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Abstract. Generalizing the construction from tropical algebraic geometry,
we associate to every (irreducible d-dimensional) closed analytic subvariety
of Gn

m a tropical variety in Rn with respect to a complete non-archimedean
place. By methods of analytic and formal geometry, we prove that the
tropical variety is a totally concave locally finite union of d-dimensional
polytopes. For an algebraic morphism f : X ′ → A to a totally degenerate
abelian variety A, we give a bound for the dimension of f(X ′) in terms of the
singularities of a strictly semistable model of X ′. A closed d-dimensional
subvariety X of A induces a periodic tropical variety. A generalization of
Mumford’s construction yields models of X and A which can be handled
with the theory of toric varieties. For a canonically metrized line bundle L
on A, the measures c1(L|X)∧d are piecewise Haar measures on X. Using
methods of convex geometry, we give an explicit description of these meas-
ures in terms of tropical geometry. In a subsequent paper, this is a key step in
the proof of Bogomolov’s conjecture for totally degenerate abelian varieties
over function fields.

1. Introduction

For the whole paper, K denotes an algebraically closed field endowed with
a non-trivial non-archimedean complete absolute value | |. The correspond-
ing valuation is v := − log | | with value group Γ := v(K×). The valuation
ring is denoted byK◦. Note that the residue field K̃ is algebraically closed. In
Theorem 1.3, Sect. 8 and in the second part of Sect. 9, we start with a field K
endowed with a discrete valuation and we choose K to be the completion
of the algebraic closure of the completion of K (see [BGR, §3.4], for these
properties of K).
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On the torus Gn
m , we always fix coordinates x1, . . . , xn and we consider

the map

val : Gn
m(K) −→ R

n, x �→ (− log |x1|, . . . ,− log |xn|).
For an irreducible closed algebraic subvariety X of Gn

m over K, the closure
of val(X) inRn is called a tropical variety. This is the main object of study in
tropical algebraic geometry. We refer to [Mi] for a survey of this relatively
new area of research. Einsiedler, Kapranov and Lind [EKL] have shown that
the tropical variety of X is a connected totally concave Γ -rational polyhedral
set in Rn of pure dimension dim(X). Here and in the following, the reader
is referred to the appendix for the terminology used from convex geometry.
In the present paper, the following analytic generalization is given:

Theorem 1.1. Let X be an irreducible closed analytic subvariety of Gn
m

over K of dimension d. Then the tropical variety associated to X is a con-
nected totally concave locally finite union of d-dimensional Γ -rational
polytopes.

Note that the map val is continuous with respect to the Berkovich analytic
structure onGn

m and therefore the tropical variety is obviously connected and
compact. This makes it clear that we benefit a lot by using Berkovich analytic
spaces and methods from formal geometry (see Sect. 2 for a summary). In
Sect. 4, we generalize a result of Mumford to study the special fibre of
the analytic subdomain U∆ := val−1(∆) of Gn

m associated to a Γ -rational
polytope in Rn. This allows us to apply the theory of toric varieties to the
reduction of U∆. In Sect. 5, we prove Theorem 1 from the corresponding
local case in U∆.

The applications will deal with a totally degenerate abelian variety A
over K, i.e. Aan = (Gn

m)an
K

/M for a discrete subgroup M of Gn
m(K) which is

mapped isomorphically onto the complete lattice Λ := val(M) in Rn. We
get a canonical map val : Aan → R

n/Λ and hence a tropical variety val(Xan)
associated to a closed analytic subvariety X of A. In Sect. 6, we will show
that Theorem 1.1 holds also in this framework. This is quite obvious by
lifting X toGn

m leading to a periodic tropical variety inRn . As a consequence,
we obtain the following dimensionality theorem:

Theorem 1.2. Let X ′ be a smooth algebraic variety over K with a strictly
semistable formal K◦-model X′ (see 2.10 and 3.1) and let f : X ′ → A
be a morphism over K. Then the special fibre of X′ has a K̃-rational point
contained in at least 1 + dim f(X ′) irreducible components.

If X ′ is projective, then we may use a strictly semistable projectiveK◦ -model.
If X ′ has good reduction at v, then f is constant. We will postpone the proof
of Theorem 1.2 to the first part of Sect. 9 where it can be given very neatly
and where also a generalization to arbitrary abelian varieties is given.

In non-archimedean analysis, no good definition is known for the first
Chern form of a metrized line bundle. However, Chambert-Loir [Ch] has
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introduced measures c1(L1)∧ · · · ∧ c1(Ld) on the Berkovich analytic space
associated to a d-dimensional projective variety analogous to the corres-
ponding top dimensional forms in differential geometry. In Sect. 3, we give
a slightly more general approach to these measures using local heights. Our
main application of the theory of tropical analytic varieties is the following
result:

Theorem 1.3. Let X be a closed subvariety of the abelian variety A over K.
We assume that Aan

K
is totally degenerate over K and that X is of pure

dimension d. Let L1, . . . , Ld be ample line bundles on A endowed with
canonical metrics. Then µ := (val)∗(c1(L1|X)∧ · · ·∧ c1(Ld|X))is a strictly
positive piecewise Haar measure on the polytopal set val(Xan

K
).

By a piecewise Haar measure on the polytopal set val(Xan
K

), we mean that
val(Xan

K
) is a union of d-dimensional polytopes σ such that µ is a real

multiple of the relative Lebesgue measure on σ , and strictly positive means
that the multiple is > 0.

The proof of Theorem 1.3 will be given in Sect. 8. It is based on our
studies in Sect. 6 and Sect. 7 of Mumford’s model A of A associated to
a Γ -rational polytopal decomposition of Rn/Λ. The main idea is to work
with a generic polytopal decomposition C defined over a sufficiently large
base extensionK′ ofK. Then the irreducible components of the special fibre
of the closure of X in A are toric varieties by Theorem 6.10. Moreover, this
holds for the sequence 1

m C, m ∈ N, of polytopal decompositions and this
allows us to compute µ by Tate’s limit argument leading to an explicit
expression for µ in Theorem 8.6 and proving Theorem 1.3. In Theorem 9.6,
we prove that c1(L1|X)∧· · ·∧c1(Ld|X) itself is induced by an explicit strictly
positive Haar measure on the skeleton of a strictly semistable alteration of X.

In [Gu4], Theorem 1.3 is essential to prove the following case of
Bogomolov’s conjecture over the function field F := k(B). Here, B is
an integral projective variety over the algebraically closed field k such that
B is regular in codimension 1. The prime divisors on B are weighted by the
degree with respect to a fixed ample class leading to a theory of heights.

Bogomolov conjecture ([Gu4, Theorem 1.1]). Let A be an abelian variety
over the function field F which is totally degenerate at some place v of F.
Let X be a closed subvariety of A defined over the algebraic closure F
which is not a translate of an abelian subvariety by a torsion point. For
every ample symmetric line bundle L on A, there is ε > 0 such that

X(ε) := {P ∈ X(F) | ĥ L(P) ≤ ε}

is not Zariski dense in X, where ĥL denotes the Néron–Tate height with
respect to L.
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Terminology

In A ⊂ B, A may be equal to B. The complement of A in B is denoted by
B \ A as we reserve − for algebraic purposes. The zero is included in N.

All occuring rings and algebras are commutative with 1. If A is such
a ring, then the group of multiplicative units is denoted by A×. A variety
over a field is a separated reduced scheme of finite type. However, a formal
analytic variety is not necessarily reduced (see Sect. 2). For the degree of
a map f : X → Y of irreducible varieties, we use either deg( f ) or [X : Y ].
The multiplicity of an irreducible component Y of a scheme S is denoted
by m(Y, S).

For m ∈ Zn , let xm := xm1
1 · · · xmn

n . The standard scalar product of
u, u′ ∈ Rn is denoted by u · u′ := u1u′

1 + · · · + unu′
n . For the notation

used from convex geometry, we refer to the Appendix (see also 6.1 for the
periodic case).

Acknowledgements. The author thanks J. Eckhoff, K. Künnemann and F. Oort for precious
discussions, and the referee for his suggestions. Part of the research in this paper was done
during a 5 weeks stay at the CRM in Barcelona.

2. Analytic and formal geometry

In this section, we gather the results needed from Berkovich spaces and
formal geometry.

2.1. The completion of K[x1, . . . , xn] with respect to the Gauss norm is
called the Tate algebra and is denoted by K〈x1, . . . , xn〉. It consists of the
strictly convergent power series on the closed unit ball Bn in Kn.

AK-affinoid algebra A is isomorphic to a quotient K〈x1, . . . , xn〉/I and
the maximal spectrum Max(A) is equal to the zero set Z(I ) ⊂ Bn of the
ideal I . The supremum semi-norm of A on Z(I ) is denoted by | |sup. Setting

A◦ := {a ∈ A | |a|sup ≤ 1}, A◦◦ := {a ∈ A | |a|sup < 1},
the residue algebra is defined by Ã := A◦/A◦◦. It is a finitely generated
reduced K̃-algebra. For details about affinoid algebras, we refer to [BGR].

2.2. The Berkovich spectrum M(A) of a K-affinoid algebra A is defined
as the set of semi-norms p on A satisfying

p(ab) = p(a)p(b), p(1) = 1 and p(a) ≤ |a|sup

for all a, b ∈ A. It is endowed with the coarsest topology such that the maps
p �→ p(a) are continuous for all a ∈ A.

The Berkovich spectrum is compact and every x ∈ Max(A) gives rise to
a semi-norm a �→ |a(x)| such that we may view M(A) as a compactification
of Max(A). We refer to [Ber1] for proofs and more details.
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The affine K̃-variety Spec(Ã) is called the reduction of M(A) and
the reduction map p �→ p̃ := {p < 1}/A◦◦ is surjective. If ℘ is a min-
imal prime ideal of Ã, then there is a unique p ∈ M(A) with p̃ = ℘
(see [Ber1, Proposition 2.4.4]).

2.3. An affinoid subdomain of X := M(A) = M(K〈x〉/I ) is characterized
by an universal property (see [Ber1, 2.2] or [BGR, 7.2.2]). By a theorem of
Gerritzen and Grauert [BGR, Corollary 7.3.5/3], an affinoid subdomain is
a finite union of rational domains. The latter are defined by

X

(
f
g

)
:= {x ∈ X | | fj(x)| ≤ |g(x)|, j = 1, . . . , r}

where g, f1, . . . , fr ∈ A are without common zero. The corresponding
affinoid algebra is

A

〈
f
g

〉
:= K〈x, y1, . . . , yr〉/〈I, g(x)yj − fj(x) | j = 1, . . . , r〉

(see [BGR, Proposition 7.2.3/4]). If g = 1, then X(f) is called a Weierstrass
domain in M(A).

2.4. An analytic space X over K is given by an atlas of affinoid sub-
domains U = M(A). For the precise definition, we refer to [Ber2, §1].
(Note that our definition corresponds to strictly analytic spaces in the no-
tation of [Ber2, p. 22]). The technical difficulty in this definition arises
from the fact that the charts U are not open in X but compact. The sheaf
of structure OX is only defined on the Grothendieck topology of X and it is
characterized by OX(U) = A.

2.5. Let A be a K-affinoid algebra. A subset U of M(A) is called formal
open if there is a open subset V of the reduction Spec(Ã) such that
U = π−1(V ). The resulting quasi-compact topology on M(A) is called
the formal topology. Together with the restriction of OM(A) to the formal
topology, we get a ringed space called a formal affinoid variety over K and
denoted by Spf(A). By definition, a morphism of affinoid varieties over K
is induced by a reverse homomorphism of the corresponding K-affinoid
algebras. For details, we refer to [Bo].

A formal analytic variety over K is a K-ringed space X which has
a locally finite open atlas of formal affinoid varieties over K. It has a re-
duction X̃ and a generic fibre Xan. If X = Spf(A), then X̃ = Spec(Ã)

and Xan = M(A). In general, the K̃-variety X̃ and the analytic space Xan

are obtained by gluing processes (see [Bo] and [Ber3, §1]). Note that we
require that an algebraic variety is reduced (see Sect. 1), but a formal ana-
lytic variety is not necessarily reduced. Since the supremum semi-norm is
power-multiplicative, the reduction of a formal analytic variety is always
reduced. By 2.2, there is a surjective reduction mapXan → X̃, given locally
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by p �→ p̃. For every irreducible component Y , there is a unique ξY ∈ Xan

which reduces to the generic point of Y .

2.6. A K◦-algebra A is called admissible if it is isomorphic to K◦〈x1,
. . . , xn〉/I for an ideal I and if A has no K◦-torsion. An admissible formal
scheme X over K◦ is a formal scheme which has a locally finite atlas of
open subsets isomorphic to Spf(A) for admissible K◦-algebras A. The lack
of K◦-torsion is equivalent to flatness over K◦.

These spaces are studied in detail by Bosch and Lütkebohmert
[BL3,BL4] based on results of Raynaud. Note that the locally finiteness
condition for the atlas in the definitions of formal analytic varieties and
admissible formal schemes does not occur in [Bo] and the above quotes.
We need it only to define the generic fibre as an analytic space and it could
be omitted working with rigid analytic spaces (see [Gu2]).

The special fibre X̃ of an admissible formal scheme X over K◦ is
a scheme of locally finite type over K̃ with the same underlying topological
space as X and with OX̃ := OX ⊗K◦ K̃. Note that the special fibre X̃ is
not necessarily reduced. This is the main difference between admissible
formal schemes and formal analytic varieties. They are closely related by
the following functors:

There is a formal analytic variety Xf−an associated to X. If X = Spf(A),
then A := A ⊗K◦ K is a K-affinoid algebra and we set Xf−an := Spf(A).
In general, Xf−an is obtained by a gluing process. The canonical morphism
(Xf−an)∼ → X̃ is finite and surjective (see [BL1, §1]).

The analytic space Xan := (Xf−an)an is called the generic fibre of X.
Similarly as in 2.5, there is a surjective reduction map Xan → X̃.

If X is a formal analytic variety over K, we may reverse the above
process replacing locally Spf(A) by Spf(A◦) to get a formal scheme Xf−sch

over K◦.
The functors X → Xf−an andX→ Xf−sch give an equivalence between

the category of admissible formal schemes over K◦ with reduced special
fibre and the category of reduced formal analytic varieties over K. The
reductions are the same, which allows us to flip from one category to the
other. For details, see [BL1, §1], and [Gu1, §1].

2.7. Let X be a scheme of finite type over a subfield K of K. The ana-
lytic space Xan over K associated to X is constructed in the following way:
By using a gluing process, we may assume that X is a closed subscheme
of An

K . For r ∈ |K×|, the intersection of Xan with the closed ball of ra-
dius r and center 0 is defined by the same set of equations as X in An

K .
If we glue the balls for r → ∞, then we get Xan. For more details about
this functorial construction and the following GAGA theorems, we refer
to [Ber1, 3.4].

X is reduced, normal, regular, smooth, d-dimensional or connected if
and only if Xan has the same property. X is separated, resp. proper over K
if and only if Xan is Hausdorff, resp. compact. A morphism ϕ of schemes
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of finite type over K is flat, unramified, étale, smooth, an open immersion,
a closed immersion, dominant, proper, finite if and only if this holds for ϕan.

Let X be a flat scheme of finite type over K◦ with generic fibre X and
let π ∈ K◦◦. Then the associated formal scheme X̂ over K◦, defined locally
by replacing the coordinate ring A by the π-adic completion of A ⊗K◦ K◦,
is admissible. Moreover, the special fibre of X̂ is isomorphic to the base
change of the special fibre of X to K̃. Note that X̂an is an analytic subdomain
of Xan with X̂an(K) consisting of theK◦-integral points of X. If X is proper
over K◦, then X̂an = Xan. For details, we refer to [Gu2, §6]. If K◦ is not
a discrete valuation ring, one has to use [Ul].

2.8. In the following, we consider an étale morphism ϕ : Y → X of
admissible formal schemes over K◦, i.e. the reduction

ϕλ : (Y,OY/λOY) −→ (X,OX/λOX)

is an étale morphism of schemes for all λ ∈ K◦◦. Let X, Y be the generic
fibres of X and Y.

For P̃ ∈ X̃(K̃), the formal fibre X+(P̃) := {x ∈ X | x̃ = P̃} is an open
analytic subspace of X. Indeed, let Spf(A) be a formal affine neighbourhood
of P̃ in X and let f1, . . . , fr ∈ A such that P̃ is the only common zero of
f̃1, . . . , f̃r ∈ Ã in Spec( Ã), then

X+(P̃) = {x ∈ M(A ⊗K◦ K) | | f1(x)| < 1, . . . , | fr(x)| < 1}
is an open subdomain of X.

The following result is a special case of [Ber4, Lemma 4.4]. We give an
elementary proof here based on the implicit function theorem.

Proposition 2.9. Let ϕ be as above and let Q̃ ∈ Ỹ(K̃) with P̃ = ϕ̃(Q̃).
Then ϕ restricts to an isomorphism Y+(Q̃)

∼→ X+(P̃) of formal fibres.

Proof. By the local description of étale morphisms of schemes, we may
assume that X = Spf(A) and Y = Spf(B), where

B = (A[t]/〈p(t)〉){q(t)}.

Here, p(t), q(t) ∈ A[t] and the monic polynomial p(t) has the property
that the residue class of d

dt p is invertible in B (see [Ber3, §2]). Note
that the admissible K◦-algebra A has the form K◦〈x1, . . . , xn〉/I . There
is Q ∈ Y+(Q̃)(K) with reduction Q̃ and hence P := ϕ(Q) has reduction P̃
(see [BGR, Theorem 7.1.5/4]).

There is p(x, t) ∈ K◦〈x〉[t] with residue class p(t) ∈ A[t]. Clearly,
p(x, t) has Gauss norm 1 and

∣∣ ∂
∂t p(Q)

∣∣ = 1. By the local Eisenstein
theorem [BoGu, Theorem 11.5.14], there is a unique formal power series
ξ(x) ∈ K[[x]] with p(x, ξ(x)) = 0 and (P, ξ(P)) = Q. Moreover, ξ is con-
vergent on X+(P̃). By Hensel’s lemma, we easily deduce that x �→ (x, ξ(x))

is the inverse of ϕ : Y+(Q̃) → X+(P̃). ��
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2.10. An admissible formal scheme X over K◦ is called strictly semistable
if X is covered by formal open subsets U with an étale morphism

ψ : U −→ S := Spf(K◦〈x0, . . . , xn〉/〈x0 . . . xr = π〉)
for some r ≤ n and π ∈ K◦◦ (depending on U).

Proposition 2.11. Let X be a strictly semistable formal scheme over K◦.

(a) The special fibre X̃ is reduced and hence X is the formal scheme
associated to a formal analytic variety.

(b) For every P̃ ∈ X̃(K̃), there is a formal open neighbourhood U =
Spf(B) in X and an étale morphism ψ as in 2.10 such that ψ̃(P̃) = 0̃
and such that every irreducible component of Ũ passes through P̃.

(c) Let U as in (b) and let γj := ψ∗(xj). The irreducible components of Ũ
are equal to Y0, . . . , Yr, where Yj is the zero-scheme of γ̃ j . Moreover,
the group of units of theK-affinoid algebra B⊗K◦K is the direct product
of K×B× and the free abelian subgroup with basis γ1, . . . , γr .

