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1. Introduction

Let L be a lattice in Rn and Rn/L the corresponding flat torus whose
volume we assume equal to one. If v1, . . . , vn is a Z-basis for L we let
Y = (yij)i, j=1,... ,n with yij = 〈vi, v j〉, be the corresponding Gram matrix.
Then Y ∈ P ◦

n , the space of positive definite n ×n matrices of determinant 1.
Changing basis for L by a γ ∈ GL(n,Z) yields Y ′ = γ tYγ for the new Y .
Also, if k ∈ K = O(n) then 〈kvi, kv j〉 = 〈vi, v j〉 so that kv1, . . . , kvn
produces the same point Y in P ◦

n , and two lattices L and L ′ correspond to
the same GL(n,Z) orbit iff L = kL ′ with k ∈ O(n), or what is the same
– the flat tori Rn/L and Rn/L ′ are isometric. In what follows we will not
distinguish between L, L ′, Y, Y ′ as above. Let L◦

n = P ◦
n /GL(n,Z) be

the corresponding space of such lattices. It is a locally symmetric space
of finite volume. Denote by dµn the corresponding volume element on L◦

n
normalized to be a probability measure.
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in Number Theory (26 January–16 July 2004). This visit was funded by an EPSRC Senior
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For s > n
2 define the Epstein Zeta function for L by

E(L, s) =
∑

�∈L

′〈�, �〉−s =
∑

m∈Zn

′
(mtYm)−s := E(Y, s),(1)

where ′ denotes that the zero vector should be omitted. This series converges
and using Poisson summation one proves ([Ep]) that E(Y, s) has an analytic
continuation toC except for a simple pole at s = n

2 with residue πn/2Γ( n
2 )−1

(note that the volume of the unit ball is πn/2Γ( n
2 + 1)−1). Moreover E(Y, s)

satisfies the functional equation

F(L, s) := π−sΓ(s)E(L, s) = F(L∗, n
2 − s).(2)

Note that if L corresponds to Y then the dual lattice L∗ corresponds to Y−1.
It follows that E(Y, s) is analytic at s = 0 and E(Y, 0) = −1. Also

from the notation or from (1) it is clear that E(γ tYγ, s) = E(Y, s) for
γ ∈ GL(n,Z) and Y ∈ P ◦

n . That is E(Y, s) is a modular function. It is in
fact a maximal parabolic Eisenstein series and as such it is an eigenfunction
of the full ring D(P ◦

n ) of invariant differential operators on P ◦
n (see [Ter2]).

We will make crucial use of this fact.
In this note we will examine the minimum value of E(L, s) for s > 0

(s �= n
2 ) fixed and L varying in L◦

n as well as the function ∂E
∂s (L, s)|s=0.

One can show (see [Chiu], [Chua]) that if s is fixed then E(L, s) → ∞ as
L → ∂L◦

n and hence its minimum value, mn(s), is finite and is attained.
The problem as to which L minimizes E(L, s) is of interest from a number
of points of view. As s → ∞, the minimizer of E(L, s) corresponds to
the densest lattice packing of Rn [Ry], or equivalently, to the flat torus
R

n/L which has the longest systole. This is a well known and much studied
problem [C-S]. At the other end ∂E

∂s (L, s)|s=0 is related to the height of
the dual torus Rn/L∗. If X is a compact Riemannian manifold its height
(minus “log det of the Laplacian”) is defined via a regularization to be
h(X) = Z ′

X(0), where Z X(s) =∑∞
j=1 λ−s

j and 0 = λ0 < λ1 � λ2 � . . . are
the eigenvalues of the Laplacian on X. Z X(s) is known to be meromorphic
and regular at s = 0 [M-P]. For X = Rn/L as above, the eigenvalues are
4π2|�|2 with � ∈ L∗. Hence

h(Rn/L) = h(L) = 2 log 2π + ∂

∂s
E(L∗, s)|s=0.(3)

In dimension two the extremal metrics for h(X) have been studied in
detail (see [O-P-S], [S]) and the height above is closely related to other
notions of height. In dimensions two and three the minima of the Epstein
Zeta function for other values of s, for example s = (n + 1)/2, come
up in problems of minimum energy configurations in physics and chem-
istry [To-S].
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Let Ln ∈ L◦
n be a lattice yielding the densest lattice packing of space,

that is

m(Ln) � m(L)(4)

for all L ∈ L◦
n , where m(L) = min{|v| | v ∈ L, v �= 0}. For n =

2, 3, . . . , 8, Ln is known and is the unique lattice satisfying (4). Recently
it was proven in [C-K1] that the Leech lattice Λ24 is the unique extremal
for (4) in dimension 24; thus L24 = Λ24. An explicit description of these
Ln’s for n = 2, 3, 4, 8, 24 is given in Sect. 3. The minimum problem for
E(L, s) was solved completely in dimension 2 by Rankin [Ra], Cassels [Ca],
Diananda [Di] and Ennola [En1]. They show that for n = 2,

E(L, s) � E(Ln, s) for all s > 0, L ∈ L◦
n,(5)

with equality only if L = Ln.
For any n, we will say that Ln is universal (i.e. universally extremal for

the Epstein Zeta function) if (5) holds. In dimension 3, Ennola [En2] has
shown that for s > 0, E(L, s) has a local minimum at L3, the face centered
cubic lattice (see Sect. 3), and he conjectures that L3 is universal. Our first
observation about the higher dimensional case is that this conjecture is false.
In fact it is not possible for Ln to be universal unless the vector lengths
for Ln are exactly the same as those for L∗

n (that is, �{v ∈ Ln | |v| = y}
= �{v ∈ L∗

n | |v| = y} for all y � 0). For if G(s) = F(Ln, s) − F(L∗
n, s),

then according to (2), G(s) = −G( n
2 − s). Hence G is either identically

zero or changes sign and so (5) fails. In particular for n = 3, L∗
3 is the body

centered cubic lattice [C-S, §4.6.3] which has m(L∗
3) < m(L3) and so L3

is not universal.
For dimensions n for which Ln is unique and L∗

n = Ln, the lattice Ln
may be universal. Our first result is that (5) holds locally in dimensions 4,
8 and 24.

Theorem 1. For n = 4, 8 and 24 and s > 0, E(L, s) has a strict local
minimum at L = Ln, as does h(L).

We conjecture that in these dimensions Ln is universal. Evidence for
this is given not only by the local result above but also by a result by Chua
([Chua]) according to which (5) holds for all s > 0 and any unimodular
integral lattice L in dimension 24 (there are 297 such lattices, including
L = L24). Note that if Ln is in fact universal then by Theorem 1 one could
in principle prove this conjecture numerically. However a direct numerical
approach is not feasible in the space L◦

n (whose dimension is (n2+n−2)/2)
unless n is small. For n = 3 and the height function h, we carry this out in
Sect. 4. That the following should be true was made very plausible in [Chiu].

Theorem 2. For L ∈ L◦
3, h(L) � h(L3) with equality only if L = L3.

Remark 1. By (3), h(L) is connected with ∂
∂s E(L∗, s)|s=0 and so there is no

contradiction here with the fact that L3 is not universal.
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In Sect. 5 we make some remarks on minima of the theta function for
lattices L ,

Θ(L, iy) =
∑

�∈L

e−πy〈�,�〉, y > 0.

In particular we prove an analog of Theorem 1 for the theta function, and
using the fact that the Epstein Zeta function is the Mellin transform of the
theta function we find that the study of the theta function yields a mild
simplification of one part of the proof of Theorem 1 itself. We also discuss
briefly some conjectures about global minima of Θ(L, iy) which would
imply that Ln is universal for n = 4, 8, 24.

Returning to the Epstein Zeta function, for n large it is not clear to us
whether to expect Ln to be universal. For 0 < s < n

2 it follows from Siegel’s
integration formula (see [Si] and [Ter2]) or from the theory of Eisenstein
series that

∫

L◦
n

E(L, s) dµn(L) = 0.(6)

In particular mn(s) < 0 and if Ln is universal then

E(Ln, s) < 0 for 0 < s < n
2 .(7)

On the other hand E(Ln, s) > 0 for s > n
2 and E(Ln, s) has a simple

pole at s = n
2 . Hence if Ln is universal then E(Ln, s) has no zeroes in

(0,∞)! It is an interesting question as to whether there is any L ∈ L◦
n for

which E(L, s) has no zeroes in (0,∞). Any attempt to construct such an L
explicitly is problematic since as was shown in Terras [Ter1], if α < 1 and
n is sufficiently large (depending on α), then E(L, s) has a zero in (0, n

2 ) for
every lattice L with m(L) � α

√
n

2πe (all explicitly known lattices in large
dimension satisfy this upper bound). As for the height in large dimensions,
we have

∫

L◦
n

h(L) dµn(L) = ∞.(8)

We show in Sect. 6 that for n → ∞ and L ∈ L◦
n,

h(L) � 4

√
π

n

(√
n/2πe

m(L)

)n

(1 + o(1)).(9)

Thus again any explicitly known lattice will have large height. However the
following shows that as n → ∞, h(L) concentrates at a single value. The
random lattice has its height tending to log 4π − γ + 1, where γ is Euler’s
constant. The precise statement is
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Theorem 3. Fix ε > 0. Then

Probµn

{
L ∈ L◦

n

∣∣∣
∣∣h(L) − (log 4π − γ + 1)

∣∣ < ε
}

tends to 1 as n → ∞.

Corollary 1. If mn = min{h(L) | L ∈ L◦
n} then

log 4π − γ − 2

n
< mn � log 4π − γ + 1 + o(1).

We end the introduction with an outline of the proofs of the Theorems.
Let Yn ∈ P ◦

n be the Gram matrix corresponding to Ln. Theorem 1 is
based on E(Y, s) being an eigenfunction of D(P ◦

n ) and the fact that for
n = 4, 8, 24 the automorphism group Aut(Ln) of Ln, that is Aut(Ln) =
{B ∈ O(n) | B(L0) = L0}, is in a suitable sense a large subgroup of
the orthogonal group O(n). These groups act on the tangent space p to
Yn ∈ P ◦

n and hence on the corresponding symmetric algebra Sym(p). This
action preserves homogeneous polynomials of a fixed degree f and the
dimensions of the O(n) invariants for each f are well known (see Sect. 3).
Using the conjugacy classes in Aut(Ln) we determine the dimensions of the
Aut(Ln) invariants for each f in terms of the generating (Molien) series.
In particular we find that the dimensions of the invariants for Aut(Ln) and
O(n) agree for f � 2 when n = 4, for f � 3 when n = 8 and for f � 5
when n = 24. From this it follows that the Taylor expansion of E(Y, s)
about Y = Yn agrees with that of the spherical (i.e. O(n)) symmetrization
of E(s, Y ) about Yn , up to the above orders. On the other hand according
to the Harish-Chandra/Selberg theory of spherical functions on P ◦

n , these
spherical functions and in particular their Taylor expansions about their
poles are determined by the D(P ◦

n ) eigenvalues of E(Y, s) and the value of
E(Yn, s). For 0 < s < n

2 in order that Yn be a local minimum it is crucial
that E(Yn, s) < 0 (a condition which we encountered in (7) above) which
we check is indeed the case for n = 4, 8 and 24.

