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Abstract. We give an affirmative answer to a problem of Liao and Mañé
which asks whether, for a nonsingular flow to loose the Ω-stability, it must
go through a critical-element-bifurcation. More precisely, a vector field S
on a compact boundaryless manifold is called a star system if S has a C1

neighborhood U in the set of C1 vector fields such that every singularity
and every periodic orbit of every X ∈ U is hyperbolic. We prove that any
nonsingular star flow satisfies Axiom A and the no cycle condition.

1 Introduction

Let M be a compact d-dimensional C∞ Riemannian manifold without
boundary. Denote by X(M) the set of C1 vector fields on M, endowed
with the C1 topology. Denote φt = φXt : M → M the flow generated
by X ∈ X(M). Singularities and periodic orbits, sometimes called critical
elements, are the simplest orbits of a flow. They are special kind of the so
called nonwandering orbits. Recall a point x ∈ M is called nonwandering
of X ∈ X(M) if for any neighborhood U of x in M, there is t ≥ 1 such
that φt(U) ∩ U �= ∅. Denote the nonwandering set of X by Ω(X), which
then contains the recurrence and the long run behavior of all orbits of X.
A vector field X is called Ω-stable if, briefly, small perturbations of X can
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not change the topological structure of Ω(X). There had been the follow-
ing somewhat-informal problem in the literature, though exact references
are seemingly hard to specify: For a flow to loose the Ω-stability, must it
go through a critical-element-bifurcation? In other words, having robustly
no critical-element-bifurcation, must a flow be Ω-stable? Let us be more
precise.

A vector field S ∈ X(M) is called a star vector field or a star flow, de-
noted by S ∈ X∗(M), if S has a C1 neighborhood U in X(M) such that every
singularity and every periodic orbit of every X ∈ U is hyperbolic. Thus
a star flow is exactly one that has robustly no critical-element-bifurcation.
Since the definition concerns critical elements only, and since the hyperbol-
icity put on critical elements is merely orbit-wise but not uniform, the star
condition looks, a priori, quite weak. It is not surprising that the Axiom A
plus no-cycle condition, which is necessary and sufficient for a flow to be
Ω-stable, looks much stronger.

Let us quickly recall the definition of Axiom A plus no-cycle condi-
tion, put on the nonwandering set. We say X satisfies Axiom A if Ω(X)

is hyperbolic, and if Ω(X) = Sing(X) ∪ P(X), where Sing(X) and P(X)
denote the sets of singularities and periodic points of X, respectively. Here
a compact invariant set Λ ⊂ M is called hyperbolic for X if TΛM has a con-
tinuous dφt-invariant splitting Es⊕ < X > ⊕Eu , where < X > denotes
the 1-dimensional subspace spanned by the vector field X, such that for two
uniform constants λ > 0, T > 0,

∥
∥dφt

∣
∣Es(x)

∥
∥ ≤ e−λt and

∥
∥dφ−t

∣
∣Eu(x)

∥
∥ ≤ e−λt

for all x ∈ Λ and t ≥ T . If X satisfies Axiom A, then Ω(X) decomposes
into a finite disjoint union of transitive sets Ω(X) = Λ1 ∪ · · · ∪ Λl, called
the basic sets of X [31]. A collection of basic sets Λi1 , ...,Λik of X is called
a cycle, if there exist points aj /∈ Ω(X), 1 ≤ j ≤ k, such that α(aj) ⊂ Λi j

and ω(aj) ⊂ Λi j+1 (k +1 ≡ 1). An Axiom A vector field X is said to satisfy
the no-cycle condition if there are no cycles among the basic sets of X.

In terms of these terminologies, the above somewhat informal problem
can be formally stated as follows.

Problem 1 Does every star flow satisfy Axiom A and the no-cycle condi-
tion?

The problem is striking. An affirmative answer to it would amount to an
extension of the famous stability conjecture and Ω-stability conjecture of
Palis and Smale [26] because, as assumptions, structural stability implies
Ω-stability, which in turn implies the star condition.

For diffeomorphisms, the answer to Problem 1 is proved to be affirmative
indeed (here, likewise, a diffeomorphism f is called a star diffeomorphism,
denoted by f ∈ F ∗(M), if f has a C1 neighborhood U in Diff(M) such
that every periodic orbit of every g ∈ U is hyperbolic). That is, for diffeo-
morphisms, the star condition is proved to imply, hence to be equivalent
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to, Axiom A plus the no-cycle condition, see Liao [17] and Mañé [20] for
dimension 2, and Aoki [1] and Hayashi [10] for general dimensions.

However, for flows, the answer to Problem 1 is negative. A star flow
may fail to have hyperbolic nonwandering set as the famous Lorenz attrac-
tor shows [9], or fail to have the critical elements dense in the nonwandering
set [4] or, even with Axiom A satisfied, still fail to satisfy the no-cycle con-
dition [14]. Thus, for flows, to have robustly no critical-element-bifurcation
is far from being Ω-stable.

Nevertheless, all these counterexamples for star flows exhibit singular-
ities. Liao and Mañé hence raised the following problem for nonsingular
star flows:

Problem 2 (Liao [17], Mañé [20]) Does every nonsingular star flow S
satisfy Axiom A and the no-cycle condition?

Liao emphasized this long-standing problem for several times, see for
instance [19], p. 319. For dimension 3, Liao [17] solved Problem 2 affirma-
tively (for dimensions ≤ 2 an affirmative answer is contained in the classical
work of Peixoto [27]). For general dimensions, Problem 2 remained open.
The proof of the problem for star diffeomorphisms does not carry over to
nonsingular star flows. One thing that causes the difference is a simple fact
that, for flows, periods of periodic orbits are not necessarily integers. When
a continuous arc of hyperbolic periodic orbits Pλ of a continuous arc of
flows Xλ vary as the parameter λ varies, the periods of Pλ do not have
to be kept the same as in the case of diffeomorphisms. In fact the periods
may sweep to infinity with an arbitrarily small change of parameter λ. In
other words, while for diffeomorphisms, a hyperbolic periodic orbit can not
disappear through such an arc of hyperbolic periodic orbits, generally it can
for flows, see the remarks of Liao in [17, p. 35] and Mañé in [20, p. 508].
On the other hand, with some C1 generic assumptions added, the proof for
diffeomorphisms does carry over to flows, see [7,13].

In this paper we push forward the methods of Liao and Mañé to obtain
an affirmative answer to Problem 2 for general dimensions:

Theorem A Every nonsingular star flow satisfies Axiom A and the no-cycle
condition.

Let us say some words about the proof of Theorem A. The proof will take
the so called minimally rambling sets approach of Liao. In this approach,
to prove that a set Γ (for instance the nonwandering set) is hyperbolic, one
does not have to handle the whole set Γ globally, but only has to disprove
the existence of minimally rambling sets in Γ, which are of a relatively
less global nature, see Sect. 2 for more details. Throughout the proof of
Theorem A, a great deal of the fundamental work of Liao and Mañé will
be needed. Indeed, we will see the mark and influence of Liao and Mañé
everywhere in this paper.
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There is a refined version of Theorem A, which is what we will prove
precisely in Sect. 7 below. It does not totally ignore singularities, but requires
that singularities do not appear in the so called preperiodic set.

Theorem A′ If S ∈ X∗(M), and if the C1 preperiodic set P∗(S) of S is free
of singularities, then S satisfies Axiom A and the no-cycle condition.

Here a point x ∈ M is called preperiodic of S, if there is a sequence
of points xn ∈ Pn such that xn → x, where Pn is a sequence of periodic
orbits of Yn with Yn → S in the C1 topology. Denote by P∗(S) the set of
preperiodic points of S. Clearly P∗(S) is compact and S-invariant. Note that

Ω(S) − Sing(S) ⊂ P∗(S)

by the C1 closing lemma.
A key step in proving Theorem A is the following Theorem B. We single

it out and state it in a flexible way for some possible general use.

Theorem B Let S ∈ X∗(M). Let Γ ⊂ P(S) be a compact invariant set of
S such that Γ ∩ Sing(S) = ∅. Then Γ is hyperbolic.

This paper is organized as follows. In Sect. 2 we present a principle of
Liao for proving hyperbolicity and give an outline of the proof of Theo-
rem A. In Sect. 3 we improve a result of Liao on non-simple minimally
rambling sets for star flows. In Sect. 4 we show that star flows exhibit no
heterodimensional cycles. In Sect. 5 we prove a result about determination
of the index of preperiodic points. In Sect. 6 we prove Theorem B by pro-
ducing a heterodimensional cycle using the connecting lemma. In Sect. 7
we prove Theorem A by a generalized shadowing lemma.

2 An outline for the proof of Theorem A

In this section we give an outline for the proof of Theorem A. We first
introduce in a simplified version the beautiful idea of Liao on minimally
rambling sets.

A compact invariant set Λ of S ∈ X(M) is called minimally non-
hyperbolic if Λ is non-hyperbolic, but every nonempty compact invariant
proper subset of Λ is hyperbolic. This notion resembles the notion of mini-
mally rambling set of Liao [17], and plays an important role in the remark-
able work of Pujals and Sambarino [29]. There is an introduction for the
notion of minimally non-hyperbolic set in Wen [37]. The following lemma
is an easy consequence of the robustness of hyperbolic sets, see [17,29] for
a proof.

Lemma 2.1 Every non-empty non-hyperbolic set contains at least one min-
imally non-hyperbolic set.
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We follow Liao [17] to divide minimally non-hyperbolic sets without
singularities into two types, in a slightly different way by using the following
Proposition 2.2. Since all minimally non-hyperbolic sets considered in this
paper will be free of singularities, it will be convenient to use the linear
Poincaré flow defined as follows. A vector field X ∈ X(M) generates
a C1 flow φt = φXt : M → M, t ∈ R, together with the tangent flow
dφt : TM → TM. Denote

D = DX = {v ∈ Tx M : 〈v, X(x)〉 = 0 and x ∈ M − Sing(X)}.
Projected to D, the tangent flow dφt naturally induces the linear Poincaré
flow ψt = ψXt : D → D of X, defined to be

ψt(v) = π(dφt(v)) for any v ∈ D,

where π is the orthogonal projection to D. For any linear subspace A ⊂
D(x), t > 0, denote

η−(A, t) = η−(X, A, t) = sup
u∈A,‖u‖=1

{log ‖ψXt(u)‖},

η+(A, t) = η+(X, A, t) = inf
u∈A,‖u‖=1

{log ‖ψXt(u)‖}.

It is well known ([16]) that a compact invariant set Λ ⊂ M − Sing(X) is
hyperbolic if and only if DΛ has a continuous invariant splitting DΛ = E⊕F
such that for some two uniform constants η > 0, T > 0, the rates for the
linear Poincaré flow satisfy

η−(X, E(x), t) ≤ −ηt and η+(X, F(x), t) ≥ ηt

for all x ∈ Λ and t ≥ T . We will say Λ is of index i, 0 ≤ i ≤ d −1, denoted
as Ind(Λ) = i, if dimE(x) = i for all x ∈ Λ. It is easy to see if Ind(Λ) = 0,
then Λ is the union of finitely many expanding periodic orbits. Likewise for
the case of Ind(Λ) = d − 1. For x ∈ M − Sing(X), denote

Ds(x) = Ds(x, X) = {

v ∈ D(x, X) : lim
t→+∞ ‖ψXt(v)‖ = 0

}

,

and

Du(x) = Du(x, X) = {

v ∈ D(x, X) : lim
t→−∞ ‖ψXt(v)‖ = 0

}

.

These two linear subspaces are defined at every non-singular point x ∈ M.
In particular, if Λ ⊂ M − Sing(X) is hyperbolic, then Ds(x) = E(x)
for all x ∈ Λ. The following proposition is an equivalent characterization
for hyperbolic sets without singularities, due to Selgrade [30], Sacker and
Sell [33], Mañé [22] and Liao [16].
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Proposition 2.2 A compact invariant set Λ ⊂ M − Sing(X) of X is hyper-
bolic if and only if

D(x) = Ds(x) ⊕ Du(x), (2.1)

for any x ∈ Λ.

A point x ∈ M − Sing(X) will be called resisting of X if x does not
satisfy the condition (2.1). Thus by Proposition 2.2, every nonsingular non-
hyperbolic set contains at least one resisting point. Now we divide minimally
non-hyperbolic sets without singularities into two classes. A minimally non-
hyperbolic set Λ without singularities will be called of simple type if there
is a resisting point a ∈ Λ such that both α(a) and ω(a) are proper subsets
of Λ. Otherwise, Λ will be called non-simple type.