Proof. Property (b) is immediate from strict semistability. For (a) and (c),
we may assume U = X. The special fibre S̃ is the zero-scheme of x̃0 · · · x̃r

in An+1
K̃

, hence it is reduced and has r + 1 irreducible components x̃j = 0̃.
Since ψ̃ is étale, X̃ is reduced [EGA IV, Proposition 17.5.7] and (a) follows
from 2.6. Moreover, ψ̃−1{x̃j = 0̃} is smooth and every irreducible com-
ponent passes through P̃, hence Yj is irreducible. By flatness of ψ̃, every
irreducible component of X̃ has this form and we get the first part of (c).

We denote the K-affinoid algebra B ⊗K◦ K by B. Let u ∈ B×. By
Proposition 2.9, the formal fibre X+ (P̃) is isomorphic to the open subdomain
of Bn, given by |xj | < 1 for j = 1, . . . , n and |x1 · · · xr | > |π|. Hence u has
the following power series development on X+(P̃):

u|X+( P̃) =
∞∑

m1=−∞
· · ·

∞∑
mr =−∞

∞∑
mr+1=0

· · ·
∞∑

mn=0

amγ
m1
1 . . . γ mn

n .

Since u is a unit, there is a dominant term amγ
m1
1 . . . γ mn

n with mr+1 = · · · =
mn = 0, i.e. ∣∣amγ

m1
1 . . . γ mn

n

∣∣ >
∣∣asγ

s1
1 . . . γ sn

n

∣∣
on X+(P̃) for all s �= m (use [BGR, Lemma 9.7.1/1]). For j = 0, . . . , r,
we will compute the multiplicity m(u, Yj) of u in Yj (see [Gu2] for the
theory of divisors on admissible formal schemes). By compactness of X,
we easily construct a sequence Pk ∈ X+(P̃), convergent to P∞ ∈ X and
with |γi(Pk)| → 1 for i ∈ {0, . . . , n} \ { j}. By [Gu3, Proposition 7.6],
m(u, Yj) = v(u(P∞)) and hence

m(u, Yj) = lim
k→∞ v(u(Pk)) = v(am) + mjv(π).
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We conclude that the Weil divisor of u′ := ua−1
m γ

−m0
0 · · · γ−mr

r is zero
on X and hence |u′(ξYj )| = 1. As this holds for all j = 1, . . . , r and since
ξY0, , . . . , ξYr is the Shilov boundary of X (see [Ber1, Proposition 2.4.4]), we
conclude that u′ is a unit in B◦. By (a) and 2.6, we have B = B◦ and hence

B× = K× B×γ Z1 · · · γ Zr .

Restriction to the formal fibre X+(P̃) shows that γ1, . . . , γr are multi-
plicatively independent. Moreover, the restriction of an element fromK×B×
to X+(P̃) has constant dominant term and hence the product of K×B× with
γ Z1 · · · γ Zr is direct. ��

3. Local heights of subvarieties

In this section, we summarize the theory of local heights of subvarieties. We
use the formal and analytic geometry from the previous section. This allows
larger flexibility in choosing models and metrics from which we benefit in
Sect. 8. At the end, we generalize Chambert-Loir’s measures associated to
metrized line bundles using a different approach through local heights. Apart
from the definitions in 3.1 and 3.2, this section will be used only in Sects. 8
and 9. We consider a proper scheme X over K. Note that Xan is compact.

3.1. A formal K◦-model of X is an admissible formal scheme with generic
fibre Xan.

On analytic spaces, formal analytic varieties and admissible formal
schemes, we may define line bundles, sections and Cartier divisors in the
usual way. A horizontal cycle on a formal K◦-model X of X is just a cycle
on X. A vertical cycle on X is a cycle on the special fibre X̃ with coefficients
in the value group Γ . A cycle on X is the formal sum of a horizontal and
a vertical cycle.

3.2. Let L be a line bundle on X. It induces a line bundle Lan on Xan.
A formal K◦-model of L is a line bundle L on a formal K◦-model X of X
with generic fibre Lan equal to Lan.

A metric ‖ ‖ on Lan is said to be a formal metric if there is a formal
K

◦-model L of L such that for every formal trivialization U of L and
every s ∈ Γ(U,L) corresponding to γ ∈ OX(U), we have ‖s(x)‖ = |γ(x)|
on Uan. The formal metric is called semipositive if the reduction L̃ of L
on X̃ is numerically effective (see [Kl]). Every line bundle on X has a formal
metric [Gu2, Corollary 7.7].

A metric on Lan is called a root of a formal metric if some positive tensor
power is a formal metric. On the space of continuous metrics on Lan, we use
the distance function

d(‖ ‖, ‖ ‖′) := sup
x∈Xan

| log(‖ ‖/‖ ‖′)(x)|

where (‖ ‖/‖ ‖′)(x) is evaluated at the section 1 of Oan
X = Lan ⊗ (Lan)−1.
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Proposition 3.3. The roots of formal metrics are dense in the space of con-
tinuous metrics on Lan. In particular, the set of roots of formal metrics on Oan

X
is embedded onto a dense subset of C(Xan) by the map ‖ ‖ �→ − log ‖1‖.

Proof. This is Theorem 7.12 in [Gu2] holding more generally for compact
analytic spaces. ��
3.4. A metrized pseudo-divisor D̂ on X is a quadruple D̂ := (L, ‖ ‖, Y, s)
where L is a line bundle on X, ‖ ‖ is a metric on Lan, Y is a closed
subset of X and s is a nowhere vanishing section of L on X \ Y . Then
D := (L, Y, s) is a pseudo-divisor on X (as in [Fu1, 2.2]). The support Y is
denoted by supp(D) and O(D) := L . The most relevant example for appli-
cations is the case of an invertible meromorphic section s of a metrized line
bundle (L, ‖ ‖), where the associated pseudo-divisor d̂iv(s) is defined by
choosing Y as the support of the Cartier divisor div(s). Since pseudo-divisors
are closed under pull-back, it is much easier to formulate the intersection
theory for pseudo-divisors instead of Cartier-divisors.

On a formal K◦-model X of X, there is a refined intersection theory of
formally metrized pseudo-divisors with cycles. It has the properties expected
from algebraic geometry (see [Gu2] and [Gu3]).

For a t-dimensional cycle Z on X and formally metrized pseudo-divisors
D̂0, . . . , D̂t with

supp(D0) ∩ · · · ∩ supp(Dt) ∩ supp(Z) = ∅,(1)

there is a local height λ(Z) := λD̂0,...,D̂t
(Z) defined as the intersection

number of D̂0, . . . , D̂t and Z on a joint formalK◦-model. In case of a discrete
valuation and algebraicK◦-models, this is the usual intersection product and
hence we get the local heights used in Arakelov geometry.

Theorem 3.5. Let λ(Z) := λD̂0,...,D̂t
(Z) be the local height of a t-dimen-

sional cycle Z on X with respect to the formally metrized pseudo-divisors
D̂0, . . . , D̂t satisfying (1).

(a) λ(Z) is multilinear and symmetric in the variables D̂0, . . . , D̂t , and
linear in Z.

(b) For a proper morphism ϕ : X ′ → X and a t-dimensional cycle Z ′ on X ′,
we have

λϕ∗ D̂0,...,ϕ∗ D̂t
(Z ′) = λD̂0,...,D̂t

(ϕ∗ Z ′).

(c) If Y is a representative of D1 . . . Dt .Z ∈ CH0(|D1| ∩ · · · ∩ |Dt| ∩ |Z|)
and D̂0 is the pseudo-divisor of a rational function f on X endowed
with the trivial metric, then

λ(Z) = log | f(Y )|
where the right hand side is defined by linearity with respect to points.
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(d) Let λ′(Z) be the local height of Z obtained by replacing the metric ‖ ‖
of D̂0 by another formal metric ‖ ‖′ on O(D0). If the formal metrics of
D̂1, . . . , D̂t are semipositive and if Z is effective, then

|λ(Z) − λ′(Z)| ≤ d(‖ ‖, ‖ ‖′) degO(D1),...,O(Dt)
(Z).

Proof. This is proved in [Gu2, §9], in case of Cartier divisors. Using
the refined intersection theory for formally metrized pseudo-divisors from
[Gu3, §5], this can be proved similarly and is included in [Gu3, The-
orem 10.6]. ��
3.6. Formal metrics are closed under tensor product and pull-back. How-
ever, canoncial metrics of ample symmetric line bundles on an abelian
variety are not formal. Hence it is desirable to extend the local heights
to a larger class ĝX of metrics keeping these properties and including the
canonical metrics.

The tensor product induces a group law on the isometry classes of
metrized line bundles on Xan which we denote additively by +. Let gX be
the group of isometry classes of formally metrized line bundles on X and
let g+X be the submonoid of classes with semipositive metrics.

The completion ĝ+X of g+X is the set of isometry classes of line bundles
(L, ‖ ‖) on X satisfying the following property: For all n ∈ N, there
is a proper surjective morphism ϕn : X ′

n → X and a root of a formal
metric ‖ ‖n on ϕ∗

n(Lan) such that dXn(‖ ‖n, ϕ
∗
n‖ ‖) → 0. Moreover, ĝX :=

ĝ
+
X − ĝ+X is called the completion of gX .

By the GAGA principle [Ul, Theorem 6.8], every formal metric on
a projective scheme over K is induced by an algebraic K◦-model and hence
is a quotient of two very ample metrics. By Chow’s lemma, we conclude
that gX ⊂ ĝX (see [Gu3, Proposition 10.5] for details).

Now it is a formal argument to extend the local heights uniquely to
ĝX-pseudo-divisors such that Theorem 3.5 still holds with ĝ+X , ĝX re-
placing g+X and gX (see [Gu2, §1]).

It would be easier if we could just work with uniform limits of roots of
semipositive metrics instead of ĝ+X . Indeed, this would lead to a satisfactory
theory of local heights on projective schemes (see [Gu4, §2]). For proper
schemes over K, the coverings ϕn used in the definition of ĝ+X are necessary
to apply Chow’s lemma, as we have seen above.

3.7. It is not possible to extend local heights to all continuous metrics using
Proposition 3.3 because the continuity property (c) in Theorem 3.5 holds
only under semipositivity assumptions.

However, we can define the local height λ(Z) with respect to a con-
tinuously metrized pseudo-divisor D̂0 and ĝX-pseudo-divisors D̂1, . . . , D̂t

satisfying (1). Indeed, by linearity, we may assume that D̂1, . . . , D̂t have
ĝ

+
X -metrics and that Z is effective. By Proposition 3.3, the metric of D̂0
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is limit of formal metrics ‖ ‖n on O(D0) with corresponding pseudo-
divisors D̂(n)

0 . Then

λ(Z) := lim
n→∞ λD̂(n)

0 ,D̂1,...,D̂t
(Z)

is well-defined by the extension of Theorem 3.5 to ĝX . Obviously, The-
orem 3.5 still holds for these local heights except the symmetry in (a). Then
(c) is true also if D̂j and not D̂0 is induced by f , but (d) only holds if we
replace the metric on O(D0) by another continuous metric.

We apply this to the case D0 = 0. The generalization of Theorem 3.5(c)
shows that the local height λD̂0,...,D̂t

(Z) depends only on D̂0 and the metrized
line bundles (O(Dj)

an, ‖ ‖j)j=1,...,t , but not on the choice of the pseudo-
divisors.

3.8. A continuous metric ‖ ‖ on Oan
X is given by ‖1‖ := e−g for a continuous

function g on Xan. We denote the metric by ‖ ‖g.
Let L1, . . . , Ld be ĝX-metrized line bundles on the d-dimensional proper

scheme X overK. For j = 1, . . . , d, we choose any pseudo-divisor Dj with
O(Dj) = Lj , e.g. Dj = (Lj, X, 1). For a continuous function g on Xan, we
consider the continuously metrized pseudo-divisor Ôg := (OX, ‖ ‖g,∅, 1).
Then we define∫

Xan
gc1(L1) ∧ · · · ∧ c1(Ld) := λÔg,D̂1,...,D̂d

(X).

By 3.7, this is independent of the choice of D1, . . . , Dd and the general-
ization of Theorem 3.5 shows that we get a continuous functional on C(Xan).
By the Riesz representation theorem [Ru2, Theorem 6.19], c1(L1) ∧ · · · ∧
c1(Ld) is a regular Borel measure on Xan.

These measures were first introduced by Chambert-Loir (see [Ch]) using
a slightly different approach and under the additional assumptions that K
contains a countable subfield and that X is projective.

Corollary 3.9. For ĝX-metrized line bundles L1, . . . , Ld on the d-dimen-
sional proper scheme X over K, the following properties hold:

(a) c1(L1) ∧ · · · ∧ c1(Ld) is multilinear and symmetric in L1, . . . , Ld.
(b) If ϕ : X ′ → X is a morphism of d-dimensional integral proper schemes

over K, then

ϕ∗(c1(ϕ
∗L1) ∧ · · · ∧ c1(ϕ

∗Ld)) = deg(ϕ)c1(L1) ∧ · · · ∧ c1(Ld).

(c) If the metrics of L1, . . . , Ld are in ĝ+X , then∣∣∣∣
∫

Xan
gc1(L1) ∧ · · · ∧ c1(Ld)

∣∣∣∣ ≤ |g|sup degL1,...,Ld
(X)

for all g ∈ C(Xan).



Tropical varieties for non-archimedean analytic spaces 333

Proof. These properties follow immediately from the corresponding prop-
erties of the generalization of Theorem 3.5 mentioned in 3.7. ��
Remark 3.10. Let K′ be an algebraically closed extension of K endowed
with a complete absolute value extending | |. Obviously, the local heights
are invariant under base change to K′. If π : XK′ → X denotes the natural
projection, then we deduce

π∗(c1(π
∗L1) ∧ · · · ∧ c1(π

∗Ld)) = c1(L1) ∧ · · · ∧ c1(Ld).

Proposition 3.11. Let L1, . . . , Ld be formally metrized line bundles on
the complete variety X over K of dimension d. Then there is a formal
K-model X of X with reduced special fibre and for every j ∈ {0, . . . , d}
a formal K◦-model Lj of L j on X inducing the metric of Lj . For such
models, we have always

c1(L1) ∧ · · · ∧ c1(Ld) =
∑

Y

degL̃1,...,L̃d
(Y )δξY ,

where Y ranges over the irreducible components of X̃ and δξY is the Dirac
measure in ξY .

Proof. The existence of such formalK◦-models follows from [Gu2, 8.1]. To
show equality of the regular Borel measures, it is enough to show that their
integrals agree on the subset of C(Xan) induced by formal metrics on Oan

X
(see Proposition 3.3). If ‖ ‖g is such a metric with formal model denoted
by O(g), then the section 1 of Oan

X induces a meromorphic section of O(g).
By the very definition of multiplicities (see [Gu2, §3]), the corresponding
divisor is vertical and has multiplicity g(ξY ) in the irreducible component Y
of X̃. By definition of divisoral intersections on X [Gu2, §4], this leads to
the claim. ��
Proposition 3.12. Let L1, . . . , Ld be line bundles on the d-dimensional
proper scheme X over K. Let S+

j be the set of ĝ+X -metrics on Lan
j endowed

with the distance from 3.2. Then we have a continuous map from S+
1 ×· · ·×

S+
d to the space of regular Borel measures on Xan endowed with the weak

topology, given by (‖ ‖1, . . . , ‖ ‖d) �→ c1(L1) ∧ · · · ∧ c1(Ld). Moreover,
c1(L1) ∧ · · · ∧ c1(Ld) is positive and Xan has measure degL1,...,Ld

(X).

Proof. Recall that the weak topology on the set of regular Borel meas-
ures of Xan is the coarsest topology such that the map µ �→ ∫

fµ
is continuous for every f ∈ C(Xan). By the Riesz representation the-
orem [Ru2, Theorem 6.19], the dual of the Banach space C(Xan) is iso-
metric to the space Mreg(Xan) of regular Borel measures on Xan endowed
with the variation as norm. By a standard fact of functional analysis [Ru1,
Theorem 4.3], we deduce that every closed ball in Mreg(Xan) is compact in
the weak topology.
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To prove the proposition, we may assume that X is an irreducible variety.
Let us consider ĝ+X -metrized line bundles L1 = (L1, ‖ ‖1), . . . , (Ld, ‖ ‖d).

First step. For n ∈ N, let ϕn : Xn → X be a generically finite surjective
morphism of irreducible complete varieties over K. For j = 1, . . . , d,
let ‖ ‖j,n be a ĝ+Xn

-metric on ϕ∗Lj such that dXn (‖ ‖j,n, ϕ
∗
n‖ ‖j) → 0 for

n → ∞. We assume that

{µn := (ϕn)∗(c1(ϕ
∗
n L1, ‖ ‖1,n) ∧ · · · ∧ c1(ϕ

∗
n Ld, ‖ ‖d,n)) | n ∈ N}

is bounded in Mreg(Xan). Then µn converges weakly to µ := c1(L1) ∧ . . .

∧ c1(Ld).

The proof of the first step is by contradiction. By passing to a subsequence
and using weak compactness of closed balls, we may assume that µn con-
verges weakly to a regular Borel measure µ∞ �= µ. By Proposition 3.3,
there is a formal metric ‖ ‖g on Oan

X such that∫
gdµ∞ �=

∫
gdµ.(2)

There is a line bundle L0 on X with ĝ+X -metrics ‖ ‖± such that ‖ ‖g =
‖ ‖+/‖ ‖−. It is easy to construct non-zero meromophic sections sj of Lj
( j = 0, . . . , d) such that ∩jsupp(Dj) = ∅ for Dj := div(sj). Let λ±(X) be
the local heights with respect to D0, . . . , Dd endowed with ‖ ‖±, ‖ ‖1, . . . ,
‖ ‖d and let λ±

n (Xn) be the local heights with respect to ϕ∗
n(D0), . . . , ϕ

∗
n(Dd)

endowed with ϕ∗
n‖ ‖±, ‖ ‖1,n, . . . , ‖ ‖d,n. By Theorem 3.5 generalized

to ĝ+X (see 3.6), we have

lim
n→∞

1

deg(ϕn)
λ±

n (Xn) = λ±(X).

If we subtract these two formulas, then we get a contradiction to (2). This
proves the first step.

If we use Theorem 3.5(c) for a constant f (and for ĝ+X -metrics as
in 3.6), then we get µ(Xan) = degL1,...,Ld

(X). We claim that µ is posi-
tive. Using Proposition 3.11, this holds for roots of formal metrics. The
corresponding measures have norm degL1,...,Ld

(X). In general, the metrics
used in the approximation process for ‖ ‖j (see the definition of ĝ+X in 3.6)
may be chosen as in the first step (see [Gu3, Remark 10.3]). Boundedness
of {µn | n ∈ N} follows from the special case of roots of formal metrics.
Then the first step yields positivity of µ.

