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Abstract. Using the techniques of [20] and [10], we prove that certain log
forms may be lifted from a divisor to the ambient variety. As a consequence
of this result, following [22], we show that: For any positive integer n there
exists an integer rn such that if X is a smooth projective variety of general
type and dimension n, then φrK X : X ��� P(H0(OX(rKX ))) is birational for
all r ≥ rn.

1. Introduction

One of the main problems of complex projective algebraic geometry is to
understand the structure of the pluricanonical maps. If X is of general type,
then by definition the pluricanonical map φrK X : X ��� P(H0(OX(rKX )))
is birational for all sufficiently large r. It is a natural question to then ask if
there is an rn such that φrK X is birational as soon as r ≥ rn , uniformly for
any variety of general type of dimension n. When X is a curve, it is well
known that φrK X is birational for r ≥ 3 and when X is a surface, Bombieri
proved in [3] that φrK X is birational, for r ≥ 5.

However, starting with threefolds the problem is substantially harder,
since there are threefolds of general type for which the minimal model is
necessarily singular. In fact it is easy to write down examples of threefolds
of general type, for which the index of KX (the smallest multiple of KX
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which is Cartier) on a minimal model is arbitrarily large (for example, take
any hypersurface of sufficiently large degree in any weighted projective
space). In this case, a priori, the degree of KX (equivalently the volume
of KX on a smooth model) could be arbitrarily small. Even the case when
the minimal model is smooth, or at least the index of KX is bounded, has
attracted considerable attention, see for example, [7], [2], [19] and [5],
and there have only been partial results in the general case, see [11], [16]
and [17].

Recently, Tsuji settled this problem for 3-folds and assuming the minimal
model program, for all higher dimensional varieties, see [22]. Using ideas
of Tsuji, we prove the following:

Theorem 1.1. For any positive integer n, there exists an integer rn such
that if X is a smooth projective variety of general type and dimension n,
then φrK X : X ��� P(H0(OX(rKX ))) is birational for all r ≥ rn.

(1.1) has some interesting consequences:

Corollary 1.2. Let n be a positive integer and M be a positive constant.
Then the family of all smooth projective varieties of general type of dimen-
sion n and volume of KX at most M, is birationally bounded.

Corollary 1.3. Let n be a positive integer. Then there is a positive constant
ηn > 0 such that given any smooth projective variety X of general type of
dimension n, the volume of KX is at least ηn.

As Maehara points out in [18] (see also [22]), one also recovers the
Severi-Iitaka conjecture:

Corollary 1.4. For any fixed variety X, there exist only finitely many dom-
inant rational maps π : X ��� Y (modulo birational equivalence), where Y
is a variety of general type.

The proof of the above results closely follows Tsuji’s original strategy;
in fact this note grew out of our desire to understand [22]. Even though our
proof is based on the ideas of this paper, it only relies on the techniques
of algebraic geometry. In particular we do not use the “Analytic Zariski
Decomposition” and we do not make use of the results of [23] (which we
were unable to follow). The main tools employed in this paper are the
algebraic techniques of the minimal model program and in particular the
theory of log canonical centres and of multiplier ideals.

We now give a short informal sketch of the proof of (1.1), which closely
follows the strategy of Tsuji’s proof, see [22]. As one would expect, the
goal is to produce a Q-divisor ∆ ∼Q λKX such that ∆ has an isolated
log canonical centre at a general point x ∈ X. There is a well established
strategy for producing divisors with log canonical centres at a general point
x ∈ X, as soon as the volume is sufficiently large, so that the rational number
λ depends only on the volume of KX .
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The problem is that the smallest log canonical centre V containing x
might well be of positive dimension. In order to produce an isolated log
canonical centre, one proceeds by inductively cutting down the (dimension
of the) log canonical centres. As x is general, a resolution W of V must
have general type, and so by induction we can certainly find a Q-divisor Θ
on W with the required properties.

At this point, the idea is to lift sections from V to the whole of X. In
principle this ought to be straightforward; indeed if KX is nef, then we
can lift Θ to the whole of X, as an easy application of Serre vanishing. In
practice we cannot assume that KX is nef, and this step of the argument
forms the technical heart of the paper. In fact we generalise some results
and techniques of [20] and [10] for extending pluricanonical forms from
a divisor to the whole space. Instead of just lifting pluricanonical forms,
we lift certain log pluricanonical forms, from a log canonical centre to the
whole of X, using a variant of multiplier ideal sheaves, see Sect. 3. It is then
not too hard to prove that we can then lift log canonical centres from W
to X, see Sect. 4.

Then we prove, assuming (1.1) in dimension less than n, that φrK X is
birational, where r is a fixed linear function of 1/ vol(X)1/n, which only
depends on the dimension. If vol(KX ) ≥ 1, the theorem follows easily. If
vol(KX ) < 1, one then shows that X belongs to a birationally bounded
family and the existence of rn is then clear.

As already pointed out, the main technical point is (3.17), the result
which shows that certain log forms may be lifted from a divisor to the
ambient variety. We hope that it will find other applications in a variety
of contexts. For example, in [6], we use this result to prove a conjecture
of Shokurov which in particular implies that the fibers of a resolution of
a variety with log terminal singularities are rationally chain connected.

We now raise some questions and problems, which are closely related
to (1.1):

Problem 1.5. Find explicit (hopefully small) values of rn .

Even determining r3 would seem interesting. Indeed in the past twenty
years or so, our knowledge of threefolds has increased considerably; in
particular we have Reid’s powerful Riemann-Roch formula for terminal
threefolds and we are able to write down many explicit examples of three-
folds of general type. Thus determining the value of r3 would seem to be
a reasonable problem. In fact we raise the following:

Question 1.6. Is the rational map φ27K X always birational, whenever X is
a threefold of general type?

Note that we have little or no evidence for an affirmative answer to (1.6),
apart from the examples of Fletcher in [8]. In particular for the threefold X46,
a hypersurface in the weighted projective space P(4, 5, 6, 7, 23), see [8],
φmK X is birational iff m = 23, or m ≥ 27.
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Finally it seems natural to conjecture that we can drop the condition that
X is of general type in (1.1):

Conjecture 1.7. There is a positive integer rn with the following property:
Let X be a smooth variety of non-negative Kodaira dimension, of dimen-

sion n. Then the rational map φrK X is birationally equivalent to the Iitaka
fibration for all r ≥ rn .

Unfortunately the methods of this paper don’t seem to apply directly
to (1.7).

