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Abstract. We prove that under certain regularity conditions imposed on
the renormalizations of two circle diffeomorphisms with singularities, their
C1-smooth equivalence follows from exponential convergence of those
renormalizations. As an easy corollary, any two analytical critical circle
maps with the same order of critical points and the same irrational rotation
number are C1-smoothly conjugate.

1 Introduction

The main result of this paper is given by the following theorem

Theorem 1. Let T and T̃ be two analytical critical circle maps with the
same order of critical points and the same irrational rotation number. Then
they are C1-smoothly conjugate to each other.

This is a rigidity-type statement. J.-C. Yoccoz [14] has proved that an
analytic critical circle map with irrational rotation number is topologically
conjugate to a rigid rotation. Thus, any two critical circle maps with the same
irrational rotation number, that is with the same combinatorial structure of
trajectories, are topologically equivalent. The theorem above states that the
topological equivalence implies smooth (C1) equivalence provided that the
critical points have the same order. Most importantly, the result does not
depend on the Diophantine properties of rotations and C1-rigidity holds for
all irrational rotation numbers. It is well-known that similar statement is
false in the case of diffeomorphisms. Arnold [2] constructed examples of
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analytic diffeomorphisms with irrational rotation numbers for which any
conjugacy with a rigid rotation is essentially singular. The phenomenon of
stronger rigidity for critical circle maps is connected with the presence of
critical points which makes dynamical properties more rigid. We call this
phenomenon robust rigidity.

Our approach is based on renormalizations. The renormalization method
was used in circle dynamics for the last 20 years. The main idea is based on
the following principle: two maps with the same irrational rotation number
and with the same local structure of their singular points (if such points are
present) belong to a same stable manifold for the renormalization operator.
This means that two sequences of renormalizations constructed from these
two maps converge (approach each other) with exponential rate. There
exists a number of mathematical results related to the general principle
formulated above. In the case of circle diffeomorphisms the corresponding
statement is equivalent, in certain sense, to the Herman theory [4,15,9,5].
One can show that renormalizations converge exponentially for all irrational
rotation numbers which implies rigidity results under additional arithmetical
conditions on the rotation numbers.

In the case of critical circle maps, that is circle homeomorphisms which
are smooth everywhere except at one point where the first derivative van-
ishes, the convergence of renormalization was proved first by de Faria, de
Melo for the rotation numbers of the bounded type. Yampolsky [13] proved
that the exponential convergence of renormalizations holds for all irrational
rotation numbers provided that the critical maps are analytic.

There are also results on convergence of renormalizations in the case
of circle maps with break points (points with the jump of the first deriva-
tive). Such results has been proven in [7] for quadratic irrationals and were
extended to the case of all irrational rotation numbers in [8].

Convergence of renormalization immediately implies rigidity for the
rotation numbers of the bounded type (in fact, rigidity can be extended to
a wider class of the rotation numbers) however it does not give robust rigid-
ity. Renormalization scheme requires to consider the renormalized map fn
of the n-th step and to iterate it kn+1 times, where kn+1 is an integer in
the continued fraction expansion of the rotation number ρ. For a very non-
Diophantine rotation numbers kn+1 can be arbitrary large, so that after
iteration two initially close maps fn and f̃n are not close anymore. This is
exactly what happens in the diffeomorphism case when both fn and f̃n are
close to linear maps with the slope 1. That is why rigidity in the case of
diffeomorphisms holds only under additional Diophantine assumptions on
the rotation numbers.

In the case of the critical circle maps, however, the maps fn are es-
sentially non-linear. The case of large kn+1 corresponds to appearance of
exactly one point of almost tangency with the diagonal (almost parabolic
point). Iterations of such maps are very regular and allow for a very precise
asymptotic analysis. Thus the two ingredients in the proof of robust rigid-
ity are convergence of renormalizations related to the continued-fraction
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expansion and regularity of iterations for maps with an almost parabolic
tangency. The main difficulty here is to glue these two mechanisms together
to prove a robust rigidity and that is exactly the main content of the paper.
In fact, the main result is given by Theorem 2 which states that convergence
of renormalizations plus regularity conditions on the renormalized maps fn
give robust rigidity. It can be shown (and we explain it in Sect. 4) that the
regularity conditions always hold in the case of critical circle maps even
without assuming analyticity or integer order of the critical point. However,
the results on the convergence of renormalization are proven at the moment
only in the case of critical circle maps with the order of critical point 3, 5, 7,
. . . . Moreover, the full hyperbolicity of the renormalization horseshoe is
rigorously proven only in the analytic case [13]. That is why our main result
covers only this last case. However, the moment results on hyperbolicity of
renormalization will be extended to the other cases of critical circle maps,
the robust rigidity will follow immediately.

As we have mentioned above, convergence of renormalizations implies
rigidity for critical circle maps with the rotation numbers of the bounded
type. This was shown by de Faria and de Melo [3] who proved that any
two C∞ critical circle maps with the same order of the critical points (given
by odd integer numbers) and with the same irrational rotation number
of bounded type are C1+ε-smoothly conjugate to each other. It was also
shown in [3] that C1+ε-rigidity cannot be extended even to the case of
all Diophantine rotation numbers. In the note by Avila [1] similar result
is proven in the analytic case. In fact, it follows from [1] that our result
on C1-rigidity is sharp even on a level of the modulo of continuity of the
derivative of the conjugacy. It is interesting to mention that locally near the
crytical point the conjugacy is C1+γ -smooth, as it was shown by Khmelev
and Yampolsky [10]. We shall explain in Sect. 4 that this result also follows
from our analysis.

Finally, note that our approach allows to prove C1-rigidity for a large
class of rotation numbers in the case of circle diffeomorphisms with break
points (see [12] for exact statements). However, it is unclear whether robust
rigidity, i.e. C1-rigidity for all irrational rotation numbers, holds in this case.

The paper has the following structure. In Sect. 2 we built up a general
set-up and formulate the main results. Section 3 forms the main technical
part of the paper. Here we prove Theorem 2 which gives general criteria
for robust rigidity in terms of the convergence of renormalizations and
regularity conditions. Theorem 1 is proven in Sect. 4. This is a rather simple
and straightforward application of Theorem 2.

2 General settings and statement of Theorem 2

2.1 Circle homeomorphism and renormalizations. Let T be an orien-
tation-preserving homeomorphism of the unit circle T1 = R/Z. The par-
ticular notion of renormalization we use in this paper is directly related to
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the expansion of the rotation number ρ of a circle homeomorphism T in the
form of continued fraction. The latter is defined as

ρ = [k1, k2, . . . , kn, . . . ] = 1

k1 + 1

k2 + 1
· · ·

kn + 1

· · ·

(1)

where the sequence of positive integers kn , n ≥ 1, called partial quotients,
can be either finite or infinite, in which two cases the right-hand side of (1)
corresponds to either a rational number which can be calculated directly,
or an irrational number given by a limit for the sequence of rational con-
vergents (or, just convergents) pn/qn = [k1, k2, . . . , kn] (here pn and qn
are mutually prime positive integers). The continued fraction expansion for
rotation number

ρ(T ) = [k1, k2, . . . , kn, . . . ] (2)

is uniquely defined by (1) if we agree not to consider finite expansions with
the last partial quotient equal to 1. The convergents pn/qn are also defined
for rational ρ(T ), but in this case the sequence of convergents is finite, of the
same length as the expansion (2). For convenience, we also define p0 = 0,
q0 = 1 and p−1 = 1, q−1 = 0.

Given a circle homeomorphism T with irrational ρ(T ), one may con-
sider the marked trajectory (i.e. the trajectory of the marked point) ξi =
T iξ0 ∈ T

1, i ≥ 0, and pick out of it the sequence of the dynamical
convergents ξqn , n ≥ 0, indexed by the denominators of the consecutive
rational convergents to ρ(T ). We will also conventionally use ξq−1 = ξ0 −1.
The well-understood arithmetical properties of rational convergents and the
combinatorial equivalence of all the circle homeomorphisms with a fixed
irrational rotation number imply that the dynamical convergents approach
the marked point, alternating their order in the following way:

ξq−1 < ξq1 < ξq3 < · · · < ξq2m+1 < · · · < ξ0

< · · · < ξq2m < · · · < ξq2 < ξq0. (3)

We define the nth renormalization segment ∆
(n)
0 as the circle arc [ξ0, ξqn ]

if n is even and [ξqn , ξ0] if n is odd. We shall also use the notations ∆̇
(n)
0 =

∆
(n)

0 \{ξ0, ξqn},∆(n)

0 = ∆
(n)

0 ∪∆
(n+1)

0 , and ∆̌
(n)

0 = ∆
(n)

0 \∆(n+2)

0 . An important
addition to the property (3) can now be formulated: the first point of the
marked trajectory that enters ∆̇

(n)
0 , is ξqn+qn+1 .