A simple type minimally non-hyperbolic set Λ without singularities has
a clear feature. Being a proper subset of Λ, both α(a) and ω(a), where
a ∈ Λ is a resisting point, are hyperbolic. It is then easy to see Λ =
α(a) ∪ Orb(a) ∪ ω(a). See [37] for more details. Thus Λ is like a heteroclinic
connection. The structure for a non-simple type minimally non-hyperbolic
set without singularities has not been well understood in general, besides by
definition for every resisting point a ∈ Λ, either Λ = ω(a), or Λ = α(a).
For star flows however, Liao [17] obtains enough information for non-simple
type minimally non-hyperbolic sets without singularities, which makes the
following principle of Liao very powerful.

Principle Let Γ ⊂ M−Sing(X) be a compact invariant set of X. To prove
that Γ is hyperbolic, it suffices to rule out the existence of the two kinds of
nonsingular minimally non-hyperbolic subsets contained in Γ.

Now we give an outline for the proof of Theorem A. In Sect. 3 we
improve a result of Liao on non-simple type minimally rambling sets for
star flows. It is based on several deep results of Liao and Mañé on the
stability conjectures, which will be used also in later sections. In Sect. 4
we prove a basic property about star flows, that is, any star flow exhibits
no heterodimensional cycles. In particular, this will provide a basis for us
to apply the principle of Liao by creating a heterodimensional cycle. While
the result seems to be very natural, the calculations are quite involved.
In Sect. 5 we prove a result about index-determination for preperiodic
points, hence index-determination for dominated splittings. It will be done
via creation of homoclinic orbits, by C1 perturbations. Since we have to
confirm that the created homoclinic orbit passes near some given point,
rather than just to create a homoclinic orbit, more work will be involved.
In Sect. 6 we prove Theorem B by using the principle of Liao. It suffices
to rule out the existence of minimally non-hyperbolic sets contained in
P(S) − Sing(S). For a simple type minimally non-hyperbolic set Λ, we try
to create out of it a heterodimensional cycle, which would contradict the
result of Sect. 4. Though the details are tedious, the idea is very natural: We
know by the minimality of non-hyperbolicity, Λ = α(a) ∪ Orb(a) ∪ ω(a)
is a heteroclinic connection already (going from α(a) to ω(a)), what we
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do is hence to, with the help of P(S), create by perturbations a second
heteroclinic connection (going from ω(a) to α(a)) without breaking the first
one. Of course we have to reduce the two hyperbolic sets ω(a) and α(a) to
two hyperbolic periodic orbits P and Q, and to confirm that P and Q have
different indices. For a non-simple type minimally non-hyperbolic set Λ, we
make an intensive use of the results prepared in Sects. 3 and 5. We will see
that the minimality of non-hyperbolicity again plays a crucial role. In Sect. 7
we prove Theorem A. Now P(S) is hyperbolic already by Theorem B. We
prove if S fails to satisfy Axiom A and the no-cycle condition, by using
a general shadowing lemma, there would be some periodic orbit of S outside
P(S), an obvious contradiction.

3 Fundamental sequences and fundamental limits

In this section we improve a classical result of Liao [17] on non-simple type
minimally rambling sets. Let X ∈ X(M). Following Liao [17], we will
call (Pn, Yn) a fundamental i-sequence of X, where Pn is a periodic orbit of
Yn ∈ X(M) of index 0 ≤ i ≤ d−1, if Yn → X in the C1 topology, and if Pn
converge in the Hausdorff metric. The Hausdorff limit Λ of Pn will be called
a fundamental i-limit of X. It is easy to see that any fundamental limit Λ of X
is (compact and) X-invariant. Generally a fundamental i-limit may intersect
a fundamental j-limit for i �= j. Thus the “index” i for a fundamental limit
may not be unique. Fundamental sequences and limits appear naturally in
the process of creation of periodic orbits by C1 perturbations. For instance,
by the C1 closing lemma, any nonwandering point x ∈ M − Sing(X) is
contained in a fundamental limit of X. If x ∈ M − Sing(X) is recurrent,
say x ∈ ω(x), then ω(x) even equals a fundamental limit of X [19, p. 257].
Corresponding to the notion of fundamental i-limits, which is at the level
of sets, is the notion of i-preperiodic points at the level of points. Recall
a point x ∈ M is called i-preperiodic of X, where 0 ≤ i ≤ d − 1, if
there is a fundamental i-sequence (Yn, Pn) of X and a sequence of points
xn ∈ Pn such that xn → x. A point could be i-preperiodic as well as
j-preperiodic, for i �= j. Denote by Pi∗(X) the set of i-preperiodic points
of X. Clearly Pi∗(X) is compact and X-invariant, and equals the union of
the set of fundamental i-limits of X. Denote by P∗(X) = ∪d−1

i=0 Pi∗(X) the set
of all preperiodic points of X. Thus Ω(X) − Sing(X) ⊂ P∗(X) ⊂ R(X),
where R(X) denotes the chain recurrent set of X.

A fundamental limit may contain singularities, a phenomenon that causes
tremendous complexity and difficulty in question. However, the following
Lemma 3.11 asserts that, for star flows, a fundamental limit, if free of
singularities, contains quite some information. It improves a result of Liao
on non-simple type minimally rambling sets ([19, Theorem 6.5.7]). The
proof is based on several deep results of Liao and Mañé we now collect, some
of which will be used below in later sections too. The first one is taken from
Liao [15], which concerns the rates on the stable and unstable subspaces of
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periodic orbits for star flows. Analogous results for diffeomorphisms can
be found in Mañé [20].

Theorem 3.1 [15] Let S ∈ X∗(M). Then S has a neighborhood Ũ in
X∗(M), together with two uniform constants η̃ > 0 and T̃ > 1 such that if
X ∈ Ũ then

(i) Whenever x is a point on a periodic orbit of X and T̃ ≤ t < ∞, one
has

1

t

[

η+(X, Du(X, x), t) − η−(X, Ds(X, x), t)
] ≥ 2̃η;

(ii) When P is a periodic orbit of X with period T , x ∈ P, and for an
integer m ≥ 1, 0 = t0 < t1 < · · · < tl = mT is a partition of [0, mT ]
satisfying

tk − tk−1 ≥ T̃ , k = 1, 2, · · · , l,

one has

1

mT

l−1∑

k=0

η−
(

X, Ds(X, φXtk(x)), tk+1 − tk
) ≤ −η̃ (3.2)

and

1

mT

l−1∑

k=0

η+
(

X, Du(X, φXtk(x)), tk+1 − tk
) ≥ η̃. (3.3)

The following result of Liao will be used in the proof of Lemma 3.4
below.

Lemma 3.2 [19] Let X ∈ X(M) and Λ be a closed invariant set of X with
Λ ⊂ M − Sing(X). Assume that for some T > 0 and some φT -invariant
probability measure µ on Λ,

∫

Λ

η−(D(x), T )dµ < 0. (3.4)

Then Λ contains a contracting periodic orbit of X. If the inequality (3.4) is
replaced by

∫

Λ

η+(D(x), T )dµ > 0, (3.5)

then Λ contains an expanding periodic orbit of X.

We state without proof a simple fact that will be used several times
below.

Lemma 3.3 If a fundamental limit Λ of X intersects the basin of a con-
tracting periodic orbit P of X, then Λ = P. Likewise for an expanding
periodic orbit.
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The following result of Liao concerns fundamental 0-limits and (d −1)-
limits.

Lemma 3.4 [15] Let S ∈ X∗(M). Let Λ be a fundamental 0-limit of S with
Λ ∩ Sing(S) = ∅. Then Λ is an expanding periodic orbit of S. Likewise,
if Λ is a fundamental (d − 1)-limit of S with Λ ∩ Sing(S) = ∅, then Λ is
a contracting periodic orbit of S.

Proof We take the case of d −1. Let Λ be a fundamental (d −1)-limit of S,
which is the Hausdorff limit of a fundamental (d − 1)-sequence (Pn, Xn).
Denote fn = φXn T̃ , f = φT̃ . Given xn ∈ Pn , let µn be a limit point of

1

l

l−1
∑

i=0

δ f i
n(xn),

where δx is the atomic measure at x. µn is an invariant measure of fn and
supp(µn) ⊂ Pn . According to Theorem 3.1, it is easy to see that

1

T̃

∫

η−(Xn, D(Xn, x), T̃ )dµn(x) ≤ −η̃.

We may assume that µn → µ. Then µ is an invariant probability measure
of f and supp(µ) ⊂ Λ. Since η−(Xn, D(Xn, x), T̃ ) → η−(D(x), T̃ ), we
have

1

T̃

∫

η−(D(x), T̃ )dµ(x) ≤ −η̃.

Then by Lemma 3.2, Λ contains a contracting periodic orbit P of S. By
Lemma 3.3, Λ = P. ��

Recall a compact invariant set Λ of S that contains no singularities of S is
said to have (η, T, i)-dominated splitting (or simply i-dominated splitting),
where 1 ≤ i ≤ d − 2, if there exists a continuous invariant bundle splitting
DΛ = E ⊕ F with dim E = i, together with two uniform constants η > 0
and T > 1 such that

η+(F(x), t) − η−(E(x), t) ≥ 2ηt

for any x ∈ Λ and t ≥ T .
Note that unlike the case of fundamental limits or preperiodic points,

where the index i runs from 0 to d − 1, here for dominated splittings the
index runs from 1 to d − 2, that is, neither E nor F is 0-dimensional. Also
note that a compact invariant set may admit more than one dominated
splittings. Nevertheless for a given index i the i-dominated splitting is
unique, because dominated splittings are “nested”:

Lemma 3.5 Let E ⊕ F and E ′ ⊕ F ′ be two dominated splittings at x with
dim E = i and dim E ′ = i ′.
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1) If i ≤ i ′, then E ⊂ E ′ and F ⊃ F ′. In particular, if i = i ′, then E = E ′
and F = F ′.

2) If i ≤ dim Ds(x), then E ⊂ Ds(x) and if i ≥ dim Ds(x), then E ⊃ Ds(x).
In particular, if i = dim Ds(x), then E = Ds(x). There is a similar
relation for F and Du(x).

Proof 1) is Proposition 6.4.1 in [17]. Our formulation is taken from [35,
Lemma 3.7]. 2) is Lemma 3.7 in [7]. ��

Since we study star flows throughout the paper, for a given S ∈ X∗(M),
we will fix the neighborhood Ũ of S and the two uniform constants T̃ and
η̃ guaranteed by Theorem 3.1. The following corollary of Theorem 3.1 will
be frequently used below in this paper.

Lemma 3.6 Let S ∈ X∗(M) and 1 ≤ i ≤ d − 2. Assume X ∈ Ũ and
Λ ⊂ Pi∗(X) is a closed invariant set of X with Λ∩Sing(X) = ∅. Then there
exists a (̃η, T̃ , i)-dominated splitting on Λ.

Another result we will need is the ergodic closing lemma of Mañé (see
[35] for the flow version). Recall a point x ∈ M − Sing(S) is strongly
closable for S if for any C1 neighborhood U of S in X, and any δ > 0, there
are X ∈ U, z ∈ M, τ > 0, L > 0 such that the following three conditions
hold:

(a) φXτ (z) = z.
(b) d(φt(x), φXt(z)) < δ, for any 0 ≤ t ≤ τ.
(c) X = S on M − B(φ[−L,0](x), δ), where B(φ[−L,0](x), δ) denotes the

closed δ-ball of the orbital segment φ[−L,0](x).

The set of strongly closable points of S will be denoted by Σ(S). Note that
a strongly closable point must be recurrent.

Theorem 3.7 [35] For any S ∈ X(M), µ(Sing(S) ∪ Σ(S)) = 1 for every
T > 0 and every φT -invariant Borel probability measure µ.

We also need the following result, which is a reformulation of Theo-
rem II.1 in Mañé [21].

Theorem 3.8 [21] Let S ∈ X∗(M). Let Λ be a compact invariant set of
S with Λ ∩ Sing(S) = ∅ such that Ω(S|Λ) = Λ. Let DΛ = E ⊕ F be an
(̃η, T̃, p)-dominated splitting on Λ, 1 ≤ p ≤ d−2. Assume E is contracting
and assume there exists η > 0 such that for points x in a dense set of Λ the
following condition is satisfied:

lim sup
n→+∞

1

nT̃

n−1∑

j=0

η+
(

F(φ j T̃ (x)), T̃
) ≥ η. (3.6)

Then F is expanding, i.e., Λ is hyperbolic of index p.
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Roughly, for a dominated splitting E ⊕ F on such a set Λ (with good
recurrence), if E is contracting and if F is, even non-uniformly, expanding
on a dense subset of Λ, then F is actually (uniformly) expanding. We remark
that a point in the proof (Lemma II.6 in [21]) was clarified in [24] and [39]
by different methods.

The following lemma is just Lemma I.5 of Mañé [21].

Lemma 3.9 [21] Let Λ be a compact invariant set of f ∈ Diff1(M) and
E ⊂ TM|Λ be a continuous invariant subbundle. If there exists m > 0 such
that ∫

log ‖(D f m)|E‖dµ < 0

for every ergodic µ ∈ M( f m|Λ), then E is contracting.