2. Preliminaries

2.1. Notation and conventions. We work over the field of complex num-
bers C. AQ-Cartier divisor D on a normal variety X is nef if D · C ≥ 0 for
any curve C ⊂ X. We say that twoQ-divisors D1, D2 areQ-linearly equiva-
lent (D1 ∼Q D2) if there exists an integer m > 0 such that m Di are linearly
equivalent. Given a morphism of normal varieties f : X −→ Y , we say that
two divisors D1 and D2 on X are f -linearly equivalent (D1 ∼ f D2) if there
is a Cartier divisor B on Y such that D1 ∼ D2 + f ∗ B. We say that D1 and
D2 are f -numerically equivalent (D1 ≡ f D2) if there is aQ-Cartier divisor
B on Y such that D1 ≡ D2 + f ∗B. A pair (X,∆) is a normal variety X and
a Q-Weil divisor ∆ such that KX + ∆ is Q-Cartier. We will say that a pair
(X,∆) is a log pair, if in addition ∆ is effective. We say that (X,∆) is a
smooth pair if X is smooth and ∆ is aQ-divisor with simple normal cross-
ings support. A projective morphism µ : Y −→ X is a log resolution of the
pair (X,∆) if Y is smooth and µ−1(∆) ∪ {exceptional set of µ} is a divisor
with simple normal crossings support. We write µ∗(KX + ∆) = KY + Γ
and Γ = ∑

aiΓi where Γi are distinct reduced irreducible divisors. The pair
(X,∆) is kawamata log terminal (resp. log canonical) if there is a log
resolution µ : Y −→ X as above such that the coefficients of Γ are strictly
less than one i.e. ai < 1 for all i (resp. ai ≤ 1). The number 1 − ai is the log
discrepancy of Γi with respect to (X,∆). We say that a subvariety V ⊂ X
is a log canonical centre if it is the image of a divisor of log discrepancy
at most zero. We will denote by LLC(X,∆, x) the set of all log canonical
centres containing a point x ∈ X. A log canonical place is a valuation
corresponding to a divisor of log discrepancy at most zero. A log canonical
centre is pure if KX + ∆ is log canonical at the generic point of V . If
moreover there is a unique log canonical place lying over the generic point
of V , we will say that V is an exceptional log canonical centre.

2.2. Volumes.
Definition 2.1. Let X be an irreducible projective variety and let D be a big
Q-divisor. The volume of D, is

vol(D) = lim sup
m→∞

n!h0(X, m D)

mn
.
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When D is very ample, vol(D) is just the degree of the image of X in
PH0(X,OX(D)). When D is nef, then vol(D) = Ddim(X ). It turns out that
the volume of D only depends on its numerical class and one can extend
the volume function to a continuous function vol : N1

R
(X) −→ R (cf. [14]).

Lemma 2.2. Let X be a projective variety, D a divisor such that φD is
birational with image Z. Then, the volume of D is at least the degree of Z
and hence at least 1.

Proof. We may replace X by an appropriate birational model and in par-
ticular we may assume that φ := φD is a morphism. Since φ is birational, its
image Z is a non-degenerate subvariety of projective space PN and hence
its degree is at least 1. From the inclusion

φ∗OPN (1)|Z ↪→ OX(D),

one sees that vol(D) ≥ vol(OPN (1)|Z) ≥ 1. ��

2.3. Log canonical centres. Here we recall some well known results re-
garding log canonical centres. The first Lemma shows that when the volume
of a Q-divisor L is big, it is possible to produce a numerically equivalent
Q-divisor ∆x with high multiplicity at a general point x.

Lemma 2.3. Let V be an irreducible projective variety of dimension d,
L a big Q-Cartier divisor on V , and x ∈ V a smooth point. If for a positive
rational number α, one has

vol(L) > αd,

then for any sufficiently divisible integer k  0, there exists a divisor

A = Ax ∈ |kL| with multx(A) > kα.

This is easily seen by a parameter count comparing the number of
sections in OV (kL) and the number of conditions one needs to impose for
a function to vanish at a smooth point to order at least kα. The next lemma
shows that if the multiplicity of a Q-divisor at a given point is sufficiently
big, then the given point belongs to an appropriate log canonical centre.

Lemma 2.4. Let (X,∆) be a log pair, x a smooth point of X. If multx(∆) ≥
dim X, then LLC(X,∆, x) �= ∅. If multx(∆) < 1, then LLC(X,∆, x) = ∅.

Proof. See [14] 9.3.2 and 9.5.13. ��
Assume that (X,∆) is log canonical at x. It is often useful to assume

that Z = LLC(X,∆, x) is an irreducible variety. To this end recall (cf. [9]
and [1] (3.4))
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Lemma 2.5. Let X be a normal variety and let ∆ be an effective Q-Cartier
divisor such that KX + ∆ is Q-Cartier. Assume that x ∈ X is a kawamata
log terminal point of X and that (X,∆) is log canonical near x ∈ X.
If W1, W2 ∈ LLC(X,∆, x), and W is an irreducible component of W1 ∩ W2
containing x, then W is in LLC(X,∆, x). Therefore, if (X,∆) is not kawa-
mata log terminal at x, then LLC(X,∆, x) has a unique minimal irreducible
element, say V . Moreover, there exists an effective Q-divisor E such that

LLC(X, (1 − ε)∆ + εE, x) = {V }
for all 0 < ε � 1. We may also assume that there is a unique log canonical
place lying above V . If X is projective, x ∈ X is general and L is a big
divisor, then one can take E = aL for some positive number a.

2.4. Non-vanishing and birational maps. Recall the following well known
method for producing sections of adjoint line bundles:

Lemma 2.6. Let X be a smooth projective variety and D a big divisor on X.
Let 0 < λ < 1 a rational number and assume that for every general point
x ∈ X, there exists ∆ = ∆x ∼Q λD aQ-divisor such that x is a maximal (in
terms of inclusion) element of LCS(X,∆, x). Then h0(OX(KX + D)) > 0
and h0(OX(KX + 2D)) ≥ 2.

Proof. For m  0, let G be a general divisor in |m D|. Then x is not
contained in the support of G and so x is the only element of LLC(X,∆ +
1−λ

m G, x). Let µ : X ′ −→ X be a log resolution of (X,∆ + 1−λ
m G) and let

� := �

(

X,∆ + 1 − λ

m
G

)

:= µ∗OX ′

(

KX ′/X − �µ∗
(

∆ + 1 − λ

m
G

)

�
)

.

We may assume that µ∗|m D| = F + |M| where F has simple normal
crossings and |M| is base point free and hence M is nef and big. Then

µ∗ D − �µ∗
(

∆ + 1 − λ

m
G

)

� ∼Q µ∗ D − �µ∗
(

∆ + 1 − λ

m
F

)

� ∼Q
{

µ∗
(

∆ + 1 − λ

m
F

)}

+ 1 − λ

m
M.