The iterates T qn and T qn−1 restricted to ∆
(n−1)
0 and ∆

(n)
0 respectively are

nothing else but two continuous components of the first-return map for T
on the segment ∆

(n−1)
0 with its endpoints being identified. The consecutive
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images of ∆
(n−1)
0 and ∆

(n)
0 until the return to ∆

(n−1)
0 cover the whole circle

without overlapping beyond their endpoints, thus forming the nth dynamical
partition

Pn = {
T i∆

(n−1)
0 , 0 ≤ i < qn

} ∪ {
T i∆

(n)
0 , 0 ≤ i < qn−1

}

of T1. The endpoints of the segments from Pn form the set

Ξn = {ξi, 0 ≤ i < qn−1 + qn}.
We shall also use the extended set Ξ∗

n = Ξn ∪ {ξqn−1+qn} and the extended
partition P ∗

n = Pn ∪ {T qn∆
(n−1)
0 , T qn−1∆

(n)
0 }.

For n ≥ 0, the n-th renormalization of an orientation-preserving homeo-
morphism T of the unit circle T1 with rotation number (2) with respect to
a marked point ξ0 ∈ T1 is a function fn : [−1, 0] → R obtained from the
map T qn restricted to the nth renormalization segment ∆

(n−1)

0 by rescaling
the coordinates:

fn = rn ◦ T qn ◦ r−1
n

where rn is an affine change of coordinates that sends ξqn−1 to −1 and ξ0
to 0 (if we identify ξ0 with zero, then rn is exactly multiplication by
(−1)n/|∆(n−1)

0 |, where |·| denotes length). Note the following useful equali-
ties: fn(0) = |∆(n)

0 |/|∆(n−1)
0 | and rn = − fn(0)rn+1.

Remark 1. This definition is valid for all n ≥ 0 if ρ(T ) is irrational. Other-
wise, n needs to be less than the length of expansion (2), or can equal it
providing that ξqn−1 	= ξ0, n > 0.

It is useful to notice that qn + qn−1 − qm , m ≤ n, is the maximal value
of index l such that ξl ∈ Ξn ∩ ∆

(m−1)
0 .

The combinatorics of dynamical partitions are summarized with the
following statement.

Lemma 1. For m < n we have

Ξn ∩ ∆̌
(m−1)
0 =

⋃

ξl ∈ Ξn∩∆
(m)
0 \{ξqm }

{ξl+qm−1+iqm }0≤i<km+1 (4)

and for every ξl ∈ Ξn ∩ ∆
(m)
0 \{ξqm} we have ξl+qm−1+km+1qm = ξl+qm+1 ∈

(Ξ∗
n ∩∆

(m)
0 ).

Proof. Follows easily from properties of continued fractions. ��
Lemma 1 shows that the whole array of points of Ξn (and thus the

segments of Pn) contained in ∆̌
(m−1)
0 can be split into ‘threads’ starting

at appropriate points (segments) in ∆
(m)
0 and leading back to ∆

(m)
0 . This

decomposition will be used twice in inductive procedures in the sequel:
firstly in Subsect. 3.1.3 (for points) and secondly in Subsects. 3.3 and 3.4
(for segments).
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2.2 Statement of the results. For given α ∈ (0, 1) (this number is fixed
throughout the whole paper) and a closed interval U ⊂ R consider a Banach
space C2+α(U) with a standard norm.

Diffeomorphism with singularity. An orientation-preserving homeo-
morphism T on T1 is called a circle diffeomorphism with singularity if
there exists a singularity point ξ0 ∈ T1 such that T ∈ C2+α([ξ0 −1, ξ0]) and
T ′(ξ) > 0 for every ξ ∈ (ξ0 − 1, ξ0). If T is a circle diffeomorphism with
singularity we shall always use the singularity point ξ0 as a marked point
for renormalizations. Notice, that such renormalizations are C2+α-smooth
and f ′

n(x) > 0 for x ∈ [−1, 0). For simplicity, we assign coordinate zero
to ξ0.

Regularity conditions. Given a vector K = (K1, K2, K3, K4) with posi-
tive components and a strictly increasing real function f ∈ C2+α([−1, 0])
such that f(z) > z for each z ∈ [−1, 0], we say that f is K-regular, if the
following conditions hold:

i) ‖ f ‖2+α ≤ K1;
ii) the set Mf,K2 = {z ∈ [−1, 0], f(z)− z < K2} is either an open interval

or empty (in particular, this implies f(−1) ≥ K2 − 1 and f(0) ≥ K2);
iii) d2 f

dz2 (z) > K3 for each z ∈ Mf,K2;

iv) d f
dz (z) > K4 for each −1 ≤ z < −K2

2 .

Note, that here K1 has to be large enough, when K2, K3 and K4 have to be
small enough. We will assume that K1 > 1 and K2, K3, K4 < 1.

Refining partitions. A system of nested partitions of the circle Pn, n ≥ 0,
(nested here means that each element of Pn+1 is contained in an element
of Pn) is called refining if the maximal length of an element of Pn tends to
zero as n → ∞. That system is called exponentially refining if there exist
constants C1 > 0 and 0 < β < 1 such that |I | ≤ C1β

n−m |J| for any I ∈ Pn
and J ∈ Pm such that I ⊂ J .

Theorem 2. Suppose that for two circle diffeomorphisms with singulari-
ties T and T̃ the following conditions hold:

1) ρ(T ) = ρ(T̃ ) is irrational;
2) there exists a vector K such that the renormalizations fn and f̃n are

K-regular uniformly with respect to n;
3) the systems of dynamical partitions Pn and P̃n are exponentially refin-

ing;
4) there exist constants C2 > 0 and λ ∈ (0, 1) such that ‖ fn − f̃n‖C2

≤ C2λ
n.

Then there exists an orientation-preserving C1-smooth circle diffeomorph-
ism φ such that

φ ◦ T ◦ φ−1 = T̃ (5)
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Remark 2. Since fn(0) = |∆(n)
0 |/|∆(n−1)

0 |, K-regularity of fn implies that
the segments ∆

(n)
0 and ∆

(n−1)
0 are of the same order.

Remark 3. Condition 3) implies that T and T̃ are topologically conjugated.
It is easy to see that in the case of circle diffeomorphisms with singularities
the conjugacy φ can be smooth only in the case when it maps ξ0 into ξ̃0.
Clearly, this condition determines φ uniquely. Everywhere below we discuss
only this particular conjugacy and denote it by φ.

Here and in what follows, all the constants Ci and Si do not depend on
the renormalization step n.

2.3 Criterion of smoothness. We will use the following criterion for the
smoothness of a circle homeomorphism φ. It is inspired by the similar
statement in [3] called there the ‘coherence property’.

For a segment I ⊂ T1, let us define the ratio

σ(I ) = |φ(I )|
|I | ,

where | · | is the length.

Proposition 1. Suppose that the system of partitions Pn of the circle is
refining, and there exist constants C3 > 0 and µ ∈ (0, 1) such that for any
two segments I, I ′ ∈ Pn, which either are adjacent, or I, I ′ ⊂ J for some
J ∈ Pn−1, the following estimate holds:

| log σ(I ) − log σ(I ′)| ≤ C3µ
n. (6)

Then φ ∈ C1(T1) and φ′ > 0.

Proof. Denote by φn a homeomorphism of T1 that equals φ on Ξn and is
linear on each element of Pn (so, φ0 is an identity.) Let φ′

n : T1 → (0,+∞)
be the right-hand derivative of φn . Then φ′

n = σ(I ) over any I ∈ Pn,
excluding the right endpoint of I . It follows from (6) that | log σ(I ) −
log σ(J)| ≤ C3µ

n for any I ∈ Pn such that I ⊂ J ∈ Pn−1. This implies
that log φ′

n(ξ), n ≥ 0, is a Cauchy sequence uniformly on T1, so it has
a limit h(ξ). Now, it is easy to show that due to (6) the function h is
continuous on T1. Taking a limit in the equality φn(ξ) = ∫ ξ

0 φ′
n(τ)dτ we get

φ(ξ) = ∫ ξ

0 eh(τ)dτ . It follows that φ′ = eh is continuous and positive on T1.
��

Remark 4. In this proof we do not use the dynamical nature of partitions Pn.
The criterion holds for any refining system of nested partitions of the circle.

