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Abstract. We give a proof of the so-called generalized Waldhausen con-
jecture, which says that an orientable irreducible atoroidal 3-manifold has
only finitely many Heegaard splittings in each genus, up to isotopy. Jaco
and Rubinstein have announced a proof of this conjecture using different
methods.

Contents

1 Introduction
2 Heegaard splittings, almost normal surfaces and branched surfaces
3 Measured laminations and projective lamination spaces
4 Measured laminations with Euler characteristic 0
5 Normal tori and 0-efficient triangulations
6 Splitting branched surfaces, the torus case
7 Splitting branched surfaces, the lamination case
8 Proof of the main theorem
References

1. Introduction

A Heegaard splitting of a closed orientable 3-manifold M is a decompos-
ition of M into two handlebodies along an embedded surface called a Hee-
gaard surface. Heegaard splittings were introduced to construct and classify
3-manifolds. Every 3-manifold has a Heegaard splitting, and one can con-
struct a Heegaard splitting of arbitrarily large genus for any 3-manifold
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by adding trivial handles to a Heegaard splitting. An important problem in
3-manifold topology is the classification of Heegaard splittings of a 3-mani-
fold. The main questions are whether there are different Heegaard splittings
in a 3-manifold and how the different Heegaard splittings are related. A con-
jecture of Waldhausen asserts that a closed orientable 3-manifold has only
a finite number of Heegaard splittings of any given genus, up to homeomor-
phism. Johannson [17,18] proved this conjecture for Haken manifolds. If
M contains an incompressible torus, one may construct an infinite family
of homeomorphic but non-isotopic Heegaard splittings using Dehn twists
along the torus. The so-called generalized Waldhausen conjecture says that
a closed, orientable and atoroidal 3-manifold has only finitely many Hee-
gaard splittings of any fixed genus, up to isotopy. This is also proved to be
true for Haken manifolds by Johannson [17,18]. The main purpose of this
paper is to prove the generalized Waldhausen conjecture.

Theorem 1.1. A closed, orientable, irreducible and atoroidal 3-manifold
has only finitely many Heegaard splittings in each genus, up to isotopy.

Jaco and Rubinstein have announced a proof using normal surface theory
and 1-efficient triangulations. The main tools used in this paper are measured
laminations and branched surfaces. In a sequel to this paper [27], we use
measured laminations and Theorem 1.3 of this paper to prove a much
stronger result for non-Haken 3-manifolds, which says that, for non-Haken
manifolds, adding trivial handles is virtually the only way of creating new
Heegaard splittings.

Methods of laminations and branched surfaces have been very useful in
solving some seemingly unrelated problems, such as [24,25]. This is the
first time that they are used on Heegaard splittings. Both [27] and this paper
use branched surfaces to analyze Heegaard surfaces. The main technical
issues in this paper are on measured laminations, whereas the arguments in
[27] rely more on the properties of strongly irreducible Heegaard splittings.

A theorem of Schleimer [38] says that every Heegaard splitting of suf-
ficiently large genus has the disjoint curve property. So, an immediate
corollary is that M contains only finitely many full Heegaard splittings,
see [38].

Corollary 1.2. In any closed orientable 3-manifold, there are only finitely
many full Heegaard splittings, up to isotopy.

Theorem 1.1 provides a well-known approach to understand the structure
of the mapping class group of 3-manifolds. Conjecturally, the mapping
class group for such a 3-manifold is finite, but it is not clear how to obtain
a geometric description of the mapping class group. For instance, there is
no example of a non-trivial element in the mapping class group of such
a 3-manifold that is invariant on a strongly irreducible Heegaard splitting.
Very recently, Namazi [33] used the result of this paper and showed that if
the distance of a Heegaard splitting is large then the mapping class group is
finite.
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We give a very brief outline of the proof. By a theorem of Rubinstein
and Stocking [41], every strongly irreducible Heegaard splitting is isotopic
to an almost normal surface. So, similar to [8], one can construct a finite col-
lection of branched surfaces using normal disks and almost normal pieces
of a triangulation, such that every almost normal strongly irreducible Hee-
gaard surface is fully carried by a branched surface in this collection. If no
branched surface in this collection carries any surface with non-negative
Euler characteristics, then Theorem 1.1 follows immediately from a simple
argument of Haken in normal surface theory. The key of the proof is to show
that one can split a branched surface into a finite collection of branched sur-
faces so that no branched surface in this collection carries any normal torus
and up to isotopy, each almost normal Heegaard surface is still carried by
a branched surface in this collection, see Sects. 6 and 7. Most of the paper
are dedicated to proving Theorem 1.3, and Theorem 1.1 follows easily from
this theorem, see Sect. 8.

Theorem 1.3. Let M be a closed orientable, irreducible and atoroidal 3-
manifold, and suppose M is not a small Seifert fiber space. Then, M has
a finite collection of branched surfaces, such that

(1) each branched surface in this collection is obtained by gluing together
normal disks and at most one almost normal piece, similar to [8],

(2) up to isotopy, each strongly irreducible Heegaard surface is fully carried
by a branched surface in this collection,

(3) no branched surface in this collection carries any normal 2-sphere or
normal torus.

In the proof, we also use some properties of 0-efficient triangulations
[16]. The use of 0-efficient triangulations does not seem to be absolutely
necessary, but it makes many arguments much simpler. Jaco and Rubinstein
also have a theory of 1-efficient triangulations, which can simplify our proof
further, but due to the status of their paper, we decide not to use it. Some
arguments in this paper are also similar in spirit to those in [1,23]. One can
also easily adapt the arguments in this paper into [1] so that the algorithm
in [1] works without the use of 1-efficient triangulations.

Acknowledgements. I would like to thank Bus Jaco for many conversations and email
communications on their theory of efficient triangulations. I also thank Saul Schleimer and
Ian Agol for helpful conversations. I would also like to thank the referee for many corrections
and suggestions.

2. Heegaard splittings, almost normal surfaces and branched surfaces

Notation. Throughout this paper, we will denote the interior of X by int(X),
the closure (under path metric) of X by X , and the number of components of
X by |X|. We will use η(X) to denote the closure of a regular neighborhood
of X. We will use M to denote a closed, orientable, irreducible and atoroidal
3-manifold, and we always assume M is not a Seifert fiber space.
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In this section, we will explain some basic relations between Heegaard
splittings, normal surface theory and branched surfaces. We will also explain
some terminology and operations that are used throughout this paper.

2.1. Heegaard splittings. A handlebody is a compact 3-manifold homeo-
morphic to a regular neighborhood of a connected graph embedded in R3.
A Heegaard splitting of a closed 3-manifold M is a decomposition M =
H1 ∪S H2, where S = ∂H1 = ∂H2 = H1 ∩ H2 is a closed embedded
separating surface and each Hi (i = 1, 2) is a handlebody. The surface S
is called a Heegaard surface, and the genus of S is the genus of this Hee-
gaard splitting. The boundary of a regular neighborhood of the 1-skeleton of
any triangulation of M is a Heegaard surface. Hence, any closed orientable
3-manifold has a Heegaard splitting. The notion of Heegaard splitting can be
generalized to manifolds with boundary, but in this paper, we only consider
Heegaard splittings of closed 3-manifolds.

Heegaard splitting became extremely useful when Casson and Gordon
introduced strongly irreducible Heegaard splitting.

Definition 2.1. A compressing disk of a handlebody H is a properly em-
bedded disk in H with boundary an essential curve in ∂H . A Heegaard
splitting is reducible if there is an essential curve in the Heegaard surface
that bounds compressing disks in both handlebodies. A Heegaard splitting
M = H1 ∪S H2 is weakly reducible [7] if there exist a pair of compressing
disks D1 ⊂ H1 and D2 ⊂ H2 such that ∂D1 ∩ ∂D2 = ∅. If a Heegaard split-
ting is not reducible (resp. weakly reducible), then it is irreducible (resp.
strongly irreducible).

A closed 3-manifold M is reducible if M contains an embedded
2-sphere that does not bound a 3-ball. A lemma of Haken [15] says that
if M is reducible, then every Heegaard splitting is reducible. Casson and
Gordon [7] showed that if a Heegaard splitting of a non-Haken 3-manifold
is irreducible, then it is strongly irreducible.

The following theorem of Scharlemann [37] is useful in proving Theo-
rem 1.1.

Theorem 2.2 (Theorem 3.3 of [37]). Suppose H1 ∪S H2 is a strongly ir-
reducible Heegaard splitting of a 3-manifold and V ⊂ M is a solid torus
such that ∂V intersects S in parallel essential non-meridian curves. Then
S intersects V in a collection of ∂-parallel annuli and possibly one other
component, obtained from one or two ∂-parallel annuli by attaching a tube
along an arc parallel to a subarc of ∂V.

2.2. Almost normal surfaces. A normal disk in a tetrahedron is either a tri-
angle cutting off a vertex or a quadrilateral separating two opposite edges,
see Fig. 3 of [16] for a picture. An almost normal piece in a tetrahedron is
either an octagon, or an annulus obtained by connecting two normal disks
using an unknotted tube, see Figs. 1 and 2 in [41] for pictures.
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Definition 2.3. Suppose a 3-manifold M has a triangulation T . We use T (i)

to denote the i-skeleton of T . Let S be a surface in M that does not meet
the 0-skeleton T (0) and is transverse to T (1) and T (2). S is called a normal
surface (or we say S is normal) with respect to T if the 2-skeleton T (2) cuts
S into a union of normal disks. S is called an almost normal surface if S is
normal except in one tetrahedron T , where T ∩ S consists of normal disks
and at most one almost normal piece.

Rubinstein and Stocking [36,41] (see also [19]) showed that any strongly
irreducible Heegaard surface is isotopic to an almost normal surface with
respect to any triangulation of the 3-manifold.

Normal surfaces, introduced by Kneser [20], have been very useful in
the study of incompressible surfaces. The results and techniques in normal
surface theory are similarly applicable to almost normal surfaces.

Let S be a surface in M transverse to the 1-skeleton of T and with
S∩T (0) = ∅. We define the weight (or the combinatorial area) of S, denoted
by weight(S), to be |S ∩ T (1)|. Let α be an arc such that α ∩ T (1) = ∅ and
α is transverse to T (2). We define the combinatorial length of α, denoted by
length(α), to be |α ∩ T (2)|. After a small perturbation, we may assume any
arc to be disjoint from T (1) and transverse to T (2). In this paper, when we
mention the length of an arc, we always use such combinatorial length.

Let S be a closed embedded normal surface in M. If we cut M open
along S, the manifold with boundary M − S has an induced cell decom-
position. One can also naturally define normal disks and normal surfaces
in M − S with respect to this cell decomposition. An embedded disk in
a 3-cell is a normal disk if its boundary curve does not meet the 0-cells,
meets at least one edge, and meets no edge more than once.

An isotopy of M is called a normal isotopy if it is invariant on the
cells, faces, edges and vertices of the triangulation. In this paper, we will
consider two normal surfaces (or laminations) the same if they are isotopic
via a normal isotopy. Up to normal isotopy there are only finitely many
equivalence classes of normal disks, and these are called normal disk types.
There are 7 types of normal disks in a tetrahedron.

2.3. Branched surfaces. A branched surface in M is a union of finitely
many compact smooth surfaces glued together to form a compact subspace
(of M) locally modeled on Fig. 2.1(a).

Given a branched surface B embedded in a 3-manifold M, we denote by
N(B) a regular neighborhood of B, as shown in Fig. 2.1(b). One can regard
N(B) as an I -bundle over B, where I denotes the interval [0, 1]. We denote
by π : N(B) → B the projection that collapses every I -fiber to a point.
The branch locus of B is L = {b ∈ B : b does not have a neighborhood
homeomorphic to R2}. So, L can be considered as a union of smoothly
immersed curves in B, and we call a point in L a double point of L if any
small neighborhood of this point is modeled on Fig. 2.1(a). We call the
closure (under the path metric) of each component of B − L a branch sector
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Fig. 2.1

of B. We say that a surface (or lamination) S is carried by a branched surface
B (or carried by N(B)) if S lies in N(B) and is transverse to the I -fibers of
N(B). We say S is fully carried by B, if S ⊂ N(B) transversely intersects
every I -fiber of N(B). The boundary of N(B) consists of two parts, the
horizontal boundary, denoted by ∂h N(B), and the vertical boundary, denoted
by ∂vN(B). The vertical boundary is a union of subarcs of I -fibers of N(B)
and the horizonal boundary is transverse to the I -fibers of N(B), as shown
in Fig. 2.1(b).

Let µ ⊂ N(B) be a lamination carried by N(B) (or B), and let b be
a branch sector of B. We say that µ passes through the branch sector b if
µ ∩ π−1(int(b)) �= ∅, where π : N(B) → B is the collapsing map. So, µ is
fully carried by B if and only if µ passes through every branch sector. Let
x ∈ int(b) be a point and Ix = π−1(x) the corresponding I -fiber. If µ is
a closed surface, then m = |Ix ∩ µ| is a non-negative integer and m does
not depend on the choice of x ∈ int(b). We call m the weight of µ at the
branch sector b.

Definition 2.4. A disk of contact is an embedded disk in N(B) transverse
to the I -fibers of N(B) and with ∂D ⊂ ∂vN(B), see [8] for a picture.
A monogon is a disk E properly embedded in M − int(N(B)) with ∂E =
α∪β, where α ⊂ ∂v N(B) is a subarc of an I -fiber of N(B) and β ⊂ ∂h N(B).
If a component of M − int(N(B)) is a 3-ball whose boundary consists of
two disk components of ∂h N(B) and a component of ∂vN(B), then we call
this 3-ball a D2 × I region. If a component of M − int(N(B)) is a solid
torus, whose boundary consists of an annulus component of ∂h N(B) and
a component of ∂vN(B), and a meridian disk of the solid torus is a monogon,
then we call this solid torus a monogon × S1 region. Let A be an annulus in
N(B). We call A a vertical annulus if A is a union of subarcs of the I -fibers
of N(B).

For any embedded (almost) normal surface S, by identifying all the nor-
mal disks of the same disk type as in [8], we obtain a branched surface fully
carrying S. Since M is compact and there are only finitely many different
types of normal disks, there are only finitely many such branched surfaces.
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This construction is first used by Floyd and Oertel [8] to study incompress-
ible surfaces, then used in [11,23,25,26] to study essential laminations
and immersed surfaces. Since strongly irreducible Heegaard surfaces are
isotopic to almost normal surfaces, by the argument above, we have the
following.