So µ∗ D − �µ∗(∆ + 1−λ
m G)� is numerically equivalent to the sum of a frac-

tional divisor with simple normal crossings and a nef and big divisor.
By Kawamata-Viehweg vanishing, one sees that Riµ∗OX ′(KX ′ + µ∗ D −
�µ∗(∆ + 1−λ

m G)�) = 0 for i > 0. So there is a short exact sequence

0 −→ OX(KX + D) ⊗ � −→ OX(KX + D)

−→ OX(KX + D)

OX(KX + D) ⊗ �
−→ 0.
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Again by Kawamata-Viehweg vanishing, one has that

h1(OX(KX + D) ⊗ � ) = h1

(

OX ′

(

KX ′ +µ∗ D − �µ∗
(

∆+ 1 − λ

m
G

)

�
))

= 0.

Since x is the only element of LLC(X,∆ + 1−λ
m G, x), one has that Cx is

a direct summand of H0(X, OX (K X+D)

OX (K X+D)⊗� ) and so OX(KX + D) is generated
at x.

Pick a general point x1. Then we may find D1 ∼Q λD with an isolated
log canonical centre at x1. Now pick a general point x2, not in the support
of D1, and pick a general divisor D2 ∼Q λD with an isolated log canonical
centre at x2. As x2 and D2 are general, D2 does not contain x1. Thus x1 and
x2 are isolated log canonical centres of D1 + D2 ∼Q 2λD.

The rest of the proof that h0(OX(KX + 2D)) ≥ 2 now follows the line
above. ��

Given a line bundle with at least two sections, one has a rational map
to P1. The following lemma gives a way to produce birational maps.

Lemma 2.7. Let X be a smooth projective variety with h0(X,OX(mKX ))
≥ 2 for all m ≥ m0. Let X ′ −→ P

1 be any morphism induced by sections
of OX(m0KX ) on an appropriate birational model X ′ of X. If F denotes the
general fiber and |sKF | induces a birational morphism, then |tKX | induces
a birational morphism for all t ≥ m0(2s + 2) + s.

Proof. Following Theorem 4.6 of [11] and its proof, one sees that |(m0(2s
+1)+s)KX | gives a birational map. Since mKX is effective for all m ≥ m0,
the assertion follows. ��

It is also possible to prove a converse to (2.6):

Lemma 2.8. Let (X,∆) be a log pair of dimension n, and let D be an
integral Weil divisor such that the image Y of the rational map φD has
dimension n.

Then there is an open set U such that for any point x ∈ U, we may find
∆′ ∼ nD, such that x is the only element of LLC(X,∆ + ∆′, x).

Proof. Let U be the complement of the singular locus, the support of ∆,
and the locus where the map φD is not an étale morphism.

Pick x ∈ X and let y ∈ Y be a point of the image φD : X −→ Y .
By assumption, Y sits inside projective space PN . Pick n + 1 general hy-
perplanes which contain y, H1, H2, . . . , Hn+1 and n + 1 rational numbers
a1, a2, . . . , an+1, such that

0 < ai < 1 and
∑

i

ai = n.
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Set

Γ =
∑

ai Hi.

Then y is the only log canonical centre of KY +Γ. Let W be the normalisation
of the graph of φ = φD, so that there is a commutative diagram

W

��

p

��
��
��
�

��

q

AA
AA

AA
A

X ��
φ

������� Y.

Let Di = p∗q∗ Hi , and set

∆′ =
∑

ai Di.

Then each Di is linearly equivalent to D, so that ∆′ is linearly equivalent to
nD. On the other hand, as φ is étale over y, it follows that x is an isolated
log canonical centre of KX + ∆ + ∆′. ��

2.5. Log additivity of the Kodaira dimension.

Lemma 2.9. Let X and Y be smooth projective varieties and ∆ an effective
Q-divisor on X with simple normal crossings support. Let π : X −→ Y be
a morphism and suppose that KX + ∆ is log canonical on the general fiber
W of π, and κ(W, (KX + ∆)|W ) ≥ 0. Then

π∗OX(m(KX/Y + ∆)),

is weakly positive, for any m which is sufficiently divisible. In particular for
any ample line bundle H on Y and any rational number ε > 0, one has that
κ(KX/Y + ∆ + επ∗ H) ≥ dim Y.

Proof. It suffices to prove that

π∗OX(m(KX/Y + ∆h)),

is weakly positive, where ∆h consists of those components of ∆ which
dominate Y . In fact both [4], (4.13) and [15], (9.8) prove that this sheaf is
weakly positive, as soon as m∆h is integral. ��
Remark 2.10. In fact both [4] and [15] prove a much stronger result, by
putting an orbifold structure on the base which takes into account the mul-
tiple fibers of the morphism π. We will not need this stronger form.
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The following consequences of (2.9) are well known:

Corollary 2.11. Let X, Y,∆, H be as in (2.9).

(1) If KY is pseudoeffective, then for all rational numbers ε > 0

κ(KX + ∆ + επ∗ H) ≥ dim Y.

(2) If Y is of general type, κ(KX + ∆) ≥ dim Y.

Corollary 2.12. Let X, Y , and ∆ be as in (2.9).
Then there exists an ample line bundle A on X such that for all m

sufficiently big and divisible, h0(X,OX(m(KX/Y + ∆)) + A) ≥ 0.

Proof. Let n = dim X. Fix a very ample line bundle H on X such that
A = KX + (n + 2)H is also ample. By (2.9), for all m sufficiently big
and divisible, κ(m(KX/Y + ∆) + H) ≥ 0. By [14] 11.2.13, one sees that
h0(X,OX(KX + (n + 2)H + m(KX/Y + ∆))) ≥ 0. ��

3. Lifting sections

In this section, we prove that certain log pluricanonical forms extend from
a divisor to the ambient space. We follow the exposition of [10] very
closely, which proves that pluricanonical forms extend, indicating those
places where the definitions and proofs have to be modified.

Definition 3.1. Let (X,∆) be a smooth log pair, where every component
of ∆ has coefficient one and let D be a divisor on X. Let µ : W −→ X be
a birational morphism from a smooth variety W and let Θ be the support of
all divisors of log discrepancy zero. Assume that there is a decomposition

µ∗ D = P + M,

in Div(W )⊗R such that P is µ-nef and M is effective, where Θ∪ M ∪{the
exceptional set of µ} has normal crossing support, and Θ and M have no
components in common. The multiplier ideal sheaf �∆,M is defined by the
following formula

�∆,M = µ∗OW(KW/X + Θ − µ∗∆ − �M�).
Note that any component of the strict transform of ∆ is automatically

a component of Θ. Equivalently, in the notation analogous to [10], one has
that

µ∗OW(�P�+ KW + Θ) = �∆,M(D + KX + ∆).