We shall also use the ratio of appropriately rescaled intervals I ⊂ T1

and φ(I ):

sn(I ) = |r̃n(φ(I ))|
|rn(I )| ,
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where rn(ξ) = (−1)nξ/|∆(n−1)
0 | and r̃n(ξ̃) = (−1)n ξ̃/|∆̃(n−1)

0 | are the nth
rescalings of T and T̃ respectively. It is obvious that sn (I ) = σ(I )/σ(∆

(n−1)
0 )

and therefore | log σ(I ) − log σ(J)| = | log sn(I ) − log sn(J)| as soon as
I, J ⊂ ∆̌

(n−1)

0 . In vicinity of singularity point ξ0, we shall work with sn
instead of σ .

Define also the distance between appropriately rescaled points ξ ∈ T1

and φ(ξ):

dn(ξ) = |r̃n(φ(ξ)) − rn(ξ)|

3 Proof of Theorem 2

In this section we prove Theorem 2 by showing that its conditions imply
the conditions of Proposition 1. We set up our tools in Subsect. 3.1, then
prove (6) on the ‘core’ interval ∆(n−2)

0 in Subsect. 3.2, and afterwards spread
it onto the whole circle in two steps, which form Subsects. 3.3 and 3.4.

3.1 Preparations

3.1.1 Funnel and its center. The main difficulty is to analyse the iter-
ates of fm in the case when km+1 is very large. In this case, the graph of fm
almost touches the identity line, but does that in a non-degenerate way deter-
mined by the regularity conditions. Informally, we call this almost-tangency
a ‘funnel’.

If the set M fm ,K2/2 = {z ∈ [−1, 0], fm(z) − z < K2/2} is not empty, let
us define the center of funnel z(m)∗ ∈ M fm ,K2/2 by the equality f ′

m(z(m)∗ ) = 1,
otherwise z(m)∗ is not defined. By our definition, z(m)∗ is the minimum point of
fm(z)− z on [0, 1]. Similarly define z̃(m)∗ . It is obvious that if km+1 > 2/K2,
then both z(m)∗ and z̃(m)∗ are defined.

Lemma 2. If z(m)∗ and z̃(m)∗ are both defined, then |z(m)∗ − z̃(m)∗ | ≤ C4λ
m with

C4 > 0.

Proof. Follows from Condition 4) of Theorem 2. ��
3.1.2 Initial adjustment of diffeomorphisms. Conditions 2) and 4) of
Theorem 2 imply that | log σ(∆

(n−1)

0 )−log σ(∆
(n)

0 )| = | log fn(0)−log f̃n(0)|
≤ S1λ

n , S1 > 0. Therefore, the limit s = limn→+∞ log σ(∆
(n)
0 ) exists,

and the convergence is exponential. We can always achieve s = 0 by
a C∞-smooth initial adjustment of one of the diffeomorphisms T or T̃ .
Indeed, if s < 0 let us consider ψ ◦ T ◦ ψ−1 instead of T where ψ is
a C∞-smooth orientation-preserving diffeomorphism of T1 that is affine
on ∆

(1)
0 with factor es. This change of T will not affect the renormalizations

fn, n ≥ 2, so they will stay regular uniformly w.r.t. n, but s will vanish. In
the case s > 0, the same result is achieved by the similar change of T̃ .

Thus, in the sequel we assume the pair of diffeomorphisms T and T̃ to
be already adjusted as described above, and therefore there exists C5 > 0
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such that
∣
∣ log σ

(
∆

(n)
0

)∣∣ ≤ C5λ
n. (7)

3.1.3 Closeness of rescaled points

Proposition 2. For any λ1 ∈ (
√

λ, 1) there exist ν1 ∈ (0, 1) and C6 > 0
such that

dm(ξ) ≤ C6λ
n
1 (8)

provided (1 − ν1)n ≤ m ≤ n and ξ ∈ Ξ∗
n ∩ ∆

(m−1)
0 . (For m = n − 1,

λ1 in (8) can be taken equal to
√

λ.)

Let us first prove the following

Lemma 3. There exist C7 > 0 such that

max
ξ ∈ Ξ∗

n∩∆
(m−1)
0

dm(ξ) ≤ C7

(
max

ξ ∈ Ξ∗
n∩∆

(m)
0

dm+1(ξ) + λm/2
)

(9)

for every m < n.

Proof. For fixed m and n, let us denote d = max
ξ ∈ Ξ∗

n∩∆
(m)
0
dm+1(ξ). We

need to prove the estimate

dm(ξ) ≤ C7(d + λm/2) (10)

for all ξ ∈ Ξ∗
n ∩ ∆

(m−1)
0 . The obvious equality dm(ξ) = | fm(0)rm+1(ξ) −

f̃m(0)r̃m+1(φ(ξ))| implies dm(ξ) ≤ K1dm+1(ξ)+ K1C2λ
m for any ξ ∈ ∆

(m)
0 ,

and therefore proves (10) for ξ ∈ Ξ∗
n ∩∆

(m)

0 , so we only need to prove (10)
for ξ ∈ Ξn ∩ ∆̌

(m−1)
0 .

Consider an arbitrary thread in the decomposition (4) and denote zi =
rm(ξl+qm−1+iqm ), z̃i = r̃m(ξ̃l+qm−1+iqm ) for 0 ≤ i ≤ km+1, so that zi+1 =
fm(zi), z̃i+1 = f̃m(z̃i). It is easy to see that dm(ξl+qm−1+iqm ) = |zi − z̃i|.

The consecutive estimates

dm(ξl+qm−1) =
∣
∣∣
∣∣
rm−1(ξl+qm−1)

fm−1(0)
− r̃m−1(ξ̃l+qm−1)

f̃m−1(0)

∣
∣∣
∣∣

≤ K1dm−1(ξl+qm−1) + C2λ
m−1

K2
2

,

dm−1(ξl+qm−1) = | fm−1(rm−1(ξl)) − f̃m−1(r̃m−1(ξ̃l))|
≤ K1dm−1(ξl) + C2λ

m−1,

dm−1(ξl) = | fm−1(0) fm(0)rm+1(ξl) − f̃m−1(0) f̃m(0)r̃m+1(ξ̃l)|
≤ K2

1dm+1(ξl) + 2K1C1λ
m−1,
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on the one hand, and dm(ξl+km+1) ≤ K1dm+1(ξl+km+1) + K1C2λ
m , on the

other, imply

|z0 − z̃0|, |zkm+1 − z̃km+1 | ≤ S2(d + λm)

with S2 > 0.
Let θi be a point between zi and z̃i such that |zi+1 − fm(z̃i)| =

f ′
m(θi) · |zi − z̃i |. Then

|zi+1 − z̃i+1| ≤ f ′
m(θi) · |zi − z̃i| + C2λ

m

|zi−1 − z̃i−1| ≤ ( f ′
m(θi−1))

−1 · (|zi − z̃i| + C2λ
m
)
.

First, we make N = [2/K2] + 1 steps from both edges and obtain
|zi − z̃i| ≤ S3(d + λm) with S3 > 0 for i ≤ N and for i ≥ km+1 − N. If
km+1 ≤ 2N then (10) is proven, otherwise all the points zi, z̃i for N ≤ i ≤
km+1 − N lie in Mfm ,K2/2 ∩ Mf̃m ,K2/2, and both z(m)∗ and z̃(m)∗ are defined (and
Lemma 2 for them holds).

On the second stage, we make l = [λ−m/2] + 1 steps from both edges,
although stop earlier when max{zi, z̃i} > z(m)∗ on the motion forward and
when min{zi, z̃i} < z(m)∗ on the motion backward. Since all the way we have
| f ′

m(θi)|, |( f ′
m(θi−1))

−1| < 1, the inequality |zi − z̃i| ≤ S4(d + λm/2) holds
with S4 > 0 for all points of this stage.

