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Abstract. We prove quadratic estimates for complex perturbations of Dirac-
type operators, and thereby show that such operators have a bounded func-
tional calculus. As an application we show that spectral projections of the
Hodge–Dirac operator on compact manifolds depend analytically on L∞
changes in the metric. We also recover a unified proof of many results
in the Calderón program, including the Kato square root problem and the
boundedness of the Cauchy operator on Lipschitz curves and surfaces.
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1. Introduction

We prove quadratic estimates∫ ∞

0

∥∥ΠB
(

I + t2ΠB
2)−1

u
∥∥2

t dt ≈ ‖u‖2(1)

for all u ∈ L2(Rn,Λ), where ΠB = d + B−1d∗ B is the perturbation of
a Dirac-type operator Π = d + d∗ by an operator B of multiplication by
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an L∞ complex matrix-valued function with uniformly positive real part.
Here Λ is the complex exterior algebra on Rn and d denotes the exterior
derivative.

This estimate implies that ΠB has a bounded functional calculus. This
means that

‖ f(ΠB)u‖ � ‖ f ‖∞‖u‖(2)

for all u ∈ L2(Rn,Λ) and all bounded holomorphic functions f : So
µ−→C,

where So
µ is an open double sector

So
µ := {z ∈ C : | arg(±z)| < µ} with µ > ω := sup | arg(Bu, u)|.

This result in turn implies perturbation estimates of the form

‖ f(ΠB+A)u − f(ΠB)u‖ � ‖ f ‖∞‖A‖∞‖u‖(3)

for all u ∈ L2(Rn,Λ), provided ‖A‖∞ is not too large.
The unperturbed operator Π is selfadjoint, so when B = I , (2) holds

for all bounded Borel measurable functions f by the spectral theory of
selfadjoint operators. When B is positive selfadjoint, then ΠB is selfadjoint
with respect to the inner-product (Bu, v) on L2(Rn,Λ), so (1) and (2) still
hold by spectral theory. However (3) would not, were it not for the structure
of the operators Π, B and A. This is because we need (2) for all small non–
selfadjoint perturbations of B in order to deduce (3) for small selfadjoint
perturbations.

Under our assumptions on B, the operator ΠB has spectrum in the closed
double sector Sω = {z ∈ C : | arg(±z)| ≤ ω} and satisfies resolvent bounds

∥∥(ΠB − λ I)−1
∥∥ � 1

dist (λ, Sω)

for all λ ∈ C \ Sω. This follows from operator theory, but a proof of the
quadratic estimate (1) requires the full strength of the harmonic analysis.
Once the estimate (1) is proven, then (2) follows if ω < µ < π

2 . It can then
be seen that f(ΠB) depends holomorphically on B, from which (3) follows
provided A is not too large.

Our result was inspired by the proof of the Kato square root problem by
Auscher, Hofmann, Lacey, McIntosh and Tchamitchian [2], and includes
not only it as a corollary, but also many results in the Calderón program
such as the boundedness of the Cauchy operator on Lipschitz curves and
surfaces. The proof uses many of the concepts developed over the years to
prove these results in the Calderón program, and in particular the proof of
the Kato problem, but is not a direct consequence, as the operator ΠB is first
order, and the second order operator ΠB

2 is not in divergence form. Indeed,
our arguments utilize only the first order structure of the operator. This
enables us to exploit the algebra involved in the (non–orthogonal) Hodge
decomposition of the first order system

L2(Rn,Λ) = N(d) ⊕ N(B−1d∗ B)

where N(d) is the null-space of d.
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Combining the Hodge decomposition with (2) in the case when f(z) =
z/

√
z2, we obtain the equivalence

‖du‖ + ‖d∗ Bu‖ ≈ ‖ΠBu‖ ≈ ‖
√

ΠB
2u‖.

The square root problem of Kato follows in the special case when B splits
as Bk(x) : Λk → Λk for each 0 ≤ k ≤ n, and for almost every x ∈ Rn, with
B0 = I and B1(x) = A(x) : Cn → Cn . On making the identification

d : L2(Rn,Λ0) → L2(Rn,Λ1) with ∇ : L2(Rn, C) → L2(Rn, Cn) and

d∗ : L2(Rn,Λ1) → L2(Rn,Λ0) with − div : L2(Rn, Cn) → L2(Rn, C)

and restricting our attention to Λ0, we obtain

‖∇u‖ ≈ ‖√−divA∇u‖
for all u ∈ L2(Rn, C).

The choice of test–functions used in our proof of the stopping time
argument in Sect. 5 has more in common with that presented in the paper
on elliptic systems [4] than with [2], but the result stated above does not
include the full result on systems. To remedy this, as well as to allow further
consequences, our results can in fact be stated somewhat more generally
than so far indicated, though without much effect on the proofs. Rather
than d, we consider any first order system Γ in a space L2(Rn, CN ) which
satisfies Γ2 = 0, we let Π = Γ + Γ∗, and consider perturbations of the
type ΠB = Γ + B1Γ

∗ B2 where B1 has positive real part on the range
of Γ∗, B2 has positive real part on the range of Γ, and Γ∗ B2 B1Γ

∗ = 0 and
ΓB1 B2Γ = 0. In this case there is a (non–orthogonal) Hodge decomposition
of H = L2(Rn, CN ) into closed subspaces:

H = N(ΠB) ⊕ R(Γ∗
B ) ⊕ R(Γ).

The quadratic estimates and functional calculus hold for u ∈ R(ΠB) =
R(Γ∗

B ) ⊕ R(Γ).
These results have implications for spectral projections of the Hodge–

Dirac operator d+d∗
g on a compact manifold M with a Riemannian metric g.

The operator d + d∗
g is a selfadjoint operator in the Hilbert space H =

L2(M,∧T ∗M), and so there is an orthogonal decomposition

H = N(d + d∗
g) ⊕ H+

g ⊕ H−
g

where H±
g are the positive and negative eigenspaces of d + d∗

g . The pro-
jections of H onto H±

g are E±
g = ξ±(d + d∗

g) where the functions ξ± :
So

µ ∪ {0} −→ C defined by

ξ±(z) =
{

1 if ± Re z > 0
0 if ± Re z ≤ 0

are holomorphic on So
µ. The subscript g denotes dependence on the metric g.
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If the metric is perturbed to g + h, then the adjoint of d with respect
to the perturbed metric has the form d∗

g+h = B−1d∗
g B for an associated

positive selfadjoint multiplication operator B. The perturbation result (3)
can be transferred to this context, thus giving

∥∥E±
g+h − E±

g

∥∥ � ‖h‖∞ := ess supx∈M|hx|(4)

provided ‖h‖∞ is not too large, where

|hx| = sup{|hx(v, v)| : v ∈ Tx M, gx(v, v) = 1}.
What (4) tells us is that these eigenspaces depend continuously on L∞
changes in the metric. Indeed the eigenspaces depend analytically on L∞
changes in the metric. This result is possibly surprising in that the local
formula for d∗

g+h in terms of d∗
g depends on the first order derivatives of h.
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2. Statement of results

We begin by standardizing notation and terminology. All theorems and re-
sults in this paper are quantitative, in the sense that constants in estimates
depend only on constants quantified in the relevant hypotheses. Such de-
pendence will usually be clear. We use the notation a ≈ b and b � c, for
a, b, c ≥ 0, to mean that there exists C > 0 so that a/C ≤ b ≤ Ca and
b ≤ Cc, respectively. The value of C varies from one usage to the next,
but then is always fixed, and depends only on constants quantified in the
relevant preceding hypotheses.

For an unbounded linear operator A : D(A) −→ H2 from a domain
D(A) in a Hilbert space H1 to another Hilbert spaces H2, we denote its
null space by N(A) and its range by R(A). The operator A is said to be
closed when its graph is a closed subspace of H1 × H2. The space of
all bounded linear operators from H1 to H2 is denoted L(H1,H2), while
L(H ) := L(H,H ). See for example [19] for more details.

Consider three operators {Γ, B1, B2} in a Hilbert space H with the
following properties.
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(H1) The operator Γ : D(Γ) −→ H is a nilpotent operator from D(Γ) ⊂ H
to H , by which we mean Γ is closed, densely defined and R(Γ) ⊂
N(Γ). In particular, Γ2 = 0 on D(Γ).

(H2) The operators B1, B2 : H −→ H are bounded operators satisfying
the accretivity conditions for some κ1, κ2 > 0:

Re(B1u, u) ≥ κ1‖u‖2 for all u ∈ R(Γ∗),
Re(B2u, u) ≥ κ2‖u‖2 for all u ∈ R(Γ).

