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Abstract. In 1944, Freeman Dyson initiated the study of ranks of integer
partitions. Here we solve the classical problem of obtaining formulas for
Ne(n) (resp. No(n)), the number of partitions of n with even (resp. odd)
rank. Thanks to Rademacher’s celebrated formula for the partition function,
this problem is equivalent to that of obtaining a formula for the coefficients
of the mock theta function f(q), a problem with its own long history dating
to Ramanujan’s last letter to Hardy. Little was known about this problem
until Dragonette in 1952 obtained asymptotic results. In 1966, G.E. An-
drews refined Dragonette’s results, and conjectured an exact formula for the
coefficients of f(q). By constructing a weak Maass-Poincaré series whose
“holomorphic part” is q−1 f(q24), we prove the Andrews-Dragonette con-
jecture, and as a consequence obtain the desired formulas for Ne(n) and
No(n).

1. Introduction and statement of results

A partition of a positive integer n is any non-increasing sequence of positive
integers whose sum is n. As usual, let p(n) denote the number of partitions
of n. The partition function p(n) has the well known generating function

∞∑

n=0

p(n)qn =
∞∏

n=1

1

1 − qn
,
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which is easily seen to coincide with q
1
24 /η(z), where

η(z) := q1/24
∞∏

n=1

(1 − qn)
(
q := e2πiz

)

is Dedekind’s eta-function, a weight 1/2 modular form. Rademacher fa-
mously employed this modularity to perfect the Hardy-Ramanujan asymp-
totic formula

p(n) ∼ 1

4n
√

3
· eπ

√
2n/3(1.1)

to obtain his exact formula for p(n) (for example, see Chap. 14 of [22]).
To state his formula, let Is(x) be the usual I -Bessel function of order s,

and let e(x) := e2πix . Furthermore, if k ≥ 1 and n are integers, then let

Ak(n) := 1

2

√
k

12

∑

x (mod 24k)
x2≡−24n+1 (mod 24k)

χ12(x) · e
( x

12k

)
,(1.2)

where the sum runs over the residue classes modulo 24k, and where

χ12(x) :=
(

12

x

)
.(1.3)

If n is a positive integer, then one version of Rademacher’s formula reads

p(n) = 2π(24n − 1)− 3
4

∞∑

k=1

Ak(n)

k
· I 3

2

(
π

√
24n − 1

6k

)
.(1.4)

In an effort to provide a combinatorial explanation of Ramanujan’s
congruences

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11),

Dyson introduced [17] the so-called “rank” of a partition, a delightfully
simple statistic. The rank of a partition is defined to be its largest part minus
the number of its parts. In this famous paper [17], Dyson conjectured that
ranks could be used to “explain” the congruences above with modulus 5
and 7. More precisely, he conjectured that the partitions of 5n + 4 (resp.
7n + 5) form 5 (resp. 7) groups of equal size when sorted by their ranks
modulo 5 (resp. 7)1. He further postulated the existence of another statistic,

1 A short calculation reveals that this phenomenon cannot hold modulo 11.
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the so-called “crank”2 , which allegedly would explain all three congruences.
In 1954, Atkin and Swinnerton-Dyer proved [9] Dyson’s rank conjectures,
consequently cementing the central role that ranks play in the theory of
partitions.

To study ranks, it is natural to investigate a generating function. If
N(m, n) denotes the number of partitions of n with rank m, then it is well
known that

1 +
∞∑

n=1

∞∑

m=−∞
N(m, n)zmqn = 1 +

∞∑

n=1

qn2

(zq; q)n(z−1q; q)n
,

where
(a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1

)
.

Therefore, if Ne(n) (resp. No(n)) denotes the number of partitions of n with
even (resp. odd) rank, then by letting z = −1 we obtain

1 +
∞∑

n=1

(Ne(n) − No(n))qn = 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

(1.5)

We address the following classical problem: Determine exact formulas
for Ne(n) and No(n). In view of (1.4) and (1.5), since

p(n) = Ne(n) + No(n) ,

this question is equivalent to the problem of deriving exact formulas for the
coefficients α(n) of the series

f(q) = 1 +
∞∑

n=1

α(n)qn := 1+
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2

= 1+ q −2q2 +3q3−3q4+3q5−5q6 + · · · .

(1.6)

The series f(q) is one of the third order mock theta functions Ramanujan
defined in his last letter to Hardy dated January 1920 (see pp. 127–131
of [23]). Surprisingly, very little is known about mock theta functions in
general. For example, Ramanujan’s claims about their analytic properties
remain open. There is even debate concerning the rigorous definition of
a mock theta function, which, of course, precedes the formulation of one’s
order. Despite these seemingly problematic issues, Ramanujan’s mock theta
functions possess many striking properties, and they have been the subject
of an astonishing number of important works, (for example, see [2–5,7,

2 In 1988, Andrews and Garvan [8] found the crank, and they indeed confirmed Dyson’s
speculation that it “explains” the three Ramanujan congruences above. Recent work of
Mahlburg [21] establishes that the Andrews-Dyson-Garvan crank plays an even more central
role in the theory partition congruences. His work concerns partition congruences modulo
arbitrary powers of all primes ≥ 5.
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12–14,16,19,26,27] to name a few). This activity realizes G.N. Watson’s3

prophetic words:

“Ramanujan’s discovery of the mock theta functions makes it obvious that
his skill and ingenuity did not desert him at the oncoming of his untimely
end. As much as any of his earlier work, the mock theta functions are an
achievement sufficient to cause his name to be held in lasting remembrance.
To his students such discoveries will be a source of delight and wonder until
the time shall come when we too shall make our journey to that Garden of
Proserpine (a.k.a. Persephone)...”

Returning to f(q), the problem of estimating its coefficients α(n) has
a long history, one which even precedes Dyson’s definition of partition
ranks. Indeed, Ramanujan’s last letter to Hardy already includes the claim
that

α(n) = (−1)n−1
exp

(
π

√
n
6 − 1

144

)

2
√

n − 1
24

+ O

⎛
⎜⎝

exp
(

1
2π

√
n
6 − 1

144

)

√
n − 1

24

⎞
⎟⎠ .