Now, one can see that if an early stop on the second stage did not occur,
then for the rest of points we have |zi − z(m)∗ |, |z̃i − z(m)∗ | ≤ S5l−1 ≤ S5λ

m/2

with S5 > 0 due to the well-known asymptotic estimates for iterates under
a non-degenerate tangency (see Lemma 5 below for their most precise
version). If both forward and backward motions were stopped early at i1
and i2 respectively, then the interval between the leftmost one and the
rightmost one of the four points zi1 , z̃i1, zi2 , z̃i2 , has length bounded by
2S4(d + λm/2) and contains the rest of points. If the motion in one direction
stopped early, and in another did not, then the two arguments can be easily
combined. Thus, in all the cases (10) is proven and so is the lemma. ��
Proof of Proposition 2. It is easy to verify that Ξ∗

n ∩∆
(n−1)
0 = {ξqn−1, ξqn−1+qn ,

ξ0, ξqn} and dn(ξqn−1) = dn(ξ0) = 0, dn(ξqn−1+qn ) = | fn(−1) − f̃n(−1)|,
dn(ξqn) = | fn(0) − f̃n(0)|, so max

ξ ∈ Ξ∗
n∩∆

(n−1)
0
dn(ξ) ≤ C2λ

n. Starting with
this estimate and using Lemma 3 inductively, it is easy to derive the formula

max
ξ ∈ Ξ∗

n∩∆
(m−1)
0

dm(ξ) ≤
n−m−1∑

j=0

C j+1
7 λ(m+ j)/2 + Cn−m

7 C2λ
n

= C7λ
m/2

(
C7λ

1/2
)n−m − 1

C7λ
1/2 − 1

+ Cn−m
7 C2λ

n

for any m < n. Assuming C7 ≥ 2λ−1/2 and m ≥ (1 − ν1)n, we get the
estimate dm(ξ) ≤ (C7 + C2)(C

ν1
7

√
λ)n for ξ as required. The statement of
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Proposition follows after we choose ν1 ∈ (0, 1) such that Cν1
7

√
λ ≤ λ1. (For

m = n − 1, we stop after the first step of the induction.) ��
Remark. We can take λ1 arbitrarily close to

√
λ for ν1 sufficiently small. In

what follows, we assume ν1 ≤ 3/4, so that λ(1−ν1)n ≤ λ
n/2
1 .

3.1.4 Rescaled ratio distortion

Proposition 3. There exist C8 > 0 such that
∣∣ log sm(T qm I ) − log sm(I )

∣∣ ≤ C8λ
n/2
1 (11)

for any (1 − ν1)n ≤ m < n and I ∈ Pn such that I ⊂ ∆̌
(m−1)

0 . (For
m = n − 1, λ1 in (11) can be taken equal to

√
λ.)

Proof. This statement follows from Proposition 2, though differently in two
cases. Let ξ, η ∈ Ξn be the endpoints of I .

If |rm(ξ) − rm(η)| ≥ λ
n/2
1 , then |sm(I ) − 1| ≤ dm(ξ)+dm(η)

|rm(ξ)−rm(η)| ≤ 2C6λ
n/2
1 ,

hence | log sm(I )| ≤ S6λ
n/2
1 with some S6 > 0. By the regularity conditions,

we have |rm(T qm ξ) − rm(T qmη)| = | fm(rm(ξ)) − fm(rm(η))| ≥ K4λ
n/2
1 ,

hence | log sm(T qm I )| ≤ S7λ
n/2
1 with some S7 > 0, and (11) follows.

In the opposite case, i.e. |rm (ξ)−rm(η)| ≤ λ
n/2
1 , note that | log sm(T qm I )−

log sm(I )| = | log f̃ ′
m(θ̃) − log f ′

m(θ)| ≤ K1 K−1
4 |θ − θ̃| + C2 K−1

4 λm with
θ ∈ rm(I ), θ̃ ∈ r̃m(φ(I )). This estimate implies (11) since |θ − θ̃| ≤
|rm(ξ) − rm(η)| + dm(ξ) + dm(η) and λm ≤ λ

n/2
1 . ��

3.2 The core interval ∆
(n−2)

0 . In this subsection we prove the following

Proposition 4. There exist C9 > 0 such that for any segment I ∈ P ∗
n ,

I ⊂ ∆
(n−2)

0 , the following estimate holds:

| log σ(I )| ≤ C9λ
n
2, (12)

where λ2 = λ
(1+α)α
8(2+α) .

3.2.1 Settings on the core interval. The segment ∆
(n−2)
0 is a union of

kn +1 elements of Pn, namely ∆
(n−1)
0 , ∆

(n)
0 and Ii = T qn−2+iqn−1∆

(n−1)
0 , 0 ≤

i ≤ kn − 1. We shall also consider the segment Ikn = T qn∆
(n−1)
0 ∈ P ∗

n . Due
to the initial adjustment of diffeomorphisms we have made, the estimate
(7) holds for the segments ∆

(n−1)
0 and ∆

(n)
0 , as well as for ∆

(n−2)
0 , so if we

prove that

| log sn−1(Ii)| ≤ S8λ
n
2 (13)

for 0 ≤ i ≤ kn with S8 > 0, then the statement of Proposition 4 will
follow since σ(I ) = sn−1(I )σ(∆(n−2)) and λ2 > λ. To prove (12) for
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I = T qn−1∆
(n)
0 ∈ P ∗

n \Pn, we also use Proposition 2 and the bound
|rn(T qn−1∆

(n)
0 )| ≥ K2.

In the renormalized coordinates, we have sn−1(Ii) = ∆zi/∆z̃i with
∆zi = zi+1 − zi , where zi = f i

n−1(−1); and corresponding notations for T̃
with tildes over z and f .

The easy case when kn is bounded by some constant will be considered in
the proof of Proposition 4 (see Subsect. 3.2.4 below). Now, let us consider
the case kn > 2/K2, in which the funnel M fn−1,K2/2 is non-empty, and
its center z(n−1)∗ is defined. The affine orientation-preserving change of
variables

x = ϕ(z) = 1

2
f ′′
n−1(z

(n−1)
∗ )(z − z(n−1)

∗ )

sends the center of funnel into the origin and normalizes the second deriva-
tive of fn−1 there, thus transforming fn−1 into g = ϕ fn−1ϕ

−1 such that
g′(0) = 1, g′′(0) = 2. The value ε = g(0) = minx{g(x) − x} we call the
size of funnel. Since fn−1(z(n−1)∗ ) − z(n−1)∗ ≤ k−1

n , we have

0 < ε ≤ 2

K2
k−1

n . (14)

It follows from our construction that

|g(x) − (ε + x + x2)| ≤ C10|x|2+α, x ∈ ϕ[−1, 0] (15)

with C10 > 0. Denote xi = ϕzi , so that xi = gi(ϕ(−1)), and ∆xi = xi+1−xi .
Finally, let us make the corresponding change of variables for T̃ with

tildes over x, ϕ, z, f , g and ε and look at values si = ∆x̃i/∆xi . The following
simple lemma implies that (13) is equivalent to the similar estimate on si .

Lemma 4. | log sn−1(Ii) − log si | ≤ C11λ
n for 0 ≤ i ≤ kn with C11 > 0.

Proof. Notice that

| log sn−1(Ii) − log si| = ∣∣ log f ′′
n−1(z

(n−2)
∗ ) − log f̃ ′′

n−1(z̃
(n−2)
∗ )

∣∣

and use Lemma 2. ��
Thus to prove Proposition 4 in the case of large kn it is enough to show

that | log si | ≤ C12λ
n for 0 ≤ i ≤ kn with C12 > 0.

3.2.2 Funnel and tunnel asymptotics. According to (15), for |x|2+α >
const · ε the ε term does not affect the asymptotics of g, while in the
opposite case it does. Thus we need two different asymptotic formulas: one
for |x| > const ε

1
2+α and another for |x| < const ε

1
2+α (the latter part of the

funnel we call the ‘tunnel’). We shall make use of the following lemmas
presented here in the most general terms. Their proofs can be found in
Appendix.
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Lemma 5 (Funnel). Suppose that for a sequence of real numbers {si}i≥0

there exist C13 > 0 and α ∈ (0, 1) such that |si+1 − (si − s2
i )| ≤ C13|si |2+α

for every i ≥ 0. Then there exist constants D1 = D1(α, C13) > 0 and
d1 = d1(α, C13) ∈ (0, 1) such that as long as s0 ∈ (0, d1], the estimate

∣
∣
∣∣si − 1

i + s−1
0

∣
∣
∣∣ ≤ D1

(
i + s−1

0

)1+α
(16)

holds for every i ≥ 0. Moreover, there exists D2 = D2(α, C13) > 0 such
that

si − si+1 = 1
(
i + s−1

0

)2 (1 + δi), (17)

where |δi| ≤ D2sα
0 for all i ≥ 0 as long as s0 ∈ (0, d1].