Finally, we have to show that µ is continuous in (‖ ‖1, . . . , ‖ ‖d) ∈ ĝ+X .
By positivity and µ(Xan) = degL1,...,Ld

(X), every such measure has norm
degL1,...,Ld

(X) and continuity follows also from the first step. ��
3.13. Now let (L, ρ) be a rigidified line bundle on the abelian variety A
over K, i.e. ρ ∈ L(K) \ {0}. Then there is a canonical metric ‖ ‖ρ
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for (L, ρ) which behaves well with respect to tensor product and homo-
morphic pull-back (see [BoGu, Theorem 9.5.7]). If L is ample and sym-
metric, then ‖ ‖ρ is given by the following variant of Tate’s limit argu-
ment [BoGu, proof of Theorem 9.5.4]: The rigidification and the theorem
of the cube yield an identification [m]∗L = L⊗m2

for m ∈ Z. Then the
canonical metric is given by

‖ ‖can = lim
m→∞([m]∗‖ ‖)1/m2

,

where ‖ ‖ is any continuous metric on Lan. In particular, we may choose
‖ ‖ as a root of a semipositive formal metric and hence ‖ ‖ρ is a ĝ+A -metric.

Remark 3.14. For odd line bundles, we can’t be sure that we get ĝA-metrics.
Using in g+X cohomologically semipositive metrics instead of the smaller
class of semipositive formal metrics, we get a larger class g+X with the same
properties. Since canonical metrics of odd line bundles are cohomologically
semipositive, the new class ĝX includes all canonical metrics on abelian
varieties (see [Gu3, §10]). All results of this section hold for this ĝX as well.

Let X be a smooth complete variety and assume that one Lj is alge-
braically equivalent to 0 endowed with a canonical metric, i.e. pull-back
of a canonical metric from the Picard variety. Then Theorem 3.5, applied
to the above metrics, shows that the local height does not depend on the
metrics of the other line bundles. In particular, we deduce

c1(L1) ∧ · · · ∧ c1(Ld) = 0.

3.15. Let X be a closed subvariety of A of dimension d and let L1, . . . , Ld be
canonically metrized line bundles on A. Then µ := c1(L1|X)∧· · ·∧c1(Ld|X)
is called a canonical measure on X. Note that the canonical metric is only
determined up to |K×|-multiples by the line bundle. By Theorem 3.5(c),
the canonical measure µ does not depend on the choice of the canonical
metrics. The same argument as in 3.14 shows that µ = 0 if one line bundle
is odd.

4. Polytopal domains in Gn
m

Our goal is to study the formal properties of certain affinoid domains in Gn
m

associated to polytopes in Rn. They are related to Mumford’s construction
of models of totally degenerate abelian varieties discussed in Sect. 6. For
the terminology used from convex geometry, the reader is referred to the
Appendix.

Recall that Γ is the value group of the valuation v := − log | | on K.
On Gn

m , we always fix coordinates x1, . . . , xn . Then we have a continuous
map

val : (
G

n
m

)an
K

−→ R
n, p �→ (− log p(x1), . . . ,− log p(xn)).
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A large part of the following result is contained in [EKL, 3.1]. We give
here a different proof which will be used later.

Proposition 4.1. Let ∆ be a Γ -rational polytope. Then the set of Laurent
series

K〈U∆〉 :=
{ ∑

m∈Zn

amxm1
1 . . . xmn

n

∣∣∣ lim|m|→∞ v(am) + m · u = ∞ ∀u ∈ ∆
}

is the K-affinoid algebra of the Weierstrass domain U∆ := val−1(∆)
of (Gn

m)an
K

. It has supremum norm∣∣∣ ∑
m∈Zn

amxm
∣∣∣
sup

= sup
u∈∆,m∈Zn

|am|e−m·u = max
u vertex,m∈Zn

|am|e−m·u.(3)

Proof. For u ∈ Rn , the polyannulus val−1(u) has multiplicative supremum
norm ∣∣∣ ∑

m∈Zn

amxm
∣∣∣
u

:= max
m∈Zn

|am|e−m·u(4)

which proves the claim for ∆ = {0} (see [BGR, 6.1.4]). In general, ∆ is
defined by

∆ =
⋂
m∈S

{
u ∈ Rn | m · u + v(bm) ≥ 0

}

for a finite S ⊂ Zn and suitable bm ∈ K×. We conclude that U∆ is the
Weierstrass domain in (Gn

m)an
K

given by |bmxm| ≤ 1, m ∈ S. By [BGR,
Proposition 6.1.4/2], we deduce that every analytic function f on U∆ has
a Laurent series expansion

∑
amxm on U∆. If u is a vertex of ∆, then

val−1(u) is a Weierstrass domain in U∆ and we get | f |u ≤ | f |sup. Since
u · m + v(am) achieves its minimum on ∆ always in a vertex u, we get

sup
u∈∆

| f |u ≤ | f |sup.

By the ultrametric triangle inequality, we have equality and we deduce
easily the claim. ��
4.2. A Gn

m-toric variety over K̃ is a normal variety Y over K̃ with an
algebraic (Gn

m)
K̃

-action containing a dense n-dimensional orbit.
The theory of toric varieties will be very important in the sequel, we refer

to [KKMS], [Fu2] or [Oda] for details. There are bijective correspondences
between

(a) rational polyhedral cones σ in Rn which do not contain a linear sub-
space �= {0},

(b) finitely generated saturated semigroups S in Zn which generate Zn as
a group,

(c) affine Gn
m-toric varieties Y over K̃ (up to equivariant isomorphisms).



Tropical varieties for non-archimedean analytic spaces 337

The correspondences are given by S = σ̌ ∩Zn and Y = Spec(K̃[x̃S]), where
x̃S := {x̃m | m ∈ S} for the coordinates x̃ on (Gn

m)
K̃

.

4.3. Let ∆ be still a Γ -rational polytope inRn . For m ∈ Zn, there is bm ∈ K×
with v(bm) = − minu∈∆ u ·m. Note that ym := bmxm has supremum norm 1
on U∆. We denote by π : U∆ → Ũ∆ the reduction map.

The affinoid torus Tan
1 := {p ∈ (Gn

m)an
K

| p(xj ) = 1, j = 1, . . . , n} acts
on U∆. Passing to reductions, we get a torus action of (Tan

1 )∼ = (Gn
m)
K̃

on Ũ∆.

In the framework of algebraic geometry and for a discrete valuation,
the following result is due to Mumford [Mu, §6]. We give here an analytic
formulation over K without assuming that the valuation is discrete.

Proposition 4.4. The following properties hold for U∆ = val−1(∆):

(a) The elements (ym)m∈Zn generate a dense subalgebra of K〈U∆〉◦.
(b) There is a bijective order reversing correspondence between torus

orbits Z of Ũ∆ and open faces τ of ∆, given by Zτ = π(val−1(τ))
and τZ = val(π−1(Z)).

(c) dim(τ) + dim(Zτ ) = n.
(d) If Yu is the irreducible component of Ũ∆ corresponding to the vertex u

of ∆ by (b), then the natural (Gn
m)
K̃

-action of Ũ∆ makes Yu into an affine
toric variety. The corresponding rational polyhedral cone is generated
by ∆ − u.

(e) If ∆′ is also a Γ -rational polytope with ∆′ ⊂ ∆, then the canonical
morphism U∆′ → U∆ induces an open immersion of the reductions if
and only if ∆′ is a closed face of ∆.

Proof. Property (a) follows easily from (3). For every u ∈ ∆, | |u from (4)
restricts to a multiplicative norm on K〈U∆〉 which is bounded by the su-
premum norm. Hence it may be viewed as a point ξu ∈ U∆.

The Shilov boundary is the unique minimal set Θ of U∆ such that every
f ∈ K〈U∆〉 has its maximum in Θ. By [Ber1, Proposition 2.4.4], Θ is
the set of ξY ∈ U∆ corresponding to the irreducible components Y of Ũ∆

by 2.5. Using (3), we get Θ = {| |u | u vertex of ∆}. Note that the vertex u
corresponding to Y is given by u = val(ξY ). By definition of ξY , we have

K̃[Y ] = K〈U∆〉◦/{| |u < 1}.
To prove (d), it is enough to show that K̃[Y ] is isomorphic to K̃[ỹσ̌∩Zn ]
for the cone σ generated by ∆ − u. By a change of coordinates, we may
assume that u = 0. For S := {m ∈ Zn | v(bm) = 0}, (a) yields that K̃[Y ] is
generated by (ỹm)m∈S. By construction, we have S = σ̌ ∩ Zn . It remains to
show that a relation

p̃(ỹm1, . . . , ỹmr ) = 0̃ ∈ K̃[Y ]
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comes from a relation in K̃[ỹS]. For simplicity, we may assume bm = 1
for all m ∈ S. Then we have |p(ym1, . . . , ymr )| < 1 on U∆. Replacing ym
by xm and collecting terms of the same degree, we get the desired relation
in K̃[ỹS]. This proves (d).

To prove (b), let τ be an open face of ∆. There is I ⊂ Zn such that τ is
given by

u · m + v(bm)

{= 0 if m ∈ I ,
> 0 if m ∈ Zn \ I .

(5)

Then x̃ ∈ Zτ := π(val−1(τ)) if and only if ỹm(x̃) �= 0̃ for m ∈ I and
ỹm(x̃) = 0̃ for m �∈ I .

We prove first that Zτ is a torus orbit. We choose a vertex u of τ with
associated toric variety Yu. By a change of coordinates, we may assume
again that u = 0. It follows from the proof of (d) that Yu is given by the
equations ỹm = 0̃ for m �∈ S. Since I ⊂ S, we conclude that Zτ ⊂ Yu.
Then Zτ is given in Yu by the equations ỹm = 0̃ for m ∈ S \ I and the
inequalities ỹm �= 0̃ for m ∈ I and hence Zτ is a torus orbit (see [Fu2, 3.1]).

Since π is surjective, all torus orbits have this form. The above character-
ization of Zτ shows that we get a bijective correspondence in (b). Moreover,
τ ⊂ val(π−1(Zτ )) is also clear and equality follows as the torus orbits (resp.
open faces) form a disjoint covering of Ũ∆ (resp. ∆).

Finally, (c) and (e) follow from the theory of toric varieties applied to Yu
for a vertex u of τ (resp. ∆′). ��
Corollary 4.5. For u ∈ ∆, let ξu be the point of U∆ defined by (4). Then ξ̃u
is the generic point ζ of the torus orbit Zτ associated to the unique open
face τ containing u. Moreover, ξu is the Shilov boundary of val−1(u).

Proof. By Proposition 4.4(b), we have ξ̃u ∈ Zτ . Let f = ∑
amxm ∈

K〈U∆〉◦ with f̃ (ξ̃u) = 0̃. Note that (5) determines I and describes the open
face τ . Using f ∈ {| |u < 1}, we have |am| < em·u = |bm| for all m ∈ I . By
the description of Zτ in the proof of Proposition 4.4, f̃ vanishes identically
on Zτ and hence ξ̃u = ζ . We have also seen that the vertices of ∆ correspond
to the Shilov boundary of U∆. Using {u} instead of ∆, we get the last claim.

��
4.6. We globalize our considerations. Let C be a Γ -rational polytopal com-
plex in Rn. By Proposition 4.4, it is easy to deduce that (U∆)∆∈C is a formal
analytic atlas of U = ∪∆∈CU∆. The associated admissible formal scheme U
over K◦ (see 2.6) has a formal open affine atlas

U∆ := Spf(K〈U∆〉◦), ∆ ∈ C.

Clearly, the affinoid torus Tan
1 acts on U ,T1 := Spf(K〈val−1(0)〉◦) acts on U

and (Gn
m)
K̃

acts on the special fibre Ũ. Proposition 4.4 yields the following
result:
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Proposition 4.7. Under the hypothesis above, we have the following prop-
erties of U:

(a) There is a bijective correspondence between torus orbits of Ũ and the
set {relint(∆) | ∆ ∈ C} of open faces.

(b) The irreducible components of Ũ are in bijective correspondence with
vertices of C.

(c) If Yu is the irreducible component of Ũ corresponding to the vertex u,
then Yu is a toric variety with fan given by the cones σ in Rn which are
generated by ∆ − u for ∆ ∈ star(u).

(d) For ∆,∆′ ∈ C, U∆′ is an open subset of U∆ if and only if ∆′ is a closed
face of ∆.

Remark 4.8. Recall from the appendix that relint(∆) denotes the relative
interior of ∆. Every ∆ ∈ C induces a toric variety Y∆, given as the closure
of the torus orbit associated to relint(∆). Let L∆ be the linear space in Rn

generated by ∆ − u, u ∈ ∆, and let N∆ := L∆ ∩Zn . Then the subtorus H∆

of (Gn
m)
K̃

, given by H∆(K̃) = N∆ ⊗Z K̃×, acts trivially on Y∆ and hence Y∆

is a toric variety with respect to the torus T∆ = (Gn
m)
K̃
/H∆. If we project

the cones in Rn generated by some ∆′ − u, ∆′ ∈ star(∆), to Rn/L∆, then
we get the fan associated to Y∆. For details, we refer to [Fu2, 3.1].

4.9. Let D be also a Γ -rational polytopal complex in Rn which sub-
divides C. Then the atlas (Uσ )σ∈D yields a formal analytic structure on
U = ∪∆∈CU∆ which is finer than the formal analytic variety Uf−an associ-
ated to C. Let U′ be the admissible formal scheme overK◦ associated to D .
We get a canonical morphism U′ → U extending the identity.

In the following proposition, we consider an étale morphism ϕ : X → U
of admissible formal schemes over K◦. Obviously, the base change ϕ′ :
X′ → U′ of ϕ to U′ is also étale. We conclude that every irreducible
component Y ′ of X̃′ maps dominantly to a unique irreducible component Y
of Ũ′. Note that Y is a toric variety associated to a vertex u of D (see
Proposition 4.7). We have the following converse:

Proposition 4.10. Let Y be the irreducible component of Ũ′ associated to
a vertex u in D and let Z be the torus orbit of Ũ corresponding to the unique
open face relint(∆), ∆ ∈ C, containing u (see Proposition 4.7). Then

∑
Y ′

[K̃(Y ′) : K̃(Y )] =
∑

Z ′
[K̃(Z ′) : K̃(Z)](6)

where Y ′ (resp. Z ′) ranges over all irreducible components of (ϕ̃′)−1(Y )
(resp. ϕ̃−1(Z)). If dim(∆) = n, then Z is a closed point, the number of
such Y ′ is equal to card(ϕ̃−1(Z)) < ∞ and ϕ̃′ maps Y ′ isomorphically onto
the toric variety Y . The right hand side in (6) and the cardinality in the
second claim depend only on ϕ and not on the subdivision D .
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Proof. By Corollary 4.5, the generic point ξ̃u of Y maps to the generic
point ζ of Z with respect to Ũ′ → Ũ. Since ϕ̃ is étale, the fibre ϕ̃−1(ζ)
is the disjoint union of the spectra for the function fields K̃(Z ′) [EGA IV,
Corollaire 17.4.2] and hence the fibre is isomorphic to Spec(

∏
Z ′ K̃(Z ′)).

Similarly, (ϕ̃′)−1(ξ̃u) is isomorphic to Spec(
∏

Y ′ K̃(Y ′)) and (6) follows
from the fact that (ϕ̃′)−1(ξ̃u) is the base change of ϕ̃−1(ζ) to K̃(ξ̃u) = K̃(Y ).

If dim(∆) = n, then Proposition 4.4(c) yields that Z is a closed point
of Ũ. Since ϕ̃ is étale, ϕ̃−1(Z) is the disjoint open union of its points Z ′.
Similarly, (ϕ̃′)−1(Y ) is the disjoint open union of its components Y ′. We
conclude that (ϕ̃′)−1(Y ) is the base change of ϕ̃−1(Z) to Y and hence there
is exactly one Y ′ over Z ′. Moreover, it is isomorphic to Y . This proves the
proposition. ��

5. Tropical analytic geometry

We study the analytic analogue of tropical varieties for the polytopal
domains in Gn

m considered in the previous section. We generalize the basic
results of Einsiedler, Kapranov and Lind [EKL] to analytic subvarieties of
such a domain. In this analytic setting, the Bieri–Groves set from [EKL]
(see also [BiGr]) may be strictly larger than the tropical variety and we have
to use different methods from analytic and formal geometry.

5.1. Let ∆ be a Γ -rational polytope in Rn and let X be a closed analytic
subvariety of U∆. By continuity of val, we conclude that val(X) is a compact
subset of Rn. Note that X is given by an ideal I of K〈U∆〉 and it is endowed
with the structure of an analytic space. If X is connected, then val(X) is
connected.

For a closed subscheme X ofGn
m defined overK, the closure of val(X(K))

is equal to val(Xan). This is clear by density, hence val(Xan) is equal to the
usual definition of a tropical variety.

Proposition 5.2. Let X be a closed analytic subvariety of U∆. Then val(X)
is a Γ -rational polytopal set in ∆.

This is a fundamental result and follows from [Ber5, Corollary 6.2.2].
Nonetheless, we give a proof under the assumption that X has a semistable
alteration. The proof in the special case is very instructive and will be used
later.

Proof. In fact, we assume only that there is a dominant morphism f :
X ′ → X, where X ′ is the generic fibre of a quasicompact strictly semistable
formal scheme X′ overK◦. This assumption is satisfied in all cases relevant
for our applications. Indeed, letK be the completion of the algebraic closure
of a field K with v|K a complete discrete valuation. If X is a smooth compact
analytic space, then Hartl proved the existence of such an f which is even
étale and surjective [Ha, Corollary 1.5]. Together with de Jong’s alteration
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theorem [dJ, Theorem 4.1], we conclude that such an f exists if X is an
analytic subdomain of an algebraic variety.

By Proposition 2.11, X′ is covered by finitely many formal open affine
subsets U′ allowing an étale morphism

ψ : U′ −→ S := Spf(K◦〈x ′
0, . . . , x ′

m〉/〈x ′
0 · · · x ′

r − π〉)
such that every irreducible component of the special fibre Ũ′ passes through
a closed point P̃ ∈ Ũ′ with ψ̃(P̃) = 0̃. Moreover, for j = 1, . . . , n, f ∗(xj)
is a unit on the generic fibre U ′ of U′ and hence

f ∗(xj) = λjujψ
∗(x ′

1)
mj1 · · · ψ∗(x ′

r)
mjr(7)

for suitable λj ∈ K×, uj ∈ O(U′)× and mj ∈ Zr . Let Σ(r, π) := {u′ ∈ Rr+ |
u′

1+· · ·+u′
r ≤ v(π)} be the “standard simplex” inRr and let f (0)

aff : Rr → R
n

be the affine map given by

f (0)
aff (u′)j := mj · u′ + v(λj) ( j = 1, . . . , n).

By density of f(X ′) in X, it is enough to prove

val( f(U ′)) = f (0)
aff (Σ(r, π)).(8)

Since |uj | = 1 on U ′, the inclusion “⊂” is obvious. Proposition 2.9 yields
U ′+(P̃) ∼= San+ (0̃) for formal fibres. We conclude that

val( f(U ′
+(P̃))) = f (0)

aff (relint(Σ(r, π))).

The right hand side is dense in f (0)

aff (Σ(r, π)) and we get equality in (8). ��
For the following two results, we assume that ∆ is an n-dimensional

Γ -rational polytope in Rn. The interior of ∆ is denoted by int(∆).