When ∆ = 0, this reduces to the usual definition of �M . The notation
�P� is somewhat misleading as �P� �= �P′� for two Q-linearly equivalent
divisors. Therefore we replace it by µ∗ D − �M�.
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Remark 3.2. The definition of Θ is motivated by two conflicting require-
ments:

(1) On the one hand, we require

(KW + Θ) − µ∗(KX + ∆),

to be effective and exceptional. This forces us to include any divisors
of log discrepancy zero into Θ.

(2) On the other hand, to be able to apply vanishing, we will need the
supports of M and Θ to have no components in common. Thus we
cannot allow any divisor in Θ, which belongs to M.

Note that �∆,M is a coherent sheaf of ideals of OX which is determined
only by M, ∆ and µ. Since (KW + Θ) − µ∗(KX + ∆) and µ∗∆ − Θ are
effective, one has that

µ∗OW(−�M�) ⊂ �∆,M ⊂ �M.(∗)

We will need the following easy fact:

Lemma 3.3. Let ν : W ′ −→ W be a birational morphism of smooth projec-
tive varieties, G a reduced divisor on W, Γ aQ-divisor on W with �Γ� ≤ 0
and such that G + Γ has simple normal crossings support and where G,Γ
have no components in common. Then (W, G + Γ) is log canonical and the
set of divisors in W ′ of log discrepancy 0 for (W, G + Γ) and for (W, G)
coincide.

Proof. See 2.31 of [13]. ��
Lemma 3.4. Notation as in (3.1). If ν : W ′ −→ W is a birational morphism,
such that

ν∗M ∪ (ν ◦ µ)∗∆ ∪ {exceptional locus of (ν ◦ µ)},
has simple normal crossings, then �∆,ν∗M is also defined and �∆,M =
�∆,ν∗M.

Proof. Let Θ′ be the sum of all the divisors in W ′ of log discrepancy zero for
(X,∆). Then Θ′ is also the sum of all divisors in W ′ of log discrepancy zero
for (W, µ∗∆− KW/X) and so for (W,Θ) (as one has µ∗∆− KW/X = Θ− F
where F ≥ 0 has no component in common with Θ and Θ + F has simple
normal crossings support, and so (3.3) applies). Since M and Θ have no
common components and M + Θ has simple normal crossings, one sees
that M contains no log canonical centres of (W,Θ). Thus ν∗M has no
components in common with Θ′ and so �∆,ν∗M is defined. Note that

M = �M�+ {M} so that,
ν∗M = ν∗�M�+ ν∗{M} and so,
�ν∗M� = ν∗�M�+ �ν∗{M}�.
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By definition

�∆,ν∗M = (ν ◦ µ)∗OW ′(KW ′/X + Θ′ − (ν ◦ µ)∗∆ − �ν∗M�)
= µ∗

(
OW (KW/X + Θ − µ∗∆ − �M�)
⊗ ν∗OW ′(KW ′/W + Θ′ − ν∗Θ − �ν∗{M}�)).

Suppose that

KW ′/W + Θ′ − ν∗Θ − �ν∗{M}�,
is effective and exceptional for ν. Then

ν∗OW ′(KW ′/W + Θ′ − ν∗Θ − �ν∗{M}�) = OW ,

and the lemma follows. We may write

KW ′ + Θ∗ = ν∗(KW + Θ + {M}) + E,

where Θ∗ is the reduced divisor whose components are the divisors on W ′
of log discrepancy zero for (W,Θ + {M}) and hence for (W,Θ). By (3.3),
Θ∗ = Θ′ and so

KW ′/W + Θ′ − ν∗Θ − �ν∗{M}� = �E�,
is effective and exceptional as desired. ��

It is important to be able to compare multiplier ideal sheaves. Here is
the first basic result along these lines:

Lemma 3.5. Let (X,∆) be a smooth log pair, where every component of
∆ has coefficient one and let D be a divisor on X. Assume that there is
a birational map µ : W −→ X with the properties of (3.1). Let ∆′ ≤ ∆ be
another divisor, where every component of ∆′ has coefficient one.

Then

�∆,M ⊂ �∆′,M.

Proof. Let F be an exceptional divisor extracted by µ. Then the coefficient
of F in

(KW + Θ) − µ∗(KX + ∆),

is either the log discrepancy minus one, whenever the log discrepancy is
at least one, or it is zero. In particular the coefficient of F is an increasing
function of the log discrepancy of F. It follows easily that

(KW + Θ) − µ∗(KX + ∆) ≤ (KW + Θ′) − µ∗(KX + ∆′),

which in turn gives the inclusion of ideal sheaves. ��
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Theorem 3.6. Let (X,∆) be a smooth log pair, where every component
of ∆ has coefficient one and let π : X −→ S be a projective morphism of
algebraic varieties. Let M be an integral divisor such that M ≡π L + G
where

(1) L is π-nef and there is an effective Q-divisor B such that A = L − B
is π-ample,

(2) ∆ and G ∪ B have no components in common, �G� = 0 and
(3) the support of ∆ ∪ B ∪ G has simple normal crossings.

Then Rpπ∗OX(KX + ∆ + M) = 0, for all p > 0.

Proof. As L is π-nef, L − δB is π-ample, for any δ > 0. Pick ε > 0
such that ε∆ + L − δB is π-ample. As ∆ and G ∪ B have no components
in common and every component of ∆ has coefficient one, we see that
(X, (1 − ε)∆ + G + δB) is kawamata log terminal for any δ sufficiently
small. But then, since

∆ + M ≡π (ε∆ + L − δB) + (1 − ε)∆ + G + δB,

we may apply Kawamata-Viehweg vanishing. ��
We fix some notation:

(1) (Y,Γ) is a smooth log pair,
(2) the divisor X ⊂ Y is a component of Γ of coefficient one,
(3) (Y,Γ) is log canonical,
(4) S is the germ of an algebraic variety,
(5) π : Y −→ S is a projective morphism,
(6) ∆ is the restriction of Γ − X to X.

Note that we make no requirement about how X sits in Y , with respect
to π. We will also assume that every coefficient of Γ has coefficient one,
until (3.16).

Definition 3.7. A divisor D on Y will be called π-effective for the pair
(Y, X) if the natural homomorphism

π∗OY (D) −→ π∗OX(D),

is not zero. It is called π-Q-effective for the pair (Y, X) if m D is π-effective
for the pair (Y, X) for some positive integer m. D is said to be π-big for
the pair (Y, X) if we can write m D = A + B for a positive integer m, a
π-ample divisor A and a π-effective divisor B for the pair (Y, X).

A divisor D on X will be called π-transverse for (X,∆) if the sheaf
OX(D) is π-generated at the generic point of every log canonical centre of
KX +∆. D will be called π-Q-transverse for (X,∆) if m D is π-transverse
for some m > 0.