The following result can be singled out from Mañé [20].

Lemma 3.10 [20] Let S ∈ X∗(M). Let Λ ⊂ M − Sing(S) be a compact
invariant set of S that admits a p-dominated splitting DΛ = E ⊕ F, where
1 ≤ p ≤ d − 2. If E is not contracting, then there is a fundamental r-limit
contained in Λ with r < p.

Proof Since E is not contracting, according to Lemma 3.9, there exists an
ergodic φT̃ -invariant measure µ such that

∫

η−(E(x), T̃ )dµ(x) ≥ 0

and supp(µ) ⊂ Λ. Then, according to Theorem 3.7,
∫

Λ∩Σ(S)

η−(E(x), T̃ )dµ(x) ≥ 0.

So we can find a point a ∈ Λ ∩ Σ(S) such that

lim
m→+∞

1

mT̃

m−1∑

j=0

η−
(

E(φ j T̃ (a)), T̃
) ≥ 0. (3.7)

Since a ∈ Σ(S), for any n > 0, there exist Yn ∈ X∗(M), bn ∈ M, τn > 0
such that

a) φYnτn (bn) = bn , and τn is the minimum period of bn .
b) d(φt(a), φYn t(bn)) ≤ 1/n, for any 0 ≤ t ≤ τn , and
c) ‖Yn − S‖C1 ≤ 1/n.

Taking subsequences if necessary, we may assume Qn = Orb(bn, Yn)
have the same index, say r, for all n, and (Yn, Qn) is a fundamental r-se-
quence that converge to Γ ⊂ Λ. That is, Γ is a r-fundamental limit. We
prove r < p.
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Suppose r ≥ p. First note that a is not periodic. In fact, if a is periodic,
according to Theorem 3.1, we would have

lim sup
m→+∞

1

mT̃

m−1∑

j=0

η−
(

Ds(φ j T̃ (a)), T̃
) ≤ −η̃.

By Lemma 3.5, r ≥ p would imply E(φt(a)) ⊂ Ds(φt(a)). Hence

lim sup
m→+∞

1

mT̃

m−1∑

j=0

η−
(

E(φ j T̃ (a)), T̃
) ≤ −η̃.

This contradicts (3.7), proving a is not periodic. This implies limn→∞ τn
= ∞.

By (3.7), we can take m0 large enough so that for any m > m0,

m−1∑

j=0

η−
(

E(φ j T̃ (a)), T̃
) ≥ −mT̃ η̃/3. (3.8)

Take a small closed neighborhood U ⊂ M − Sing(S) of Λ and a small
neighborhood U of S such that for any X ∈ U and any closed invariant set
Γ ⊂ U of X, there is a dominated splitting DX(x) = E(X, x) ⊕ F(X, x) for
each x ∈ Γ with index p. Since η−(X, E(X, φXt(x)), T̃ ) is continuous with
respect to X and x, there exists n0 large enough so that for any n > n0, and
d(x, y) ≤ 1/n, once E(x) is well-defined for Yn and E(y) is well-defined
for S, we have for t ∈ [0, 2T̃ ],

|η−(Yn, E(Yn, x), t) − η−(E(y), t)| < T̃ η̃/3. (3.9)

Denote by
K = sup

n>n0,t∈[0,2T̃],x∈U

| log ‖ψYnt(x)‖|.

Let τn = mnT̃ +sn , mn ∈ Z, sn ∈ [0, T̃ ). Considering the partition 0 = t0 <

t1 = T̃ < · · · < tmn−1 = (mn − 1)T̃ < tmn = τn, according Theorem 3.1,

mn−2
∑

j=0

η−
(

Yn, Ds(Yn, φYn( j T̃ )(bn)), T̃
) ≤ −τnη̃ + K.

Since r ≥ p, by Lemma 3.5, Ds(Yn, φYnt(bn)) ⊃ E(Yn, φYnt(bn)), we have

mn−2
∑

j=0

η−
(

Yn, E(Yn, φYn( j T̃ )(bn)), T̃
) ≤ −τn η̃ + K ≤ −(mn − 1)T̃ η̃ + K.

(3.10)
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And since d(φYn t(bn), φt(a)) < 1/n for 0 ≤ t ≤ τn , from (3.9) and (3.10),
we get

mn−2
∑

j=0

η−
(

E(φ j T̃ (a)), T̃
) ≤ −2(mn − 1)T̃ η̃/3 + K.

Combining with (3.8), for n large enough so that mn − 1 > m0, we have

−(mn − 1)T̃ η̃/3 ≤ −2(mn − 1)T̃ η̃/3 + K.

But for n large enough the above inequality is impossible. This proves
Lemma 3.10. ��

Now we state and prove the main result of this section.

Lemma 3.11 Let S ∈ X∗(M). Let Λ be a fundamental p-limit of S with
Λ∩Sing(S) = ∅, where 1 ≤ p ≤ d −2. Let DΛ = E ⊕ F be the associated
p-dominated splitting on Λ. Then,

1) if E is contracting, then Λ contains a hyperbolic subset of index p; if E
is not contracting, then Λ contains a hyperbolic subset of index < p.

2) if F is expanding, then Λ contains a hyperbolic subset of index p; if F
is not expanding, then Λ contains a hyperbolic subset of index > p.

3) if Λ is not hyperbolic, then Λ contains two hyperbolic subsets of different
indices.

We remark that Lemma 3.4 could be regarded as a complement of
Lemma 3.11.

Proof We only prove 1), because 2) can be proved by reversing the time,
and 3) is a direct consequence of 1) and 2).

First assume E is contracting. Let (Pn, Xn) be a fundamental p-sequence
of S that converge to Λ in the Hausdorff metric. Denote fn = φXn T̃ , f = φT̃ .
Given xn ∈ Pn , as we did in the proof of Lemma 3.4, let µn be a limit point
of

1

l

l−1∑

i=0

δ f i
n(xn),

where δx is the atomic measure at x. µn is an invariant measure of fn and
supp(µn) ⊂ Pn . According to Theorem 3.1, it is easily seen that

1

T̃

∫

η+
(

Xn, Du(Xn, x), T̃
)

dµn(x) ≥ η̃.

We may assume that µn → µ. Then µ is an invariant probability measure
of f and supp(µ) ⊂ Λ. Since η+(Xn, Du(Xn, x), T̃ ) → η+(F(x), T̃ ), we
have

1

T̃

∫

η+(F(x), T̃ )dµ(x) ≥ η̃.
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According to Birkhoff Ergodic Theorem, there exists a positively recurrent
point b ∈ ω(b) ⊂ Λ such that

lim
n→+∞

1

nT̃

n−1∑

j=0

η+
(

F(φ j T̃ (b)), T̃
) ≥ η̃. (3.11)

Thus by Theorem 3.8, ω(b) is hyperbolic of index p.
Now assume that E is not contracting. Let

q = min{ j : there is a fundamental j−limit Γ ⊂ Λ}.
By Lemma 3.10, q < p. Take a fundamental q-limit Γ contained in Λ.
Note that q �= 0 because, otherwise, by Lemma 3.4, Γ must be an expand-
ing periodic orbit of S, hence by Lemma 3.3, Λ = Γ, contradicting that
Λ = limit(Pn, Xn), Ind(Pn) = p, 1 ≤ p ≤ d − 2. Let DΓ = Ẽ ⊕ F̃
be the associated q-dominated splitting on Γ. If Ẽ is not contracting, by
Lemma 3.10, there is a fundamental r-limit Γ′ contained in Γ with r < q,
contradicting the minimality of q. Thus Ẽ must be contracting.

Then by the conclusion obtained above (for the case that E is contract-
ing), Γ ⊂ Λ contains a hyperbolic set with index q. Since q < p, this
finishes the proof of item 1), hence the proof of Lemma 3.11. ��
Remark In the proof of Lemma 3.11 we are benefited from the beautiful
index-minimizing idea of Toyoshiba [34].

4 Non-existence of heterodimensional cycles for star flows

In this section we prove a basic property for star flows, that is, any star
flow exhibits no heterodimensional cycles. Let P and Q be two different
hyperbolic periodic orbits of X ∈ X(M). We say that P and Q form
a heterodimensional cycle of X if both Ws(P)∩Wu(Q) and Wu(P)∩Ws(Q)
are nonempty and the indices of P and Q are different. Note that for
a system X to exhibit a heterodimensional cycle, there is a restriction to
the dimension of M, i.e., dim M ≥ 4. The dynamics of systems with
heterodimensional cycle are extensively studied by Diaz and other authors,
see [3] and references listed there for more details.

Theorem 4.1 Assume X ∈ X∗(M). Then X exhibits no heterodimensional
cycles.

Proof Suppose for the contrary X ∈ X∗(M) has a heterodimensional cycle
Λ = Orb(p) ∪ Orb(q) ∪ Orb(x) ∪ Orb(y), where p and q are hyperbolic
periodic points with indices i and i + g (g > 0) respectively, and x, y ∈ M
satisfy ω(x) = Orb(q), α(x) = Orb(p), ω(y) = Orb(p), α(y) = Orb(q).
Note that we have 1 ≤ i < i + g ≤ d − 2.

We claim Λ ⊂ Pi∗(X) ∩ Pi+g
∗ (X). This can be proved by creating ho-

moclinic points. Indeed, since x ∈ Ws(Orb(q)) and y ∈ Wu(Orb(q)), by
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the λ-lemma, there exists an orbital arc A going from a point x̃ near x to
a point ỹ near y, passing near Orb(q). With a small perturbation near x
and y, we can create a vector filed Y with a homoclinic orbit associated
with Orb(p, Y ) passing near x, Orb(q), and y. (Here the perturbation can be
simply some one-step-pushes, because the orbital arc A can be chosen not to
wrap around, but to pass near x and y only once.) With a further perturbation
if necessary, we may assume the homoclinic orbit of Y is transversal. By
Birkhoff-Smale Theorem, the homoclinic orbit is approximated by periodic
orbits of Y of index Ind(Orb(p)) = i. This means x, y, q ∈ Pi∗(X), proving
Λ ⊂ Pi∗(X). Likewise for Pi+g

∗ (X), proving the claim.
So we have i-dominated splitting Ei ⊕ Fi as well as (i + g)-dominated

splitting Ei+g ⊕ Fi+g over Λ. From this and Lemma 3.5 we obtain the
splitting DΛ = Ei ⊕ Z ⊕ Fi+g , where Z = Fi ∩ Ei+g . It is easy to see that
ψ = ψX is contracting on Ei and expanding on Fi+g. In fact, any ergodic
measure supported on Λ can only be supported on Orb(p) or Orb(q). But
on Orb(p) or Orb(q), Ei is contracting. So by Lemma 3.9, Ei is contracting.
Likewise for Fi+g.

For convenience, for the system X, we will drop “X” from the notations
below. Take a small closed neighborhood U of Λ and a small neighborhood
U0 ⊂ X∗(M) of X such that for any Y ∈ U0, U ∩ Sing(Y ) = ∅, and any
closed invariant set Γ ⊂ U of Y , ψY has a similar splitting, i.e., DYz =
Ei(Y, z) ⊕ Z(Y, z) ⊕ Fi+g(Y, z) for z ∈ Γ, Ei(Y, z) dominates Z(Y, z) and
Z(Y, z) dominates Fi+g(Y, z). Moreover, ψY contracts Ei(Y, z) and expands
Fi+g(Y, z).

Let r = η̃/4 > 0. Denote

K = sup
z∈U,Y∈U0,t∈[−6T̃ ,6T̃ ]

{| log ‖ψYt |DYz‖|}/T̃ .

It is easy to see that for any |t| ≥ T̃ , we have | log ‖ψYt |DYz‖| ≤ K |t| if
φ(Y, [0, t], z) ⊂ U . Indeed, if 0 ≤ t ≤ 6T̃ , this is obvious. If t > 6T̃ , we
break t into t = 2nT̃ + s with s ∈ [0, 2T̃ ). Then

| log ‖ψYt |DYz‖| = | log ‖(ψYs|DYzn
)(ψY(2T̃ )|DYzn−1

) · · · (ψY(2T̃ )|DYz0
)‖|

≤ (n + 1)KT̃ ≤ Kt

where zi = φY(2iT̃ )(z), i = 0, 1, 2, · · · , n. The case t < 0 can be treated
similarly.

According to the continuity of the splitting with respect to z, Y, t, there
exist δ > 0 and a neighborhood U1 ⊂ U0 of X such that if z, z′ ∈ U,
d(z, z′) ≤ 4δ, and if Z(z) is well-defined for X and Z(Y, z′) is well-defined
for any Y ∈ U1, then for any t ∈ [0, 6T̃ ],

−rT̃ ≤ |η+(Z(z), t) − η+(Y, Z(Y, z′), t)| ≤ rT̃ ,

−rT̃ ≤ |η−(Z(z), t) − η−(Y, Z(Y, z′), t)| ≤ rT̃ .
(4.12)
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We may assume that δ is small enough so that B4δ(p) and B4δ(q) are
contained in U .