In Sect. 4 we explain the numerical computations which lead to the
rigorous verification of Theorem 2. In this case already for f = 2 and
Y = Y3, the Aut(L3) invariants do not coincide with the O(3) invariants.
Still we find it useful to exploit the symmetry which limits the possible
Taylor coefficients of h(L) when developed at L3. This analysis together
with the fact that L3 is a local minimum for h allows us to excise a reasonable
neighbourhood of L3 in L◦

3. Since h → ∞ as L → ∂L◦
3 we can also

excise an explicit neighbourhood of the boundary. This leaves us the task
of verifying that h is bigger than h(L3) by a (small) fixed amount on the
remaining (compact) part of L◦

3.
The proof of Theorem 3 is based on estimating the mean and variance

over L◦
n of a suitable truncation hRn of h, where h − hRn is zero on a set of

measure tending to 1 when n → ∞. The mean is estimated using Siegel’s
integration formula [Si] (which is a familiar constant term computation
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in the theory of Eisenstein series). For the variance we use a formula of
Rogers [Ro] which is a close relative of the ’Maass–Selberg’ formula in the
theory of Eisenstein series.

Acknowledgements. We would like to thank Sal Torquato whose questions about the ex-
tremality of E(L3, 2) led us to think about this question in general, as well as Noam Elkies
for pointing out the Huffman-Sloane reference.

2. Proof that L4, L8 and L24 are local minima of E(Y, s)

The analysis of the local minimum applies much more generally so we start
with some general considerations taking place on an arbitrary symmetric
space X = K\G. [More precisely, we assume that X = K\G is a symmetric
space of the noncompact type, meaning that G is a noncompact semisimple
Lie group with finite center and K is a maximal compact subgroup, and
KG◦ = G. Then K \ G = (K ∩ G◦) \ G◦ in the natural way, but it will
be convenient later to not necessarily assume G connected.] The group
G acts on X from the right by isometries. Denote by KAN an Iwasawa
decomposition of G and by k, a, n the corresponding Lie algebras. For
g ∈ G, let H(g) ∈ a be the unique element so that g ∈ KeH(g)N. Let D(X)
be the ring of invariant differential operators on X, and for any x0 ∈ X
let Kx0 denote the stabilizer of x0 in G. According to a general lemma of
Selberg [Se] any function φ(x) on X which is an eigenfunction of D(X)
and which is Kx0-invariant, i.e. φ(x) = φ(xk) for all k ∈ Kx0 , is uniquely
determined by φ(x0) and its eigenvalues. Let ρ ∈ a∗

C
be half the sum of

positive roots and define, for any given λ ∈ a∗
C

,

φλ(g) =
∫

K
e(λ−ρ)(H(gk)) dk (x = Kg),

where dk denotes the (left- and right-) Haar measure on K , which we take
to be normalized so that

∫
K dk = 1. Then φλ(g) is a K -bi-invariant function

on G, i.e. a K -invariant function on X; it is an eigenfunction of D(X)
with eigenvalues corresponding to λ (cf., e.g., [D-K-V]) and φλ(e) = 1.
Furthermore, φλ = φµ if and only if λ = wµ for w an element of the Weyl
group. The function φλ is called the spherical function associated to λ. It
follows from the K -bi-invariance that

ωλ(x, x0) = φλ

(
gg−1

0

)
(for x = Kg, x0 = Kg0)(10)

gives a well-defined function on X × X, and clearly ωλ(xk, x0) = ωλ(x, x0)
for all k ∈ Kx0 . Thus if φ(x) on X is spherically symmetric about x0 as in
Selberg’s Lemma, then φ(x) = φ(x0)ωλ(x, x0).

Now fix some g0 ∈ G and consider the point x0 = Kg0 in X = K \ G.
Let p = a+n so that p+ k = g is a Cartan decomposition of the Lie algebra
of G. There is a diffeomorphism from p onto X given by Y �→ Ke

1
2 Y g0
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which maps 0 to x0 (cf. [H, Ch. 5, Thm. 1.1]; the factor 1
2 will be convenient

in our special case below). We will identify p and X under this map; taking
the differential we also get an identification of p with the tangent space
Tx0(X). Note that this identification does not only depend on the point x0

but also on its representative g0. Note also Kx0 = g−1
0 Kg0 and that under

our identification the action of k ∈ Kx0 on X (or on Tx0(X)) corresponds to
k : Y �→ Ad(g0k−1g−1

0 )(Y ) on p. This defines a linear action of Kx0 on p,
and there is a corresponding ring of invariant polynomials on p.

Proposition 1. Let H be a subgroup of Kx0 (which will be finite) for which
the space of invariant polynomials on p of degree less than or equal to
f is the same as that for Kx0 . If ϕλ(x) is an eigenfunction of D(X) with
eigenvalues λ ∈ a∗

C
and if ϕλ(x) is H-invariant then the Taylor expansion

of ϕλ(x) about x0 (i.e. in the variables in p under our identification) agrees
with that of the function ϕλ(x0) · ωλ(x, x0), up to order f .

Proof. Let ψ(x) = ∫Kx0
ϕλ(xk) dk. Then ψ(x0) = ϕλ(x0), ψ(x) is an eigen-

function of D(X) and ψ(xk) = ψ(x) for k ∈ Kx0 . Hence by Selberg’s
Lemma, ψ(x) = ϕλ(x0) · ωλ(x, x0). The assumptions of the proposition en-
sure that ψ(x) and ϕλ(x) have the same Taylor expansion about x0 to order f .


�
Since the Taylor expansion of ωλ(x, x0) at x0 can be calculated explicitly,

the proposition allows us to calculate the expansion of ϕλ(x) to order f in
terms of φλ(x0) and λ.

We now turn to our setting of P ◦
n . It will be convenient to use

G = {g ∈ GL(n,R) | det g = ±1}, K = O(n),

instead of the connected groups SL(n,R) and SO(n). As before, we identify
P ◦

n = K \G by Kg �→ gt g, and the right action of G on K \G by isometries
corresponds to the action g : Y �→ Y [g] := gt Yg on P ◦

n .
We have the Iwasawa decomposition G = KAN with

N =

⎧
⎪⎪⎨

⎪⎪⎩

⎛
⎜⎜⎝

1 ∗ . . . ∗
1 ∗ ∗
0

. . .

1

⎞
⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭
, A =

⎧
⎪⎪⎨

⎪⎪⎩

⎛
⎜⎜⎝

a1
a2

. . .

an

⎞
⎟⎟⎠
∣∣∣ a1, a2, . . . , an > 0,

a1a2 · · · an = 1

⎫
⎪⎪⎬

⎪⎪⎭
,

and the Lie algebra of A is a =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

H1
H2

. . .

Hn

⎞

⎟⎟⎠
∣∣∣
∑

Hj = 0

⎫
⎪⎪⎬

⎪⎪⎭
.

The Cartan decomposition of g = {X ∈ Mn(R) | trace(X) = 0} is
g = p + k with p = {X ∈ Mn(R) | Xt = X, trace(X) = 0} and k = {X ∈
Mn(R) | Xt = −X, trace(X) = 0}.
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Denote by 〈·, ·〉 the bilinear form 〈X1, X2〉 = trace(X1 X2) on g; this is
the Killing form divided by 2n, and in particular it restricts to a positive
definite form on p. Given g0 ∈ G the identification used in Proposition 1 now
takes the shape p � X �→ gt

0eX g0 ∈ P ◦
n , since Ke

1
2 X g0 ∈ K\G corresponds

to gt
0eX g0 ∈ P ◦

n . For definiteness, let us fix the metric on P ◦
n = K\G so

that for each g0 ∈ G the Riemannian tensor on the tangent space Tgt
0g0

(P ◦
n )

agrees with 〈·, ·〉 on p. (One may check that this is exactly the same metric
as in [Ter2, Ch. 4 (1.11)].)

Now E(Y, s) is an Eisenstein series on P ◦
n and is an eigenfunction

of D(G/K ). Its eigenvalue is λs = ρ + 2s
n (1 − n, 1, . . . , 1) ∈ a∗

C
and

ρ = ( n−1
2 , n−3

2 , . . . , 1−n
2 ).

For Y0 ∈ P ◦
n let RY0 be the intersection of GL(n,Z) with KY0 (the

orthogonal group fixing Y0). Note that if we fix a representative g0 ∈
SL(n,R) for Y0, so that Y0 = gt

0 g0, then L0 = g0Z
n ⊂ Rn is a lattice

corresponding to Y0 in the usual sense, and since g0 KY0 g−1
0 = K = O(n)

we then have g0 RY0 g−1
0 = Aut(L0), the automorphism group of L0, viz. the

group of those B ∈ O(n) such that B(L0) = L0.
Let f(Y0) be the largest integer for which the RY0 -invariant polynomials

on TY0(P
◦
n ) agree with the KY0 -invariant polynomials up to degree f . We

will see in the next section, as a reflection of the fact that the automor-
phism groups Aut(L4), Aut(L8) and Aut(L24) are “large”, that f(L4) = 2,
f(L8) = 3 and f(L24) = 5. With this we can determine the Taylor expan-
sions of E(Y, s) to order 2 (at least) at these Ln’s as follows.

We make this second order Taylor expansion at Y = Yn, identifying
P ◦

n = K \ G with p as in Proposition 1. Note that the KYn -invariant poly-
nomials on p by definition are those that are invariant under X �→ kXkt

for all k ∈ O(n); it is well-known that these are generated over C by
s j = trace(X j) for j = 2, . . . , n (recall that all X ∈ p are symmetric with
trace(X) = 0; in particular s1 ≡ 0 on p). Note that s2 = ∑n

j=1

∑n
i=1 x2

ij .
Hence, using Proposition 1 and f(Yn) � 2, if ψ : P ◦

n → R is any function
satisfying ψ(Y [γ ]) = ψ(Y ) for γ ∈ GL(n,Z) then the Taylor expansion of
F(X) := ψ(gt

0eX g0) for X ∈ p near 0 has the form

F(X) = F(0) + a2s2(X) + [higher order terms](11)

with a2 ∈ R.
Thus a2 > 0 ensures that F has a strict local minimum at X = 0.
To compute a2 for E(exp X, s) it suffices to use the Laplacian ∆ on P ◦

n .
Let λ(s) be the negative eigenvalue, i.e.