Now we turn to the definition of sheaves J0
∆,D, � 0

∆,D, J1
∆,D, � 1

∆,D, which
generalize the sheaves J0

D, � 0
D, J1

D, � 1
D of Definition 2.10 of [10].
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We will need a:

Definition 3.8. Let (X,∆) be a log pair and let µ : W −→ X be a bira-
tional morphism. We say that µ is canonical if every exceptional divisor
extracted by µ has log discrepancy at least one.

If (X,∆) is a pair consisting of a smooth variety and a divisor with
simple normal crossings support, then note that µ is canonical provided it is
an isomorphism in a neighbourhood of the generic point of any irreducible
component of the intersection of the components of ∆, that is provided it is
an isomorphism in a neighbourhood of any log canonical centre. Note also
that if µ is canonical, then Θ is the strict transform of ∆.

Definition 3.9. Let D be a π-Q-transverse divisor for (X,∆). For each
positive integer m, such that m D is π-transverse, pick a proper birational
canonical morphism µm : Wm −→ X from a smooth variety Wm, such that

(1) there is a decomposition µ∗
m(m D) = Pm + Mm in Div(Wm) such that

the natural homomorphism

(π ◦ µm)∗OWm(Pm) −→ π∗OX(m D),

is an isomorphism,
(2) Pm is π ◦ µm-free, and
(3) Mm ∪Θm ∪{the exceptional set of µm} is effective, with normal crossing

support, where Θm is defined as in (3.1).

We define

J0
∆,D =

⋃
�∆, 1

m Mm
,

where the union is taken over all positive integers m such that m D is
π-transverse. If D itself is π-transverse then we set � 0

∆,D = �∆,M1 .
Now suppose that D is a π-Q-transverse divisor on Y for (Y,Γ). For

every positive integer m, such that m D is a π-transverse divisor for (Y,Γ),
pick a birational morphism µm : Wm −→ Y from a smooth variety Wm,
such that

(1) there is a decomposition µ∗
m(m D) = Qm + Nm in Div(Wm) such that

the natural homomorphism

(π ◦ µm)∗OWm(Qm) −→ π∗OY (m D),

is an isomorphism,
(2) Qm is π ◦ µm-free, and
(3) Nm is effective, and Xm + Nm + Θm + {the exceptional set of µm} has

normal crossing support, where Xm is the strict transform of X and Θm
is defined as in (3.1).
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By assumption Xm is not contained in the support of Nm. We define

J1
∆,D =

⋃
�∆, 1

m Nm |Xm
,

where the union is taken over all positive integers m such that m D is π-
transverse for the pair (Y,Γ). If D itself is π-transverse for (Y,Γ), then we
set � 1

∆,D = �∆,N1|X1
.

Remark 3.10. We will not make use of the sheaves � i
∆,D, for i = 0 and 1.

We have included their definition for the sake of completeness.

Lemma 3.11. Let D be a π-Q-transverse divisor for (Y,Γ) (respectively
for (X,∆)). Then the sheaf Ji

∆,D is defined, it does not depend on the
resolution µm and we may choose µm to be canonical for any m sufficiently
divisible, where i = 1 (respectively i = 0). Further, we may assume that
there is a µm-ample divisor whose support is exceptional.

Proof. This is an easy consequence of (3.4) and of the Resolution Lemma
of [21]. ��
Lemma 3.12. Let D be a π-Q-transverse divisor for (Y,Γ).

(1) J1
∆,D ⊂ J0

∆,D|X

(2) If B is an effective integral divisor, which does not contain X and D+ B
is π-Q-transverse for (Y,Γ), then

Ji
∆,D(−B) ⊂ Ji

∆,D+B, i = 0, 1.

(3) There is a positive integer m such that

J0
∆,D = �∆, 1

m Mm
and J1

∆,D = �∆, 1
m Nm |Xm

.

Proof. (1) follows, since Nm |Xm ≥ Mm as divisors on Xm . (2) is clear.
(3) follows as X is Noetherian. ��
Lemma 3.13. Let D be a π-Q-transverse divisor for (Y,Γ). Then

(1) Ji
∆,αD ⊂ Ji

∆,D, for any rational number α ≥ 1 and i = 0, 1.
(2) Ji

∆,D ⊂ Ji
∆,D+L, for any π-free divisor L, and i = 0, 1.

(3) Im(π∗OY (D) −→ π∗OX(D)) ⊂ π∗J1
∆,D(D).

Proof. First of all, notice that Definition (3.9) also makes sense for Q-
divisors. (1) and (2) are clear. We may assume that µm is chosen so that
µ∗

m D = P + M in Div(Wm) and

(π ◦ µm)∗OWm(P) −→ π∗OY (D),

is an isomorphism. Since M > Mm/m one sees that there are inclusions

OWm(µ∗
m D − M) ⊂ OWm (µ∗

m D − �Mm/m�) ⊂ OWm(µ∗
m D).

We now push forward via (π ◦ µm). Since P = µ∗
m D − M, both the left

and right hand sides push forward to π∗OY (D). So the image of π∗OY (D)
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is contained in the image of (π ◦µm)∗OWm (µ∗
m D − �Mm/m�) and hence in

π∗J1
∆,D(D) (cf. equation (∗), after (3.2)). ��

The following lemma is the key result that will allow us to generalize
the results of Siu and Kawamata to the setting of log-forms:

Lemma 3.14. Suppose that D is a divisor on Y and suppose that there is
an effective divisor B on Y such that

1. A = D − B is π-ample, and
2. B is π-Q-transverse for (Y,Γ).

Then

π∗J1
∆,D(D + KX + ∆)

⊂ Im(π∗OY (D + KY + Γ) −→ π∗OX(D + KX + ∆)).

Proof. Notation as in (3.9). There is an exact sequence

0 −→ OWm

(

KWm + Θm − Xm + µ∗
m D − �Nm

m
�
)

−→ OWm

(

KWm + Θm + µ∗
m D − �Nm

m
�
)

−→ OXm

(

KXm + (Θm − Xm)|Xm +
(

µ∗
m D − �Nm

m
�
) ∣

∣
∣
∣

Xm

)

−→ 0.

Claim 3.15. If m is sufficiently large then

R1(π ◦ µm)∗(OWm(KWm + Θm − Xm + µ∗
m D − �Nm

m
�)) = 0.