Proposition 5.3. For a closed analytic subvariety X of U∆, the polytopal
set val(X) is concave in all the points of int(∆).

Proof. Let X̃ be the reduction of X (see 2.2). By [BGR, Theorem 6.3.4/2],
the morphism X̃ → Ũ∆ is finite. By Proposition 4.4, the reduction of
val−1(int(∆)) in Ũ∆ is just one K̃-rational point P̃ (the zero-dimensional
torus orbit). The image of X◦ := X ∩ val−1(int(∆)) under the reduction
map X → X̃ is lying over P̃ with respect to the above finite morphism. We
conclude that the reduction of X◦ consists of finitely many closed points
x̃1, . . . , x̃r in X̃. Since the inverse image of a closed point with respect to
the reduction map is open in X, the topological space X◦ decomposes into
disjoint open and closed subsets Vj lying over x̃j .

We have to show that val(X) is concave in u0 ∈ val(X◦). By Prop-
osition 5.2 and A.1, there is a Γ -rational polytopal decomposition of val(X).
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Let σ be the polytope of this decomposition such that u0 is contained
in the relative interior of σ . All u ∈ relint(σ) have the same local cone
LCu(val(X)). The points with coordinates in the value group Γ are dense
in relint(σ) and hence we may assume that u0 is such a point, i.e. there is
z ∈ U∆ with coordinates inK and u0 = val(z). By the coordinate transform
x′ := x/z, we may assume that u0 = 0.

Note that LC0(val(X)) is a finite union of Q-rational polyhedral cones
centered at 0. By convex geometry, the convex hull of LC0(val(X)) is a finite
intersection of half spaces {u ·m ≥ 0} with m ∈ Zn . To show concavity in 0,
we have to prove that the convex hull is a linear subspace. If LC0(val(X))
is contained in a half space {u · m ≥ 0} as above, then it is enough to show
that LC0(val(X)) ⊂ {u · m = 0}.

By shrinking ∆, we may assume that val(X) is contained in {u · m ≥ 0}
and that for j = 1, . . . , r, there is vj ∈ Vj with val(vj) = 0. Then
|xm| takes its maximum 1 in v1, . . . , vr . But every point in Vj has the
same reduction in X̃ as vj and hence |xm| = 1 on X◦. We conclude that
val(X◦) ⊂ {u · m = 0}. This proves LC0(val(X)) ⊂ {u · m = 0}. ��
Proposition 5.4. Let X be a closed analytic subvariety of U∆ such that
val(X) ∩ int(∆) �= ∅. If X is of pure dimension d, then val(X) ∩ int(∆) is
also of pure dimension d.

Proof. We may assume that X is irreducible. Then val(X) is connected
(see 5.1). We have seen in Proposition 5.2 that val(X) is a Γ -rational poly-
topal set. Moreover, its proof or [Ber5, Corollary 6.2.2], show that
dim(val(X)) ≤ d holds even without considering interior points of ∆. By
subdivision of ∆, it is enough to prove that val(X) is at least d-dimensional.

We proceed by induction on N := dim(val(X)). If N = 0, then val(X)
is an interior point of ∆. As in the proof of Proposition 5.3, we conclude
that X̃ is finite and hence dim(X) = 0.

Now assume N > 0. By shrinking ∆, we may assume that val(X) is of
pure dimension. By density of X(K), there is u ∈ int(∆) ∩ val(X(K)). By
a change of coordinates as in the proof of Proposition 5.3, we may assume
that 1 ∈ X and u = 0. There is m ∈ Zn \ {0} such that the hyperplane
{u · m = 0} intersects val(X) transversally. The dimension of the closed
analytic subvariety X ′ := X ∩ {xm = 1} is d − 1. We have

val(X ′) ⊂ val(X) ∩ {u · m = 0}
and hence dim(val(X ′)) ≤ N − 1. By induction, we get dim(val(X ′)) ≥
d − 1. We conclude d ≤ N proving the claim. ��
5.5. As in 4.6, let U be the admissible formal scheme overK◦ associated to
the Γ -rational polytopal complex C and let U := Uan. For a closed analytic
subvariety X of U , the set val(X) is called the tropical variety associated
to X. We set Π := ∪∆∈C∆.
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Theorem 5.6. Under the assumptions in 5.5, the following properties hold:

(a) val(X) is a locally finite union of Γ -rational polytopes in Rn.
(b) val(X) ∩ int(Π) is totally concave.
(c) If val(X) ∩ int(Π) is non-empty and if X is of pure dimension d, then

val(X) ∩ int(Π) is of pure dimension d.

Proof. Statement (a) is immediate from Proposition 5.2. Let u ∈ int(Π).
If u ∈ int(∆) for some ∆ ∈ C, then (b) follows locally in u from Prop-
osition 5.3. If no such ∆ is available, then one may easily adjust the polytopes
in C without changing their union Π such that u ∈ int(∆) for some ∆ ∈ C.
Similarly, we deduce (c) from Proposition 5.4. ��
Remark 5.7. This is most useful if C is a polytopal decomposition of Rn.
Then no boundary points occur and (b), (c) hold for val(X). In particular,
Theorem 5.6 holds for a closed algebraic subvariety X of Gn

m over K and
hence implies the well known statements from tropical algebraic geometry
(see [EKL, §2]). The only thing which does not hold analytically is that
val(X) is a finite union of polyhedrons.

Now we are able to deduce a toric version of Theorem 1.2.

Theorem 5.8. Let X′ be a quasicompact strictly semistable formal scheme
over K◦ with generic fibre X ′ and let X be a d-dimensional closed analytic
subvariety of (Gn

m)an
K

. If there is a dominant morphism f : X ′ → X, then
X̃′ has a point contained in at least d + 1 irreducible components.

Proof. By Theorem 5.6, there is a d-dimensional Γ -rational polytope ∆
in val(X). The quasicompact set f −1(U∆) may be covered by finitely many
sets U ′ := (U′)an of the same form as in the proof of Proposition 5.2. The
same proof shows that ∆ is a finite union of simplices f (0)

aff (Σ(r, π)). It
follows that r ≥ d for at least one U′ proving the claim. ��
5.9. In the remaining part of this section, we consider a Γ -rational polytopal
decomposition C of Rn. The associated admissible formal scheme over K◦
is denoted by U. Let X be a closed analytic subvariety of (Gn

m)an
K

= Uan of
pure dimension d. In the following, we relate C to the closure X of X in U.
The closure is the K◦-model X of X locally defined by

U∆ ∩ X := Spf(K〈U∆〉◦/(I∆(X) ∩K〈U∆〉◦)),
where I∆(X) is the ideal of vanishing on U∆ (see [Gu2, Proposition 3.3]).
Note that X̃ is a closed subvariety of Ũ of pure dimension d.

Lemma 5.10. Let ∆ ∈ C with codim(∆,Rn) = d. We assume that
∆ ∩ val(X) is a non-empty finite subset of τ := relint(∆). Then the toric
variety Y∆ in Ũ∆ (see Remark 4.8) is an irreducible component of X̃.

Proof. There is a Γ -rational half-space H+ := {m · u ≥ c} containing the
finite set ∆∩val(X) such that the boundary hyperplane intersects ∆∩val(X)
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in a single point u. Then xm achieves its maximum absolute value e−c on
X ∩ U∆ in every x ∈ X ∩ U∆ with val(x) = u. The Shilov boundary of the
affinoid space X ∩ U∆ is given by the points reducing to the generic points
of

(X ∩ U∆)∼ = (
(X ∩ U∆)f−an)∼

(see [Ber1, Proposition 2.4.4]). Hence there is an irreducible component Z
of (Xf−an)∼ with val(ξZ) = u. Let Y be the image of Z under the canonical
finite surjective morphism ι̃ : (Xf−an)∼ → X̃. Note that Y is d-dimensional
and has the generic point ι̃(ξ̃ Z). By Proposition 4.4, ι̃(ξ̃ Z) is also contained
in the d-dimensional torus orbit Zτ and hence Y = Zτ . ��
Theorem 5.11. Under the hypothesis of 5.9, we assume that C is trans-
versal to val(X) (see A.2). Then there is a bijective correspondence between:

(a) equivalence classes of transversal vertices of C ∩ val(X) (see A.2),
(b) irreducible components Y of X̃.

An equivalence class in (a) is contained in a unique ∆ ∈ C of codimen-
sion d. The corresponding irreducible component Y is the toric variety Y∆

in Ũ from Remark 4.8.

Proof. We have seen in Lemma 5.10 that Y∆ is an irreducible component
of X̃. Conversely, let Y be an irreducible component of X̃. Using the
notation from the proof of Lemma 5.10, there is an irreducible component Z
of (Xf−an)∼ with ι̃(Z) = Y .

We claim that uZ := val(ξZ) is a transversal vertex of C ∩ val(X). To
see this, let ∆ be the unique polytope from C with uZ ∈ τ := relint(∆).
By definition of a transversal vertex, we have to prove codim(∆,Rn) = d.
By Proposition 4.4 and Proposition 4.7, we have codim(∆,Rn) = dim(Zτ )
and Zτ contains the generic point ι̃(ξ̃ Z) of Y , hence

codim(∆,Rn) ≥ dim(Y ) = d.

Since val(X) is of pure dimension d and uZ ∈ val(X) ∩ τ , transversality
yields codim(∆,Rn) = d proving that uZ is a transversal vertex of C ∩
val(X). Moreover, we see that Y = Zτ = Y∆. This shows that the map
Y �→ ∆ is independent of the choice of Z. By construction, it is inverse to
the map ∆ �→ Y∆ from the beginning. ��

6. Mumford’s construction

We review Mumford’s construction of models A of a totally degenerate
abelian variety A. For a closed subscheme X of A, we study the peri-
odic tropical variety val(X) using the previous section. If we choose the
polytopal decomposition for A transversally to val(X), then the irreducible
components of the closure of X in A turn out to be toric varieties.
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In this section, A denotes a totally degenerate abelian variety over K,
i.e. Aan is isomorphic to (Gn

m)an
K

/M, where M is a subgroup ofGn
m(K) which

maps isomorphically onto a complete lattice Λ of Rn under the map val.
Such an M is called a lattice of (Gn

m)an
K

.
Let Rn → R

n/Λ, u �→ u, be the quotient map. Clearly, the map val
from Sect. 4 descends to a continuous map val : Aan → R

n/Λ. First, we
translate the notions of convex geometry introduced in the appendix to the
torus Rn/Λ.

6.1. A polytope ∆ in Rn/Λ is given by a polytope ∆ in Rn such that ∆

maps bijectively onto ∆. We say that ∆ is Γ -rational if ∆ is Γ -rational.
A (Γ -rational) polytopal set S in Rn/Λ is a finite union of (Γ -rational)
polytopes in Rn/Λ.

A polytopal decomposition of Rn/Λ is a finite family C of polytopes
in Rn/Λ induced by a Λ-periodic polytopal decomposition C of Rn. It is
easy to see that Rn/Λ has a Γ -rational polytopal decomposition. The other
notions from the appendix transfer also to the periodic situation.

6.2. Let C be a Γ -rational polytopal decomposition of Rn/Λ. By 4.6, the
covering (U∆)∆∈C is a formal analytic atlas of (Gn

m)an
K

. We may form the
quotient by M leading to a formal analytic variety over K. The associated
formal scheme A is a K◦-model of A = (Gn

m)an
K

/M which has a covering
by formal open affine sets U∆ obtained by gluing U∆+λ for all λ ∈ Λ.

The generic fibre of the formal torus T1 acts naturally on A and there
is a unique extension to an action of T1 on A. We get a torus action of
T̃1 = (Gn

m)
K̃

on the special fibre Ã. On Ũ∆, this action agrees with the
action on U∆ defined in 4.3.

Using the Λ-periodic decomposition C and passing to the quotient, we
may transfer the results from Sects. 4 and 5 to A. By Proposition 4.4 and
Proposition 4.7, we get:

Proposition 6.3. For the formalK◦-model A of A associated toC, we have:

(a) There is a bijective order reversing correspondence between torus
orbits Z of Ã and open faces τ of C, given by

τ = val(π−1(Z)), Z = π(val
−1

(τ)),

where π : A → Ã is the reduction map. Moreover, we have dim(Z) +
dim(τ) = n.

(b) The irreducible components Y of Ã are toric varieties and correspond
to the vertices u of C by u := val(ξY).

Proposition 6.4. Let C be a Γ -rational polytopal decomposition of Rn/Λ

and let m ∈ Z \ {0}. Then 1
m C := {

1
m ∆ | ∆ ∈ C

}
is also a Γ -rational

polytopal decomposition of Rn/Λ. The associated K◦-model Am of A has
the following properties:



346 W. Gubler

(a) The morphism [m] : A → A, x �→ mx, has a unique extension to
a morphism ϕm : Am → A1 of admissible formal schemes over K◦.

(b) The morphism ϕ̃m is finite of degree m2n.
(c) The behaviour of the reduction ϕ̃m with respect to the torus actions is

given by

ϕ̃m(t · z) = tm · ϕ̃m(z)
(
z ∈ Ãm, t ∈ (

G
n
m

)
K̃

)
.

(d) The inverse image of a k-dimensional torus orbit of Ã1 with respect
to ϕ̃m is equal to the disjoint union of mn k-dimensional torus orbits
of Ãm.

Proof. Obviously, 1
m C is a Γ -rational polytopal decomposition. The exten-

sion of [m] is constructed locally by U 1
m ∆ → U∆, x �→ xm . Uniqueness

is clear formal analytically and hence follows from 2.6. This proves (a).
By construction, we get immediately (b) and (c). Now (c) implies that the
inverse image of a k-dimensional torus orbit O is the disjoint union of
k-dimensional torus orbits. By Proposition 6.3, O corresponds to an open
face τ of C of dimension n − k. Since {u ∈ Rn/Λ | mu ∈ τ} is the disjoint
union of mn open faces, Proposition 6.3 yields (d). ��
6.5. We describe line bundles on A = (Gn

m)an
K

/M similarly as in the complex
analytic situation (see [FvdP, Chapt. VI] and [BL2, §2] for details).

Let L be a line bundle on A. The pull-back to T := (Gn
m)an
K

with respect
to the quotient morphism p is trivial and will be identified with T ×K. It is
given by a cocycle γ �→ Zγ of H1(M,O(T )×) and L = (T ×K)/M where
the quotient is with respect to the M-action

M × (T × K) −→ T × K, (γ, (x, α)) �→ (γ · x, Zγ (x)−1α).

The cocycle has the form Zγ (x) = dγ · σγ (x), where γ �→ σγ is a homo-
morphism of M to the character group Ť and where dγ ∈ K× satisfies

dγρ · d−1
γ · d−1

ρ = σρ(γ) (γ, ρ ∈ M).(9)

By the isomorphism M
val−→ Λ, we get a unique symmetric bilinear form b

on Λ characterized by

b(val(γ), val(ρ)) = v(σρ(γ)).

Then b is positive definite on Λ if and only if L is ample. Note that the
cocycle Zγ factors over Rn, i.e. for every λ = val(γ) ∈ Λ, there is a unique
real function zλ on Rn such that

zλ(val(x)) = v(Zγ (x)) (γ ∈ M, x ∈ T ).

The function zλ is affine with

zλ(u) = zλ(0) + b(u, λ) (λ ∈ Λ, u ∈ Rn).(10)
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Proposition 6.6. Let L be a line bundle on A. Repeat that L is given
analytically by L = (T × K)/M and by a cocycle (Zγ )γ∈M leading to
a family (zλ)λ∈Λ of real functions as above. Let A be the formal K◦-model
of A associated to a given Γ -rational polytopal decomposition C of Rn/Λ.
Then there is a bijective correspondence between isomorphism classes of
formalK◦-models L of L on A with trivialization (U∆)∆∈C and continuous
real functions f on Rn satisfying the following two conditions:

(a) For every ∆ ∈ C, there are m∆ ∈ Zn and c∆ ∈ Γ with f(u) =
m∆ · u + c∆ on ∆.

(b) f(u + λ) = f(u) + zλ(u) (λ ∈ Λ, u ∈ Rn).

If ‖ ‖L denotes the formal metric on L associated to L (see 3.2), then the
correspondence is given by fL ◦ val := − log ◦p∗‖1‖L on T .

Proof. We start by describing units on polytopal domains.

First step. g = ∑
ν∈Zn aνxν ∈ K〈val−1(∆)〉 is a unit if and only if there is

a ν0 ∈ Zn such that |aν0xν0 | > |aνxν| for all x ∈ U∆ and all ν �= ν0.

If g has such a dominant term, then we may assume that ν0 = 0 and
a0 = 1. Then we have g := 1 − h with |h|sup < 1 and g−1 = ∑∞

m=0 hm ∈
K〈val−1(∆)〉. Conversely, if g has no dominant term, then there is |aν0xν0 | =
|aν1xν1 | = |g|sup for certain ν0 �= ν1 and x ∈ U∆. Note that val−1(u) is
isomorphic to the affinoid torus Tan

1 for u := val(x). Then the restriction
of g to Tan

1 has no dominant term as well and hence it is not invertible
on Tan

1 [BGR, Lemma 9.7.1/1]. Since val−1(u) is an analytic subdomain
of U∆, g is not an unit of K〈val−1(∆)〉.
Second step. fL is a continuous function satisfying (a) and (b).

Continuity follows from the continuity of formal metrics on analytic spaces
and (b) is by construction (see 6.5). On a trivialization U∆ of L, the section 1
corresponds to a unit g in K〈U∆〉. By definition of formal metrics, we have
p∗‖1‖L = |g| on U∆. By the first step, g has a dominant term a∆xm∆ leading
to (a) with c∆ := v(a∆). This proves the second step.

Now the proof is quite easy. A continuous function f on Rn gives rise to
a metric ‖ ‖′ on p∗(L) = T × K by ‖1‖′ = e− f ◦val. If f satisfies (b), then
‖ ‖′ passes to the quotient modulo M, i.e. there is a unique metric ‖ ‖ f
on L with

f ◦ val = − log ◦p∗‖1‖ f .

Now we assume that f also satisfies (a). Since Γ is the value group, there
is a∆ ∈ K× with c∆ = v(a∆). For every ∆ ∈ C, the unit (a∆xm∆)−1 gives
a frame of p∗(L) = T ×K over U∆ leading to a trivialization of L over U∆.
This trivialization extends to the trivial line bundle over U∆ and induces
a metric ‖ ‖∆ on L|U∆

. A priori, ‖ ‖∆ depends on the choice of ∆, but
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by construction and (a), we deduce that ‖ ‖∆ agrees with ‖ ‖ f over U∆.
Therefore the transition functions g∆∆′ of the above trivializations have
constant absolute value 1 on U∆ ∩U

∆
′ . This means that they define a formal

K
◦-model L f of L on A with associated metric equal to ‖ ‖ f .

We have to prove that f �→ L f is inverse to L �→ fL. For M := L f ,
we have

fM ◦ val = − log ◦p∗‖1‖M = − log ◦p∗‖1‖ f = f ◦ val

and hence fM = f . Conversely, it is clear that ‖ ‖L = ‖ ‖Lg for given L
and g := fL. By considering trivializations as above or by using [Gu2,
Proposition 5.5], we see that the formal K◦-models L and Lg of L are
isomorphic. ��
Corollary 6.7. In the notation of Proposition 6.6, let L̃ be the reduction
of L on Ã. Then L̃ is ample if and only if fL is a strongly polyhedral convex
function with respect to C (see Appendix A.3).