Let the angles of accretivity be

ω1 := sup
u∈R(Γ∗)\{0}

| arg(B1u, u)| < π
2 ,

ω2 := sup
u∈R(Γ)\{0}

| arg(B2u, u)| < π
2 ,

and set ω := 1
2(ω1 + ω2).

(H3) The operators satisfy Γ∗ B2B1Γ
∗ = 0 on D(Γ∗) and ΓB1B2Γ = 0 on

D(Γ), that is, B2 B1 : R(Γ∗) −→ N(Γ∗) and B1 B2 : R(Γ) −→ N(Γ).
This implies that ΓB∗

1 B∗
2Γ = 0 on D(Γ) and that Γ∗ B∗

2 B∗
1Γ

∗ = 0 on
D(Γ∗).

In some applications, B2 satisfies the accretivity condition on all of
H and B1 = B2

−1. In this case (H3) is automatically satisfied, and the
accretivity condition for B1 holds with ω1 = ω2.

Definition 2.1. Let Π = Γ + Γ∗. Also let Γ∗
B = B1Γ

∗ B2 and ΓB = B∗
2ΓB∗

1
and then let ΠB = Γ + Γ∗

B and Π∗
B = Γ∗ + ΓB.

In Sect. 4, specifically in Lemma 4.1 and Corollary 4.3, we show that
Γ∗

B = (ΓB)∗ and Π∗
B = (ΠB)∗, that each of these operators is closed and

densely defined, and morever that ΓB and Γ∗
B are nilpotent. The proofs of the

following two propositions are also given in Sect. 4. The first establishes
a Hodge decomposition for the perturbed operators.

Proposition 2.2. The Hilbert space H has the following Hodge decompos-
ition into closed subspaces:

H = N(ΠB) ⊕ R(Γ∗
B ) ⊕ R(Γ).(5)

Moreover, we have N(ΠB) = N(Γ∗
B ) ∩ N(Γ) and R(ΠB) = R(Γ∗

B ) ⊕ R(Γ).
When B1 = B2 = I these decompositions are orthogonal, and in general
the decompositions are topological. Similarly, there is also a decomposition

H = N(Π∗
B) ⊕ R(ΓB) ⊕ R(Γ∗).

Definition 2.3. The bounded projections onto the subspaces in the Hodge
decomposition (5) are denoted by P0

B onto N(ΠB), P1
B onto R(Γ∗

B ) and P2
B

onto R(Γ). When B1 = B2 = I , these are orthogonal projections which we
denote by P0, P1 and P2.
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We now investigate the spectrum and resolvent estimates for the opera-
tor ΠB.

Definition 2.4. Given 0 ≤ ω < µ < π
2 , define the closed and open sectors

and double sectors in the complex plane by

Sω+ := {z ∈ C : | arg z| ≤ ω} ∪ {0},
So

µ+ := {z ∈ C : z �= 0, | arg z| < µ},
Sω := Sω+ ∪ (−Sω+),

So
µ := So

µ+ ∪ (−So
µ+).

Also let Ψ(So
µ) denote the collection of holomorphic functions ψ :

So
µ −→ C such that there exist L, s > 0 so that

|ψ(z)| ≤ L
|z|s

(1 + |z|2s)

for all z ∈ So
µ.

Proposition 2.5. The spectrum σ(ΠB) is contained in the double sector Sω.
Moreover the operator ΠB satisfies resolvent bounds

∥∥(I +τΠB)−1
∥∥ � |τ|

dist (τ, Sω)

for all τ ∈ C \ Sω.

Such an operator is of type Sω as defined in [1,5]. A consequence of
the above proposition is that the following operators are uniformly bounded
in t.

Definition 2.6. For t ∈ R (t �= 0), define the bounded operators in H :

RB
t := (I +itΠB)−1 ,

PB
t := (

I +t2ΠB
2)−1 = 1

2

(
RB

t + RB
−t

) = RB
t RB

−t and

Q B
t := tΠB

(
I +t2ΠB

2)−1 = 1
2i

( − RB
t + RB

−t

)
.

In the unperturbed case B1 = B2 = I , we write Rt , Pt and Qt for RB
t , PB

t
and Q B

t , respectively.

For an operator with the spectral properties of Proposition 2.5, it is
useful to know whether it satisfies quadratic estimates and whether it has
a bounded holomorphic functional calculus. The hypotheses (H1–3) are not
enough to imply quadratic estimates. See Remark 3.4. Thus we introduce
further hypotheses which allow the use of harmonic analysis.

(H4) The Hilbert space is H = L2(Rn; CN ), where n, N ∈ N.
(H5) The operators B1 and B2 denote multiplication by matrix–valued

functions B1, B2 ∈ L∞(Rn;L(CN )).
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(H6) (Localisation) The nilpotent operators Γ and Γ∗ are first order differen-
tial operators in the sense that if η : Rn −→ C is a bounded Lipschitz
function, then multiplication by η preserves D(Γ) and D(Γ∗), and the
commutators

Γ∇η := [Γ, η I], Γ∗
∇η := [Γ∗, η I]

are multiplication operators such that there exists c > 0 so that

|Γ∇η(x)|, |Γ∗
∇η(x)| ≤ c|∇η(x)|

for all x ∈ Rn.
(H7) (Cancellation) We have

∫
Rn Γu = 0 for all compactly supported

u ∈ D(Γ), and we have
∫

Rn Γ∗v = 0 for all compactly supported
v ∈ D(Γ∗).

(H8) (Coercivity) There exists c > 0 such that

‖∇u‖ ≤ c‖Πu‖
for all u ∈ R(Π) ∩ D(Π).

Observe that (H6–7) automatically hold if Γ is a homogeneous first order
differential operator with constant coefficients. We now state the first main
result of the paper.

Theorem 2.7. Consider the operator ΠB = Γ + B1Γ
∗ B2 acting in the

Hilbert space H = L2(Rn; CN ), where {Γ, B1, B2} satisfies the hypotheses
(H1–8). Then ΠB satisfies the quadratic estimate

∫ ∞

0

∥∥Q B
t u

∥∥2 dt

t
=

∫ ∞

0

∥∥ΠB
(

I +t2ΠB
2
)−1

u
∥∥2

t dt ≈ ‖u‖2(6)

for all u ∈ R(ΠB) ⊂ L2(Rn; CN ).

Let us now discuss the holomorphic functional calculus for ΠB. As
a result of Proposition 2.5, one can define the operator ψ(ΠB) : H −→ H
whenever ψ ∈ Ψ(So

µ) for some µ > ω, in such a way that the mapping
ψ �→ ψ(ΠB) is an algebra homomorphism. This can be done as in the
Dunford functional calculus by a contour integral

ψ(ΠB) := 1

2πi

∫
γ

ψ(λ)(λ I −ΠB)−1dλ(7)

where γ is the unbounded contour {±re±iθ : r ≥ 0}, ω < θ < µ, parame-
trised counterclockwise around Sω. The decay estimate on ψ and the re-
solvent bounds of Proposition 2.5 guarantee that the integral is absolutely
convergent and that ψ(ΠB) is bounded. See for example [1,5,12,25] for
a discussion of these matters.
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Remark 2.8. We note in passing that each ψ ∈ Ψ(So
µ) which is nonzero on

both sectors defines a quadratic seminorm on H , and that they are all equiva-
lent. In particular, we have

∫ ∞
0 ‖ψ(tΠB)u‖2 dt

t ≈ ∫ ∞
0 ‖Q B

t u‖2 dt
t for all

u ∈ H . Therefore, under hypotheses (H1–8), we have
∫ ∞

0 ‖ψ(tΠB)u‖2 dt
t ≈

‖(I −P0
B)u‖2 for all u ∈ H .

Definition 2.9. Suppose ω < µ < π
2 . We say that ΠB has a bounded So

µ

holomorphic functional calculus if

‖ψ(ΠB)‖ � ‖ψ‖∞ := sup
{|ψ(z)| : z ∈ So

µ

}
(8)

for all ψ ∈ Ψ(So
µ).