Typical of his writings, Ramanujan offered no proof of this claim. Drag-
onette finally proved this claim in her 1951 Ph.D. thesis [16] written under
the direction of Rademacher. In his 1964 Ph.D. thesis, also written under
Rademacher, Andrews improved upon Dragonette’s work, and he proved4

that

α(n) = π(24n − 1)− 1
4

[√n ]∑

k=1

(−1)� k+1
2 � A2k

(
n − k(1+(−1)k)

4

)

k

· I 1
2

(
π

√
24n − 1

12k

)
+ O(nε).

(1.7)

This result falls short of the problem of obtaining an exact formula for
α(n), and as a consequence represents the obstruction to obtaining formulas
for Ne(n) and No(n). In his plenary address “Partitions: At the interface
of q-series and modular forms”, delivered at the Millenial Number Theory
Conference at the University of Illinois in 2000, Andrews highlighted this
classical problem by promoting his conjecture5 of 1966 (see p. 456 of [2],
and Sect. 5 of [4]) for the coefficients α(n).

3 This quote is taken from Watson’s 1936 Presidential Address to the London Mathemat-
ical Society entitled “The final problem: An account of the mock theta functions” (see p. 80
of [26]).

4 This is a reformulation of Theorem 5.1 of [2] using the identity I 1
2
(z) = ( 2

πz

) 1
2 ·sinh(z).

5 This conjecture is suggested as a speculation by Dragonette in [16].
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Conjecture (Andrews-Dragonette). If n is a positive integer, then

α(n) = π(24n − 1)− 1
4

∞∑

k=1

(−1)� k+1
2 � A2k

(
n − k(1+(−1)k)

4

)

k

· I 1
2

(
π

√
24n − 1

12k

)
.

(1.8)

The following theorem gives the first exact formulas for the coefficients of
a mock theta function.

Theorem 1.1. The Andrews-Dragonette Conjecture is true.

Remark. Since Ne(n) = (p(n) + α(n))/2 and No(n) = (p(n) − α(n))/2,
Theorem 1.1, combined with (1.4), provides the desired formulas for Ne(n)
and No(n).

To prove Theorem 1.1, we use recent work of Zwegers [27] which nicely
packages Watson’s transformation properties of f(q) in terms of real ana-
lytic vector valued modular forms. Loosely speaking, Zwegers “completes”
q−1/24 f(q) to obtain a three dimensional real analytic vector valued modular
form of weight 1/2. We recall his results in Sect. 2. To prove Theorem 1.1,
we realize the q-series, whose coefficients are given by the infinite series
expansions in (1.8), as the “holomorphic part” of a weak Maass form. This
form is defined in Sect. 3.1 as a specialization of a Poincaré series, and
in Sect. 3.2 we confirm that the coefficients of its holomorphic part are
indeed in agreement with the expansions in (1.8). To complete the proof
of Theorem 1.1, it then suffices to establish a suitable identity relating this
weak Maass form to Zwegers’ form. We achieve this in Sect. 5 by ana-
lyzing the image of these forms under the differential operator ξ 1

2
(defined

in Sect. 5). This task requires the Serre-Stark Basis Theorem for weight
1/2 holomorphic modular forms, and estimates on sums of the A2k-sums
derived in Sect. 4.

Acknowledgements. The authors thank George Andrews for helpful comments concerning
the historical background of the subject, and the authors thank John Friedlander, Sharon
Garthwaite and Karl Mahlburg for their helpful comments.

2. Modular transformation properties of q− 1
24 f(q)

Here we recall what is known about q−1/24 f(q) and its modular transform-
ation properties. An important first step was already achieved by G.N. Wat-
son in [26]. Although f(q) is not the Fourier expansion of a usual mero-
morphic modular form, in this classic paper Watson determined modular
transformation properties which strongly suggested that f(q) is a “piece”
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of a real analytic modular form, as opposed to a classical meromorphic
modular form.

Watson’s modular transformation formulas are very complicated, and are
difficult to grasp at first glance. In particular, the collection of these formulas
involve another third order mock theta function, as well as terms arising from
Mordell integrals. Recent work of Zwegers [27] nicely packages Watson’s
results in the modern language of real analytic vector valued modular forms.
We recall some of his results as they pertain to f(q).

We begin by fixing notation. Let ω(q) be the third order mock theta
function

ω(q) :=
∞∑

n=0

q2n2+2n

(q; q2)2
n+1

= 1

(1 − q)2
+ q4

(1 − q)2(1 − q3)2

+ q12

(1 − q)2(1 − q3)2(1 − q5)2
+ · · · .

(2.1)

If q := e2πiz , where z ∈ H, then define the vector valued function F(z) by

F(z) = (F0(z), F1(z), F2(z))
T

:= (q− 1
24 f(q), 2q

1
3 ω(q

1
2 ), 2q

1
3 ω(−q

1
2 ))T .

(2.2)

Similarly, let G(z) be the vector valued non-holomorphic function defined
by

G(z) = (G0(z), G1(z), G2(z))
T

:= 2i
√

3
∫ i∞

−z

(g1(τ), g0(τ), −g2(τ))
T

√−i(τ + z)
dτ,

(2.3)

where the gi(τ) are the cuspidal weight 3/2 theta functions

g0(τ) :=
∞∑

n=−∞
(−1)n

(
n + 1

3

)
e3πi(n+ 1

3)
2
τ ,

g1(τ) := −
∞∑

n=−∞

(
n + 1

6

)
e3πi(n+ 1

6)
2
τ ,

g2(τ) :=
∞∑

n=−∞

(
n + 1

3

)
e3πi(n+ 1

3)
2
τ .

