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1. Introduction

In this paper, we consider the Ḣ1 critical non-linear Schrödinger equation{
i∂tu + ∆u ± |u| 4

N−2 u = 0 (x, t) ∈ RN × R
u|t=0 = u0 ∈ Ḣ1(RN ).

Here the − sign corresponds to the defocusing problem, while the + sign
corresponds to the focusing problem. The theory of the Cauchy problem
(CP) for this equation was developed in [8] (Cazenave and Weissler). They
show that if ‖u0‖Ḣ1 ≤ δ, δ small, there exists a unique solution u ∈
C(R; Ḣ1(RN )) with the norm ‖u‖

L
2(N+2)

N−2
x,t

< ∞ (i.e. the solution scatters in

Ḣ1(RN )). See Sect. 2 of this paper for a review of these results.
In the defocusing case, Bourgain [5,6] proved that, for N = 3, 4 and

u0 radial, this also holds for ‖u0‖Ḣ1 < +∞, and that for more regular u0,
the solution preserves the smoothness for all time. (Another proof of this
last fact is due to Grillakis [13] for N = 3). Bourgain’s result was then
extended to N ≥ 5 by Tao [26], still under the assumption that u0 is radial.
Then in [9] (Colliander, Keel, Staffilani, Takaoka and Tao) the result was
obtained for general u0, when N = 3. This was extended to N = 4 in [24]
(Ryckman, Visan) and finally to N ≥ 5 in [28] (Visan).
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Part of this research was carried out during visits of the second author to the University of
Chicago
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In the focusing case, these results do not hold. In fact, the classical virial
identity (see for example Glassey in [12] and Sect. 5)

d2

dt2

∫
|x|2 |u0(x, t)|2 dx = 8

{∫
|�u(t)|2 − |u(t)| 2N

N−2

}

shows that if E(u0) = 1
2

∫ |�u0|2− N−2
2N

∫ |u0| 2N
N−2 < 0 and |x|u0 ∈ L2(RN ),

the solution must break down in finite time. Moreover,

W(x) = W(x, t) = 1(
1 + |x|2

N(N−2)

) N−2
2

is in Ḣ1(RN ) and solves the elliptic equation

∆W + |W | 4
N−2 W = 0,

so that scattering cannot always occur even for global (in time) solutions.

In this paper we initiate the detailed study of the focusing case. We show
(Corollary 5.14):

Theorem 1.1. Assume that E(u0) < E(W ), ‖u0‖Ḣ1 < ‖W‖Ḣ1 , N = 3, 4, 5
and u0 is radial. Then the solution u with data u0 at t = 0 is defined for all
time and there exists u0,+, u0,− in Ḣ1 such that

lim
t→+∞

∥∥u(t) − eit∆u0,+
∥∥

Ḣ1 = 0, lim
t→−∞

∥∥u(t) − eit∆u0,−
∥∥

Ḣ1 = 0.

Antecedents to this kind of result can be found in the L2 critical case,
in the work of Weinstein [29] and in the H1 subcritical case in the works
of Beresticky and Cazenave [3], and Zhang [30]. In particular in [3], the
authors use variational ideas and the relationship with the virial identity.

We expect that our arguments will extend to the case of radial data, for
N ≥ 6 using arguments similar to those in the appendix of [26–28] (Tao
and Visan). (It remains an interesting problem to remove the radiality.) The
result is optimal in that clearly the solution W does not scatter. We also show
that for u0 radial, |x|u0 ∈ L2 (RN), E(u0) < E(W ), but ‖u0‖Ḣ1 > ‖W‖Ḣ1 ,
the solution must break down in finite time.

Our proof introduces a new point of view for these problems. Using
a concentration compactness argument (Sect. 4), we reduce matters to
a rigidity theorem, which we prove in Sect. 5, with the aid of a local-
ized virial identity (in the spirit of Merle [17,18]). The radiality enters only
at one point, in our proof of the rigidity theorem (see Remark 5.2). We think
that the general strategy of our proof with one extra ingredient should also
apply in the non-radial case. In Sect. 3, we prove some elementary vari-
ational estimates which yield the necessary coercivity for our arguments.
These are automatic in the defocusing case and thus our proof gives an
alternative approach to [5] and [26] for N = 3, 4, 5.
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2. A review of the Cauchy problem

In this section we will review the Cauchy problem{
i∂tu + ∆u + |u| 4

N−2 u = 0 (x, t) ∈ RN × R
u|t=0 = u0 ∈ Ḣ1(RN )

(CP)

i.e., the Ḣ1 critical, focusing, Cauchy problem for NLS. We need two
preliminary results.

Lemma 2.1 (Strichartz estimate [7,14]). We say that a pair of exponents
(q, r) is admissible if 2

q + N
r = N

2 and 2 ≤ q, r ≤ ∞. Then, if 2 ≤ r ≤ 2N
N−2

(N ≥ 3) (or 2 ≤ r < ∞, N = 2 and 2 ≤ r ≤ ∞, N = 1) we have

i) ∥∥eit∆h
∥∥

Lq
t Lr

x
≤ C ‖h‖L2

ii)∥∥∥∥
∫ +∞

−∞
ei(t−τ)∆g(−, τ) dτ

∥∥∥∥
Lq

t Lr
x

+
∥∥∥∥
∫ t

0
ei(t−τ)∆g(−, τ) dτ

∥∥∥∥
Lq

t Lr
x

≤ C ‖g‖
Lq′

t Lr′
x

iii) ∥∥∥∥
∫ +∞

−∞
eit∆g(−, τ) dτ

∥∥∥∥
L2

x

≤ C ‖g‖
Lq′

t Lr′
x

.

Lemma 2.2 (Sobolev embedding). For v ∈ C∞
0 (RN+1), we have

‖v‖
L

2(N+2)
N−2

t L
2(N+2)

N−2
x

≤ C
∥∥�xv

∥∥
L

2(N+2)
N−2

t L

2N(N+2)

N2+4
x

(N ≥ 3).

(Note that 2(N+2)

N−2 = q, 2N(N+2)

N2+4
= r is admissible.)

Remark 2.3. Let f(u) = |u| 4
N−2 u, then clearly | f(u)| ≤ |u| N+2

N−2 ,
|∂z f(u)| ≤ C|u| 4

N−2 , |∂z f(u)| ≤ C|u| 4
N−2 . Moreover, for 3 ≤ N ≤ 6,

|∂z f(u) − ∂z f(v)|
|∂z f(u) − ∂z f(v)|

}
≤ C |u − v| ·

{
|u| 6−N

N−2 + |v| 6−N
N−2

}
.

Also, note that (� f )(u(x)) = ∂z f(u(x))u(x) + ∂z f(u(x))u(x), so that
| f(u) − f(v)| ≤ |u − v|{|u| 4

N−2 + |v| 4
N−2 }. Moreover,

�x( f(u(x))) − �x( f(v(x))) = (� f )(u(x))�u − (� f )(v(x))�v

= (� f )(u(x))�u − (� f )(u(x))�v

+ {� f(u(x))) − � f(v(x))} �v,
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so |�x f(u(x)) − �x f(v(x))| ≤ C|u| 4
N−2 |�u − �v| + C|�v|{|u| 6−N

N−2 +
|v| 6−N

N−2 }|u − v|.
Remark 2.4. In the estimate ii) in Lemma 2.1, one can actually show: ([14])

ii’) ∥∥∥∥
∫ +∞

−∞
ei(t−τ)∆g(−, τ) dτ

∥∥∥∥
Lq

t Lr
x

≤ C ‖g‖Lm′
t Ln′

x
,

where (q, r), (m, n) are any pair of admissible indices as in i) of Lemma 2.1.

Let us define S(I ), W(I ) norm for an interval I by

‖v‖S(I ) = ‖v‖
L

2(N+2)
N−2

I L
2(N+2)

N−2
x

and ‖v‖W(I ) = ‖v‖
L

2(N+2)
N−2

I L

2N(N+2)

N2+4
x

.

Theorem 2.5 (See [8]). Assume u0 ∈ Ḣ1(RN ), t0 ∈ I an interval, and
‖u0‖Ḣ1 ≤ A. Then, (for 3 ≤ N ≤ 5) there exists δ = δ(A) such that, if
‖ei(t−t0)∆u0‖S(I ) < δ, there exists a unique solution u to (CP) in I × RN ,
with u ∈ C(I; Ḣ1(RN )),∥∥�xu

∥∥
W(I )

< ∞, ‖u‖S(I ) ≤ 2δ.

Moreover, if u0,k → u0 in Ḣ1 (so that, as we will see, for k large
‖ei(t−t0)∆u0,k‖S(I ) < δ) the corresponding solutions uk → u in
C(I; Ḣ1(RN )).

Sketch of proof. Let us assume, without loss of generality, that t0 = 0. (CP)
is equivalent to the integral equation

u(t) = eit∆u0 +
∫ t

0
ei(t−t ′)∆ f(u) dt′,

where f(u) = |u| 4
N−2 u. We now let Ba,b = {v on I × Rn : ‖v‖S(I ) ≤ a,

‖�v‖W(I ) ≤ b} and Φu0(v) = eit∆u0 + ∫ t
0 ei(t−t ′)∆ f(v) dt′. We will next

choose δ, a, b so that Φu0(v) : Ba,b → Ba,b and is a contraction there: note
that ∥∥�Φu0(v)

∥∥
W(I )

≤ CA + C
∥∥�x f(v)

∥∥
L2

I L
2N

N+2
x

.

This follows, for the first term, by i) (q = 2(N+2)

N−2 , r = 2N(N+2)

N2+4 ) in Lemma 2.1

and by ii) in Remark 2.4, with the same q, r and m′ = 2, n′ = 2N
N+2 . But

�x f(u(x)) = (� f )(u(x))�xu = O(|�u| · |u| 4
N−2 ) so that, using Hölder in-

equality we obtain: (for v ∈ Ba,b)

∥∥�Φu0(v)
∥∥

W(I )
≤ CA + C ‖v‖

4
N−2
S(I ) · ‖�v‖W(I ) ≤ CA + Ca

4
N−2 b.
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Using Lemma 2.2 for the second term in Φu0 , and the argument above
together with our assumption on u0 for the first term, we obtain:∥∥Φu0(v)

∥∥
S(I )

≤ δ + Ca
4

N−2 b.