Proposition 2.5. There is a finite collection of branched surfaces in M with
the following properties.

(1) each branched surface is obtained by gluing normal disks and at most
one almost normal piece, similar to [8],

(2) after isotopy, every strongly irreducible Heegaard surface is fully car-
ried by a branched surface in this collection. �	

Let B be a branched surface, and B the set of branched sectors of B.
If a subset of B also form a branched surface B′, then we call B′ a sub-
branched surface of B. If a lamination µ is carried but not fully carried
by B, then the branch sectors that µ passes through form a sub-branched
surface of B that fully carries µ.

Let B be a branched surface as in Proposition 2.5. If B does not contain
any almost normal piece, then every surface carried by B is a normal surface.
Suppose B contains an almost normal branched sector, which we denote
by bA. Let S be an almost normal surface fully carried by B. By the definition
of almost normal surface, the weight of S at the branch sector bA is one.
Therefore, it is easy to see that BN = B − int(bA) is a sub-branched surface
of B. We call BN the normal part of B. Every surface carried by BN is
a normal surface.

In this paper, we assume all the 3-manifolds are orientable. So, if S is
a non-orientable surface carried by N(B), then a small neighborhood of S in
N(B) is a twisted I -bundle over S and the boundary of this twisted I -bundle
is an orientable surface carried by B. Thus, we have the following trivial
proposition.

Proposition 2.6. If a branched surface in an orientable 3-manifold does
not carry any 2-sphere (resp. torus), then B does not carry any projective
plane (resp. Klein bottle).

2.4. Splitting branched surfaces

Definition 2.7. An isotopy of N(B) is called a B-isotopy if it is invariant on
each I -fiber of N(B). We say two surfaces carried by N(B) are B-isotopic
if they are isotopic via a B-isotopy of N(B).

Let S be a compact surface embedded in N(B) transverse to the I -fibers
of N(B), and let NS be a closed neighborhood of S in N(B). We call NS
a fibered neighborhood of S in N(B) if NS is an I -bundle over S with each
I -fiber of NS a subarc of an I -fiber of N(B). After some small perturbation,
N(B) − int(NS) can be considered as a fibered neighborhood N(B′) of an-
other branched surface B′. We say that B′ is obtained by splitting B along S.
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For most splittings considered in this paper, we have ∂S ∩ ∂vN(B) �= ∅
and S is orientable. If µ be a surface or lamination carried by N(B) and
S ⊂ N(B) − µ is B-isotopic to a sub-surface of (a leaf of) µ, then we also
say that B′ is obtained by splitting B along µ. The inverse operation of
splitting is called pinching, and we say that B is obtained by pinching B′.
If B′ is a branched surface obtained by splitting B, then we may naturally
consider N(B′) as a subset of N(B) with the induced fiber structure. For any
lamination µ carried by B, we say that µ is also carried by B′ if after some
B-isotopies, µ is carried by N(B′) with µ ⊂ N(B′) ⊂ N(B).

Suppose B′ is obtained by splitting B. Since we can regard N(B′) ⊂
N(B), we have the following obvious proposition.

Proposition 2.8. Suppose B′ is obtained by splitting B. Then, any lamina-
tion carried by B′ is also carried by B. �	

The converse of Proposition 2.8 is not true. It is possible that some
lamination is carried by B but not carried by B′. For example, in Fig. 2.2,
the train track τ2 is obtained by splitting the train track τ on the top.
However, any lamination fully carried by τ1 or τ3 is carried by τ but not
carried by τ2. Nevertheless, every lamination carried by τ is carried by some
τi (i = 1, 2, 3). Moreover, τ2 is a sub-traintrack of each τi .

One can apply such different splittings (as in Fig. 2.2) to branched
surfaces. The next proposition is also obvious, see Sect. 6 for a more general
discussion of such splittings.

Fig. 2.2

Proposition 2.9. Let B be a branched surface and {Sn} a sequence of
distinct closed surfaces fully carried by B. Suppose B′ is a branched surface
obtained by splitting B and B′ fully carries some Sm. Then, there is a finite
collection of branched surfaces, such that
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(1) each branched surface in this collection is obtained by splitting B, and
B′ is in this collection,

(2) each Sn is fully carried by a branched surface in this collection,
(3) if another branched surface B′′ in this collection carries Sm, then B′ is

a sub-branched surface of B′′.

Proof. First note that, in the one-dimension lower example Fig. 2.2, if B
is τ and B′ is τi (i = 1, 2, 3), then τ1, τ2 and τ3 form a collection of train
tracks satisfying the 3 conditions of the proposition. The 2-dimensional case
is similar. Any splitting can be viewed as a sequence of successive local
splittings similar to Fig. 2.2. During each local splitting, one can enumerate
all possible splittings as in Fig. 2.2 and get a collection of branched surfaces
satisfying the conditions of this proposition. �	
Remark 2.10. If B is obtained by gluing normal disks and at most one
almost normal piece as in Proposition 2.5, then the branched surface after
splitting is also obtained by gluing normal disks and almost normal pieces.
Moreover, if {Sn} in Proposition 2.9 are almost normal surfaces, since each
Sn has at most one almost normal piece, we may assume that each branched
surface in this collection has at most one branch sector containing an almost
normal piece.

3. Measured laminations and projective lamination spaces

Let B be a branched surface in M, and F ⊂ N(B) be a surface carried
by B. Let L be the branch locus of B, and suppose b1, . . . , bN are the
components of B − L . For each bi , let xi = |F ∩π−1(bi)|. One can describe
F using a non-negative integer point (x1, . . . , xN ) ∈ RN , and (x1, . . . , xN )
is a solution to the system of branch equations of B, see [8,35] for more
details. F is fully carried by B if and only if each xi is positive. Each
branch equation is of the form xk = xi + x j . We use S(B) to denote the
set of non-negative solutions to the system of branch equations of B. This
gives a one-to-one correspondence between closed surfaces carried by B
and integer points in S(B). Throughout this paper, we do not distinguish
a surface carried by B from its corresponding non-negative integer point
(x1, . . . , xN ) ∈ S(B). We will call xn the weight (or the coordinate) of the
surface at the branch sector corresponding to bn .

Let F1 and F2 be embedded closed orientable surfaces carried by N(B)
and suppose F1 ∩ F2 �= ∅. In general, there are two directions to perform
cutting and pasting along an intersection curve of F1 ∩ F2, but only one
of them results in surfaces still transverse to the I -fibers of N(B). We call
such cutting and pasting the canonical cutting and pasting. This is similar
to the Haken sum in normal surface theory. We use F1 + F2 to denote
the surface after the canonical cutting and pasting. This is a very natural
operation, because if F1 = (x1, . . . , xN ) and F2 = (y1, . . . , yN ) in S(B)
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then F1 + F2 = (x1 + y1, . . . , xN + yN ). Moreover, this sum preserves the
Euler characteristic, χ(F1) + χ(F2) = χ(F1 + F2).

A theorem of Haken [13] says that there is a finite set of fundamental
integer solutions F1, . . . , Fk in S(B), such that any integer solution in S(B)

can be written as
∑k

i=1 ni Fi , where each ni is a non-negative integer. In
other words, every surface carried by B can be obtained by the canonical
cutting and pasting on multiple copies of F1, . . . , Fk. So, if B does not carry
any 2-sphere or torus, by Proposition 2.6, B does not carry any surface with
non-negative Euler characteristic and hence there are only finitely many
surfaces (carried by B) with any given genus.

The positive non-integer points of S(B) correspond to measured lamin-
ations fully carried by B. We refer to [15,35,28] for details. Roughly speak-
ing, one can construct the measured lamination as follows, see [35] and
Sect. 2 of [15]. We can first pinch each component of ∂vN(B) to a circle
and change N(B) to Nw(B), see Fig. 1.2 of [35] or Fig. 2.2 of [23]. N(B) is
basically the same as Nw(B) except the vertical boundary of N(B) becomes
the cusp of Nw(B). For each branch sector of B, we can take an I -bundle
over this sector with a standard horizontal foliation. For any positive point
in S(B), when we glue the branch sectors together, we glue the foliations
according to the weights at these sectors, see Fig. 1.2 of [35]. This produces
a singular foliation of Nw(B) where the cusps are the singularity. So, there
are a finite number of singular leaves. Now, one can split B along these
singular leaves. This is usually an infinite process, and the inverse limit is
a measured lamination fully carried by B. It is not hard to show that if the
singular foliation does not contain any compact leaf, then the singular leaves
are dense in the lamination (see [15,28]). Throughout this paper, we always
assume our measured laminations are constructed in this fashion. So, we
may assume that there is a one-to-one correspondence between a point in
S(B) and a measured lamination carried by B.

Measured laminations in 3-manifolds have many remarkable properties.
We say a lamination is minimal if it has no sub-lamination except itself and
the empty set. It is very easy to see that a lamination is minimal if and only
if every leaf is dense in the lamination. We say that a lamination µ is an
exceptional minimal lamination, if µ is minimal and does not have interior
in M. Thus, the intersection of a transversal with an exceptional minimal
lamination is a Cantor set. The following theorem is one of the fundamental
results on measured laminations/foliations, see [5] for measured foliations.

Theorem 3.1 (Theorem 3.2 in Chap. I of [28], pp. 410). Let µ be a co-
dimension one measured lamination in a closed connected 3-manifold M,
and suppose µ �= M. Then, µ is the disjoint union of a finite number of
sub-laminations. Each of these sub-laminations is of one of the following
types:

(1) A family of parallel compact leaves,
(2) A twisted family of compact leaves,
(3) An exceptional minimal measured lamination.



Heegaard surfaces and measured laminations, I: The Waldhausen conjecture 145

One can also naturally define the Euler characteristic for measured lamin-
ations, see [28]. For example, if a measured lamination consists of a family
of parallel compact leaves, then its Euler characteristic is equal to the product
of the Euler characteristic of a leaf and the total weight.

Using branched surfaces, Morgan and Shalen gave a combinatorial for-
mula for Euler characteristic of measured laminations. Let B be a branched
surface fully carrying a measured lamination µ. For each branch sector b
of the branched surface B, one can define a special Euler characteristic
χ(b) = χtop(b) − o(b)/4, where χtop(b) is the usual Euler characteristic
for surfaces and o(b) is the number of corners of b, see Definition 3.1 in
Chap. II of [28], p. 424. Let w(b) be the coordinate (or weight) of µ at
the branched sector b. Then, χ(µ) = ∑

w(b) · χ(b) (see Theorem 3.2 in
Chap. II of [28], p. 424). The following proposition is easy to prove.

Proposition 3.2. Let µ ⊂ M be a measured lamination with χ(µ) = 0,
and let B be a branched surface fully carrying µ. Suppose B does not carry
any 2-sphere. Then, B fully carries a collection of tori.

Proof. First note that, by Proposition 2.6, B does not carry any projective
plane. We can add the equation

∑
χ(b) · w(b) = 0 to the branch equations,

and get a new system of linear equations. By the formula above, every
solution to this linear system corresponds to a measured lamination with
Euler characteristic 0. Since all the coefficients are rational numbers and
this linear system has a positive solution µ, this linear system must have
a positive integer solution. Hence, B fully carries a collection of closed
surfaces with total Euler characteristic 0. Since B does not carry any closed
surface with positive Euler characteristic, each surface in this collection has
Euler characteristic 0. For any Klein bottle K carried by B, the boundary of
a twisted I -bundle over K is a torus carried by B. So, we can get a collection
of tori fully carried by B. �	

The following theorem of Morgan and Shalen is also useful.

Theorem 3.3 (Theorem II 5.1 of [28], p. 427). Let B be a branched surface
that does not carry any surface of positive Euler characteristic. Let µ be
a measured lamination fully carried by B, and suppose every leaf l of µ
has virtually abelian fundamental group. Then, any measured lamination
µ′ carried by B has χ(µ′) = 0.

An immediate corollary of Theorem 3.3 is the following.

Corollary 3.4. Let B ⊂ M be a branched surface that does not carry
any 2-sphere. If B fully carries a measured lamination with Euler char-
acteristic 0, then every measured lamination fully carried by B has Euler
characteristic 0.

Proof. If B fully carries a measured lamination with Euler characteristic 0,
by Proposition 3.2, B fully carries a measured lamination consisting of tori.
Hence, Theorem 3.3 implies any measured lamination µ carried by B has
χ(µ) = 0. �	
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Instead of considering the solution space of the system of branch equa-
tions, it is more common to consider the projective space, which is usu-
ally called the projective lamination space (sometimes we also call it the
projective solution space). This is first used by Thurston to study curves
and 1-dimensional measured laminations on a surface through the use of
train tracks, and it can be trivially generalized to 2-dimensional measured
laminations and branched surfaces. Throughout this paper, we identify the
projective lamination space with the set of points (x1, . . . , xN ) ∈ S(B)

satisfying
∑N

i=1 xi = 1. We denote the projective lamination space (for
the branched surfaces B) by PL(B). Thus, each rational point of PL(B)
corresponds to a compact surface carried by B, and each irrational point
corresponds to a measured lamination that contains an exceptional minimal
sub-lamination. By an irrational point, we mean a point in PL(B) with at
least two coordinates are not rationally related. We may also consider the
set of points in PL(B) corresponding to measured laminations with Euler
characteristic 0. The following proposition is obvious after adding the com-
binatorial formula of Euler characteristic into the linear system of branch
equations.

Proposition 3.5. Let T (B) ⊂ PL(B) be the subset of points corresponding
to measured laminations with Euler characteristic 0. Then T (B) is a closed
and hence compact subset of PL(B).

�	

4. Measured laminations with Euler characteristic 0

The goal of this section is to prove Lemma 4.5 which is a certain charac-
terization of measured laminations with Euler characteristic 0. Lemmas 4.1
and 4.3 are also used in [27]. The proof involves some basic properties
of foliations and laminations, such as the Reeb stability theorem and local
stability theorem. We refer to [4,5,42] for more details, see also [12] for
lamination versions of these results. The Reeb stability theorem basically
says that the holonomy along a trivial curve in a leaf must be trivial. The
simplest version of the local stability theorem (for our purpose) basically
says that, for any disk ∆ in a leaf, there is a 3-ball neighborhood of ∆ in M
whose intersection with the lamination consists of disks parallel to ∆.

The proof of next lemma is similar to some arguments in Sect. 2 of [23].