In this case one can define a bounded operator f(ΠB) with

‖ f(ΠB)‖ � ‖ f ‖∞ := sup
{| f(z)| : z ∈ So

µ ∪ {0}}(9)

for all bounded functions f : So
µ∪{0} −→ C which are holomorphic on So

µ.
The operator f(ΠB) can be defined by

f(ΠB)u = f(0)P0
Bu + lim

n→∞ ψn(ΠB)u(10)

for all u ∈ H , where the functions ψn ∈ Ψ(So
µ) are uniformly bounded and

tend locally uniformly to f on So
µ; see [1,12]. The definition is indepen-

dent of the choice of the approximating sequence (ψn). If ΠB satisfies the
quadratic estimate (6) for all u ∈ R(ΠB) then it has a bounded holomorphic
functional calculus. Thus we have the second main result of the paper.

Theorem 2.10. Assume the hypotheses of Theorem 2.7 and let ω < µ < π
2 .

Then ΠB has a bounded So
µ holomorphic functional calculus in L2(Rn; CN ).

A consequence of this theorem is that there is a decomposition of H
into spectral subspaces. Let ξ± be the holomorphic functions defined in
the Introduction. Also let ξ0 denote the characteristic function of {0} so
that ξ0 + ξ+ + ξ− = 1 on So

µ ∪ {0} and ξ0(ΠB) = P0
B. By Theorem 2.10,

the spectral projections E±
B = ξ±(ΠB) are bounded, and by the functional

calculus, P0
B + E+

B + E−
B = I. This leads to part (i) of the corollary below.

Furthermore, define the function sgn by sgn(z) = z/
√

z2 when z ∈ So
µ and

sgn(0) = 0, so that sgn(z) = ξ+(z)−ξ−(z) and hence sgn(ΠB) = E+
B −E−

B .
The boundedness of this operator together with the Hodge decomposition
implies part (ii).

Corollary 2.11. Assume the hypotheses of Theorem 2.7. Then

(i) there is a (non–orthogonal) spectral decomposition

H = N(ΠB) ⊕ E+
BH ⊕ E−

BH

into spectral subspaces of ΠB corresponding to {0}, Sω+ \ {0} and
Sω− \ {0}, respectively; and
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(ii) we have D(Γ) ∩ D(Γ∗
B ) = D(ΠB) = D(

√
ΠB

2) with

‖Γu‖ + ‖Γ∗
B u‖ ≈ ‖ΠBu‖ ≈ ‖

√
ΠB

2u‖.
Remark 2.12. If u0 ∈ E±

BH , then u(x, t) = exp(−t
√

ΠB
2)u0(x) is the

solution of ∂u
∂t ±ΠBu = 0 for t ≥ 0 which equals u0 when t = 0 and decays

as t → ∞. It is a consequence of Remark 2.8 with ψ(z) = z exp(−√
z2)

that ‖u0‖2 ≈ ∫ ∞
0 ‖ ∂

∂t u(., t)‖2tdt for u0 ∈ E±
BH .

In Sect. 3 we use Theorem 2.10 and Corollary 2.11 to give a unified
proof of many results in the Calderón program, including the Kato square
root problem and the boundedness of the Cauchy operator on Lipschitz
curves and surfaces. We are not claiming that the approach adopted here
is always better than the original proofs given by the respective authors.
Nonetheless, we believe there is value in seeing that each of these results
can be easily derived from Theorem 2.7. Moreover, at the end of Sect. 3
we apply Theorem 2.10 to Hodge–Dirac operators in Euclidean space, and
obtain Theorem 3.11. This result is new.

Sections 6 and 7 give further consequences and developments of Theo-
rems 2.7 and 2.10. In Sect. 6 we first demonstrate that, under the hypotheses
(H1–3), the resolvents of ΠB vary holomorphically with respect to perturba-
tions in B, as do the operators ψ(ΠB) when ψ ∈ Ψ(So

µ). We use these results
in Theorem 6.4, to show that, under all the hypotheses (H1–8), the bounded
members of the functional calculus of the perturbed Dirac operator, and
quadratic functions, depend holomorphically on perturbations in B. From
this, we deduce Lipschitz estimates on members of the functional calculus
of the perturbed Dirac operator ΠB, and also of the quadratic estimates of
ΠB, in terms of small perturbations in B. In Sect. 7 we prove and then apply
these results to Hodge–Dirac operators on compact Riemannian manifolds.
This enables us to establish Theorem 7.1, which gives Lipschitz estimates
for members of the functional calculus (including spectral projections) of
the Hodge–Dirac operator on compact manifolds in terms of L∞ changes
in the metric. In Appendix A, we show that, under hypotheses (H1–3), the
Hodge projections also depend holomorphically on perturbations in B, and
calculate the derivatives of these projections.

We conclude this section with a brief outline of the idea behind the proofs
of Theorems 2.7 and 2.10. The results in Sect. 4 just depend on hypotheses
(H1–3). We prove Propositions 2.2 and 2.5, and show how to reduce Theo-
rems 2.7 and 2.10 to a particular quadratic estimate (19). In Sect. 5 we prove
this estimate under all the hypotheses (H1–8). This can be considered as
a type of “T(b) argument”. In Sect. 5.2, we separate out the principal part γt
of the operator appearing as the integrand in the desired quadratic estimate
(19). This localization procedure relies on Propositions 2.2 and 2.5, the off–
diagonal estimates established in Proposition 5.2, and the local Poincaré
inequality together with the global coercivity condition (H8). We estimate
the principal part γt of the operator in Sect. 5.3. To do this we show that
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dµ(x, t) = |γt(x)|2 dxdt
t is a Carleson measure, and then apply Carleson’s

Theorem for Carleson measures. This provides the desired result.

3. Consequences

For Consequences 3.2–3.10 we employ the following special case of Theo-
rem 2.10.
• Let CN = V1 ⊕ V2, where V1 and V2 are finite dimensional com-

plex Hilbert spaces, and form the orthogonal direct sum L2(Rn; CN ) =
L2(Rn; V1) ⊕ L2(Rn; V2).

• Let D and D∗ be adjoint homogeneous first order partial differential
operators with constant coefficients

D : L2
(
Rn; V1

) −→ L2
(
Rn; V2

)
,

D∗ : L2
(
Rn; V2

) −→ L2
(
Rn; V1

)
,

such that there exists c > 0 so that

‖∇u‖ ≤ c‖Du‖ for all u ∈ R(D∗) ∩ D(D),

‖∇u‖ ≤ c‖D∗u‖ for all u ∈ R(D) ∩ D(D∗).

• The operators Ai : L2(Rn; Vi) −→ L2(Rn; Vi), i = 1, 2, denote multi-
plication by functions Ai ∈ L∞(Rn;L(Vi)) which satisfy the accretivity
conditions

Re(A1 D∗u, D∗u) ≥ κ1‖D∗u‖2 for all u ∈ D(D∗),
Re(A2 Du, Du) ≥ κ2‖Du‖2 for all u ∈ D(D),

for some κ1, κ2 > 0. Denote the angles of accretivity by

ω1 := sup
u∈D(D∗)\N(D∗)

| arg(A1 D∗u, D∗u)| < π
2 ,

ω2 := sup
u∈D(D)\N(D)

| arg(A2 Du, Du)| < π
2 .

In the full space L2(Rn; CN ) = L2(Rn; V1) ⊕ L2(Rn; V2), consider the
following operators:

Γ :=
[

0 0
D 0

]
, Γ∗ :=

[
0 D∗
0 0

]
, B1 :=

[
A1 0
0 0

]
, B2 :=

[
0 0
0 A2

]
.

With this choice of {Γ, B1, B2}, the operator ΠB and its square become

ΠB =
[

0 A1 D∗ A2
D 0

]
and ΠB

2 =
[

A1 D∗ A2 D 0
0 DA1 D∗ A2

]
.

The operators Γ, Γ∗ and Γ∗
B are clearly nilpotent, with

R(Γ) ⊂ L2
(
Rn; V2

) ⊂ N(Γ) and

R(Γ∗), R(Γ∗
B ) ⊂ L2

(
Rn; V1

) ⊂ N(Γ∗), N(Γ∗
B ).
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Theorem 3.1. Assume that {D, A1, A2} have the properties listed above,
and suppose ω1 + ω2 < 2µ < π. Then the operator ΠB has a bounded
So

µ holomorphic functional calculus in L2(Rn; CN ). Moreover

(i) the operator A1 D∗ A2 D has a bounded So
2µ+ holomorphic functional

calculus in L2(Rn; V1); and
(ii) we have D((A1 D∗ A2 D)1/2) = D(D) with the Kato square root estimate

∥∥(A1 D∗ A2 D)1/2u
∥∥ ≈ ‖Du‖

for all u ∈ D(D).

