negative Dehn twist about the core curve of the annulus. We use the
3-dimensional invariant d3 of a 2-plane field, given by Gompf in [Gom].
On S3, the map d3, which takes homotopy classes of 2-plane fields to Z+ 1

2 ,
is a bijection. Moreover,

d3(S3, ξ ′#ξ ′′) = d3(S3, ξ ′) + d3(S3, ξ ′′) + 1

2
.

Hence, if we choose (S3, ξ ′) as desired, then we can find (S3, ξ ′′) so that
d3(S3, ξ ′#ξ ′′) = d3(S3, ξOT ). (Explicit calculations of d3 for overtwisted
contact structures on S3 can be found in [DGS].) Now, performing a con-
nected sum with (S3, ξ ′) is equivalent to performing a negative stabilization
along a boundary-parallel (trivial) arc. Such an open book clearly does not
have right-veering monodromy. 
�
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6. Stabilizing the monodromy

In this section we prove the following proposition:

Proposition 6.1. Every (S, h) can be made right-veering after a sequence
of positive stabilizations.

The idea behind the proof of Proposition 6.1 is to create an example that is
so strongly right-veering that when it is added to the boundary components
of any (S, h), the resulting surface and diffeomorphism are forced to be
right-veering.

Example. Consider an open book with page an annulus A and monodromy
the identity map idA. Denote the boundary components of A by x and z.
Choose two properly embedded, boundary-parallel arcs b1 and b2 in A such
that ∂b1, ∂b2 ⊂ x, and b1 and b2 intersect efficiently in two interior points.
Thus there exist subarcs of b1 and b2 whose union is a core of A. Create
(L, h) by first stabilizing (A, idA) across b1, and then stabilizing across b2.
(By “stabilizing across an arc b”, we mean that the 1-handle B = c×[−ε, ε]
is attached to the surface S so that ∂b = ∂c×{0} and the extra positive Dehn
twist is performed along the curve b ∪ (c × {0}).) The result is that L has
three boundary components r, s, t replacing x, and it still has the original
boundary component z of A. See Fig. 8.

Fig. 8. Two stabilizations (left) and the lantern relation (right)

By construction, h is the composition of two positive Dehn twists Rα

and Rβ . Choose a curve γ as shown in Fig. 8, and then by the lantern
relation, Rγ Rβ Rα = Rr Rs Rt Rz . (Observe that Rr , Rs , Rt and Rz mutually
commute.) It follows that h = R−1

γ Rr Rs Rt Rz .
We will now exhibit arcs a1, a2 and a3 to which we apply Corollary 3.4.

Let a1 be an embedded arc in L that starts on r, ends on t, and does
not intersect γ . From the lantern relation, we see that a1 is preserved by h,
modulo boundary twisting. (More precisely, R−1

r R−1
t h fixes a1, up to isotopy

relative to ∂L .) Let a2 be an embedded arc in L that starts on s and ends
on γ . Again, the lantern relation shows that R−1

s Rγ h fixes a2, up to isotopy
relative to s ∪ γ . Finally, an arc a3 analogous to a2 exists from z to γ . This
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shows that h is right-veering: a1 implies that h is right-veering with respect
to r and t, a2 with respect to s, and a3 with respect to z.

The proof of Proposition 6.1 is now immediate:

Proof of Proposition 6.1. Let (L, Rβ Rα) be as described in the above ex-
ample. To each boundary component z of S, attach a copy of (L, Rβ Rα)
along z. The surface produced by this procedure is evidently obtained by
a sequence of positive stabilizations, and its monodromy is right-veering by
Corollary 3.4. 
�

In a sense, Proposition 6.1 is disappointing since any (S, h) corres-
ponding to an overtwisted contact structure can be disguised as a right-
veering diffeomorphism by “protecting the boundary”.

The following questions arise naturally out of Proposition 6.1.

Question 6.2. If (S, h) is right-veering and cannot be destabilized, does
it necessarily correspond to a tight contact structure? What if we assume
that h is pseudo-Anosov in addition (i.e., h is isotopic to a pseudo-Anosov
homeomorphism with only positive fractional Dehn twists)?

Question 6.3. If (S, h) is right-veering and pseudo-Anosov, does it neces-
sarily correspond to a tight contact structure?

In other words, is it possible to obtain a right-veering pseudo-Anosov
homeomorphism by repeatedly stabilizing an overtwisted (S, h)? This is
indeed possible, as pointed out to the authors by Chris Leininger.