Now choose b = 2AC, and a so that Ca
4

N−2 ≤ 1/2. Then ‖�Φu0(v)‖W(I )

≤ b. Next, if δ = a/2, and Ca( 4
N−2 −1)b ≤ 1/2 (possible if N < 6) we obtain

‖Φu0(v)‖S(I ) ≤ a, so that Φu0 : Ba,b → Ba,b. Next, for the contraction, we
use the same argument in conjunction with Remark 2.3.∥∥�Φu0(v) − �Φu0(v

′)
∥∥

W(I )
≤ C

∥∥�x f(v) − �x f(v′)
∥∥

L2
I L

2N
N+2
x

≤ C
∥∥∥|v| 4

N−2
∣∣�v − �v′∣∣∥∥∥

L2
I L

2N
N+2
x

+ C
∥∥∥∣∣v − v′∣∣ |v| 6−N

N−2
∣∣�v′∣∣∥∥∥

L2
I L

2N
N+2
x

+ C
∥∥∥∣∣v − v′∣∣ ∣∣v′∣∣ 6−N

N−2
∣∣�v′∣∣∥∥∥

L2
I L

2N
N+2
x

.

The first term is bounded as before by C‖v‖
4

N−2
S(I ) ‖�v − �v′‖W(I ). For

the second and third terms we use Hölder’s inequality to bound them by

C‖v − v′‖S(I )‖�v′‖W(I )
(‖v‖ 6−N

N−2
S(I ) + ‖v′‖

6−N
N−2
S(I )

)
so that∥∥�Φu0(v) − �Φu0(v

′)
∥∥

W(I )
≤ Ca

4
N−2 ‖�v − �v′‖W(I )

+ Ca
6−N
N−2 b‖v − v′‖S(I ).

Lemma 2.2 gives∥∥Φu0(v) − Φu0(v
′)
∥∥

S(I )
≤ C

∥∥�Φu0(v) − �Φu0(v
′)
∥∥

W(I )

≤ Ca
4

N−2 ‖�v − �v′‖W(I ) + Ca
6−N
N−2 b‖v − v′‖S(I )

and thus we establish the contraction property (N < 6). We then find
u ∈ Ba,b solving Φu0(u) = u. To show that u ∈ C(I; Ḣ1), note that
eit∆u0 ∈ C(I; Ḣ1) with norm bounded by A. For the term

∫ t
0 ei(t−t ′)∆ f(u) dt′,

we use iii) in Lemma 2.1, with (q′, r ′) = (2, 2N/N + 2). The proof of
Theorem 2.5 is easily concluded from this. (The last continuity statement is
an easy consequence of the fixed point argument, see also Remark 2.17.) 	

Remark 2.6. Using Remark 2.4, it is easy to see that �u ∈ Lq

I Lr
x for any

admissible index pair (q, r).

Remark 2.7. There exists δ̃ such that if ‖u0‖Ḣ1 ≤ δ̃, the conclusion of Theo-
rem 2.5 applies to any interval I . In fact,

∥∥eit∆u0

∥∥
S(I )

≤ C
∥∥�eit∆u0

∥∥
W(I )

≤
Cδ̃, by virtue of Lemma 2.1 i) and the claim follows.
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Remark 2.8. Given u0 ∈ Ḣ1, there exists (0 ∈) I such that the hypotheses
of Theorem 2.5 is verified on I . This is clear because of

∥∥eit∆u0

∥∥
S(I )

≤
C

∥∥�eit∆u0

∥∥
W(I )

and the fact that
∥∥�eit∆u0

∥∥
W(R)

< ∞ by Lemma 2.1 i).

Remark 2.9 (Energy identity). If u is the solution constructed in Theo-
rem 2.5, we have (with 1

2∗ = 1
2 − 1

N ) that

E(u(t)) =
∫
RN

{
1

2
|�u(t, x)|2 − 1

2∗ |u(t, x)|2∗
}

dx

is constant for t ∈ I . If u0 ∈ C∞
0 (RN ) this follows from a classical integra-

tion by parts, the general general case follows from a limiting argument.

Definition 2.10. Let t0 ∈ I . We say that u ∈ C(I; Ḣ1(RN ))∩{�u ∈ W(I )}
is a solution of the (CP) if

u|t0 = u0, and u(t) = ei(t−t0)∆u0 +
∫ t

t0

ei(t−t ′)∆ f(u) dt′,

with f(u) = |u| 4
N−2 u. Note that if u(1), u(2) are solutions of (CP) on I ,

u(1)(t0) = u(2)(t0), then u(1) ≡ u(2) on I × RN . This is because we can
partition I into a finite collection of subintervals I j , so that, with A =
supt∈I maxi=1,2 ‖u(i)(t)‖Ḣ1 , the S(I j) norm of u(i) and the W(I j) norm of
�u(i) are less than a, b, where a, b are obtained in the proof of Theorem 2.5.
If j0 is then such that t0 ∈ I j0, the uniqueness of the fixed point in the
proof of Theorem 2.5, combined with Remark 2.8 gives an interval Ĩ � t0
so that u(1)(t) = u(2)(t), t ∈ Ĩ . A continuation argument now easily gives
u(1) ≡ u(2), t ∈ I . This allows us to define a maximal interval I(u0) =
(t0 − T−(u0), t0 + T+(u0)), with T±(u0) > 0, where the solution is defined.
If T1 < t0 + T+(u0), T2 > t0 − T−(u0), T2 < t0 < T1, then u solves
(CP) in [T2, T1] ×RN , so that u ∈ C([T2, T1]; Ḣ1(RN )), �u ∈ W([T2, T1])
and u ∈ S([T2, T1]).
Lemma 2.11 (Standard finite blow-up criterion, see [7]). If T+(u0) < ∞,
then

‖u‖S([t0,t0+T+(u0)]) = +∞.

A corresponding result holds for T−(u0).

Sketch of proof. Assume T+(u0) < +∞ and that ‖u‖S([t0,t0+T+(u0)])
< +∞. Let M = ‖u‖S([t0,t0+T+(u0)]) and, for ε to be chosen, find N = N(ε)

intervals I j ,
⋃N

j=1 I j = [t0, t0 + T+(u0)], such that ‖u‖S(I j ) ≤ ε. Our first
step is to show that ‖u‖L∞([t0,t0+T+(u0)];Ḣ1) + ‖�u‖W([t0,t0+T+(u0)]) < ∞. We
write the integral equation on each interval I j , to deduce (using the proof
of Theorem 2.5 and iii) in Lemma 2.1) that

sup
t∈I j

‖u(t)‖Ḣ1 + ‖�u‖W(I j )
≤ C‖u(t j)‖Ḣ1 + C ‖u‖ 4

N−2
S(I j )

· ‖�u‖W(I j )
,
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where t j is any fixed point in I j . Our desired estimate follows inductively

then, by choosing Cε
4

N−2 ≤ 1/2. Once the first step is done, we then choose
tn ↑ t0 + T+(u0) and show, using the integral equation once more, that
‖ei(t−tn)∆u(tn)‖S([tn,t0+T+(u0)]) ≤ δ/2, for n large. But then, for n large but
fixed, and some ε0 > 0, ‖ei(t−tn)∆u(tn)‖S([tn,t0+T+(u0)]+ε0) ≤ δ. Now, Theo-
rem 2.5 applies and together with Definition 2.10 we reach a contradiction.

	

Definition 2.12. Let v0 ∈ Ḣ1, v(t) = eit∆v0 and let {tn} be a sequence, with
limn→∞ tn = t ∈ [−∞,+∞]. We say that u(x, t) is a non-linear profile
associated with (v0, {tn}) if there exists an interval I , with t ∈ I (if t = ±∞,
I = [a,+∞) or (−∞, a]) such that u is a solution of (CP) in I and

lim
n→∞ ‖u(−, tn) − v(−, tn)‖Ḣ1 = 0.

Remark 2.13. There always exists a non-linear profile associated to
(v0, {tn}). In fact, if t ∈ (−∞,+∞), this is clear by Remark 2.8, with
u0 = v(x, t). If t = +∞, we solve the integral equation

u(t) = eit∆v0 +
∫ +∞

t
ei(t−t ′)∆ f(u) dt′

in (tn0,+∞) ×RN , for n0 so large that ‖eit∆v0‖S((tn0,∞)) ≤ δ, where δ is as

in Theorem 2.5. Then, if n is large u(tn)−v(tn) = ∫ +∞
tn

ei(t−t ′)∆ f(u) dt′, and
we have ‖ f(u)‖L2

(t>tn0 )L2N/N+2
x

< ∞, as in the proof of Theorem 2.5. But then,

using iii) in Lemma 2.1 we obtain ‖u(tn)−v(tn)‖Ḣ1 ≤ C‖ f(u)‖L2
(t>tn) L2N/N+2

x
,

which clearly goes to 0 as n goes infinity. A similar argument applies when
t = −∞.

Note also that if u(1), u(2) are both non-linear profiles associated to
(v0, {tn}) in an interval I with t ∈ I , then u(1) ≡ u(2) on I . In fact, if
t ∈ (−∞,+∞), this is clear from the Definition 2.13 and the uniqueness
result in Definition 2.10. If t = +∞, since ‖�u(i)‖W(I ) < ∞, for n ≥ n0,
we have ‖�u(i)‖W(tn,+∞) ≤ δ̃, where δ̃ is as small as we like. By the proof
of Theorem 2.5, we have (with a constant independent of u) that for n � n0

sup
t∈(tn0 ,tn)

∥∥�u(1)(t) − �u(2)(t)
∥∥

L2 ≤ C
∥∥�u(1)(tn) − �u(2)(tn)

∥∥
L2.

This easily shows that u(1) ≡ u(2) on (tn0,+∞) and hence on I , as claimed.
The case t = −∞ is similar. Because of this remark, we can always define
a maximal interval I of existence for the non-linear profile associated to
(v0, {tn}). If t ∈ (−∞,+∞), I = (a, b), I ′ � I , then supt∈I ′ ‖u(t)‖Ḣ1 <
∞, ‖u‖S(I ′) < ∞, ‖�u‖W(I ′) < ∞, but if either a or b are finite ‖u‖S(I ) =
+∞. If t = ±∞, say t = +∞, I = (a,+∞), I ′ = (α,+∞), α > a, similar
statements can be made. If a > −∞, we can also say ‖u‖S(I ) = +∞.
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Theorem 2.14 (Long-time perturbation theory, see also [27]). Let I ⊂ R
be a time interval and let t0 ∈ I . Let ũ be defined on I × RN (3 ≤ N ≤ 5)
and satisfy supt∈I ‖̃u‖Ḣ1 ≤ A, ‖̃u‖S(I ) ≤ M for some constants M, A > 0.
Assume that

(i∂t ũ + ∆ũ + f(̃u)) = e (t, x) ∈ I × RN

(in the sense of the appropriate integral equation) and that

‖u0 − ũ(t0)‖Ḣ1 ≤ A′, ‖�e‖
L2

I L
2N

N+2
x

≤ ε,
∥∥ei(t−t0)∆[u0 − ũ(t0)]

∥∥
S(I )

≤ ε.