(iii) If furthermore V1 = V2 =: V, D∗ = −D, A1 = A2 =: A and ω1 =
ω2 = ω < µ < π

2 , then i AD and iDA have bounded So
µ holomorphic

functional calculi in L2(Rn; V ). In particular ‖sgn(i AD)‖ < ∞ and
‖sgn(iDA)‖ < ∞.

Proof. The hypothesis of Theorem 2.7 for this ΠB is satisfied, and thus by
Theorem 2.10, ΠB has a bounded So

µ holomorphic functional calculus.
To prove (i), let F : So

2µ+ ∪ {0} −→ C be bounded and holomorphic
on So

2µ+, and write f(z) := F(z2), z ∈ So
µ ∪ {0}. Then

f(ΠB) =
[

F(A1 D∗ A2 D) 0
0 F(DA1 D∗ A2)

]

satisfies ‖ f(ΠB)‖ � ‖ f ‖∞ = ‖F‖∞, and thus ‖F(A1 D∗ A2 D)‖ � ‖F‖∞.
The Kato square root estimate in (ii) follows on applying Corollary 2.11

to u ∈ D(D).
Now make the additional assumptions stated in (iii). That iDA has

a bounded So
µ holomorphic functional calculus in L2(Rn; V ) can be seen

as follows. Consider a bounded function f : So
µ ∪ {0} −→ C holomorphic

on So
µ. We find for u ∈ L2(Rn; V ), that

f(ΠB)

[
i Au

u

]
= f

([
0 −ADA
D 0

])[
i Au

u

]
=

[
i A( f(iDA)u)

f(iDA)u

]
.

Thus

‖ f(iDA)‖ � ‖ f(ΠB)‖ � ‖ f ‖∞ .

Duality shows that i AD = (iDA∗)∗ also has a bounded So
µ holomorphic

functional calculus in L2(Rn; V ), which completes the proof of (iii). ��
Part (iii) can also be deduced from the quadratic estimates in Theo-

rem 2.7, for they imply that −ADAD and −DADA, and hence i AD and
iDA, satisfy quadratic estimates.
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We now consider several consequences of the above theorem.

Consequence 3.2 (The Cauchy singular integral on Lipschitz curves). Let
g : R −→ R be a Lipschitz function with Lipschitz constant

L := sup
x �=y

|g(x) − g(y)|
|x − y|

and consider the Lipschitz graph γ := {z = x + ig(x) : x ∈ R} in C. The
operator of differentiation with respect to z ∈ γ can be expressed in terms
of the parameter x ∈ R as

Dγ u(x) := aDu(x) = (1 + ig′(x))−1u′(x)

where a is the multiplication operator a : v(x) �→ (1 + ig′(x))−1v(x).
Thus iDγ is of the form considered in Theorem 3.1(iii) on making the
identifications

{n, V1, V2, D, D∗, A1, A2} = {
1, C, C, d

dx ,− d
dx , a, a

}
.

The Cauchy singular integral operator Cγ on γ is then given as an
operator on L2(R, C) by (see [28,1])

Cγ u(x) := sgn(iDγ )u(x)

= i

π
p.v.

∫
R

u(y)

(y + ig(y)) − (x + ig(x))
(1 + ig′(y))dy.

Using Theorem 3.1(iii) we deduce that iDγ has a bounded So
µ holomor-

phic functional calculus in L2(R; C) when arctan(L) < µ < π
2 . In particular

‖Cγ‖ < ∞. The boundedness of the Cauchy integral Cγ was first proved
for small L by Calderón [8], and in the general case by Coifman–McIntosh–
Meyer [10]. Boundedness of other operators in the functional calculus of
iDγ have been proved by Coifman–Meyer [11], Kenig–Meyer [20] and
McIntosh–Qian [28].

Consequence 3.3 (The one dimensional Kato square root problem). Let
a ∈ L∞(R; C) be such that Re a(x) ≥ κ > 0 for almost every x, and denote
the angle of accretivity by ω := ess sup| arg a(x)|. In Theorem 3.1, let

{n, V1, V2, D, D∗, A1, A2} = {
1, C, C, d

dx ,− d
dx , I, a

}
where a is the multiplication operator a : f(x) �→ a(x) f(x), and suppose
ω < µ < π

2 . By Theorem 3.1(i) we deduce that − d
dx a d

dx has a bounded So
2µ+

holomorphic functional calculus in L2(R; C). This can be proved by abstract
methods since − d

dx a d
dx is a maximal accretive operator, see [1]. However,

Theorem 3.1(ii) proves the Kato square root estimate in one dimension:
∥∥( − d

dx a d
dx

)1/2
u
∥∥ ≈ ∥∥du

dx

∥∥(11)

for all u ∈ H1(R). This estimate was first proved by Coifman–McIntosh–
Meyer [10].
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Remark 3.4. It is known that (11) may fail if D and A2 are not differenti-
ation and multiplication operators [23]. Working backwards, we find that
hypotheses (H1–3) are not sufficient to ensure that ΠB satisfies quadratic
estimates or that it has a bounded holomorphic functional calculus.

Consequence 3.5. Let ai ∈ L∞(R; C), for i = 1, 2, be such that there
exists κ > 0 so that Re ai(x) ≥ κ > 0 for almost every x, and denote the
angles of accretivity by ωi := ess sup| arg ai(x)|. In Theorem 3.1, let

{n, V1, V2, D, D∗, A1, A2} = {
1, C, C, d

dx ,− d
dx , a1, a2

}
where ai is the multiplication operator ai : f(x) �→ ai(x) f(x), and suppose
ω1 + ω2 < 2µ < π. By Theorem 3.1(i) we deduce that −a1

d
dx a2

d
dx has

a bounded So
2µ+ holomorphic functional calculus in L2(R; C). This result

was first proved by Auscher–McIntosh–Nahmod [6] (though with µ >
max{ω1, ω2}). Further Theorem 3.1(ii) proves the estimate∥∥( − a1

d
dx a2

d
dx

)1/2
u
∥∥ ≈ ∥∥du

dx

∥∥
for all u ∈ H1(R). This estimate was first proved by Kenig–Meyer [20].
A proof is also given in [6], using a framework which can be considered
a forerunner of the approach developed here.

Consequence 3.6 (The Clifford–Cauchy singular integral on a Lipschitz
surface). Let g : Rn −→ R be a Lipschitz function with Lipschitz con-
stant L , and consider the Lipschitz graph Σ := {(x, g(x)) : x ∈ Rn} in
Rn+1. On identifying Rn+1 with Λ0 ⊕ Λ1 in the complex Clifford al-
gebra C(n)(≈ ∧CRn) generated by Rn , where the generating basis {ei}
satisfies the canonical commutation relation eiej + ejei = −2δij , then
Σ = {g(x) + x : x ∈ Rn}. Furthermore, let D denote the Dirac operator

Du(x) :=
n∑

k=1

ek
∂u

∂xk
(x), u : Rn −→ C(n).

This first order partial differential operator D is elliptic and selfadjoint. In
Theorem 3.1, let

{n, V1, V2, D, D∗, A1, A2} = {
n, C(n), C(n),−iD, iD, A, A

}
where A is the multiplication operator A : u(x) �→ (1 − Dg(x))−1u(x). In
this case, we define the operator DΣ on L2(Rn, C(n)) by

DΣu(x) := ADu(x) = (1 − Dg(x))−1Du(x)

and, parametrizing Σ with g(x) + x, the Cauchy singular integral operator
CΣ on Σ is given by

CΣu(x) := sgn(DΣ)u(x)

= 2

σn
p.v.

∫
Rn

(g(x) − x) − (g(y) − y)

(|y − x|2 + (g(y) − g(x))2)(n+1)/2
(1 − Dg(y))u(y)dy

where σn is the volume of the unit n-sphere in Rn+1.
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Suppose ω := arctan(L) < µ < π
2 . By Theorem 3.1(iii) we deduce

that DΣ has a bounded So
µ holomorphic functional calculus in L2(Rn; C(n)),

and in particular that ‖CΣ‖ < ∞. The boundedness of the Clifford–Cauchy
integral CΣ follows from the boundedness of the Cauchy integral in Conse-
quence 3.2 using Calderón’s rotation method (c.f. [10]). A direct proof of the
boundedness of CΣ using Clifford analysis was first given by Murray [30]
for surfaces with small L , and in the general case by McIntosh [26]. Bound-
edness of the functional calculus of DΣ has been proved by Li–McIntosh–
Semmes [22] and Li–McIntosh–Qian [21].

In the following three consequences, the differential operator D no
longer has dense range.