(2.4)

Using these vector valued functions, Zwegers defines H(z) by

H(z) := F(z) − G(z).(2.5)

The following description of H(z) is the main result of [27].
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Theorem 2.1 (Zwegers). The function H(z) is a vector valued real analytic
modular form of weight 1/2 satisfying

H(z + 1) =
⎛

⎝
ζ−1

24 0 0
0 0 ζ3
0 ζ3 0

⎞

⎠ H(z),

H(−1/z) = √−iz ·
(

0 1 0
1 0 0
0 0 −1

)
H(z),

where ζn := e2πi/n. Furthermore, H(z) is an eigenfunction of the Casimir
operator Ω 1

2
:= −4y2 ∂2

∂z∂z + iy ∂
∂z + 3

16 with eigenvalue 3
16 , where z = x + iy,

∂
∂z = 1

2

(
∂
∂x − i ∂

∂y

)
, and ∂

∂z = 1
2

(
∂
∂x + i ∂

∂y

)
.

We give a consequence of Zwegers’ result in terms of weak Maass forms
of half-integral weight. To make this precise, suppose that k ∈ 1

2 + Z. If v
is odd, then define εv by

εv :=
{

1 if v ≡ 1 (mod 4),

i if v ≡ 3 (mod 4).
(2.6)

The weight k Casimir operator is defined by

Ωk := −4y2 ∂2

∂z∂ z̄
+ 2iky

∂

∂ z̄
+ 2k − k2

4
.(2.7)

Notice that the weight k hyperbolic Laplacian

∆k := −y2

(
∂2

∂x2
+ ∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
(2.8)

is related to the Casimir operator Ωk by the simple identity

Ωk = ∆k + 2k − k2

4
,

where z = x + iy with x, y ∈ R.
Following Bruinier and Funke, we now recall the notion [11] of a weak

Maass form of half-integral weight.

Definition 2.2. Suppose that k ∈ 1
2 + Z, N is a positive integer, and that ψ

is a Dirichlet character with modulus 4N. A weak Maass form of weight k
on Γ0(4N) with Nebentypus character ψ is any smooth function f : H→ C

satisfying the following:



250 K. Bringmann, K. Ono

(1) For all A = (
a b
c d

) ∈ Γ0(4N) and all z ∈ H, we have6

f(Az) = ψ(d)
( c

d

)2k
ε−2k

d (cz + d)k f(z).

(2) We have that ∆k f = 0.
(3) The function f(z) has at most linear exponential growth at all the cusps

of Γ0(4N).

Before we state a useful corollary to Theorem 2.1, we recall certain facts
about Dedekind sums and their role in describing the modular transform-
ation properties of Dedekind’s eta-function. If x ∈ R, then let

((x)) :=
{

x − �x� − 1
2 for x ∈ R \ Z,

0 if x ∈ Z.
For coprime integers c and d, let s(d, c) be the usual Dedekind sum

s(d, c) :=
∑

µ (mod c)

((µ

c

)) ((dµ

c

))
.

In terms of these sums, we define ωd,c by

ωd,c := eπis(d,c).(2.9)

Using this notation, if
(

a b
c d

) ∈ SL2(Z), with c > 0, then we have7

η

(
az + b

cz + d

)
= i−

1
2 · ω−d,c · exp

(
πi(a + d)

12c

)
· (cz + d)

1
2 · η(z).(2.10)

Remark. The exponential sums defined by (1.2) may also be described in
terms of Dedekind sums. In particular, if k ≥ 1 and n are integers, then
Ak(n) is also given by (see (120.5) on p. 272 of [22])

Ak(n) =
∑

x (mod k)∗
ω−x,k · e

(nx

k

)
,(2.11)

where the sum runs over the primitive residue classes x modulo k.

Theorem 2.1 implies the following convenient corollary.

Corollary 2.3. The function M(z) := F0(24z) − G0(24z) is a weak Maass
form of weight 1/2 on Γ0(144) with Nebentypus character χ12.

6 This transformation law agrees with Shimura’s notion of half-integral weight modular
forms [25].

7 This formula is easily derived from the formulas appearing in Chap. 9 of [22].
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Sketch of the proof. It is well known that η(24z) is a cusp form of weight 1/2
for the group Γ0(576) with Nebentypus χ12. For integers n, we obviously
have

M̃(z + n) = e(−n/24) · M̃(z),

where M̃(z) = F0(z) − G0(z). Therefore, to prove the claim it suffices
to compare the automorphy factors of M(z) with those appearing in (2.10)
when interpreted for η(24z). By Theorem 2.1 (see also Theorem8 2.2 of [2]),
if

(
a b
c d

) ∈ Γ0(2), with c > 0, then

M̃

(
az + b

cz + d

)
= i−

1
2 · ω−1

−d,c · (−1)
c+1+ad

2

· e

(
−a + d

24c
− a

4
+ 3dc

8

)
(cz + d)

1
2 · M̃(z).

In view of these formulas, it is then straightforward to verify that the
automorphy factors above agree with those for η(24z) when restricted to
Γ0(576). Consequently, it then follows that M(z) is also a weak Maass form
of weight 1/2 on Γ0(576) with Nebentypus χ12.

In order to verify that M(z) satisfies the desired transformation law under
Γ0(144), it suffices to check that its images under the representatives for
the non-trivial classes in Γ0(144)/Γ0(576) behave properly. For example,
if H(z) = (H0(z), H1(z), H2(z))T , then Theorem 2.1 gives

M

(
z

288z + 1

)
= H0

(
24z

12(24z) + 1

)

=
(

−i

(
12(24z) + 1

−24z

)) 1
2

· H1

(
12(24z) + 1

−24z

)

=
(

−i

(
12(24z) + 1

−24z

)) 1
2

· H1

(
− 1

24z

)

= (288z + 1)
1
2 · H0(24z) = (288z + 1)

1
2 · M(z).

This is the desired transformation law under z → 1
288z+1 . The analogous

computation for the remaining representatives completes the proof. ��
Remark. Let ψ (mod 6) be the Dirichlet character

ψ(n) :=
{

1 if n ≡ 1 (mod 6),
−1 if n ≡ 5 (mod 6).