Then, there exists ε0 = ε0(M, A, A′, N) such that there exists a solution
of (CP) with u(t0) = u0 in I × RN, for 0 < ε < ε0, with ‖u‖S(I ) ≤
C(M, A, A′, N) and ∀t ∈ I, ‖u(t) − ũ(t)‖Ḣ1 ≤ C(A, A′, M, N)(A′ + ε).

Proof. We start the proof by showing that ‖�ũ‖W(I ) ≤ M̃, where M̃ =
M̃(A, M, N), for ε ≤ ε0. In fact, for η = η(N) small, to be determined,
split I into γ = γ(M, η) interval I j so that ‖̃u‖S(I j ) ≤ η. Using the integral
equation, we have

‖�ũ‖W(I j )
≤ A + C ‖̃u‖ 4

N−2
S(I j )

‖�ũ‖W(I j )
+ C ‖�e‖L2

I L2N/N+2
x

,

as in the proof of Theorem 2.5, and the claim follows if Cη
4

N−2 < 1/2. Next,
we write u = ũ + w and notice that

i∂tw + ∆w + [ f(̃u + w) − f(̃u)] = e.

Let I j = [aj , aj+1], so that, in order to solve for w we need to solve, in I j ,
the integral equation

w(t) = ei(t−a j )∆w(aj) +
∫ t

a j

ei(t−t ′)∆[ f(̃u + w) − f(̃u)] dt′

+
∫ t

a j

ei(t−t ′)∆e dt′.

The proof of Theorem 2.5 (which holds for 3 ≤ N ≤ 5) now shows
that, for η = η(N) small enough, and ε0 = ε0(N) small enough, we can
solve the integral equation (assuming t0 = a1 say) in I1 and obtain w
with the bounds ‖w‖S(I ) ≤ 2ε, ‖�w‖W(I1) ≤ C(A, A′), supt∈I1

‖w(t)‖Ḣ1 ≤
C(A, A′)(A′ + ε). We now estimate ‖ei(t−a2)∆w(a2)‖S(I2), using the inte-
gral equation. Since ei(t−a2)∆ei(a2−t0)∆w(t0) = ei(t−t0)∆w(t0), by assumption
‖ei(t−a2)∆ei(a2−t0)∆w(t0)‖S(I2) ≤ ε. For the integral term, we use Lemma 2.1,

iii) to obtain a bound for its Ḣ1 norm at a2 by C‖w‖
4

N−2
S(I1)

‖�w‖S(I1) ≤
C(2ε)

4
N−2 C(A, A′). Clearly this procedure can be iterated γ = γ(M, N)

times, provided ε0 is small enough, yielding the theorem. 	
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Remark 2.15 (See [7]). If u is a solution of (CP) in I × RN , I = [a,+∞)
(or I = (−∞, a]) there exists u+ ∈ Ḣ1 such that

lim
t→+∞

∥∥u(t) − eit∆u+
∥∥

Ḣ1 = 0.

To see this, note that � f(u) ∈ W(I ) and hence ‖ ∫ ∞
t ei(t−t ′)∆ f(u) dt′‖Ḣ1

→ 0 as t → +∞. Then, u(t) = ei(t−a)∆u0 + ∫ t
a ei(t−t ′)∆ f(u) dt′ and hence

u+ = e−ia∆u0 + ∫ ∞
a e−it ′∆ f(u) dt′ has the desired property. In fact note that

the argument used at the beginning of the proof of Theorem 2.14 shows that
it suffices to assume u to be a solution of (CP) in I ′ ×RN , I ′ � I , such that
‖u‖S(I ) < ∞.

Remark 2.16. We recall that, since we are working in the focusing case,
we have from the argument of Glassey [12] that if

∫ |x|2|u0|2 < +∞,
E(u0) < 0, there exists a finite time T such that the solution cannot be
extended for t > T . Clearly, for such a u0, the maximal interval of ex-
istence must be finite. (See Definition 2.10.) Note that it is unknown if
limt↑T ‖u(t)‖Ḣ1 = +∞ for a general initial data that doesn’t exist for all
time.

Remark 2.17. Theorem 2.14 also yields the following continuity fact, which
will be used later: let ũ0 ∈ Ḣ1, ‖̃u0‖Ḣ1 ≤ A, and let ũ be the solution
of (CP), with maximal inteval of existence (T−(̃u0), T+(̃u0)) (see Defin-
ition 2.10). Let u0,n → ũ0 in Ḣ1, and let un be the corresponding solution
of (CP), with maximal interval of existence (T−(u0,n), T+(u0,n)). Then,
T−(̃u0) ≥ lim n→+∞T−(u0,n), T+(̃u0) ≤ lim n→+∞T+(u0,n) and for each
t ∈ (T−(̃u0), T+(̃u0)), un(t) → ũ(t) in Ḣ1.

Indeed, let I ⊂⊂ (T−(̃u0), T+(̃u0)), so that Supt∈I ‖̃u(t)‖Ḣ1 = A <
+∞, ‖̃u(t)‖S(I ) = M < +∞. We will show that, for n large, un exists on
I and ∀t ∈ I, ‖un(t) − ũ(t)‖Ḣ1 ≤ C(M, A, N)‖u0,n − ũ0‖Ḣ1 . This clearly
yields the remark. To show this, apply Theorem 2.14, with u = un, u0 =
u0,n. Then, if ε0 = ε0(M, A, 2A, N) and n is so large that ‖u0,n−ũ0‖Ḣ1 ≤ ε0
and ‖eit∆[u0,n − ũ0]‖S(I ) ≤ ε0, using the uniqueness of the solutions we
obtained in Definition 2.10, the claim follows.

3. Some variational estimates

Let

W(x) = W(x, t) = 1(
1 + |x|2

N(N−2)

) N−2
2

,

be a stationary solution of (CP). That is, W solves the non-linear elliptic
equation

∆W + |W | 4
N−2 W = 0.(3.1)
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Moreover, W ≥ 0 and it is radially symmetric and decreasing. Note that
W ∈ Ḣ1, but W need not belong to L2(RN ). By invariances of the equation,
for θ0 ∈ [−π, π], λ0 > 0, x0 ∈ RN ,

Wθ0,x0,λ0(x) = eiθ0λ
N−2

2
0 W(λ0(x − x0))

is still a solution. By the work of Aubin [1], Talenti [25] we have the
following characterization of W :

∀u ∈ Ḣ1, ‖u‖L2∗ ≤ CN ‖�u‖L2;(3.2)

moreover,

If ‖u‖L2∗ = CN ‖�u‖L2 , u �= 0, then ∃(θ0, λ0, x0) such that u = Wθ0,x0,λ0,
(3.3)

where CN is the best constant of the Sobolev inequality in dimension N.
The equation (3.1) gives

∫ |�W |2 = ∫ |W |2∗
. Also, (3.3) yields

C2
N

∫ |�W |2 = (∫ |W |2∗)N−2/N
, so that C2

N

∫ |�W |2 = (∫ |�W |2) N−2
N .

Hence,∫
|�W |2 = 1

CN
N

and E(W ) =
(

1

2
− 1

2∗

) ∫
|�W |2 = 1

N

1

CN
N

.

Lemma 3.4. Assume that

‖�u‖2
L2 < ‖�W‖2

L2 .

Assume moreover that E(u) ≤ (1 − δ0)E(W ) where δ0 > 0. Then, there
exists δ = δ(δ0, N) > 0 such that∫

|�u|2 ≤ (1 − δ)

∫
|�W |2(3.5)

∫
|�u|2 − |u|2∗ ≥ δ

∫
|�u|2(3.6)

E(u) ≥ 0.(3.7)

Proof. Consider the function f1(y) = 1
2 y − C2∗

N
2∗ y

2∗
2 , and let y = ‖�u‖2

L2 .
Because of (3.2), f1(y) ≤ E(u) ≤ (1−δ0)E(W ) = (1−δ0)

1
N

1
CN

N
. Note that

f1(0) = 0, f ′
1(y) = 1

2 − C2∗
N
2 y

2∗
2 −1, so that f ′

1(y) = 0 if and only if y = yC,
where yC = 1

CN
N

= ∫ |�W |2. Note also that f1(yC) = 1
NCN

N
= E(W ). But

then, since 0 < y < yC and f1(y) ≤ (1 − δ0) f1(yC) and f1 is nonnegative
and strictly increasing between 0 and yC, f ′′

1 (yC) �= 0, we have 0 < f1(y)
and y ≤ (1 − δ)

∫ |�W |2. Thus (3.5) and (3.7) hold. To show (3.6), con-

sider the function g1(y) = y − C2∗
N y

N
N−2 . Because of (3.2) we have that
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∫ |�u|2−|u|2∗ ≥ ∫ |�u|2−C2∗
N

(∫ |�u|2)2∗/2 = g1(y). Note that g1(y) = 0
if and only if y = 0 or y = yC and that g′

1(0) = 1, g′
1(yC) = − 2

N−2 . We
then have, for 0 < y < yC, g1(y) ≥ C min{y, (yC − y)}, and so, since
0 ≤ y < (1 − δ)yC by (3.5), (3.6) follows. Note that δ � δ0

1
2 . 	


Note that the relevance of (3.6) comes from the virial identity (see
introduction).

Corollary 3.8. Assume that u ∈ Ḣ1 and that
∫ |�u|2 <

∫ |�W |2. Then
E(u) ≥ 0.

Proof. If E(u) ≥ E(W ) = 1
NCN

N
, this is obvious. If E(u) < E(W ), the

claim follows from (3.7). 	

Theorem 3.9 (Energy trapping). Let u be a solution of the (CP), with
t0 = 0, u|t=0 = u0 such that for δ0 > 0∫

|�u0|2 <

∫
|�W |2 and E(u0) < (1 − δ0)E(W ).

Let I � 0 be the maximal interval of existence given by Definition 2.10. Let
δ = δ(δ0, N) be as in Lemma 3.4. Then, for each t ∈ I , we have∫

|�u(t)|2 ≤ (1 − δ)

∫
|�W |2(3.10) ∫

|�u(t)|2 − |u(t)|2∗ ≥ δ

∫
|�u(t)|2(3.11)

E(u(t)) ≥ 0.(3.12)

Proof. By Remark 2.9, E(u(t)) = E(u0), t ∈ I and the Theorem follows
directly from Lemma 3.4 and a continuity argument. 	