Denote by T, S the periods of p, q respectively. Take a section Σ at p and
a section Γ at q, transverse to X. We may assume that δ is small enough so
that B4δ(p)−Σ and B4δ(q)−Γ are not connected. Then for any 0 < ζ ≤ 4δ,
denote Σζ = Bζ(p) ∩ Σ and Γζ = Bζ(q) ∩ Γ. We may also assume that
δ is so small that the Poincaré map f is defined for every z ∈ Σ4δ (resp.
z ∈ Γ4δ). For simplicity, we assume that

‖D( f |Ws(p)∩Σ4δ
)‖, ∥

∥D
(

f −1|Wu(p)∩Σ4δ

)∥
∥,

‖D( f |Ws(q)∩Γ4δ
)‖, ∥

∥D
(

f −1|Wu(q)∩Γ4δ

)∥
∥ < 1.

(4.13)

(Note that we use the same symbol f to denote two distinct Poincaré maps
at p and q.)

Fix points xp, xq in Orb(x) and yp, yq in Orb(y) so that xp, yp ∈ Σδ and
xq, yq ∈ Γδ. Let yp = φ(s′, yq) and xq = φ(t′, xp) (t′ > 0, s′ > 0). We may
assume that t′, s′ ≥ 2T̃ .

Lemma 4.2 There exists δ0 > 0 small enough such that for any δ ∈ (0, δ0]
and any ε > 0, there exists an integer L > 0 such that for each in-
teger n ≥ L, there exist pn, qn ∈ U satisfying pn, f pn, · · · , f n pn ∈
B2δ(p), qn, fqn, · · · , f nqn ∈ B2δ(q), d(pn, yp) ≤ ε, d( f n pn, xp) ≤ ε,
d(qn, xq) ≤ ε, and d( f nqn, yq) ≤ ε.

Proof This is a consequence of the inclination lemma of Palis and our
assumption (4.13). So the proof is omitted. We just remark that we need the
successive n’s in the following. ��

Denote f n(pn) = φTn (pn) and f n(qn) = φSn(qn). Then for any integers
m, n ≥ L , we obtain a periodic ε-pseudoorbit

O(m, n) = (φ([0, Tm], pm), φ([0, t′], xp), φ([0, Sn], qn), φ([0, s′], yq)).

Lemma 4.3 For any δ ∈ (0, δ0] there exist ε > 0, N > L such that if
n ≥ N and m ≥ N then there exist Xmn ∈ U1 and a periodic point xmn of
Xmn that δ-shadows the ε-pseudoorbit O(m, n).

Proof We only have to take N large enough so that O(m, n) is an ε-pseudo-
orbit for small enough ε ≤ δ (for example, with respect to d(xp, fxp)) so
that we can make four small perturbations in a neighborhood of

{yp, xp, xq, yq}
to close the pseudoorbit O(m, n) into a periodic orbit. ��

Note that Orb(xmn, Xmn) also 3δ-shadows the periodic pseudoorbit

Q(m, n) = (φ([0, mT ], p), φ([0, t′ ], xp), φ([0, nS], q), φ([0, s′], yq)).
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Roughly, the periodic pseudoorbit Q(m, n) of X, as well as the shadowing
periodic orbit Orb(xmn) of Xmn , goes around Orb(p) m times, and around
Orb(q) n times. We denote

Q(m, n, t)

=

⎧

⎪⎨

⎪⎩

φ(t, p), for t ∈ [0, mT ),
φ(t − mT, xp), for t ∈ [mT, mT + t′),
φ(t − mT − t′, q), for t ∈ [mT + t′, mT + t′ + nS),
φ(t − mT − t′ − nS, yq), for t ∈ [mT + t′ + nS, mT + t′ + nS + s′].

So for any m, n ≥ N, there exists a strictly increasing continuous function

θmn : [0, mT + nS + t′ + s′] → R, θ(0) = 0

such that
d(Q(m, n, t), φ(Xmn, θmn(t), xmn)) ≤ 3δ

for t ∈ [0, mT + nS + t′ + s′]. We may assume that θmn(mT + nS + t′ + s′)
is exactly the period of xmn with respect to Xmn. We need the following
lemma for further analysis, which is an extension of Lemma 5.5.3 in [19]
and can be proved similarly.

Lemma 4.4 For the above X ∈ X∗(M) and any T̄ > 0, τ > 0, there
exist a neighborhood U ⊂ X∗(M) of X and ε1 > 0 such that if Y ∈ U,
T̄ ≤ T ′ < ∞ and θ(t) is a strictly increasing continuous function on [0, T ′]
with θ(0) = 0, φ([0, T ′], a), φ(Y, [0, T ′], b) ⊂ U and

d(φ(t, a), φ(Y, θ(t), b)) ≤ ε1

for t ∈ [0, T ′], then

(1 − τ)T ′ ≤ θ(T ′) ≤ (1 + τ)T ′.

Fix a neighborhood U ⊂ U1 in Lemma 4.4 for T̄ = T̃ and τ <
min{1/4, η̃/(8K )}. We also assume that τ is small enough so that if |t| ≤
6τ T̃ then | log ‖ψYt‖| ≤ rT̃ for each Y ∈ U. Then we fix a small δ such that
4δ < ε1.

Now, we follow the method in [7] to prove Theorem 4.1.
Claim. For fixed n > N, if m is large enough, then xmn has index i.

Similarly, for fixed m > N, if n is large enough, then xmn has index i + g.
Roughly, this claims if Orb(xmn) goes much more times around Orb(p)

than Orb(q), the index of Orb(xmn) will be the same as that of Orb(p), and
vice versa.

According to Theorem 3.1, for any partition 0 = t0 < t1 < · · · < tl =
mT , 2T̃ ≤ t j+1 − t j ≤ 4T̃ for 0 ≤ j < l,

1

mT

l−1∑

j=0

η+(Z(φ(t j , p)), t j+1 − t j) ≥ η̃ (4.14)
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since Z(φ(t, p)) ⊂ Du(φ(t, p)). Since d(φ(t, p), φ(Xmn , θmn(t), xmn)) ≤ 3δ,
by (4.12),

1

mT

l−1∑

j=0

η+(Xmn, Z(Xmn, φ(Xmn, θmn(t j), xmn)), t j+1 − t j)

≥ 1

mT

l−1∑

j=0

(

η+(Z(φ(t j , p)), t j+1 − t j) − T̃ r
) ≥ η̃ − r. (4.15)

Then according to Lemma 4.4, |(θmn(t j+1) − θmn(t j)) − (t j+1 − t j)| ≤ 4τ T̃
(see [7, Corollary 4.3]). According to the choice of τ , we have

1

mT

l−1∑

j=0

η+(Xmn, Z(Xmn, φ(Xmn, θmn(t j), xmn)), θmn(t j+1) − θmn(t j))

≥ 1

mT

l−1∑

j=0

η+(Z(φ(t j , p)), t j+1 − t j) − 2r ≥ η̃ − 2r. (4.16)

Denote by Tmn (= θmn(mT + nS + t′ + s′)) the period of xmn with respect
to Xmn . Then

Tmn ≤ (1 + τ)(mT + nS + t′ + s′), θmn(mT ) ≥ (1 − τ)(mT ).

Therefore,

η+(Xmn,Z(Xmn, xmn), Tmn)

≥ η+(Xmn, Z(Xmn, xmn), θmn(mT ))

+ η+(Xmn, Z(Xmn, φ(Xmn, θmn(mT ), xmn)), Tmn − θmn(mT ))

≥ mT(̃η − 2r) − K(Tmn − θmn(mT ))

≥ (̃η − 2r − 2Kτ)(mT ) − K(1 + τ)(nS + t′ + s′).

According to the choice of r and τ , the last term is positive for large
enough m. That means Z(Xmn, xmn) is expanding under ψXmnTmn . This
proves the first statement of the claim. The second can be proved similarly.

Take an integer n0 > N such that n0 > 2K/r. Now according to the
above claim, for any integer m0 > N, we can take n > n0 large enough so
that xm0n has index i + g. Again, according to the above claim, there exists
m ≥ m0 such that the index of xmn is larger than i but the index of x(m+1)n is
exactly i. We will see that such a change of index is a contradiction, because
Orb(x(m+1)n) goes around Orb(p) only one time more than Orb(xmn) does.

First take a partition for [0, mT + nS + t′ + s′]
0 = t0 < t1 < · · · < tk = mT + nS + t′ + s′
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such that 2T̃ ≤ t j+1 − t j ≤ 4T̃ for 0 ≤ j < k and {mT, mT + t′, mT + t′
+ nS} ⊂ {t0, · · · , tk}. Then

0 = θmn(t0) < θmn(t1) < · · · < θmn(tk) = Tmn (4.17)

is a partition of [0, Tmn] such that θmn(t j+1) − θmn(t j) ≥ T̃ . Since the index
of xmn is larger than i, Z(Xmn, φ(Xmn, t, xmn)) has nontrivial intersection
with the contracting subspace

Ds(Xmn, φ(Xmn, t, xmn)).

Therefore, according to Theorem 3.1, for xmn and the partition (4.17), we
have

1

Tmn

k−1∑

j=0

η+(Xmn, Z(Xmn, φ(Xmn, θmn(t j), xmn)), θmn(t j+1)−θmn(t j)) ≤ −η̃.

(4.18)

By a similar argument in (4.16) and then a similar argument in (4.15),
we obtain

1

Tmn

k−1∑

j=0

η+(Q(m, n, t j), t j+1 − t j) ≤ −η̃ + 2r. (4.19)

In the following discussion, we first assume T ≥ 2T̃ . So now take
a partition

0 = t′0 < t′1 < · · · < t′l = T < t′l+1 = T + t1 < · · · < t′l+ j

= T + t j < · · · < t′l+k = (m + 1)T + ns + t′ + s′

such that 2T̃ ≤ t′j+1 − t′j ≤ 4T̃ . Then

0 = θ(m+1)n
(

t′0
)

< θ(m+1)n
(

t′1
)

< · · · < θ(m+1)n
(

t′l+k

) = T(m+1)n (4.20)

is a partition of [0, T(m+1)n] such that θ(m+1)n(t′j+1)− θ(m+1)n(t′j) ≥ T̃ . Since
the index of x(m+1)n is i, Z(X(m+1)n, φ(X(m+1)n, t, x(m+1)n)) is a subspace of
the expanding subspace

Du(X(m+1)n, φ(X(m+1)n, t, x(m+1)n)).

Therefore, according to Theorem 3.1, for x(m+1)n and the partition (4.20),
we have

1

T(m+1)n

l+k−1∑

j=0

η+
(

X(m+1)n, Z
(

X(m+1)n, φ
(

X(m+1)n, θ(m+1)n
(

t′j
)

, x(m+1)n
))

,

θ(m+1)n
(

t′j+1

) − θ(m+1)n
(

t′j
)) ≥ η̃.
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And again using a similar argument in (4.16) and then a similar argument
in (4.15), we obtain

1

T(m+1)n

l+k−1∑

j=0

η+
(

Q
(

m + 1, n, t′j
)

, t′j+1 − t′j
) ≥ η̃ − 2r. (4.21)

Since Q(m + 1, n, t′l+ j ) = Q(m, n, t j) and t′l+ j+1 − t′l+ j = t j+1 − t j for
0 ≤ j ≤ k, we have

0 < T(m+1)n (̃η − 2r)

≤
l+k−1
∑

j=0

η+
(

Q
(

m + 1, n, t′j
)

, t′j+1 − t′j
)

=
l−1
∑

j=0

η+
(

Q
(

m + 1, n, t′j
)

, t′j+1 − t′j
) +

k−1
∑

j=0

η+(Q(m, n, t j), t j+1 − t j)

≤ KT + Tmn(−η̃ + 2r) < 0.

This is a contradiction. For the case T < 2T̃ , by taking two appropriate
partitions for [0, mT + nS + t′ + s′] and [0, (m + 1)T + ns + t′ + s′], it can
be proved similarly. This finishes the proof of Theorem 4.1. ��

5 Index-determination for preperiodic points

This section does not assume the star condition. It concerns for a general
flow the question of determination of the index for preperiodic points.
This will be done via creation of homoclinic orbits by C1 perturbations.
Since we have to confirm that the created homoclinic orbit passes near
some given point, rather than just to create a homoclinic orbit, more work
will be involved. To create by C1 perturbations various homoclinic and
heteroclinic connections in this paper, we will need the following version
of the C1 connecting lemma [38], which is more general than the original
C1 connecting lemma of Hayashi [11].