Proof. Note that L̃ is ample if and only if its restriction to every irreducible
component Y of Ã is ample. By Proposition 6.3, Y is a toric variety corres-
ponding to a vertex u0 of C. For simplicity of notation, we may assume
that u0 = 0 and fL(0) = 0. For ∆ ∈ star(u0), we choose the equation x̃m∆

on Ũ∆. By Proposition 6.6(a), it is easy to see that we get a Cartier divisor D
on Y of a meromorphic section of L̃|Y . Let ψD(u) be the continuous function
on the complete fan of Y centered in u0 = 0 which is equal to −m∆ · u
onR∆. By §3.4 of [Fu2], −ψD is a strongly polyhedral convex function with
respect to the complete fan. Note that fL = −ψD on every ∆ ∈ star(u0).
We deduce easily that fL is a strongly polyhedral convex function with
respect to C. ��
6.8. In the remaining part of this section, we consider a closed subscheme X
of A of pure dimension d. The tropical variety val(Xan) is well-defined
in Rn/Λ. The following properties are easily deduced from Theorem 5.6
and the continuity of val.

Theorem 6.9. The tropical variety val(Xan) is a totally concave Γ -rational
polytopal set in Rn/Λ of pure dimension d. If X is connected, then val(Xan)
is also connected.

Let A be the formal K◦-model associated to the Γ -rational polytopal
decomposition C of Rn/Λ. We denote by X the closure of Xan in A
(see [Gu2, Proposition 3.3]). From Theorem 5.11, we deduce immediately:

Theorem 6.10. Under the hypothesis above and assuming that C is trans-
versal to val(Xan), we have a bijective correspondence between irreducible
components of X̃ and equivalence classes of transversal vertices of C ∩
val(Xan). If u is a transversal vertex, then there is a unique ∆ ∈ C with
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u ∈ ∆ and codim(∆,Rn) = d. The corresponding irreducible component
of X̃ is the closure Y∆ of the torus orbit of Ã associated to the open face
relint(∆) (see Proposition 6.3). In particular, every irreducible component
of X̃ is a toric variety.

7. Semistable alterations

As in the previous section, we consider a totally degenerate abelian variety
Aan = (Gn

m)an
K

/M over K with Mumford model A over K◦ associated to
the Γ -rational polytopal decomposition C of Rn/Λ, where Λ := val(M).
We fix also an irreducible closed subvariety X of A with closure X in A.
The goal of this section is to describe the multiplicity of an irreducible
component Y of X̃ using a strictly semistable alteration. Under a non-
degeneracy condition for Y , this may be done in terms of convex geometry
and will be used in the following section to prove the main result.

7.1. Let X′ be a strictly semistable formal scheme over K◦ with generic
fibre X ′ and let f : X ′ → Aan be a morphism overK. In the first paragraphs,
we will show that the polytopal decomposition C endows X ′ with a canonical
formal analytic structure X′ and with a morphism ϕ : X′ → Af−an of formal
analytic varieties.

By Proposition 2.11, X′ is covered by formal open affine subsets U′
such that all irreducible components of Ũ′ pass through P̃ ∈ Ũ′(K̃) and
with an étale morphism

ψ : U′ −→ S := Spf(K◦〈x ′
0, . . . , x ′

d〉/〈x ′
0 . . . x ′

r = π〉)
for suitable π ∈ K◦◦ such that ψ̃−1(0̃) = {P̃}. The simplex

∆(r, π) := {
u′ ∈ Rr+1

+ | u′
0 + · · · + u′

r = v(π)
}

is canonically associated to S. To apply Sect. 5, we represent ∆(r, π) by the
standard simplex

Σ(r, π) = {
u′ ∈ Rr

+ | u′
1 + . . . u′

r ≤ v(π)
}

omitting u′
0. Then we have

S = Spf(K◦〈x ′
0, . . . , x ′

r〉/〈x ′
0 · · · x ′

r = π〉) × Spf(K◦〈x ′
r+1, . . . , x ′

d〉).
We denote the first factor by S1. By definition, the morphism φ : U′ → S1,
obtained by composition with the first projection, is smooth and we have
φ̃(P̃) = 0̃. We have an isomorphism S1

∼→ UΣ(r,π) by omitting x ′
0. By

composition, we get a morphism φ0 : U′ → UΣ(r,π). Note that we have
maps val on San

1 and Uan
Σ(r,π) with images ∆(r, π) and Σ(r, π).
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7.2. The generic fibre of U′ is denoted by U ′. We claim that f : U ′ → Aan

has a lift F : U ′ → (Gn
m)an
K

, unique up to M-translation. For a Hausdorff
analytic space Y , we consider the cohomology group H1(Y,Z) of the under-
lying topological space. Note that it is the same as H1(Yrig,Z) for the
underlying rigid space Yrig (see [Ber2, 1.6]). By [Ber4, Theorem 5.2], the
generic fibre of a strictly semistable formal scheme over K◦ is contractible
to the skeleton. The skeleton of U′ is ∆(r, π) and therefore H1(U ′,Z) = 0.
Since (Gn

m)an
K

is the universal covering space of Aan, we get a lift F as desired
(see [BL2, Theorem 1.2]).

7.3. By the proof of Proposition 5.2, there is a unique map Faff :
∆(r, π) → R

n with

Faff ◦ val ◦ φ = val ◦ F

on U ′. Let faff be such an Faff (without fixing F), it is determined up to
Λ-translation. Then f aff : ∆(r, π) → R

n/Λ is uniquely characterized by

f aff ◦ val ◦ φ = val ◦ f(11)

on U ′. Note that uniqueness always follows from val ◦ φ(U ′) = ∆(r, π).
This was also part of the proof of Proposition 5.2, where we have considered
the affine map f (0)

aff : Σ(r, π) → R
n determined by

f (0)

aff (u′
1, . . . , u′

r) = faff(u
′
0, . . . , u′

r)

for u′ ∈ ∆(r, π). By (7), there are mi ∈ Zr and λi ∈ K× (i = 1, . . . , n)
such that

f (0)

aff (u′) = (mi · u′ + v(λi))i=1,...,n(12)

for every u′ ∈ Σ(r, π).

7.4. Now we are ready to describe the formal analytic structure X′ on X ′
induced by C. It is given by the atlas U ′ ∩ f −1(U∆), where U ′ ranges
over all formal open affinoids as in 7.1 and where ∆ ∈ C. Note that
U ′ ∩ f −1(U∆) = U ′ ∩ F−1(U∆) is a Weierstrass domain in U ′. We have
unique morphisms ι : X′ → (X′)f−an and ϕ : X′ → Af−an extending the
identity on X ′ and f : X ′ → A, respectively.

Our next goal is to relate this formal analytic structure on a subset U ′
from 7.1 to the simplex Σ(r, π). Let U′ be the formal analytic variety on U ′
induced by X′. Note that

(
f (0)
aff

)−1
(C) := ((

f (0)
aff

)−1
(∆)

)
∆∈C

is a Γ -rational polytopal decomposition of Σ(r, π). We denote the associ-
ated formal scheme (see 4.6) by T coming with a canonical morphism
i : T → UΣ(r,π) extending the identity.
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Proposition 7.5. Under the hypothesis above, the following properties
hold:

(a) U′ is given by the atlas φ−1
0 (Uσ ), σ ∈ ( f (0)

aff )−1(C).
(b) There is a unique morphism φ′

0 : U′ → T f−an with i f−an ◦φ′
0 = φf−an

0 ◦ ι.
(c) If r = d, then every irreducible component Z of Ũ′ with val ◦ φ0(ξZ) ∈

relint(Σ(r, π)) is a toric variety.

Proof. Clearly, (a) follows from (11) and hence U′ is obtained from
(U′)f−an by base change to T f−an proving also (b). Finally, (c) is a con-
sequence of Proposition 4.10. ��
Remark 7.6. We assume r = d and hence S ∼= UΣ(d,π). The irreducible
components Z in (c) are the irreducible components of X̃

′
contracting to

the distinguished singularity P̃ from 7.1 under the canonical morphism ι̃ :
X̃

′ → X̃′. Moreover, Z is isomorphic to the toric variety Yu′ in T̃ associated
to the vertex u′ := val ◦ φ0(ξZ) of ( f (0)

aff )−1(C). By Proposition 4.10 again,
we get a bijective correspondence between the above Z and vertices of
( f (0)

aff )−1(C) contained in relint(Σ(d, π)). The behaviour of ϕ̃ : Z → Ã
with respect to the torus actions is

ϕ̃(t · z) = (tm1, . . . , tmn ) · ϕ̃(z)(13)

for z ∈ Z and t ∈ (Gd
m)
K̃

. This follows from the description (7) of F and
ũ j |Z ≡ ũ j(P̃) for uj ∈ O(U′)× (use U ′+(P̃) ∼= San+ (0̃) and the proof of
Proposition 2.11).

7.7. Since X′ is a strictly semistable formal scheme, its special fibre X̃′ has
a canoncial stratification: Let X̃′(i) be the closed subvariety of points in X̃′
which are contained in at least i + 1 irreducible components of X̃′. Then
the irreducible components of the disjoint sets X̃′(i) \ X̃′(i + 1) are called
the strata of X̃′.

For P̃ ∈ X̃′(K̃), let U′ be a formal neighbourhood in X′ as in 7.1 leading
to an affine map faff : ∆(r, π) → R

n.

Proposition 7.8. The map f aff is determined by the stratum containing P̃
up to permutation of the coordinates on ∆(r, π).

Proof. We consider P̃1, P̃2 ∈ X̃′(K̃) in the same stratum with corresponding
affine maps fi,aff : ∆(ri, πi) → R

n. Note that ri + 1 is the number of ir-
reducible components in X̃′ passing through P̃i , hence r1 = r2. By inter-
changing a suitable P̃3, we may assume U′

1 = U′
2. After a permutation,

Proposition 2.11(d) yields that φ̃
∗
1(x̃

′
j) is equal to φ̃

∗
2(x̃

′
j) up to a unit on Ũ′

1.
The latter lifts to a unit on U′

1 and hence val ◦ φ1 = val ◦ φ2 on U ′
1 = U ′

2.
By (11) and val ◦ φi(U ′

i ) = ∆(r, π), we deduce f 1,aff = f 2,aff. ��
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7.9. Up to now, we assume that f is an alteration of Xan, i.e. f is a proper
surjective morphism X ′ → Xan for an irreducible variety X ′ of dimension
d := dim(X). By the GAGA-principle (see [Ber1, 3.4.7]), everything may
be formulated algebraically. We assume that X ′ has a strictly semistable
formal K◦-model X′.

From 7.4, we get a morphism ϕ : X′ → Xf−an of formal analytic
varieties with ϕan = f , where X is the closure of X in A. Since f is proper,
ϕ̃ is also proper [Gu2, Remark 3.14].

7.10. For every stratum S of X̃′, we get a map f aff : ∆(rS, πS) → R/Λ,
determined up to permutation. For ρS := f aff(∆(rS, πS)), the proof of
Proposition 5.2 and Proposition 7.8 show

val(Xan) =
⋃

S

ρS.

Moreover, by Theorem 6.9, we may restrict S to the strata with dim(ρS) = d.
We call u ∈ val(Xan) non-degenerate with respect to f if u �∈ ρS for all

simplices ρS of dimension < d. Note that u and ρS are only determined up
to Λ-translation.

7.11. Since X′ is a strictly semistable formalK◦ -model of the d-dimensional
irreducible variety X ′, the set X̃′(d) of strata introduced in 7.7 is zero-
dimensional. Let P̃1, . . . , P̃R be the points of X̃′(d). We denote the affine
map ∆(d, πj) → R

n corresponding to the stratum P̃j by fj,aff. The image
of fj,aff is a simplex in Rn which we denote by ρj . After renumbering, we
may assume that fj,aff is one-to-one exactly for j = 1, . . . , N. By 7.10, we
have the decomposition

val(Xan) =
N⋃

j=1

ρj .

The lower dimensional simplices ρN+1, . . . , ρR will play only a minor role
in the following. For j = 1, . . . , N, the bijective projection ∆(d, πj) →
Σ(d, πj) and fj,aff induce f (0)

j,aff : Σ(d, πj) → R
n (see 7.3) which extends

canonically to an injective affine map Rd → R
n also denoted by f (0)

j,aff.

7.12. We consider a polytope ∆ ∈ C of codimension d with relative in-
terior τ . We assume that ∆ ∩ val(Xan) is a non-empty finite subset of τ .
We suppose also that the points of ∆ ∩ val(Xan) are non-degenerate with
respect to f .

7.13. For j ∈ {1, . . . , N} with ρj ∩∆ �= ∅, we are going to define an index
of ∆ relative to f j,aff . Note that j ≤ N means that the simplex ρj from 7.11
is d-dimensional and hence ρj ∩ ∆ is a transversal intersection. The index
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will depend only on the d-codimensional linear subspace L∆ of Rn with
∆ ⊂ u + L∆ and on the injective linear map �

(0)
j := f (0)

j,aff − f (0)

j,aff(0) :
R

d → R
n.

Note that L∆ is defined over Q and hence N∆ := L∆ ∩Zn is a complete
lattice in L∆. Let q∆ be the quotient map Rn → R

n/L∆. Since ∆ is trans-
versal to ρj and since �

(0)
j is injective, q∆ ◦�

(0)
j is also injective on Rd . Using

that �
(0)
j is defined over Z, we conclude that (q∆ ◦ �

(0)
j )(Zd) is a complete

lattice inRn/L∆ of finite index in Zn/N∆. This crucial index will be denoted
by

ind(∆, f j,aff) := [
Z

n/N∆ : (
q∆ ◦ �

(0)
j

)
(Zd)

]
.

It is important to note that ind(∆, f j,aff) depends only onL∆ and on �
(0)
j . The

index may be more canonically described in terms of the linear map �j :=
fj,aff − fj,aff(0) defined on the hyperplane {u′ ∈ Rd+1 | u′

0 + · · · + u′
d = 0}.

In the above definition of the index, not all assumptions in 7.12 are
needed. In fact, ind(∆, f j,aff) is defined for all j ∈ {1, . . . , N} and every
∆ ∈ C of codimension d with L∆ ∩ Lρj = {0}.
Proposition 7.14. Recall that A is a totally degenerate abelian variety
overKwith Mumford model A associated to C and that X is a d-dimensional
irreducible closed subvariety of A. Let f : X ′ → X be an alteration with
strictly semistable formal K◦-model X′ of X ′. Let ∆ be a polytope from C
satisfying the transversality assumption 7.12. Let Y be the closure of the
torus orbit of Ã associated to relint(∆) (see Proposition 6.3).

(a) There is a unique formal analytic structure X′ on X ′ which is a refine-
ment of (X′)f−an such that f extends to a morphism ϕ : X′ → Af−an.

(b) The closed set Y is an irreducible component of X̃ for the closure X
of X in A. Moreover, Y with its reduced induced closed subscheme
structure is canonically a toric variety.

(c) Let P̃1, . . . , P̃N be the zero-dimensional strata of X̃′ such that the
associated affine maps fj,aff : ∆(d, πj) → R

n are one-to-one (see 7.11).

Then any irreducible component Z of X̃
′

with ϕ̃(Z) = Y contracts

to a unique P̃j with respect to X̃
′ ι̃→ X̃′ for some j ∈ {1, . . . , N}.

This gives a bijective correspondence between such Z and J := { j ∈
{1, . . . , N} | ∆ ∩ f j,aff(∆(d, πj)) �= ∅}.

(d) If Z is as in (c), then Z is also canonically a toric variety and [Z : Y ] =
ind(∆, f j,aff).

(e) The multiplicity of Y in X̃ fulfills m(Y, X̃) = 1
[X ′:X]

∑
j∈J ind(∆, f j,aff).

Proof. Obviously, (a) is a reformulation of 7.4. The transversality assump-
tion on ∆ yields (b) by Lemma 5.10.

Let Z be an irreducible component of X̃
′
with ϕ̃(Z) = Y . Then ϕ̃(ξ̃ Z) is

the generic point of Y , hence ( f(ξZ))∼ is in the open dense orbit Zτ of Y for
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τ := relint(∆). We conclude that u := val( f(ξZ)) is contained in the finite
set

∆ ∩ val(Xan) = τ ∩ val(Xan).

There is a formal affine open subset U′ of X′ as in 7.1 with ξZ contained
in the generic fibre U ′. The image of the corresponding affine map faff is
a simplex ρ with u ∈ ρ by (11), hence non-degeneracy of ∆∩val(Xan) with
respect to f yields that ρ is d-dimensional. By Proposition 7.8, P̃j ∈ U′ for
some j ∈ {1, . . . , N} and we have faff = fj,aff.

Let f (0)
j,aff : Σ(d, πj) → R

n be the affine map induced from fj,aff as in 7.3.
Let φj,0 : U′ → UΣ(d,πj ) be the étale morphism from 7.1. Then (11) and
non-degeneracy show that

u′ := val ◦ φj,0(ξZ) ∈ relint(Σ(d, πj))

and u = f
(0)

j,aff(u
′). For the polytopal decompositon Cj := ( f (0)

j,aff)
−1(C) of

Σ(d, πj), we have seen in Remark 7.6 that there is a bijective correspondence
between irreducible components of X̃′ contracting to P̃j and vertices of Cj
contained in relint(Σ(d, πj)). We conclude that Z is isomorphic to the toric
variety Yu′ associated to the vertex u′ of Cj (see Proposition 4.7) proving
the first part of (d).

To prove (c), it remains to show for j ∈ J that there is a unique irreducible
component Z of X̃

′
contracting to P̃j with ϕ̃(Z) = Y . The d-dimensional

simplex ρj := fj,aff(∆(d, πj)) satisfies ρj ⊂ val(Xan) by 7.11. The assump-
tion ∆ ∩ ρj �= ∅ leads to a lift ∆ ⊂ Rn with ∆ ∩ ρj �= ∅. By transversality,
∆ ∩ ρj = τ ∩ ρj consists of a single point u. Since f (0)

j,aff is injective, there is

a unique u′ ∈ Σ(d, πj) with f (0)

j,aff(u
′) = u. We note that u′ is a vertex of Cj .