Lemma 6 (Tunnel). Suppose that for a sequence of real numbers {si}i≥0
there exist C14, C15 > 0 and ε, α ∈ (0, 1) such that

1) |s0| ≤ C14ε,
2) |si+1 − (ε + si + s2

i )| ≤ C15|si |2+α for every i ≥ 0.

Fix arbitrary C16 > 0 and define N = N(C16, ε) = ε− 1
2 tan−1(C16ε

− α
2(2+α) ).

Then there exist constants D3 = D3(α, C14, C15, C16) > 0 and d2 =
d2(α, C14, C15, C16) ∈ (0, 1) such that as long as ε ∈ (0, d2], the following
estimate holds for every 0 ≤ i ≤ N:

|si − √
ε tan(

√
εi + a0)| ≤ D3(

√
ε tan

√
εi)1+ α(α+1)

2 , (18)

where a0 = tan−1(s0/
√

ε). Moreover, there exists D4 = D4(α, C14, C15, C16)
> 0 such that

si+1 − si = ε

(cos
√

εi)2
(1 + δi), (19)

where |δi| ≤ D4ε
α(α+1)
2(2+α) for all 0 ≤ i < N as long as ε ∈ (0, d2].

Remark. The choice of N(C16, ε) in this lemma implies the bound

√
ε tan

√
εi ≤ C16ε

1
2+α

for all i under consideration. Combining the relation tan−1 1
t = π

2 − tan−1 t
with the asymptotic formula tan−1 t = t + O(t3), t → 0, it is easy to derive

ε− 1
2 tan−1 ε

− α
2(2+α) = π

2
ε− 1

2 − ε− 1
2+α + O(ε

−1+α
2+α ), ε → 0 (20)
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3.2.3 Estimates for parameters of the funnel. The next four lemmas
estimate (in terms of ε) the most important parameters of the funnel as
well as their closeness for T and T̃ . Note that each of those lemmas works
for small enough ε and therefore imposes some lower bound on kn (due
to (14), such a bound implies a corresponding upper bound on ε). We will
incorporate all of them in Subsect. 3.2.4.

Since [0, ε] is a fundamental interval for g, there exists a unique number
0 < ic < kn such that xic ∈ [0, ε). Denote il = ic − [ε− 1

2 tan−1 ε
− α

2(2+α) ]
and ir = ic + [ε− 1

2 tan−1 ε
− α

2(2+α) ]. (Here the indices ‘c’, ‘l’ and ‘r’ refer
to the central, leftmost and rightmost points of the trajectory in the tunnel
respectively.) For g̃, we similarly define ĩc, ĩ l and ĩ r.

Lemma 7. There exist constants C17, C18 > 0 such that the inequality
∣∣kn − πε− 1

2
∣∣ ≤ C17ε

−1+α
2

holds if kn ≥ C18.

Proof. It follows from Lemma 6 that for small enough ε

∣∣xir − ε
1

2+α

∣∣ ≤ S9ε
1

2+α + α(α+1)
2(2+α) , (21)

∣∣xil + ε
1

2+α

∣∣ ≤ S9ε
1

2+α + α(α+1)
2(2+α) , (22)

with S9 > 0.
Inequality (15) and Lemma 5 imply that there exist S10 > 0, small

enough S11, S12 ∈ (0, 1), S12 > S11, and an integer i0 ≥ 1 such that
xkn−i0 ∈ (S11, S12), xi0 ∈ (−S12,−S11) and

∣
∣∣
∣xkn−i0−i − 1

i + x−1
kn−i0

∣
∣∣
∣ ≤ S10

(
i + x−1

kn−i0

)1+α
, 0 ≤ i ≤ kn − i0 − ir, (23)

∣
∣∣
∣xi0+i + 1

i − x−1
i0

∣
∣∣
∣ ≤ S10

(
i − x−1

i0

)1+α
, 0 ≤ i ≤ il − i0 (24)

From (21)–(24) it follows that for small enough ε
∣∣(kn − i0 − ir + x−1

kn−i0

) − ε− 1
2+α

∣∣ ≤ S13ε
−1+α

2 , (25)
∣
∣(il − i0 − x−1

i0

) − ε− 1
2+α

∣
∣ ≤ S13ε

−1+α
2 (26)

with S13 > 0. Now recall the asymptotics (20). Since kn = (kn − i0 − ir) +
(ir − ic)+(ic − il)+(il − i0)+2i0 and ε

−1+α
2 > ε

−1+α
2+α , the obtained estimates

prove the lemma. ��
Lemma 8. There exist constants C19, C20 > 0 such that

∣
∣∣
∣
ε̃

ε
− 1

∣
∣∣
∣ ≤ C19ε

α
2

if kn ≥ C20.
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Proof. Apply Lemma 7 first to ε and then to ε̃. ��
Lemma 9. There exist constants C21, C22 > 0 such that the inequality

∣
∣∣
∣ic − kn

2

∣
∣∣
∣ ≤ C21ε

−1+α
2 (27)

holds if kn ≥ C22.

Proof. Since (il − i0)− (kn − i0 − ir) = 2ic −kn, and both x−1
kn−i0

and x−1
i0

are
bounded (see the proof of Lemma 7), the inequalities (25), (26) imply (27).

��
Lemma 10. There exist constants C23, C24 > 0 such that

|ir − ĩ r|, |il − ĩ l|, |ic − ĩc| ≤ C23ε
−1+α

2

if kn ≥ C24.

Proof. Follows from Lemma 9, Lemma 8 and the formula (20). ��
3.2.4 Proof of Proposition 4. Due to the regularity conditions, the seg-
ments ∆

(n−1)
0 , ∆

(n−2)
0 and ∆

(n−3)
0 are of the same order. Now notice that

I0 = T qn−2∆
(n−1)

0 and Ikn = T qn∆
(n−1)

0 . Thus, due to (7) and the regularity
conditions on fn−2, f̃n−2 and fn , f̃n, there exists S14 > 0 such that

| log sn−1(Ii)| ≤ S14λ
n

for i = 0 and i = kn .
For any chosen integer N0 > 0, it follows from Proposition 3 that

| log sn−1(Ii)| ≤ S14λ
n + N0C8λ

n/4 (28)

for 0 ≤ i ≤ min{N0, kn} and for max{kn − N0, 0} ≤ i ≤ kn . In particular,

| log sn−1(Ii)| ≤ S14λ
n + C8λ

n/8 (29)

for 0 ≤ i ≤ min{λ−n/8, kn} and for max{kn − λ−n/8, 0} ≤ i ≤ kn .
Consider N0 = max1≤m≤n0{km} and n0 ≥ 1 such that

λ−n0/8 ≥ D, (30)

where D > 0 will be determined at the end of the proof to incorporate all
lower bounds on kn . If kn ≤ 2 max{λ−n/8, N0}, then (28) and (29) prove the
proposition. Now, let us assume that

kn ≥ 2 max
{
λ−n/8, N0

}
. (31)

In particular, the center of the funnel is defined, so Lemma 7 implies that

ε ≤ π2

2
λn/4. (32)
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Hence, we enter the funnel with the estimate (29). Next we show that
there exists S15 > 0 such that

| log si | ≤ S15λ
nα/8 (33)

for 0 ≤ i ≤ min{il,ĩ l} and for max{ir,ĩ r} ≤ i ≤ kn. Indeed, if il < λ−n/8,
then (33) holds for 0 ≤ i ≤ il due to (29) and Lemma 4. Otherwise (33)
is satisfied for i ≤ λ−n/8, and using Lemma 5 we can spread this property
from i = [λ−n/8] onto the set [λ−n/8] ≤ i ≤ min{il,ĩ l} as follows. Lemma 5
implies for [λ−n/8] ≤ i ≤ min{il,ĩ l}

si =
(
i − [λ−n/8] + x−1

[λ−n/8]
)2

(
i − [λ−n/8] + x̃−1

[λ−n/8]
)2 · 1 + δ̃i

1 + δi
,

where |δi|, |δ̃i| ≤ S16λ
nα/8 with S16 > 0. Now, using the inequality

∣
∣∣
∣log

a + 1

b + 1

∣
∣∣
∣ ≤

∣
∣
∣log

a

b

∣
∣
∣

that holds for any a, b > 0, we get
∣
∣∣
∣log

(
1 + δi

1 + δ̃i
si

)∣
∣∣
∣ ≤

∣
∣∣
∣∣
log

(
1 + δ[λ−n/8]
1 + δ̃[λ−n/8]

s[λ−n/8]

)∣
∣∣
∣∣
,

which implies (33) for [λ−n/8] ≤ i ≤ min{il,ĩ l}. A similar argument for
max{ir,ĩ r} ≤ i ≤ kn is valid.