The theta-function

ϑ(ψ; z) :=
∞∑

n=1

ψ(n) n qn2

8 There is a minor typo in the displayed formula which is easily found when reading the
proof.
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is well known to be a cusp form of weight 3/2 on Γ0(144) with Nebentypus
χ12 (for example, see [25]). One easily sees that

g1(24z) = −1

6
· ϑ(ψ; z).

In fact, one could also use this fact to deduce Corollary 2.3.

3. The Poincaré series Pk(s; z)

Here we construct a Poincaré series which has the property that the Fourier
coefficients of its “holomorphic part”, when s = 3/4 and k = 1/2, are given
by the infinite series expansions appearing in (1.8). In Sect. 3.1, we begin by
defining this series as a trace over Möbius transformations, and in Sect. 3.2
we compute its Fourier expansion. The main result of this calculation is the
reproduction of the infinite series formulas in (1.8) as coefficients of the
holomorphic part of a weak Maass form of weight 1/2 on Γ0(144) with
Nebentypus character χ12.

3.1. The construction. Suppose that k ∈ 1
2 + Z. We now define an im-

portant class of Poincaré series Pk(s; z). For matrices
(

a b
c d

) ∈ Γ0(2), with
c ≥ 0, define the character χ(·) by

χ
((a b

c d

))
:=

{
e
(− b

24

)
if c = 0,

i−1/2(−1)
1
2 (c+ad+1)e

(− a+d
24c − a

4 + 3dc
8

) · ω−1
−d,c if c > 0.

(3.1)

Remark. The character χ is defined to coincide with the automorphy factor
for the real analytic form F0(z) − G0(z) when restricted to Γ0(2).

Throughout, let z = x+iy, and for s ∈ C, k ∈ 1
2 +Z, and y ∈ R \ {0}, let

Ms(y) := |y|− k
2 M k

2 sgn(y), s− 1
2
(|y|),(3.2)

where Mν,µ(z) is the standard M-Whittaker function which is a solution to
the differential equation

∂2u

∂z2
+

(
−1

4
+ ν

z
+

1
4 − µ2

z2

)
u = 0.

Furthermore, let

ϕs,k(z) := Ms

(
−πy

6

)
e
(
− x

24

)
.
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It is straightforward to confirm that ϕs,k(z) is an eigenfunction of the Casimir
operator

Ωk = −4y2 ∂2

∂z∂ z̄
+ 2iky

∂

∂ z̄
+ 2k − k2

4
with eigenvalue s(1 − s). Using this notation, we now define the Poincaré
series Pk(s; z) by

Pk(s; z) := 2√
π

∑

M∈Γ∞\Γ0(2)

χ(M)−1(cz + d)−kϕs,k(Mz).(3.3)

Here Γ∞ is the subgroup of translations in SL2(Z)

Γ∞ :=
{

±
(

1 n
0 1

)
: n ∈ Z

}
.

Remark. Strictly speaking, the definition of Pk(s; z) is not well defined
because χ was only defined for those matrices with c ≥ 0. In the definition,
simply choose representatives for Γ∞\Γ0(2) with non-negative c.

If k ≤ 1/2 (resp. k ≥ 3/2), then the specialization of Pk(s; z) at s =
1 − k/2 (resp. s = k/2) is a weak Maass form of weight k. The defining
series is absolutely convergent for Pk

(
1 − k

2 ; z
)

(resp. Pk
(

k
2; z

)
) for k < 1/2

(resp. k > 3/2). We obtain the Maass forms when k = 1/2 (resp. k = 3/2)
by a process of continuation using the convergence of the Fourier expansion
(which is shown in Sect. 4 in the case where k = 1/2). Here we prove the
case which is of interest in the present work.

Theorem 3.1. If k ∈ 1
2 +Zwith k ≤ 1

2 , then the series Pk
(
1 − k

2; z
)

is a real
analytic function and satisfies, for M = (

a b
c d

) ∈ Γ0(2), the transformation

Pk

(
1 − k

2
; Mz

)
= χ(M)(cz + d)k Pk

(
1 − k

2
; z

)
.

In particular, the function Pk
(
1 − k

2 ; 24z
)

is a weak Maass form of weight k
for Γ0(144) with Nebentypus χ12.

Proof. We first assume that k < 1/2. Since ϕs,k(z) = O(yRe(s)− k
2 ) as y → 0,

the series Pk(1 − k
2; z) is absolutely convergent for k < 1/2. Furthermore,

since ϕs,k(z) is an eigenfunction of Ωk with eigenvalue (2k − k2)/4, it fol-
lows directly that Pk(1− k

2; z) is a real analytic function which is annihilated
by ∆k. That Pk(1 − k

2 ; 24z) is a weak Maass form for Γ0(144) with Neben-
typus χ12 follows as in the proof of Corollary 2.3.

The case where k = 1/2 requires a little more care. In Theorem 3.2,
we shall compute the Fourier coefficients of P1

2
( 3

4; z), and it will turn
out that these expressions are convergent. This convergence will follow
from Corollary 4.2. Combined with these additional facts, the proof of
Theorem 3.1, in the case where k = 1/2, follows as above. ��
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3.2. The Fourier expansion. Here we compute the Fourier expansion of
P1

2
( 3

4 ; z), and confirm that its “holomorphic part” agrees with the conjec-
tured expansions for the coefficients of the mock theta function q− 1

24 f(q).
We first require some more notation. For s ∈ C and y ∈ R \ {0}, let

Ws(y) := |y|− 1
4 W 1

4 sgn(y), s− 1
2
(|y|),(3.4)

where Wν,µ denotes the usual W-Whittaker function. For y > 0, we shall
require the following relations, which are easily deduced from standard
properties of Whittaker functions (for example, see [6] or [1]):

W 3
4
(y) = e− y

2 ,(3.5)

W 3
4
(−y) = e

y
2 · Γ

(
1

2
, y

)
,(3.6)

M 3
4
(−y) = 1

2

(√
π − Γ

(
1

2
, y

))
· e

y
2 ,(3.7)

where

Γ(a, x) :=
∫ ∞

x
e−t ta dt

t
is the incomplete Gamma function. Furthermore, let J1

2
(x) be the usual

J-Bessel function of order 1/2.
Using this notation, we obtain the following Fourier expansion for

P1
2
( 3

4 ; z).