Since u is non-degenerate with respect to f , we have u′ ∈ relint(Σ(d, πj)).
As we have seen above, this vertex u′ corresponds to a unique irreducible
component Z of X̃′ contracting to P̃j . By val(φj,0(ξZ)) = u′ and (11), we
get val ◦ f(ξZ) = u. Proposition 6.3 proves

ϕ̃(ξ̃ Z) = ( f(ξZ))∼ ∈ Zτ

and hence ϕ̃(Z) ⊂ Y . The above application of Remark 7.6 shows more
precisely that Z is isomorphic to Yu′ and therefore Z is a toric variety with
respect to the induced (Gd

m)
K̃

-action. On the other hand, Y is a toric variety
with respect to the torus T over K̃ given by

T(K̃) = (
Z

n/N∆

) ⊗Z K̃×

(see Remark 4.8). Here and in the following, we use the notation from 7.13.
For i = 1, . . . , n, there is mi ∈ Zd and λi ∈ K× such that the i-th coordinate
of f (0)

j,aff(u
′′) is equal to mi · u′′ + v(λi) (see (12)). Let ν : (Gd

m)
K̃

→ T
be the composition of t �→ (tm1, . . . , tmn ) ∈ (Gn

m)
K̃

with the quotient
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homomorphism (Gn
m)
K̃

→ T . Then the homomorphism ν is induced by
the linear map q∆ ◦ �

(0)
j : Zd → Z

n/N∆. Since q∆ ◦ �
(0)
j is one-to-one

(see 7.13), we deduce that ν is a finite surjective homomorphism of degree
ind(∆, f j,aff). Now (13) yields

ϕ̃(t · z) = ν(t)ϕ̃(z)
(
t ∈ (
G

d
m

)
K̃
, z ∈ Z

)
(14)

and we conclude that ϕ̃(Z) = Y . Uniqueness of Z is clear from the con-
struction and hence we get (c). Moreover, the second part of (d) follows
easily from our description of ν and (14). Finally, (e) is a consequence of (c),
(d) and the projection formula [Gu2, Proposition 4.5]

m(Y, X̃) = 1

[X ′ : X]
∑

Z

[Z : Y ],

where Z ranges over all irreducible components of X̃
′
with ϕ̃(Z) = Y . ��

8. Canonical measures

In this section, K is a field with a discrete valuation v. The completion of the
algebraic closure of the completion of K with respect to v is an algebraically
closed field denoted byK [BGR, Proposition 3.4.1/3]. The unique extension
of v to a valuation of K is also denoted by v with corresponding absolute
value | | := e−v. The value group Γ = v(K×) is equal to Q.

Let A be an abelian variety over K which is totally degenerate over K,
i.e. Aan = (Gn

m)an
K

/M for a lattice M isomorphic to Λ := val(M) in Rn.
Let X be a geometrically integral d-dimensional closed subvariety of A.

We will show first that a generic rational polytopal decomposition C
of Rn/Λ is transversal to val(Xan

K
). If A denotes the associated formal

K
◦-model of A and if X is the closure of Xan

K
in A, then transversality

allows us to handle the special fibre of X by the theory of toric varieties.

By rationality, the decomposition 1
m C := {

1
m ∆ | ∆ ∈ C

}
of Rn/Λ can not

be transversal to val(Xan
K

) for all m ∈ N \ {0} simultaneously. However,
this may be achieved over a sufficiently large base extension K′ with value
group Γ ′ by a “completely irrational” construction which is also suitable for
extending an ample line bundle on A to a positive formal (K′)◦-model on A.
This will be used to prove Theorem 1.3. Moreover, we will get an explicit
formula for the canonical measures on val(Xan

K
) given in Theorem 8.6.

There is no restriction of generality assuming that X is geometrically
integral as we may proceed by base change and linearity to get the canonical
measures in the general case.

8.1. Fix some Λ-periodic set Σ of polytopes in Rn and set Σ :=
{σ ⊂ Rn/Λ | σ ∈ Σ}. We assume that Σ is a finite set. If a polytope
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is in Σ, then we require that all its closed faces are also in Σ. For a polytope
σ ⊂ Rn, Aσ denotes the affine space in Rn generated by σ .

The polytopal decomposition C of Rn/Λ is said to be generic with
respect to Σ if the following conditions hold for every σ ∈ Σ, ∆ ∈ C:

(a) dim(Aσ ∩ A∆) = D if D := dim(σ) + dim(∆) − n ≥ 0,
(b) Aσ ∩ A∆ = ∅ if D < 0.

A polytopal decomposition C of Rn/Λ is called Σ-transversal if ∆ ∩ σ
is either empty or of dimension dim(∆) + dim(σ) − n for all ∆ ∈ C,
σ ∈ Σ. If the union S of all polytopes in Σ is pure dimensional, then
a Σ-transversal C is transversal to S in the sense of A.2.

Proposition 8.2. Every Σ-generic polytopal decomposition of Rn/Λ is
Σ-transversal.

Proof. Let ∆, Σ be polytopes in Rn with ∆ ∩ Σ �= ∅ such that all closed
faces σ ′ of σ and ∆′ of ∆ satisfy (a) and (b). It is enough to show dim(∆∩σ)
= dim(∆) + dim(σ) − n. If relint(∆) ∩ relint(σ) �= ∅, then this is obvious
from (a). So we may assume relint(∆) ∩ relint(σ) = ∅ which will lead to
a contradiction. By symmetry and passing to closed faces if necessary, we
may assume that there is a closed face σ ′ of codimension 1 in σ such that
∆ ∩ σ ′ = ∆ ∩ σ and relint(∆) ∩ relint(σ ′) �= ∅. Note that Aσ ′ divides Aσ

into half spaces, one is containing σ . Since relint(∆) ∩ relint(σ ′) �= ∅, we
conclude that A∆ ∩ Aσ is contained in Aσ ′ . Thus A∆ ∩ Aσ ′ = A∆ ∩ Aσ

contradicts (a) and (b). ��
8.3. Starting with an arbitrary rational triangulation of Rn/Λ and varying
the vertices a little bit in Qn, we get a rational triangulation C of Rn/Λ

which is Σ-generic.
Up to now, we assume that Σ is rational. For the proof of Theorem 1.3,

we need that 1
m C is Σ-generic for all non-zero m ∈ N simultaneously

which is not possible for a rational C. Instead, we are working with an
infinite dimensional Q-subspace Γ ′ of R containing Q. By [Bou, Chapt. VI,
n◦ 10, Prop. 1], there is an algebraically closed field K′, complete with
respect to an absolute value | |′ extending | | such that v′((K′)×) = Γ ′.
Now we will see that a Γ ′-rational C with the desired property and which
behaves well with respect to the extension of an ample line bundle can be
obtained by a “completely irrational” construction. Since the lemma will be
important for the sequel, we give a rather detailed proof.

Lemma 8.4. Let L be an ample line bundle on A. Then there is a Γ ′-rational
polytopal decomposition C of Rn/Λ with the following properties:

(a) 1
m C is Σ-generic and hence Σ-transversal for all m ∈ N \ {0}.

(b) If A denotes the formal (K′)◦-model of Aan
K′ associated to C, then there

are N ∈ N\{0} and a formal (K′)◦-model L of L⊗N on A with L̃ ample.
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Proof. In the terminology of 6.5 and of Proposition 6.6, L induces zλ and
a bilinear form b on Λ. By 6.5, we deduce that zλ(0) is a quadratic function
on Λ and therefore

zλ(0) = q(λ) + �(λ)

for the quadratic form q(λ) := 1
2b(λ, λ) and a linear form � on Λ (see [BoGu,

8.6.5]). Both extend to corresponding forms on Rn also denoted by q and �.
Since L is ample, q is positive definite on Λ (see 6.5) and hence its extension
to Rn is also positive definite (using Γ = Q). We conclude that f := q + �
is a strictly convex function on Rn (see A.3). Formula (10) yields

f(u + λ) = f(u) + zλ(u) (λ ∈ Λ, u ∈ Rn).(15)

Our goal is to construct a Γ ′-rational polytopal decomposition C ofRn/Λ
with (a) and a strongly polyhedral convex function g : Rn → Rwith respect
to C such that (15) holds for g and such that for every ∆ ∈ C, there are
m∆ ∈ Qn , c∆ ∈ Γ ′ with

g(u) = m∆ · u + c∆ (u ∈ ∆).(16)

We show first that this implies the lemma. By 6.5, there is mλ ∈ Zn , additive
in λ ∈ Λ, such that b(λ, u) = mλ · u. Now (15), (16) and (10) yield

m∆+λ = m∆ + mλ(17)

and hence there is a common denominator N of all m∆, ∆ ∈ C. By Prop-
osition 6.6, there is a formal K◦-model L of L⊗N on A with fL = Ng.
Since g is a strongly polyhedral convex function with respect to C, Corol-
lary 6.7 yields that L̃ is ample.

Before we start the construction, we note that we may assume � = 0:
This corresponds to the replacement of L by L ⊗[−1]∗(L). If ĝ is a solution
for the latter, then g := 1

2 ĝ+� is a solution for the original problem (use 6.5).
So we may assume f = q.

Let FΛ := ∑n
i=1[0, 1)e′

i be the fundamental domain of Λ induced by
the basis e′

1, . . . , e′
n . We number the r = 2n points

θ1e′
1 + · · · + θne′

n

(
θk ∈

{
0,

1

2

})

by u1, . . . , ur . They form the set FΛ∩ 1
2Λ. We have the affine approximation

Ai(u) := b(u, ui) − q(ui)(18)

of q in ui . We have Ai(ui) = q(ui) and Ai(u) < q(u) for u �= ui by strict
convexity of q. By periodicity, we extend these definitions to Rn, i.e. we set
for λ ∈ Λ:

ui,λ := ui + λ, Ai,λ(u) := b(u, ui,λ) − q(ui,λ).(19)
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Then the ui,λ form just 1
2Λ and Ai,λ is the affine approximation of q in ui,λ.

The strongly polyhedral convex function

g := max
i=1,...,r; λ∈Λ

Ai,λ(20)

is a lower bound of q and satisfies (15). Moreover, g is affine on the rational
polytopes

∆i,λ := {
u ∈ Rn

∣∣ Ai,λ(u) = g(u)
} =

⋂
(h,µ) �=(i,λ)

{Ai,λ(u) ≥ Ah,µ(u)}.(21)

They are the maximal polytopes where g is affine and they are the n-dimen-
sional polytopes of the Voronoi decomposition C of 1

2Λ with respect to the
euclidean metric q, i.e.

∆i,λ = {
u ∈ Rn

∣∣ q(u − ui,λ) ≤ q(u − uh,µ) ∀h = 1, . . . , r, ∀µ ∈ Λ
}
.

The polytopal decomposition C is 1
2Λ-periodic and induces a rational poly-

topal decomposition C ofRn/Λ. By construction, (15) and (16) are satisfied
but C does certainly not satisfy (a).

To achieve this, we modify the construction by a small perturbation.
The union G0 of the Voronoi cells ∆i,0 (1 ≤ i ≤ r) is the closure of
a fundamental domain for Rn/Λ. Then

G1 :=
⋃

(i,λ)∈T1

∆i,λ, T1 := {(i, λ) ∈ {1, . . . , r} × Λ | ∆i,λ ∩ G0 �= ∅},

is the set of neighbours of G0. We approximate the gradient ∇q(ui) by
mi ∈ Qn and −q(ui) by ci ∈ (Γ ′)n. Then we define the affine function

Ai(u) := mi · u + ci

which is very close to the old definition. We may still assume that g is an
upper bound of Ai . With the mλ ∈ Zn introduced at the beginning of the
proof, we define affine functions

Ai,λ(u) := mi,λ · u + ci,λ, mi,λ := mi + mλ ∈ Qn,

ci,λ := ci − q(λ) − mi · λ.

By construction, they are very close to the old approximations, Ai,0 = Ai
and (10) yields

Ah,ρ+λ(u + λ) = Ah,ρ(u) + zλ(u) (λ,µ, ρ ∈ Λ).(22)

We assume that the approximations mi,λ, ci,λ of ∇q(ui), −q(ui) satisfy
the conditions:

(c) 1, (ci)i=1,...,r are Q-linearly independent in Γ ′.
(d) For all σ ∈ Σ, given by linearly independent equations l1 · u =

a1, . . . , lc · u = ac, with lk ∈ Zn and ak ∈ Z (possible by ration-
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ality of Σ), and for every S ⊂ {1, . . . , r} with card(S) ≤ n − c + 1,
λ : S → Λ ∩ (G0 − G0), the vectors

(mi,λ(i) − mi0,λ(i0))i∈S\{i0}, l1, . . . , lc

are linearly independent, where i0 is the minimal member of S.

The existence of ci follows from [Γ ′ : Q] = ∞ and the construction of
the approximations mi is by induction where in each step, we have to
omit finitely many hyperplanes which is possible in every neighbourhood
of ∇q(ui).

The function g defined by (20) is a strongly polyhedral convex function
with respect to C which is equal to Ai,λ on the Γ ′-rational polytope ∆i,λ
from (21). The latter are again the n-dimensional polytopes of a Γ ′-rational
decomposition C of Rn/Λ. C is very close to the Voronoi decompositon
considered above in the sense that the boundary of the new ∆i,λ is near
to the boundary of the corresponding Voronoi cell. Moreover, if two cells
intersect, then also the corresponding Voronoi cells intersect. By (22), C is
Λ-periodic and g satisfies (15). Note that (16) is clear by construction. We
get a polytopal decomposition C of Rn/Λ.

It remains to see that C satisfies (a): Let σ ∈ Σ, m ∈ N\ {0} and ∆ ∈ C.
We may represent ∆ as a closed face of ∆i0,λ0 given by the hyperplanes

Ai,λ(u) = Ai0 ,λ0(u), (i, λ) ∈ S ⊂ {1, . . . , r} × Λ.

We may assume that every hyperplane is generated by a face of ∆i0,λ0 and
that

A∆ =
⋂

(i,λ)∈S

{Ai,λ(u) = Ai0 ,λ0(u)}(23)

is a transversal intersection. By Λ-periodicity, we may assume that ∆ ⊂ G1.
Since C is very close to the Voronoi decomposition of 1

2Λ with respect to q,
it is clear that for given i, there is at most one λ ∈ Λ involved in (23). Note
that such a λ is contained in G0 − G0. By (23), Aσ ∩ A∆ is the solution
space of the c + codim(∆) linear equations

l1 · u = a1, . . . , lc · u = ac(24)

(in the notation borrowed from (d)) and

(mi,λ − mi0,λ0) · u = ci0,λ0 − ci,λ ((i, λ) ∈ S).(25)

If D := dim(σ) + dim(∆) − n ≥ 0, then the assumption (d) yields that
the homogeneous linear equations associated to (24) and (25) are linearly
independent and hence dim(Aσ ∩A∆) = D. If D < 0, then we may express
l1 · u as a Q-linear combination of the left hand sides of the other equations
in (24) and (25). By (c), a1 can not be the same linear combination of
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the right hand sides. This proves Aσ ∩ A∆ = ∅ and therefore C is Σ-
generic.

If we replace ∆ by 1
m ∆, then the right hand side of (25) is multiplied

by 1
m . This does not change the above argument and we conclude that 1

m C

is Σ-generic. ��
8.5. Let L1, . . . , Ld be ample line bundles on A endowed with canonical
metrics (see 3.13). Our goal is to give an explicit formula for the canonical
measure

µ := (val)∗(c1(L1|X) ∧ · · · ∧ c1(Ld|X))

on the tropical variety val(Xan
K

). By de Jong’s alteration theorem [dJ, The-
orem 6.5], there is an alteration f : X ′ → Xan

K
and a strictly semistable

formalK◦-model X′ of X ′ (see 7.9). Let P̃1, . . . , P̃N be the zero-dimensional
strata of X̃′ such that the associated affine maps f j,aff : ∆(d, πj) → R

n are
one-to-one (see 7.11). The image of fj,aff is a d-dimensional simplex denoted
by ρj . The sets ρ1, . . . , ρN cover val(Xan

K
) (see 7.11).

For simplicity of notation, we may assume that ρ1, . . . , ρN are simplices
in Rn/Λ, i.e. the projection ρj → ρj is bijective. In general, a subdivision
of the ρj may be needed but this does not change the description of the
measure µ in Theorem 8.6.

Let σ be an atom of the covering
⋃

j ρj = val(Xan
K

), i.e. σ is the closure

of
⋂

j T j , where T j is either relint(ρj) or val(Xan
K

)\ρj . We omit σ = ∅. Then
σ is a finite union of d-dimensional polytopes inRn/Λ. Moreover, the sets σ

form a finite covering of val(Xan
K

) with overlappings of dimension < d. To
get polytopes in Rn/Λ, a subdivision would be needed, but this is irrelevant
for the description of the measure µ.

Since σ �= ∅, the set J(σ) := { j = 1, . . . , N | σ ⊂ ρj} is non-empty.
Let Aσ be the affine space generated by ρj for some j ∈ J(σ). Up to
Λ-translation, it is independent of the choice of j ∈ J(σ). We may lift
a measurable subset Ω of σ to Ω ⊂ ρj . We conclude that the relative
Lebesgue measure on Aσ induces a canonical measure on σ which we
denote by vol(Ω).

Using Γ = Q, we deduce that the stabilizer Λ(Aσ ) := {λ ∈ Λ |
Aσ + λ ⊂ Aσ} of Aσ is a complete lattice in the linear space Lσ parallel
to Aσ . For j ∈ J(σ), let f (0)

j,aff : Σ(d, πj) → R
d be the affine map induced

from fj,aff as in 7.3. Then the linear map �
(0)
j := f (0)

j,aff − f (0)
j,aff(0) : Rd → R

n

is one-to-one, defined over Z and has image Lσ . We get a dual map �̂
(0)

j :
L

∗
σ → (Rd)∗ = Rd which is bijective and defined over Z.

Let bj be the bilinear form associated to Lj (see 6.5). Since bj is positive
definite on Rn,

Λ(Aσ )Lj := {bj(·, λ) ∈ L∗
σ | λ ∈ Λ(Aσ )}
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is a complete lattice in L∗
σ . We will also use the dual lattice of Λ(Aσ ), given

by

Λ(Aσ )∗ := {� ∈ L∗
σ | �(Λ(Aσ )) ⊂ Z}.

We denote by vol(Λ(Aσ )) the volume of a fundamental domain of the
lattice Λ(Aσ ) with respect to the relative Lebesgue measure on Lσ . Let
vol(Λ(Aσ )L1, . . . ,Λ(Aσ )Ld) be the mixed volume of the corresponding
fundamental domains in L∗

σ (see A.6 for definition and properties). Since
the mixed volume is positive, the following formula implies Theorem 1.3:

Theorem 8.6. For a measurable subset Ω of the atom σ as in 8.5, we have

µ(Ω) = d! · ϑ(σ) · vol
(
Λ(Aσ )L1, . . . ,Λ(Aσ )Ld

)
vol(Λ(Aσ )∗) · vol(Λ(Aσ ))

· vol(Ω),

where

ϑ(σ) := 1[
X ′ : Xan

K

] ∑
j∈J(σ)

[
Z

d : �̂(0)

j (Λ(Aσ )∗)
]

and the measure µ is defined by µ := (val)∗(c1(L1|X) ∧ · · · ∧ c1(Ld|X)).