So, the estimate (33) is satisfied when we reach the tunnel, i.e. the zone
described by Lemma 6. Note that, generally speaking, ĩc 	= ic, and that is
why we need to show an estimate

∣
∣∣
∣log si − log

∆x̃i+ĩc−ic

∆xi

∣
∣∣
∣ ≤ S17λ

n α(1+α)
8(2+α) (34)

with S17 > 0 for min{il,ĩ l} ≤ i ≤ max{ir,ĩ r}. The estimate (34) follows
from Lemma 10, (32) and the estimate

| log ∆x̃i − log ∆x̃i+1| =
∣∣
∣∣log

dg̃

dx̃
(θ)

∣∣
∣∣ ≤ S18ε

1
2+α ,

where θ ∈ [x̃i, x̃i+1] and S18 > 0.
Lemma 6 implies that for min{il,ĩ l} ≤ i ≤ max{ir,ĩ r}

∆xi

∆x̃i+ĩc−ic

= ε

ε̃
· (cos

√
ε̃(i − ic))

2

(cos
√

ε(i − ic))2
· 1 + δi

1 + δ̃i
, (35)

where |δi |, |δ̃i| ≤ S19λ
n α(1+α)

8(2+α) and S19 > 0. It is assumed here that kn ≥
S20 > 0.
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It follows from (34) and (35) that for min{il, ĩl} ≤ i ≤ max{ir,ĩ r}
∣
∣∣
∣log si − log

(cos
√

ε(i − ic))
2

(cos
√

ε̃(i − ic))2

∣
∣∣
∣ ≤ S21λ

n α(1+α)
8(2+α)

with S21 > 0.
Now, using the bound (33) for i = min{il,ĩ l} and for i = max{ir, ĩr}, and

the elementary inequalities
∣
∣∣
∣log

(cos
√

ε(i − 1 − ic))

(cos
√

ε̃(i − 1 − ic))

∣
∣∣
∣ ≤

∣
∣∣
∣log

(cos
√

ε(i − ic))

(cos
√

ε̃(i − ic))

∣
∣∣
∣

for ic < i ≤ max{ir,ĩr} and
∣∣
∣
∣log

(cos
√

ε(i + 1 − ic))

(cos
√

ε̃(i + 1 − ic))

∣∣
∣
∣ ≤

∣∣
∣
∣log

(cos
√

ε(i − ic))

(cos
√

ε̃(i − ic))

∣∣
∣
∣

for min{il,ĩ l} ≤ i < ic we obtain

| log si | ≤ S22λ
n α(1+α)

8(2+α) (36)

for all 0 ≤ i ≤ kn with S22 > 0.
Finally, we put D = max{2/K2, C18, C20, C22, C24, i0, S20} (so D does

not depend on n). Proposition 4 is now proven with λ2 = λ
α(1+α)
8(2+α) and

C9 = max{S14 + N0C8, C11 + S22}. ��

3.3 Spreading onto ∆
(m)

0 with m a fixed fraction of n

Proposition 5. For any λ3 ∈ (λ2, 1) there exist ν2 ∈ (0, ν1) and C25 > 0
such that

| log σ(I )| ≤ C25λ
n
3 (37)

for any segment I ∈ Pn such that I ⊂ ∆
(n−[ν2n])
0 .

First, we prove

Lemma 11. There exists C26 > 0 such that

| log sm(I )| ≤ C26

(
max

I∈P ∗
n−1,I⊂∆

(m−1)
0

| log sm(I )|

+ max
I∈P ∗

n ,I⊂∆
(m)
0

| log sm+1(I )| + λ
m/4
1

)
(38)

for any n − ν1n ≤ m < n − 1 and I ∈ P ∗
n such that I ⊂ ∆

(m−1)

0 .
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Proof. For I ∈ P ∗
n such that I ⊂ ∆

(m)

0 , the estimate (38) holds with
C26 = C5(1 + λ) due to (7). As Lemma 1 implies, the rest of the segments,
for which we have to prove (38), are aligned in threads Ii = T iqm (I0),

0 ≤ i < km+1, with P ∗
n � Ikm+1 = T km+1qm (I0) ⊂ ∆

(m)

0 . Let us consider
any such thread. If km+1 ≤ max{2λ

−m/4
1 , 2/K2}, then (38) follows from

Proposition 3 with C26 = max{C5(1+λ), 2C8, 2/K2}. In the opposite case,
we have

| log sm(Ikm+1−i−1)| ≤ | log sm(Ikm+1)| + C8λ
m/4
1 (39)

| log sm(Ii)| ≤ | log sm(I[λ−m/4
1 ])| + C8λ

m/4
1 (40)

for 0 ≤ i < [λ−m/4
1 ].

Note now, that for [λ−m/4
1 ] ≤ i ≤ km+1 − [λ−m/4

1 ] there exists a unique
segment Ji ∈ Pn−1 such that Ii ⊂ Ji ⊂ T qm−1+iqm ∆

(m)
0 (possibly, Ji = Ii).

Since Ji+1 = T qm Ji , there exist θ, θ̇, θ̈ ∈ rm(Ji) such that | log rm(Ii+1) −
log rm(Ii) − log rm(Ji+1) + log rm(Ji)| = | log f ′

m(θ) − log f ′
m(θ̇)| =

|(log f ′
m)′(θ̈)| · |θ − θ̇| ≤ K1

K4
|rm(Ji)| ≤ K1

K4
(z(m)

i+1 − z(m)
i ), where z(m)

i =
rm(ξqm−1+iqm ) = f i

m(−1). Due to Lemma 5, we have z(m)

km+1−[λ−m/4
1 ]−z(m)

[λ−m/4
1 ] ≤

S23λ
m/4
1 with S23 > 0. Hence,

| logsm(Ji) − log sm(Ii)|
≤ | log sm(Jkm+1−[λ−m/4

1 ]) − log sm(Ikm+1−[λ−m/4
1 ])| + 2

K1

K4
S23λ

m/4
1

(41)

for any [λ−m/4
1 ] ≤ i < km+1 − [λ−m/4

1 ].
The bounds (39), (41) and (40) together imply (38) for all Ii , 0 ≤

i < km+1. ��
Proof of Proposition 5. Let us assume that λ1 ≤ λ4

2 (by Proposition 2 it

can be chosen arbitrary close to
√

λ < λ4
2 = λ

α(1+α)
2(2+α) ). It is easy to derive

from (38) by induction, using Proposition 4 as its base, that for all I as in
Lemma 11 we have

| log sm(I )| ≤ S24(3C26)
n−mλm

2

with S24 > 0. The statement of Proposition follows after we choose
ν2 ∈ (0, ν1) such that (3C26)

ν2λ
1−ν2
2 ≤ λ3. ��

3.4 Spreading onto T1. In this subsection we finish the proof of The-
orem 2. In the case of critical circle maps we could have used here the
standard small distortion argument. However, since we are proving The-
orem 2 in full generality, that is without specifying the type of singularity,
we present a different proof. It relies only on the regularity conditions and
the exponential refinement property.
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Proof of Theorem 2. Note that we did not use the Condition 3) of the
theorem before. Spreading (6) from ∆

(n−[ν2n])
0 onto the whole circle T1 is

the only step on which we need that condition. Let C1 and β be constants
of exponential refinement for the dynamical partitions of both T and T̃ (see
the definition in Subsect. 2.2).