Lemma 4.1. Let B be a branched surface fully carrying a measured lami-
nation µ. Suppose ∂h N(B) has no disk component and N(B) does not carry
any disk of contact that is disjoint from µ. Then, N(B) does not carry any
disk of contact.

Proof. After some isotopy, we may assume ∂h N(B) ⊂ µ (note that if µ is
a compact surface, we may need to take multiple copies of µ to achieve
this). For any component E of ∂h N(B), let lE be the leaf of µ containing E.
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Fig. 4.1

Suppose lE − int(E) has a disk component D. Note that D is a disk of
contact by definition. Since ∂h N(B) has no disk component, we may choose
E so that D does not contain any component of ∂h N(B). Then, after a small
isotopy, we can get a disk of contact parallel to D and disjoint from µ. So,
by our hypotheses, E must be an essential sub-surface of lE and E is not
a disk.

After replacing non-orientable leaves by I -bundles over these leaves and
then deleting the interior of these I -bundles (operations 2.1.1–2.1.3 in [10]),
we may assume every leaf of µ is orientable. After applying these operations
to each leaf, we may also assume µ is nowhere dense [10]. Suppose there
is a disk of contact D ⊂ N(B). We may assume ∂D ⊂ int(∂vN(B)),
D∩µ ⊂ int(D), and D is transverse to each leaf of µ. Since µ is a measured
lamination, there is no holonomy and every component of D ∩µ is a circle.
For any circle α ⊂ D ∩µ, we denote by ∆α the disk in D bounded by α and
denote the leaf of µ containing α by lα. The circle α has two annular collars
A+

α and A−
α in lα on the two sides of α, where A+

α ∩ A−
α = α and A+

α ∪ A−
α

is a regular neighborhood of α in lα. We may assume A+
α , the plus side of

α, is the one with the property that (after smoothing out the corners) the
surface A+

α ∪(D−int(∆α)) is transverse to the I -fibers of N(B), hence (after
smoothing out the corners) A−

α ∪∆α is transverse to the I -fibers of N(B). We
say that α is of type I if α bounds a disk, denoted by ∆′

α, in lα and A+
α ⊂ ∆′

α,
see Fig. 4.1(a) for a one-dimension lower schematic picture. Otherwise, we
say α is of type II . Notice that if α is of type I , the canonical cutting and
pasting of D and lα at α produce another disk of contact (D − ∆α) ∪ ∆′

α. If
every circle of D∩µ is of type I , we can take the circles of D∩µ which are
outermost in D and perform the canonical cutting and pasting along these
curves. Then, after some isotopy, we get a disk of contact disjoint from µ.
So, there is at least one type II circle in D ∩ µ.

By the local stability theorem of foliations and laminations, the limit of
type II circles of D ∩µ cannot be a circle of type I . So, we can find a circle
α in D ∩ µ such that α is of type II and is innermost in the sense that every
circle in int(∆α) ∩ µ is of type I .

Since α is of type II , α does not bound a disk in lα that contains A+
α . So,

one cannot push ∆α into lα along the I -fibers of N(B), fixing α. In other
words, ∆α is not homotopic to a disk in lα via a homotopy that fixes α and is
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invariant on each I -fiber of N(B). Therefore, we can find an arc β properly
embedded in ∆α, such that one cannot push β (fixing ∂β) into lα along
the I -fibers. Notice that, for any point x near ∂β, there is a subarc of an
I -fiber connecting x to a point in A+

α ⊂ lα. We can view β as an embedding
β : [0, 1] → ∆α. So, there is a maximal interval [0, t] (t < 1) such that the
arc β([0, t]) is homotopic to an arc in lα via a homotopy that fixes ∂β and
is invariant on each I -fiber of N(B). Thus, for each β(s) (0 < s ≤ t), there
is a subarc Js of an I -fiber such that ∂Js consists of β(s) and a point in lα.
Note that Js may be degenerate, i.e., Js may be a single point, in which
case β(s) ∈ lα ∩ β. We may also regard J0 as the point β(0). Since [0, t] is
maximal, the arc Jt must contain a vertical arc of ∂vN(B) (otherwise, one
can trivially extend β([0, t]) along β to a longer arc). This implies that there
is an interior point X of Jt such that X ∈ ∂h N(B) ∩ ∂v N(B). We denote the
component of ∂h N(B) containing X by EX and denote the leaf containing
X by lX . Since ∂h N(B) ⊂ µ, EX ⊂ lX . Now, we consider the intersection
of lX and the (singular) triangle ∪s∈[0,t]Js (the three edges of the triangle are
β([0, t]), Jt and an arc in lα). As shown in Fig. 4.1(c), there must be an arc
in lX ∩ (∪s∈[0,t]Js) connecting X to a point β(s) with 0 < s < t. Since every
circle in µ ∩ int(∆α) is of type I , this implies that X lies in a disk of lX
bounded by a type I circle of µ ∩ int(∆α). Since X ∈ ∂EX , EX lies in this
disk of lX bounded by a type I circle of µ ∩ int(∆α), which contradicts our
previous conclusion that each component of ∂h N(B) is a non-disk essential
sub-surface of the corresponding leaf. �	
Remark. Lemma 4.1 is true without the hypothesis that µ is measured.
Suppose µ is an arbitrary lamination fully carried by B. Then by the Reeb
stability theorem, any limiting circle of a spiral in D∩µ cannot be of type I .
So one can proceed as in the proof of Lemma 4.1 except that a slightly more
delicate argument on D ∩ µ is needed in the end.

Definition 4.2. Recall that a vanishing cycle (see [4,12]) in a foliation F
is an curve f0 : S1 → l0, where l0 is a leaf in F , and f0 extends to a map
F : [0, 1] × S1 → M satisfying the following properties.

(1) for any t ∈ [0, 1], the curve ft(S1), defined by ft(x) = F(t, x), is
contained in a leaf lt ,

(2) for any x ∈ S1, the curve t → F(t, x) is transverse to F,
(3) f0 is an essential curve in l0, but ft is null-homotopic in lt for t > 0.

We define a slightly different version of vanishing cycle for laminations.
Let µ be a lamination in M and l0 be a leaf. We call a simple closed
curve f0 : S1 → l0 an embedded vanishing cycle in µ if f0 extends to an
embedding F : [0, 1] × S1 → M satisfying the following properties.

(1) F−1(µ) = C × S1, where C is a closed set of [0, 1], and for any t ∈ C,
the curve ft(S1), defined by ft(x) = F(t, x), is contained in a leaf lt ,

(2) for any x ∈ S1, the curve t → F(t, x) is transverse to µ,
(3) f0 is an essential curve in l0, but there is a sequence of points {tn} in C

such that limn→∞ tn = 0 and ftn(S1) bounds a disk in ltn for all tn .
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Lemma 4.3. Let M be a closed orientable and irreducible 3-manifold, and
µ ⊂ M an exceptional minimal measured lamination. Suppose µ is fully
carried by a branched surface B and B does not carry any 2-sphere. Then,
µ has no embedded vanishing cycle.

Proof. The proof of this lemma is essentially an argument of Novikov.
Novikov showed that [34,4] if a transversely orientable foliation has a van-
ishing cycle, then the foliation contains a Reeb component. Note that the
C2 assumption in Novikov’s original proof is not necessary, see [40] or
Sect. 9.3 of [6]. We will use an adaptation of Novikov’s argument as in the
proof of Lemma 2.8 of [12].

Our proof is based on the proof of Lemma 2.8 of [12] (p. 54). So, before
we proceed, we briefly describe the argument in [12], which shows that
a lamination fully carried by an essential branched surface has no vanishing
cycle. In that proof [12], the lamination λ is fully carried by N(B). Although
the hypothesis of Lemma 2.8 of [12] is that B is an essential branched
surface, the only requirement is that each disk component of ∂h N(B) is
a horizonal boundary component of a D2 × I region in M − int(N(B)). The
first step of the proof in [12] is to consider N̂(B) which is the union of N(B)
and all the D2×I regions of M−int(N(B)). So, ∂h N̂(B) does not contain any
disk component. Let F̂ be the associated (singular) foliation of N̂(B) (F̂ is
obtained by filling the I -bundle regions of N̂(B)−λ). The only singularities
of F̂ are at ∂h N̂(B)∩∂v N̂(B). Then, one simply applies Novikov’s argument
to the (singular) foliation F̂ . The key of the proof in [12] is that when one
extends the vanishing cycle to a map F : (0, 1] × D2 → M as in Novikov’s
argument [34,4], the disk F({t} × D2) (lying in a leaf of F̂ ) does not
contain any component of ∂h N̂(B) (since ∂h N̂(B) has no disk component
and N(B) does not carry any disk of contact). So, the singularities of F̂
never affect Novikov’s argument. Hence, F̂ has a Reeb component. Note
that, by taking a 2-fold cover of N̂(B) if necessary, one can always assume
F̂ is transversely orientable.

Now, we prove Lemma 4.3 using the arguments above. However, since
our lamination µ may be compressible, a disk component of ∂h N(B) may
not correspond to a D2 × I region of M − int(N(B)). Let C be the number
of components of M − int(N(B)) that are not D2 × I regions. We assume
C is minimal among all such measured laminations and branched surfaces
that satisfy the hypotheses of Lemma 4.3 and contain embedded vanishing
cycles.

Suppose γ is an embedded vanishing cycle in µ. So, γ is an essential
simple closed curve in a leaf. There is an embedded vertical annulus A in
N(B) containing γ . Since µ is a measured lamination, µ has no holonomy
and we may assume A∩µ is a union of parallel circles. Moreover, by Defin-
ition 4.2 there is a sequence of circles {γn} in A∩µ such that limn→∞ γn = γ
and each γn bounds a disk in ln , where ln is the leaf of µ containing γn.
Let Dn be the disk bounded by γn in ln and suppose n is sufficiently large.
First note that these Dn’s are all on the same side of A. More precisely,
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for any Dm and Dn (with both m and n sufficiently large), there is a map
φ : D2 × I → M such that φ(∂D2 × I ) ⊂ A and φ(D2 × ∂I ) = Dm ∪ Dn.
This is because if Dm and Dn are on different sides of A, then the union of
Dm ∪ Dn and the sub-annulus of A bounded by γm ∪ γn is a 2-sphere S,
and after a small perturbation, S becomes an immersed 2-sphere carried by
N(B). The canonical cutting and pasting on S can produce an embedded
2-sphere carried by N(B), which contradicts our hypothesis.

Let A′ be the sub-annulus of A between γm and γn. By assuming m and
n to be sufficiently large, we may assume γm and γn are close to γ and hence
we may regard A′ as a vertical annulus in N(B). We will show next that every
circle in A′ ∩ µ bounds a disk in the leaf that contains this circle. We first
consider the generic case: Dm ∩ A′ = ∂Dm = γm and Dn ∩ A′ = ∂Dn = γn.
Since M is irreducible and since m and n are sufficiently large, Dm ∪ A′ ∪ Dn
must be an embedded 2-sphere bounding a 3-ball E = D2 × I , where
D2 × ∂I = Dm ∪ Dn and ∂D2 × I = A′. If E − int(N(B)) consists of
D2 × I regions, then µ∩ E is a union of parallel disks with boundary in A′.
Conversely, if µ ∩ E consists of parallel disks with boundary in A′, then
after some splitting, E − int(N(B)) becomes a union of D2 × I regions.
Recall that we have assumed that C, the number of non-D2 × I regions
of M − int(N(B)), is minimal among all such measured laminations. We
claim that E − int(N(B)) consists of D2 × I regions. Otherwise, µ∩ E must
contain non-disk leaves.

By the local stability theorem, the union of all non-disk leaves of µ ∩ E
form a sub-lamination of µ∩ E, and we denote this sub-lamination of µ∩ E
by λ. So, we can obtain a new measured lamination µ′ by cutting off λ from
µ and then gluing back disks along the boundary circles of λ. The disks that
we glue back are parallel to the disk components of µ∩E, so we may assume
the new lamination µ′ is carried (not fully carried) by N(B). Moreover, µ′
has a transverse measure induced from that of µ. Next, we show that γ is still
an embedded vanishing cycle for µ′. Let l′γ be the leaf of µ′ containing γ .
By the construction, we only need to show that γ is an essential curve in l′γ .
Suppose γ bounds a disk ∆γ in l′γ . As γ is essential in µ but trivial in µ′,
∆γ ∩ E �= ∅. Since limk→∞ γk = γ and λ is a sub-lamination of µ ∩ E, if
k is sufficiently large, Dk ∩ E �= ∅ and Dk ∩ λ �= ∅, where Dk is the disk
bounded by γk in µ as above. This implies that Dk − λ has a disk component
∆ with ∂∆ ⊂ A′. Moreover, after a slight perturbation, the union of ∆∪ Dn
and the sub-annulus of A′ bounded by ∂∆∪∂Dn form an immersed 2-sphere
transverse to the I -fibers. After some cutting and pasting, one can obtain an
embedded 2-sphere carried by B, contradicting our hypothesis. Therefore,
γ is still an embedded vanishing cycle for the new measured lamination µ′.
After splitting N(B) along µ′ ∩ E and taking sub-branched surfaces, each
component of E − int(N(B)) becomes a D2 × I region. This contradicts our
assumption that C is minimal for µ. So, in this generic case, every circle of
A′ ∩ µ bounds a disk in the leaf.

The non-generic case is very similar. If Dm ∩ int(A′) = ∅ but Dn ⊂
int(Dm), then we have a map φ : D2 × I → M such that φ(∂D2 × I ) = A′,
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φ(D2 × {0}) = Dm , φ(D2 × {1}) = Dn, and φ restricted to D2 × (0, 1) is
an embedding (this is a standard picture in Novikov’s argument on Reeb
components, see p. 133 of [4] for a picture). So, we can apply the argument
above to the (half open) 3-ball φ(D2 × (0, 1)) and the proof is the same. If
Dm ∩ int(A′) �= ∅, then we can replace Dn and A′ by a sub-disk of Dm and
a sub-annulus of A′ respectively and return to the case that Dm ∩int(A′) = ∅.
Thus, after choosing a sub-annulus of A, we may assume that γ ⊂ ∂A and
every circle in µ ∩ (A − γ) bounds a disk in the corresponding leaf.