Theorem 3.2. Assuming the notation above, we have that

P1
2

(
3

4
; z

)
=

(
1 − π− 1

2 · Γ
(

1

2
,
πy

6

))
· q− 1

24

+
0∑

n=−∞
γy(n)qn− 1

24 +
∞∑

n=1

β(n)qn− 1
24 ,

where for positive integers n we have

β(n) = π(24n − 1)− 1
4

×
∞∑

k=1

(−1)� k+1
2 � A2k

(
n − k(1+(−1)k)

4

)

k
· I 1

2

(
π

√
24n − 1

12k

)
,

and for non-positive integers n we have

γy(n) = π
1
2 |24n − 1|− 1

4 · Γ
(

1

2
,
π|24n − 1| · y

6

)

×
∞∑

k=1

(−1)� k+1
2 � A2k

(
n − k(1+(−1)k)

4

)

k
· J1

2

(
π

√|24n − 1|
12k

)
.
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Remark. The convergence of the coefficients β(n) and γy(n) will be es-
tablished by Corollary 4.2. From this one obtains the convergence of the
Fourier expansion of P1

2
( 3

4; z).

Proof of Theorem 3.2. We first compute the Fourier expansion of P1
2
(s; z),

and then set s = 3/4. First we describe a set of representatives for Γ∞\Γ0(2).
We select a single matrix

(
a b
c d

)
for each pair (c, d), where (c, d) runs through

all coprime elements inN×Z, with 2|c, together with the pair (c, d) = (0, 1).
For each such pair, we choose (a, b) arbitrarily so that ad − bc = 1.

We now compute the Fourier expansion by explicitly computing the con-
tribution from each such matrix representative. The contribution in P1

2
(s; z)

coming from c = 0 equals

2√
π

e
(
− x

24

)
Ms

(
−πy

6

)
.

Using (3.7), when s = 3/4 we obtain

(
1 − π− 1

2 · Γ

(
1

2
,
πy

6

))
· q− 1

24 .

Up to the multiplicative constant 2/
√

π, the contribution to P1
2
(s; z) for

c > 0, can easily be seen to equal

i
1
2

∑

c>0
2|c

c− 1
2

∑

d (mod c)∗
(−1)

1
2 (c+1+ad) · e

(
d

24c
+ a

4
− 3dc

8

)
· ω−d,c

∑

n∈Z
(z + d/c + n)−

1
2 Ms

(
− πy

6c2 |z + d/c + n|2
)

e

(
1

24c2
Re

(
1

z + d/c + n

))
e
( n

24

)
.

To compute the Fourier expansion of this function, we let

f(z) :=
∑

n∈Z
(z + n)−

1
2 Ms

(
− πy

6c2 |z + n|2
)

e

(
1

24c2
Re

(
1

z + n

))
e
( n

24

)
.

This function has a Fourier expansion

f(z) =
∑

n∈Z
ay(n)e2πi(n− 1

24)x,
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where

ay(n) =
∫

R

z− 1
2 Ms

(
− πy

6c2|z|2
)

e

(
x

24c2|z|2 −
(

n − 1

24

)
x

)
dx.

This integral is computed on p. 357 of [18] (see also p. 33 of [10]).
An easy calculation using (2.11) shows that

(−1)� c+1
2 � A2c

(
n − c (1 + (−1)c)

4

)

=
∑

d (mod 2c)∗
ω−d,2c(−1)

2c+1+ad
2 e

(
a − 3dc

4
+ nd

2c

)
.

Using (3.5) and (3.6), it is simple to confirm the stated Fourier expansion.
��

4. Some estimates for sums involving Ak(n)

Strictly speaking, the proof of Theorem 3.1 is incomplete when k = 1/2. To
make it complete, it suffices to show that the formulas for the coefficients
α(n) and β(n) in Theorem 3.2 are convergent. Using (1.2), it turns out that
it will be sufficient to obtain estimates for certain expressions involving the
following sums:

ρ1(n; k) :=
∑

x (mod 48k)
x2≡−24n+1 (mod 48k)

χ12(x) · e
( x

24k

)
,(4.1)

ρ2(n; k) :=
∑

x (mod 12k)
x2≡−24n+1 (mod 12k)

χ12(x) · i
x2−1
12k · e

( x

24k

)
.(4.2)

4.1. The required estimates. The following theorem, which is obtained
by generalizing an old argument of Hooley (see Sect. 6 of [20]), will give
the necessary estimates for these sums.

Theorem 4.1. If n and k ≥ 1 are integers, then we have the estimates:
∣∣∣∣∣

∑

k≥1 odd

ρ1(n; k)

k

∣∣∣∣∣ = O
(|24n − 1| 1

2
)

∣∣∣∣∣
∑

k≥2 even

ρ1(n; k)

k

∣∣∣∣∣ and

∣∣∣∣∣
∑

k≥2 even

ρ2(n; k)

k

∣∣∣∣∣ = O
(|24n − 1| 1

2
)
.

Theorem 4.1 easily implies the following estimates.
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Corollary 4.2. The following estimates are true:

(1) For positive integers n, we have
∣∣∣∣∣∣

∞∑

k=�√n�+1

(−1)� k+1
2 � A2k

(
n − k(1+(−1)k)

4

)

k
· I 1

2

(
π

√
24n − 1

12k

)∣∣∣∣∣∣

= O
(
(24n − 1)

3
4
)
.

(2) For non-positive integers n, we have
∣∣∣∣∣∣

∞∑

k=1

(−1)� k+1
2 � A2k

(
n − k(1+(−1)k)

4

)

k
· J1

2

(
π

√|24n − 1|
12k

)∣∣∣∣∣∣
= O

(|24n − 1| 3
4
)
.