It follows from Proposition 5 that the estimate

| log σ(I ) − log σ(I ′)| ≤ 2C25λ
n
3 (42)

holds for all pairs of segments (I, I ′) as in Proposition 1 such that both
I and I ′ are contained in ∆

(n−[ν2n])
0 . We are about to spread such estimate

further using an inductive argument. On mth step, starting from m = n −
[ν2n] − 1 and counting down to 0, we shall spread it from ∆

(m+1)

0 to ∆
(m)

0 .
On each step the new pairs, for which (6) needs to be demonstrated,

come in threads Ii = T iqm I0, I ′
i = T iqm I ′

0, 0 ≤ i < km+1. We fix the
order in pairs in such a way that I ′

0 lies closer to ξ0 than I0. This implies
that I0 ⊂ T qm−1(∆

(m)
0 ), and I ′

0 either belongs to T qm−1(∆
(m)
0 ) as well or is

adjacent to it. We also consider the pair of segments Ikm+1 = T km+1qm I0 and

I ′
km+1

= T km+1qm I ′
0, which are contained in ∆

(m+1)

0 and belong to P ∗
n . We

shall prove that there exists S25 > 0 such that for any thread we have
∣
∣ log sm(Ii) − log sm(I ′

i )
∣
∣

≤ ∣
∣ log sm(Ikm+1) − log sm(I ′

km+1
)
∣
∣ + S25β

n−m (43)

for any 0 ≤ i < km+1. There are three possible types of threads, which
we specifically describe below. We shall prove (43) for each one of them.
Denote

ai = ∣∣ log |rm(Ii+1)| − log |rm(Ii)| − log |rm(I ′
i+1)| + log |rm(I ′

i )|
∣∣.

We have then ai = | f ′′
m(θ̈ i)/ f ′

m(θ̈ i)| · |θ̇ i − θi | for some θi ∈ rm(Ii), θ̇ i ∈
rm(I ′

i ) and θ̈ i ∈ (θi, θ̇ i). The inequality (43) will follow from bounds on aj ,
i ≤ j < km+1, which we prove below, and similar bounds on ã j for T̃ .

Type 1. I0 and I ′
0 belong to the same element J0 of Pn−1. Than there exists

a thread Ji = T iqm J0 ∈ Pn−1 such that Ii ∪ I ′
i ⊂ Ji ⊂ T qm−1+iqm ∆

(m)
0 ,

0 ≤ i < km+1. In this case, ai ≤ K1
K4

|rm(Ji)| ≤ K1
K4

C1β
n−m(z(m)

i+1 − z(m)
i ).

Since the sum of the differences z(m)
i+1 − z(m)

i does not exceed 1, the bound
(43) follows.

Type 2. The segments I0 and I ′
0 are adjacent, contained in different elements

of Pn−1, and I0 ∪ I ′
0 ⊂ T qm−1∆

(m)
0 . In this case, ai ≤ K1

K4
(|rm(Ii ∪ I ′

i )|) ≤
K1
K4

·2C1β
n−m+1(z(m)

i+1 − z(m)
i ) for 0 ≤ i < km+1, which similarly implies (43).
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Type 3. ξqm−1+qm is the common endpoint of I0 and I ′
0. Again we have ai ≤

K1
K4

(|rm(Ii ∪ I ′
i )|) for 0 ≤ i ≤ km+1 − 2. But I ′

km+1−1 is contained in ∆
(m+1)
0 ,

so we cannot guarantee that f ′
m(θ̈km+1−1) > K4. However, it is adjacent to

the point ξqm+1 and rm(I ′
km+1−1) ≤ C1β

n−m+1(0 − z(m)
km+1

) gets arbitrary small

as n grows, therefore for large enough n we have f ′
m(θ̈km+1−1) > K4/2 and

akm+1−1 ≤ 2 K1
K4

(|rm(Ikm+1−1 ∪ I ′
km+1−1)|) which yields (43) as well.

By induction in m (from m = n − [ν2n] − 1 to 0), using (42) as a base
and (43) on each step, it is now easy to derive – at last for all pairs (I, I ′) as
in Proposition 1 – that

∣
∣log σ(I ) − log σ(I ′)

∣
∣ ≤ 2C25λ

n
3 + S25

n−[ν2n]−1∑

m=0

βn−m ≤ C27
(
λn

3 + βν2n
)
,

with C27 > 0. Hence, (6) holds true with µ = max{λ3, β
ν2}, and Theorem 2

is proven. ��

4 Proof of Theorem 1

In order to prove Theorem 1 we have to check that Conditions 2)–4) of The-
orem 2 are satisfied. Exponential convergence of renormalizations (Condi-
tion 4)) follows from [13]. To check Conditions 2) and 3) we shall use real
a priori bounds. Real a priori bounds form an important step in analysis
of renormalizations for unimodal maps and critical circle maps. By now
real a priori bounds are well understood and there exist several approaches
leading to their derivation (see, for example, [3,6]).

Below we formulate four properties which hold for critical circle maps.
We shall use this properties in order to establish Conditions 2) and 3). All
the properties either have been directly proved in [3] or follow immediately
from the estimates there. Let T be a C3-smooth critical circle map with an
irrational rotation number.

1. There exist constants 0 < γ1, γ2 < 1 such that

γ1 ≤
∣∣∆(n)

i

∣∣
∣∣∆(n−2)

i

∣∣
≤ γ2, 0 ≤ i < qn−1.

2. There exists a constant M1 > 0 such that ‖ fn‖C3 ≤ M1.
3. There exists a constant M2 > 0 such that f ′(x) ≥ M2ε

2, x ∈ [−1,−ε].
4. There exists a constant M3 > 0 such that S fn(x) ≤ −M3, x ∈ [−1, 0),

where S f = f ′′′/ f ′ − 3/2( f ′′/ f ′)2 is the Schwarz derivative of f .

In fact, the constants γ1, γ2, M1, M2, M3 are universal and do not depend
on T for large enough n, but only on the order of its critical point. Note,
that the first estimate (with non-universal constants) follows basically from
Swiatek’s estimates [11].
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Now, Condition 3) of Theorem 2 (exponential refinement) follows imme-
diately from the Property 1 above. We finish by showing that the regularity
conditions are satisfied.

Lemma 12. There exists a vector K such that fn is K-regular.

Proof. Take K2 very small and suppose the set M fn,K2 is not empty. Notice
that two finite-size intervals near the points −1 and 0 do not belong to
M fn,K2 if K2 is small enough. This follows from the Property 1. It is easy
to see that the first derivative f ′

n(x) must be close to 1 for x ∈ M fn,K2 .
Otherwise the graph of fn(x) will cross the diagonal, which is impossible.
Since the graph of fn is above the diagonal, it follows that f ′′

n (x) is greater
than some positive constant K3 for all x ∈ M fn,K2 . Indeed, if the second
derivative is of the order of constant and negative then the graph of fn(x)
would cross the diagonal. On the other hand, if the second derivative is
small in absolute value, then the third derivative must be negative and not
small (otherwise S fn > −M3) and again the graph of fn(x) would cross
the diagonal. We next show that M fn ,K2 consists of just one open interval if
K2 is small enough. Indeed, if there are two disconnected components then
there exists a point y in between such f ′′

n (y) = 0 and the second derivative
changes its sign at point y from minus to plus. It follows that f ′′′

n (y) ≥ 0
which implies S fn(y) ≥ 0 in contradiction with the Property 4.

Finally, existence of constants K1 and K4 follow from the Properties 2
and 3 respectively. ��
Remark 5. It is easy to see from the proof of Proposition 1 that for ξ ∈ ∆̌

(n)
0

we have |φ′(ξ0) − φ′(ξ)| ≤ S26µ
n with some S26 > 0. On the other hand,

Condition 2) of Theorem 2 implies |ξ0 − ξ| ≥ |∆(n+2)
0 | ≥ S27Kn

2 with
S27 > 0. Together, the latter two estimates prove C1+γ -smoothness of φ
at ξ0, where γ = logK2

µ. Thus, our results imply local C1+γ -smoothness
of the conjugacy at the critical point, which was earlier proven in [10].

Appendix

Proof of Lemma 5. Let us denote yi = si − 1/(i + s−1
0 ). Then y0 = 0 and

yi+1 = yi + Ai yi + Bi (44)

for all i ≥ 0, where Ai = −2/(i + s−1
0 ) and

Bi = − 1
(
i + s−1

0

)2(
i + 1 + s−1

0

) − y2
i + B∗

i

with |B∗
i | = |si+1 − (si − s2

i )| ≤ C13|yi + 1/(i + s−1
0 )|2+α.