Corollary 3.13. Let u, u0 be as in Theorem 3.9. Then for all t ∈ I we have
E(u(t)) � ∫ |�u(t)|2 � ∫ |�u0|2, with comparability constants which
depend only on δ0.

Proof. E(u(t)) ≤ ∫ |�u(t)|2, but by (3.11) we have

E(u(t)) ≥
(

1

2
− 1

2∗

) ∫
|�u(t)|2 + 1

2∗

(∫
|�u(t)|2 − |u(t)|2∗

)

≥ Cδ

∫
|�u(t)|2,

so the first equivalence follows. For the second one note that E(u(t)) =
E(u0) � ∫ |�u0|2, by the first equivalence when t = 0. 	
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Remark 3.14. Assume that u0 ∈ Ḣ1 and that |x|u0 ∈ L2(RN ). Assume that

E(u0) < E(W ), but
∫

|�u0|2 >

∫
|�W |2.

If we choose δ0 so that E(u0) < (1 − δ0)E(W ), arguing as in Lemma 3.4
we can conclude that

∫ |�u0|2 > (1 + δ)
∫ |�W |2, δ = δ(δ0, N). But then,∫ |�u0|2 − |u0|2∗ = 2∗E(u0) − (

2
N−2

) ∫ |�u0|2 ≤ 2∗ E(W ) − 2
(N−2)

1
CN

N
−

2δ
(N−2)

1
CN

N
= −2δ

(N−2)CN
N

. Since E(u(t)) = E(u0), a continuity argument shows

that for all t ∈ I , the maximal interval of existence, we have
∫ |�u(t)|2 ≥

(1 + δ)
∫ |�W |2 and

∫ |�u(t)|2 − ∫ |u(t)|2∗ ≤ −2δ

(N−2)CN
N

. But, the virial

identity ([12]) shows that, if |x|u0 ∈ L2(RN ) then d2

dt2

∫ |x|2|u0(x, t)|2 dx =
8{∫ |�u(t)|2 −|u(t)|2∗} ≤ −16δ

(N−2)CN
N

. This shows that I must be finite, i.e., the

maximal interval of existence is finite. This argument is the critical analoge
of the H1 subcritical result in [3].

Note that in the case where u0 ∈ Ḣ1 and u0 ∈ L2(RN ), the same result
holds. Indeed, one can use a local version of the virial identity (See Sect. 5
for such a version) and the extra conservation law of the L2 norm in time
to control correction terms to obtain d2

dt2

∫
φ(|x|)|u0(x, t)|2 dx ≤ −8δ

(N−2)CN
N

,

where φ is a regular and compactetly supported function (See for example
Ogawa and Tsutsumi [22]).

4. Existence and compactness of a critical element

Let us consider the statement:

(SC) For all u0 ∈ Ḣ1(RN ), with
∫ |�u0|2 <

∫ |�W |2 and E(u0) < E(W ),
if u is the corresponding solution to the (CP), with maximal inter-
val of existence I (see Definition 2.10), then I = (−∞,+∞) and
‖u‖S((−∞,+∞)) < ∞.

We say that (SC)(u0) holds if for this particular u0, with
∫ |�u0|2 <∫ |�W |2 and E(u0) < E(W ) and u the corresponding solution to the

(CP), with maximal interval of existence I , we have I = (−∞,+∞) and
‖u‖S((−∞,+∞)) < ∞.

Note that, because of Remark 2.7, if ‖�u0‖L2 ≤ δ, (SC)(u0) holds.
Thus, in light of Corollary 3.13, there exists η0 > 0 such that, if u0 is as
in (SC) and E(u0) < η0, then (SC)(u0) holds. Moreover, for any u0 as in
(SC), E(u0) ≥ 0, in light of Theorem 3.9. Thus, there exists a number EC ,
with η0 ≤ EC ≤ E(W ), such that, if u0 is as in (SC) and E(u0) < EC ,
(SC)(u0) holds and EC is optimal with this property. For the rest of this
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section we will assume that EC < E(W ). We now prove that there exits
a critical element u0,C at the critical level of energy EC so that (SC)(u0,C)
does not hold and from the minimality, this element has a compactness
property up to the symetries of this equation. This is in fact a general
principle which follows from the concentration compactness ideas. More
precisely,

Proposition 4.1. There exists u0,C in Ḣ1, with

E(u0,C) = EC < E(W ),

∫
|�u0,C|2 <

∫
|�W |2

such that, if uC is the solution of (CP) with data u0,C, and maximal interval
of existence I , 0 ∈ I̊ , then ‖uC‖S(I ) = +∞.

Proposition 4.2. Assume uC is as in Proposition 4.1 and that (say)
‖uC‖S(I+) = +∞, where I+ = (0,+∞) ∩ I . Then there exists x(t) ∈ RN

and λ(t) ∈ R+, for t ∈ I+, such that

K =
{
v(x, t) : v(x, t) = 1

λ(t)(N−2)/2
uC

(
x − x(t)

λ(t)
, t

)}

has the property that K is compact in Ḣ1. A corresponding conclusion is
reached if ‖uC‖S(I−) = +∞, where I− = (−∞, 0) ∩ I .

The main tools that we will need in order to prove Propositions 4.1 and
4.2 are the following lemmas.

Lemma 4.3 (Concentration compactness). Let {v0,n} ∈ Ḣ1,
∫ |�v0,n|2

≤ A. Assume that ‖eit∆v0,n‖L2(N+2)/N−2 ≥ δ > 0, where δ = δ(N) is as in
Theorem 2.5. Then there exists a sequence {V0, j}∞

j=1 in Ḣ1, a subsequence of
{v0,n} (which we still call {v0,n}) and a triple (λ j,n; x j,n; t j,n) ∈ R+×RN ×R,
with

λ j,n

λ j ′,n
+ λ j ′,n

λ j,n
+ |t j,n − t j ′,n|

λ2
j,n

+ |x j,n − x j ′,n|
λ j,n

→ ∞

as n → ∞ for j �= j ′ (we say that (λ j,n; x j,n; t j,n) is orthogonal if this
property is verified) such that

‖V0,1‖Ḣ1 ≥ α0(A) > 0.(4.4)

If V l
j(x, t) = eit∆V0, j , then, given ε0 > 0, there exists J = J(ε0) and

{wn}∞
n=1 ∈ Ḣ1, so that v0,n =

J∑
j=1

1

λ
(N−2)/2
j,n

V l
j

(
x − x j,n

λ j,n
,
−t j,n

λ2
j,n

)
+ wn(4.5)

with ‖eit∆wn‖S((−∞,+∞)) ≤ ε0, for n large
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∫
|�v0,n|2 =

J∑
j=1

∫
|�V0, j|2 +

∫
|�wn|2 + o(1) as n → ∞(4.6)

E(v0,n) =
J∑

j=1

E
(
V l

j

( − t j,n/λ
2
j,n

)) + E(wn) + o(1) as n → ∞.(4.7)

Remark 4.8. Lemma 4.3 is due to Keraani [15]. It is based on the “refined
Sobolev inequality” (N = 3)

‖h‖L6(R3) ≤ C ‖�h‖1/3
L2(R3)

‖�h‖2/3
Ḃ0

2,∞
,

where Ḃ0
2,∞ is the standard Besov space [4,11]. (4.4) is a consequence

of the proof of Corollary 1.9 in [15], (here, we use the hypothesis
‖eit∆v0,n‖L2(N+2)/N−2 ≥ δ > 0) while (4.7) follows from the orthogonal-
ity of (λ j,n; x j,n; t j,n) as in the proof of (4.6). The rest of the lemma is
contained in the proof of Theorem 1.6 in [15]. See also [2,10,16,21].

Lemma 4.9. Let {z0,n} ∈ Ḣ1, with
∫ |�z0,n|2 <

∫ |�W |2 and E(z0,n) → EC

and with ‖eit∆z0,n‖S((−∞,+∞)) ≥ δ, with δ as in Theorem 2.5. Let {V0, j} be
as in Lemma 4.3. Assume that one of the two hypothesis

lim
n→∞

E
(
V l

1

( − t1,n/λ
2
1,n

))
< EC(4.10)

or after passing to a subsequence, we have that, with sn = −t1,n/λ
2
1,n,

E(V l
1(sn)) → EC, and sn → s∗ ∈ [−∞,+∞], and if U1 is the non-linear

profile (see Definition 2.12 and Remark 2.13) associated to (V0,1, {sn}) we
have that the maximal interval of existence of U1 is I = (−∞,+∞) and
‖U1‖S((−∞,+∞)) < ∞ and

lim
n→∞

E
(
V l

1

( − t1,n/λ
2
1,n

)) = EC .(4.11)

Then (after passing to a subsequence), for n large, if zn is the solution of
(CP) with data at t = 0 equal to z0,n, then (SC)(z0,n) holds.

Let us first assume the validity of Lemma 4.9 and use it (together with
Lemma 4.3) to establish Propositions 4.1 and 4.2.

Proof of Proposition 4.1. By the definition of EC , and the assumption
that EC < E(W ), we can find u0,n ∈ Ḣ1, with

∫ |�u0,n|2 <
∫ |�W |2,

E(u0,n) → EC , and such that if un is the solution of (CP) with data at t = 0,
u0,n and maximal interval of existence In = (−T−(u0,n), T+(u0,n)), then
‖eit∆u0,n‖S((−∞,+∞)) ≥ δ = δ(N) > 0, where δ is as in Theorem 2.5 and
‖un‖S(IN ) = +∞. (Here we are also using Lemma 2.1 and Theorem 2.5.)
Note also that, since EC < E(W ), there exists δ0 > 0 so that, for all n,
we have E(u0,n) ≤ (1 − δ0)E(W ). Because of Theorem 3.9, we can find
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δ so that
∫ |�un(t)|2 ≤ (1 − δ)

∫ |�W |2 for all t ∈ In, all n. Apply now
Lemma 4.3 for ε0 > 0 and Lemma 4.9. We then have, for J = J(ε0), that

u0,n =
J∑

j=1

1

λ
(N−2)/2
j,n

V l
j

(
x − x j,n

λ j,n
,
−t j,n

λ2
j,n

)
+ wn,(4.12)

∫
|�u0,n|2 =

J∑
j=1

∫
|�V0, j|2 +

∫
|�wn|2 + o(1),(4.13)

E(u0,n) =
J∑

j=1

E

(
V l

j

(
−t j,n

λ2
j,n

))
+ E(wn) + o(1).(4.14)

Note that because of (4.13) we have, for all n large, that
∫ |�wn|2 ≤

(1−δ/2)
∫ |�W |2 and

∫ |�V0, j|2 ≤ (1−δ/2)
∫ |�W |2. From Corollary 3.8

it now follows that E(V l
j(−t j,n/λ

2
jn)) ≥ 0 and E(wn) ≥ 0. From this

and (4.14) it follows that E(V l
1(−t1,n/λ

2
1,n)) ≤ E(u0,n) + o(1) and hence

limn→∞ E(V l
1(−t1,n/λ

2
1,n)) ≤ EC . If the left-hand side is strictly less than

EC , Lemma 4.9 gives us a contradiction with the choice of u0,n , for n large
(after passing to a subsequence). Hence, the left-hand side must equal EC .