Theorem 5.1 [38] Let X ∈ X(M), and z ∈ M be neither singular nor
periodic of X. Then for any C1 neighborhood U of X in X(M), there exist
ρ > 1 , T > 1 and δ0 > 0 such that for any 0 < δ ≤ δ0 and any two points
x, y outside the tube ∆ = ∪t∈[0,T ]B(φt(z), δ), if the positive X-orbit of x
and the negative X-orbit of y both hit B(z, δ/ρ), then there exists Y ∈ U
with Y = X outside ∆ such that y is on the positive Y-orbit of x. Moreover,
the resulted Y-orbit segment from x to y meets B(z, δ).

We remark that the tube ∆ could be equally well taken saturated by the
negative time of the flow. Also, we remark that the assertion that the resulted
Y -orbit segment meets B(z, δ) is not included in the statement in [38], but
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obvious from the construction of the perturbations in the proof there. We
include it here in the statement of Theorem 5.1 because it is important for
some applications such as the following lemma.

Lemma 5.2 Let P be a hyperbolic periodic orbit of X. Let a ∈ Ws(P)− P
and b ∈ Wu(P) − P. Assume a and b are neither periodic nor singular.
Also assume there are sequences xn ∈ M and sn > 0 with xn → b and
φsn(xn) → a. Then for any C1 neighborhood U of X in X(M) and any
neighborhood W of a in M, there is Y ∈ U with Y = X on a neighborhood
of P such that Y has in W a homoclinic point x of P.

Proof Let U be a C1 neighborhood of X. Since a is neither singular
nor periodic, by Theorem 5.1, there exist ρa > 0, Ta > 0, δa > 0 with
those properties (to avoid too much repeat below we just say “those prop-
erties” here). Likewise, for b, there exist ρb > 0, Tb > 0, δb > 0
with those properties. Let ρ = max{ρa, ρb}, T = max{Ta, Tb}, and δ0 =
min{δa, δb}.

We may assume a and b are not on the same orbit. Otherwise a ∈
Wu(P), and the proof will be easier. Thus the orbit segments A = φ[0,−T ](a)
and B = φ[0,T ](b), as well as the periodic orbit P, are pairwise disjoint.
Take δ ≤ δ0 and η > 0 small such that the tubes ∪t∈[0,−T ]B(φt(a), δ) and
∪t∈[0,T ]B(φt(b), δ), as well as Ws

η(P) − P and Wu
η (P) − P, are pairwise

disjoint. Take 0 < δ1 ≤ δ small such that B(a, δ1) ⊂ W and let ∆a =
∪t∈[0,−T ]B(φt(a), δ1). Since a ∈ Ws(P), there is ps ∈ Ws

η(P) such that the
negative X-orbit of ps hits B(a, δ1/ρ) at a point as . Note that Orb+(ps) ⊂
Ws

η(P). If the X-orbit segment C from as to ps contains b, then as ∈ Wu(P),
and the proof will again be easier. Thus we assume b /∈ C. Note that C
may wrap around and be close to b. Nevertheless b /∈ C ∪ Orb+(ps), which
forms a complete positive orbit (of as), hence B ∩ C = ∅. Hence we can
take δ2 ≤ δ small such that the tube ∆b = ∪t∈[0,T ]B(φt(b), δ2) is disjoint
from C. Since b ∈ Wu(P), there is pu ∈ Wu

η (P) such that the positive
X-orbit of pu hits B(b, δ2/ρ) at a point bu . Note that Orb−(pu) ⊂ Wu

η (P).
Also note that the orbit segment from pu to bu may wrap around and
even go through ∆a (but this is all right). Finally, by assumption, there
are sequences xn ∈ M and sn > 0 with xn → b and φsn(xn) → a. Fix n
large such that xn ∈ B(b, δ2/ρ) and x ′

n = φsn(xn) ∈ B(a, δ1/ρ). Note that
the orbit segment from xn to x ′

n may wrap around and go through both ∆a
and ∆b.

Now pu and x ′
n are outside the tube ∆b, and the positive X-orbit of

pu and the negative X-orbit of x ′
n both hit B(b, δ2/ρ) (at bu and xn , re-

spectively). By Theorem 5.1, there exists Z ∈ U with Z = X outside
∆b such that x ′

n is on the positive Z-orbit of pu . We emphasize that the
X-orbit segment C from as to ps is unchanged because C is disjoint
from ∆b. Thus pu and ps are outside the tube ∆a, and the positive
Z-orbit of pu and the negative Z-orbit of ps both hit B(a, δ1/ρ) (at x ′

n



300 S. Gan, L. Wen

and as , respectively). By Theorem 5.1, there exists Y ∈ U with Y = Z out-
side ∆a such that ps is on the positive Y -orbit of pu . Moreover, by the last
assertion in Theorem 5.1, the resulted Y -orbit segment from pu to ps meets
B(a, δ1) ⊂ W . Note that Orb+(ps, X) and Orb−(pu, X) are unchanged.
This gives a Y -homoclinic orbit of P that meets W , proving Lemma 5.2.

��
We emphasize that the two tubes ∆a and ∆b are disjoint. This is the

reason why the same constants ρ, T, δ0 work for both X and Z, and why
the resulted perturbation Y is in U. This is a delicate point for the use of the
connecting lemma. To fully clarify this, one would have to go back to the
proof of the connecting lemma. We omit the details. There is a discussion
about this in [6].

We remark that the two points a and b in Lemma 5.2 are in the same
situation. Hence one may create a homoclinic point near b as well. Never-
theless it is unclear if one can create homoclinic points near both a and b
simultaneously.

We insert here a fact about chain transitive hyperbolic sets. Recall a com-
pact invariant set Γ is chain transitive if for any ε > 0 and any x, y ∈ Γ,
there are n ≥ 1, x1, x2, ..., xn ∈ M, and t1, ..., tn−1 ≥ 1 such that x1 = x,
xn = y, and d(φti (xi), xi+1) < ε for all i = 1, 2, ..., n − 1. Clearly, for any
x ∈ M, ω(x) and α(x) are chain transitive. Also recall that two hyperbolic
periodic orbits P and Q are H-related if Ws (P) and Wu(Q) have a transverse
intersection, and Ws(Q) and Wu(P) have a transverse intersection.

Lemma 5.3 Let Γ be a chain transitive hyperbolic set of X with Γ ∩
Sing(X) = ∅ and 1 ≤ Ind(Γ) ≤ d − 2. Then there is a C1 neighbor-
hood U of X and a neighborhood U of Γ in M such that, for every Y ∈ U,
any two Y-periodic orbits P and Q contained in U are hyperbolic and
H-related.

Proof The proof is standard. Let U0 be a C1 neighborhood of X and
δ > 0 be small such that for every Y ∈ U0, any compact Y -invariant set
C ⊂ B(Γ, δ) is hyperbolic. There is 0 < ε < δ such that for every Y ∈ U0,
if d(x, y) < ε, and if Orb(x, Y ) and Orb(y, Y ) are contained in B(Γ, δ),
then Ws(x, Y ) and Wu(y, Y ) have a transverse intersection, and Ws(y, Y )
and Wu(x, Y ) have a transverse intersection. Since Γ is chain transitive
respecting X, by the shadowing property, there is a hyperbolic periodic orbit
A of X with Γ ⊂ B(A, ε/3). Let U ⊂ U0 be a C1 neighborhood of X such
that every Y ∈ U has a hyperbolic periodic orbit AY with Γ ⊂ B(AY , ε/2).
Let U = B(Γ, ε/2). It is easy to check U and U satisfy Lemma 5.3. ��

We prepare a technical lemma needed below for a C1 -creation of a homo-
clinic orbit passing near a given point a ∈ M. We know if ω(a) is hyperbolic
and isolated, by the In Phase Theorem, there will be a point y ∈ ω(a) such
that a ∈ Ws(y). Since y is accumulated by hyperbolic periodic orbits Pn
that are contained in a small neighborhood of ω(a) (since ω(a) is hyper-
bolic), the stable manifolds of Pn will prolongate along Ws(y) hence pass
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near a, a situation good to our perturbations. The following technical lemma
then deals with the case when ω(a) is hyperbolic but not necessarily iso-
lated. Note that if an ω-limit set is hyperbolic, it has a homogeneous index.
As usual, for any V ⊂ M, denote by M(V ) the maximal invariant set of
X ∈ X(M) contained in V . Note that if Λ is hyperbolic of index i, and V is
a sufficiently small neighborhood of Λ, then M(V ) is hyperbolic of index i.

Lemma 5.4 Assume ω(a) ⊂ M − Sing(X) is hyperbolic of index 1 ≤ i ≤
d − 2 and a �∈ ω(a). Then for any neighborhood U of ω(a) in M,

1) There exists a point y ∈ U with Orb(y) ⊂ U such that a ∈ Ws(y).
Moreover, there exists a sequence {Pn} ⊂ U of hyperbolic periodic
orbits of index i and pn ∈ Pn such that pn → y.

2) There exists a hyperbolic periodic orbit P ⊂ U of index i such that
a ∈ Ws(P).

A similar result holds for α(a).

Note that Lemma 5.4 trivially holds when i = 0 or d − 1.

Proof We may assume that U is small enough so that any two periodic
orbits of X contained in U are H-related. Take a smaller neighborhood
V of ω(a) with V ⊂ U . Denote ε0 = d(V , M − U)/3. Since hyperbolic
set has the shadowing property ([2,31]), there exists 0 < δ0 < ε0 such
that any δ0-pseudoorbit in V can be ε0-shadowed. Take a point c ∈ ω(a)
and a large enough number τ > 0 such that d(φτa, c) < δ0. For the δ0-
pseudoorbit φ(−∞,0](c), φ[τ,∞)(a)), let y be the shadowing point, i.e., for
some orientation-preserving homeomorphism θ : R → R, θ(0) = 0,

d(φθ(s)(y), φτ+s(a)) < ε0, s ≥ 0,

d(φθ(s)(y), φs(c)) < ε0, s ≤ 0.

Then a ∈ Ws(y) and α(y) = α(c) ⊂ ω(a) = ω(y). Obviously Orb(y) ⊂ U .
Since α(y) ∩ ω(y) �= ∅, according to the shadowing property of hyper-

bolic sets, it is easy to see that there exists a sequence {Pn} ⊂ U of periodic
orbits of index i such that pn ∈ Pn and pn → y. Thus for any neighborhood
W of a in M, there is n such that Ws(Pn) ∩ W �= ∅. Since any two periodic
orbits in U are H-related, we may fix one of them, say P1, to be P at the first
place. Then Ws(P) ∩ W �= ∅. Thus a ∈ Ws(P). This proves Lemma 5.4. ��

We also prepare the following more general result of type Lemma 5.4.

Lemma 5.5 Let Qn be a sequence of periodic orbits of X that converge
in the Hausdorff metric to a compact invariant set K of X. Let Γ ⊂
K − Sing(X) be a chain transitive hyperbolic set of X of index i. Assume
K −Γ �= ∅. Then for any neighborhood U of Γ in M, there is a non-periodic
point a1 ∈ K ∩ U − Γ − Sing(X) with Orb+(a1) ⊂ U, together with a hy-
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perbolic periodic orbit P ⊂ U of index i such that a1 ∈ Ws(P). A similar
result holds for Wu.

Proof Note that by Lemma 3.3, the condition K − Γ �= ∅ implies 0 �=
Ind(Γ) �= d−1. Take a ∈ K−Γ. Since a /∈ Γ and Γ is disjoint from Sing(X),
we may assume U is small enough so that a /∈ U and U ∩Sing(X) = ∅. We
may also assume U is small enough so that M(U) is hyperbolic of index i,
and that any two periodic orbits contained in U are H-related. Take two small
neighborhoods V, V ′ of Γ with V ⊂ V ′ ⊂ V

′ ⊂ U . Since K = lim Qn ,
there are xn ∈ Qn with xn → a. Since Γ ⊂ K , there are yn ∈ Qn such that
d(yn,Γ) → 0. Since a /∈ Γ, there are tn > 0 such that φ[−tn ,0](yn) ⊂ V and
φ−tn(yn) ∈ ∂V . Obviously, tn → ∞. Let b be a limit point of φ−tn (yn). Then
b ∈ ∂V and Orb+(b) ⊂ V . Note that b ∈ K ∩ U −Γ− Sing(X). According
to the recurrence of b, there are three cases:

Case 1: b �∈ ω(b).

In this case we simply choose b to be a1, and apply item 2) of Lemma 5.4
to get the periodic orbit P.

Case 2: b ∈ ω(b), but b is not periodic.

In this case we still choose b to be a1. Note that since ω(a1) is hyperbolic
of index i, by the shadowing property, there is a sequence {Pn} ⊂ U of
hyperbolic periodic orbits of index i such that pn ∈ Pn and pn → a1. Then
we choose P1 to be P. Note that since any two periodic orbits contained in
U are H-related, pn ∈ Ws(P) for any n ≥ 1. Hence a1 ∈ Ws(P).

Case 3: b is periodic.