Let Dm , Dn, A′ and E = D2 × I be as above. By the arguments above,
µ∩ E consists of parallel disks. As A′ ⊂ int(N(B)), if the 3-ball E contains
some components of M − N(B), then we can split N(B) in E so that
E − int(N(B)) consists of D2 × I regions. We can perform this splitting
in all possible such 3-balls E, and this is a finite process since |∂h N(B)| is
bounded. Let N̂(B) be the union of N(B) (after the splitting in the 3-balls E
above) and all the D2 × I regions of M − int(N(B)). The remaining proof is
the same as the proof of Lemma 2.8 of [12]. We can extend µ to a (singular)
foliation F̂ in N̂(B). By our construction above, for any disk ∆ (in a leaf)
bounded by a circle of µ∩ A, ∆ does not contain any component of ∂h N̂(B),
and hence ∆ does not meet the singularity of F̂ . So, we can apply Novikov’s
argument to F̂ as in the proof of Lemma 2.8 of [12], and conclude that F̂
contains a Reeb component and hence has non-trivial holonomy. Since F̂
is obtained by filling the I -bundle regions of N̂(B) − µ, this implies that µ
has non-trivial holonomy and is not a measured lamination. �	
Remark 4.4. One can apply Novikov’s argument directly to laminations
without using the (singular) foliation F̂ . Moreover, the assumption that B
does not carry any 2-sphere seems unnecessary. One can prove Lemma 4.3
(without the 2-sphere assumption) using the argument of Imanishi, which
says that any 2-dimensional phenomenon like the Reeb foliation implies
that the foliation/lamination has non-trivial holonomy, see [26] for an inter-
pretation of Imanishi’s argument using branched surfaces.

Lemma 4.5. Let M be a closed orientable and irreducible 3-manifold and
suppose M is not T 3 = S1 × S1 × S1. Let µ ⊂ M be an exceptional minimal
measured lamination with Euler characteristic 0. Suppose µ is fully carried
by a branched surface B, and B does not carry any 2-sphere. Then, there
is a branched surface B′, obtained by splitting B and taking sub-branched
surfaces, such that B′ fully carries µ, the branch locus L ′ of B′ has no
double point, and B′ − L ′ consists of annuli and Möbius bands.

Proof. Suppose every leaf of µ is a plane. After eliminating all the disks of
contact of N(B) that are disjoint from µ, we have that ∂h N(B) consists of
disks. So there is no monogon and µ is an essential lamination. By a theorem
in [9] (see also Proposition 4.2 of [23]), M ∼= T 3.

So, at least one leaf of µ is not a plane. Let γ be an essential simple
closed curve in a non-plane leaf of µ. Then, there is a vertical annulus A
in N(B) containing γ . Since µ is a measured lamination and so has no
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holonomy, we may assume A ∩ µ consists of circles parallel to γ . If µ
contains a plane leaf L , since every leaf of µ is dense, L ∩ A contains an
infinite sequence of circles whose limit is γ . Each circle in L ∩ A bounds
a disk in the plane L , so γ is an embedded vanishing cycle and we get
a contradiction to Lemma 4.3. Thus, µ contains no plane leaf at all.

After some isotopy, we may assume ∂h N(B) ⊂ µ. Since µ contains no
plane leaf, for every component S of ∂h N(B), we can split N(B) along µ
so that S contains an essential curve in the leaf that contains S. If there is
a disk of contact in N(B) disjoint from µ, then we can trivially eliminate
the disk of contact by splitting B. After these splittings, each component
S of ∂h N(B) becomes an essential non-disk sub-surface of the leaf that
contains S. By Lemma 4.1, N(B) does not contain any disk of contact.

Next, we show that each component of ∂h N(B) must be an annulus. By
Proposition 3.2, B fully carries a collection of tori T . After some isotopy and
taking multiple copies of T , we may assume ∂h N(B) ⊂ T . If a component S
of ∂h N(B) is not an annulus, since no component of ∂h N(B) is a disk, there
must be a boundary component of S bounding a disk D in T − int(S), and D
is a disk of contact by definition. Since we have assumed that ∂h N(B) ⊂ µ
after isotopy, if a component of ∂h N(B) is a closed surface, µ must contain
a closed surface, a contradiction to the hypothesis that µ is exceptional
minimal. Thus, ∂h N(B) does not contain a torus and ∂h N(B) must consist
of annuli.

If a leaf of µ has non-zero Euler characteristic, then we can split N(B) by
“blowing air” into N(B) − µ so that a component of ∂h N(B) is an essential
sub-surface of a leaf and has negative Euler characteristic. So, the argument
above implies that each leaf of µ is either an infinite annulus or an infinite
Möbius band.

Let η be an essential simple closed curve in int(∂h N(B)) and let Aη be
a vertical annulus in N(B) containing γ . So, we may assume Aη ∩ µ is
a union of parallel circles. By Lemma 4.3, η is not an embedded vanishing
cycle, hence we can choose the vertical annulus Aη so thin that every circle
of Aη ∩ µ is an essential curve in a leaf of µ. Since every leaf is dense in µ,
each leaf must intersect Aη. Moreover, the limit of each end of any leaf is
a sub-lamination of µ and hence is the whole of µ. So, each end of any leaf
of µ must intersect Aη.

After some splittings, we may also assume |M − N(B)| is minimal
among all such branched surfaces. Let S be a component of ∂h N(B) and lS
be the leaf of µ containing S. We first point out that lS must be an orientable
surface. To see this, for any point x in any leaf l and for any transversal δx
containing x, since every leaf is dense, x is always an accumulation point
in δx ∩ µ. Since M is orientable, if l is a non-orientable surface, x must
be a limit point (of δx ∩ µ) in both components of δx − x. However, if
x ∈ ∂h N(B), x can only be a limit point on one side of δx . So, lS must be
orientable and hence lS is an infinite annulus. Since both ends of lS intersect
Aη and no circle in Aη ∩ lS bounds a disk in lS, there is an annulus in each
component of lS − int(S) connecting ∂S to Aη. Therefore, we can find an
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annulus AS in N(B) − µ, transverse to the I -fibers and with one boundary
circle in Aη and the other boundary circle in a component of ∂vN(B).
Moreover, AS is parallel to a sub-annulus of lS − int(S) above. We can split
N(B) by deleting a fibered neighborhood of AS from N(B). Note that since
we have assumed |M − N(B)| is minimal, the branched surface after this
splitting still fully carries µ and satisfies all the previous properties. Since
both components of lS − int(S) contain such annuli, we can find such an
annulus in N(B) connecting Aη to each component of ∂vN(B). By deleting
a small neighborhood of these annuli from N(B), we can split N(B) into
N(B′) which is a fibered neighborhood of another branched surface B′ and
N(B′) satisfies all the previous properties. Since the splittings are along the
annuli connecting ∂vN(B) to Aη, each component of ∂vN(B′) lies in a small
neighborhood of Aη and is parallel to a sub-annulus of Aη . Thus, after a small
perturbation in a neighborhood of Aη, we may assume π(∂vN(B′)) = L ′
is a collection of disjoint circles in B′, where π : N(B′) → B′ is the map
collapsing each I -fiber to a point. So, the branched surface B′ satisfies all
the requirements in Lemma 4.5. �	

5. Normal tori and 0-efficient triangulations

Let F be an embedded surface in M and suppose M has a triangulation T . We
use T (i) to denote the i-skeleton of T . After some isotopy, we may assume F
does not contain any vertices of the triangulation and F is transverse to T (1)

and T (2). If F is not a normal surface, we can try to normalize F using the
following two types of normal moves. After these normal moves, F consists
of normal surfaces and possibly some trivial 2-spheres in 3-simplices. Note
that if F is incompressible, then the two normal moves are isotopies and
there are no such 2-spheres. We refer to Sect. 3.1 of [16] for more detailed
descriptions.

Operation 1. Suppose F is compressible in a 3-simplex, then there are two
cases. The first case is that, for a 2-simplex ∆, F ∩ ∆ contains circles. Let
c be a circle of F ∩ ∆ innermost in ∆. If c is a trivial circle in F, then
the two disks bounded by c in F and ∆ form a 2-sphere bounding a 3-ball.
So, we can perform an isotopy on F pushing the disk across this 3-ball
and reduce the number of circles in F ∩ ∆. If c is non-trivial in F, the
disk bounded by c in ∆ is a compressing disk for F and we can compress
F along this compressing disk. The latter operation increases the Euler
characteristic of F by 2. The second case is that F ∩ ∆ contains no circle
but F is compressible in the interior of a 3-simplex. Similar to the first case,
we can either compress F in the interior of the 3-simplex increasing the
Euler characteristic, or perform some isotopy reducing the intersection of
F with the 2-skeleton.

Operation 2. This operation is an isotopy on F. For any 3-simplex X, if
F ∩ X is incompressible in X and a component of F ∩ X intersects an edge
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of X in more than one point, then one can find a ∂-compressing disk D ⊂ X
with ∂D consisting of an arc in F and an arc in an edge (technically D is
a ∂-parallel disk in X). We can perform an isotopy by pushing F along D
across this edge. This operation reduces the weight of F by two.

In this section, we will assume the triangulation T is a 0-efficient trian-
gulation. A triangulation of M is said to be 0-efficient if the triangulation has
only one vertex and the only normal 2-sphere in M is the boundary sphere of
a closed neighborhood of this vertex. In [16], Jaco and Rubinstein showed
that, if M is irreducible and not a lens space, then M admits a 0-efficient
triangulation. In fact, given any triangulation of M, there is an algorithm
to collapse this triangulation into a 0-efficient one. One of the most useful
techniques in [16] is the so-called barrier surfaces or barriers. We will
briefly explain a special case of barriers used in our proof, see Sect. 3.2 of
[16] for more details.

Let F be a compact embedded normal surface in M. If we cut M open
along F, we get a manifold with boundary, denoted by M − F , with an
induced cell decomposition. Let S be a properly embedded normal sur-
face in M − F with respect to the induced cell decomposition. F ∪ S is
a 2-complex in M. Now we consider the surface ∂η(F ∪ S) in M, where
η(F ∪ S) is the closure of a small neighborhood of F ∪ S. The surface
∂η(F ∪ S) may not be normal and we can use the operations 1 and 2 to
normalize ∂η(F ∪ S). Then, by [16], F ∪ S forms a “barrier” for these
normalizing operations. More precisely, one can perform operations 1 and
2 on ∂η(F ∪ S) totally in the 3-manifold M − int(η(F ∪ S)) and get a nor-
mal surface (with respect to the triangulation of M) plus possible trivial
2-spheres in some tetrahedra. Note that it is possible that, after these oper-
ations, ∂η(F ∪ S) vanishes, i.e. becomes a collection of trivial 2-spheres in
some tetrahedra.

Since every normal 2-sphere in a 0-efficient triangulation is vertex-
linking, it is easy to use the barrier technique to derive some nice properties
of normal tori with respect to a 0-efficient triangulation. Lemmas 5.1, 5.3
and Corollary 5.2 are well-known to people who are familiar with 0-efficient
triangulations.

Lemma 5.1. Suppose M is irreducible and atoroidal and M is not a lens
space. Let T be a normal torus with respect to a 0-efficient triangulation
of M. Then, we have the following.

(1) T bounds a solid torus in M.
(2) Let N be the solid torus bounded by T . Then, M − int(N) is irreducible

and T is incompressible in M − int(N).

Proof. As M is irreducible and atoroidal, T is compressible and separating.
Let D be a compressing disk for T . Then, we can choose D so that D is
normal with respect to the induced cell decomposition of M − T . Hence,
T ∪ D forms a barrier. Note that ∂η(T ∪ D) has a 2-sphere component S
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and S bounds a 3-ball ES in M. If this 3-ball ES lies in the complement of
T ∪ D, then T bounds a solid torus, otherwise ES contains T and T bounds
a ball with a knotted hole.

Since T ∪ D forms a barrier, we can perform Operations 1 and 2 to
normalize S in the complement of T ∪ D. Note that Operation 2 is an
isotopy. If Operation 1 occurs, since S is a 2-sphere, Operation 1 on S
is also an isotopy. Therefore, we can isotope S in M − T ∪ D either to
a normal 2-sphere or to a 2-sphere in a 3-simplex. Since the only normal
2-sphere is the vertex-linking one and the normal torus T cannot lie in
a small neighborhood of the vertex, T must lie outside the 3-ball bounded
by S. Hence, T must bound a solid torus.

If T is compressible in the complement of this solid torus N, then we
have a compressing disk outside the solid torus. We can use the union of T
and this compressing disk as a barrier and the argument above implies that
T bounds a solid torus on the other side, which means M is a lens space
and contradicts our hypotheses. If M − int(N) is reducible, then there is an
essential normal 2-sphere in M − int(N). Since the only normal 2-sphere
is the vertex-linking one and bounds a 3-ball, we also get a contradiction as
before. �	
Corollary 5.2. Suppose M is a closed, orientable, irreducible and atoroidal
3-manifold and M is not a small Seifert fiber space. Then, M does not contain
any normal projective plane or normal Klein bottle with respect a 0-efficient
triangulation.

Proof. If M contains a normal projective plane P, then a closed neighbor-
hood of P in M, η(P), is a twisted I -bundle over P, and ∂η(P) is a normal
2-sphere. Since the only normal 2-sphere in M is the vertex-linking one,
this implies M is RP3.

If M contains a normal Klein bottle K , then η(K ) is a twisted I -bundle
over K and ∂η(K ) is a normal torus. Since every normal torus bounds
a solid torus in M, M is the union of a solid torus and a twisted I -bundle
over a Klein bottle, which implies that M is a Seifert fiber space. �	
Lemma 5.3. Suppose M is closed, orientable, irreducible and atoroidal
and suppose M is not a small Seifert fiber space. Let T be a normal torus
with respect to a 0-efficient triangulation of M, and let N be the solid torus
bounded by T . Suppose A is an annulus properly embedded in M − int(N)
and ∂A is a pair of essential curves in T . Suppose A is normal with respect
to the induced cell decomposition of M − int(N). Then, the following are
true.

(1) each component of ∂η(N ∪ A) bounds a solid torus in M,
(2) one component of ∂η(N ∪ A) bounds a sold torus in M − int(η(N ∪ A))

and the other component of ∂η(N ∪ A) bounds a solid torus containing
N ∪ A.