Let then U1 be the non-linear profile associated to (V l
1, {sn}), with

sn = −t1,n/λ
2
1,n (after passing to a subsequence). We first note that we must

have J = 1. This is because (4.14) and E(u0,n) → EC , E(V l
1(−sn)) → EC

now imply that E(wn) → 0 and E(V l
j(−t j,n/λ

2
j,n)) → 0, j = 2, ..., J .

Using (3.6) and the argument in the proof of Corollary 3.13, we have∑J
j=2

∫ |�V l
j(−t j,n/λ

2
j,n)|2 + ∫ |�wn|2 → 0. We then have, since∫ |�V l

j(−t j,n/λ
2
j,n)|2 = ∫ |�V0, j|2 that V0, j = 0, j = 2, . . . , J and∫ |�wn|2 → 0. Hence (4.12) becomes u0,n = 1

λ
(N−2)/2
1,n

V l
1

( x−x1,n
λ1,n

, sn
) + wn.

Let v0,n = λ
(N−2)/2
1,n u0,n(λ1,n(x+x1,n)) and note that scaling gives us that v0,n

verifies the same hypothesis as u0,n. Moreover, w̃n = λ
(N−2)/2
1,n wn(λ1,n(x +

x1,n)) still verifies
∫ |�w̃n|2 → 0. Thus

v0,n = V l
1(sn) + w̃n,

∫
|�w̃n|2 → 0.

Let us return to U1, the non-linear profile associated to (V0,1, {sn})
and let I1 = (T−(U1), T+(U1)) be its maximal interval of existence (see
Remark 2.13). Note that, by definition of non-linear profile, we have∫ |�U1(sn)|2 = ∫ |�V l

1(sn)|2 + o(1) and E(U1(sn)) = E(V l
1(sn)) + o(1).

Note that in this case E(V l
1(sn)) = EC + o(1) and that

∫ |�V l
1(sn)|2 =∫ |�V0,1|2 = ∫ |�u0,n|2 + o(1) <

∫ |�W |2 for n large by Theorem 3.9.
Let’s fix s ∈ I1. Then E(U1(sn)) = E(U1(s)), so that

E(U1(s)) = EC .
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Moreover,
∫ |�U1(sn)|2 <

∫ |�W |2 for n large and hence by (3.10)∫ |�U1(s)|2 <
∫ |�W |2. If ‖U1‖S(I1) < +∞, Lemma 2.11 gives us that

I1 = (−∞,+∞) and we then obtain a contradiction from Lemma 4.9.
Thus,

‖U1‖S(I1)
= +∞

and we then set uC = U1 (after a translation in time to make s = 0). 	

Proof of Proposition 4.2. We argue by contradiction. For brevity of notation,
let us set u(x, t) = uC(x, t). If not, there exists η0 > 0 and a sequence {tn }∞

n=1,
tn ≥ 0 such that, for all λ0 ∈ R+, x0 ∈ RN , we have∥∥∥∥∥ 1

λ
(N−2)/2
0

u

(
x − x0

λ0
, tn

)
− u(x, tn′ )

∥∥∥∥∥
Ḣ1

x

≥ η0, for n �= n′.(4.15)

Note that (after passing to a subsequence, so that tn → t ∈ [0, T+(u0)]),
we must have t = T+(u0), in view of the continuity of the flow in Ḣ1, as
guaranteed by Theorem 2.5. Note that, in view of Theorem 2.5 we must
also have ‖eit∆u(tn)‖S((0,+∞)) ≥ δ.

Let us apply Lemma 4.3 to v0,n = u(tn) with ε0 > 0. We next prove
that J = 1. In fact, if lim n→∞E(V l

1(−t1,n/λ
2
1,n)) < EC , since

∫ |�u(t)|2 ≤
(1 − δ)

∫ |�W |2 by Theorem 3.9, for all t ∈ I+ and E(u(t)) = E(u0) =
EC < E(W ), by Lemma 4.9 we obtain a contradiction. Hence, we must
have lim n→∞E(V l

1(−t1,n/λ
2
1,n)) = EC . The argument used in the proof of

Proposition 4.1 now applies and gives J = 1,
∫ |�wn|2 → 0. Thus, we

have

u(tn) = 1

λ
(N−2)/2
1,n

V l
1

(
x − x1,n

λ1,n
,
−t1,n

λ2
1,n

)
+ wn,

∫
|�wn|2 → 0.(4.16)

Our next step is to show that sn = −t1,n

λ2
1,n

must be bounded. To see this note

that

eit∆u(tn) = λ
−(N−2)/2
1,n V l

1

(
x − x1,n

λ1,n
,

t − t1,n

(λ1,n)2

)
+ eit∆wn.

Assume that t1,n/λ
2
1,n ≤ −C0, C0 a large positive constant. Then, since

‖eit∆wn‖S((−∞,+∞)) < δ/2 for n large, and∥∥∥∥λ
−(N−2)/2
1,n V l

1

(
x − x1,n

λ1,n
,

t − t1,n

(λ1,n)2

)∥∥∥∥
S((0,+∞))

≤ ∥∥V l
1(y, s)

∥∥
S((C0,+∞))

≤ δ/2,

for C0 large, we get a contradiction.
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If, on the other hand, t1,n

λ2
1,n

≥ C0, for a large positive constant C0, n large,

we have∥∥∥∥λ
−(N−2)/2
1,n V l

1

(
x − x1,n

λ1,n
,

t − t1,n

(λ1,n)2

)∥∥∥∥
S((−∞,0))

≤ ∥∥V l
1(y, s)

∥∥
S((−∞,−C0))

≤ δ/2,

for C0 large. Hence, ‖eit∆u(tn)‖S((−∞,0)) ≤ δ, for n large and hence, Theo-
rem 2.5 now gives ‖u‖S((−∞,tn)) ≤ 2δ, which, since tn → T+(u0) gives us
a contradiction. Thus |t1,n/λ

2
1,n| ≤ C0 and after passing to a subsequence,

t1,n/λ
2
1,n → t0 ∈ (−∞,+∞).

But then, since (4.15) and (4.16) imply that, for n �= n′ large (independently
of λ0, x0) we have∣∣∣∣∣

∣∣∣∣∣ 1

(λ0)(N−2)/2

1

(λ1,n)(N−2)/2
V l

1

( x−x0
λ0

− x1,n

λ1,n
,−t1,n/(λ1,n)

2

)

− 1

(λ1,n′)(N−2)/2
V l

1

(
x − x1,n′

λ1,n′
,−t1,n′/(λ1,n′)2

) ∣∣∣∣∣
∣∣∣∣∣

Ḣ1

≥ η0/2

or ∣∣∣∣∣
∣∣∣∣∣
(

λ1,n′

λ1,nλ0

)(N−2)/2

V l
1

(
yλ1,n′

λ0λ1,n
+ x̃n,n′ − x̃0,−t1,n/(λ1,n)

2

)

− V l
1

(
y,−t1,n′/λ2

1,n′
) ∣∣∣∣∣

∣∣∣∣∣
Ḣ1

≥ η0/2,

where x̃n,n′ is a suitable point inRN and λ0, x̃0 are arbitrary. But if we choose
λ0 = λ1,n′/λ1,n, x̃0 = xn,n′ , we reach a contradiction since −t1,n/(λ1,n)

2 →
−t0 and −t1,n′/(λ1,n′)2 → −t0. 	


Thus, to complete the proofs of Propositions 4.1 and 4.2 we only need
to provide the proof of Lemma 4.9.

Proof of Lemma 4.9. Let us assume first that (4.11) holds and set A =∫ |�W |2, A′ = ∫ |�W |2, M = ‖U1‖S((−∞,+∞)). Arguing (for some
ε0 > 0 in Lemma 4.3) as in the proof of Proposition 4.1, we see that
lim n→∞ E(V l

1(−t1,n/λ
2
1,n)) = EC and EC < E(W ), imply that J = 1,∫ |�wn|2 → 0. Moreover, if

v0,n = λ
(N−2)/2
1,n z0,n(λ1,n(x + x1,n)), w̃n = λ

(N−2)/2
1,n wn(λ1,n(x + x1,n)),

sn = − t1,n

λ2
1,n

,
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we have
∫ |�w̃n|2 → 0 and v0,n = V l

1(sn)+ w̃n, while ‖eit∆v0,n‖S((−∞,+∞))

≥ δ,
∫ |�v0,n|2 <

∫ |�W |2, E(v0,n) → EC . Note now that
∫ |�Ṽ l

1(sn) −
U1(sn)|2 = o(1) by definition of non-linear profile. We then have

v0,n = U1(sn) + ˜̃wn,

∫ ∣∣�˜̃wn

∣∣2 → 0.

Moreover, as in the proof of Proposition 4.1, E(U1(0)) = EC and∫ |�U1(t)|2 <
∫ |�W |2 for all t. We now apply Theorem 2.14, with

ε0 < ε0(M, A, A′, N) and n large, with ũ = U1, e ≡ 0, t0 = 0, u0 = v0,n.
This case now follows.