Consequence 3.7 (The Kato square root problem). Let A ∈ L∞(Rn;L(Cn))
be such that Re(A(x)v, v) ≥ κ > 0 for every v ∈ Cn with |v| = 1,
and almost every x, and denote the angle of accretivity by ω :=
ess supv,x| arg(A(x)v, v)|. In Theorem 3.1, let

{n, V1, V2, D, D∗, A1, A2} = {n, C, Cn,∇,−div, I, A}
where A denotes the multiplication operator A : u �→ Au, and suppose
ω < µ < π

2 . From Theorem 3.1(i) we deduce that −divA∇ has a bounded
So

µ+ holomorphic functional calculus in L2(Rn; C). This can be proved by
abstract methods since −divA∇ is a maximal accretive operator, see [1].
More importantly, Theorem 3.1(ii) implies the full Kato square root estimate∥∥(−divA∇)1/2u

∥∥ ≈ ‖∇u‖
for all u ∈ H1(Rn). This result was proved in a series of papers by Hofmann–
McIntosh [18], Auscher–Hofmann–Lewis–Tchamitchian [3], Hofmann–
Lacey–McIntosh [17], and, in full generality, by Auscher–Hofmann–Lacey–
McIntosh–Tchamitchian [2]. Earlier results on the Kato square root problem
are due to Fabes–Jerison–Kenig [15] and Coifman–Deng–Meyer [9], where
A is assumed to be close to the identity, and to McIntosh [24] when Hölder
continuity of A is assumed. For many more partial results, see the book
of Auscher and Tchamitchian [7]. This book provides an important bridge
between the one–dimensional results and the current theory.

Consequence 3.8. Let a ∈ L∞(Rn; C) be such that Re a(x) ≥ κ > 0 for
almost every x, and let A ∈ L∞(Rn;L(Cn)) be such that Re(A(x)v, v) ≥
κ > 0 for every v ∈ Cn, |v| = 1, and almost every x. Denote the angles of
accretivity by ω1 := ess sup| arg a(x)| and ω2 := ess supv,x| arg(A(x)v, v)|.
In Theorem 3.1, let

{n, V1, V2, D, D∗, A1, A2} = {n, C, Cn,∇,−div, a, A}
where a is the multiplication operator a : u(x) �→ a(x)u(x) and A is
the multiplication operator A : v(x) �→ A(x)v(x). From Theorem 3.1(i) we
deduce that −a divA∇ has a bounded So

2µ+ holomorphic functional calculus
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in L2(Rn; C) when ω1 + ω2 < 2µ < π. This was proved by McIntosh–
Nahmod [27] in the case when A = I , and by Duong–Ouhabaz [14] under
regularity assumptions on A. Theorem 3.1(ii) also proves the estimate∥∥(−a divA∇)1/2u

∥∥ ≈ ‖∇u‖
for all u ∈ H1(Rn).

Consequence 3.9 (The Kato square root problem for systems). Let W be
a finite dimensional Hilbert space and let A ∈ L∞(Rn;L(Cn ⊗ W )) be
such that

Re
∫

Rn
(A(x)∇u(x),∇u(x)) dx ≥ κ‖∇u‖2

for all u ∈ H1(Rn; W ) and some κ > 0. In Theorem 3.1, let

{n, V1, V2, D, D∗, A1, A2} = {n, W, Cn ⊗ W,∇,−div, I, A}
where A is the multiplication operator A : f(x) �→ A(x) f(x). Theo-
rem 3.1(ii) proves the Kato square root estimate for these elliptic systems:∥∥(−divA∇)1/2u

∥∥ ≈ ‖∇u‖
for all u ∈ H1(Rn; W ). This estimate was first proved by Auscher–Hof-
mann–McIntosh–Tchamitchian [4].

Consequence 3.10 (Differential forms). For n ≥ 1, let Λ = ⊕n
i=0Λ

i =
∧CRn denote the complex exterior algebra over Rn. Let B be a bounded
multiplication operator on L2(Rn;Λ) with bounded inverse which satisfies
the following accretivity condition: there exists κ > 0 such that for almost
every x ∈ Rn, we have

Re(B(x)v, v) ≥ κ|v|2
for every v ∈ Λ. Let d denote the exterior derivative, and consider the
perturbed Hodge–Dirac operator DB = d + B−1d∗ B. We further suppose
that B splits over L2(Rn,Λ0)⊕ · · · ⊕ L2(Rn,Λn) as B0 ⊕ · · · ⊕ Bn, and so
DB can be illustrated by the following diagram.

L2(Rn,Λ0)
d=∇−→ L2(Rn,Λ1)

d−→ . . .
d−→ L2(Rn,Λn)⏐⏐�B0

⏐⏐�B1
⏐⏐�Bn

L2(Rn,Λ0)
d∗=−div←− L2(Rn,Λ1)

d∗←− . . .
d∗←− L2(Rn,Λn)

Let ω > 0 denote the angle of accretivity of B, and let ω < µ < π
2 . We

now apply Theorem 2.10 and Corollary 2.11 with Γ = d, B1 := B−1 and
B2 := B, to obtain the following new result.
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Theorem 3.11. The operator DB has a bounded So
µ holomorphic func-

tional calculus in L2(Rn,Λ). Moreover, the operator DB
2 has a bounded

So
2µ+ holomorphic functional calculus in L2(Rn,Λ). Furthermore, D(d) ∩

D(d∗ B) = D(
√

DB
2) with

‖du‖ + ‖d∗ Bu‖ ≈
∥∥∥∥
√

DB
2u

∥∥∥∥ .

The restriction of the second and third claims to u ∈ L2(Rn,Λ0) provides
an alternative approach to the results obtained in Consequences 3.7 and 3.8,
though not those of Consequence 3.9. The implications for the full exterior
algebra are new and will be developed further in Remark 7.4.

4. Operator theory of ΠB

Throughout this section, we assume that the triple of operators {Γ, B1, B2}
in a Hilbert space H satisfies properties (H1–3). We prove Propositions 2.2
and 2.5, and then show how to reduce Theorems 2.7 and 2.10 to a quadratic
estimate which will be proved in Sect. 5.

Let us start by recording the following useful consequences of (H2):

‖B1u‖ ≈ ‖u‖ ≈ ‖B∗
1u‖ for all u ∈ R(Γ∗);(12)

‖B2u‖ ≈ ‖u‖ ≈ ‖B∗
2u‖ for all u ∈ R(Γ).(13)

Lemma 4.1. The operators Γ∗
B := B1Γ

∗ B2 and ΓB := B∗
2ΓB∗

1 are nilpotent,
and (ΓB)∗ = Γ∗

B .

Proof. First note that by (H3), R(Γ∗
B ) ⊂ N(Γ∗

B ) and R(ΓB) ⊂ N(ΓB). To
prove that the two operators are densely defined, closed and adjoint, we
use the following operator theoretic fact: Let A be a closed and densely
defined operator and let T be a bounded operator. Then TA is densely
defined, A∗T ∗ is closed and (TA)∗ = A∗T ∗. If furthermore ‖Tu‖ ≈ ‖u‖
for all u ∈ R(A), then TA and A∗T ∗ are closed, densely defined and adjoint
operators. Applying this fact first with A = Γ∗, T = B1 and then with
A = ΓB∗

1, T = B∗
2 proves the lemma. ��

We next prove a lemma concerning the operators ΠB := Γ + Γ∗
B with

D(ΠB) = D(Γ)∩D(Γ∗
B ), and Π∗

B := Γ∗ +ΓB with D(Π∗
B) = D(Γ∗)∩D(ΓB).

Lemma 4.2. We have

‖Γu‖ + ‖Γ∗
B u‖ ≈ ‖ΠBu‖ for all u ∈ D(ΠB), and

‖Γ∗u‖ + ‖ΓBu‖ ≈ ‖Π∗
Bu‖ for all u ∈ D(Π∗

B).
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Proof. The first estimate follows from the observation that (H2–3) implies

‖Γu‖2 � |(B2Γu,Γu)| = |(B2ΠBu,Γu)| � ‖ΠBu‖ ‖Γu‖
for every u ∈ D(ΠB). The other claims follow by similar reasoning. ��

We now prove Proposition 2.2 and then Proposition 2.5.