Proof of Claim 3.15. By (3.11), we may assume that µm is canonical and
there is an effective divisor E supported on the exceptional locus such
that µ∗

m A − E is π ◦ µm-ample. As µm is canonical, E + {Nm/m} and
Θm − Xm have no common component. Since B is π-Q-transverse, we
may assume that µ∗

m(m B) ∼π,Q N ′ where N ′ and Θm − Xm have no
common component and Nm + N ′ + Θm + {exceptional locus of µm} has
simple normal crossings support. Notice that since D − B is π-ample, we
have that D is π-Q-transverse and that Nm ≤ N ′. We now apply (3.6) to
∆ = Θm − Xm , M = µ∗

m D − �Nm/m�, G = {Nm/m} and L = Qm/m.
Notice that L−( N′−Nm

m +E) ∼π◦µm µ∗
m A−E is π◦µm-ample and N′−Nm

m +E
is effective. The hypothesis of (3.6) are now verified and so

Rp(π ◦ µm)∗OWm

(

KWm + Θm − Xm + µ∗
m D − �Nm

m
�
)

vanishes for p > 0. ��
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Thus there is a surjective homomorphism

π∗OY (D + KY + Γ) ⊃ (π ◦ µm)∗OWm

(

KWm + Θm + µ∗
m D − �Nm

m
�
)

−→ (π ◦ µm)∗OXm

(

KXm + Θm − Xm + µ∗
m D − �Nm

m
�
)

= J1
∆,D(D + KX + ∆),

hence the assertion. ��
Theorem 3.16. Let X ⊂ Y be a smooth divisor in a smooth variety. Fix
a positive integer e. Let H be a sufficiently π-very ample divisor and set
A = (dim X + 1)H. Assume that

(1) Γ is a Q-divisor with simple normal crossings support such that Γ
contains X with coefficient one and (Y,Γ) is log canonical;

(2) k is a positive integer such that kΓ is integral;
(3) C ≥ 0 is an integral divisor not containing X;
(4) Given D = k(KY + Γ), D′ = D|X = k(KX + ∆) and G = D + C,

then D′ is π-Q-pseudo-effective (i.e. D′ + εH ′ is π-Q-effective for any
ε > 0) and that G is π-Q-transverse for (Y, �Γ�).

Then

J0
m D′+eH ′(−mC) ⊂ J1

mG+eH+A, ∀m > 0,

where H ′ := H|X.

Proof. It suffices to prove the stronger inclusion

J0
m D′+eH ′(−mC) ⊂ J1

�∆�,mG+eH+A.

This is a modification of the proof of Lemma 3.7 of [10], which we follow
quite closely. We prove the inclusion by induction on m, in the case e = 1,
the general case being left to the reader.

By assumption m D′+H ′ is π-big, C does not contain X and mG+H+A
is π-Q-transverse for (Y, �Γ�) for any non-negative integer m. In particular,
both sides of the proposed inclusion are well-defined.

If m = 0 the result is clear. Assume the result for m. Suppose that

Γ =
∑

j

γ jΓ( j), where 0 < γ j := gj

k
≤ 1.

Then set

Γi =
∑

j

γi( j)Γ( j) where γi( j) =
{

0 if 1 ≤ i ≤ k − gj ,
1 if k − gj < i ≤ k + 1.
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With this choice of Γi , we have

X ≤ Γ1 ≤ Γ2 ≤ Γ3 ≤ · · · ≤ Γk = Γk+1 = �Γ�,
and each Γi is integral. Let ∆i be the restriction of Γi − X to X. Set

Di = KY + Γi and D≤i =
∑

j≤i

D j .

With this choice of Di , we have D = D≤k. Possibly replacing H by a mul-
tiple, we may assume that Hi = D≤i−1 +Γi − X + H and Ai = H + D≤i + A
are π-ample, for 1 ≤ i ≤ k. We are now going to prove, by induction on i,
that

J0
m D′+H ′(−mC) ⊂ J1

∆i+1,mG+D≤i+H+A where 0 ≤ i ≤ k,

where we adopt the convention that D≤0 = 0.
Since ∆1 ≤ �∆�, it follows by (3.5)

J1
�∆�,mG+H+A ⊂ J1

∆1,mG+H+A,

and so the case i = 0 follows from the inclusion

J0
m D′+H ′(−mC) ⊂ J1

�∆�,mG+H+A,

which we are assuming by induction on m. Assume the result up to i − 1.
Then

π∗J0
m D′+H ′(m D + D≤i + H + A)

= π∗J0
m D′+H ′(−mC)(mG + D≤i + H + A)

⊂ π∗J1
∆i ,mG+D≤i−1+H+A(mG + D≤i + H + A)

= π∗J1
∆i ,mG+D≤i−1+H+A(mG + D≤i−1 + H + A + KY + Γi)

⊂ Im(π∗OY (mG + D≤i + H + A) −→ π∗OX(mG + D≤i + H + A))

⊂ π∗J1
∆i+1,mG+D≤i+H+A(mG + D≤i + H + A),

where we use induction to get the inclusion of the second line in the third
line, (3.14) applied to the basic identity

mG + D≤i−1 + H + A = Ai−1 + B,

to get the inclusion of the fourth line in the fifth line, and (3) of (3.13) to
get the inclusion of the fifth line in the sixth line. As

J0
m D′+H ′(m D + D≤i + H + A)

= J0
m D′+H ′((m D + H) + Hi + (dim X)H + KX ),
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is π-generated by (a trivial generalization of) (3.2) of [10], it follows that

J0
m D′+H ′(−mC) ⊂ J1

∆i+1,mG+D≤i+H+A.

This completes the induction on i. It follows that

J0
m D′+H ′(−mC) ⊂ J1

∆k+1,mG+D≤k+H+A,

so that, by (2) of (3.12),

J0
m D′+H ′(−(m + 1)C) ⊂ J1

�∆�,(m+1)G+H+A.

But by (1) and (2) of (3.13),

J0
(m+1)D′+H ′ ⊂ J0

m D′+H ′ .

Thus

J0
(m+1)D′+H ′(−(m + 1)C) ⊂ J1

�∆�,(m+1)G+H+A,

and this completes the induction on m and the proof. ��
Corollary 3.17. Let X ⊂ Y be a smooth divisor in a smooth variety. Let H
be a sufficiently π-very ample divisor and set A = (dim X + 1)H. Assume
that

(1) Γ is a Q-divisor with simple normal crossings support such that Γ
contains X with coefficient one and (Y,Γ) is log canonical;

(2) C ≥ 0 is a Q-divisor not containing X;
(3) KX +∆ is π-Q-pseudo-effective, where ∆ = (Γ− X)|X and KY +Γ+C

is π-Q-transverse for (Y, �Γ�).
For any positive integer m, such that m(KY + Γ) is integral, the image of
the natural homomorphism

π∗OY (m(KY +Γ + C) + H + A) −→ π∗OX(m(KX +∆ + C) + H + A),

contains the image of the sheaf π∗OX(m(KX + ∆) + H) considered as
a subsheaf of π∗OX(m(KX + ∆ + C) + H + A) by the inclusion induced
by any divisor in mC + |A| not containing X.