Assume next that (4.10) holds. The first claim is that for j ≥ 2 we
also have lim n→∞E(V l

j(−t j,n/λ
2
j,n)) < EC . In fact, after passing to a sub-

sequence, assume limn→∞ E(V l
1(−t1,n/λ1,n)) < EC . Because of (4.6) we

have ∫
|�z0,n|2 ≥

J∑
j=1

∫
|�V0, j |2 + o(1),

and since EC < E(W ), for n large we have E(z0,n) ≤ (1 − δ0)E(W ),
by Lemma 3.4,

∫ |�z0,n|2 ≤ (1 − δ)
∫ |�W |2 and hence

∫ |�V0, j |2 ≤
(1− δ)

∫ |�W |2. Similarly,
∫ |�wn|2 ≤ (1− δ)

∫ |�W |2. By Corollory 3.8,
we have E(V l

j(−t j,n/λ
2
j,n)) ≥ 0, E(wn) ≥ 0. Also, from (4.4) and the

proof of Corollary 3.13, we have, for n large, that E(V l
1(−t1,n/λ

2
1,n)) ≥

C
∫ |�V0,1|2 ≥ cα0 = α0 > 0, so that, from (4.7) we obtain, for n large

E(z0,n) ≥ α0 +
J∑

j=2

E
(
V l

j

( − t j,n/λ
2
j,n

)) + o(1),

so that the claim follows from E(z0,n) → EC .
We next claim that (after passing to a subsequence so that, for each j,

limn E(V l
j(−t j,n/λ

2
j,n)) exists and limn(−t j,n/λ

2
j,n) = s j ∈ [−∞,+∞] ex-

ists) if U j is the non-linear profile associated to (V l
j, {−t j,n/λ

2
j,n}), then U j

verifies (SC). In fact, by definition of non-linear profile, E(U j) < EC , since
limn E(V l

j(−t j,n/λ
2
j,n)) < EC . Moreover, since

∫ |�V l
j(−t j,n/λ

2
j,n)|2 ≤

(1 − δ)
∫ |�W |2, by the definition of non-linear profile and Theorem 3.9, if

t ∈ I j , the maximal interval for U j ,
∫ |�U j(t)|2 <

∫ |�W |2 so that, by the
definition of EC our claim follows. Note that the argument in the proof of
Theorem 2.14 also gives that ‖�U j‖W((−∞,+∞)) < +∞.

Our final claim is that there exists j0 so that, for j ≥ j0 we have

∥∥U j

∥∥2(N+2)/(N−2)

S((−∞,+∞))
≤ C

( ∫
|�V0, j |2

)N+2/N−2
.(4.17)
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In fact, from (4.6), for fixed J we see that (choosing n large)
∑ J

j=1

∫ |�V0, j|2
≤ ∫ |�z0,n|2+o(1) ≤ 2

∫ |�W |2. Thus, for j ≥ j0, we have
∫ |�V0, j|2 ≤ δ̃,

where δ̃ is so small that ‖eit∆V0, j‖S((−∞,+∞)) ≤ δ, with δ as in Theorem 2.5.
From Remark 2.13 it then follows that ‖U j‖S((−∞,+∞)) ≤ 2δ, and using
the integral equation in Remark 2.13, that ‖U j(0)‖Ḣ1 ≤ C‖V0, j‖Ḣ1 and
‖�U j‖W((−∞,+∞)) ≤ C‖V0, j‖Ḣ1 , which gives (4.17).

For ε0 > 0, to be chosen, define now

Hn,ε0 =
J(ε0)∑
j=1

1

λ
(N−2)/2
j,n

U j

(
x − x j,n

λ j,n
,

t − t j,n

λ2
j,n

)
.(4.18)

We then have:

‖Hn,ε0‖S((−∞,+∞)) ≤ C0,(4.19)

uniformly in ε0, for n ≥ n(ε0). In fact,

∥∥Hn,ε0

∥∥2(N+2)/(N−2)

S((−∞,+∞))
=

∫ ∫ ⎡
⎣J(ε0)∑

j=1

1

λ
(N−2)/2
j,n

U j

(
x − x j,n

λ j,n
,

t − t j,n

λ2
j,n

)⎤
⎦

2(N+2)
N−2

≤
J(ε0)∑
j=1

∫ ∫ ∣∣∣∣∣ 1

λ
(N−2)/2
j,n

U j

(
x − x j,n

λ j,n
,

t − t j,n

λ2
j,n

)∣∣∣∣∣
2(N+2)

N−2

+ CJ(ε0)

∑
j ′ �= j

∫ ∫ ∣∣∣∣∣ 1

λ
(N−2)/2
j,n

U j

(
x − x j,n

λ j,n
,

t − t j,n

λ2
j,n

)∣∣∣∣∣
∣∣∣∣∣ 1

λ
(N−2)/2
j ′,n

U j ′

(
x − x j ′,n

λ j ′,n
,

t − t j ′,n

λ2
j ′,n

)∣∣∣∣∣
N+6
N−2

= I + II.

For n large, II → 0, by the orthogonality of (λ j,n; x j,n; t j,n) (see Ker-
aani [15], Lemma 2.7, (2.95), (2.96), etc.) Hence, for n large we have
II ≤ I. But (with j0 as in (4.17)),

I ≤
j0∑

j=1

∥∥U j

∥∥2(N+2)/(N−2)

S((−∞,+∞))
+

J(ε0)∑
j= j0

∥∥U j

∥∥2(N+2)/(N−2)

S((−∞,+∞))

≤
j0∑

j=1

∥∥U j

∥∥2(N+2)/(N−2)

S((−∞,+∞))
+ C

J(ε0)∑
j= j0

( ∫
|�V0, j|2

)N+2/(N−2) ≤ C0/2

because of (4.6).



664 C.E. Kenig, F. Merle

For ε0 > 0, to be chosen, define

Rn,ε0 = |Hn,ε0 |
4

N−2 Hn,ε0−
J(ε0)∑
j=1

∣∣∣∣∣ 1

λ
(N−2)/2
j,n

U j

(
x − x j,n

λ j,n
,

t − t j,n

λ2
j,n

)∣∣∣∣∣
4

N−2

× 1

λ
(N−2)/2
j,n

U j

(
x − x j,n

λ j,n
,

t − t j,n

λ2
j,n

)
.

(4.20)

We then have

For n = n(ε0) large, ‖�Rn,ε0‖L2
t L2N/N+2

x
→ 0 as n → ∞.(4.21)

This follows from the orthogonality of (λ j,n; x j,n; t j,n), the fact that
‖U j‖S((−∞,+∞)) < ∞, ‖�U j‖W((−∞,+∞)) < ∞, and arguments of Ker-
aani [15] (see in particular (2.95), (2.96)).

We now will apply Theorem 2.14. Let ũ = Hn,ε0 , e = Rn,ε0 , where ε0

is still to be determined. Recall that z0,n = ∑J(ε0)
j=1

1
λ

(N−2)/2
j,n

V l
j

(
x−x j,n

λ j,n
,

−t j,n

λ2
j,n

)
+ wn, where ‖eit∆wn‖S((−∞,+∞)) ≤ ε0. By the definition of non-linear
profile, we now have

z0,n(x) = Hn,ε0(x, 0) + w̃n(x),(4.22)

where, for n large ‖eit∆w̃n‖S((−∞,+∞)) ≤ 2ε0.
Notice also that, because of the orthogonality of (λ j,n; x j,n; t j,n), for

n = n(ε0) large, we have (using also Corollary 3.13), that
∫ |�Hn,ε0(t)|2 ≤

2
∑J(ε0)

j=1 E0

(
U j

(
t−t j,n

λ2
j,n

))
≤ 4C

∑J(ε0)
j=1

∫ |�V0, j|2, and
∑J(ε0)

j=1

∫ |�V0, j|2
≤ ∫ |�z0,n|2

∫ |�z0,n|2 + o(1) ≤ 2
∫ |�W |2. Let now M = C0, with C0 as

in (4.19), A = C̃
∫ |�W |2, A′ = A + ∫ |�W |2, ε0 < ε0(M, A, A′, N)/2,

where ε0(M, A, A′, N) is as in Theorem 2.14. Fix ε0 and choose n so large
that ‖�Rn,ε0‖L2

t L2N/N+2
x

< ε0 and so that all the above properties hold. Then
Theorem 2.14 gives the conclusion of Lemma 4.9 in the case when (4.10)
holds. 	


Remark 4.23. Assume that {z0,n} in Lemma 4.3 are all radial. Then V0, j , wn
can be chosen to be radial and we can choose x j,n ≡ 0. This follows directly
from Keraani’s proof [15]. If we then define (SC) and EC by restricting only
to radial functions, we obtain a uC as in Proposition 4.1 which is radial, and
we can establish Proposition 4.2 with x(t) ≡ 0.
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5. Rigidity theorem

In this section we will prove the following:

Theorem 5.1. Assume that u0 ∈ Ḣ1 is such that

E(u0) < E(W ),

∫
|�u0|2 <

∫
|�W |2.

Let u be the solution of (CP) with u|t=0 = u0, with maximal interval of
existence (−T−(u0), T+(u0)) (see Definition 2.10). Assume that there exists
λ(t) > 0, for t ∈ [0, T+(u0)), with the property that

K =
{
v(x, t) = 1

λ(t)(N−2)/2
u

(
x

λ(t)
, t

)
: t ∈ [0, T+(u0))

}

is such that K is compact in Ḣ1. Then T+(u0) = +∞, u0 ≡ 0.

Remark 5.2. We conjecture that Theorem 5.1 remains true if v(x, t) =
1

λ(t)(N−2)/2 u
( x−x(t)

λ(t) , t
)
, with x(t) ∈ RN , t ∈ [0, T+(u0)). In other words, for

“energy subcritical” initial data, compactness up to the invariances of the
equation, for solutions, is only true for u ≡ 0.

We start out with a special case of the strengthened form of Theorem 5.1,
namely:

Proposition 5.3. Assume that u, v, λ(t), x(t) are as in Remark 5.2, that
|x(t)| ≤ C0 and that λ(t) ≥ A0 > 0. Then the conclusion of Theo-
rem 5.1 holds. Moreover, if T+(u0) < +∞, the hypothesis |x(t)| ≤ C0
is not needed.

Remark 5.4. Because of the continuity of u(t) in Ḣ1, it is clear that in
proving Proposition 5.3 we can assume that λ(t), x(t) ∈ C∞([0, T+(u0)))
and that λ(t) > 0 for each t ≥ 0. Indeed, first by the compactness of
K and the theory of (CP), we construct piecewise contant (with small
jumps) λ1(t), x1(t) such that the corresponding set K1 is included in K̃1 =
{w(t) solution of (CP) with initial data in K , t ∈ [0, t0]}, t0 small. Then
we can contruct regular λ2(t), x2(t) such that K2 is included in the precom-

pact set
{
λ

− (N−2)
2

0 w((x − x0)λ
−1
0 ), for w ∈ K̃1, 1/2 ≤ λ0 ≤ 2, |x0| ≤ 1

}
.

The continuity of λ(t), x(t) will not be used in our proof.
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In the next lemma we will collect some useful facts:

Lemma 5.5. Let u, v be as in Proposition 5.3.

i) Let δ0 > 0 be such that E(u0) ≤ (1 − δ0)E(W ). Then for all t ∈
[0, T+(u0)), we have∫

|�u(t)|2 ≤ (1 − δ)

∫
|�W |2∫

|�u(t)|2 − |u(t)|2∗ ≥ δ

∫
|�u(t)|2

C1,δ0

∫
|�u0|2 ≤ E(u0) ≤ C2

∫
|�u0|2

E(u(t)) = E(u0)

C1,δ0

∫
|�u0|2 ≤

∫
|�u(t)|2 ≤ C2

∫
|�u0|2.

ii) ∫
|�v(t)|2 ≤ C2

∫
|�W |2

‖v(t)‖2
L2∗

x
≤ C3

∫
|�W |2.

iii) For all x0 ∈ RN

∫ |v(x, t)|2
|x − x0|2

≤ C4

∫
|�W |2.

vi) For each ε > 0, there exists R(ε0) > 0, such that, for 0 ≤ t < T+(u0),
we have

∫
|x|≥R(ε0)

|�v|2 + |v|2∗ + |v|2
|x|2 ≤ ε0.