In this case K ∩ Ws
loc(b) − Orb(b) must be non-empty. We then choose

any point of K ∩ Ws
loc(b) − Orb(b) to be a1, and Orb(b) to be P. Note that

a1 is non-periodic. Also note that if the size of Ws
loc(b) is small enough, then

a1 ∈ U − Γ − Sing(X) and Orb+(a1) ⊂ U .
Thus in all the three cases, the choice of a1 and P satisfies the conditions

of Lemma 5.5. This proves Lemma 5.5. ��
Note that the assumption of Lemma 5.5 is weaker than that of Lemma 5.4

in the sense that, it is not the point a itself, but nearby points (on some
periodic orbits), that approach to a chain transitive hyperbolic set. The
conclusion is weaker too in the sense that we have to switch from a to
another (non-periodic and nonsingular) point a1, which is loosely connected
to a (in the sense that nearby points of a approach to a1).

The main result of this section is the following lemma that concerns the
index-determination for preperiodic points.

Lemma 5.6 Let X ∈ X(M). Assume a ∈ P(X) and ω(a) ⊂ M − Sing(X)

is hyperbolic of index i. Then a ∈ Pi∗(X). Similarly, if a ∈ P(X) and
α(a) ⊂ M − Sing(X) is hyperbolic of index i, then a ∈ Pi∗(X).
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Note that the assumption a ∈ P(X) merely means periodic orbits (of X)
accumulate on the point a, without specifying the indices of these periodic
orbits. The indices may well be different from i. In fact i is given as the index
of ω(a). Observe that a is “nearly homoclinic” associate with ω(a), in the
sense that the positive orbit of a accumulates on ω(a), and the negative orbits
of some nearby points (on those periodic orbits) accumulate on ω(a) too. We
hence try to create by C1 perturbations, arbitrarily close to a, a homoclinic
point associated with some hyperbolic periodic orbit P of index i. Then by
Birkhoff-Smale Theorem a will be i-preperiodic.

Proof If a ∈ ω(a), then the conclusion is obvious. So we assume a �∈
ω(a). Since a ∈ P(X), by Lemma 3.3, 0 �= Ind(ω(a)) �= d − 1. Take
a sequence of periodic orbits Qn ⊂ P(X) and xn ∈ Qn such that xn → a.
Taking subsequence if necessary, we may assume Qn converge to a compact
X-invariant set K . Then a ∈ K and hence ω(a) ⊂ K .

Take a small neighborhood U of ω(a) with a /∈ U such that M(U) =
∩t∈Rφt(U) is hyperbolic of index i. We may assume that U is small enough
so that any periodic orbits contained in U are H-related.

By item 2) of Lemma 5.4, there exists a hyperbolic periodic orbit P ⊂ U
of index i such that a ∈ Ws(P). By Lemma 5.5 (for the case of Wu), there
is a non-periodic point a1 ∈ K ∩ U − ω(a) − Sing(X) with Orb−(a1) ⊂ U ,
together with a hyperbolic periodic orbit Q of index i contained in U such
that a1 ∈ Wu(Q). Since P and Q are H-related, a1 ∈ Wu(P). Thus we may
forget about Q.

Note that a is not periodic since a �∈ ω(a). Also, a is not singular
since otherwise ω(a) would be in Sing(X). Since a and a1 are both in K ,
there are sequences xn ∈ M and sn > 0 with xn → a1 and φsn(xn) → a.
By Lemma 5.2, for any C1 neighborhood U of X in X(M) and any neigh-
borhood W of a in M, there is Y ∈ U such that Y has in W a homoclinic
point x of P. With a further perturbation if necessary, we may assume
x is a transverse Y -homoclinic point of P. By Birkhoff-Smale Theorem,
x ∈ P(Y ). Thus a ∈ Pi∗(X), proving Lemma 5.6. ��

Note that in the proof of Lemma 5.6 we have not used the conditions
a1 ∈ U − ω(a) and Orb−(a1) ⊂ U . These will be used in the proof of
Theorem B below.

We remark a delicate point involved here. The assumption of Lemma 5.6
says that in the direction of positive time it is the point a itself that approaches
to Γ (in this case Γ = ω(a)), while in the direction of negative time it is
nearby points xn of a that approach to Γ. If the assumption is weakened
to that, in both directions, it is merely nearby points of a that approach
to Γ, though we still can create homoclinic points of Γ, it will be unclear if
we can create a homoclinic point of Γ near a. In the proof of Theorem B
we will have such a situation (for heteroclinic case), but it will be all right
because there we will not need the resulted heteroclinic connection to pass
near some given point.
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6 The proof of Theorem B

In this section we prove Theorem B.

Theorem B Let S ∈ X∗(M). Let Γ ⊂ P(S) be a compact invariant set of
S such that Γ ∩ Sing(S) = ∅. Then Γ is hyperbolic.

To prove Theorem B, by the principle of Liao, it suffices to rule out the
existence of minimally non-hyperbolic sets contained in P(S) − Sing(S),
that is, to prove the following Lemma 6.1 and Lemma 6.2.

Lemma 6.1 Assume S ∈ X∗(M). Then there are no simple type minimally
non-hyperbolic sets contained in P(S) − Sing(S).

Proof Assume for the contrary there is a simple type minimally non-
hyperbolic set Λ ⊂ P(S) − Sing(S). We prove that a heterodimensional
cycle can be created by perturbations. This will contradict Theorem 4.1.

The idea is briefly this: By the definition of simple type minimally
non-hyperbolic set, there exists a resisting point a ∈ Λ such that both
ω(a) and α(a) are proper subsets of Λ, hence are hyperbolic. Moreover,
Λ = α(a) ∪ Orb(a) ∪ ω(a), because α(a) ∪ Orb(a) ∪ ω(a) is itself a non-
hyperbolic compact invariant set. Thus we have, loosely, already a hetero-
clinic connection going from the hyperbolic set α(a) to the hyperbolic set
ω(a). Here we say “loosely”, because this connection is between two hy-
perbolic sets, rather than two hyperbolic periodic orbits and, by definition,
a heterodimensional cycle is between hyperbolic periodic orbits. In other
words, later we should pass from the two sets to two periodic orbits. It is
easy to see by dominated splitting that the two hyperbolic sets ω(a) and
α(a) have different indices. Now since a ∈ P(S), there is a sequence Qn
of periodic orbits of S that converge in the Hausdorff metric to a compact
invariant set K of S such that a ∈ K . (K may contain singularities.) Clearly
Λ ⊂ K . By Lemma 3.3, neither Ind(ω(a)) nor Ind(α(a)) is 0 or d − 1. With
the help of K (which, being the Hausdorff limit of a sequence of periodic
orbits, is roughly “circle-like”), we will create by perturbation a second
heteroclinic connection, going from ω(a) to α(a), without breaking the first
one that goes from α(a) to ω(a), to form a heteroclinic cycle between ω(a)
and α(a) (actually, in the proof below, we will take the opposite order). As
just remarked, to really get a heterodimensional cycle which is defined to be
between hyperbolic periodic orbits, we need to carry out the whole program
for two hyperbolic periodic orbits P and Q (rather than the two hyperbolic
sets ω(a) and α(a)).

Now we start with the formal proof.
First we claim Indα(a) �= Indω(a). This is argued by dominated

splitting. Note that by Lemma 5.6, a ∈ Pi∗(S), where i = Indω(a).
Since Λ = Orb(a) contains no singularities, Λ ⊂ Pi∗(S). By Lemma 3.6,
Λ has i-dominated splitting DΛ = E ⊕ F. Since dim Ds(a) = Indω(a)
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and dim Du(a) = d − 1 − Indα(a), from Lemma 3.5, if Indα(a) =
Indω(a) then Ds(a) = E(a), Du(a) = F(a), which implies D(a) =
Ds(a) ⊕ Du(a), contradicting that a is a resisting point. This proves the
claim.

Denote Indω(a) = i, and Indα(a) = j. Thus i �= j. In particular
α(a) ∩ ω(a) = ∅. Thus Λ = α(a) ∪ Orb(a) ∪ ω(a) is a disjoint union.
Take a neighborhood U of ω(a) and a neighborhood V of α(a) respectively
such that U ∩ V = ∅. We may assume U and V have been taken small
enough so that, together with some C1 neighborhood W of S, Lemma 5.3
holds. That is, for every X ∈ W , any two X-periodic orbits contained
in U are H-related, and any two X-periodic orbits contained in V are
H-related.

Next we specify two hyperbolic periodic orbits P and Q, between which
a heterodimensional cycle will be created, and specify three points, through
which three disjoint tubes will be prolongated to support our connecting
perturbations. This is prepared by Lemma 5.5. Indeed, since K −ω(a) �= ∅
(a ∈ K −ω(a)), by Lemma 5.5 (for the case of Wu), there is a non-periodic
point a∗

1 ∈ K ∩U −ω(a)−Sing(S) with Orb−(a∗
1) ⊂ U , together with a hy-

perbolic periodic orbit P of index i contained in U such that a∗
1 ∈ Wu(P).

Likewise, there is a non-periodic point a∗
2 ∈ K ∩ V − α(a) − Sing(S) with

Orb+(a∗
2) ⊂ V , together with a hyperbolic periodic orbit Q of index j

contained in V such that a∗
2 ∈ Ws(Q). P and Q will be the two hyper-

bolic periodic orbits, between which we will create a heterodimensional
cycle. Clearly a∗

1 /∈ α(a). Moreover, a∗
1 /∈ Orb(a) because Orb−(a∗

1) ⊂ U .
Thus a∗

1 ∈ K − Λ. Likewise, a∗
2 ∈ K − Λ. The two points a∗

1 and a∗
2,

together with the point a we have had already, will serve as the point
z in Theorem 5.1, through which three disjoint tubes will be prolon-
gated.

Let U be any C1 neighborhood of S. We may assume U ⊂ W . Since
a∗

1 is neither singular nor periodic, by Theorem 5.1, treating a∗
1 as z, there

exist ρ > 0, T > 0, δ0 > 0 with those properties. Likewise for a∗
2 and a. We

assume ρ > 0, T > 0, δ0 > 0 have been chosen to work for all the three
points a∗

1, a∗
2 and a.

We prolongate the tubes. We may assume a∗
1 and a∗

2 are not on the same
orbit. Otherwise a∗

2 ∈ Wu(P), and the proof will be easier. Thus the two
orbital segments A = φ[0,T ](a∗

1) and B = φ[0,−T ](a∗
2) are disjoint. In fact

A, B and Λ are pairwise disjoint since a∗
1, a∗

2 /∈ Λ. Take δ ≤ δ0 small and
let

∆1 = ∪t∈[0,T ]B
(

φt
(

a∗
1

)

, δ
)

,

∆2 = ∪t∈[0,−T ]B
(

φt
(

a∗
2

)

, δ
)

,

∆ = ∪t∈[0,T ]B(φt(a), δ).

We assume δ has been taken small enough such that ∆1, ∆2, and ∆ are
pairwise disjoint, and such that ∆1 , ∆2 and Λ are pairwise disjoint. Our
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perturbations X, Y and Z will all be given by Theorem 5.1 supported in
the three disjoint tubes, hence will all be in U. Take η > 0 small such
that Wu

η (P) ∪ Ws
η(P) ⊂ U and Wu

η (Q) ∪ Ws
η(Q) ⊂ V , and such that

Wu
η (P) ∪ Ws

η(P) and Wu
η (Q) ∪ Ws

η(Q) are disjoint from the three tubes ∆1,
∆2 and ∆.

We remark that the tube ∆ is for creating a connection from Q to P, and
the two tubes ∆1 and ∆2, combined together, are for creating a connection
from P to Q. At this point, two of the three tubes, ∆1 and ∆, are prelim-
inary choices. Later, to minimize the interference of orbits, we will shrink
the radius δ for ∆1 and ∆ respectively, to get two tubes of the same length
but thinner, as the final choices.

Having the tubes at hand, we will locate five orbital segments passing
near the three points a∗

1, a∗
2, a, respectively, for the connecting perturba-

tion guaranteed by Theorem 5.1. Since ∆1 and ∆2 are disjoint from ω(a)
and α(a), there is a neighborhood U1 ⊂ U of ω(a) and a neighborhood
V1 ⊂ V of α(a) such that (U1 ∪ V1) ∩ (∆1 ∪ ∆2) = ∅. By item 1) of
Lemma 5.4, there is a point y ∈ U1 with Orb(y) ⊂ U1 such that a ∈ Ws(y).
Moreover, there exists a sequence {Pn} ⊂ U1 of hyperbolic periodic or-
bits of index i and pn ∈ Pn such that pn → y. Likewise, there is a point
z ∈ V1 with Orb(z) ⊂ V1 such that a ∈ Wu(z). Moreover, there ex-
ists a sequence {Qn} ⊂ V1 of hyperbolic periodic orbits of index j and
qn ∈ Qn such that qn → z. Later, we will locate by these information
two orbital segments passing near a, to create a connection going from Q
to P. In the next two paragraphs we first create a connection going from P
to Q.