Proof. To prove the theorem, we may assume that Ω is a d-dimensional
polytope contained in σ (using monotone convergence). Note that the odd
part of Lj does not influence the bilinear form bj and hence we may suppose,
using 3.15, that every Lj is symmetric. By multilinearity of µ and the mixed
volume, we may assume L := L1 = · · · = Ld . In the next paragraph, we
will fix a Mumford model A of A associated to a “generic” choice of
a polytopal decomposition C. It will be crucial for the proof that this choice
is as generic as possible. In particular, C is only Γ ′-rational for an infinite
dimensional Q-subspace Γ ′ of R equal to the value group of a complete
algebraically closed extension K′ ofK and hence A is only defined over the
valuation ring of K′. By Remark 3.10 and since val(Xan

K
) is invariant under

base change, we are allowed to make the analytic calculations for µ overK′.
Let P̃1, . . . , P̃R be the zero-dimensional strata of X̃′. As in 7.11, they

induce affine maps fj,aff : ∆(d, πj) → R
n and we denote the image simplex

by ρj . According to 8.5, we assume that ρ1, . . . , ρN are d-dimensional and
that ρN+1, . . . , ρR are lower dimensional. Let Σ be the collection of these
simplices ρj in Rn together with all their faces and their Λ-translates. We
choose C, A and L as in Lemma 8.4. By multilinearity, we may assume
that L is a (K′)◦-model of L .

We will proof Theorem 8.6 now in four steps. We give first an outline of
the plan:

We fix a rigidification on L such that the associated canonical metric
‖ ‖can is the metric of L (see 3.13). The rigidification and the theorem of
the cube yield an identification [m]∗L = L⊗m2

for m ∈ Z. Let ‖ ‖ be the
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formal metric associated to L (see 3.2). By 3.13, we have

‖ ‖can = lim
m→∞([m]∗‖ ‖)1/m2

.(26)

Let Am be the Mumford model of A associated to Cm := 1
m C and let Xm be

the closure of X in Am . Using the very definition of the measure µ and (26),
we will show in a first step that µ is a weak limit of a sum of Dirac meas-
ures val∗(δZ), where Z ranges over the irreducible components of (Xf−an

m )∼
and where ξZ is the point of the Berkovich space Xan

K
corresponding to Z

(see 2.5). In a second step, we will replace the Z by the irreducible com-
ponents Y of the special fibre X̃m . Since the reduction (Xf−an

m )∼ is a finite
covering of X̃m , this will be a consequence of the projection formula.

After the first two steps we have µ(Ω) = limm→∞ Sm, where Sm depends
on the multiplicities and the degrees of the Y ’s. In the third step, we trans-
form the limit into a multiple of vol(Ω). To make this plausible, note
that the multiplication by m on A extends uniquely to a morphism ϕm :
Am → A1 = A (see 6.4). Applying projection formula to ϕ̃m , we will
relate the degree of Y to degL̃(Yu) for a vertex u of C ∩ (mAσ ) with
u ∈ Ω. Here, Yu := Y∆(u) is the toric variety in Ã associated to the unique
∆(u) ∈ C with u ∈ relint(∆(u)) (see Remark 4.8). We will use the alteration
f : X ′ → Xan

K
from 8.5 and Sect. 7 to express the multiplicity of Y in terms

of indices of lattices. For m → ∞, we will get µ(Ω) = s · vol(Ω), where
s is a linear combination of degL̃(Yu) with u ranging over the vertices of
C∩Lσ modulo the stabilizer Λ(Aσ ) from 8.5. In the theory of toric varieties,
there is a formula for degL̃(Yu) as the volume of a polytope associated to
the fan of Yu. We apply this in the fourth step to calculate s in terms of the
dual complex of C ∩ Lσ using the appendix on convex geometry. This will
prove Theorem 8.6.

Step 1. µ is a weak limit of discrete measures related to the irreducible
components of (Xf−an

m )∼.

For m ≥ 1, we have seen in the outline that a unique morphism ϕm :
Am → A1 = A extends multiplication by m on A. Recall that ‖ ‖ is the
formal metric associated to the (K′)◦-model L of L on A. Clearly, [m]∗‖ ‖
is the formal metric associated to ϕ∗

m(L). The composition of the canonical
finite morphism ι̃ : (Xf−an

m )∼ → X̃m from 2.6 with ϕ̃m is denoted by φ̃m .
By (26), 3.11 and 3.12, we have the following weak limit of regular Borel
measures on val(Xan

K
):

µ = lim
m→∞ m−2d

∑
Z

degφ̃
∗
m(L̃)(Z)val∗(δξZ ),(27)

where Z ranges over all irreducible components of (Xf−an
m )∼. For our poly-

tope Ω ⊂ σ , this yields

µ(Ω) = lim
m→∞ m−2d

∑
Z

degφ̃
∗
m(L̃)(Z),(28)
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where Z ranges over all irreducible components of (Xf−an
m )∼ satisfying

val(ξZ) ∈ Ω.

Step 2. We replace the Z’s in (28) by the irreducible components Y of X̃m .

Since the morphism ι̃ is finite and surjective, the set of irreducible com-
ponents of (Xf−an

m )∼ is mapped onto the set of irreducible components
of X̃m . By our choice of C from Lemma 8.4, we note that Cm is transversal
to val(Xan

K
) and hence every irreducible component Y of X̃m corresponds to

an equivalence class ∆ ∩ val(Xan
K

) of transversal vertices of Cm ∩ val(Xan
K

)

for a unique d-codimensional polytope ∆ ∈ Cm (see Theorem 6.10). Since
Cm is Σ-generic, it is clear that ∆ intersects the d-dimensional atom σ
in at most one point. If a Z from (28) is lying over Y , then the proof of
Theorem 5.11 shows that val(ξZ) ∈ ∆∩ val(Xan

K
), i.e. we have a transversal

vertex corresponding to Y which is contained in Ω. We say that Y is Ω-inner
if

∆ ∩ val
(
Xan
K

) = ∆ ∩ Ω.

If Y is not Ω-inner, then the corresponding ∆ intersects also an atom σ ′ �= σ .
This ∆ has to be a face of an n-dimensional polytope in C intersecting the
boundary of σ . By an easy argument covering the boundary, we conclude
that the number of such Y is of order O(md−1). We will use this later to
show that the Z lying over non-Ω-inner Y may be neglected in (28).

We consider now an Ω-inner Y . Since Ω is a polytope contained in σ ,
we conclude that ∆ ∩ Ω is just a point u. For an irreducible component Z
of (Xf−an

m )∼ lying over Y , we have seen above that val(ξZ) ∈ ∆ ∩ val(Xan
K

)

and hence val(ξZ) = u ∈ Ω. Since (Xf−an
m )∼ is reduced, we have

∑
Z

degφ̃
∗
m(L̃)(Z) = degφ̃

∗
m(L̃)

((
Xf−an

m

)∼)
,

where Z ranges over all irreducible components of (Xf−an
m )∼. Since Xf−an

m
and Xm have the same generic fibre, the projection formula [Gu2, Prop-
osition 4.5] shows that ι̃∗((Xf−an

m )∼) is equal to the cycle associated to X̃m .
For the multiplicity m(Y, X̃m), projection formula yields∑

ι̃(Z)=Y

degφ̃
∗
m(L̃)(Z) = m(Y, X̃m) degϕ̃∗

m(L̃)(Y ).(29)

This is true for any irreducible component Y of X̃m . First, we apply (29) on
the right hand side of (28) to transform the contribution of all Z lying over
an Ω-inner Y into the sum

Sm := m−2d
∑

Y

m(Y, X̃m) degϕ̃∗
m(L̃)(Y ),(30)
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where Y ranges over all Ω-inner irreducible components of X̃m . If Y is
an irreducible component of X̃m which is not Ω-inner, then it is possible
that there are irreducible components Z, Z ′ of (Xf−an

m )∼ lying over Y with
val(ξZ) ∈ Ω and val(ξZ ′) �∈ Ω. Then (30) is just an upper bound for the
contribution of those Z in (28) lying over such a Y .

Step 3. Transformation of the limit in (28) into a multiple of vol(Ω).

Let Y be an irreducible component of X̃m . By transversality of Cm and
Theorem 6.10, there is a unique d-codimensional polytope ∆ ∈ Cm such
that Y is the toric variety given as the closure of the torus orbit associated
to relint(∆).

Now we assume that Y is Ω-inner. As we have seen in Step 2, ∆ ∩
val(Xan

K
) is a transversal vertex u of Cm ∩ val(Xan

K
). Since u ∈ Ω, there

is a unique lift u to the affine space Aσ from 8.5. We conclude that mu is
a vertex of C ∩ (mAσ ).

Every u′ ∈ Rn is contained in the relative interior of a unique ∆(u′) ∈ C.
Let Yu′ := Y∆(u′) be the associated toric variety in Ã (see Remark 4.8 and
Proposition 6.3). Note that Yu′+λ = Yu′ for λ ∈ Λ. In the situation above,
we have m∆ = ∆(mu) and ϕ̃m(Y ) = Ymu. Applying projection formula to
the morphism ϕ̃m : Ãm → Ã and using Proposition 6.4, we get

degϕ̃∗
m(L̃)(Y ) = md degL̃(Ymu).(31)

Now we use the alteration f : X ′ → Xan
K

and the associated affine maps
fj,aff : ∆(d, πj) → R

n with d-dimensional images ρj , j = 1, . . . , N,
from 8.5. Since C is Σ-generic, the final remark in 7.13 shows that
ind(∆′, f j,aff) is well-defined for all d-codimensional ∆′ ∈ C and depends
only on the linear space L∆′ for j = 1, . . . , N. We consider the multiplicity

ϑ(∆′, σ) := 1[
X ′ : Xan

K

] ∑
j∈J(σ)

ind(∆′, f j,aff)

of ∆′ relative to the atom σ , where J(σ) := { j = 1, . . . , N | σ ⊂ ρj}.
Proposition 7.14 yields

m(Y, X̃m) = 1[
X ′ : Xan

K

] ∑
j∈J

ind(∆, f j,aff),(32)

where J := { j = 1, . . . , N | ∆ ∩ ρj �= ∅}. Since Cm is Σ-transversal, we
note that u is an interior point of the atom σ . By ∆ ∩ val(Xan

K
) = {u}, we

deduce that j ∈ J if and only if ∆ ∩ ρj = {u} and this is equivalent to
σ ⊂ ρj . This means J = J(σ). We have Lm∆ = L∆ and Nm∆ = N∆, hence
ind(m∆, f j,aff) = ind(∆, f j,aff). Now (32) yields

m(Y, X̃m) = ϑ(∆(mu), σ).(33)
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In (31) and (33), we have related the degree and the multiplicity of Y (or
equivalently an Ω-inner transversal vertex of Cm ∩val(Xan

K
) as we have seen

in Step 2) to the vertex mu of C ∩ (mAσ). Both formulas are Λ-periodic
in mu. Note that the atom σ of Σ is rational and hence there is m0 ∈ N
such that m0Aσ = λ0 + Lσ for some λ0 ∈ Λ. Up to now, we assume that
m ∈ Nm0. By periodicity, we may express (31) and (33) in terms of the
vertex u′ := mu− m

m0
λ0 of C ∩Lσ . Note that C ∩Lσ is Λ(Aσ )-periodic. The

fundamental domain of Λ(Aσ ) in Lσ is denoted by F. For m sufficiently
large, the number of 1

m Λ(Aσ )-translates of 1
m F contained in the lift Ω of Ω

to Aσ is mdvol(Ω)/vol(F) + O(md−1). By (31) and (33) inserted in (30),
we get

Sm = vol(Ω)

vol(F)
·
∑

u′
ϑ(∆(u′), σ) degL̃(Yu′) + O

(
1

m

)
,(34)

where u′ ranges over the vertices of C ∩ Lσ contained in F. We claim that

µ(Ω) = vol(Ω)

vol(Λ(Aσ ))
·
∑

u′
ϑ(∆(u′), σ) degL̃(Yu′),(35)

where u′ ranges over all vertices of C ∩ Lσ modulo Λ(Aσ ). By (28), (30)
and (34), it remains to show that the Z in (28) lying over non-Ω-inner Y may
be neglected. We have seen in Step 2 that the number of such Y is O(md−1).
Formula (32) holds also for non-Ω-inner Y and proves

m(Y, X̃m) ≤ 1[
X ′ : Xan

K

]
N∑

j=1

ind(∆, f j,aff),

where ∆ is the d-codimensional polytope in 1
m C corresponding to Y . We

have

ind(∆, f j,aff) ≤ max
∆′

(ind(∆′, f j,aff)),

where ∆′ is ranging over all d-codimensional simplices in C. This leads to
a bound of m(Y, X̃m) independent of Y and m. There is also such a bound
for m−d degϕ̃∗

m(L̃)(Y ). Indeed, this follows from projection formula as in (31)

replacing Ymu by the closure of a d-dimensional torus orbit of Ã. Using the
final remark in Step 2, the contribution of the Z in (28) lying over non-Ω-
inner Y is bounded by O

(
1
m

)
and therefore may be neglected in (28). This

proves (35).

Step 4. Calculation of the sum in (35) in terms of the dual complex of C ∩ Lσ .

We have chosen C and the (K′)◦-model L of L from Lemma 8.4. Recall
from its proof that L was constructed by a strongly polyhedral convex



366 W. Gubler

function fL with respect to C using Proposition 6.6 and Corollary 6.7.
In particular, fL(u) = m∆ · u + c∆ on ∆ ∈ C with m∆ ∈ Zn . By A.4,
fL induces a dual complex C fL in Rn where the vertices (called pegs) are
given by m∆ with ∆ ranging over all n-dimensional polytopes of C. Let u′
be a vertex of C ∩ Lσ . Since C is Σ-generic, the unique polytope ∆(u′)
of C containing u′ in its relative interior is d-codimensional. It follows that
the dual polytope ∆(u′) fL , given by the vertices {mτ |τ ∈ starn(∆(u′))}, is
d-dimensional (see A.4 and A.5). We claim that

degL̃(Yu′) = d! · vol(∆(u′) fL) · vol(Zn ∩ ∆(u′)⊥)−1,(36)

where ∆(u′)⊥ denotes the orthogonal complement of ∆(u′). We would
like to deduce it from the corollary on p. 112 in [Fu2, §5.3]. We choose
a vertex u0 of ∆(u′). For simplicity of notation, we may assume u0 = 0
and fL(0) = 0. The general case is obtained by a transformation of the
x-coordinates which yields a translation of the u-coordinates. Let F be the
complete fan of cones generated by the polytopes of C with vertex 0. Let Y0

be the irreducible component of Ã corresponding to the vertex u0 = 0
(see Proposition 6.3). It follows from Proposition 4.7 that Y0 is a toric
variety with fan F . The restriction of the ample line bundle L̃ to Y0 is
isomorphic to O(D) for a Cartier divisor D on Y0 which is equivariant with
respect to the torus action. In the theory of toric varieties, such an ample
divisor defines a continuous piecewise linear function ψD on the fan F and
a polytope PD := {ω ∈ Rn | ω · u ≥ ψD(u) ∀u ∈ Rn} (see [Fu2, §3.4]).
The proof of Corollary 6.7 gives an explicit choice of D and shows that
fL = −ψD on every ∆ ∈ starn(u0). By formula (45) in A.5, we conclude
that −PD = {u0} fL . The polytope considered in the corollary on p. 112
of [Fu2] is equal to PD ∩ (−m∆ + ∆(u′)⊥) for any ∆ ∈ starn(∆(u′)) and
formula (46) in A.5 shows that this polytope is equal to −∆(u′) fL . So we
may apply this corollary and (36) follows.

We may also consider the complex C ∩Lσ in Lσ . Clearly, fL restricts to
a strongly polyhedral convex function g on Lσ and we may form the dual
complex (C ∩ Lσ )g in L∗

σ which is Λ(Aσ )L-periodic and hence covers L∗
σ

(use [McM, Theorem 3.1]). Let P be the dual map of Lσ ↪→ R
n . Since

C is transversal to Lσ , the pegs of C ∩ Lσ are equal to {P(mτ ) | τ ∈ C,
dim(τ) = n, τ ∩ Lσ �= ∅}. By A.4, the dual polytope {u′}g in (C ∩ Lσ )g of
the vertex u′ of C ∩ Lσ is given by the vertices {P(mτ) | τ ∈ starn(u′)} and
hence we have

P(∆(u′) fL) = {u′}g.(37)

By A.5, ∆(u′) fL is a polytope of full dimension in m∆ +∆(u′)⊥ and hence
the change of volumes in (37) is given by the factor vol(P(Zn ∩ ∆(u′)⊥)) ·
vol(Zn ∩ ∆(u′)⊥)−1. Now (36) yields

degL̃(Yu′) = d! · vol({u′}g) · vol(P(Zn ∩ ∆(u′)⊥))−1.(38)
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Duality of lattices and the definitions of the multiplicity ϑ(∆, σ) and the
index in 7.13 imply

ϑ(∆(u′), σ) = 1[
X ′ : Xan

K

] ∑
j∈J(σ)

[
Z

d : �̂(0)

j (P(Zn ∩ ∆(u′)⊥))
]

= 1[
X ′ : Xan

K

] ∑
j∈J(σ)

[
Z

d : �̂(0)

j (Λ(Aσ )∗)
] · vol(P(Zn ∩ ∆(u′)⊥))

vol(Λ(Aσ )∗)

= ϑ(σ) · vol(P(Zn ∩ ∆(u′)⊥))

vol(Λ(Aσ )∗)
.

Using this and (38) in (35), we get

µ(Ω) = d! · ϑ(σ) ·
∑

u′
vol({u′}g) · vol(Ω)

vol(Λ(Aσ )∗)vol(Λ(Aσ ))
,

where u′ ranges over the vertices of C ∩ Lσ modulo Λ(Aσ ). The theorem
follows now from the Λ(Aσ )L-periodicity of the covering (C ∩Lσ )g of L∗

σ .
��

Remark 8.7. For arbitrary line bundles L1, . . . , Ld on A endowed with
canonical metrics, Theorem 1.3 yields that µ is a piecewise Haar measure
on val(Xan

K
). Indeed, every line bundle on A is isomorphic to the “difference”

of two ample line bundles and multilinearity yields the claim.

9. Generalizations

First, we relate tropical varieties to the skeleton of a strictly semistable
K

◦-model. We use it to prove Theorem 1.2. Then we describe the canonical
measures on a closed subvariety of a totally degenerate abelian variety
generalizing Theorem 8.6.

9.1. Berkovich has shown in [Ber5, §5], that a strongly non-degenerate
polystable fibration over K◦ has a canonical polytopal subset called the
skeleton. For simplicity, we restrict its description to the case of a strictly
semistable formal scheme X′ over K◦:

By Proposition 2.11, every irreducible component Y of X̃′ induces
a Cartier divisor DY on X′ with cyc(DY ) = v(π)Y just by lifting the
local equations γ̃ for Y in X̃′, where π ∈ K◦◦ is from 2.10. If X ′ := (X′)an

is connected, then we may choose π independent of Y . For simplicity of
notation, this will be assumed in the following.

By 3.2 and 3.4, there is a global section sY of OX ′ and a formal metric
‖ ‖Y on OX ′ such that DY = d̂iv(sY ). Let I be the set of irreducible com-
ponents of X̃′. Then we get an analogue of tropical geometry by considering

val : X ′ −→ R
I , x ′ �→ (− log ||sY (x ′)||)Y∈I .
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We have seen in Proposition 7.8 that every stratum S of X̃′ gives rise to
a canonical simplex

∆S :=
{

u = (uY )Y∈I ∈ RI
∣∣∣ uY = 0 if S ∩ Y = ∅,

∑
Y∩S �=∅

uY = v(π)
}
.