∆E(Y, s) + λ(s)E(Y, s) = 0.(12)

Then if ∆ corresponds to the precise Riemannian structure specified above
we have λ(s) = n−1

n s( n
2 − s), so that
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λ(s) < 0 for s >
n

2
, λ(s) > 0 for 0 < s <

n

2
,

λ(0) = λ( n
2 ) = 0, and

dλ(s)

ds |s=0
= n − 1

2
.

(13)

Let us fix an orthonormal basis b1, . . . , bN in p with respect to 〈·, ·〉. Under
our identification of p with TYn (P

◦
n ) these vectors form an orthonormal

basis for the metric at Yn; hence if we define local coordinates x1, . . . , xN
in a neighbourhood of Yn by Y = exp(x1b1 + . . . + xN bN )[g0] we have

∆E(x1, . . . , xN ; s)|x1=...=xN =0 =
N∑

j=1

∂2E

∂x2
j |x1=...=xN =0

.

On the other hand, by (11) and the definition of s2,

E(x1, . . . , xN ; s) = E(0, . . . , 0; s) + a2

N∑

j=1

x2
j + [higher order].(14)

Thus

∆E(x1, . . . , xN; s)|x1=...=xN =0 = 2Na2.

Hence 2Na2 + λ(s)E(0, . . . , 0; s) = 0, so

a2 = −λ(s)E(Yn, s)

2N
.(15)

Since E(Yn, s) is a converging series of positive terms for s > n
2 it follows

from (13) and (15) that

a2(s) > 0 for s > n
2 .(16)

For Yn, n = 4, 8 and 24 we will show that for 0 < s < n
2 ,

E(Yn, s) < 0.(17)

Given this it follows from (13) and (15) that

a2(s) > 0 for 0 < s < n
2 .(18)

Differentiating (12) with respect to s, it follows from (13) and E(Y, 0) = −1
that

∆
∂E

∂s
(Y, s)|s=0 − n − 1

2
= 0.(19)

From this we see as above that a2 > 0 in (11) for F(Y ) = ∂E
∂s (Y, s)|s=0.
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These establish that E(Y, s) has a strict local minimum for Y near Yn
and for all s > 0 and from (3) and the above that so does h(Y ). Note that
(12) and the sign of E(Y, s) and (19) show that for s > n

2 , E(Y, s) and h(Y )
are subharmonic on L◦

n.
Finally, we check (17), starting with the case Yn = Y24. We have by [C-S,

p. 105],

E(L24, s) = 65520

691
· 2−s · (ζ(s)ζ(s − 11) − L(s,∆)),

where L(s,∆) := ∑∞
n=1

τ(n)

ns with τ(n) denoting the Ramanujan function.
By the functional equation (2), we need only check (17) for 6 � s < 12.
It is known (and easy to verify using a computer) that L(s,∆) > 0 for
0 < s < 12; furthermore, ζ(s)ζ(s − 11) < 0 for 6 � s < 7 and for
9 < s < 12, and one checks by a computation that in the interval 7 � s � 9
we have 0 � ζ(s)ζ(s − 11) < 0.02 and L(s,∆) > 0.5 (cf. [S-St, item 3]).
Hence (17) holds for Yn = Y24. (A more direct proof is given below at the
end of Sect. 5.)

Fig. 1. The function π−sΓ(s)E(Y24, s) for 0 < s < 12

The cases of Y4 and Y8 are significantly easier: We have

E(Y4, s) = 24 · 2− s
2 (1 − 21−s) · ζ(s)ζ(s − 1)

and

E(Y8, s) = 240 · 2−s · ζ(s)ζ(s − 3)

(cf. [C-S, pp. 108 (49), 122]). Hence in both cases (17) follows from the
well-known behaviour of ζ(s) along the real axis.
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3. Spaces of Aut(Ln)-invariant polynomials

We first give the precise definitions of the lattices in question. The hex-

agonal lattice L2 has Gram matrix Y2 = 2√
3

(
1 1/2

1/2 1

)
. The face cen-

tered cubic lattice L3 which is usually denoted by D3 has Gram matrix

Y3 = 21/3

(
1 1/2 1/2

1/2 1 0
1/2 0 1

)
. The lattice L4 is more commonly denoted

by D4, and L8 by E8; these two lattices may be defined eg. as follows
(cf. [C-S]):

L4 = D4

= {2− 1
4 (x1, x2, x3, x4)

∣∣ all xi ∈ Z, x1 + x2 + x3 + x4 ≡ 0 (mod 2)
};

L8 = E8

= {(x1, . . . , x8)
∣∣ all xi ∈ Z or all xi ∈ Z+ 1

2 ,
∑

xi ≡ 0 (mod 2)
}
.

Regarding the Leech lattice L24, it has a large number of beautiful defini-
tions, cf. [C-S]; for example, it can be defined as the lattice spanned by all
vectors of the form

1√
8

(
(−1)ε1 x1, . . . , (−1)ε24 x24

)
,

where one x j = −3 and xk = 1 for all k �= j, and (ε1, . . . , ε24) is a code
word in the Golay code C24, i.e. (ε1, . . . , ε24) ∈ F24

2 belongs to the F2-linear
span of the row vectors in the table

1 1 0 1 0 0 0 1 1 1 0 1 1
1 1 1 0 1 0 0 0 1 1 1 0 1

1 0 1 1 0 1 0 0 0 1 1 1 1
1 1 0 1 1 0 1 0 0 0 1 1 1

1 1 1 0 1 1 0 1 0 0 0 1 1
1 1 1 1 0 1 1 0 1 0 0 0 1

1 0 1 1 1 0 1 1 0 1 0 0 1
1 0 0 1 1 1 0 1 1 0 1 0 1

1 0 0 0 1 1 1 0 1 1 0 1 1
1 1 0 0 0 1 1 1 0 1 1 0 1

1 0 1 0 0 0 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0

(where empty spaces denote 0).
For Yn ∈ P ◦

n corresponding to one of these lattices we wish to study
the space of RYn -invariant polynomials on the tangent space TYn(P

◦
n ), and

compare it with its subspace of KYn -invariant polynomials. (Recall that
RYn = GL(n,Z) ∩ KYn .) Let us fix a representative g0 ∈ SL(n,R) for Yn;
we have then noticed on p. 122 that g0 RYn g−1

0 = Aut(Ln) for Ln = g0Z
n,
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and the action of RYn on TYn (P
◦
n ) corresponds to the action of Aut(Ln)

on p under our usual identification.
The space of homogeneous polynomials of degree d on p can be iden-

tified in a natural way with the dual of the d’th symmetric power of p,
Symd(p)∗. Note that p ⊕ R can be viewed as the space of all symmetric
bilinear forms onRn, viz. Sym2(Rn)∗. We now have the following canonical
isomorphisms of O(n)-modules, for any f � 0:

Sym f Sym2(Rn) ∼= (Sym f (p⊕ R))∗

∼=
f⊕

d=0

(
Symd(p)∗ ⊗ Sym f −d(R)∗)

∼=
f⊕

d=0

Symd(p)∗,

(20)

where O(n) acts by the standard representation on Rn and trivially on R.
Hence our problem is essentially equivalent to the problem of determining
the subspace S f of Aut(Ln)-invariant vectors in Sym f Sym2(Rn), for each
f = 0, 1, 2, . . . .

The subspace of O(n)-invariant vectors in S f is well understood, cf. [J].
In particular one knows that its dimension is equal to the number of partitions
of f into not more than n parts. Note that this subspace in S f by our
identifications above is equal to the direct sum of the spaces of O(n)-
invariant polynomials on p – or KYn -invariant polynomials on TYn (P

◦
n ) – of

degrees d = 0, 1, . . . , f .
It is possible to compute the dimensions dim(S f ) for all f once rep-

resentatives for all the conjugacy classes in Aut(Ln) are known. Let Φ(λ)
be the Molien series for the representation Sym2(Rn) of Aut(Ln), i.e. the
generating function

Φ(λ) =
∞∑

f =0

(dim S f )λ
f .

We then have the well-known identity

Φ(λ) = 1

|Aut(Ln)|
∑

g∈Aut(Ln)

1

det(I − λπ(g))
,

where π(g) ∈ GL(Sym2(Rn)) gives the action of g ∈ Aut(Ln). Of course,
the characteristic polynomial det(I −λπ(g)) depends only on the conjugacy
class of g in Aut(Ln).

Before turning to the specific cases we remark that our task of deter-
mining f(Ln) is partially related to the problem of determining the largest
integer t(Ln) such that all Aut(Ln)-invariant vectors in Symt(Rn) are O(n)-
invariant for 0 � t � t(Ln) – this familiar problem has applications to
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the construction of spherical t-designs, cf. [C-S, p. 93]. It is known that
t(D3) = 3, t(D4) = 5, t(E8) = 7, t(L24) = 11; the Molien series for the
representation of Aut(L24) onR24 was computed in [Hu-S]. To see the con-
nection to our question regarding Sym f Sym2(Rn), we note that t = t(Ln)+1
is even (since −I ∈ Aut(Ln)), and for this t the space Symt(Rn) contains
an Aut(Ln)-invariant vector which is not O(n)-invariant. On the other hand,
Symt/2Sym2(Rn) decomposes into irreducible GL(n)-representations one
of which is isomorphic to Symt(Rn) (cf. [L]). Hence f(Ln), the largest
integer such that all Aut(Ln)-invariant vectors in Sym f Sym2(Rn) are O(n)-
invariant for all f � f(Ln), certainly satisfies

f(Ln) �
t(Ln) − 1

2
.

In particular f(D3) � 1, f(D4) � 2, f(E8) � 3, f(L24) � 5. We will
see below that we actually have equality in these four relations; however,
this is not a general phenomenon, for if f is large then Sym f Sym2(Rn)
as a representation of O(n) contains many irreducible subrepresentations
which do not occur in Sym2 f (Rn). (For example, Sym6Sym2(R24) con-
tains an irreducible subrepresentation which does not occur in Sym12(R24)
but still allows Aut(L24)-fixed vectors; cf. [S-St, sfunctions.pari] for more
details.)