(3) If ∂A is a pair of meridian curves for the solid torus N, then A is
∂-parallel in M − int(N).
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Proof. Since ∂A is essential in T , ∂η(N ∪ A) consists of two tori in M − N.
Let T1 be a component of ∂η(N ∪ A). The torus T1 may not be normal, but
T ∪ A forms a barrier and we can perform Operations 1 and 2 to normalize
T1 in M − N ∪ A. During the normalization process, every step is an isotopy
unless in Operation 1, there is a circle in T1 ∩∆ (∆ is a 3-simplex) bounding
a compressing disk D in ∆. If this happens, we compress T1 along D as
in Operation 1 and change T1 into a 2-sphere T ′

1. After the compression,
similar to the proof of Lemma 5.1, we can isotope the 2-sphere T ′

1 either
to a normal 2-sphere or into a 3-simplex. As in the proof of Lemma 5.1,
T ′

1 must bound a 3-ball in M − N ∪ A. Since N and the compressing disk
D are on different sides of T1, similar to the proof of Lemma 5.1, T1 must
bound a solid torus in M − N ∪ A. If the compression operation never
happens, then we can isotope the torus T1 either to a normal torus, in which
case T1 bounds a solid torus by Lemma 5.1, or into a 3-simplex. If T1
can be isotoped into a 3-simplex, then we have a 3-ball containing T1 and
disjoint from N ∪ A. This is impossible because the region between T1 and
N ∪ A is a product. Thus, each torus in ∂η(N ∪ A) must bound a solid torus
in M.

Let T1 and T2 be the two tori in ∂η(N ∪ A), and let E1 and E2 be the
two components of M − int(η(N ∪ A)) bounded by T1 and T2 respectively.
So, ∂Ei = Ti and each Ti bounds a solid torus in M. If both E1 and E2
are solid tori, then M is a union of T ∪ A and 3 solid tori, which implies
that either M is a small Seifert fiber space or M is reducible. Thus, at
lease one Ei is not a solid torus. Suppose E1 is not a solid torus. Since
T1 bounds a solid torus in M, M − int(E1) is a solid torus containing
N ∪ A. Moreover, by Lemma 5.1, M − N is irreducible and hence E1 is
irreducible. Since E1 is not a solid torus and E1 is irreducible, T1 must
be incompressible in E1. We claim that E2 must be a solid torus. Suppose
E2 is not a solid torus either. Then the argument above implies that T2 is
incompressible in E2. Let Di be a meridian disk of the solid torus M −
int(Ei) (i = 1, 2). We first show that at least one of D1 and D2 is properly
embedded in M − int(E1 ∪ E2) after isotopy. Suppose D1 ∩ E2 �= ∅. Since
M and E2 are irreducible, an isotopy can eliminate curves in D1 ∩ T2
that are trivial in T2 and innermost in D1. Since T2 is incompressible in
E2, if D1 ∩ T2 �= ∅ after this isotopy, the subdisk ∆ of D1 bounded by
an innermost circle of D1 ∩ T2 in D1 is a meridian disk of the solid torus
M−int(E2). By choosing D2 to be ∆, we have that D2 is properly embedded
in M − int(E1 ∪ E2) and clearly D2 ∩ T1 = ∅. Now suppose D2 is properly
embedded in M − int(E1 ∪ E2). Since M − int(E2) is a solid torus, by
compressing T2 along D2, we get a 2-sphere S2 bounding a 3-ball and
the 3-ball contains E1. As E1 lies in this 3-ball, this means that the 2-
sphere S2 lies in the solid torus M − int(E1) and hence bounds a 3-ball
in the solid torus M − int(E1). Hence M must be S3, a contradiction.
So exactly one of E1 and E2 is a solid torus and part 2 of the lemma
holds.

Suppose ∂A is a pair of meridian curves for N. By part 2 of the lemma,
∂A bounds an annulus A′ ⊂ T such that A ∪ A′ bounds a solid torus N ′
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in M − int(N). Moreover, each circle in ∂A bounds a meridian disk of N.
Since M is not a lens space and M is irreducible, ∂A must be longitudes for
the solid torus N ′. Thus, A is isotopic to A′ (fixing ∂A) in N ′, and part 3
holds. �	

Let B be a branched surface in M constructed by gluing normal disks
together near the 2-skeleton, as in [8] and Sect. 2. By this construction, every
surface carried by B is a normal surface. Let T be a normal surface fully
carried by B, and we suppose T ⊂ N(B) and ∂h N(B) ⊂ T . So, ∂v N(B) is
a union of annuli properly embedded in M − T . By the construction of B,
after a small perturbation and eliminating disks of contact, we may assume
∂vN(B) is normal with respect to the induced cell decomposition of M − T .

Lemma 5.4. Let M be a closed orientable irreducible and atoroidal 3-
manifold with a 0-efficient triangulation. Suppose M is not a Seifert fiber
space. Let B be a branched surface as above, i.e., B is obtained by gluing
together normal disks, B fully carries a normal surface T with ∂h N(B) ⊂ T ,
and ∂vN(B) is normal with respect to the induced cell decomposition of
M − T . Suppose the branch locus L of B does not have any double point,
B−L consists of annuli and Möbius bands, and every component of ∂h N(B)
is an annulus. Then,

(1) ∂h N(B) is incompressible in M − int(N(B)),
(2) some component of ∂N(B) bounds a solid torus in M that contains

N(B),
(3) M − int(N(B)) contains a monogon × S1 region.

Proof. By the hypotheses, any closed surface carried by B is a normal
surface with Euler characteristic 0. By Corollary 5.2, M does not contain
any normal Klein bottle. So, every closed surface carried by B consists of
normal tori. Let T = ∪m

i=1Ti be a collection of disjoint normal tori fully
carried by N(B), where each Ti is a component of T , and we may assume
∂h N(B) ⊂ T . Hence ∂vN(B) is a collection of annuli properly embedded
in M − T , whose boundary consists of essential curves in T . Moreover,
∂vN(B) is normal with respect to the induced cell decomposition of M − T .

By the hypotheses, every component of ∂N(B) is a torus. Similar to the
proof of Lemma 5.3, T ∪ ∂vN(B) form a barrier, and each component of
∂N(B) bounds a solid torus in M. Let E1, . . . , En be the components of
M − int(N(B)). Each ∂Ei bounds a solid torus in M.

Suppose Ei is not a solid torus, then M − int(Ei) is a solid torus that
contains N(B) and T . Moreover, by the proof of Lemma 5.3, Ei is irre-
ducible. Since Ei is not a solid torus, this implies that ∂Ei is incompressible
in Ei . Thus, similar to the proof of Lemma 5.3, for any two components
Ei and E j , at least one must be a solid torus. This implies that at most one
component of M − int(N(B)) is not a solid torus.

Next, we show that ∂h N(B) is incompressible in M − int(N(B)). The
basic idea of the proof is that, if ∂h N(B) is compressible in M − int(N(B)),
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one can construct a solid torus bounded by a new normal torus carried by
N(B), and one can use the compressing disk of M − int(N(B)) to obtain
a compressing disk of this new normal torus outside this solid torus, which
contradicts part 2 of Lemma 5.1. This solid torus is constructed by joining
two monogon × S1 regions of M − int(N(B)).

Let Ni be the solid torus bounded by Ti . Suppose ∂h N(B) is compressible
in M − int(N(B)) and let D be a compressing disk. We may suppose
∂D ⊂ ∂h N(B) lies in T1 and by Lemma 5.1, D is a meridian disk of the
solid torus N1 bounded by T1.

Let H = N(B) − T . Since ∂h N(B) ⊂ T , H is a collection of annuli × I
and twisted I -bundles over Möbius bands. ∂H consists of two parts, the
horizontal boundary ∂H ∩ T and the vertical boundary ∂H ∩ ∂v N(B). We
denote the horizontal boundary of H by ∂h H and the vertical boundary of
H by ∂v H (∂v H = ∂vN(B)). By the hypotheses, ∂h H consists of essential
annuli in T . Since no component of ∂h N(B) is a torus, both N1 and M −
int(N1) contain some components of H .

So, there must be a component of ∂vN(B), say V , properly embedded in
N1. By our assumptions, if V is not ∂-parallel in N1, then V can be obtained
by attaching a knotted tube to a pair of compressing disks of N1. This
implies that a component of N1 − V , say Σ, is a 3-ball with a knotted hole.
So, ∂Σ is a torus incompressible in Σ. Since T1 ∪ V forms a barrier, we can
use Operations 1 and 2 to isotope ∂Σ into a normal torus in Σ. However, by
Lemma 5.1, M−int(Σ) must be a solid torus. Since Σ is a ball with a knotted
hole, this implies that M is S3. Therefore, each component of ∂vN(B) in N1
must be ∂-parallel in N1. This implies that there must be a monogon × S1

region of M − int(N(B)) in N1. We denote this monogon × S1 region
by J1. So, ∂J1 consists of an annulus in T1 and a component of ∂vN(B), and
J1 ∩ D = ∅ (D is the compressing disk above).

Now, we consider the components of H that lie in M − int(N1). The
simplest case is that there is a component of H , say H1, in M − int(N1)
with its horizontal boundary totally in T1. By the construction, the vertical
boundary of H1 consists of annuli properly embedded in M − int(N1). Since
the branch locus L has no double point and ∂h N(B) is compressible in N1,
the boundary curves of ∂v H1 are meridian curves in ∂N1. By part 3 of
Lemma 5.3, each annulus in ∂v H1 is ∂-parallel in M − int(N1). So, there is
also a monogon × S1 region J2 of M − int(N(B)) in M − int(N1) with ∂J2
consisting of an annulus in T1 and a component of ∂vN(B). We denote the
component of ∂vN(B) in ∂Ji by Vi (i = 1, 2). Within a small neighborhood
of T1 in N(B), we can find an annulus A ⊂ N(B) connecting V1 to V2 and
transverse to the I -fibers of N(B). The union of ∂J1 − V1, ∂J2 − V2 and two
parallel copies of A form a torus TJ carried by N(B), and TJ bounds a solid
torus NJ which is the union of J1, J2 and a product neighborhood of A. By
the hypothesis on B, TJ is a normal torus. However, since the boundary of
∂v H1 consists of meridian curves of ∂N1, a meridian disk of N1 gives rise to
a compressing disk for the torus TJ in M − int(NJ ). This contradicts part 2
of Lemma 5.1.
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Suppose there is a component H2 of H with one horizontal boundary
component in T1 and the other horizontal boundary component in T2. Then,
by our assumption on the meridian curves, the union of a vertical annulus of
H2 and a meridian disk of N1 form a compressing disk for T2. By part 2 of
Lemma 5.1, we must have N1 ⊂ N2. Suppose N1 ⊂ · · · ⊂ Nk are a maximal
collection of nested solid tori, such that there is a component of H between
each pair of tori Ti ∪ Ti+1, same as the H2 above. Since k is maximal, there
must be a component of H in M − int(Nk) with horizonal boundary totally
in Tk. As before, there is a monogon × S1 region J2 of M − int(N(B)) in
M − int(Nk) with ∂J2 consisting of an annulus in Tk and a component of
∂vN(B). By assembling annuli in the Ti’s (i = 1, . . . , k) and annuli in those
components of H between the tori Ti ∪ Ti+1, we can construct an annulus
A ⊂ N(B), such that A connects J1 to J2 as before and A is transverse to
the I -fibers of N(B). Similarly, we can form a torus TJ bounding a solid
torus NJ , and NJ is the union of J1, J2 and a product neighborhood of A.
Moreover, a meridian disk of N1 gives rise to a compressing disk for TJ
in M − int(NJ ), and we get a contradiction to part 2 of Lemma 5.1. This
proves that ∂h N(B) is incompressible in M − int(N(B)).

By the hypotheses, N(B) is a Seifert fiber space, and the Seifert fibration
restricted to each annulus ∂h N(B) or ∂vN(B) is the standard foliation by
circles. If every component of M − int(N(B)) is a solid torus, then since
∂h N(B) is incompressible in M − int(N(B)), M is a Seifert fiber space.
Therefore, by the conclusion before, exactly one component Ei of M −
int(N(B)) is not a solid torus, and M − int(Ei) is a solid torus containing
N(B).

Let N1 be an innermost solid torus. By the argument before, each com-
ponent of ∂vN(B) ∩ N1 is ∂-parallel in N1. This implies that there is a
monogon × S1 region in N1, and part 3 of the lemma holds. �	

6. Splitting branched surfaces, the torus case

A main technical part of this paper is to show that, if a branched surface B
carries a sequence of Heegaard surfaces {Sn} and a measured lamination µ
with χ(µ) = 0, then one can split B into a collection of branched surfaces,
such that each Sn is carried by a branched surface in this collection and no
branched surface in this collection carries µ. In this section, we consider
the case that µ is a torus, and we prove the case that µ is an exceptional
minimal lamination in the next section. The goal of this section is to prove
Lemma 6.4.

Let B be a branched surface carrying a sequence of closed orientable
surfaces {Sn}. Suppose µ is a lamination carried (but may not be fully
carried) by B. By Sect. 2, there is a sub-branched surface of B, denoted by
Bµ, fully carrying µ. We may consider N(Bµ) ⊂ N(B) with compatible
I -fiber structure. Let D ⊂ N(Bµ) ⊂ N(B) be a disk transverse to the
I -fibers. We call D a simple splitting disk for µ if D satisfies the following
conditions.
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(1) Each I -fiber of N(B) intersects D in at most one point.
(2) D ∩ µ = ∅.
(3) For any I -fiber K that intersects D, both components of K − D inter-

sect µ.

Suppose D is a simple splitting disk. Let N(B′
µ) and N(B′) be the manifold

obtained by eliminating a small neighborhood of D from N(Bµ) and N(B)
respectively. So, we may consider N(B′

µ) and N(B′) as fibered neighbor-
hoods of branched surfaces B′

µ and B′ respectively. B′
µ and B′ are called the

branched surfaces obtained by splitting along D. By our assumptions on D,
B′

µ is the sub-branched surface of B′ that fully carries µ. It is possible that
some surfaces in {Sn} are not carried by B′ anymore. Nonetheless, we have
the following lemma.

Recall that if µ ⊂ N(B) is a lamination carried by B, and B′ is obtained
by splitting B, then we may assume N(B′) ⊂ N(B) and we say that µ
is carried by B′ if µ ⊂ N(B′) after some B-isotopy (see Sect. 2 for the
definition of B-isotopy).

Lemma 6.1. Let B, µ, B′, D and {Sn} be as above. There are a finite
collection of branched surfaces, obtained by splitting B, such that

(1) each Sn is carried by a branched surface in this collection,
(2) B′ is in the collection,
(3) if another branched surface B′′ in this collection carries µ, then B′ is

a sub-branched surface of B′′. In particular, B′ and B′′ have the same
sub-branched surface that fully carries µ.