To create a connection going from P to Q, we locate three orbital
segments passing near a∗

1 and a∗
2, respectively. Since a∗

2 ∈ Ws(Q), there is
qs ∈ Ws

η(Q) such that the negative S-orbit of qs hits B(a∗
2, δ/ρ) at a point as.

Note that Orb+(qs) ⊂ Ws
η(Q). If the S-orbit segment C from as to qs con-

tains a∗
1, then as ∈ Wu(P), and the proof will again be easier. Thus we

assume a∗
1 /∈ C. In fact a∗

1 /∈ C ∪ Orb+(qs), which forms a complete posi-
tive orbit (of as), hence B ∩ C = ∅. Hence we can take δu ≤ δ small such
that the closure of the tube

∆u = ∪t∈[0,T ]B
(

φt
(

a∗
1

)

, δu
)

is disjoint from C. Note that ∆u has the same length as ∆1, but thinner.
Since a∗

1 ∈ Wu(P), there is pu ∈ Wu
η (P) such that the positive S-orbit

of pu hits B(a∗
1, δ

u/ρ) at a point au . Note that Orb−(pu) ⊂ Wu
η (P). Fi-

nally, since a∗
1, a∗

2 ∈ K , where K is a Hausdorff limit of a sequence
of periodic orbits of S, there are sequences xn ∈ M and sn > 0 with
xn → a∗

1 and φsn (xn) → a∗
2. Fix n large such that xn ∈ B(a∗

1, δ
u/ρ) and

x ′
n = φsn(xn) ∈ B(a∗

2, δ/ρ). These three orbital segments, [pu, au], [xn, x ′
n]

and [as, qs], are for creating a connection going from P to Q.



Nonsingular star flows satisfy Axiom A and the no-cycle condition 307

Now we apply Theorem 5.1 to get the ensured connection. Since pu

and x ′
n are outside the tube ∆u , and since the positive S-orbit of pu and

the negative S-orbit of x ′
n both hit B(a∗

1, δ
u/ρ) (at au and xn , respectively),

by Theorem 5.1, there exists X ∈ U with X = S outside ∆u such that x ′
n

is on the positive X-orbit of pu . We emphasize that the S-orbit segment C
from as to ps is unchanged because C is disjoint from ∆u . Thus pu and
qs are outside the tube ∆2, and the positive X-orbit of pu and the negative
X-orbit of qs both hit B(a∗

2, δ/ρ) (at x ′
n and as , respectively). By Theo-

rem 5.1, there exists Y ∈ U with Y = X outside ∆2 such that qs is on
the positive Y -orbit of pu . Note that Orb+(qs, S) and Orb−(pu, S) are un-
changed. Thus Orb(pu, Y ) gives a Y -heteroclinic connection from P to Q,
that is, pu ∈ Wu(P, Y ) ∩ Ws(Q, Y ). This is the connection created from P
to Q.

Now we are to create the other connection, going from Q to P, with-
out breaking the one just created. Note that Λ is unchanged. In particu-
lar Orb(a, Y ) = Orb(a, S), ω(a, Y ) = ω(a, S), and α(a, Y ) = α(a, S).
Also note that by the last assertion in Theorem 5.1, Orb(pu , Y ) meets
B(a∗

2, δ) ⊂ ∆2. But Orb(a, Y ) ⊂ Λ is disjoint from ∆2, hence Orb(a, Y ) ∩
Orb(pu, Y ) = ∅. Thus the Y -orbit segment D = φ[0,T ](a, Y ) is disjoint
from the compact invariant set Λ∗ = P ∪ Orb(pu, Y ) ∪ Q. Take δa small
such that the closure of the tube

∆a = ∪t∈[0,T ]B(φt(a), δa)

is disjoint from Λ∗. Note that ∆a has the same length as ∆, but thin-
ner.

We claim a ∈ Ws(P, Y )∩ Wu(Q, Y ). In fact, since Λ∩ (∆u ∪∆2) = ∅,
the orbit of a is unchanged. That is, Orb(a, Y ) = Orb(a, S). Similarly,
since (U1 ∪ V1) ∩ (∆u ∪ ∆2) = ∅, the orbit of the above y ∈ U1, as well
as the sequences Pn and pn obtained by applying item 1) of Lemma 5.4
for S, are unchanged. Thus Orb(y, Y ) ⊂ U1 and a ∈ Ws(y, Y ) (note that
Ws(y) may change). The sequence {Pn} ⊂ U1 now become Y -hyperbolic
periodic orbits of index i with pn ∈ Pn and pn → y (note that Ws(Pn)
may change). Take L > 0 large such that a ∈ Ws

L(y, Y ). Since compact
parts of stable manifolds Ws(x, Y ) of Y vary continuously when x vary, for
any neighborhood W of a in M, there is n such that Ws

L(pn, Y ) ∩ W �= ∅.
But Y ∈ W , hence any two Y -periodic orbits contained in U are H-related,
hence Ws(P, Y ) ∩ W �= ∅. Thus a ∈ Ws(P, Y ). Likewise, a ∈ Wu(Q, Y ).
This proves the claim.

We locate two orbital segments passing near a, to create a connection
going from Q to P. Since a ∈ Ws(P, Y ), there is ps ∈ Ws

η(P, Y ) =
Ws

η(P, S) such that the negative Y -orbit of ps hits B(a, δa/ρ) at a point bs.
Note that Orb+(ps, Y ) ⊂ Ws

η(P, Y ). Likewise, there is qu ∈ Wu
η (Q, Y ) =

Wu
η (Q, S) such that the positive Y -orbit of qu hits B(a, δa/ρ) at a point bu .

Note that Orb−(qu, Y ) ⊂ Wu
η (Q, Y ). The two Y -orbital segments, [qu, bu]

and [bs, ps], are for creating a connection going from Q to P.
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We apply Theorem 5.1 to get the connection. Since qu and ps are outside
the tube ∆a, and since the positive Y -orbit of qu and the negative Y -orbit
of ps both hit B(a, δa/ρ) (at bu and bs, respectively), by Theorem 5.1,
there exists Z ∈ U with Z = Y outside ∆a such that ps is on the positive
Z-orbit of qu . Note that Orb+(ps, X) and Orb−(qu, X) are unchanged. Thus
Orb(qu, Z) gives a Z-heteroclinic connection going from Q to P, that is,
qu ∈ Wu(Q, Z) ∩ Ws(P, Z). Since ∆a ∩ Λ∗ = ∅, the previously obtained
Y -heteroclinic connection Λ∗ = P ∪ Orb(pu, Y ) ∪ Q going from P to Q
is unchanged. This gives a Z-heterodimensional cycle between P and Q,
proving Lemma 6.1. ��
Lemma 6.2 Assume S ∈ X∗(M). Then there are no non-simple type min-
imally non-hyperbolic sets contained in P(S) − Sing(S).

Proof Assume for the contrary there is a non-simple type minimally non-
hyperbolic set Λ ⊂ P(S) − Sing(S). We may assume there is a resisting
point a ∈ Λ such that ω(a) = Λ. Let

p = min{ j : There is a fundamental j − limit K ⊂ Λ}.
Note that by the C1 closing lemma, Λ itself is a fundamental limit [19,
p. 257]. Hence p is well-defined. Also note that 0 �= p �= d − 1, because
otherwise by Lemma 3.3, Λ would reduce to an expanding or contracting
periodic orbit, contradicting that Λ is non-hyperbolic.

Claim 1 Λ ⊂ Pp
∗(S).

Assume for the contrary that Γ = Λ ∩ Pp
∗(S) is a proper subset of Λ.

Of course Γ �= ∅. Since Λ is minimally non-hyperbolic, Γ is hyperbolic.
Denote by Γp the part of Γ that has index p. Note that Γp �= ∅. In fact,
there is a fundamental p-limit K ⊂ Λ, hence by Lemma 3.11, there is
a hyperbolic set K ′ ⊂ K of index q ≤ p, hence a fundamental q-limit
contained in K ′. (Any hyperbolic set of index q contains a minimal set,
which by shadowing lemma is a fundamental q-limit.) By the minimality
of p, q = p. This proves Γp �= ∅. Clearly, Γp is compact and invariant,
and is open in Γ. Note that a /∈ Γp since a is resisting. Take a small open
neighborhood U of Γp in M such that any compact invariant set contained
in U is hyperbolic of index p, and such that a �∈ U and Γ ∩ U = Γp. Since
Γp ⊂ ω(a) and a /∈ Γp, there is a point b ∈ Λ∩∂U such that Orb+(b) ⊂ U .
Then ω(b) is a hyperbolic set of index p. By Lemma 5.6, b ∈ Pp

∗(S). Hence
b ∈ Γ, contradicting Γ ∩ U = Γp. This proves Claim 1.

Thus by Lemma 3.6, there exists a p-dominated splitting

DΛ = E ⊕ F

over Λ.

Claim 2 E is contracting.

Otherwise, by Lemma 3.10, Λ would contain a fundamental q-limit
with q < p, contradicting the minimality in the definition of p. This proves
Claim 2.
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Denote by G the set of points x ∈ Λ which satisfy the following condi-
tion

lim sup
n→+∞

1

nT̃

n−1∑

j=0

η+
(

F
(

φ j T̃ (x)
)

, T̃
) ≥ η̃. (6.22)

Obviously, G is a nonempty compact invariant subset of Λ.

Claim 3 G = Λ.

Since Λ = ω(a), it suffices to prove a ∈ G. Assume for the contrary
a �∈ G. Then G is a proper subset of Λ. Since Λ is minimally nonhyperbolic,
G is hyperbolic. According to the definition of G (6.22), G has index p.
In fact, by the definition of G, the subbundle F (restricted to G) contains
no contracting vectors. Since E (with dim E = p) is contracting, G has
index p.

Take a small neighborhood U of G in M such that a �∈ U and every
compact invariant set contained in U is hyperbolic of index p. Since a �∈ U ,
we can find b ∈ Λ ∩ (∂U) such that Orb+(b) ⊂ U and hence ω(b) is
hyperbolic of index p. (Note that every hyperbolic set in Λ with index p is
contained in G. Thus ω(b) ⊂ G.) In particular, b /∈ G. That is,

lim sup
n→+∞

1

nT̃

n−1
∑

j=0

η+
(

F
(

φ j T̃ (b)
)

, T̃
)

< η̃.

Hence there exists 0 < η < η̃ such that for n large enough,

1

nT̃

n−1∑

j=0

η+
(

F
(

φ j T̃ (b)
)

, T̃
) ≤ η.

Take a subsequence {ni} such that φni T̃ (b) → c ∈ ω(b).
Fix η1 < η2 in (η, η̃). For every i, if k − i is sufficiently large, then

1

(nk − ni)T̃

nk−1
∑

j=ni

η+
(

F
(

φ j T̃ (b)
)

, T̃
) ≤ η1.

For i large, the orbital arc A = φ[ni T̃ ,nk T̃ ](b) is contained in a small neigh-
borhood of the hyperbolic set ω(b), and the two end points of A that
corresponding to time ni T̃ and nkT̃ are very close (they are both near c).
Thus A can be shadowed by a periodic orbit P such that for some x ∈ P
and some partition

0 = t0 < t1 < · · · < tnk−ni = τ
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of [0, τ] (τ is the period of P), t j+1 − t j is approximately T̃ ( j = 0, 1, · · · ,
nk − ni − 1), and

1

τ

nk−ni−1
∑

j=0

η+
(

Du(φt j (x)), t j+1 − t j
) ≤ η2.

This contradicts Theorem 3.1, proving Claim 3.
Thus by Theorem 3.8, Λ is hyperbolic (of index p), contradicting that

Λ is non-hyperbolic. This proves Lemma 6.2. ��
We remark that, since any non-simple type minimally non-hyperbolic

set Λ is the ω-limit set of a (resisting) point a and hence is a fundamental
limit, by item 3) of Lemma 3.11, Λ contains two hyperbolic sets Γ1 and Γ2
of different indices. Thus to prove Lemma 6.2, it would be natural at the
first place to try to create a heterodimensional cycle. We have been unable
to go this way. (Unlike the case of Lemma 6.1, we do not have in advance
one heteroclinic connection.)

7 The proof of Theorem A

We first introduce a generalized shadowing lemma. It generalizes the stan-
dard shadowing lemma for hyperbolic set.

Let φt be the flow generated by S ∈ X∗(M). As usual, given L > 0 and
α > 0, {ti, xi}∞

i=−∞ will be called an (L, α) pseudo-orbit if d(φti (xi), xi+1)
≤ α, ti ≥ L . We will say a point y ∈ M ε-shadows a pseudo-orbit
{ti, xi}∞

i=−∞ if there exists an orientation-preserving homeomorphism g :
R → R, g(0) = 0 such that d(φg(t)(y), φt−Ti (xi)) ≤ ε for Ti ≤ t ≤ Ti+1,
where Ti is defined as

Ti =
⎧

⎨

⎩

t0 + · · · + ti−1, if i > 0,

0, if i = 0,

−t−1 − · · · − ti, if i < 0.