Proof. Let H ′ = H|X . Fixing a section σ ∈ H0(Y,OY (A)) not vanishing
on X, we can view

J0
m(K X+∆)+H ′(m(KY + Γ) + H),

as a subsheaf of

J0
m(K X+∆)+H ′(m(KY + Γ) + H + A),
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via the map induced by multiplication by σ . As we have seen in the proof
of (3.16),

π∗J0
m(K X+∆)+H ′(m(KY + Γ) + H + A) =

π∗J0
m(K X+∆)+H ′(−mC)(m(KY + Γ + C) + H + A),

is contained in the image of π∗OY (m(KY + Γ + C) + H + A). Since

π∗OX(m(KX + ∆) + H) = π∗J0
m(K X+∆)+H ′(m(KY + Γ) + H),

the assertion now follows easily. ��

4. Lifting log canonical centres

We fix some notation for this section. Let (X,∆) be a log pair, where X is
Q-factorial, and ∆ is an effective Q-divisor. Let V be an exceptional log
canonical centre of KX +∆. Let f : W −→ V be a resolution of V . Let Θ be
an effectiveQ-divisor on W . Suppose that there are positive rational numbers
λ and µ such that ∆ ∼ λKX and Θ ∼ µKW . Let ν = (λ + 1)(µ + 1) − 1.
Suppose that W is of general type.

The main result of this section is:

Theorem 4.1. There is a very general subset U of V with the following
property:

Suppose that W ′ ⊂ W is a pure log canonical centre of KW + Θ, whose
image V ′ ⊂ V intersects U.

Then, for every positive rational number δ, we may find an effective
divisor ∆′ on X such that V ′ is a pure log canonical centre of KX + ∆′,
where ∆′ ∼ (ν + δ)KX. Now suppose that we may write KX ∼ A + E,
where A is ample, E is effective and V is not contained in E. Then we may
assume that V ′ is an exceptional log canonical centre of KX + ∆′.

(4.1) is the main step in the proof of (1.1). In fact (1.1) is a standard
consequences of (4.1), see Sect. 6.

The idea is to lift Θ as a Q-divisor, using (3.17). However this is more
delicate than it might first appear, as we cannot lift Θ directly to X. Instead,
we are able to find a sequence of successively better approximations Θm . In
particular we have to pass to a resolution of X, and to this end, we introduce
some more notation.

Let π : Y −→ X be a log resolution of (X,∆). Let E be the unique
exceptional divisor of log discrepancy zero with centre V . Possibly blowing
up further, we may assume that the restriction p : E −→ V of π to E factors
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g : E −→ W through f . Thus we have a commutative diagram,

Eξ ⊂ E

ww

g

oo
oo
oo
oo
oo
oo
oo
o

��

p

�
�

�� Y

��

πW

��
f

PP
PP

PP
PP

PP
PP

PP
P

ξ ∈ V �
�

�� X.

Let ξ be the generic point of V and let Eξ be the generic fibre of p.

Lemma 4.2. We may find a positive integer m0 and a positive integer s,
with the following properties:

For every sufficiently large and divisible integer m, there is an effective
divisor Gm on Y such that

(1) Gm does not contain E,
(2) Gm + sE ∼ (m0 + m(1 + λ))π∗KX,
(3) Gm |E = mg∗Θ + Bm, where the restriction of Bm to the inverse image

of a fixed open subset of V is effective, and
(4) Bm|Eξ

belongs to a fixed linear system.

Proof. We may assume that

KY + Γ = π∗(KX + ∆) + F,

where Γ and F are effective, with no common components and F is excep-
tional. We may write Γ = E+Γh +Γv, F = Fh +Fv where the components
of Γh and Fh are the components of Γ − E and F whose images contain
V . As V is an exceptional log canonical centre for (X,∆), {Γh} = Γh and
Γh|Eξ

= (Γ − E)|Eξ
and so,

(
KE + Γh

)|Eξ
= (KY + Γ)|Eξ

= F|Eξ
≥ 0.

By Corollary (2.12), we may assume that

h0(E,OE
(
m

(
KE/W + Γh

) + H
))

> 0,

where H is a sufficiently ample divisor on Y . Therefore, there is an injection

g∗|mKW | −→ ∣
∣m

(
KE + Γh

) + H
∣
∣,

induced by a choice of a divisor in |m(KE/W + Γh) + H|.
We now apply (3.17). Possibly blowing up further, we may assume

that the image of every element of LLC(Y, E + �Γh�) contains V . As the
divisors E + �Γh� and F have no common components, it follows that
KY + Γ = π∗(KX + ∆) + F is π-Q-transverse for (Y, E + �Γh�). Notice
also that as W is of general type, (KY + E + Γh)|E = (KE + Γh |E ) is
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Q-effective, by (2.11). By Corollary (3.17), with S = Spec(C), it follows
that elements of

∣
∣m

(
KE + Γh|E

) + H|E

∣
∣ ↪→ |m(KE + (Γ − E)|E ) + H|E + A|E |,

can be lifted to elements of

|m(KY + Γ) + H + A| = |m(π∗(KX + ∆) + F) + H + A|.
Denote by Sm the lift of mg∗Θ to |mµ(π∗(KX +∆)+ F)+ H + A|. As

KX is big, there is a fixed positive integer m0 and an effective divisor

S0 ∈ |m0π
∗KX − H − A|.

Then

Sm + S0 ∈ |(m0 + m(1 + λ)µ)π∗KX + mµF|
= |(m0 + m(1 + λ)µ)π∗KX | + mµF

so that we may write Sm + S0 = G′
m + mµF for some

G′
m ∈ |(m0 + m(1 + λ)µ)π∗KX |.

We may write

G′
m = Gm + sE,

where Gm does not contain E and s is a positive integer. Since Sm does not
contain E and S0 is a fixed divisor, it is clear that s is fixed. Since Gm +mµF
contains Sm, it follows that we may write

Gm |E = mg∗Θ + Bm,

where the only components of Bm with negative coefficients, are supported
on g∗Θ and contained in E ∩ F. Thus (3) holds, and when we restrict to Eξ

we may ignore g∗Θ. Thus

Bm|Eξ
∼ ((m0 + m(1 + λ)µ)π∗KX − sE)|Eξ

= (−sE)|Eξ
. ��

Proof of (4.1). Let U be any very general subset of V , such that

(1) the morphism p restricted to p−1(U) is smooth,
(2) every exceptional divisor whose centre intersects U , contains V ,
(3) every component of ∆ which intersects U , contains V , and
(4) every component of Bm whose image intersects U , dominates V , for

every sufficiently large and divisible integer m, as in (4.2).