Proof. Let E be the union of I -fibers of N(B) that intersect D. So, E =
π−1(π(D)), where π : N(B) → B is the collapsing map. Since each I -fiber
of N(B) intersects D in at most one point, E is homeomorphic to a 3-ball
D2 × I . After some small perturbation, we may simply identify E to D2 × I
with each I -fiber of E coming from an I -fiber of N(B).

If B′ carries every surface in {Sn}, then there is nothing to prove. Suppose
Sn is not carried by B′. Then Sn ∩ D �= ∅ under any B-isotopy. If Sn ∩µ = ∅
in N(B), then by adding some branch sectors to B′, we can construct
a branched surface B′′ that carries Sn, and B′′ satisfies part 3 of the lemma
(this construction is similar to Fig. 2.2, where one can obtain τ1 by adding
a branch sector to τ2). Moreover, B′′ can also be obtained by splitting B.
Since D is compact, there are only finitely many ways to add such branch
sectors. Hence, there are only finitely many such B′′.

Next, we will assume Sn ∩µ �= ∅ under any B-isotopy. Sn ∩ E is a union
of compact surfaces transverse to the I -fibers and each component of Sn ∩ E
is B-isotopic to a sub-surface of D. Let P be a component of Sn ∩ E such
that P ∩ µ �= ∅ under any B-isotopy. We may assume P intersects both
components of D2 × ∂I , where D2 × I = E as above. Since Sn ∩ µ �= ∅
under any B-isotopy, there is a relatively short arc α ⊂ P with endpoints
in different components of D2 × ∂I , and after slightly extending α in Sn,
we may assume α ∩ µ �= ∅ under any B-isotopy. So, by deleting a small
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neighborhood of α from N(B), we can split B into a new branched surface
B1. This splitting is similar to the splitting from τ to τ1 in Fig. 2.2. By
the construction, B1 carries Sn, but since α ∩ µ �= ∅ under any B-isotopy,
B1 does not carry µ. Since D is fixed, up to B-isotopy, there are only
finitely many such compact surfaces Sn ∩ E, and there are only finitely
many different splittings like this. Hence, we can perform such splittings
on B in a neighborhood of E and obtain finitely many branched surfaces
B1, . . . , Bk, such that no Bi carries µ. These Bi’s plus the branched surfaces
B′′ above are the collection of branched surfaces satisfying the conditions
in the lemma. �	

Note that any splitting along µ can be decomposed as a sequence of
successive splittings along simple splitting disks. Hence, we can apply
Lemma 6.1 at each step and obtain a collection of branched surfaces with
similar properties.

Lemma 6.2. Let B be a branched surface in M, and T a compact orientable
surface carried by N(B). Suppose T is either a closed surface or a surface
whose boundary lies in ∂vN(B). Then, there is a finite collection of branched
surfaces B1, . . . , Bk obtained by splitting B, such that

(1) if Bi still carries T , then each I-fiber of N(Bi) intersects T in at most
one point,

(2) any closed surface carried by B is carried by some Bi.

Proof. If every I -fiber of N(B) intersects T in at most one point, then there
is nothing to prove. Let m (m > 1) be the maximal number of points that
an I -fiber of N(B) intersects T , and let Im be the union of those I -fibers of
N(B) that intersect T in m points. Since m is maximal, Im is an I -bundle
over a compact surface Fm ⊂ N(B) and each I -fiber of N(B) intersects
Fm in at most one point. After “blowing air” into N(B) if necessary, we
may assume Fm is not a closed surface. Moreover, since m is maximal,
∂Fm ⊂ π−1(L), where L is the branch locus of B and π : N(B) → B
is the collapsing map, and the induced branch direction at ∂Fm points
into Fm .

Note that if Fm is non-orientable, Im is a twisted I -bundle over Fm . Since
both T and M are orientable, no matter whether Fm is orientable or not,
we may assume that Fm ∩ T = ∅ and for any I -fiber K that intersects Fm ,
both components of K − Fm intersect T . Suppose a component of Fm is
not a disk, then let α be a properly embedded essential arc in Fm . We can
split B in a small neighborhood of α, as described in Sect. 2 and shown
in Fig. 2.2, and obtain a finite collection of branched surfaces with the
following properties.

(1) Any closed surface carried by B is still carried by a branched surface
in this collection.

(2) Suppose T is carried by a branched surface B′ in this collection. Let I ′
m

be the union of I -fibers of N(B′) that intersect T in m points, hence I ′
m
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is an I -bundle over a compact surface F ′
m . Then, F ′

m is homeomorphic
to the surface obtained by cutting Fm open along α.

Thus, after a finite number of splittings, we may assume Fm is a col-
lection of disks. Now, similar to the splittings in the proof of Lemma 6.1,
we can split the branched surface in a neighborhood of each disk com-
ponent of Fm . Since each I -fiber intersects Fm in at most one point, such
splittings take place in disjoint 3-balls. So, after these splittings, we get
a collection of branched surfaces that satisfy part 2 of this lemma, and
if T is still carried by a branched surface Bi in this collection, then the
maximal number of points that an I -fiber of N(Bi) intersects T is smaller
than m. Therefore, we can apply these splittings to each branched surface
in this collection, and eventually get m = 1 for each branched surface that
carries T . �	

Now, we consider a torus T carried by a branched surface B in M.

Lemma 6.3. Let B be a branched surface in M and T ⊂ N(B) an embedded
torus carried by N(B). Suppose each I-fiber intersects T in at most one
point and T bounds a solid torus in M. Let S ⊂ N(B) be a closed orientable
surface fully carried by B and S ∩ T �= ∅ under any B-isotopy. Then, there
are a surface S′, a number σ , and an arc α ⊂ S′ such that

(1) S′ is carried by B and is isotopic to S in M,
(2) length(α) < σ and σ depends only on B and T , not on S,
(3) α ∩ T �= ∅ under any B-isotopy.

Proof. Let E be the union of the I -fibers of N(B) that intersect T . Since each
I -fiber intersects T in at most one point, E is homeomorphic to an I -bundle
T 2 × I . After some perturbation at T 2 × ∂I , we may assume the I -fibers
of E = T 2 × I are from the I -fibers of N(B) and T = T 2 × {1/2} ⊂ E.
S ∩ E is a union of compact orientable surfaces properly embedded in E
and transverse to the I -fibers.

Let T0 and T1 be the two components of T 2 × ∂I . If the boundary of
every component of S ∩ E lies in the same component of T 2 ×∂I , then after
some B-isotopy, T is disjoint from S, which contradicts our hypothesis. So,
there must be a component of S ∩ E, say P, intersecting both T0 and T1.

Suppose a component c of ∂P is a trivial circle in Ti and let ∆c be the
disk in Ti bounded by c. We say the circle c is of type I , if (after smoothing
out the corner) P ∪∆c is a surface transverse to the I -fibers of E, otherwise,
c is of type II . For each innermost trivial circle c in ∂P ∩ Ti of type I ,
we can glue the disk ∆c to P and then push (a neighborhood of) the disk
into the interior of T 2 × I . This operation yields a new surface transverse
to the I -fibers of T 2 × I . We can keep performing such operations on the
resulting surface and eventually get a surface P̂ such that ∂ P̂ contains no
trivial circle of type I . P̂ is a connected compact surface properly embedded
in T 2 × I and transverse to the I -fibers. We have the following 4 cases to
consider.
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Case 1. ∂ P̂ contains a trivial circle in Ti .
Let c be an innermost trivial circle of ∂ P̂ ∩ Ti , and c bounds a disk ∆c
in Ti . By the assumptions on P̂, c is of type II . Now, we cut E = T 2 × I
open along P̂ and obtain a manifold N which is the closure (under path
metric) of E − P̂. Since P̂ is transverse to the I -fibers, we may con-
sider N as an induced I -bundle with its vertical boundary pinched into
circles/cusps. Let N1 be the component of N containing ∆c. Since c is of
type II , ∆c must be a component of the horizontal boundary of the pinched
I -bundle N1. Thus, N1 is a product D2 × I with vertical boundary ∂D2 × I
pinched to a circle. As P̂ is connected, P̂ must be a disk B-isotopic to
∆c ⊂ Ti .

Since P̂ is obtained by gluing disks to P, P must be a planar surface B-
isotopic to a sub-surface of T . Moreover, by our assumptions on P, ∂P has
components in both T0 and T1. Thus, there is an arc α properly embedded
in P connecting a component of ∂P ∩ T0 to a component of ∂P ∩ T1. Since
P is B-isotopic to a sub-surface of T , we can choose α so that length(α)
is bounded from above by a number σ that depends only on T and B, not
on S.

Case 2. ∂ P̂ = ∅.
Since P̂ is transverse to I -fibers, this implies that P̂ is a torus B-isotopic
to T . Since P̂ is obtained by gluing disks to P, P is B-isotopic to a sub-
surface of T . Since ∂P has components in both T0 and T1, as in case 1, we
can find an arc α ⊂ P connecting a component of ∂P ∩ T0 to a component
of ∂P ∩ T1, and the length of α is bounded by a number σ that does not
depend on S.

Case 3. ∂ P̂ contains no trivial circle and ∂ P̂ ⊂ T0.
In this case, ∂ P̂ consists of parallel essential simple closed curves in the
torus T0. As in case 1, we cut E = T 2 × I open along P̂ and obtained
a pinched I -bundle N. Since ∂ P̂ ⊂ T0, N has a component N1 con-
taining T1. As ∂ P̂ ⊂ T0, T1 is a component of the horizontal boundary
of N1. Hence, P̂ is B-isotopic to a sub-surface of T1. Moreover, since
P̂ is connected and ∂ P̂ contains no trivial circle, P̂ is an annulus with
∂ P̂ ⊂ T0. Since P̂ is obtained by gluing disks to P, P is a planar sur-
face B-isotopic to a sub-surface of T . As in case 1, we can find an arc
α ⊂ P connecting a component of ∂P ∩ T0 to a component of ∂P ∩ T1,
and the length of α is bounded by a number σ that does not depend
on S.

Case 4. ∂ P̂ contains no trivial circle and ∂ P̂ has components in both T0
and T1.
As before, let N be the manifold obtained by cutting E = T 2 × I open
along P̂, and N is a pinched I -bundle with the bundle structure induced
from that of T 2 × I . The two sides of P̂ correspond to two sub-surfaces
P̂+ and P̂− in the horizontal boundary of N. As ∂ P̂ contains no triv-
ial circle, ∂ P̂+ and ∂ P̂− does not bound disks in the horizontal bound-
ary of N. So, P̂+ and P̂− are π1-injective in N, which implies that P̂
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is incompressible and π1-injective in E = T 2 × I . So, π1(P̂) is a sub-
group of Z ⊕ Z. By the assumption on P̂ in this case, P̂ must be an
annulus with one boundary circle in T0 and the other boundary circle
in T1.

If the distance (in P̂) between the two components of ∂ P̂ is large, then
the annulus P̂ wraps around T many times. Since P̂ is obtained by gluing
disks to P, either there is a relatively short arc α properly embedded in P
connecting ∂P ∩ T0 to ∂P ∩ T1, or P contains a sub-surface which is a long
annulus wrapping around T many times. In the latter case, we can perform
a Dehn twist in T 2 × I to unwrap P̂ and P. Since T bounds a solid torus
in M, a Dehn twist around T is an isotopy in M. Therefore, after a Dehn
twist in T 2 × I , we get a surface S′, which is isotopic to S in M and also
fully carried by B, such that there is an arc α connecting S′ ∩ T0 to S′ ∩ T1
and length(α) is less than a fixed number σ that does not depend on S
or S′.

After slightly extending such arcs α in S or S′, we have α∩ T �= ∅ under
any B-isotopy. �	
Lemma 6.4. Let B be a branched surface in M, T ⊂ N(B) an embedded
torus carried by N(B), and suppose T bounds a solid torus in M. Let {Sn}
be a sequence of closed orientable surfaces carried by B and with genus
at least 2. Then, there is a finite collection of branched surfaces, obtained
by splitting B and then taking sub-branched surfaces, with the following
properties.

(1) No branched surface in this collection carries T .
(2) For each Sn, there is a surface S′

n isotopic to Sn in M and fully carried
by a branched surface in this collection.

Proof. This lemma is an easy corollary of Lemmas 6.2 and 6.3. If there is
an I -fiber of N(B) that intersects T in more than one point, by Lemma 6.2,
we can split B into a finite collection of branched surfaces B1, . . . , Bm, such
that any surface carried by B is carried by some Bi, and if Bi carries T , each
I -fiber of N(Bi) intersects T in at most one point. Moreover, after taking
sub-branched surfaces of each Bi, we may also assume that each Sn is fully
carried by some Bi.

First note that if a branched surface B fully carries Sn then no component
of ∂h N(B) can be a torus. This is because if B fully carries Sn, Sn intersects
every I -fiber of N(B) and hence any component of ∂h N(B) is isotopic to
a subsurface of Sn. Thus if ∂h N(B) has a torus component then Sn must be
a torus, contradicting that Sn has genus at least two.

Let Bi be a branched surface in this collection that carries T and fully
carries Sn. If Sn ∩ T = ∅ in N(Bi), then we cut N(Bi) open along T
and obtain N(Bi) − T which carries both T and Sn. However, a horizontal
boundary component of N(Bi) − T is a torus parallel to T and the argument
above implies that N(Bi) − T dose not fully carry Sn. So, after taking a sub-
branched surface of π(N(Bi) − T ) (where π is the map collapsing every
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I -fiber of N(Bi) − T to a point), we get a branched surface B′
i that fully

carries Sn. Note that the operation of taking a sub-branched surface destroys
the torus components of the horizontal boundary that come from cutting
N(Bi) along T . So the new branched surface B′

i does no carry T . A branched
surface has only finitely many sub-branched surfaces. Thus, after these
operations, we may assume each Bi has the property that Sn ∩ T �= ∅ under
any Bi-isotopy, if Bi carries T and fully carries Sn. Now, by Lemma 6.3,
for each surface Sn fully carried by Bi , we can find a surface S′

n and an arc
α ⊂ S′

n, such that S′
n is isotopic to Sn in M, S′

n is also fully carried by B,
α ∩ T �= ∅ under any Bi-isotopy, and length(α) is bounded from above by
a fixed number σ depending only on T and Bi.