(7.23)

If for some m ≥ 1, xi = xi+m , ti = ti+m for all i, then {ti, xi} will be
called a periodic pseudo-orbit. It is well known that hyperbolic sets have
the shadowing property.

Let Λ ⊂ M − Sing(S) be a closed invariant set of S ∈ X(M) that has
a continuous invariant splitting DΛ = E ⊕ F with dim E = p, 1 ≤ p ≤
d − 2. For two real numbers T > 0 and η > 0, an orbit arc {x, t} = φ[0,t](x)
will be called an (η, T, p)-quasi hyperbolic orbit arc of S with respect to
the splitting E ⊕ F, if [0, t] has a partition

0 = t0 < t1 < · · · < tl = t
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such that tk − tk−1 ∈ [T, 2T ], k = 1, 2, · · · , l, with the following three
conditions are satisfied:

1

tk

k∑

j=1

η−
(

E(φt j−1(x)), t j − t j−1
) ≤ −η, (7.24)

1

tl − tk−1

l∑

j=k

η+
(

F(φt j−1(x)), t j − t j−1
) ≥ η, (7.25)

η+
(

F(φtk−1(x)), tk − tk−1
) − η−

(

E(φtk−1(x)), tk − tk−1
) ≥ 2η (7.26)

for k = 1, 2, · · · , l.
Quasi hyperbolic orbit arcs are conceptually weaker than hyperbolic

orbit arcs. Nevertheless they also have the shadowing property as the fol-
lowing lemma asserts.

Lemma 7.1 [8,18,21] Let S ∈ X(M) and Λ be a closed invariant set con-
taining no singularity. Assume there exists a continuous invariant splitting
DΛ = E ⊕ F over Λ and dim E = p, 1 ≤ p ≤ d − 2. Then for any
η > 0, T > 0 and ε > 0, there exists δ > 0 such that if {xi, ti}∞

i=−∞ is a
(T, δ) pseudo-orbit and if, for every i, {xi, ti} is an (η, T, p)-quasi hyper-
bolic orbit arc of S with respect to the splitting E ⊕ F, then there exists
y ∈ M ε-shadowing {xi, ti}. Moreover, if {xi, ti} is periodic, then y can be
taken to be a periodic point.

Important cases of Lemma 7.1 that involve the main idea were proved by
Liao [18] and Mañé [21]. A proof for the general case can be found in [8].

We also need the following classical result of Liao [18].

Proposition 7.2 [18] Let S ∈ X(M). If P∗(S) is hyperbolic, then S satisfies
Axiom A and the no-cycle condition.

Note that Proposition 7.2 does not assume the star condition and is for
general flows. Now we proceed to the main result of this section.

Proposition 7.3 Let S ∈ X∗(M). If P∗(S) ∩ Sing(S) = ∅, then P∗(S) =
P(S).

Note that Proposition 7.3 may not hold if P∗(S) ∩ Sing(S) �= ∅, see
examples in [4,14].

Proof Since P(S) ⊂ P∗(S), we have P(S) ∩ Sing(S) = ∅. By Theorem B,
P(S) is hyperbolic (treating P(S) itself to be Λ of Theorem B). Hence S has
the P-spectral decomposition

P(S) = B1 ∪ B2 ∪ · · · ∪ Bs,

where Bi, 1 ≤ i ≤ s, are the P-basic sets of S.
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Lemma 7.4 There are no cycles among B1, B2, · · · , Bs.

Proof of Lemma 7.4 Suppose without loss of generality there is a cycle
among B1, B2, · · · , Bk, 1 ≤ k ≤ s, i.e., suppose there exist points ai ∈
M − P(S), 1 ≤ i ≤ k such that α(ai) ⊂ Bi and ω(ai) ⊂ Bi+1 (k + 1 ≡ 1).

We claim Ind Bi = Ind B j for all 1 ≤ i < j ≤ k. Suppose on the contrary
Ind Bi �= Ind B j for some 1 ≤ i < j ≤ k. For each l with i �= l �= j, by
λ-lemma, there is an orbital arc Al going from a point xl−1 near al−1 to
a point xl near al . By one-step-pushes near al (as in the beginning of the
proof of Theorem 4.1) for all i �= l �= j simultaneously, we can get a
2-cycle between the two basic sets Bi and B j . (Here we do not need the
connecting lemma, because the orbital arcs can be chosen not to wrap
around, and not to be close to each other except at the end points.) Since
periodic orbits are dense in Bi and B j , with a further perturbation we can
get a heteroclinic cycle between two periodic orbits P ⊂ Bi and Q ⊂ B j ,
which is a heterodimensional one because P and Q have different indices.
(Here we do not need the connecting lemma, for the same reason.) This
contradicts Theorem 4.1, proving the claim.

Thus Ind Bi are all the same, say r, for all 1 ≤ i ≤ k. It is easily
seen that there is an r-dominated splitting TΓM = E ⊕ F over the cycle
Γ = ∪k

i=1(Bi ∪ Orb(ai)). Since dim Ds(ai) = r, dim Du(ai) = d − r − 1,
according to Lemma 3.5, we have Ds(ai) = E(ai) and Du(ai) = F(ai) for
1 ≤ i ≤ k. So the cycle is a transversal cycle and hence ai ∈ P(S). This
contradiction proves Lemma 7.4. ��

We continue the proof of Proposition 7.3. Suppose for the contrary
P∗(S) �= P(S). Since P∗(S) is the union of the set of fundamental limits
of S, there exists a fundamental limit Γ of S such that Γ − P(S) �= ∅. Let

k = min{i : there is a fundamental limit Γ with Γ − P(S) �= ∅
such that Γ intersects exactly i of the P−basic sets of S}.

Fix Λ a fundamental limit of S with Λ−P(S) �= ∅ such that Λ intersects
exactly k of the P-basic sets of S. Since P∗(S)∩Sing(S) = ∅, it follows that
Λ ∩ Sing(S) = ∅. Note that k �= 0. In fact, if Λ is hyperbolic, it obviously
intersects P(S) (any nonsingular hyperbolic set contains a nonsingular hy-
perbolic minimal set, which is contained in P(S)). If Λ is non-hyperbolic,
by Lemma 3.11, Λ contains hyperbolic sets, hence intersects P(S) anyway.
We may assume Λ intersects B1, B2, · · · , Bk. Let

m = min{Ind B1, Ind B2, · · · , Ind Bk}.
We may assume Ind B1 = m. Note that 0 �= m �= d−1 because otherwise B1
is an expanding or contracting periodic orbit, hence by Lemma 3.3 Λ = B1,
contradicting Λ − P(S) �= ∅.

We claim that, for each 1 ≤ i ≤ k, there is a point ai ∈ Ws(Bi)∩Λ−P(S).
Indeed, since Λ is a fundamental limit set, there exist Xn → S and periodic
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orbits Pn of Xn such that Pn → Λ in the Hausdorff metric. Take x ∈
Λ − P(S). Then there exists xn ∈ Pn such that xn → x. Given 1 ≤ i ≤ k,
since Bi ∩ Λ �= ∅, there exists yn ∈ Pn such that yn → y ∈ Bi. Since
Bi is a basic set, there exists a small neighborhood U of Bi such that for
any positive orbit Orb+(z) ⊂ U , we have z ∈ Ws(Bi). Fix such a (small
closed) neighborhood U of Bi such that x �∈ U and U ∩ P(S) = Bi. Let
[tn, sn] be the largest interval such that 0 ∈ [tn, sn] and for every t ∈ [tn, sn],
φXnt(yn) ∈ U . Let zn = φXntn(yn) ∈ Pn and τn = sn − tn . Since xn ∈ Pn and
xn �∈ U , we have zn ∈ ∂U . Then φXn[0,τn](zn) ⊂ U . Taking subsequences if
necessary, we may assume zn → ai ∈ ∂U ∩ Λ. It is easy to see τn → ∞
because, otherwise, by the continuity of φXt(z) with respect to X, t, z, we
would get ai ∈ Bi, contradicting ai ∈ ∂U . Again, by the continuity of φXt(z)
with respect to X, t, z, we have Orb+(ai) ⊂ U and hence ai ∈ Ws(Bi). Thus
ai ∈ Ws(Bi) ∩ Λ ∩ ∂U ⊂ Ws(Bi) ∩ Λ − P(S), proving the claim.

If α(a1) ⊂ Bi2 for some 1 ≤ i2 ≤ k, we go on to look at ai2 . If
α(ai2) ⊂ Bi3 for some 1 ≤ i3 ≤ k, we go on to look at ai3 . If this process
goes without end, we would trace out a cycle among Bi, 1 ≤ i ≤ k,
contradicting Lemma 7.4. Thus for some l ≥ 0, α(ail ) is not contained in
any of Bi, 1 ≤ i ≤ k.

Claim Ind Bil = m, and α(ail ) ∩ Bi �= ∅ for any 1 ≤ i ≤ k.

Since α(ail ) is not contained in any of Bi, 1 ≤ i ≤ k, there is b ∈
α(ail )−P(S). According to the C1 closing lemma, we can find a fundamental
q-sequence (Qn, Yn) such that Qn → Γ in the sense of Hausdorff and
b ∈ Γ ⊂ α(ail ). Suppose for the contrary α(ail ) ∩ B j = ∅ for some
1 ≤ j ≤ k, then Γ ∩ B j = ∅. Since Γ ⊂ α(ail ) ⊂ Λ, the number of P-basic
sets which intersect Γ would be less than k, contradicting the minimality
of k. Thus α(ail ) ∩ Bi �= ∅ for any 1 ≤ i ≤ k.

We prove Ind Bil = m. Suppose for the contrary Ind Bil �= m. Since
α(ail ) ∩ B1 �= ∅ we can take b ∈ α(ail ) ∩ Wu(B1) − P(S). By using the C1

connecting lemma, we will obtain a cycle among B1 = Bi1, · · · , Bil . Since
Ind B1 = m �= Ind Bil , by a similar argument in the proof of Lemma 7.4, we
will get a heterodimensional cycle, contradicting Theorem 4.1. This proves
the claim.

Thus ail ∈ Ws(Bil ) ∩ Λ − P(S), and α(ail ) ∩ Bil �= ∅. Since Bil is
a basic set hence the In Phase Theorem holds, a standard application of
the C1 connecting lemma shows ail ∈ Pm∗ (S). Since Ind Bil = m, we have
Bil ∪Orb(ail ) ⊂ Pm∗ (S). Then there is an m-dominated splitting D∆ = E⊕F
over ∆ = Bil ∪ Orb(ail ). Moreover, there is a fundamental m-sequence
(Qn, Yn) such that Qn → Γ ⊂ Bil ∪ Orb(ail ) ⊂ Bil ∪ Λ. Hence if E is
not contracting, by Lemma 3.11, ∆ would contain a hyperbolic subset with
index j < m, hence

Λ ∩ P j(S) = (Bil ∪ Λ) ∩ P j(S) ⊃ Γ ∩ P j(S) �= ∅
for some j < m, contradicting the minimality of m.
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Thus E is contracting. Since Bil is hyperbolic, there exist T > T̃ > 0,
η ∈ (0, η̃] such that for any x ∈ Bil , t ≥ T , η+(F(x), t) > η, and for
any x ∈ ∆, η−(E(x), T ) < −η. Take a small enough neighborhood U
of Bil so that for any x ∈ Orb(ail ) ∩ U , η+(F(x), T ) ≥ η. We may as-
sume Orb+(ail ), Orb−(b) ⊂ U . For any ε > 0, fix a large T ′ so that
d(φ−T ′(ail ), b) < ε. It is easy to see that for T ′′ large enough, φ[−T ′,T ′′](ail ) is
an (m, T, η/2)-quasi hyperbolic orbit arc. Apply Lemma 7.1 to the pseudo-
orbit φ(−∞,0](b) ∪ φ[−T ′,T ′′](ail ) ∪ φ[T ′′,+∞)(ail ). Let c = cε be a shadowing
point that shadows ail . It is easy to see that cε is a transverse homoclinic
point of Bil with limε→0 cε = ail . That means cε is approximated by pe-
riodic orbits of S and hence ail is approximated by periodic orbits of S,
contradicting ail /∈ P(S). This proves Proposition 7.3. ��

Now we finish the proof of Theorem A. It suffices to prove the following
refined version of Theorem A.

Theorem A′ If S ∈ X∗(M), and if P∗(S) ∩ Sing(S) = ∅, then S satisfies
Axiom A and the no-cycle condition.

Proof By Theorem B, P(S) (treated as Λ of Theorem B) is hyperbolic.
By Proposition 7.3, P∗(S) = P(S). Thus P∗(S) is hyperbolic. By Propo-
sition 7.2, S satisfies Axiom A and the no cycle condition. This proves
Theorem A′. ��
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