We now turn to a description of our specific cases.
The conjugacy classes of Aut(D4) (which has order 1152 = 27 · 32) are

of course easy to enumerate, and we obtain in this case

Φ(λ) = λ18 − 2λ17 + 4λ16 − . . . + 2λ6 + 2λ5 − λ4 + λ3 + λ2 − 2λ + 1

φ1(λ)10φ2(λ)6φ3(λ)3φ6(λ)2φ4(λ)3

= 1 + λ + 2λ2 + 4λ3 + 9λ4 + 14λ5 + 30λ6 + 50λ7 + 95λ8 + . . .

where φr(λ) is the r-th cyclotomic polynomial. In particular, we see from
(20) that the space of homogeneous Aut(D4)-invariant polynomials of de-
gree d on p has dimension 0, 1, 2, 5 respectively, for d = 1, 2, 3, 4. Since
the corresponding dimensions for O(4)-invariant polynomials are 0, 1, 1, 2
respectively we see that f(D4) = 2.

The automorphism group of E8 has order |Aut(E8)| = 696729600 =
214 · 35 · 52 · 7, and we used the Maple package by Stembridge (cf. [Ste])
to obtain representatives for its conjugacy classes. In this case the Molien
series is found to be

Φ(λ)

= λ238 − 4λ237 + . . . − 12λ7 − λ6 + 9λ5 − 11λ4 + 4λ3 + 4λ2 − 4λ + 1

φ36
1 φ20

2 φ12
3 φ10

4 φ7
5φ

6
6φ

5
7φ

4
8φ

4
9φ

4
10φ

3
12φ

1
14φ

2
15φ

1
18φ

1
20φ

1
24

= 1 + λ + 2λ2 + 3λ3 + 6λ4 + 9λ5 + 18λ6 + 31λ7 + 65λ8 + 121λ9 + . . .
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In particular the dimensions for the Aut(E8)-invariant polynomials on p are
0, 1, 1, 3 in degrees d = 1, 2, 3, 4, and since the corresponding dimensions
for O(8)-invariant polynomials are 0, 1, 1, 2 we see that f(E8) = 3.

The Automorphism group of the Leech lattice, Aut(L24), is the Conway
group Co0 of order 222 · 39 · 54 · 6 · 11 · 13 · 23 = 8315553613086720000.
It is a central extension of degree 2 of the simple group Co1. We read off
the necessary facts about the conjugacy classes from the Atlas of finite
groups, [C-C-N-P-W]. The Molien series for Sym2(R24) is found to be

Φ(λ) = p(λ)/q(λ),

where

p(λ) = λ4624 + . . . + 150679λ4 − 14625λ3 + 1023λ2 − 46λ + 1

and

q(λ) =φ300
1 φ156

2 φ100
3 φ78

4 φ60
5 φ52

6 φ42
7 φ32

8 φ33
9 φ30

10φ
27
11φ

26
12φ

23
13φ

22
14φ

20
15φ

16
16φ

14
18

· φ14
20φ

14
21φ

13
22φ

13
23φ

11
24φ

12
26φ

11
28φ

10
30φ

7
33φ

8
35φ

7
36φ

6
39φ

6
40φ

6
42φ

3
60.

The first terms are

Φ(λ) = 1 + λ + 2λ2 + 3λ3 + 5λ4 + 7λ5 + 13λ6 + 19λ7 + 36λ8 + 62λ9

+ 135λ10 + 312λ11 + 1387λ12 + 11551λ13 + 197343λ14 + . . .

In particular the dimensions for the Aut(L24)-invariant polynomials on p are
0, 1, 1, 2, 2, 6 in degrees d = 1, 2, 3, 4, 5, 6, and since the corresponding
dimensions for O(24)-invariant polynomials are 0, 1, 1, 2, 2, 4 we see that
f(L24) = 5.

For the face-centered cubic lattice (fcc, alias D3) we find Molien series:

Φ(λ) = λ8 − λ7 + λ6 + λ4 + λ2 − λ + 1

φ6
1φ

2
2φ

2
3φ4

= 1 + λ + 3λ2 + 6λ3 + 11λ4 + 18λ5 + 32λ6 + 48λ7

+ 75λ8 + 111λ9 + . . . .

Note that this shows f(D3) = 1, so that the argument to prove local mini-
mum given in last section would not apply to this case.

In order to get a good handle on E(L, s) in a neightbourhood (of decent
size!) of a special point like L = D3, it is very useful to know explicit
bases for the spaces of invariant polynomials. As part of our computer
proof that D3 is the unique global minimum of the height function (cf.
next section), we calculated, for each f = 2, 3, 4, . . . , 10, an explicit basis
{pf,1, . . . , pf,n f } in the space of Aut(D3)-invariant polynomials on p of
degree f . (The dimensions are n2 = 2, n3 = 3, . . . , n10 = 49.) We present
here the results for f = 2, 3, 4:
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p2,1 = X2
1 + X2

2, p2,2 = X2
3 + X2

4 + X2
5;

p3,1 = −3X2
1 X2 + X3

2, p3,2 = X3 X4 X5,(21)

p3,3 = √
3X1
(
X2

4 − X2
5

)+ X2
(
2X2

3 − X2
4 − X2

5

);

p4,1 = p2
2,1, p4,2 = p2,1 p2,2, p4,3 = p2

2,2, p4,4 = X4
3 + X4

4 + X4
5,

p4,5 = 3X2
1 X2

3 + 2
√

3X1 X2
(
X2

4 − X2
5

)+ X2
2

(− X2
3 + 2X2

4 + 2X2
5

)
.

Here X1, X2, X3, X4, X5 ∈ p∗ is the dual basis corresponding to the or-
thonormal basis {b1, . . . , b5} in p, where b1, . . . , b5 are (in order):

2− 1
2

(−1 0 0
0 1 0
0 0 0

)
, 6− 1

2

(−1 0 0
0 −1 0
0 0 2

)
, 2− 1

2

(
0 1 0
1 0 0
0 0 0

)
,

2− 1
2

(
0 0 1
0 0 0
1 0 0

)
, 2− 1

2

(
0 0 0
0 0 1
0 1 0

)
.

Of course the spaces of invariant polynomials depend on the choice of
representative g0; the above results are valid for any g0 such that g0Z

3 is the
standard form of the lattice D3 (cf. [C-S, p. 112]), i.e.

g0Z
3 = {2− 1

3 (x1, x2, x3)
∣∣ all xi ∈ Z, x1 + x2 + x3 ≡ 0 (mod 2)

}
.(22)

For more details about the computations and results mentioned in this
section, cf. [S-St, item 1].

4. Global study for n = 3

The expression for the Epstein Zeta function that one derives using Poisson
summation is (see (2) and [Ter1])

F(L, s) = 1

s − n
2

− 1

s
+
∑

m∈L
m �=0

G(s, π|m|2) +
∑

m∈L∗
m �=0

G
(

n
2 − s, π|m|2),(23)

where

G(s, x) :=
∫ ∞

1
e−xt ts−1 dt = x−sΓ(s, x).(24)

Here Γ(s, x) = ∫∞
x e−t ts−1dt, the usual (complementary) incomplete

Gamma function. For Y ∈ P ◦
n corresponding to the lattice L we define

Fs(Y ) = Fs(L) :=
∑

a∈Zn−{0}

(
G(s, π · Y−1[a]) + G

(
n
2 − s, π · Y [a])),(25)
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where Y [a] := atYa. Then F(Y, s) = π−sΓ(s)E(Y, s) = (s − n/2)−1 −
s−1 + Fs(Y−1). In particular for the height function, we obtain from (3), (2)
together with E(L, 0) being −1 and a simple calculation:

h(Y ) = 2 log 2π + ∂E

∂s
(Y−1, s)|s=0 = log 4π − γ − 2

n
+ F0(Y ).(26)

We now let n = 3. Our aim in this section is to describe our computer
proof that D3, the face-centered cubic lattice, which is given by Y3 =
21/3

(
1 1/2 1/2

1/2 1 0
1/2 0 1

)
, is the unique global minimum of h(Y ) on L◦

3 =
P ◦

3 /GL(3,Z). For more details we refer to [S-St, item 2].
We parametrize P ◦

3 by Iwasawa coordinates (y1, y2, t12, t13, t23):

Y =
(

1 t12 t13
0 1 t23
0 0 1

)t (d1 0 0
0 d2 0
0 0 d3

)(
1 t12 t13
0 1 t23
0 0 1

)
;

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1 = y
2
3
1 y

1
3
2

d2 = y
− 1

3
1 y

1
3
2

d3 = y
− 1

3
1 y

− 2
3

2

.(27)

This gives a diffeomorphism (y1, y2, t12, t13, t23) �→ Y from (R+)2 × R3

onto P ◦
3 .

The best known fundamental domain for the action of GL3(Z) on P ◦
3

is the Minkowski domain, but for the present problem it is perhaps slightly
more convenient to use Grenier’s fundamental domain, cf. [Ter2, §4.4.3]. In
order to have only one copy of the fcc-point in the (closed) domain, we first

shift one half of the domain by the translation Y �→ Y [T2], T2 =
(

1 0 1
0 1 0
0 0 1

)
.

In our coordinates, this modified Grenier’s fundamental domain is given by
the following inequalities (cf. [Ter2, (4.34)]):

(i) 1 � (1 + t12 − t13)
2 + y−1

1

(
(1 − t23)

2 + y−1
2

)

(ii) 1 � (t12 − t13)
2 + y−1

1

(
(1 − t23)

2 + y−1
2

)

(iii) 1 � t2
12 + y−1

1

(iv) 1 � t2
13 + y−1

1

(
t2
23 + y−1

2

)

(iv′) 1 � (t13 − 1)2 + y−1
1

(
t2
23 + y−1

2

)

(v) 1 � t2
23 + y−1

2

(vi)–(viii) 0 � t12 � 1
2 , 0 � t13 � 1, 0 � t23 � 1

2 .

In this domain the fcc lattice has the unique representative (y1, y2, t12, t13, t23)
= ( 4

3 ,
9
8 ,

1
2 , 1

2 , 1
3), which corresponds to the point

Y3 = 21/3

(
1 1/2 1/2

1/2 1 1/2
1/2 1/2 1

)
∈ P ◦

3 .
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From now on we will use Y3 to denote this point (it is the image under(
0 1 1
1 0 0
0 −1 0

)
∈ GL(n,Z) of the fcc-point written down earlier). The dual

lattice, viz. the body-centered cubic lattice, also has a unique representative
in our fundamental domain, namely ( 9

8 ,
4
3 ,

1
3 , 2

3 , 1
2).