Proof of Proposition 2.2. It is an immediate consequence of the lemma that
N(ΠB) = N(Γ∗

B ) ∩ N(Γ).
Note that once we prove

H = R(Γ∗
B ) ⊕ N(Γ) = N(Γ∗

B ) ⊕ R(Γ)(14)

then the Hodge decomposition follows since R(Γ∗
B ) ⊂ N(Γ∗

B ) and R(Γ) ⊂
N(Γ) by nilpotence. In the case B1 = B2 = I , (14) is orthogonal since Γ
and Γ∗ are adjoint operators. To prove (14) for a general B, it suffices to
prove the four statements

H ⊃ R(Γ∗
B ) ⊕ N(Γ), H ⊃ N(Γ∗

B ) ⊕ R(Γ),

H ⊃ R(Γ∗) ⊕ N(ΓB), H ⊃ N(Γ∗) ⊕ R(ΓB),

and use duality.
Let us consider the first of these. We need to show that

‖Γ∗
B u‖ + ‖v‖ � ‖Γ∗

B u + v‖
for all u ∈ D(Γ∗

B ) = D(Γ∗ B2) and v ∈ N(Γ). This follows from

‖Γ∗ B2u‖2 � | Re(B1Γ
∗ B2u,Γ∗ B2u)| = | Re(Γ∗

B u + v,Γ∗ B2u)|
≤ ‖Γ∗

B u + v‖‖Γ∗ B2u‖.
For the second statement we need to show that

‖v‖ + ‖Γu‖ � ‖v + Γu‖
for all u ∈ D(Γ) and v ∈ N(Γ∗

B ) = N(Γ∗ B2). This follows from

‖Γu‖2 �
∣∣(Γu, B∗

2Γu
)∣∣ = ∣∣(v + Γu, B∗

2Γu
)∣∣ � ‖v + Γu‖‖Γu‖.

The third and fourth statements have similar proofs. ��
Corollary 4.3. The operators ΠB and Π∗

B are closed, have dense domains,
and satisfy (ΠB)∗ = Π∗

B.

This is a straightforward consequence of the preceding results. We are
now in a position to prove the spectral properties stated in Sect. 2.
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Proof of Proposition 2.5. Let f = (I +τΠB)u where τ ∈ C \ Sω and
u ∈ D(ΠB). To prove the estimate ‖u‖ � ‖ f ‖, use Proposition 2.2 to write

f = f0 + f1 + f2, u = u0 + u1 + u2 ∈ N(ΠB) ⊕ R(Γ∗
B ) ⊕ R(Γ)

and f1 = B1 f̃1, u1 = B1ũ1, where f̃1, ũ1 ∈ R(Γ∗). We obtain the system of
equations

f0 = u0

f1 = u1 + τΓ∗
B u2, thus by (12), f̃1 = ũ1 + τΓ∗ B2u2

f2 = u2 + τΓu1.

These equations imply the identity

−τ(ũ1, B1ũ1) + τ(B2u2, u2) = −τ( f̃1, B1ũ1) + τ(B2u2, f2).(15)

Let

θ1 = arg(ũ1, B1ũ1), and θ2 = arg(B2u2, u2)

so that by (H2), | 1
2θ1 − 1

2θ2| ≤ ω. Suppose for a moment that Im τ > 0 and
let µ = arg τ . Then

| − τ(ũ1, B1ũ1) + τ(B2u2, u2)|
≥ Im e−i(θ1+θ2)/2 (−τ(ũ1, B1ũ1) + τ(B2u2, u2))

= |τ| sin
( − 1

2θ1 + 1
2θ2 + µ

)
(|(ũ1, B1ũ1)| + |(B2u2, u2)|)(16)

≥ dist (τ, Sω) (|(ũ1, B1ũ1)| + |(B2u2, u2)|) .
Therefore, by (H2), (15) and (16),

‖ũ1‖2 + ‖u2‖2 � |(ũ1, B1ũ1)| + |(B2u2, u2)|
� |τ|

dist (τ, Sω)
(‖ f̃1‖‖ũ1‖ + ‖u2‖‖ f2‖)

and thus

‖u‖ ≈ ‖u0‖ + ‖u1‖ + ‖u2‖ � |τ|
dist (τ, Sω)

‖ f ‖.

A slight variation gives the estimate for Im τ < 0.
Finally, applying the proof above to I +τΠ∗

B = (I +τΠB)∗ shows that
I +τΠB is surjective. ��
Corollary 4.4. The operator ΠB

2 = ΓB1Γ
∗ B2 + B1Γ

∗ B2Γ is closed, has
dense domain, its spectrum σ(ΠB

2) is contained in the sector S2ω+, and it
satisfies resolvent bounds ‖(I −τ2ΠB

2)−1‖ � |τ2|
dist (τ2,S2ω+)

for all τ ∈ C\ Sω.
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Such an operator is said to be of type S2ω+ in [1] and of type 2ω in [5,12].

Remark 4.5. Note that ΠB intertwines Γ and Γ∗
B in the sense that ΠBΓu =

Γ∗
BΠBu for all u ∈ D(Γ∗

BΠB) and ΠBΓ∗u = ΓΠBu for all u ∈ D(ΓΠB).
Thus ΠB

2 commutes with both Γ and Γ∗
B on the appropriate domains. We

find that ΓPB
t u = PB

t Γu for all u ∈ D(Γ) and Γ∗
B PB

t u = PB
t Γ∗

B u for all
u ∈ D(Γ∗

B ).

We saw in Definition 2.6 that the operators PB
t and Q B

t are uniformly
bounded in t. A consequence of this is the identity

∫ ∞

0

(
Q B

t

)2
u

dt

t
= lim

α→0
β→∞

∫ β

α

(
Q B

t

)2
u

dt

t
(17)

= 1
2 lim

α→0
β→∞

(
PB

α − PB
β

)
u = 1

2

(
I −P0

B

)
u

for all u ∈ H . (Verify this on N(ΠB) and for u ∈ D(ΠB) ∩ R(ΠB) which
is dense in R(ΠB) and use the uniform boundedness.) For the selfadjoint
operator Π this can be proved by the usual spectral theory, and has the
following consequence.

Lemma 4.6. The quadratic estimate
∫ ∞

0
‖Qtu‖2 dt

t
≤ 1

2‖u‖2(18)

holds for all u ∈ H .

We use the following operator in the proof of Theorem 2.7.

Definition 4.7. Define, for all t ∈ R, the bounded operators

ΘB
t := tΓ∗

B

(
I +t2ΠB

2
)−1

.

By Remark 4.5, ΘB
t u = (I +t2ΠB

2)−1tΓ∗
B u for all u ∈ D(Γ∗

B ), and conse-
quently ΘB

t u = Q B
t u for all u ∈ N(Γ).

Proposition 4.8. Consider the operator ΠB = Γ + B1Γ
∗ B2 acting in

a Hilbert space H , where {Γ, B1, B2} satisfies the hypotheses (H1–3). Also
assume that the estimate∫ ∞

0

∥∥ΘB
t Ptu

∥∥2 dt

t
≤ c‖u‖2(19)

holds for all u ∈ R(Γ) and some constant c, together with the three similar
estimates obtained on replacing {Γ, B1, B2} by {Γ∗, B2, B1}, {Γ∗, B∗

2, B∗
1}

and {Γ, B∗
1, B∗

2}. Then ΠB satisfies the quadratic estimate (6) for all u ∈
R(ΠB), and has a bounded holomorphic So

µ functional calculus.
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Proof. (i) We start by proving the estimate
∫ ∞

0

∥∥ΘB
t (I −Pt)u

∥∥2 dt

t
� ‖u‖2(20)

for all u ∈ R(Γ). We use the orthogonal projection P2 : H −→ R(Γ)

and the bounded projection P1
B : H −→ R(Γ∗

B ). Since u ∈ R(Γ) implies
Ptu ∈ R(Γ), we obtain

ΘB
t (I −Pt)u = ΘB

t P2(I −Pt)u = Q B
t tΓQtu = (

I −PB
t

)
P1

B Qtu

and thus ‖ΘB
t (I −Pt)u‖ � ‖Qtu‖ for all u ∈ R(Γ). This with (18) proves

(20).
We remark that this use of the Hodge decompositions to handle the

(I −Pt) term is a key step in the proof of Theorem 2.7.
(ii) A combination of (19) with (20) gives the estimate

∫ ∞

0

∥∥Q B
t u

∥∥2 dt

t
=

∫ ∞

0

∥∥ΘB
t u

∥∥2 dt

t
� ‖u‖2(21)

for all u ∈ R(Γ).
Now the hypotheses of the theorem remain unchanged on replacing