Remark. We prove Theorem 4.1 by modifying an elegant argument of
Hooley involving the interplay between quadratic congruences and the rep-
resentation of integers by quadratic forms. Instead of modifying Hooley’s
argument, one could instead amplify his strategy by employing spectral
methods applied to Maass forms. Although such an approach would give
stronger estimates, Theorem 4.1 is sufficient for the proof of Theorem 1.1.

Proof of Corollary 4.2. By (1.2), it follows that

A2k
(
n − k(1+(−1)k)

4

)

k
= ρ(n; k)√

24k
,(4.3)

where

ρ(n; k) :=
∑

x (mod 48k)
x2≡−24n+6k(1+(−1)k)+1 (mod 48k)

χ12(x) · e
( x

24k

)
.(4.4)

If k is odd, then note that ρ(n; k) = ρ1(n; k).
Suppose that k is even. Using the fact that (x + 12k)2 ≡ x2 + 24k

(mod 48k), one may group the sum defining ρ2(n; k) into two pairs of equal
sums. Arguing in this way, it is not difficult to show that

4e
( n

2k

)
ρ2(n; k) = 2ρ1(n; k) + 2i

∑

x (mod 48k)
x2≡−24n+1+12k (mod 48k)

χ12(x) · e
( x

24k

)

= 2ρ1(n; k) + 2iρ(n; k).

Combining (4.3) with these facts gives

A2k
(
n − k(1+(−1)k)

4

)

k
=

⎧
⎪⎨

⎪⎩

ρ1(n;k)√
24k

for odd k,

i·ρ1(n;k)√
24k

− 2ie( n
2k )ρ2(n;k)√

24k
for even k.

(4.5)
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Since we have that

I 1
2

(
π

√
24n − 1

12k

)
∼ J1

2

(
π

√|24n − 1|
12k

)
∼ |24n − 1| 1

4√
6k

,

as k → +∞, observation (4.5), the trivial bounds for those summands with

1 ≤ k < �√n� + 1 (Note: We have that J1
2
(x) =

√
2
πx · sin(x)), combined

with the estimates in Theorem 4.1, gives the desired estimates. ��

4.2. Proof of Theorem 4.1. To prove Theorem 4.1, we closely follow the
proof of Theorem 1 of [20]. Given an integer N, his theorem gives estimates
for sums of form ∑

k≤X

S(h; k),

where

S(h; k) :=
∑

x (mod k)
x2≡N (mod k)

e

(
hx

k

)
.

Theorem 4.1 essentially involves “twisted” versions of such sums which are
further modified by dividing each summand by k.

We require the following well-known estimate for incomplete Klooster-
man sums (Note: see Lemma 3 of [20]).

Lemma 4.3. If h, r �= 0, α, and β are integers satisfying 0 ≤ β −α ≤ 2|r|,
then we have

∑

α≤s≤β
gcd(r,s)=1

e

(
−hs̄

r

)
= O

(|r| 1
2 · gcd(h, r)

1
2 d(r) log(2|r|)),

where d(r) denotes the number of positive divisors of r, and s̄ denotes the
inverse of s modulo r.

Proof of Theorem 4.1. For brevity, we only prove the first estimate. The
other cases follow in an analogous way. The argument is based on the action
of subgroups of SL2(Z) on quadratic forms. For X ∈ R, we define

R(n; X) :=
∑

k≥1 odd
12k≤X

ρ1(n; k)

k
.(4.6)

For an odd positive integer k, let

Q(x, y) := [12k, b, c] := 12kx2 + bxy + cy2(4.7)
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be an integral binary quadratic form with discriminant −24n + 1. Clearly,
the coefficient b, of Q, solves the congruence

b2 ≡ −24n + 1 (mod 48k).(4.8)

Conversely, every pair of integers (k, b), where k is an odd positive integer
and b a solution of the congruence (4.8), corresponds to such a quadratic
form (4.7). For every odd k and integer x that solves (4.8), there are integers
a, b, c, α, β, γ , and δ with αδ − βγ = 1, 24|γ , and a ≡ 12 (mod 24) such
that

12k = aα2 + bαγ + cγ 2 =: kα,γ ,(4.9)
x = 2aαβ + b(αδ + βγ) + 2cγδ =: xα,γ .(4.10)

Therefore, we have that

x

24k
= 2aαβ + b(αδ + βγ) + 2cγδ

2(aα2 + bαγ + cγ 2)
.(4.11)

Since α �= 0, this equals, for γ �= 0, the quantity

2β(aα2 +bαγ +cγ 2)+bα+2cγ

2α(aα2 + bαγ + cγ 2)
= −γ

α
+ bα + 2cγ

2α(aα2 +bαγ +cγ 2)

=: ϑα,γ .

(4.12)

Here γ denotes the inverse of γ modulo α. In case γ = 0 (i.e., α = ±1),
we set

ϑα,γ := b

2a
.

Using these observations, we have that

R(n; X) = 12
∑

Q=[a,b,c]

∑

α,γ

χ12(xα,γ )

kα,γ

· e(ϑα,γ ),(4.13)

where the outer sum runs over a set of representatives of quadratic forms
Q = [a, b, c] of discriminant −24n + 1 (positive definite forms when
−24n + 1 < 0) with a ≡ 12 (mod 24), under the action of Γ0(24). Of
course, the number of such quadratic forms is finite. The inner sum runs
over coprime integers α, γ with 24|γ , 0 < aα2 + bαγ + cγ 2 ≤ X, and the
summation is restricted for each quadratic form to one representation of the
form (4.9) and (4.10).

Let us first consider the case that −24n +1 < 0 (i.e. the positive definite
case). In this case, we have

R(n; X) = 12
∑

Q=[a,b,c]

1∣∣ΓQ

∣∣
∑

α,γ

χ12(xα,γ )

kα,γ

· e(ϑα,γ ),(4.14)
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where ΓQ denotes the isotropy subgroup of Q in Γ0(24), and the inner sum
runs over coprime integers α, γ with 24|γ , and 0 < aα2 + bαγ + cγ 2 ≤ X.
By the theory of reduced forms, we may assume that

a, b, c � (24n − 1)
1
2 ,(4.15)

where the implied constant is absolute.
Since 24|γ , the case |α| = |γ | = 1 cannot occur in the inner summation

of (4.14). Hence, we can write the inner sum as
∑

α,γ

χ12(xα,γ )

kα,γ

· e(ϑα,γ ) =
∑

|γ |<|α|
+

∑

|α|<|γ |
=:

∑

10

+
∑

11

.