Proof. i) follows from Theorem 3.9 and Corollary 3.13. ii) follows from
i) by Sobolev embedding, while iii) follows from i) by Hardy’s inequality.
iv) follows (using Sobolev embedding and the Hardy inequality) from the
compactness of K . 	


The next lemma is a localized virial identity, in the spirit of Merle [17],
Lemma 3.6.
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Lemma 5.6. Let ϕ ∈ C∞
0 (RN ), t ∈ [0, T+(u0)). Then:

i)

d

dt

∫
|u|2 ϕ dx = 2Im

∫
u�u�ϕ dx

ii)

d2

dt2

∫
|u|2 ϕ dx = 4

∑
l, j

Re
∫

∂xl∂x j ϕ · ∂xl u · ∂x j u

−
∫

∆2ϕ |u|2 − 4

N

∫
∆ϕ |u|2∗

.

The proof of Lemma 5.6 is standard, see [17] and Glassey [12].

Proof of Proposition 5.3. The proof splits in two cases, the finite time
blow-up case for u and the infinite time of existence for u.

Case 1: T+(u0) < ∞. (In this case we don’t need the assumption |x(t)| < C0

or the energy constraints on u, only supt∈[0,T+(u0))

∫ |�u(t)|2 < ∞ is needed.
Note that this rules out the existence of self similar solutions in Ḣ1, i.e.
solutions for which λ(t) ∼ (T − t)−1/2.)

Note first that λ(t) → ∞ as t → T+(u0). If not, there exists ti ↑ T+(u0),
with λ(ti) → λ0 < +∞. Let vi(x) = 1

λ(ti)(N−2)/2 u
( x−x(ti)

λ(ti)
, ti

)
and let v(x) ∈

Ḣ1 be such that vi → v in Ḣ1 (from the compactness of K ). Hence,
u
(
x − x(ti)

λ(ti)
, ti

) = λ(ti)(N−2)/2vi(λ(ti)x) → λ
(N−2)/2
0 v(λ0x) in Ḣ1 (since

λ(ti) ≥ A0, λ0 ≥ A0). Let now h(x, t) be the solution of (CP), given
by Remark 2.8 with data λ

(N−2)/2
0 v(λ0x) at time T+(u0), in an interval

(T+(u0) − δ, T+(u0) + δ), with ‖h‖S((T+(u0)−δ,T+(u0)+δ)) < ∞. Let hi(x, t)
be the solution with data at T+(u0) equal to u

(
x − x(ti)

λ(ti)
, ti

)
. Then, the (CP)

theory guarantees that

sup
i

‖hi‖S((T+(u0)− δ
2 ,T+(u0)+ δ

2 )) < ∞.

But, u
(
x − x(ti)

λ(ti)
, t + ti − T+(u0)

) = hi(x, t), contradicting Lemma 2.11,
since T+(u0) < ∞.

Let us prove now a decay result for u from the concentration properties
in L2∗

of u at T+(u0). Let us now fix ϕ ∈ C∞
0 (RN ), ϕ radial, ϕ ≡ 1 for

|x| ≤ 1, ϕ ≡ 0 for |x| ≥ 2 and set ϕR(x) = ϕ(x/R). Define

yR(t) =
∫

|u(x, t)|2 ϕR(x) dx, t ∈ [0, T+(u0)).(5.7)

We then have:

|y′
R| ≤ CN

∫
|�W |2.(5.8)
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In fact, by Lemma 4.6, i)

|y′
R| ≤ 2

R

∣∣∣∣Im
∫

u�u�ϕ(x/R) dx

∣∣∣∣
≤ CN

(∫
|�u|2

)1/2

·
(∫ |u|2

|x|2
)1/2

≤ CN

∫
|�W |2,

by ii) in Lemma 5.5.
We also have:

For all R > 0,
∫

|x|<R

∫
|u(x, t)|2 dx → 0 as t → T+(u0).(5.9)

In fact, u(y, t) = λ(t)(N−2)/2v(λ(t)y + x(t), t), so that∫
|x|<R

|u(x, t)|2 dx = λ(t)−2
∫

|y|<Rλ(t)
|v(y + x(t), t)|2 dy

= λ(t)−2
∫

B(x(t),Rλ(t))
|v(z, t)|2 dz

= λ(t)−2
∫

B(x(t),Rλ(t))∩B(0,εRλ(t))
|v(z, t)|2 dz

+ λ(t)−2
∫

B(x(t),Rλ(t))\B(0,εRλ(t))
|v(z, t)|2 dz

= A + B.

By Hölder’s inequality, A ≤ λ(t)−2(εRλ(t))N 2
N ‖v‖2

L2∗ ≤ ε2 R2C3
∫ |�W |2,

which is small with ε.

B ≤ λ(t)−2(Rλ(t))N 2
N ‖v‖2

L2∗
(|x|≥εRλ(t))

= R2 ‖v‖2
L2∗

(|x|≥εRλ(t))
→ 0 as t → T+(u0),

by iv) in Lemma 5.5, since λ(t) → +∞ as t → T+(u0).
From (5.9) and (5.8), we have:

yR(0) ≤ yR(T+(u0)) + CN T+(u0)

∫
|�W |2 = CN T+(u0)

∫
|�W |2.

Thus, letting R → +∞ we obtain

u0 ∈ L2(RN ).

Arguing as before, |yR(t) − yR(T+(u0))| ≤ CN(T+(u0) − t)
∫ |�W |2 so

that yR(t) ≤ CN(T+(u0) − t)
∫ |�W |2. Letting R → ∞, we see that

‖u(t)‖2
L2 ≤ CN(T+(u0) − t)

∫ |�W |2 and so by the conservation of the
L2 norm ‖u(T+(u0))‖L2 = ‖u0‖L2 = 0. But then u ≡ 0, contradicting
T+(u0) < ∞.
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Case 2: T+(u0) = +∞.
In this case we assume, in addition, that |x(t)| ≤ C0. We first note that

For each ε > 0, there exists R(ε) > 0 such that,(5.10)
for all t ∈ [0,∞), we have:∫

|x|>R(ε)

|�u|2 + |u|2∗ + |u|2
|x|2 ≤ ε.

In fact, u(y, t) = λ(t)(N−2)/2v(λ(t)y + x(t), t), so that∫
|y|>R(ε)

|�u(y, t)|2 dy =
∫

|y|>R(ε)

λ(t)N |�v(λ(t)y + x(t), t)|2 dy

=
∫

|z|>R(ε)λ(t)
|�v(z + x(t), t)|2 dz

≤
∫

|z|≥R(ε)A0

|�v(z + x(t), t)|2 dz

≤
∫

|α|≥R(ε)A0−C0

|�v(α, t)|2 dα,

and the statement for this term now follows from Lemma 5.5 iv). The other
terms are handled similarly.

There exists R0 > 0 such that, for all t ∈ [0,+∞), we have(5.11)

8
∫

|x|≤R0

|�u|2 − 8
∫

|x|≤R0

|u|2∗ ≥ Cδ0

∫
|�u0|2.

In fact, (3.11) combined with Lemma 5.5 i) yields 8
∫ |�u|2 − 8

∫ |u|2∗ ≥
C̃δ0

∫ |�u0|2. Now combine this with (5.10), with ε = ε0
∫ |�u0|2 to obtain

(5.11).
To prove Case 2, we choose ϕ ∈ C∞

0 (RN ), radial, with ϕ(x) = |x|2 for
|x| ≤ 1, ϕ(x) ≡ 0 for |x| ≥ 2. Define zR(t) = ∫ |u(x, t)|2 R2ϕ

(
x
R

)
dx. We

then have:

for t > 0, |z′
R(t)| ≤ CN,δ0

∫
|�u0|2 R2

for R large enough, t > 0, z′′
R ≥ CN,δ0

∫
|�u0|2.

In fact, from Lemma 5.6, i),

∣∣z′
R(t)

∣∣ ≤ 2R

∣∣∣∣Im
∫

u�u�ϕ
( x

R

)
dx

∣∣∣∣ ≤ CN R
∫

0≤|x|≤2R

|x|
|x| |�u| |u|

≤ CN R2

(∫
|�u|2

)1/2 (∫ |u|2
|x|2

)1/2

≤ CN R2
∫

|�u0|2,
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because of Lemma 5.5 i), while from Lemma 5.6, ii),

z′′
R(t) = 4

∑
l, j

Re
∫

∂xl∂x j ϕ
( x

R

)
∂xl u · ∂x j u −

∫
∆2ϕ

( x

R

) |u|2
R2

− 4

N

∫
∆ϕ |u|2∗ ≥ 8

[∫
|x|≤R

|�u|2 − |u|2∗
]

− CN

∫
R≤|x|≤2R

[
|�u|2 + |u|2

|x|2 + |u|2∗
]

≥ CN,δ0

∫
|�u0|2

for R large, in view of (5.11) and (5.10).
If we now integrate in t, we have z′

R(t) − z′
R(0) ≥ CN,δ0 t

∫ |�u0|2, but
we also have |z′

R(t)− z′
R(0)| ≤ 2CN R2

∫ |�u0|2, a contradiction for t large,
unless

∫ |�u0|2 = 0. 	

Proof of Theorem 5.1. (See [19] for similar proof) Assume that u0 �≡ 0 so
that

∫ |�u0|2 > 0 and because of Lemma 5.5 i) (which is still valid here),
E(u0) ≥ C1,δ0

∫ |�u0|2 and hence E(u0) > 0. Because of Proposition 5.3,
we only need to treat the case where there exists {tn}∞

n=1, tn ≥ 0, tn ↑ T+(u0),
so that

λ(tn) → 0.

(If tn → t0 ∈ [0, T+(u0)), we obtain for all R > 0,
∫
|x|≥R |v(t0)|2∗ = 0 but∫ |�v(t0)|2 > 0). After possibly redefining {tn}∞

n=1 we can assume that

λ(tn) ≤ 2inft∈[0,tn]λ(t)

and from our hypothesis

wn(x) = 1

λ(tn)(N−2)/2
u

(
x

λ(tn)
, tn

)
→ w0 in Ḣ1.