Let Gm be the sequence of divisors whose existence is guaranteed by
(4.2). Set

Γm = G′
m/m, Θm = π∗Γm and ∆m = am∆ + Θm,

where am ≤ 1 is chosen so that the log discrepancy of E with respect to
KX + ∆m is zero.
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Claim 4.3. V ′ is a pure log canonical centre of KX + ∆m .

Proof of Claim 4.3. Since this result is local about the generic point of V ,
passing to an open subset of X, we may assume that properties (1)–(4) hold,
and that Bm is effective. In this case

KY + E + Fm + Gm/m = π∗(KX + ∆m) where
KY + cm E + Fm = π∗(KX + am∆),

Fm is a divisor, which does not contain E and cm = 1−s/m < 1 is a positive
number. Restricting to E, we get

KE + Fm|E + g∗Θ + Bm/m.

Let E ′ be the inverse image of W ′. Since the morphism p is smooth, E ′ is
a pure log canonical centre of KE + g∗Θ. Since V is an exceptional log
canonical centre, we have �Γh� = 0. Thus KE + Γh is kawamata log
terminal. Since Bm|Eξ

belongs to a fixed linear system and p is smooth
over U , it follows that the restriction of Bm to any fibre of p over U , belongs
to a fixed linear system. Thus KE +Γh |E + Bm/m is kawamata log terminal,
for m large enough. As Fm ≤ Γh , it follows that KE + Fm|E + Bm/m is also
kawamata log terminal, for m large enough. It follows that E ′ is a pure log
canonical centre of KE + Fm |E + g∗Θ + Bm/m.

We now apply inversion of adjunction, see (17.7) of [12]. (17.7) is only
stated for effective divisors. However it is easy to see that (17.6) and (17.7)
of [12], extend to the case when the components of negative coefficient are
contracted by a birational map, since this is the case for (17.4) of [12]. ��

Clearly 0 ≤ am ≤ 1. Moreover, am approaches 1 as m approaches
infinity, as the coefficient s/m of E in Γm approaches zero. Pick m so
that m0/m < δ/2. Then, using the decomposition KX ∼ A + E, there is
a perturbation ∆′ ∼ (ν + δ)KX of ∆m , such that V ′ is an exceptional log
canonical centre of KX + ∆′. ��

5. Effective birational freeness

In this section we give an effective bound for the rth pluricanonical map of
a variety of general type, which only depends on the volume of KX and the
value of this constant for general subvarieties of X:

Proposition 5.1. Let X be a smooth variety of general type of dimension n.
Let s′ be a positive integer such that for every subvariety V of X which
contains a very general point of X, the map φs′ KV is birational. Set

s =
(

� n

vol(KX )1/n
�+ 2

)
(
ns′ + 1

)
.

Then φrK X is birational, for all r ≥ 4s(s′ + 1) + s′.
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Proof. By (2.3) and (2.4), for every very general point x ∈ X, we may find
a Q-divisor ∆ ∼Q λKX with

λ < � n

vol(KX )1/n
�+ 1,

such that LLC(X,∆, x) �= ∅. By (2.5), we may assume that (X,∆) is log
canonical near x, that LLC(X,∆, x) contains a unique element V and that
there is a unique place of log canonical singularities dominating V . Let
f : W −→ V be a resolution of V . Then, by (2.8), for a general point
x ′ ∈ V , we may find a divisor Θ on W , such that x ′ is an isolated log
canonical centre of KW + Θ, where Θ ∼Q ns′KW . By (4.1) it follows that
we may find ∆′ ∼ (s − 1)KX such that x is an isolated point of KX + ∆′.
By (2.6) it follows that h0(2sKX ) ≥ 2, and so the result follows from (2.7).

��
Corollary 5.2. Let X be a smooth variety of general type of dimension n.
Let s′ be a positive integer such that for every subvariety V of X which
contains a very general point of X, the map φs′ KV is birational.

If the volume of KX is at most v, then X is birational to a subvariety of
degree at most

(8(ns′ + 1)(s′ + 1))n max(nn, 3nv).

Proof. By (5.1), φrK X is birational, where

r = 4s(s′ + 1) + s′ and s =
(

� n

vol(KX )1/n
�+ 2

)

(ns′ + 1).

Now

vol(rKX ) = rn vol(KX )

= (4s(s′ + 1) + s′)n vol(KX )

≤ ((4s + 1)(s′ + 1))n vol(KX )

≤
(

� n

vol(KX )1/n
�+ 3

)n

(4(ns′ + 1)(s′ + 1))n vol(KX )

≤ max
(

nn

vol(KX )
, 3n

)

(8(ns′ + 1)(s′ + 1))n vol(KX )

≤ (8(ns′ + 1)(s′ + 1))n max(nn, 3nv),

and so we are done by (2.2). ��

6. Proof of (1.1)

Lemma 6.1. Let π : X −→ B be a bounded family of projective varieties of
general type. Then there is a positive integer R such that if Y is a resolution
of any fiber of π, then φrKY is birational for all r ≥ R.
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Proof. Let Y be a fiber over the generic point ξ of a component of B. If
we pick a projective resolution of Y , then we may extend this to an open
neighbourhood of ξ . Thus, by Noetherian induction, possibly replacing B
by a union of locally closed subsets, we may assume that π is projective
and smooth. If φrKY is birational, then this map remains birational over an
open neighbourhood of ξ , and we are done by Noetherian induction. ��
Proof of (1.1). We proceed by induction on the dimension. Assume that
(1.1) holds up to dimension n − 1. By assumption there is a positive integer
rn−1 such that φrKW is birational, for any smooth variety W of general type
of dimension at most n − 1, and for any r ≥ rn−1.

Now if x is a very general point of X, and V is any subvariety contain-
ing x, then any resolution W of V is of general type. Hence if vol(KX ) ≥ 1,
then we are done by (5.1). Thus we may assume that vol(KX ) < 1. By
(5.2), it follows that X is birational to a subvariety of projective space of
bounded degree. But then the set of all varieties of general type such that
vol(KX ) < 1 is birationally bounded, and we are done by (6.1). ��
Proof of (1.2). By (1.1) and (2.2) it follows that any smooth variety of general
type of dimension n, where vol(KX ) ≤ M, is birational to a subvariety of
projective space of degree at most (rn)

n M, and the result follows. ��
Proof of (1.3). If vol(KX ) ≥ 1 there is nothing to prove, otherwise we apply
(1.2) and (6.1). ��
Proof of (1.4). This is an immediate consequence of the main result of [18].

��

References

1. Ambro, F.: The locus of log canonical singularities. arXiv:math.AG/9806067
2. Benveniste, X.: Sur les applications pluricanoniques des variétés de type très général
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