Since both sums can be estimated in exactly the same way, we only consider
Σ10. In this case, we have

|α| < A · |24n − 1| 1
4 · X

1
2 =: An,X ,(4.16)

F1(α) ≤ γ ≤ F2(α),(4.17)

for some positive constant A. Here F1(α) and F2(α) are given by

F1(α) := 24

⌊
F1(α)′

24

⌋
,

F2(α) := 24

⌊
F2(α)′

24

⌋
,

F1(α)′ := max

(
−|α|,−bα

2c
− 1

c

(
cX + (1 − 24n)α2

4

) 1
2
)

,

F2(α)′ := min

(
|α|,−bα

2c
+ 1

c

(
cX + (1 − 24n)α2

4

) 1
2
)

.

If we let

ϕ(α, γ) := χ12(xα,γ )

kα,γ

· e

(
bα + 2cγ

2α(aα2 + bαγ + cγ 2)

)
,

then
∑

10

=
∑

1≤|α|<An,X

∑

F1(α)≤γ≤F2(α)
(α,γ)=1
24|γ �=0

e

(
−γ

α

)
ϕ(α, γ) + e

(
b

2a

)
.(4.18)

By partial summation, for α �= ±1, the inner sum equals

∑

F1(α)≤µ≤F2(α)
(α,γ)=1

24|µ

g(µ) (ϕ(α,µ) − ϕ(α,µ + 24)) + g (F2(α)) ϕ (α, F2(α) + 24) ,

(4.19)
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where

g(µ) :=
∑

F1(α)

24 ≤γ≤ µ
24

(α,γ)=1

e

(
− 24 · γ

α

)
.

When α = ±1, we let the summation run over µ �= 0, and we include the
extra term e( b

2a ). Using the series expansion for the exponential function,
one finds that

ϕ(α,µ) − ϕ(α,µ + 24) � |α|−3(24n − 1)
1
2 ,(4.20)

and one trivially finds that

ϕ (α, F2(α) + 24) � |α|−2.(4.21)

Moreover, by Lemma 4.3, we have that

g(µ) � |α| 1
2 d(α) log(2|α|).(4.22)

Inserting (4.20), (4.21), and (4.22) in (4.19), we find that (4.19) can be
estimated by

|α|− 5
2 d(α) log(2|α|)(24n − 1)

1
2

∑

F1(α)≤µ≤F2(α)

1 + |α|− 3
2 d(α) log(2|α|)

� |α|− 3
2 d(α) log(2|α|)(24n − 1)

1
2 + |α|− 3

2 d(α) log(2|α|)
� (24n − 1)

1
2 |α|− 3

2 +ε.

Inserting this into (4.18), we find that
∑

10

� (24n − 1)
1
2

∑

1≤|α|<An,X

|α|− 3
2 +ε + 1 � (24n − 1)

1
2 ,

where we obtained the last estimate by comparing the sum with an integral.
The sum

∑
11 is estimated in exactly the same way, and this gives the desired

estimate in the case that −24n + 1 < 0.
We just make some short comments for the case where −24n + 1 > 0.

For simplicity, suppose that the quadratic forms considered are primitive (the
general case is treated similarly). We can moreover assume that a > 0 and
c < 0. It is well known that every representation of 12k by ax2 + bxy + cy2

contains exactly one representation of 12k such that

x, y > 0(4.23)

y ≤ au

t − bu
· x,(4.24)

where (t, u) is a solution of the Pell equation

t2 + (24n − 1)u2 = 4,
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where t and u are positive integers. Moreover, if the inequalities (4.23) hold,
then the quadratic form only attains positive values, and so the inner sum in
(4.13) corresponding to a primitive form Q = [a, b, c] can be written as

∑

α,γ

χ12(xα,γ )

kα,γ

· e(ϑα,γ ),

where the sum runs over positive coprime integers α, γ with 24|γ , aγ 2 +
bαγ + cγ 2 ≤ X and γ ≤ auα

t−bu . This sum can now be estimated as in the
positive definite case above. ��

5. Proof of Theorem 1.1

Here we combine the main results of the previous sections to prove Theo-
rem 1.1. For convenience, we let

P(z) := P1
2

(
3

4
; 24z

)
.(5.1)

Canonically decompose P(z) into a non-holomorphic and a holomorphic
part

P(z) = Pnh(z) + Ph(z).(5.2)

In particular, we have that

Ph(z) = q−1 +
∞∑

n=1

β(n)q24n−1,

where the β(n) are defined in Theorem 3.2.
By Theorem 3.1, P(z) is a weak Maass form of weight 1/2 for Γ0(144)

with Nebentypus χ12. Similarly, the function

M(z) := F0(24z) − G0(24z),

where F0 and G0 are defined by (2.2) and (2.3), by Corollary 2.3, is also
a weak Maass form of weight 1/2 on Γ0(144) with Nebentypus χ12. De-
compose M(z) into a non-holomorphic and a holomorphic part

M(z) = Mnh(z) + Mh(z).(5.3)

In particular, observe that

Mh(z) = q−1 f(q24).

Thanks to Theorem 3.2, to prove Theorem 1.1 it suffices to show that
Mh(z) = Ph(z). This identity obviously follows if we establish that

P(z) = M(z).

First we establish the following lemma.
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Lemma 5.1. In the notation above, we have

Pnh(z) = Mnh(z).