{Γ, B1, B2} by {Γ∗, B2, B1}, in which case the estimate in (21) becomes
∫ ∞

0

∥∥tB2ΓB1
(

I +t2(Γ∗ + B2ΓB1)
2
)−1

v
∥∥2 dt

t
� ‖v‖2

for all v ∈ R(Γ∗). Using the assumption ΓB1 B2Γ = 0, we get

ΓB1
(

I +t2(Γ∗ + B2ΓB1)
2)−1 = Γ

(
I +t2Π2

B

)−1
B1

and thus, by (12) and (13),
∫ ∞

0

∥∥tΓ
(

I +t2Π2
B

)−1
B1v

∥∥2 dt

t

�
∫ ∞

0

∥∥tB2ΓB1
(

I +t2(Γ∗ + B2ΓB1)
2
)−1

v
∥∥2 dt

t

� ‖v‖2 � ‖B1v‖2

for all v ∈ R(Γ∗). Hence
∫ ∞

0

∥∥Q B
t u

∥∥2 dt

t
=

∫ ∞

0

∥∥tΓ
(

I +t2ΠB
2
)−1

u
∥∥2 dt

t
� ‖u‖2

for all u ∈ R(Γ∗
B ).
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On recalling the Hodge decompositon H = N(ΠB) ⊕ R(Γ∗
B ) ⊕ R(Γ),

and noting that Q B
t = 0 on N(ΠB), we conclude that∫ ∞

0

∥∥Q B
t u

∥∥2 dt

t
� ‖u‖2

for all u ∈ H .
(iii) To prove the reverse square function estimate, consider the adjoint

operator Π∗
B = Γ∗ + B∗

2ΓB∗
1 . From (ii) applied to Π∗

B, we get∫ ∞

0

∥∥(
Q B

t

)∗
v
∥∥2 dt

t
� ‖v‖2

for all v ∈ H . By (17), we have the resolution of the identity∫ ∞

0

(
Q B

t

)2
u

dt

t
= 1

2 u

for all u ∈ R(ΠB), and thus

‖u‖ � sup
‖v‖=1

|(u, v)| ≈ sup
‖v‖=1

∣∣∣∣
(∫ ∞

0

(
Q B

t

)2
u

dt

t
, v

)∣∣∣∣
= sup

‖v‖=1

∣∣∣∣
∫ ∞

0

(
Q B

t u,
(
Q B

t

)∗
v
)dt

t

∣∣∣∣
�

(∫ ∞

0

∥∥Q B
t u

∥∥2 dt

t

)1/2

for all u ∈ R(ΠB). This completes the proof that (6) holds for all u ∈ R(ΠB).
This procedure is standard, at least when N(ΠB) = 0. (See e.g. [1].)

(iv) It is also well-known that quadratic estimates imply the boundedness
of the functional calculus. We include a proof for completeness.

Note that a direct norm estimate using (7) shows that∥∥Q B
t f(ΠB)Q B

s

∥∥ = ‖(ψs fψt) (ΠB)‖ � η(t/s) sup
So
µ

| f |

for all t, s > 0, where η(x) := min{x, 1
x } (1 + |log |x||). A Schur estimate

now gives

‖ f(ΠB)u‖2 ≈
∫ ∞

0

∥∥Q B
t f(ΠB)u

∥∥2 dt

t

≈
∫ ∞

0

∥∥∥∥
∫ ∞

0

(
Q B

t f(ΠB)Q B
s

)(
Q B

s u
) ds

s

∥∥∥∥
2 dt

t

� sup
So
µ

| f |2
∫ ∞

0

(∫ ∞

0
η(t/s)

ds

s

) (∫ ∞

0
η(t/s)

∥∥Q B
s u

∥∥2 ds

s

)
dt

t

� sup
So
µ

| f |2
∫ ∞

0

∥∥Q B
s u

∥∥2 ds

s
≈ sup

So
µ

| f |2‖u‖2
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for all u ∈ R(ΠB), which proves that ΠB has a bounded So
µ holomorphic

functional calculus in L2(Rn; CN ). ��
What remains is for us to obtain the estimate (19) under all the hypotheses

(H1–8). This is achieved in the next section.

5. Harmonic analysis of ΠB

In this section we prove the square function estimate (19) under the hy-
potheses (H1–8) stated in Sect. 2. By Proposition 4.8, this then suffices to
prove Theorems 2.7 and 2.10. This section is an adaptation of the proof
of the Kato square root problem for divergence-form elliptic operators [17,
2,4], though some estimates require new procedures. For example, we
develop new methods based on hypotheses (H5–6) to prove off-diagonal
estimates for resolvents of ΠB, as the arguments normally used in proving
Caccioppoli-type estimates for divergence-form operators do not apply.

We use the following dyadic decomposition of Rn. Let � = ⋃∞
j=−∞ �2 j

where �t := {2 j(k + (0, 1]n) : k ∈ Zn} if 2 j−1 < t ≤ 2 j . For a dyadic cube
Q ∈ �2 j , denote by l(Q) = 2 j its sidelength, and by RQ := Q × (0, 2 j ] the
associated Carleson box. Let the dyadic averaging operator At : H −→ H
be given by

Atu(x) := uQ :=
∫

Q
u(y) dy = 1

|Q|
∫

Q
u(y) dy

for every x ∈ Rn and t > 0, where Q ∈ �t is the unique dyadic cube
containing x.

Definition 5.1. By the principal part of the operator family ΘB
t under

consideration, we mean the multiplication operators γt defined by

γt(x)w := (
ΘB

t w
)
(x)

for every w ∈ CN . Here we view w on the right-hand side of the above
equation as the constant function defined on Rn by w(x) := w. It will be
proven in Corollary 5.3 that γt ∈ L loc

2 (Rn;L(CN )).

To prove the square function estimate (19), we estimate each of the
following three terms separately∫ ∞

0

∥∥ΘB
t Ptu

∥∥2 dt

t
�

∫ ∞

0

∥∥ΘB
t Ptu − γt At Ptu

∥∥2 dt

t

+
∫ ∞

0
‖γt At(Pt − I)u‖2 dt

t
+

∫ ∞

0

∫
Rn

|Atu(x)|2|γt(x)|2 dxdt

t

(22)

when u ∈ R(Π). We estimate the first two terms in Sect. 5.2, and the last term
in Sect. 5.3. In the next section we introduce crucial off–diagonal estimates
for various operators involving ΠB, and also prove local L2 estimates for γt .
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5.1. Off–diagonal estimates. We require off–diagonal estimates for the
following class of operators. Denote 〈x〉 := 1 + |x|, and dist (E, F) :=
inf{|x − y| : x ∈ E, y ∈ F} for every E, F ⊂ Rn.

Proposition 5.2. Let Ut be given by either RB
t for every nonzero t ∈ R, or

PB
t , Q B

t or ΘB
t for every t > 0 (see Remark 2.6 and Definition 4.7). Then

for every M ∈ N there exists CM > 0 (that depends only on M and the
hypotheses (H1–8)) such that

‖Utu‖L2(E) ≤ CM〈dist (E, F)/t〉−M‖u‖(23)

whenever E, F ⊂ Rn are Borel sets, and u ∈ H satisfies supp u ⊂ F.

Proof. First consider the resolvents RB
t = (I +itΠB)−1 for all nonzero

t ∈ R. As we have already proved uniform bounds for RB
t in Proposition 2.5,

it suffices to prove

‖(I +itΠB)−1u‖L2(E) ≤ CM(t/dist (E, F))M‖u‖
for all disjoint E, F ⊂ Rn, for all |t| ≤ dist (E, F), and for all u ∈ H with
supp u ⊂ F.

We prove this result by induction. Proposition 2.5 proves this statement
for M = 0. Assume that the statement is true for some given M ∈ N. Write

Ẽ := {
x ∈ Rn : dist (x, E) < 1

2dist (x, F)
}

and let η : Rn −→ [0, 1] be a Lipschitz function such that supp η ⊂ Ẽ,
η|E = 1 and

‖∇η‖∞ ≤ 4/dist (E, F).

We now use (H5–6) to calculate that
[
η I, (I +itΠB)−1

] = itRB
t (Γ∇η + B1Γ

∗
∇η B2)RB

t

and therefore∥∥(I +itΠB)−1u
∥∥

L2(E)
≤ ∥∥η(I +itΠB)−1u

∥∥
= ∥∥[

η I, (I +itΠB)−1]u∥∥
� C0t‖∇η‖∞

∥∥RB
t u

∥∥
L2(Ẽ)

� C0t‖∇η‖∞CM(t/dist (Ẽ, F))M‖u‖
� C0CM(t/dist (E, F))M+1‖u‖.