As in the proof of Proposition 5.2, we deduce that val(X ′) is covered by ∆S,
where S is ranging over the set str(X̃′) of strata. The strata of dimension
d := dim(X ′) are in one-to-one correspondence with I and hence with
the vertices (0, . . . , v(π), . . . , 0), where just the Y -th entry is non-zero.
Note however that different lower dimensional strata may induce the same
canonical simplex. To omit this, we define the abstract metrized polytopal
set

D(X′) :=
( ∐

S∈str(X̃′)

(∆S, S)
)/ ∼ .

Here, (∆S, S) is isometrically identified with ∆S and (u1, S1) ∼ (u2, S2)

if there is S3 ∈ str(X̃′) such that the closure of S3 contains S1 ∪ S2 and
if u1 = u2 ∈ ∆S3. The set D(X′) reflects the incidence of strata closures
as there is a bijective correspondence between str(X̃′) and the simplices
(∆S, S) of D(X′). Note that we may lift val to a continuous surjective map

Val : X ′ −→ D(X′), x ′ �→ (val(x ′), S(x̃ ′)),

where S(x̃ ′) is the stratum containing the reduction x̃ ′ of x ′.
Berkovich introduces a partial ordering � on X ′ (depending on X′)

by x ′ � y′ if, for every affinoid algebra A with étale morphism ϕ :
X = Spf(A◦) → X′ and x ∈ (ϕan)−1(x ′), there is y ∈ (ϕan)−1(y′) with
| f(x)| ≤ | f(y)| for all f ∈ A. The set of maximal points with respect to
this ordering is called the skeleton S(X′). By [Ber5, Theorem 5.1.1], the
map Val restricts to a homeomorphism of S(X′) onto D(X′). We use it to
endow S(X′) with the structure of a metrized polytopal set, i.e. we identify
S(X′) with D(X′).

Proposition 9.2. Let X′ be a strictly semistable formal scheme over K◦
with generic fibre X ′ and let A be a totally degenerate abelian variety
over K, i.e. Aan = (Gn

m)an
K

/M for a lattice M. For a morphism f : X ′ → A
and Λ := val(M), there is a unique continuous map f aff : S(X′) → R

n/Λ
with

f aff ◦ Val = val ◦ f.(39)

Moreover, faff is an affine map on every simplex (∆S, S), S ∈ str(X̃′).

Proof. By 7.3 and Proposition 7.8, we get affine maps satisfying (39) on
every simplex (∆S, S) of S(X′). They fit to define f aff on S(X′). Uniqueness
follows from surjectivity of Val. ��
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Proof of Theorem 1.2. We may assume that X ′ is irreducible. By
Chevalley’s theorem, f(X ′) contains an open dense subset of a d-dimensional
closed subvariety X of A. Since val is continuous, we conclude that

val(Xan) = val( f(X ′)an).

By Proposition 9.2, we have val(Xan) = f aff(S(X′)). The tropical variety
val(Xan) is d-dimensional (Theorem 6.9) and hence S(X′) contains a sim-
plex (∆S, S) of dimension at least d. The vertices of ∆S correspond to
irreducible components of X̃′ containing S. ��
Remark 9.3. Theorem 1.2 is also true analytically in the style of The-
orem 5.8 with A replacingGn

m . It wouldn’t be difficult to deduce Theorem 1.2
directly from Theorem 5.8.

Theorem 9.4. If A is an arbitrary abelian variety overKwith t-dimensional
formal abelian scheme B in the Raynaud extension E of A (see [BL2, §1]),
then Theorem 1.2 holds with 1 − t + dim f(X ′) replacing 1 + dim f(X ′).

Proof. We define val on E as in [BL2, p. 656]. Note that E is locally trivial
over Ban and hence we deduce easily form Theorem 6.9 that val(X) is at
least of dimension dim(X) − t. Since Proposition 9.2 generalizes to this
context, we can follow the proof of Theorem 1.2 to get the claim. ��
9.5. For the remaining part of this section, we consider a field K with
a discrete valuation v and we assume thatK is the completion of the algebraic
closure of the completion of K with respect to v. The unique extension of v
to a valuation of K is also denoted by v with corresponding absolute value
| | := e−v.

Let A be an abelian variety over K which is totally degenerate over K,
i.e. Aan

K
= (Gn

m)an
K

/M for a lattice M. Again, let Λ := val(M) be the
corresponding complete lattice in Rn. Let X be a closed geometrically
integral d-dimensional closed subvariety of A.

For canonically metrized ample line bundles L1, . . . , Ld on A, we
want to describe the canonical measure c1(L1|X) ∧ · · · ∧ c1(Ld|X) on Xan.
By de Jong’s alteration theorem [dJ, Theorem 6.5], there is an alteration
f : X ′ → Xan

K
and a strictly semistable formal K◦-model X′ of X ′.

A d-dimensional simplex (∆S, S) of S(X′), S ∈ str(X̃′), is called non-
degenerate with respect to f if faff(∆S) is also d-dimensional. Then S is
a K̃-rational point contained in d + 1-irreducible components Y0, . . . , Yd

of X̃′. If u0, . . . , ud denote the corresponding coordinates, then ∆S is given
by {u0 +· · ·+ud = v(π)}. We consider the d-dimensional standard simplex

ΣS := {
u ∈ Rd

+ | u1 + · · · + ud ≤ v(π)
}

and the affine map f (0)
aff : ΣS → R

n given by

f (0)
aff (u1, . . . , ud) = faff(u0, . . . , ud), (u0, . . . , ud) ∈ ∆S.
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If we extend f (0)

aff − f (0)

aff (0), then we get an associated injective linear map
�

(0)
S : Rd → R

n as in 7.13. It is defined over Z and hence ΛS := (�
(0)
S )−1(Λ)

is a complete rational lattice in Rd. The positive definite bilinear form bj
associated to Lj induces a complete lattice

Λ
Lj

S := {
bj

(
�

(0)
S (·), λ) | λ ∈ Λ

}
on (Rd)∗ = Rd. We denote by vol the (mixed) volume with respect to the
Lebesgue measure on Rd. By Corollary 3.9, the following result describes
the canonical measure on Xan

K
:

Theorem 9.6. Under the hypothesis of 9.5, the measure µ := c1( f ∗(L1))∧
· · ·∧c1( f ∗(Ld)) is supported in the union of the non-degenerated simplices
(∆S, S) of S(X′). For a measurable subset Ω of such a simplex, we have

µ(Ω) = d! · vol
(
Λ

L1
S , . . . ,Λ

Ld
S

)
vol(ΛS)

· vol(Ω).

Proof. We follow the steps of the proof of Theorem 8.6. We may assume
that L := L1 = · · · = Ld and L symmetric. We use the same Σ, C, A, L,
Am and Xm . The main difference is that the role of Xf−an

m is replaced by
the minimal formal analytic structure X′

m on X ′ which refines (X′)f−an such
that f extends to a morphism φm : X′

m → Af−an
m . Note that we obtain X′

m

and φm by applying 7.4 to Cm := 1
m C instead of C. In this sense, we may

use in the following the description and the properties of X′
m from Sect. 7.

Similarly as in Step 1, we have the following weak limit of regular Borel
measures on X ′:

µ = lim
m→∞ m−2d

∑
Z

degφ̃
∗
m(L̃)(Z)δξZ ,(40)

where Z ranges over all irreducible components of X̃
′
m . Note that Val(ξZ)

is in the relative interior of a simplex ∆ := (∆S, S) of S(X′) for a unique
S ∈ str(X̃′). If ∆ is degenerate with respect to f , then we claim

degφ̃
∗
m(L̃)(Z) = 0.(41)

By definition, the simplex ρ := faff(∆) is contained in Σ and has dimen-
sion < d. Formula (39) yields val( f(ξZ)) ∈ ρ. By projection formula, it
is enough to show that Y := φ̃m(Z) is no irreducible component of X̃m .
We argue by contradiction. We apply Theorem 6.10 to the irreducible com-
ponent Y using that Cm is transversal to val(Xan

K
). We conclude that Y corres-

ponds to an equivalence class of transversal vertices, i.e. there is a unique
d-codimensional ∆m ∈ Cm such that the torus orbit in Ãm associated to
relint(∆m) is dense in Y . Since Cm is Σ-generic, we have ρ ∩ ∆m = ∅.
But ( f(ξZ))∼ = φ̃m(ξ̃ Z) is the generic point of Y and hence contained in
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the above open dense torus orbit. This means val( f(ξZ)) ∈ relint(∆m) (see
Proposition 6.3) leading to a contradiction and proving (41).

Let ∆ = (∆S, S) be a canonical simplex of S(X′) which is non-
degenerate with respect to f . We have seen in 9.5 that ∆S is d-dimensional
and that S is a K̃-rational point contained in d + 1 irreducible components
of X̃′. Now we use Sect. 7, with ∆S,ΣS playing the role of ∆(d, π)
and Σ(d, π), to express properties of X′

m in terms of the polytopal de-
composition Dm := ( f (0)

aff )−1(Cm) of ΣS (see 9.5). By Remark 7.6, the
irreducible components Z of X̃

′
m with Val(ξZ) ∈ relint(∆) correspond bi-

jectively to the vertices u′ of Dm contained in relint(ΣS). For such a Z, the
corresponding u′ is given by omitting the coordinate u0 of u := Val(ξZ) ∈
relint(∆S). Moreover, Z is isomorphic to the toric variety Yu′ associated to
the vertex u′ and we will identify them later. This replaces Step 2.

Note that the point ξu′ of Corollary 4.5 is in the skeleton of the formal
scheme UΣS associated to the standard simplex ΣS (see [Ber5, 4.2 and The-
orem 4.3.1]). This skeleton consists of ΣS itself. We have seen in Remark 7.6
that there is a formal affine neighbourhood U′ of S in X′ and an étale morph-
ism φ0 : U′ → UΣS with u′ = val(φ0(ξZ)). This proves φ0(ξZ) = ξu′
and hence ξZ ∈ S(X′) (see [Ber5, Corollary 4.3.2]). By the identification
in 9.1, Val is the identity on S(X′) and hence ξZ ∈ ∆. By (40) and (41),
we conclude that the support of µ is contained in the union of the non-
degenerate simplices with respect to f .

To prove the remaining formula, we may assume that Ω is a polytope
contained in such a ∆ = (∆S, S). Note that f (0)

aff from 9.5 extends to an affine
map f0 : Rd → R

n which is also one-to-one. The polytopal decomposition
D := f −1

0 (C) of Rd is periodic with respect to the lattice ΛS from 9.5.
Similarly as in Step 3, we deduce from (40) the formula

µ(Ω) = vol(Ω)

vol(ΛS)
·
∑

u′
degφ̃

∗
(L̃)(Yu′),(42)

where u′ ranges over the vertices of D modulo ΛS. Since no multiplicities
occur, the argument is easier here and will be omitted. We have seen in
Step 4 that fL is a strongly polyhedral convex function with respect to C
(Corollary 6.7) and hence g := fL ◦ f0 is a strongly polyhedral convex
function with respect to D . As in (36), we conclude that

degφ̃
∗
(L̃)(Yu′) = d! · vol({u′}g).(43)

If u′ ranges over the vertices of D , the rational polytopes {u′}g are the
d-dimensional polytopes of the dual polytopal decomposition Dg of Rd.
Since Dg is ΛL

S -periodic, the formula in the claim follows from (42)
and (43). ��
Corollary 9.7. If we do not require that L0, . . . , Ld are ample in The-
orem 9.6, then µ is still supported in the union of the non-degenerate



372 W. Gubler

simplices (∆S, S) of S(X′) and the restriction of µ to such a simplex is still
a Haar measure.

Proof. This follows from Theorem 9.6 by multilinearity as in Remark 8.7.
��

Example 9.8. We consider the special case X = A in Theorem 9.6. Using
Aan
K

= (Gn
m)an
K

/M, the points ξu from Corollary 4.5 form a canonical sub-
set S(A) of Aan

K
which we call the skeleton of A. By [Ber1, Example 5.2.12

and Theorem 6.5.1], this is a closed subset of Aan
K

and val restricts to
a homeomorphism from S(A) onto Rn/Λ which we use for identification.

By a combinatorial result of Knudson and Mumford [KKMS, Chapt. III],
there is a rational triangulation C of Rn/Λ (even refining any given rational
polytopal decomposition) and m ∈ N \ {0} such that for every ∆ ∈ C,
the simplex m∆ is GL(n,Z)-isomorphic to a Zn-translate of the standard
simplex {u ∈ Rn+ | u1 + · · · + un ≤ 1}. Then the formal K◦-model A of A
associated to C is strictly semistable. By the way, Künnemann generalized
this construction to prove the existence of projective strictly semistable
K

◦-models for arbitrary abelian varieties (see [Ku1] and also the erratum
in [Ku2, 5.8]). By the second step in the proof of Theorem 9.6, the skeleton
of A agrees with S(A). We get a triangulation of S(A) corresponding to C.

We apply Theorem 9.6 with X ′ = X = A and X′ = A. Note that the non-
degenerate simplices (∆S, S) correspond to the n-dimensional simplices
of C and hence the lattice Λ

Lj

S does not depend on the choice of the stratum S.
We conclude that the measure µ from Theorem 9.6 is supported in S(A) and
corresponds to a Haar measure on Rn/Λ. By Proposition 3.12, it has total
measure degL1,...,Ln

(A). Using multilinearity for non-ample line bundles,
this proves the following result:

Corollary 9.9. Let L1, . . . , Ln be canonically metrized line bundles on the
totally degenerate abelian variety A from above. Then c1(L1)∧· · ·∧c1(Ln)
is supported in the skeleton S(A) and corresponds to the Haar measure
on Rn/Λ with total measure degL1,...,Ln

(A).

A. Convex geometry

In this appendix, we gather notions and results from convex geometry.

A.1. A polyhedron ∆ in Rn is an intersection of finitely many closed half-
spaces {u ∈ Rn | mi · u ≥ ci}. We say that ∆ is Γ -rational if we may
choose all mi ∈ Zn and all ci ∈ Γ . A closed face of ∆ is either ∆ itself
or has the form H ∩ ∆ where H is the boundary of a closed half-space
containing ∆. An open face of ∆ is a closed face without all its properly
contained closed faces. We denote by int(∆) the topological interior of ∆
in Rn and by relint(∆) the unique open face of ∆ which is dense in ∆.
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A bounded polyhedron is called a polytope. By linear algebra, a polytope
is Γ -rational if and only if all vertices are in Γ n and the edges have rational
slopes. A (Γ -rational) polytopal set S in Rn is a finite union of (Γ -rational)
polytopes in Rn. S is said to have pure dimension d if all maximal polytopes
of S have dimension d.

A polytopal complex C in Rn is a locally finite set of polytopes such that

(a) ∆ ∈ C ⇒ all closed faces of ∆ are in C;
(b) ∆,σ ∈ C ⇒ ∆ ∩ σ is either empty or a closed face of ∆ and σ .

The polytopal complex is called Γ -rational if every ∆ ∈ C is Γ -rational.
A polytopal decomposition of S ⊂ Rn is a polytopal complex with S =
∪∆∈C∆. It is easy to see that every Γ -rational polytopal set has a finite Γ -ra-
tional polytopal decomposition. A triangulation of S is a polytopal decom-
position consisting only of simplices. A polytopal complex D subdivides C
if every polytope ∆ in C has a polytopal decomposition in D .

A cone σ in Rn is centered at 0, i.e. it is characterized by R+σ = σ . Its
dual is defined by

σ̌ := {u′ ∈ Rn | u · u′ ≥ 0 ∀u ∈ σ}.
A.2. Let S be a locally finite union of polytopes in Rn . The local cone
LCu(S) at u is defined by

LCu(S) := {w + u | w ∈ Rn, [0, ε)w + u ⊂ S for some ε > 0}.
Then S is said to be concave in u ∈ S if the convex hull of LCu(S) is an
affine subspace of Rn . The set S is called totally concave if it is concave in
all u ∈ S.

Let S be a locally finite union of d-dimensional polytopes in Rn. A poly-
topal decomposition C of Rn is said to be transversal to S if the polytopal
set ∆ ∩ S is either empty or of pure dimension d − codim(∆) for every
∆ ∈ C.

If C is transversal to S and ∆ ∈ C is of codimension d, then ∆ ∩ S
consists of finitely many points. Such points are called transversal vertices
of C ∩ S. Two transversal vertices are called equivalent if they are contained
in the same open face of C.

A.3. Let C be a polytopal decomposition of Rn . A strongly polyhedral
convex function f with respect to C is a convex function f : Rn → R such
that the n-dimensional ∆ ∈ C are the maximal subsets of Rn where f is
affine, i.e. there are m∆ ∈ Rn, c∆ ∈ R with

f(u) = m∆ · u + c∆

for every u ∈ ∆. The vector m∆ is called the peg of ∆. Recall that f is
convex if

f(rx + sy) ≤ r f(x) + s f(y)(44)
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for x, y ∈ Rn and r, s ∈ [0, 1] with r + s = 1. Warning: In the theory
of toric varieties, convex functions are defined the opposite way! Here,
we follow the terminology from analysis and we call a convex function f
strictly convex if we have < in (44) for x �= y and 0 < r < 1.

A.4. There is a dual complex C f of C realized in Rn with respect to
a strongly polyhedral convex function f : For σ ∈ C, let

star(σ) := {∆ ∈ C | σ ⊂ ∆}, starn(σ) := {∆ ∈ C | σ ⊂ ∆, dim(∆) = n}.

There is a dual polytope σ f inRn with vertices equal to {m∆ | ∆ ∈ starn(σ)}.
These polytopes form the dual complex C f [McM, Theorem 3.1]. It may
happen that C f does not cover Rn . For more details and biduality, we refer
to [McM].

A.5. For a vertex u0 of C, the polytope {u0} f depends only on the local
cones LCu0(∆), ∆ ∈ starn(u0), and the pegs on starn(u0). We have

{u0} f = {
ω ∈ Rn | u ∈ ∆ ∈ starn(u0) ⇒ ω · (u − u0) ≤ m∆ · (u − u0)

}
.

(45)

This follows from [Oda, A.3 and Lemma 2.12]. For a d-dimensional poly-
tope σ with vertex u0, we have

σ f = {u0} f ∩ (
m∆ + σ⊥)

, dim(σ) + dim(σ f ) = n,(46)

where ∆ is any element of starn(σ) (see [Oda, Corollary A.19]).

A.6. For compact convex subsets P and Q of Rn, we have the Minkowski
sum

P + Q := {u + u′ | u ∈ P, u′ ∈ Q}.
This is again a compact convex set. Similarly or by associativity, we define
the Minkowski sum for more than two summands. For a non-negative real
number λ, we use λP := {λu | u ∈ P}. There is a unique symmetric real
function V(P1, . . . , Pn) on the set of compact convex subsets of Rn which
is multilinear with respect to the above operations and which satisfies

V(P, . . . , P) = vol(P).

The number V(P1, . . . , Pn) is called the mixed volume of P1, . . . , Pn . The
mixed volume is monotone increasing with respect to inclusion and hence
it is non-negative. Moreover, it follows from translation invariance that
V(P1, . . . , Pn) > 0 if all the Pj have non-empty interiors. For proofs and
more details, we refer to [BZ, Chapt. 4].
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