According to (26), our task is to prove that F0(Y ) for Y in our domain
takes its unique global minimum at Y = Y3. Let us write F(Y ) := F0(Y )
for short. One computes

F(Y3) = 0.113359752603 . . . .(28)

Our first step is to reduce to a compact domain: One computes that

2 G
(

3
2 , π · 0.71

) = 0.114813 . . . .

Hence if d1 < 0.71 in the Iwasawa coordinates for Y , then since G(s, x) is
positive and decreasing with respect to x, we have

F(Y ) > 2 G
(

3
2 , π · 0.71

)
> 0.114,

because Y [a] = d1 < 0.71 for the two vectors a = ±[1 0 0]t ∈ Z3. Hence
we may from now on add the condition y2

1 y2 = d3
1 � 0.713 to (i)–(viii).

The resulting domain in (R+)2 × R3 is compact. In fact, using (iii) and (v)
we find that 0.51 � y1 � 4

3 and 0.20 � y2 � 4
3 must hold for each point

(y1, y2, t12, t13, t23) in the domain.
Next, we cover this compact domain with a finite set of rectangular boxes

of the form B j =∏5
k=1[bjk, b′

jk], where each side b′
jk −bjk is approximately

of size 1
10 . This is made in a way so that the fcc-point (and the bcc-point) lies

close to the center in one box and not too close to any of the other boxes. Our
precise construction was to first split the (t12, t13, t12)-box [0, 1

2 ] × [0, 1] ×
[0, 1

2 ] into 5 × 11 × 5 boxes, all of sizes ≈ 1
10 × 1

11 × 1
10 (but not exactly

1
10 × 1

11 × 1
10 , since we represent all coordinates by numbers in 2−44

Z).
For each such box bt we cover the y1-interval [0.51, (1 − sup t2

12)
−1] with

intervals of length ≈ 1
10 and for each such interval I we compute from (i),

(ii), (iv)–(v) a closed interval J ⊂ R+ such that every point in our domain
with y1 ∈ I , (t12, t13, t23) ∈ bt must necessarily satisfy y2 ∈ J . Finally this
interval J is covered by intervals of size ≈ 1

10 . Around the fcc-point we
make a further split of the intervals for y1, y2, t12 into halves.

The construction just described leads to a set of 11427 boxes B j which
together cover our compact domain; the unique box containing the fcc-point
( 4

3 ,
9
8 ,

1
2 , 1

2 ,
1
3) is

B fcc ≈ [1.29, 1.34] × [1.1, 1.15] × [0.45, 0.5] × [ 5
11 ,

6
11

]× [0.3, 0.4].
(Again, the precise coordinates we use are numbers in 2−44

Z.)
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Now we verify using the computer that for each box B j �= B fcc one has

F(Y ) > 0.11336, ∀Y ∈ B j(29)

(cf. (28)). This is done as follows.
Let F(N)(Y ) be the finite sum obtained by only considering terms a =

(a1, a2, a3) with |a1|, |a2|, |a3| � N in (25) (for s = 0). What we verify on
the computer is that F(2)(Y ) > 0.11336 holds for all Y ∈ B j , B j �= B fcc; this
clearly implies (29), since all terms are positive in (25). To reach this aim we
evaluate the value C0 of F(2)(Y ) at the central point (y1, y2, t12, t13, t23) =
( 1

2(bj1 + b′
j1), . . . , 1

2 (bj5 + b′
j5)) of B j = ∏5

k=1[bjk, b′
jk], and then use

interval arithmetic to compute rigorous bounds on the first-order partial
derivatives of F(2)(Y ), i.e. positive numbers C1, . . . , C5 such that

∣∣∣∣
∂

∂y1
F(2)(Y )

∣∣∣∣ � C1, . . . ,

∣∣∣∣
∂

∂t23
F(2)(Y )

∣∣∣∣ � C5, ∀Y ∈ B j.

Clearly then, for all Y ∈ B j , we have that F(2)(Y ) is bounded from below
by

C0 −
5∑

k=1

b′
jk − bjk

2
Ck.

If this number is > 0.11336 we are done. If not, we split the box B j into 32
smaller boxes by halving each side, and instead try to apply the method to
each of these smaller boxes. This is repeated recursively if necessary.

In order to avoid uncontrollable rounding errors in floating point arith-
metic, all computations in the proof are carried out using only integer
arithmetic, wherein integers a are used to represent rational numbers a/244,
and we keep track of rigorous lower and upper bounds in this format for
each partial result needed (in particular, rigorous bounds on the incomplete
Gamma function).

We remark that the above method of using interval arithmetic for the
first derivatives turned out to be more efficient than using interval arithmetic
on the function F(2)(Y ) itself. It turns out that for most of the 11426 boxes
B j �= B fcc no recursion is necessary. The total time required to prove (29)
in our present implementation is approximately 19 hours, on a 1.5 GHz
machine. Most time is spent on the boxes in the immediate neighbourhood
of B fcc or the bcc-point (F0(Y

−1
3 ) = 0.1139155 . . . ), and for four of these

boxes some parts of the search was forced to go through 6 levels of recursion.
It now remains to carry out the local analysis in the box B fcc. We fix the

representative

g0 = 2−1/3

(
1 0 1

−1 −1 0
0 1 1

)
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so that I [g0] = gt
0g0 = Y3. Note that with this choice, g0Z

3 is the lattice D3
in its standard representation, as in (22).

We will use spherical coordinates about the point Y3. Recall ([Ter2,
p. 16]) that an arbitrary geodesic in P ◦

3 starting at gt
0g0 can be written as

t �→ Y = Y(t) := (exp tA)[Ug0] = (exp tA[U])[g0],
for some A ∈ a and U ∈ SO(3). We can here take A to belong to the space

a1 := {A =
(

a1 0 0
0 a2 0
0 0 a3

)
∣∣ a1 + a2 + a3 = 0, a2

1 + a2
2 + a2

3 = 1
}

= {A ∈ a ∣∣ tr At A = 1
}
.

(30)

Then the geodesic t �→ Y(t) is parametrized by arc length. It follows that
the distance from I [g0] to Y ∈ P ◦

3 can be expressed as

ρ :=
√

(log λ1)
2 + (log λ2)

2 + (log λ3)
2,(31)

where λ j are the three eigenvalues of Y [g−1
0 ].

Let us write

B(g0, r) := {(exp tA[U])[g0]
∣∣ 0 � t � r, A ∈ a1, U ∈ SO(3)

}
,

the ball of radius r > 0 about the point Y3 = gt
0g0 in P ◦

3 . Computing the
Taylor expansion of ρ2 (cf. (31)) in terms of the Iwasawa coordinates near
(y1, y2, t12, t13, t23) = ( 9

8 ,
4
3 , 1

3 ,
2
3 ,

1
2 ), with rigorous bounds, we prove that

the box B fcc is completely contained in the ball of radius 0.18:

Bfcc ⊂ B(g0, t0), where t0 := 0.18.(32)

Cf. [S-St, sphere.pari].
Now let {b1, . . . , b5} be the orthonormal basis in p which we fixed in

last section, let

Fs(x) := Fs(exp(x1b1 + . . . + x5b5)[g0]) for x = (x1, . . . , x5) ∈ R5;
F(x) := F0(x),

and write S4 = {x = (x1, . . . , x5) |∑5
j=1 x2

j = 1} for the unit sphere inR5.
Note that

{
A[U] | A ∈ a1, U ∈ SO(3)

} = {X ∈ p ∣∣ tr Xt X = 1
}

= {x1b1 + . . . + x5b5

∣∣ x = (x1, . . . , x5) ∈ S4}.

Hence by (29) and (32), our proof of global minimum will be complete if
we can verify that

F(tx) > F(0) for all x ∈ S4, 0 < t � t0 = 0.18.(33)
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We need to get an explicit handle on the iterated derivatives of F(tx)

with respect to t. Note that ∂m

∂xm G(s, πx) = (−π)mG(s+m, πx). LetRm,n ∈
Z[X1, . . . , Xn] be the “chain rule polynomials”, defined by the following
identity for general one-variable functions f and g:

( f ◦ g)(n) =
n∑

m=1

Rm,n(g
′, g′′, . . . , g(n)) · ( f (m) ◦ g)

(thus R1,1(X1) = X1, R1,2(X1, X2) = X2, R2,2(X1, X2) = X2
1, etc.).

Given x ∈ S4, we fix A ∈ a1 and U ∈ SO(3) such that A[U] = x1b1 +
. . . + x5b5, and write Y = Y(t) = (exp tA)[Ug0]. It now follows from (25)
that for all t > 0 and n ∈ Z+, we have

dn

dtn
Fs(tx) =

∑

a∈Z3−{0}

n∑

m=1

(−π)mG(s + m, π · Y−1[a])

·Rm,n

(
d

dt
Y−1[a], . . . ,

dn

dtn
Y−1[a]

)

+
∑

a∈Z3−{0}

n∑

m=1

(−π)mG
(

3
2 − s + m, π · Y [a])

·Rm,n

(
d

dt
Y [a], . . . ,

dn

dtn
Y [a]
)

.

(34)

Here note that
dm

dtm
Y [a] = (Am exp tA)[Ug0a],

dm

dtm
Y−1[a] = ((−A)m exp −tA)

[
U
(
gt

0

)−1
a
]
.

We first discuss how to use (34) to obtain an explicit upper bound on∣∣ dn

dtnF(tx)
∣∣ valid for all x ∈ S4, t ∈ [0, t0]. To bound the R-factors in (34)

we simply insert absolute signs on each monomial in Rm,n , and use the
following bounds, valid for all 0 � t � t0 and m � 0:

∣∣∣∣
dm

dtm
Y [a]
∣∣∣∣ =
∣∣(Am exp tA)[Ug0a]∣∣ �

(
2

3

)m/2

e
√

2/3·t0 · |g0a|2;
∣∣∣∣

dm

dtm
Y−1[a]

∣∣∣∣ �
(

2

3

)m/2

e
√

2/3·t0 · ∣∣(gt
0

)−1
a
∣∣2.

To see that the above bounds are valid, note that the three diagonal elements
of any matrix A ∈ a1 (cf. (30)) always lie in the interval

[−√
2/3,

√
2/3
]
.