We then refine our question as follows:

Question 6.4. Suppose (S, h) is pseudo-Anosov, with fractional Dehn twists
ci > 0. Determine an optimal constant C (may be ∞) so that all the (S, h)
satisfying ci ≥ C are tight. Same for universally tight. Does C depend on S?
What are the conditions on ci (besides ci > 0) for the contact structure to
be tight?

Question 6.5. Consider the contact manifold ((S × [0, 1])/ ∼, ξ), where
(x, 1) ∼ (h(x), 0) and ξ is a tight contact 2-plane field which is close to the
leaves. For which Dehn fillings is the resulting (canonical) contact manifold
(M, ξ) tight?

Recall that open book decompositions are Dehn fillings of a special type.
We conclude this section by making some observations when (S, h) is

a stabilization.

Lemma 6.6. The open book decomposition (S, h) is a (positive) stabiliza-
tion if and only if there is a properly embedded arc α in S such that h(α)
intersects α only at the boundary and h(α) is to the right of α with respect
to both endpoints of α.
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Proof. Assume α is as in the statement of the lemma. It is clear that h(α) =
RC(α) if we denote by C the class of the closed curve obtained as the union
of α and h(α). Let us define g = R−1

C h. Since g(α) = α, the map g restricts
to a homeomorphism that fixes the boundary of the surface Σ = S \ α
obtained by cutting S along α. It is now easy to see that (S, h) is a (positive)
stabilization of (Σ, g).

The converse (if the open book is a stabilization, then there exists an α
as claimed) is easy. 
�
Lemma 6.7. Let S = T 2 \ D2 be a punctured torus and (S, h) an open
book decomposition with h ∈ Veer(S, ∂S). If (S, h) is a stabilization, then
h ∈ Dehn+(S, ∂S).

Proof. Since (S, h) is a stabilization, there is an arc α such that h(α) inter-
sects α only at its endpoints. Let C be the class of the closed curve obtained
as the union of α and h(α). Then (S, h) is the stabilization of (A, g) for an
annulus A = S \ α. Then g = Rq

γ , where γ is the core of the annulus. It is
easy to see that the composition RC ◦ Rq

γ is not right-veering unless q ≥ 0.
In fact, if q < 0 and β is an essential arc on S which is parallel to C (i.e.,
does not intersect C), then h(β) > β. 
�

7. Contrasting right-veering and product of right Dehn twists

By now the following theorem should be evident:

Theorem 7.1. Dehn+(S, ∂S) � Veer(S, ∂S).

In view of Theorem 2.2 (namely that h ∈ Aut(S, ∂S) right-veering is
equivalent to id ≥ h∞), Theorem 7.1 gives a negative answer to a conjec-
ture of Amorós–Bogomolov–Katzarkov–Pantev [ABKP]. (They had con-
jectured that Dehn+(S, ∂S) = Veer(S, ∂S).)

The following is a list of right-veering diffeomorphisms h ∈ Veer(S, ∂S)
which are not in Dehn+(S, ∂S).

(1) Monodromy maps for open book decompositions supporting tight con-
tact structures which are not holomorphically fillable.

(2) Right-veering monodromy maps of open book decompositions sup-
porting overtwisted contact structures.

(3) Explicit examples on the punctured torus.

We briefly explain each:
(1) There are tight contact structures which are not weakly symplec-

tically fillable and also weakly symplectically fillable ones which are not
strongly fillable (or holomorphically fillable). Contact structures which are
tight but are not fillable were first discovered by Etnyre–Honda [EH] and
expanded to infinitely many examples in a series of papers by Lisca–Stipsicz
(see [LS1,LS2] for the first couple). Weakly fillable contact structures which
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are not strongly fillable were first exhibited by Eliashberg [El2]; further ex-
amples were given by Ding–Geiges [DG]. Let (S, h) be any open book
decomposition for a contact structure (M, ξ) which is tight but not holo-
morphically fillable. Then h must be right-veering by Theorem 1.1 but
cannot be a product of positive Dehn twists by Corollary 4.2.

(2) As explained in Proposition 6.1, any overtwisted contact structure
admits an open book (S, h) which is right-veering. Such a monodromy
map h can never be a product of positive Dehn twists, again by Corollary 4.2.

(3) is the topic of the sequel [HKM2].
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