We will prove (16) by an inductive procedure. Fix some i > 0 and
suppose we have proven that

|y j | ≤ D1
(

j + s−1
0

)1+α
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for all 0 ≤ j < i as long as s0 ∈ (0, d1], with some D1 > 0 and d1 ∈ (0, 1)
(note, that for i = 1 this is true for any D1 and d1 since y0 = 0). Then there
exists S28 = S28(α, D1) ∈ (0, 1) such that

|y j | ≤ 1
(

j + s−1
0

)1+α/2

for all 0 ≤ j < i as long as s0 ∈ (0, min{d1, S28}]. Therefore, there exists
S29 = S29(α, C13) > 0 such that

|B j| ≤ S29
(

j + s−1
0

)2+α
(45)

for all 0 ≤ j < i as long as s0 ∈ (0, min{d1, S28}].
The solution of the difference equation (44) may be written as

yi =
i−1∑

j=0

B j

i−1∏

k= j+1

(1 + Ak). (46)

Taking into account that

0 <

i−1∏

k=k+1

(

1 − 2

k + s−1
0

)

≤ exp

{

−2
∫ i

j+1

dt

t + s−1
0

}

=
(

j + 1 + s−1
0

)2

(
i + s−1

0

)2 ,

it is easy to derive from (46) and (45) that

|yi| ≤ S30
(
i + s−1

0

)1+α

with some S30 = S30(α, C13) > 0. Now we assign D1 = S30 and then
d1 = S28, closing the induction and completing the proof of the estimate
(16).

It follows easily from (16) that
∣
∣∣
∣(si − si+1) − 1

(
i + s−1

0

)2

∣
∣∣
∣ ≤

∣
∣∣
∣s

2
i − 1

(
i + s−1

0

)2

∣
∣∣
∣ + C13|si |2+α

≤ D2
(
i + s−1

0

)2+α
≤ D2sα

0(
i + s−1

0

)2

with D2 > 0 as required. ��
Proof of Lemma 6. Let us denote yi = si − √

ε tan(
√

εi + a0). Then the
Condition 2) implies that y0 = 0 and

yi+1 = yi + Ai yi + Bi (47)
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for all i ≥ 0 (the same as (44)), where Ai = 2
√

ε tan
√

εi and

Bi = 2yi(
√

ε tan(
√

εi + a0) − √
ε tan

√
εi) − ε

(cos(
√

εi + a0))2

·(
√

ε)−1 tan
√

ε − 1 + (tan
√

ε) tan(
√

εi + a0)

1 − (tan
√

ε) tan(
√

εi + a0)
+ y2

i + B∗
i (48)

with |B∗
i | = |si+1 − (ε + si + s2

i )| ≤ C15|yi + √
ε tan(

√
εi + a0)|2+α.

An easy calculation shows that there exists S31 = S31(α, C14, C16)
∈ (0, 1) such that

|√ε tan
√

εi − √
ε tan(

√
εi + a0)| ≤ 2C14

ε

(cos
√

εi)2
(49)

for all 0 ≤ i ≤ N as long as ε ∈ (0, S31]. The inequality (49) implies that
for i 	= 0 we have

|√ε tan(
√

εi + a0)| ≤ 2(C14 + 1)
√

ε tan
√

εi. (50)

It also follows from (49) that there exists S32 = S32(α, C14, C16) > 0 such
that

1

(cos(
√

εi + a0))2
≤ S32

(cos
√

εi)2
(51)

for 0 ≤ i ≤ N, ε ∈ (0, S31].
Again, we are using an inductive procedure in order to prove this lemma.

Let us fix some 0 < i ≤ N and suppose we have proven that

|y j | ≤ D3(
√

ε tan
√

ε j)1+ α(α+1)
2 (52)

for all 0 ≤ j < i and ε ∈ (0, d2] with some D3 > 0 and d2 ∈ (0, 1) (note,
that for i = 1 this is true for any D3 and d2 since y0 = 0). Then there exists
S33 = S33(α, D3, C16) ∈ (0, 1) such that

|y j | ≤ (
√

ε tan
√

ε j)1+ α
2 (53)

for all 0 ≤ j < i as long as ε ∈ (0, min{d2, S33}]. Using the asymptotic
formula tan t = t + O(t3), t → 0, together with the inequalities (49), (50),
(51) and (53), we obtain that there exist S34 = S34(α, C14, C15, C16) > 0
and S35 = S35(α, D3, C14, C16) ∈ (0, 1) such that |B0| ≤ S34ε

2 and

|B j| ≤ S34ε

(cos
√

ε j)2
(
√

ε tan
√

ε j)α (54)

for all 0 < j < i as long as ε ∈ (0, min{d2, S35}].
The solution for the difference equation (47) may be written again as

yi =
i−1∑

j=0

B j

i−1∏

k= j+1

(1 + Ak). (55)
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Taking into account that

0 <

i−1∏

k= j+1

(1 + 2
√

ε tan
√

εk) ≤ exp

{
2
∫ i

j

√
ε tan

√
εtdt

}
= (cos

√
ε j)2

(cos
√

εi)2
,

we obtain due to (55) and (54) that

|yi| ≤ S34ε

(cos
√

εi)2

(
ε +

i−1∑

j=1

(
√

ε tan
√

ε j)α

)

≤ 2S34ε

(cos
√

εi)2

∫ i

0
(
√

ε tan
√

εt)αdt (56)

as long as ε ∈ (0, min{d2, S35}].
Let us compare two functions

φ(t) =
∫ t

0
(
√

ε tan
√

ετ)αdτ and ψ(t) = (cos
√

εt)2

ε
(
√

ε tan
√

εt)1+ α(α+1)
2

on the segment [0, π

2
√

ε
) for arbitrary ε ∈ (0, 1). We have

ψ′(t) =
(

α(α + 1)

2
+ 1 − 2(sin

√
εt)2

)
· (√ε tan

√
εt)

α(α+1)
2 ,

so for t ≤ π

4
√

ε
the inequality ψ′(t) ≥ α(α+1)

2 φ′(t) holds, and the equality

φ(0) = ψ(0) = 0 implies ψ ≥ α(α+1)

2 φ on [0, π

4
√

ε
]. The change of variables

κ = √
ε tan

√
ετ in the integral leads to the estimate

φ(t) =
∫ √

ε tan
√

εt

0

καdκ

κ2 + ε
≤

∫ +∞

0

καdκ

κ2 + ε

≤
∫ √

ε

0

καdκ

ε
+

∫ +∞
√

ε

καdκ

κ2
= 2

1 − α2
ε

α−1
2 ,

so for t ≥ π

4
√

ε
we have ψ(t) = (sin

√
εt)2(

√
ε tan

√
εt)

α(α+1)
2 −1 ≥

1
2(

√
ε)

α(α+1)
2 −1 ≥ 1−α2

4 φ(t).
Now, it follows from (56) that

|yi| ≤ S36(
√

ε tan
√

εi)1+ α(α+1)
2 ,

where S36 = 2S34 max{ 2
α(α+1)

, 4
1−α2 }. The assignments D3 = S36 and then

d2 = S35 close the induction and prove the estimate (18).
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It follows from the Condition 2) and (18) that
∣
∣∣
∣(si+1 − si) − ε

(cos
√

εi)2

∣
∣∣
∣

≤ C15|si |2+α +
∣
∣∣
∣

ε

(cos(
√

εi + a0))2
− ε

(cos
√

εi)2

∣
∣∣
∣

+ 2(
√

ε tan(
√

εi + a0)) · D3(
√

ε tan
√

εi)1+ α(α+1)
2

+ D2
3(

√
ε tan

√
εi)2+α(α+1)

for all 0 ≤ i < N and ε ∈ (0, d2]. Applying the inequalities (49) and (50)
to the right-hand side, it is not hard to derive that there exist S37 =
S37(α, C14, C15, C16) > 0 and d3 ∈ (0, d2] such that for i 	= 0 we have

∣
∣∣
∣(si+1 − si) − ε

(cos
√

εi)2

∣
∣∣
∣ ≤ S37ε

(cos
√

εi)2
(
√

ε tan
√

εi)
α(α+1)

2 (57)

as long as ε ∈ (0, d3]. It also follows from 1) and 2) that |(s1 − s0) − ε| ≤
S38ε

2 ≤ S38ε · εα(α+1)/2 with some S38 = S38(α, C14, C15) > 0, so the last
statement of the lemma holds with D4 = max{S37Cα(α+1)/2

16 , S38} after we
reassign d2 to be equal to d3. ��
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