Then, similar to the proof of Lemma 6.1, we split N(Bi) in a small
neighborhood of α, as the splitting from τ to τ1 in Fig. 2.2. Since α ⊂ S′

n
and α ∩ T �= ∅ under any Bi-isotopy, we may perform the splitting so that
the branched surface after this splitting still carries S′

n but does not carry T .
We may assume π(α) is transverse to the branch locus. Since T is fixed

and the length of α is bounded by a number σ which depends only on Bi
and T , there are only a finite number of different such splittings along arcs
like α. Thus, after performing a finite number of splittings on Bi , we get
a finite collection of branched surfaces with the following properties.

(1) No branched surface in this collection carries T .
(2) For any surface Sn carried by Bi, there is a surface S′

n that is isotopic to
Sn in M and carried by Bi.

After performing these splittings on each Bi and taking sub-branched
surfaces if necessary, we get a collection of branched surfaces satisfying the
properties in the lemma. �	

7. Splitting branched surfaces, the lamination case

Suppose M is a closed, orientable, irreducible and atoroidal 3-manifold,
and M is not a Seifert fiber space. By [16], we may assume M has
a 0-efficient triangulation. By [36,41], every strongly irreducible Hee-
gaard surface is isotopic to an almost normal surface with respect to the
0-efficient triangulation. As in Sect. 2 and Proposition 2.5, we can construct
a finite collection of branched surfaces by gluing together normal disks and
almost normal pieces, and each strongly irreducible Heegaard surface is
fully carried by a branched surface in this collection. Since the only nor-
mal 2-sphere is the vertex-linking one, after taking sub-branched surfaces,
we may assume no branched surface in this collection carries any normal
2-sphere.

Let B be a branched surface in this collection. Since B fully carries an
almost normal surface, at most one branch sector of B contains an almost
normal piece. Let b be the branched sector of B that contains the almost
normal piece. As in Sect. 2, BN = B − int(b) is a sub-branched surface
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of B, which is called the normal part of B. Clearly, every surface carried by
BN is a normal surface, and BN does not carry any 2-sphere.

Lemma 7.1. Let B and BN be the branched surface constructed above,
and let {Sn} be a sequence of strongly irreducible Heegaard surfaces fully
carried by B. Let µ be an exceptional minimal measured lamination carried
by BN with χ(µ) = 0. Then, B can be split into a finite collection of branched
surfaces with the following properties.

(1) Up to isotopy, each Sn is carried by a branched surface in this collection.
(2) No branched surface in this collection carries µ.

Proof. Let Bµ be the sub-branched surface of B that fully carries µ. So, Bµ

is also a sub-branched surface of BN . Since BN does not carry any 2-sphere,
Bµ does not carry any 2-sphere either. Moreover, every torus T carried by
Bµ is a normal torus, and by Lemma 5.1, T bounds a solid torus in M.

Next, we perform some splittings on Bµ. By Lemma 4.5, after some
splittings, we have the following.

Property A: the branch locus Lµ of Bµ has no double point,
Property B: Bµ − Lµ consists of annuli and Möbius bands.

Note that any splitting on a branched surface can be divided into a sequence
of successive splittings along simple splitting disks (see Sect. 6 for defin-
ition). By Lemma 6.1, we can perform splittings on B and Bµ and obtain
a finite collection of branched surfaces, such that

(1) each surface in {Sn} is carried by a branched surface in this collection,
(2) if a branched surface B′ in this collection carries µ, then Bµ, the sub-

branched surface of B′ fully carrying µ, satisfies properties A and B
above.

To simplify notation, we still use B to denote a branched surface in
this collection that carries µ, use Bµ to denote the sub-branched surface
of B fully carrying µ, and assume Bµ satisfies properties A and B above.
Moreover, as in the proof of Lemma 4.5, we may assume the number
of components of M − N(Bµ) is minimal among branched surfaces fully
carrying µ. After some isotopy, we can also assume ∂h N(Bµ) ⊂ µ.

Since Bµ is a sub-branched surface of B, we may also consider B as
a branched surface obtained by adding some branch sectors to Bµ. Next, we
will fix Bµ and split B near Bµ.

We first analyze how the branch sectors of B − Bµ are added to Bµ at the
cusps of Bµ. Let cx be a circle in ∂h N(Bµ) parallel and close to a boundary
circle of ∂h N(Bµ). Since the branch locus of Bµ contains no double point,
π(cx) is a circle parallel and close to a component of the branch locus of Bµ.
To simplify notation, we use lx to denote both the component of the branch
locus and the corresponding cusp. The union of the I -fibers of N(Bµ) that
intersect cx is a vertical annulus Ax , and Ax ∩µ is a union of parallel circles.
By assuming N(Bµ) ⊂ N(B) as before, we may consider Ax as a vertical
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Fig. 7.1

annulus in N(B). Let Âx be the union of I -fibers of N(B) that intersect Ax .
After enlarging Âx a little, we may consider Âx as a fibered neighborhood
of a train track τx which consists of the circle π(cx) and some “tails” along
the circle, as the top train track in Fig. 7.1. Note that τx can be regard as the
“spine” of a small neighborhood of π(cx) in B. If Sn is fully carried by B,
then Sn ∩ Âx is a union of arcs and/or circles transverse to the I -fibers. We
have 3 cases.

Case 1 is that Sn ∩ Âx contains a circle. Case 2 is that Sn ∩ Âx contains
a spiral wrapping around Âx more than twice. Case 3 is that Sn ∩ Âx contains
no circle and the length of every arc in Sn ∩ Âx is relatively short (compared
with the length of the circle π(cx) in the train track).

Now, we split Âx along Sn ∩ Âx . In the first case, we can split Âx
along some relatively short arcs, as shown in splitting 1 of Fig. 7.1, and
get a vertical annulus whose intersection with Sn consists of circles. In
the second case, we can split Âx along relatively short arcs, as shown in
splitting 2 of Fig. 7.1, and get a fibered neighborhood of a train track whose
intersection with Sn consists of only spirals. The train track in the second
case consists of a circle and some “tails”, and on each side of the circle, the
cusps of the “tails” have the same direction. In the third case, as shown in
splitting 3 of Fig. 7.1, the splitting along a short arc will destroy the annulus
Ax and the circle π(cx) = π(Ax).

Now, we consider the bigger 3-dimensional pictures of the splittings
above. The third case is simple. In the third case, similar to the splittings
in the poof of Lemma 6.1, the branched surface after the splitting does not
carry µ anymore. Next, we will focus on the first two cases.

For the first two cases, since cx lies in a small neighborhood of a boundary
circle of ∂h N(Bµ), we may assume the (2-dimensional) splittings occur in
a small neighborhood of the cusp, and we perform some splittings and
pinchings on B accordingly, as shown in Fig. 7.2(a). Although both local
splittings in Fig. 7.2(a) may happen in the two cases, the basic picture for
the splittings in case 1 is the splitting 1 in Fig. 7.2(a), and the basic picture
for the splittings in case 2 is the splitting 2 in Fig. 7.2(a).
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Fig. 7.2

To simplify notation, we still use B to denote the branched surface after
the splittings above. In the first two cases, Bµ is still a sub-branched surface
of B after the splittings. In case 1, no branch sector of B − Bµ intersects the
cusp lx after the splittings, in other words, the cusp lx for Bµ is a cusp for B
after the splitting. In case 2, as shown in Fig. 7.2(b), the branch sectors of
B − Bµ have the coherent direction along the cusp lx after the splittings.

Next, we show that the second case cannot happen. To prove this, we
first show that the second case cannot happen at the cusp of a monogon × S1

region of M − int(N(Bµ)). By Lemma 5.4, there is always a monogon × S1

region in M − int(N(Bµ)). Let D be a monogon disk properly embedded in
M − int(N(Bµ)) with ∂D = α ∪ β, where β ⊂ ∂vN(Bµ) is a vertical arc in
∂vN(Bµ) and α ⊂ ∂h N(Bµ). We can use D×S1 to denote the monogon×S1

region of M − int(N(Bµ)). So, β × S1 is a component of ∂vN(Bµ). As
∂h N(Bµ) ⊂ µ, α × S1 lies in a leaf l of µ. As in the proof of Lemma 4.5,
l is an infinite annulus. Since the number of components of M − N(Bµ) is
minimal, l is the boundary (under path metric) of a component of M − µ
which is the product of S1 and an end-compressing disk (i.e. a monogon
with an infinitely long tail, see p. 45 of [12]).

Suppose we are in case 2 at the cusp of the monogon × S1 region
D × S1, and suppose the branch sectors of B − Bµ are coherent along this
cusp β × S1, as shown in Fig. 7.2(b). For any surface Sn fully carried by B,
we can regard Sn ∩ (D × S1) as a compact surface carried by those branch
sectors of B − Bµ in this monogon × S1 region. Let Cn be a component of
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Fig. 7.3

Sn∩(D×S1) whose boundary intersects the cusp β×S1 . The union of Cn and
Bµ naturally form a sub-branched surface of B. Let c be a boundary circle
of Cn that intersects the cusp of this monogon × S1 region. So, c is a circle
lying in the branch locus of B and has an induced cusp/branch direction.
Let γc be an arc in c with both endpoints in the cusp lx = π(β × S1), see the
two dashed arcs in Fig. 7.2(b) for pictures of γc. We may regard γc as an arc
properly embedded in the annulus α × S1 ⊂ ∂h N(Bµ) and γc has a normal
direction induced from the cusp direction at γc. Since we are in case 2 and
the branch sectors of B − Bµ are coherent along this cusp lx , as shown in
Fig. 7.2(b), the cusp directions at ∂γc cannot be extended to a compatible
cusp direction along γc. Hence, the second case can never happen near the
cusp of a monogon × S1 region. In other words, after some splittings as in
Fig. 7.2(a), either B − Bµ has no branch sector intersecting the cusp of any
monogon × S1 region of M − Bµ, or the branched surface after the splitting
does not carry µ anymore.

Now, we consider the cusp of any component lx of the branch locus of
Bµ, and suppose we are in case 2 at this cusp. So, we may assume the branch
sectors of B − Bµ at the cusp have coherent directions as in Fig. 7.2(b). Let
A′

x = π−1(lx), where π : N(Bµ) → Bµ is the collapsing map. Since the
branch locus of Bµ has no double points and µ is a measured lamination,
A′

x ∩ µ is a union of circles. Since every leaf of µ is dense, as in the proof
of Lemma 4.5, there is an annulus in N(Bµ) − µ, transverse to the I -fibers
and connecting β × S1 to A′

x , where β × S1 is the cusp of a monogon × S1

region above. By deleting a small neighborhood of this annulus, we can
split Bµ so that the cusp of this monogon × S1 region passes lx and lies in
a small neighborhood of lx , as shown in Fig. 7.3(a). Since no branch sector
of B − Bµ intersects the cusp of a monogon × S1 region, this splitting does
not really affect the branch sectors of B − Bµ .

As before, let cx be a circle in ∂h N(Bµ) parallel and close to the cusp,
and let Ax = π−1(cx) be the vertical annulus, where π : N(Bµ) → Bµ is
the collapsing map. By our assumptions on the branch locus of Bµ, ∂Ax
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lies in ∂h N(Bµ). Since we have split Bµ along the annulus above, as shown
in Fig. 7.3(a), we may assume a component of ∂Ax lies in the horizontal
boundary of the monogon × S1 region in M − int(N(Bµ)), close to the cusp
β × S1.

We may consider N(Bµ) ⊂ N(B) and consider Ax as a vertical annulus
in N(B). Let Âx be the union of I -fibers of N(B) that intersect Ax . As before,
after enlarging Âx a little, we may consider Âx as a fibered neighborhood
of a train track which consists of a circle and some “tails” along the circle.

Since we are in case 2, by our assumptions above, the branch sectors
of B − Bµ that intersect the cusp of lx have coherent direction, and there
is no branch sector of B − Bµ intersecting the cusp of the monogon × S1

region. So, a neighborhood of Âx in N(B) must be like Fig. 7.3(b), where
the smooth boundary circle is a circle in ∂h N(Bµ) parallel and close to
the cusp of the monogon × S1 region and the “tails” correspond to the
branch sectors of B − Bµ that intersect the cusp of lx . Since the branch
sectors of B − Bµ that intersect the cusp of lx have coherent direction,
these “tails” in Âx have the same cusp/branch direction along the annulus
Ax , as shown in Fig. 7.3(b). A standard Poincaré-Bendixson type argument
implies that any curves fully carried by Âx must contain an infinite spiral
and a limit cycle. So, B cannot fully carry any compact surface with this
configuration. Therefore, the second case above cannot happen at any cusp
circle of Bµ.

Recall that in case 3, after the splittings above, the branched sur-
face does not carry µ anymore. In case 1, after the splittings, B − Bµ

does not contain any branch sector that intersects the branch locus Lµ of
Bµ, which means each circle in Lµ is a component of the branch locus
of B.

Since the splittings performed above are along relatively short arcs,
similar to the proof of Lemmas 6.1 and 6.4, by performing a finite number
of splittings on B (and taking sub-branched surfaces if necessary), we can
obtain a finite collection of branched surfaces with the following proper-
ties.

(1) Each Sn is fully carried by a branched surface in this collection,
(2) If a branched surface B′ in this collection carries µ, then Bµ, the sub-

branched surface of B′ that fully carries µ, satisfies properties A and
B before, and no branch sector of B′ − Bµ intersects the branch locus
of Bµ.

To simplify notation, we still use B to denote a branched surface in this
collection that carries µ, and use Bµ to denote the sub-branched surface of B
that fully carries µ. Let Lµ be the branch locus of Bµ. By our assumptions
before, Bµ − Lµ consists of annuli and Möbius bands. We only need to
consider the case that Bµ − Lµ is a union of annuli, and the proof for the
case that Bµ − Lµ contains a Möbius band is the same after “blowing air”
into N(Bµ). Let l be an essential simple closed curve in a component of
Bµ − Lµ. Let A = π−1(l), where π : N(Bµ) → B is the collapsing map.
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So, A is a vertical annulus with ∂A ⊂ ∂h N(Bµ), and A ∩ µ is a union of
parallel circles.