Proof. To prove Lemma 5.1, we apply an anti-linear differential operator
ξk defined by

ξk(g)(z) := 2iyk ∂
∂ z̄ g(z).(5.4)

In their work on Theta lifts, Bruinier and Funke (see Proposition 3.2 of [11])
show that if g is a weak Maass form of weight k for the group Γ0(4N) with
Nebentypus χ, then ξk(g) is a weakly holomorphic modular form of weight
2−k on Γ0(4N) with Nebentypus χ (i.e. those whose poles (if there are any)
are supported at the cusps of Γ0(4N)). Furthermore, ξk has the property that
its kernel consists of those weight k weak Maass forms which are weakly
holomorphic modular forms.

We first apply ξ 1
2

to the Fourier expansion of P(z) given in Theorem 3.2.
Since ξ 1

2
(g) = 0 for holomorphic g, and since ξ 1

2
is anti-linear, we just have

to compute ξ 1
2
((Γ( 1

2 , 4π |24n − 1| y))), where n is a non-positive integer.
In this case, we have that

ξ 1
2

(
Γ

(
1

2
, 4π|24n − 1|y

))
= −(4π|24n − 1|)1/2e4π(24n−1)y.

Therefore

ξ 1
2
(P(z)) =

∞∑

n=0

a(n)e2πi(24n+1)z,

where a(n), for n �= 0, is given by

−2π(24n + 1)
1
4

∞∑

k=1

(−1)� k+1
2 � · A2k

( − n − k(1+(−1)k)
4

)

k

· J1
2

(
π

√
24n + 1

12k

)
,

(5.5)

and, for n = 0, is given by

2 − 2π

∞∑

k=1

(−1)� k+1
2 � · A2k

( − k(1+(−1)k)
4

)

k
· J1

2

( π

12k

)
.(5.6)

By Corollary 4.2, this implies that the weakly holomorphic modular
form ξ 1

2
(P(z)) is indeed a holomorphic modular form of weight 3/2 on

Γ0(144) with Nebentypus χ12. Its non-zero coefficients are also easily seen
to be supported on exponents in the arithmetic progression 1 (mod 24).
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Now we apply ξ 1
2

to M(z). It is easily seen that

ξ 1
2
(M(z)) = −24 · g1(−24z̄) = 4ϑ(ψ; z),

and so it is a cusp form of weight 3/2 on Γ0(144) with Nebentypus χ12. Ob-
viously, its Fourier coefficients are supported on exponents in the arithmetic
progression 1 (mod 24).

Therefore, ξ 1
2
(P(z)) and ξ 1

2
(M(z)) are both holomorphic modular forms

of weight 3/2 on Γ0(144) with Nebentypus χ12. Using the dimension formu-
las for spaces of half-integral weight modular forms (for example, see [15]),
it follows that

dimC(S1/2(Γ0(144), χ12)) = −24 + dimC(M3/2 (Γ0(144), χ12)),

where S1/2 (Γ0(144), χ12) (resp. M3/2 (Γ0(144), χ12)) denotes the space
of cusp (resp. holomorphic modular) forms of weight 1/2 (resp. 3/2) on
Γ0(144) with Nebentypus χ12. The Serre-Stark Basis Theorem for modular
forms of weight 1/2 [24] implies that

dimC(M1/2(Γ0(144), χ12)) = dimC(S1/2(Γ0(144), χ12)) = 0,(5.7)

since 576 = 4 · f(χ12)
2
� 144, where f(χ12) = 12 is the conductor of χ12.

Therefore, we find that

dimC
(
M3/2 (Γ0(144), χ12)

) = 24.

Since ξ 1
2
(P(z)), ξ 1

2
(M(z)) ∈ M3/2(Γ0(144), χ12) both have the prop-

erty that their Fourier coefficients are supported on exponents of the form
24n + 1 ≥ 1, choose a constant c so that the coefficient of q, and hence all
the coefficients up to and including q24, of ξ 1

2
(P(z)) and c · ξ 1

2
(M(z)) agree.

By dimensionality, this in turn implies that ξ 1
2
(P(z)) = c · ξ 1

2
(M(z)), and so

we have that
Pnh(z) = c · Mnh(z).

To complete the proof of Lemma 5.1, we must establish that c = 1. To
this end, we let

E(z) := P(z) − c · M(z).

This function is a weakly holomorphic modular form of weight 1/2 on
Γ0(144) with Nebentypus χ12. By (1.7) and Corollary 4.2, we have that

E(z) = Ph(z) − c · Mh(z) = (1 − c)q−1 f(q24) +
∑

n≥0

A(n)q24n−1,

where |A(n)| = O((24n − 1)
3
4 +ε) for positive integers n. By the proof

of Theorem 2.1 (see [26] and [27]), applying the map z �→ − 1
z returns

a non-holomorphic contribution unless c = 1. Since E(z) does not have
a non-holomorphic component, it follows that c = 1, which in turn proves
that Pnh(z) = Mnh(z). ��
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Remark. In the proof of Lemma 5.1, it is shown that ξ 1
2
(P(z)) = ξ 1

2
(M(z)) =

4ϑ(ψ; z). We illustrate the rate of convergence of the formulas in (5.5) and
(5.6). By truncating these infinite series expansions after 750 terms, one
obtains the following numerical approximation

1

4
ξ 1

2
(P(z)) ∼ 0.989q − 5.008q25 + 7.019q49 + 0.110q73

− 0.043q97 − 10.939q121 + · · ·
= q − 5q25 + 7q49 − 11q121 + · · · .

Returning to the proof of Theorem 1.1, by Lemma 5.1, it follows that

P(z) − M(z) = Ph(z) − Mh(z) = q−1 +
∞∑

n=1

β(n)q24n−1 − q−1 f(q24)

=
∞∑

n=1

ν(n)q24n−1

is a weakly holomorphic modular form of weight 1/2 on Γ0(144) with
Nebentypus χ12. By (1.7) and Corollary 4.2, it follows that

|ν(n)| = O
(
n

3
4 +ε

)
.

Therefore, P(z)− M(z) is a holomorphic modular form. However, by (5.7),
this space is trivial, and so we find that P(z) − M(z) = 0, which in turn
implies that

q−1 +
∞∑

n=1

β(n)q24n−1 = q−1 f(q24).

Theorem 1.1 now follows from Theorem 3.2.
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