For the G-factors we use that G(s, x) is decreasing in the x-variable, and

Y [a] � e−√
2/3·t0 · |g0a|2; Y−1[a] � e−√

2/3·t0 · ∣∣(gt
0

)−1
a
∣∣2.
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Combining these facts, we obtain an upper bound on
∣∣ dn

dtnF(tx)
∣∣ in terms of

an explicit finite linear combination of sums of the form
∑

b

|b|2k · G
(
s′, πe−√

2/3·t0 · |b|2),

with s′ ∈ {0, 1, 3
2 , 2, 5

2 , 3, . . . } and k ∈ Z+, and where b runs through all
non-zero vectors in either the fcc lattice

g0Z
3 = D3 = {2− 1

3 (x1, x2, x3)
∣∣ all xi ∈ Z, x1 + x2 + x3 ≡ 0 (mod 2)

}
,

or its dual, the bcc lattice

(
gt

0

)−1
Z

3 = D∗
3 = {2− 2

3 (x1, x2, x3)
∣∣ all xi ∈ Z, x1 ≡ x2 ≡ x3 (mod 2)

}
.

In the case of D3, note that |b|2 = 2
1
3Z�0 for all b ∈ D3, and the counting

function N(m) = �{b ∈ D3 | |b|2 = 2
1
3 m} is well understood, cf. [C-S,

pp. 112–113]. The above sum equals

2k/3
∞∑

m=1

N(m) · mk · G
(
s′, πe−√

2/3·t0 · 2
2
3 · m

)
.

To bound this we use the explicit G-values and the known N(m)-values for
m � 16, while for m > 16 we use the (crude) bound

N(m) � 2 · �{(x1, x2) ∈ Z2
∣∣ |x1|, |x2| �

√
2m
}

< 30m

and

G(s, x) � (s + 1)e−x/x when 0 � s � x.(35)

(The bound (35) follows from G(s, x) = x−sΓ(s, x) and Γ(s, x) =∫∞
x e−t ts−1 dt < e−x xs−1 for s � 1, and for s > 1 one uses the recur-

sion formula Γ(s, x) = e−x xs−1 + (s − 1)Γ(s − 1, x).) The case of D∗
3 is

almost identical.
Carrying out these computations for n = D := 10 we obtained the

following bound:
∣∣∣∣

dD

dtD
F(tx)

∣∣∣∣ < 1.25 · 109, (D = 10), ∀x ∈ S4, 0 � t � t0 = 0.18.(36)

Note that the same type of arguments and bounds as above also allows us
to prove good bounds on the error when throwing away all “large a terms”
in (34), and for any given t � 0, n � 0 and x ∈ R5 we may thus compute
dn

dtnF(tx) to any desired (reasonable) precision. Let the Taylor expansion of
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F(x) at x = 0 be

F(x1, . . . , x5) ∼ F(0) +
∑

d�1

qd(x1, . . . , x5),

where each qd is a homogeneous polynomial of degree d. By invariance and
the results from last section, we know that the linear part of the expansion
vanishes; q1 ≡ 0, and for each d = 2, 3, . . . , the polynomial qd is a linear
combination of the invariant polynomials pd, j in (21). We determine the

coefficients in this linear combination by computing dd

dtdF(tx)|t=0 for nd

random choices of x ∈ {1, 2, . . . , 10}5 and equating the coefficients. In this
way, and again using only integer arithmetic and rigorous bounds on each
partial result, we determine each coefficient in each qd , d = 2, 3, . . . , 9,
up to an absolute error less than 10−10. (As a test we may then repeat the
computation of dd

dtdF(tx)|t=0 and compare with the result from the Taylor
expansion.) In particular we find

q2 = c1
(
x2

1 + x2
2

)+ c2
(
x2

3 + x2
4 + x2

5

)
with

{
c1 = 0.0236110815 . . .

c2 = 0.1509259456 . . .
.

It follows from (36) that for all x ∈ S4 and all 0 � t � t0 = 0.18 we have,
with D = 10,

F(tx) = F(0) +
D−1∑

d=2

qd(x)td + EDtD, where |ED| � 1.25 · 109

D! < 345.

Now, to prove (33), we split the unit sphere S4 into several boxes and
use interval arithmetic to compute upper and lower bounds of q2(x), q3(x)
and q4(x) on each such box, thus proving (with t0 = 0.18)

q2(x)t2
0 + min(q3(x), 0)t3

0 + min(q4(x), 0)t4
0 > 0.0002, ∀x ∈ S4.(37)

(Note that since each qd is Aut(D3)-invariant we may restrict attention to
a fundamental domain of S4/Aut(D3). Our computer proof of (37) uses
a covering of such a fundamental domain by 14504 boxes, and takes a few
minutes to run.) For 5 � d � 9 a much cruder analysis is sufficient;
namely, insert absolute bounds and apply |xm1

1 . . . xm5
5 | � (m1/d)|x1|d +

. . . + (m5/d)|x5|d individually for each monomial in qd; adding up we
obtain |qd(x1, . . . x5)| � c1|x1|d + . . . + c5|x5|d for some explicit positive
constants c j , and hence |qd(x1, . . . , x5)| � max(c1, . . . , c5) for all x =
(x1, . . . , x5) ∈ S4. In this way we obtained:

D−1∑

d=5

|qd(x)|td
0 + |ED|tD

0 < 0.00015, ∀x ∈ S4.(38)
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Together, (37) and (38) imply that for all x ∈ S4 and all 0 < t � t0 we have

Fx(t) = F(0) + q2(x)t2 +
D−1∑

d=3

qd(x)td + EDtD

� F(0) + (q2t2
0 + min(q3, 0)t3

0 + min(q4, 0)t4
0

) t2

t2
0

−
(

D−1∑

d=5

|qd|td
0 + |ED|tD

0

)
· t5

t5
0

> F(0) + 0.0002 · t2

t2
0

− 0.00015 · t5

t5
0

� F(0) + 0.00005 · t2

t2
0

.

This proves (33), and concludes the proof that the face-centered lattice is
the unique global minimum of the height function.

5. Some remarks on minima of theta functions

The theta function of a lattice L ∈ L◦
n is defined by

Θ(L, z) =
∑

�∈L

eπiz〈�,�〉, for z ∈ C, Im z > 0(39)

(cf. [C-S]). It is related to the Epstein Zeta function by

Γ(s)π−s E(L, s) =
∫ ∞

0
(Θ(L, iy) − 1)ys−1 dy, for Re s >

n

2
,(40)

which follows directly from the definitions and the formula Γ(s)π−s〈�, �〉−s

= ∫∞
0 e−πy〈�,�〉ys−1 dy. We will always keep z = iy, y > 0; then (39) is

a positive sum. Using Poisson summation one proves

Θ(L, iy) = y−n/2 · Θ(L∗, i/y).(41)

Note that (40) and (41) immediately imply

Γ(s)π−s E(L, s) =
∫ ∞

1
(Θ(L, iy) − 1) ys−1 dy

+
∫ ∞

1
(Θ(L∗, iy) − 1) y

n
2 −s−1 dy − 1

s
+ 1

s − n/2
.

(42)

(Alternatively, this follows from (23) and (24) by changing order of sum-
mation and integration.) By analytic continuation this identity holds for all
s ∈ C− {0, n

2 }.
For fixed z = iy, y > 0, each term in (39) is a decreasing function of

〈�, �〉, and it is natural to ask which L ∈ L◦
n yields the minimum value of

Θ(L, iy).
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We have the following local result, analogous to Theorem 1:

Proposition 2. For n = 4, 8 and 24 and y > 0, Θ(L, iy) has a strict local
minimum at L = Ln.

We give the proof below.
One might conjecture that for n = 4, 8 and 24, L = Ln yields the unique

minimum of Θ(L, iy), for any y > 0. (For n = 2 this is a theorem, proved
by Montgomery [Mo].) This would imply the corresponding conjecture for
the Epstein Zeta function, (5), as we see using (40), (42) and L∗

n = Ln.
Chua in [Chua] actually proves that Θ(L, iy) � Θ(L24, iy) for all y > 0
and all 297 unimodular integral lattices L ∈ L◦

24, thus giving evidence for
the above global minimum conjecture for Θ(L, iy). We also mention in this
vein the very interesting recent work by Cohn and Kumar, [C-K2, esp. §9].

In the case of n = 3, the fcc lattice L = D3 cannot possibly give the
global minimum of Θ(L, iy) for all y > 0, because of (41) and m(D∗

3) <
m(D3). However, it seems to be a plausible guess that

Θ(D3, iy) � Θ(L, iy) for all y � 1 and L ∈ L◦
3.(43)

Regarding the Epstein Zeta function in n = 3 it appears that the following
might hold:

E(D3, s) � E(L, s) for all s � 3
4 and L ∈ L◦

3.(44)

We have performed some preliminary computer tests to check the validity
of (43) and (44). If true, these two inequalities may eventually turn out to be
possible to prove numerically, and it may well be that the most convenient
approach to (44) would be to use (42) coupled with a careful study of
Θ(L, iy) in various regions, since Θ only involves the exponential function
and no incomplete Gamma function.

Proof of Proposition 2. The proof is very similar to the proof of Theorem 1.
Using (41) and L∗

n = Ln for n = 4, 8, 24 we see that we may assume y � 1.
As in Sect. 2 we expand the theta functions in a Taylor series about the point
L = Ln, and since f(Ln) � 2 by Sect. 3, we have

Θ(exp(x1b1 + . . . + xN bN )[g0]; iy)

= Θ(Ln, iy) + a2(y) ·
N∑

j=1

x2
j +
[
higher
order

]
,

(45)

for some a2(y) ∈ R. Here, as before, gt
0g0 = Y0, the Gram matrix of Ln,

and b1, . . . , bN is any orthonormal basis in p. (Note, however, in contrast
to Sect. 2, that Θ(·, iy) is in general not an eigenfunction of the ring D(P ◦

n )
of invariant differential operators, and Proposition 1 does not apply.)
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Next, we have the following formula for the action of the Laplace oper-
ator (in the lattice variable) on Θ(L, iy):

∆Θ(L, iy) = n − 1

n
·
∑

�∈L−{0}

(
πy〈�, �〉 − (n

2 + 1
))

πy〈�, �〉e−πy〈�,�〉.(46)

This can be proved eg. using [Ter2, p. 35 (Ex. 32)].
Recall that we are assuming y � 1. If n = 4 or n = 8 then each

term in (46) is positive, since m(D4) = 21/4, m(E8) = √
2, and hence

∆Θ(Ln, iy) > 0.
The same is true for n = 24, but the proof is slightly more involved:

Since m(L24) = 2 we have πy · m(L24)
2 > 24

2 + 1 whenever y � 1.04, and
hence in this case all terms in (46) are positive. It now only remains to treat
1 � y < 1.04. There are 196560 vectors of length 2 and 16773120 vectors
of length

√
6 in L24, and all other vectors have length �

√
8 [C-S, p. 135].