By assuming N(Bµ) ⊂ N(B), we may consider the annulus A as a ver-
tical annulus in N(B), and we denote the union of the I -fibers of N(B)
that intersect A by Â. As before, after enlarging Â a little, we may con-
sider Â as a fibered neighborhood of a train track which consists of the
circle l and some “tails” along l. Suppose Sn is fully carried by B. We
now split this train track along Sn. As before, we have 3 cases as shown
in Fig. 7.1. Similarly, in the third case, the branched surface after splitting
along a short arc does not carry µ anymore. Since every leaf is dense
in µ, we can find an annulus in N(Bµ) − µ connecting any compon-
ent of ∂vN(Bµ) to A. Thus, by the argument on Lµ above, case 2 can-
not happen at the circle l. Therefore, we can split the branched surface
into a finite collection of branched surfaces, such that each Sn is car-
ried by a branched surface in this collection, and if a branched surface
B in this collection carries µ, then no branch sector of B − Bµ inter-
sects l.

We can apply this argument to any set of essential simple closed curves
l1, . . . , lm in Bµ − Lµ. So after a finite number of splittings, we may as-
sume that no branch sector of B − Bµ intersects any li . Now, B − Bµ is
a branched surface with boundary and the boundary of B − Bµ is a train
track in Bµ − Lµ − ∪m

i=1li . Since every surface carried by Bµ is normal,
we can find enough such circles li so that, after the splittings above and
eliminating disks of contact, the train track B − Bµ ∩ (Bµ − Lµ) does not
carry any trivial circle in Bµ − Lµ. Since we can assume case 2 never
happens along any such circles, by choosing enough such circles li and
after some more splitting and pinching, the boundary of B − Bµ becomes
a union of disjoint essential simple closed curves in the annuli Bµ − Lµ.
Note that all the splittings above are along relatively short arcs and small
disks. Similar to Lemma 6.1, we can perform a finite number of different
splittings on B and obtain a finite collection of branched surfaces such
that

(1) each Sn is fully carried by a branched surface in this collection,
(2) if a branched surface B′ in this collection carries µ, then Bµ, the sub-

branched surface of B′ fully carrying µ, satisfies properties A and B
before, and the boundary train track of B′ − Bµ consists of essential
simple closed curves in Bµ − Lµ.

By Proposition 3.2, we may assume Bµ and N(Bµ) satisfy the hypotheses
of Lemma 5.4. So, by Lemma 5.4, there is a torus component Γ of ∂N(Bµ)
bounding a solid torus in M and the solid torus contains N(Bµ). Γ is a union
of annulus components of ∂vN(Bµ) and ∂h N(Bµ). Let N be the solid torus
bounded by Γ (N(Bµ) ⊂ N). Let l be an essential simple closed curve
in an annulus component of Γ ∩ ∂h N(Bµ). Since Bµ satisfies properties
A and B before, by applying part 1 of Lemma 5.4 to the components of
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N − int(N(Bµ)), it is easy to see that l does not bound a meridian disk
of N.

Suppose B carries µ and fully carries infinitely many Sn’s. By our as-
sumptions above, the boundary of B − Bµ consists of essential circles in
Bµ − Lµ. So, for each Sn fully carried by B, we may assume that Sn ∩ Γ
consists of parallel essential non-meridian curves, and for any such Sn,
the slope of Sn ∩ Γ is the same as the slope of l above. By Theorem 2.2
(a theorem of Scharlemann [37]), Sn ∩ N consists of ∂-parallel annuli and
possibly one other component, obtained from one or two ∂-parallel annuli
by attaching an unknotted tube along an arc parallel to an arc in Γ− Sn. We
call the latter kind of component in Scharlemann’s theorem an exceptional
component. An exceptional component is either a twice punctured torus
or a planar surface with 4 boundary circles. Note that, for an exceptional
component, if one fixes the annuli, then there is only one way to attach the
tube, up to isotopy.

Each component of Sn ∩ N is carried by B ∩ N. Since the boundary
of B − Bµ consists of simple closed curves, after some small perturbation,
we may assume B is transverse to the torus Γ, B ∩ Γ consists of parallel
essential non-meridian simple closed curves, N(B) ∩ Γ consists of vertical
annuli, and µ ⊂ N(Bµ) ⊂ N.

For each ∂-parallel annulus A in the solid torus N, A is isotopic (fixing
∂A) to an annulus A′ in Γ and we call A′ the image of A in Γ. Let A1 and
A2 be two ∂-parallel annuli in N with ∂Ai ⊂ N(B) ∩ Γ (i = 1, 2). We
say that A1 and A2 are equivalent if A1 is isotopic to A2 via an isotopy of
N fixing Γ − N(B). Thus, there are only finitely many equivalence classes
for ∂-parallel annuli with boundary in N(B) ∩ Γ. Now, we consider the ex-
ceptional components as in Scharlemann’s theorem above, and we say that
two exceptional components (from two Heegaard surfaces) are equivalent
if they are isotopic via an isotopy of N fixing Γ − N(B). Since the isotopy
class of an exceptional component only depends on the annuli where the
tube is attached, there are only finitely many equivalence classes for the
exceptional components.

Let A1 and A2 be properly embedded and disjoint annuli in N carried
by N(B) ∩ N, and A′

i be the image of Ai in Γ. The solid torus bounded
by Ai ∪ A′

i must contain at least one component of ∂h N(B) ∩ N. More-
over, if A′

1 and A′
2 are nested, say A′

1 ⊂ A′
2, and if A1 and A2 are not

B-isotopic, then the solid torus between A1 and A2, i.e. the solid torus
bounded by A1 ∪ A2 ∪ (A′

2 − A′
1), must contain at least one component

of ∂h N(B) ∩ N. Thus, the number of disjoint and not B-isotopic annuli
carried by N(B) ∩ N is bounded by a number which depends only on the
number of components of ∂h N(B) ∩ N. So, by Scharlemann’s theorem and
the arguments above, for any Sn ∩ N, there is a finite collection of com-
ponents of Sn ∩ N, denoted by A1, . . . , Ak , such that each component of
Sn ∩ N is B-isotopic to some Ai and k is bounded from above by a fixed
number depending only on N(B)∩ N. So, we can split B is a neighborhood
of N so that, after the splittings, B ∩ N becomes a collection of disjoint
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compact surfaces Ai ’s above. By the assumptions on the Ai ’s, the branched
surface after this splitting still carries Sn and clearly does not carry µ, since
N(Bµ) ⊂ N.

Suppose {Sn} is the sequence of strongly irreducible Heegaard surfaces
fully carried by B. Then, for each Sn, we use Σn to denote the union
of those Ai ’s above. Now, we consider the sequence {Σn}. Each Σn is
fully carried by B ∩ N and consists of ∂-parallel annuli plus at most
one exceptional component. Since the number of components of Σn is
bounded by a fixed number and since there are only finitely many equiva-
lence classes, {Σn} belong to finitely many isotopy classes. So, if we split
B ∩ N into the Ai ’s for each n, we only get a finite number of different
branched surfaces, up to isotopy. Therefore, we can split B in a neigh-
borhood of N and obtain a finite collection of branched surfaces such
that
(1) up to isotopy in N, each Sn is fully carried by a branched surface in this

collection,
(2) the intersection of N and each branched surface in this collection con-

sists of annuli and at most one exceptional component as in Scharle-
mann’s theorem. In particular, no branched surface in this collection
carries µ.

By combining all the splittings before, we get a finite collection of
branched surfaces satisfying the properties of Lemma 7.1. �	

Using Lemma 6.4 and Theorem 3.1, we can drop the hypothesis that µ
is an exceptional minimal lamination in Lemma 7.1.

Corollary 7.2. Let B, BN and {Sn} be as in Lemma 7.1. Let µ be a measured
lamination carried by BN with χ(µ) = 0. Then, B can be split into a finite
collection of branched surfaces with the following properties.

(1) Up to isotopy, each Sn is carried by a branched surface in this collection.
(2) No branched surface in this collection carries µ.

Proof. By Theorem 3.1, µ is a disjoint union of a finite number of sub-
laminations, µ1, . . . , µm . It is a well-known fact that a measured lamination
with positive Euler characteristic has a 2-sphere (or P2) leaf (this is even
true for “abstract” laminations, see [32]). Since BN does not carry any 2-
sphere, BN does not carry any measured lamination with positive Euler
characteristic. So, χ(µi) = 0 for each i. By Corollary 5.2, BN does not
carry any Klein bottle. Hence, each µi either is an exceptional minimal
lamination or consists of parallel normal tori. Now, the corollary follows
immediately from Lemmas 5.1, 6.4 and 7.1. �	

8. Proof of the main theorem

Let B′ be a branched surface obtained by splitting B. By Sect. 2, we may
naturally assume N(B′) ⊂ N(B). Recall that we say that a lamination µ
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carried by B is also carried by B′ if after some B-isotopy, µ ⊂ N(B′) ⊂
N(B), transverse to the I -fibers.

Proposition 8.1. Let B′ be a branched surface obtained by splitting B.
Suppose µ is a measured lamination carried by B but not carried by B′.
Then, there is a neighborhood Nµ of µ in the projective lamination space
of B, such that no measured lamination in Nµ is carried by B′.

Proof. Let PL(B) and PL(B′) be the projective lamination spaces for B
and B′ respectively. Suppose there is a measured lamination carried by B′
in every neighborhood of µ in PL(B). Then, there are an infinite sequence
of measured laminations {µn} carried by B′ and the limit point of {µn} in
PL(B) is µ. Since PL(B′) is compact, this sequence {µn} must have an
accumulation point µ′ in PL(B′). Since every lamination carried by B′ is
also carried by B, µ′ is carried by B and hence is an accumulation point
of {µn} in PL(B). So, µ and µ′ correspond to the same point in PL(B).
Since points in PL(B) and the measured laminations described in Sect. 3
are one-to-one correspondent, µ = µ′ and we get a contradiction. �	

Now, we are in position to prove Theorem 1.3.

Proof of Theorem 1.3. By [2,3,29,30], we may assume M is not a lens
space or a small Seifert fiber space. So, by [16], M admits a 0-efficient
triangulation. By [36,41,19], every strongly irreducible Heegaard splitting
can be isotoped to an almost normal surface. By Sect. 2, we can find a finite
collection of branched surfaces, B1, . . . , Bn, such that each almost normal
Heegaard surface is fully carried by some Bi. Since the triangulation is
0-efficient, we may assume that Bi does not carry any normal 2-sphere for
each i.

Let PL(Bi) be the projective lamination space for Bi. We can iden-
tify each point in PL(Bi) to a measured lamination carried by Bi . Let
Ti ⊂ PL(Bi) be the collection of normal measured laminations with Euler
characteristic 0. By Proposition 3.5, Ti is a compact subset of PL(Bi).

By Corollary 7.2, for each normal measured lamination µ ∈ Ti carried
by Bi , we can split Bi into a finite collection of branched surfaces such
that any strongly irreducible Heegaard surface fully carried by Bi is fully
carried by a branched surface in this collection, and no branched surface in
this collection carries µ. Since this is a finite collection, by Proposition 8.1,
there is a neighborhood Nµ of µ in PL(Bi) such that none of the measured
laminations in Nµ is carried by any branched surface in this collection.

Since PL(Bi) and Ti are compact, there are a finite number of normal
measured laminations µ1, . . . , µk in Ti such that ∪k

j=1Nµ j covers Ti . By
applying Corollary 7.2 to each µ j and combining all the splittings for the
µ j ’s, we can split Bi into a finite collection of branched surfaces such that

(1) each strongly irreducible Heegaard surface fully carried by Bi is still
fully carried by a branched surface in this collection,
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(2) no branched surface in this collection carries any measured lamination
in Nµ j ( j = 1, . . . , k). Since ∪k

j=1Nµ j covers Ti , no branched surface
in this collection carries any normal measured lamination with Euler
characteristic 0.

After performing such splitting on each Bi, we get a finite collection of
branched surfaces with the desired properties. �	

Now, Theorem 1.1 follows easily from Theorem 1.3.

Proof of Theorem 1.1. By Theorem 1.3, there are finitely many branched
surfaces, say B1, . . . , Bn, such that any almost normal strongly irreducible
Heegaard surface is fully carried by some Bi, and for any i, Bi does not
carry any normal 2-sphere or normal torus.

Since each almost normal surface has at most one almost normal piece,
at most one branch sector of Bi contains an almost normal piece, and (if it
exists) we call this branch sector the almost normal sector of Bi. For each
almost normal surface S fully carried by Bi, the weight of S at the almost
normal sector is exactly one. It is possible that Bi has no almost normal
sector, in which case every surface carried by Bi is normal.

Let Si be the set of almost normal Heegaard surfaces fully carried by
Bi and with a fixed genus g. Each S ∈ Si corresponds to a positive integer
solution to the branch equations. We can write S = (x1, . . . , xm), where
each xi is the weight of S at a branch sector of Bi. We may assume the first
coordinate x1 corresponds to the almost normal sector. So, x1 = 1 for every
S ∈ Si .

If Si is an infinite set, then we can find two surfaces S1 = (x1, . . . , xm)
and S2 = (y1, . . . , ym) in Si such that xi ≤ yi for each i. There are many
ways to see this and the following is suggested by the referee. If for a fixed
i infinitely many surfaces in Si have the same i-th coordinate, then we
work with that collection and proceed by induction. Eventually we reach
an infinite collection of surfaces where for some coordinates they all agree
and for the rest only finitely many take any one value. Then for a fixed
surface S1 = (x1, . . . , xm) there are only finitely many surfaces in this
collection with any coordinate less than maxi{xi}. Hence such a surface
S2 = (y1, . . . , ym) exists.

Thus, T = (y1 − x1, y2 − x2, . . . , ym − xm) is a non-negative integer
solution to the branch equations. So, we may consider T as a closed surface
carried by Bi (T may not be connected). If Bi has an almost normal sector,
then x1 = y1 = 1 and the weight of T at the almost normal sector is 0.
Hence, T is a normal surface. Moreover, since genus(S1) = genus(S2) = g,
χ(T ) = χ(S1) − χ(S2) = 0. This is impossible, since Bi does not carry any
normal 2-sphere or normal torus. Hence, each Si is a finite set and there are
only finitely many strongly irreducible Heegaard splittings of any genus g.

Johannson proved Theorem 1.1 for Haken manifolds [17,18]. For non-
Haken manifolds, by [7], a weakly reducible Heegaard splitting is in fact
reducible. So, any weakly reducible Heegaard splitting in an irreducible non-
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Haken manifold can be destabilized into a strongly irreducible Heegaard
splitting. Therefore, Theorem 1.1 holds for all Heegaard splittings. �	
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