By Theorem 3.9 we have E(W ) > E(w0) = E(u0) > 0,
∫ |�u(t)|2 ≤

(1 − δ)
∫ |�W |2 so that

∫ |�w0|2 <
∫ |�W |2. Thus w0 �≡ 0. Let us now

consider solutions of (CP), wn(x, τ), w0(x, τ) with data wn(−, 0), w0(−, 0)
at τ = 0, defined in maximal intervals τ ∈ (−T−(wn), 0], τ ∈ (−T−(w0), 0]
respectively.

Since wn → w0 in Ḣ1, lim n→∞T−(wn) ≥ T−(w0) and

for each τ ∈ (−T−(w0), 0], wn(x, τ) → w0(x, τ) in Ḣ1.

(See Remark 2.17)

Note that by uniqueness in (CP) (see Definition 2.10), for 0 ≤ tn +τ/λ(tn)2,
wn(x, τ) = 1

λ(tn)(N−2)/2 u
(

x
λ(tn)

, tn + τ

λ(tn)2

)
. Remark that lim n→∞τn =

lim n→∞ tnλ(tn)2 ≥ T−(w0) and thus for all τ ∈ (−T−(w0), 0] for n large,
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0 ≤ tn + τ/λ(tn)2 ≤ tn. Indeed,if τn → τ0 < T−(w0), then wn(x,−τn) =
1

λ(tn)(N−2)/2 u0(
x

λ(tn)
) → w0(x,−τ0) in Ḣ1 with λ(tn) → 0 which is a contra-

diction from u0 �≡ 0, w0 �≡ 0.
Fix now τ ∈ (−T−(w0), 0], for n sufficiently large v(x, tn + τ/λ(tn)2),

λ(tn + τ/λ(tn)2) are defined and we have

v(x, tn + τ/λ(tn)
2)(5.12)

= 1

λ(tn + τ/λ(tn)2)(N−2)/2
u

(
x

λ(tn + τ/λ(tn)2)
, tn + τ/λ(tn)

2

)

= 1

λ̃n(τ)
N−2

2

wn

(
x

λ̃n(τ)
, τ

)
,

with

λ̃n(τ) = λ(tn + τ/λ(tn)2)

λ(tn)
≥ 1

2
(5.13)

(because of the fact λ(tn) ≤ 2in ft∈[0,tn]λ(t).) One can assume after passing
to a subsequence that λ̃n(tn + τ/λ(tn)2) → λ̃0(τ) with 1

2 ≤ λ̃0(τ) ≤ +∞
and v(x, tn + τ/λ(tn)2) → v0(x, τ) in Ḣ1, as n → ∞. Remark that λ̃0(τ) <
+∞. If not, we will have 1

λ̃n(τ)(N−2)/2
w0

(
x

λ̃n(τ)
, τ

) → v0(x, τ) which implies

w0(x, τ) = 0 which contradicts E(w0) = E(u0) > 0. Thus λ̃0(τ) < +∞
and v0(x, τ) = 1

λ̃0(τ)
(N−2)/2

w0
(

x
λ̃0(τ)

, τ
)

where v0(τ) ∈ K . We thus obtain

a contradiction from Proposition 5.3. Note that the same proof applies in
the nonradial situation with the extra parameter x(tn). 	

Corollary 5.14. Assume that E(u0) < E(W ),

∫ |�u0|2 <
∫ |�W |2 and u0

is radial. Then the solution u of the Cauchy problem (CP) with data u0 at
t = 0 has time interval of existence I = (−∞,+∞), ‖u‖S((−∞,+∞)) < +∞
and there exists u0,+, u0,− in Ḣ1 such that

lim
t→+∞

∥∥u(t) − eit∆u0,+
∥∥

Ḣ1 = 0, lim
t→−∞

∥∥u(t) − eit∆u0,−
∥∥

Ḣ1 = 0.

Moreover, if we define δ0 so that E(u0) ≤ (1 − δ0)E(W ), there exists
a function M(δ0) so that

‖u‖S((−∞,+∞)) ≤ M(δ0).

Proof. From the integral equation in Theorem 2.5, it is clear that u(t) is
radial for each t ∈ I . Using Remark (4.23) and Theorem 5.1 we obtain (SC)
or I = (−∞,+∞), ‖u‖S((−∞,+∞)) < +∞. Now Remark 2.15 finishes the
proof of the first statement.
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For the last statement, let

Dδ0 =
{

u0 ∈ Ḣ1 radial,
∫

|�u0|2 <

∫
|�W |2 and

E(u0) ≤ (1 − δ0)E(W )

}
M(δ0) = supu∈Dδ0

‖u‖S((−∞,+∞)) .

We need to show M(δ0) < +∞. If not there is a sequence u0,n in Dδ0

and the corresponding solutions un such that ‖un‖S((−∞,+∞)) → +∞ as
n → +∞. Note that we can assume that ‖eit∆u0,n‖S((−∞,+∞)) ≥ δ, with δ
as in Theorem 2.5. Arguing as in the proof of Proposition 4.1, we would
conclude that first J = 1 in the decomposition given in Lemma 4.3 and
then since ‖U1‖S((−∞,+∞)) < +∞ we reach a contradiction (See also [15],
Corollary 1.14). 	

Remark 5.15. Note that Corollary 5.14 is sharp. In fact, W(x) is radial
and clearly ‖W‖S((−∞,+∞)) = +∞. Moreover, Remark 3.14 shows that if
u0 ∈ H1 radial, E(u0) < E(W ), but

∫ |�u0|2 >
∫ |�W |2, we have that I ,

the maximal interval of existence, is finite.

Let us remark that we have, in fact, proved a slightly stronger result:

Corollary 5.16. Let u0 ∈ Ḣ1 be radially symetric and assume that for all
t ∈ (−T−(u0), T+(u0)) we have

∫ |�u(t)|2 ≤ ∫ |�W |2 − δ0, for δ0 > 0.
Then the solution u of the Cauchy problem (CP) with data u0 at t = 0 has
time interval of existence I = (−∞,+∞), ‖u‖S((−∞,+∞)) < +∞.

Proof. Note first that if E(u0) < E(W ), Corollary 5.14 yields the result, so
that we can assume that E(u0) ≥ E(W ). Observe that the end of the proof
of Lemma 3.4 gives us that, for t ∈ (−T−(u0), T+(u0)),∫

|�u(t)|2 −
∫

|u(t)|2∗ ≥ Cδ0

∫
|�u(t)|2(5.17)

and that energy conservation, the assumption that E(u0) ≥ E(W ) yields

inft∈(−T−(u0),T+(u0))

∫
|�u(t)|2 ≥ C.

From the Remark 2.7, if δo is close to
∫ |�W |2, our conclusion holds.

We can then find 0 ≤ δc <
∫ |�W |2, so that if for t ∈ (−T−(u0), T+(u0)),∫ |�u(t)|2 ≤ ∫ |�W |2 − δ0, δ0 > δc, our desired conclusion holds and δc is

optimal with this property. We assume δc > 0 and reach a contradiction by
establishing the analogs of Propositions 4.1, 4.2 and using (5.17). In order
to do so, we just need to modify the statement of Lemma 4.9, by replacing
(4.10), say, by for t ∈ I ,

∫ |�U1(t)|2 ≤ ∫ |�W |2 − δc, where U1(t) is the
non-linear profile in Lemma 4.9 and I its maximal interval of existence as in
Remark 2.13. (4.11) is replaced analogously. The proofs are then identical
to those given in Sect. 4 and that of Corollary 5.14. 	
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As a consequence of Corollaries 5.14 and 5.16, we obtain the following
concentration phenomenon for all radial type II finite blow-up solutions.
Here by type II finite blow-up solution, we mean a solution u whose maximal
interval of existence I is finite and for which there is a C, such that for all
t ∈ I ,

∫ |�u(t)|2 < C. On the other hand, type I finite blow-up solution is
such that what the time of existence is finite but the Ḣ1 norm blows up.

Corollary 5.18. Let u0 ∈ Ḣ1 (no size restrictions) be radially symetric and
assume that T+(u0) < +∞, and that ∀t ∈ [0, T+(u0)),

∫ |�u(t)|2 ≤ C0.
Then, for all R > 0, we have

lim t→T+(u0)

∫
|x|≤R

|�u(t)|2 ≥ 2

N

∫
|�W |2

lim t→T+(u0)

∫
|x|≤R

|�u(t)|2 ≥
∫

|�W |2 .

Proof. Consider tn → T+(u0) and apply Lemma 4.3 to the sequence u(tn).
Arguing in an analogous manner to the proof of Theorem 2.14, we must
have λ j,n → +∞ for some j and the corresponding non-linear profile U j
has ‖U j‖S((0,T+(U j )) = +∞. If the first inequality does not hold, we can find
a sequence {tn} as before and R0 > 0, η0 > 0 so that∫

|x|≤R0

|�u(tn)|2 ≤ 2

N

∫
|�W |2 − η0.

In addition,we must have (since λ j,n → +∞) that∫ ∣∣�U j
( − t j,n/λ

2
j,n

)∣∣2 ≤ 2

N

∫
|�W |2 − η0 <

2

N

∫
|�W |2 <

∫
|�W |2 .

Thus E(U j) < E(W ) = 1
N

∫ |�W |2 and Corollary 5.14 gives a contradic-
tion.

If the second inequality does not hold, we can find R0 > 0, η0 > 0 so that
for all t ∈ I ,

∫
|x|≤R0

|�u(t)|2 ≤ ∫ |�W |2 −η0. By the argument at the begin-

ing of the proof of case 1 of Proposition 5.13, we must have −t j,n/λ
2
j,n < C.

Thus, we obtain, for t > M, that
∫ |�U j(t)|2 ≤ ∫ |�W |2 − η0, so that

Corollary 5.16 concludes the proof. 	

Remark 5.19. Note that we have not yet shown that u0 as in Lemma 5.18
exist, but we expect that this is the case. We also expect to have data u0 for
which type I blow-up occurs.

Remark 5.20. In the case N ≥ 4, consider now u0 ∈ H1 radial as in
Corollary 5.18 (but not type II), then using the L2 conservation and energy
laws, estimates as in [20] yield for any sequence tn such that

∫ |�u(tn)|2 →
+∞ that for all R > 0, we have

∫
|x|≤R |�u(tn)|2 → +∞ which leads to the

same conclusions as in Corollary 5.18. Note that when N = 3, one expects
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that the conclusion in this remark is false in light of examples analogous
to the ones constructed by Raphael in [23] which give a radial solution
blowing up exactly on a sphere.
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