Note that π · 6 > 24
2 + 1. Hence if 1 � y < 1.04 we have

∆Θ(L24, iy) >
n − 1

n
· (196560 · (π · 4 − 13) · π · 1.04 · 4 · e−π·4

+ 16773120 · (π · 6 − 13) · π · 6 · e−π·1.04·6)(47)

= 23

24
(−3.884647 . . . + 5.666689 . . . ) > 0.

Hence by (45), in all three cases,

a2(y) = 1

2N
· ∆Θ(Ln, iy) > 0.(48)

Hence L = Ln is indeed a local minimum of Θ(L, iy). 
�
Applying the Laplace operator to both sides of (40) we have (using (12)

and λ(s) = n−1
n s( n

2 − s)),

1 − n

n
s

(
n

2
− s

)
Γ(s)π−s E(L, s) =

∫ ∞

0
∆Θ(L, iy) · ys−1 dy.

Hence from the fact ∆Θ(Ln, iy) > 0 which we verified above we obtain
a new proof of the crucial relation (17), i.e. E(Ln, s) < 0 for 0 < s < n

2 ,
n = 4, 8, 24. Note that this new proof is simpler in terms of the numerics
involved.

6. Heights in large dimension

We recall from Sect. 4 that the height function in arbitrary dimension n is
given by

h(L) = log 4π − γ − 2

n
+ F0(L),(49)
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where

F0(L) =
∑

m∈L∗
m �=0

G(0, π|m|2) +
∑

m∈L
m �=0

G
(

n
2 , π|m|2).(50)

We will use (49) to study h(L) for L ∈ L◦
n . To do so we need to examine

G(s, x) (cf. (24)) as s → ∞ with x in various ranges. Temme in [Tem2]
gave a uniform asymptotic expansion of the incomplete Gamma function
in complex variables. For us it will be sufficient to consider the leading
order terms, and real variables; in fact the asymptotics that we need could
alternatively be derived fairly easily from scratch using elementary calculus.
The expansion involves the complementary error function, which is defined
by

erfc(t) = 2√
π

∫ ∞

t
e−w2

dw.

We note the following properties, all of which are easily verified:

erfc(t) = e−t2

√
πt

(1 + O(t−2)) as t → ∞,(51)

erfc(0) = 1, and(52)

erfc(t) = 2 − erfc(−t) = 2 − O(e−t2
/t) as t → −∞.(53)

Proposition 3. ([Tem2]) The following asymptotic relation holds uniformly
for all x > 0, as s → ∞:

G(s, x) ∼
√

π

2s

(ex

s

)−s ·
{

erfc(η
√

s/2) +
√

2

π

e−sη2/2

√
s

(
1

λ − 1
− 1

η

)}
.

(54)

Here λ = x/s and η = η(λ) = √2(λ − 1 − log λ), an analytic function of
λ in some complex domain containing all λ > 0, with branch chosen so that
η > 0 for λ > 1.

In particular, for any fixed constant α > 1
2 , we have uniformly in the

range 0 < x � s − sα, as s → ∞,

G(s, x) ∼
√

2π

s

(xe

s

)−s
,(55)

and in the range x � s + sα,

G(s, x) ∼ e−x

x − s
.(56)
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Proof. By [Tem2, (1.1), (2.5), (2.13), with N = 1]) we have

G(s, x) = x−sΓ(s)A(s, x) + ε(s, x),(57)

where

A(s, x) = 1

2
erfc
(
η
√

s/2
)+ e−(1/2)sη2

√
2πs

(
1

λ − 1
− 1

η

)
,(58)

and by [Tem2, (2.13), (2.14)] and Stirling’s formula the error ε(s, x) is
bounded by

|ε(s, x)| � (xe/s)−s

s(s + x)

{
e−(1/2)sη2

if η � 0

2 if η � 0

}
+ G(s, x)

s2
(59)

uniformly for s, x > 0.
The auxiliary function η(λ) is increasing for λ > 0, and η(λ) = λ− 1 +

O((λ − 1)2) as λ → 1. Hence the function 1
λ−1 − 1

η
is uniformly bounded

for all λ > 0. Now fix any constant 1
2 < α < 2

3 . Using (51) and (53) we
then deduce that as s → ∞,

A(s, x) ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if 0 < x � s − sα

1
2erfc(η

√
s/2) if s − sα � x � s + sα

e−(1/2)sη2

√
2πs (λ − 1)

if s + sα � x.

(60)

(To prove (60) in the third range, i.e. 1 + sα−1 � λ, one uses the fact
that η � λ − 1 for 1 < λ � 2 and η � √

λ for all λ � 2 to see that
1

λ−1 + O( 1
η3s

) ∼ 1
λ−1 .)

We now divide through with x−sΓ(s)A(s, x) in (57). Regarding the error
(cf. (59)) we first verify by a quick computation using (60) that

1

x−sΓ(s)A(s, x)
· (xe/s)−s

s(s + x)

{
e−(1/2)sη2

if η � 0

2 if η � 0

}
� s−1,

uniformly for x > 0, s → ∞. Hence by (59) and (57),
∣∣∣∣

G(s, x)

x−sΓ(s)A(s, x)
− 1

∣∣∣∣� s−1 + s−2 · G(s, x)

x−sΓ(s)A(s, x)
.(61)

This implies

G(s, x)

x−sΓ(s)A(s, x)
→ 1(62)

uniformly for x > 0, s → ∞. This is equivalent to (54), by (58) and
Stirling’s formula. Now (55) and (56) follow using (60) and η =√

2(λ − 1 − log λ). 
�
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We remark that Temme gives explicit numerical bounds for the implied
constants in error bounds related to (59) (cf. [Tem2, §4]).

As a corollary to Proposition 3 we note some bounds for later use.

Corollary 2. The following bound holds uniformly for all x > 0, s � 1,

G(s, x) � 1√
s

(ex

s

)−s
.(63)

In the case x � s � 1 we also have the stronger bound

G(s, x) � e−x

√
s
.(64)

Proof. For s large these two bounds follow from (62) since A(s, x) � 1 for
all x > 0 and A(s, x) � e−(1/2)sη2 = es−x(x/s)s when x � s (cf. (60)).

It remains to treat the case 1 � s � B where B is some constant; this is
easily done using the definition, G(s, x) = ∫∞

1 e−xy ys dy
y . For (63) it suffices

to note that G(s, x) = x−s
∫∞

x e−uus−1 du �B x−s for all x > 0, 1 � s � B.
For (64) we note ys−1 �B ey for all y � 1, 1 � s � B, and hence if x � 2,
G(s, x) �B

∫∞
1 e−(x−1)y dy � e1−x . 
�

It is now easy to prove a first lower bound for h(L) in terms of the length
of the shortest vector, m(L). First note that since F0(L) > 0 we have by
(49), for all L ∈ L◦

n, n � 2,

h(L) > log 4π − γ − 2

n
> 1.95 − 2

n
� 0.95.(65)

Recall that since −L = L , there are at least two vectors v ∈ L attaining
|v| = m(L), and thus, by (50), h(L) > F0(L) > 2G( n

2 , πm(L)2). Hence
by (55), as n → ∞ we have for all L ∈ L◦

n such that (say) πm(L)2 < 2
5 n,

h(L) � 2

√
4π

n

(
2πe

n
m(L)2

)− n
2

(1 + o(1)).(66)

But it follows from known upper bounds on the density of sphere pack-
ings [C-S, p. 19 (45), or (41)] that πm(L)2 < 2

5 n is true for all L ∈ L◦
n

(for n large), and thus (66) holds unconditionally. (Alternatively, we may
simply note that πm(L)2 � 2

5n would imply 2πe
n m(L)2 > 2e

3 > 1, and then
(66) follows trivially from (65).) Note that (66) is equivalent to the lower
bound (9) stated in the introduction.

For the proof of Theorem 3 we will need certain integration formulae
of Siegel and Rogers respectively ([Si], [Ro]). Siegel’s formula, which is
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familiar in the theory of the constant term of Eisenstein series asserts that if
f defined on Rn is nonnegative and

F(L) =
∑

m∈L
m �=0

f(m)

then
∫

L◦
n

F(L) dµ(L) =
∫

Rn
f(x) dx.(67)

(Here dx is Lebesgue measure on Rn giving [0, 1] × . . . × [0, 1] measure
equal to 1).

Rogers’ formula is related to the familiar formula for the inner product
of two incomplete Eisenstein series and it asserts the following: Let ρ be
a nonnegative function on Rn × Rn satisfying ρ(±x1,±x2) = ρ(x1, x2).
Then

∫

L◦
n

∑

m1∈L

∗ ∑

m2∈L

∗
ρ(m1, m2) dµ(L)(68)

= 1

ζ(n)2

∫

Rn

∫

Rn
ρ(x1, x2) dx1dx2 + 2

ζ(n)

∫

Rn
ρ(x, x) dx.

Here ∗ denotes that the sum is restricted to the primitive lattice vectors in L
(i.e. non-zero vectors which are not positive integral multiples of another
lattice vector).

Proposition 4. Let Rn be a sequence of positive numbers satisfying

Rn
nωn

n
= o(1) as n → ∞,

where ωn is the volume of the n − 1 sphere. Then

µ
{

L ∈ L◦
n

∣∣ m(L) � Rn
}→ 0 as n → ∞.

Proof. Apply Siegel’s formula (67) with f(x) = χRn
(x) =

{
1 if |x| � Rn

0 if |x| > Rn
.

Then
∫

L◦
n

∑

m∈L
m �=0

χRn
(m) dµ(L) =

∫

Rn
χRn

(x) dx = ωn Rn
n

n
.

If m(L) � Rn then the sum on the left hand side is at least 1. Hence

µ
{

L ∈ L◦
n

∣∣ m(L) � Rn
}
� ωn Rn

n

n
→ 0.


�
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Note that

ωn = 2πn/2

Γ(n/2)
(69)

and hence from Stirling’s series

ωn ∼
(

2πe

n

)n/2√ n

π
as n → ∞.(70)

So

Rn =
( n

2πe

)1/2
(71)

satisfies the assumption in Proposition 4 and we will use this choice of Rn
below.

In order to study F0 in (50) we start with H given by

H(L) =
∑

m∈L
m �=0

G
(

n
2 , π|m|2).(72)

According to (67),
∫

L◦
n

H(L) dµ(L) =
∫

Rn
G
(

n
2 , π|x|2) dx = ωn

∫ ∞

0
G
(

n
2 , πr2) rn−1 dr

= ωn

∫ ∞

0

∫ ∞

1
e−πr2 y y

n
2

dy

y
rn−1 dr = ωn

∫ ∞

1
y

n
2

∫ ∞

0
e−πr2 yrn dr

r

dy

y

= ωn

∫ ∞

1

∫ ∞

0
e−πξ2

ξn dξ

ξ

dy

y
= ∞.

Thus to find small values of H(L) we truncate H . Set

HRn (L) =
∑

m∈L
m �=0

G
(

n
2 , π|m|2)IRn(m),

where

IRn (x) =
{

1 if |x| > Rn

0 if |x| � Rn.

Note that if m(L) > Rn then

HRn(L) = H(L).

Consider

E(HRn) :=
∫

L◦
n

HRn (L) dµ(L).
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Applying (67) yields

E(HRn ) =
∫

Rn
G
(

n
2 , π|x|2)IRn(x) dx = ωn

∫ ∞

Rn

G
(

n
2 , πr2)rn−1 dr.

We take Rn as in (71) and break up the integral according to the intervals in
Proposition 3. We keep α fixed, 1

2 < α < 1, and set δn = (n/2)α−1. Write

E(HRn ) = I + II + III

with

I = ωn

∫ √
n

2π (1−δn)

√
n

2πe

G
(

n
2 , πr2

)
rn−1 dr

II = ωn

∫ √
n

2π (1+δn)

√
n

2π (1−δn)

G
(

n
2 , πr2

)
rn−1 dr

III = ωn

∫ ∞
√

n
2π

(1+δn)

G
(

n
2 , πr2)rn−1 dr.

According to (55) in Proposition 3 we have

I ∼ ωn

∫ √
n

2π
(1−δn)

√
n

2πe

2

√
π

n

(
2πr2e

n

)− n
2

rn−1 dr

= 2ωn

( n

2πe

) n
2

√
π

n

∫ √
n

2π
(1−δn)

√
n

2πe

dr

r
.

Using (70) it follows that

I ∼ 2 log

(√
1 − δn√

1/e

)
∼ 1 as n → ∞.(73)

As for II , we use (63) to get

II � ωn

∫ √
n

2π (1+δn)

√
n

2π
(1−δn)

1√
n

(
2πr2e

n

)− n
2

rn−1 dr

�
(

2πe

n

) n
2 √

n

(
2πe

n

)− n
2 1√

n
log

(
1 + δn

1 − δn

)
= o(1)

(74)

as n → ∞.
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Finally for III we have, by (56) in Proposition 3,

III ∼
∫ ∞
√

n
2π (1+δn)

e−πr2

πr2 − n
2

rn−1 dr.

Now

e−πr2
rn �

( n

2πe

) n
2

for r �
( n

2π

)1/2
,

and hence

III � ωn

( n

2πe

) n
2
∫ ∞
√

n
2π (1+δn)

1(
πr2 − n

2

)
r

dr

� √
n
∫ n

n
2π (1+δn)

1(
πu − n

2

)√
n

· du√
n

+ √
n
∫ ∞

n

1

u · √
u

· du√
u

� 1√
n

log
(

1

δn

)
= o(1) as n → ∞.

(75)

Combining (73), (74) and (75) we have

Proposition 5.

E(HRn ) ∼ 1 as n → ∞.

Next we estimate the variance of HRn .

Proposition 6.

V(HRn) = E
(
(HRn − E(HRn ))

2
)� n−3/2, ∀n � 3.

Proof. We have
∫

L◦
n

HRn(L)2 dµ(L)

=
∫

L◦
n

∑

m1∈L
m1 �=0

G
(

n
2 , π|m1|2

)
IRn(m1)

∑

m2∈L
m2 �=0

G
(

n
2 , π|m2|2

)
IRn(m2) dµ(L)

=
∑

d1�1
d2�1

∫

L◦
n

∑

ν1,ν2∈L

∗
G
(

n
2 , π|ν1|2|d1|2

)
IRn (d1ν1)

· G
(

n
2 , π|ν2|2d2

2)IRn (d2ν2) dµ(L),

where ∗ denotes that the ν1, ν2-sum is over pairs of primitive vectors in L .
Applying (68) yields
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∫

L◦
n

HRn(L)2 dµ(L)

=
∑

d1,d2

[
1

ζ(n)2

∫

Rn

∫

Rn
G
(

n
2 , π|x1|2d1

2
)

IRn (d1x1)

· G
(

n
2 , π|x2|2d2

2
)
IRn (d2x2) dx1 dx2

+ 2

ζ(n)

∫

Rn
G
(

n
2 , π|x|2d1

2) IRn (d1x) G
(

n
2 , π|x|2d2

2) IRn (d2x) dx

]

=
∑

d1,d2

1

ζ(n)2dn
1 dn

2

∫

Rn
G
(

n
2 , π|x1|2

)
IRn (x1) dx1

∫

Rn
G
(

n
2 , π|x2|2

)
IRn (x2) dx2

+ 2

ζ(n)

∑

d1,d2

∫

Rn
G
(

n
2 , π|x|2d1

2) IRn (d1x) G
(

n
2 , π|x|2d2

2) IRn (d2x) dx.

Now the first sum is just
(∫
Rn G( n

2 , π|x|2) IRn (x) dx
)2

which is E(HRn)
2.

Hence we have
∫

L◦
n

HRn(L)2 dµ(L) = E(HRn )
2

+ 2

ζ(n)

∑

d1,d2

∫

Rn
G
(

n
2 , π|x|2d1

2) IRn (d1x) G
(

n
2 , π|x|2d2

2) IRn (d2x) dx,

or what is the same,

V(HRn) = 2

ζ(n)

∑

d1,d2

∫

Rn
G
(

n
2 , π|x|2d1

2
)
IRn (d1x)G

(
n
2 , π|x|2d2

2
)
IRn(d2x)dx.

(76)

Apply the inequality (63) to get

V(HRn) � 2

ζ(n)

∑

d1,d2

∫ ∞

max
(

Rn
d1

, Rn
d2

)
1√
n

(
2πd2

1r2e

n

)− n
2 1√

n

(
2πd2

2r2e

n

)− n
2

· ωnrn−1 dr

= 2ωn

ζ(n)n

(
2πe

n

)−n ∑

d1,d2

d−n
1 d−n

2

∫ ∞

Rn/ min(d1,d2)

r−n−1 dr

= 2ωn

ζ(n)n

(
2πe

n

)−n R−n
n

n

∑

d1,d2

max(d1, d2)
−n.

But we have
∑

d1,d2
max(d1, d2)

−n = ∑∞
m=1(2m − 1)m−n , and this sum

is uniformly bounded for all n � 3. Recalling ωn ∼ (
2πe

n

)n/2√ n
π

and
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Rn = ( n
2πe

)1/2
we obtain

V(HRn) � n−3/2. 
�
We remark that for n = 2 we have V(HR) = ∞ for all R > 0. This is

easily seen from (76) (with R in place of Rn), using G(1, x) = x−1e−x and
only considering the terms with (e.g.) 1 � d1 � d2 � 2d1.

Proposition 7. For ε > 0,

µ
{

L ∈ L◦
n

∣∣ |H(L) − 1| > ε
}→ 0 as n → ∞.

Proof. This is a matter of collecting what we have. For n large enough,
according to Proposition 5, we have |E(HRn ) − 1| < ε/2, hence
{

L ∈ L◦
n

∣∣ |H(L) − 1| > ε
} ⊂ {L ∈ L◦

n

∣∣ H(L) �= HRn(L)
} ∪

{
L ∈ L◦

n

∣∣∣ |HRn(L) − E(HRn )| >
ε

2

}
.

Now Proposition 4 asserts that the measure of the first set on the right hand
side goes to zero while Proposition 6 does the same for the second set. 
�

We turn to the second series in (50). Set

J(L) =
∑

m∈L∗
m �=0

G(0, π|m|2).

As before, let Rn = ( n
2πe

)1/2
and define

JRn(L) =
∑

m∈L∗
m �=0

G(0, π|m|2)IRn(m).

Then

µ
{

L ∈ L◦
n

∣∣ JRn (L) �= J(L)
}→ 0 as n → ∞.(77)

Again applying (67) and using the fact that the measure µn is invariant
under the homeomorphism L �→ L∗ of L◦

n onto itself,

E(JRn ) =
∫

Rn
G(0, π|x|2)IRn(x) dx = ωn

∫ ∞

Rn

G(0, πr2)rn−1 dr.

Now G(0, x) �
∫∞

1 e−xy dy = x−1e−x, hence

E(JRn ) � ωn

∫ ∞

Rn

e−πr2

πr2
rn−1 dr.
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The maximum of rne−πr2
for 0 < r < ∞ occurs when r = ( n

2π

)1/2
, thus

E(JRn ) � ωn

( n

2π

)n/2
e−n/2

∫ ∞

Rn

dr

πr3
= ωn

2π

( n

2πe

)n/2
R−2

n

∼ 1

2π

( n

2πe

)−n/2
√

n

π

( n

2πe

)n/2 ( n

2πe

)−1 � n−1/2.

It follows that for each ε > 0,

µ
{

L ∈ L◦
n

∣∣ JRn (L) > ε
}→ 0 as n → ∞.(78)

Combining (78) with (77) we have

Proposition 8. For each ε > 0,

µ
{

L ∈ L◦
n

∣∣ J(L) > ε
}→ 0 as n → ∞.

Since the function F0(L) in (50) is equal to H(L)+ J(L), we may conclude
from Propositions 7 and 8 that for each ε > 0,

µ
{

L ∈ L◦
n

∣∣ |F0(L) − 1| > ε
}→ 0 as n → ∞.

Recalling the formula (49) for the height we have established our main
result of this section:

µ
{

L ∈ L◦
n

∣∣ |h(L) − (log 4π − γ + 1)| > ε
}→ 0 as n → ∞.(79)

In other words, we have now completed the proof of Theorem 3 stated in
the introduction.

If mn = min{h(L) | L ∈ L◦
n} then according to (79) and (65) we have

that

log 4π − γ − 2

n
< mn � log 4π − γ + 1 + o(1).(80)

Hence Corollary 1 is now proved.
By way of comparison, Theorem 2 asserts that

m3 = h(D3) = log 4π − γ − 2

3
+ 0.113359 . . . ,

while we expect that

m24 = h(L24) = log 4π − γ − 1

12
+ 0.270863 . . . .
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