This completes the induction step and thus proves the proposition for the
resolvents RB

t . The result for PB
t and Q B

t follows, as they are linear combi-
nations of resolvents.
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Now consider ΘB
t = tΓ∗

B PB
t . We have∥∥ΘB

t u
∥∥

L2(E)
≤ ∥∥ηΘB

t u
∥∥ ≤ ∥∥[η I, tΓ∗

B ]PB
t u

∥∥ + ∥∥tΓ∗
BηPB

t u
∥∥.

By Lemma 4.2 the last term is bounded by∥∥tΠBηPB
t u

∥∥ ≤ ∥∥[η I, tΠB]PB
t u

∥∥ + ∥∥ηQ B
t u

∥∥
and so, using (H6) and the bounds already obtained for PB

t and Q B
t , we

conclude that for each M ≥ 0,∥∥ΘB
t u

∥∥
L2(E)

� t‖∇η‖∞
∥∥PB

t u
∥∥

L2(Ẽ)
+ ∥∥Q B

t u
∥∥

L2(Ẽ)

� 〈dist (E, F)/t〉−M‖u‖ .

This completes the proof. ��
A simple consequence of Proposition 5.2 is that

‖Usu‖L2(Q) ≤
∑
R∈�t

‖Us(χRu)‖L2(Q)�
∑
R∈�t

〈dist (R, Q)/s〉−M‖u‖L2(R)(24)

whenever 0 < s ≤ t and Q ∈ �t , where Us is as specified in Proposition 5.2.
We also note that the dyadic cubes satisfy

sup
Q∈�t

∑
R∈�t

〈dist (R, Q)/t〉−(n+1) � 1(25)

and therefore, choosing M ≥ n + 1, we see that Ut extends to an operator
Ut : L∞(Rn) −→ L loc

2 (Rn).
A consequence of the above results with Ut = ΘB

t is:

Corollary 5.3. The functions γt ∈ Lloc
2 (Rn;L(CN )) satisfy the bounded-

ness conditions ∫
Q

|γt(y)|2 dy � 1

for all Q ∈ �t . Moreover ‖γt At‖ � 1 uniformly for all t > 0.

5.2. Principal part approximation. In this section we prove the principal
part approximation ΘB

t ≈ γt in the sense that we estimate the first two terms
on the right-hand side of (22). The following lemma is used in estimating
the first term.

Lemma 5.4 (A weighted Poincaré inequality). If Q ∈ �t and β < −2n,
then we have∫

Rn
|u(x) − uQ |2〈dist (x, Q)/t〉β dx �

∫
Rn

|t∇u(x)|2〈dist (x, Q)/t〉2n+β dx

for every u in the Sobolev space H1(Rn; CN ).
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Proof. Without loss of generality we may assume that t = 1 and that Q is
the unit cube centred at x = 0. By [16, p. 164] we have

∫
Rn

|u(y) − uQ |2χr(y) dy �
∫

Rn
|∇u(y)|2r2nχr(y) dy

for every r ≥ 1, where we write χr to denote the characteristic function of
{y ∈ Rn : |y| ≤ r}. Integrating the above inequality over (1,∞) against the
measure drβ gives the desired result. ��

We now estimate the first term in the right-hand side of (22).

Proposition 5.5. For all u ∈ R(Π), we have
∫ ∞

0

∥∥ΘB
t Ptu − γt At Ptu

∥∥2 dt

t
� ‖u‖2.

Proof. Using Proposition 5.2, estimate (25), Lemma 5.4 and then the coer-
civity assumption (H8), we get for any v ∈ R(Π), that

∥∥ΘB
t v − γt Atv

∥∥2 =
∑
Q∈�t

∥∥ΘB
t (v − vQ)

∥∥2
L2(Q)

�
∑
Q∈�t

( ∑
R∈�t

〈d(R, Q)/t〉−(3n+1)‖v − vQ‖L2(R)

)2

�
∑
Q∈�t

∫
Rn

|v(x) − vQ |2〈d(x, Q)/t〉−(3n+1)

�
∑
Q∈�t

∫
Rn

|t∇v(x)|2〈d(x, Q)/t〉−(n+1)

� ‖t∇v‖2 � ‖tΠv‖2

and therefore, taking v = Ptu and using (18), that
∫ ∞

0

∥∥ΘB
t Ptu − γt At Ptu

∥∥2 dt

t
�

∫ ∞

0
‖Qtu‖2 dt

t
� ‖u‖2. ��

We use the following lemma to estimate the second term in the right-
hand side of (22), and also in the proofs of Lemmas 5.10 and 5.12.
(c.f. Lemma 5.15 of [2].)

Lemma 5.6. Let Υ be either Π, Γ or Γ∗. Then we have the estimate
∣∣∣∣
∫

Q
Υu

∣∣∣∣
2

� 1

l(Q)

(∫
Q

|u|2
)1/2 (∫

Q
|Υu|2

)1/2

(26)

for all Q ∈ � and u ∈ D(Υ).
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Proof. Let t = (
∫

Q |u|2)1/2(
∫

Q |Υu|2)−1/2. If t ≥ 1
4l(Q), then (26) follows

directly from the Cauchy–Schwarz inequality. If t ≤ 1
4l(Q), let η ∈ C∞

0 (Q)
be a real-valued bump function such that η(x) = 1 when dist (x, Rn\Q) > t,
and |∇η| � 1/t. Using the cancellation property (H7) of Υ and the Cauchy–
Schwarz inequality, we obtain
∣∣∣∣
∫

Q
Υu

∣∣∣∣ =
∣∣∣∣
∫

Q
ηΥu +

∫
Q
(1 − η)Υu

∣∣∣∣ =
∣∣∣∣
∫

Q
[η,Υ]u +

∫
Q
(1 − η)Υu

∣∣∣∣
� ‖∇η‖∞(tl(Q)n−1)1/2

(∫
Q

|u|2
)1/2

+ (tl(Q)n−1)1/2

(∫
Q
|Υu|2

)1/2

which gives (26) on substituting the chosen value of t. ��
We now estimate the second term in the right-hand side of (22).

Proposition 5.7. For all u ∈ H , we have
∫ ∞

0
‖γt At(Pt − I)u‖2 dt

t
� ‖u‖2.

Proof. Corollary 5.3 shows that ‖γt At‖ � 1 and since A2
t = At it suffices

to prove the square function estimate with integrand ‖At(Pt − I)u‖2. If
u ∈ N(Π) then this is zero. If u ∈ R(Π) then write u = 2

∫ ∞
0 Q2

s u ds
s .

The result will follow from another Schur estimate and (18) once we have
obtained the bound

‖At (Pt − I)Qs‖ � min
{

s
t ,

t
s

}1/2

for all s, t > 0.
Note that (I −Pt)Qs = t

s Qt(I −Ps) and Pt Qs = s
t Qt Ps for every

s, t > 0. Thus, if t ≤ s, then

‖At(Pt − I)Qs‖ � ‖(Pt − I)Qs‖ � t/s,

while if t > s, then

‖At(Pt − I)Qs‖ � ‖Pt Qs‖ + ‖At Qs‖ � s/t + ‖At Qs‖.
To estimate ‖At Qs‖, we use Lemma 5.6 with (24) and (25) to obtain

‖At Qsu‖2

=
∑
Q∈�t

|Q|
∣∣∣∣
∫

Q
sΠ(I +s2Π2)−1u

∣∣∣∣
2

� s

t

∑
Q∈�t

( ∫
Q

|Psu|2
)1/2(∫

Q
|Qsu|2

)1/2



Quadratic estimates and functional calculi 481

� s

t

∑
Q∈�t

( ∑
R∈�t

〈d(R, Q)/t〉−(n+1)‖u‖L2(R)

)2

� s

t

∑
Q∈�t

( ∑
R′∈�t

〈d(R′, Q)/t〉−(n+1)

)( ∑
R∈�t

〈d(R, Q)/t〉−(n+1)‖u‖2
L2(R)

)

� s

t
‖u‖2

which completes the proof. ��
We have now estimated the first two terms in the right-hand side of (22).

5.3. Carleson measure estimate. In this subsection we estimate the third
term in the right-hand side of (22). To do this we reduce the problem to
a Carleson measure estimate, drawing upon the “T(b)” procedure developed
by Auscher and Tchamitchian [7, Chap. 3]. Recall that a measure µ on
Rn × R+ is said to be Carleson if ‖µ‖C := supQ∈� |Q|−1µ(RQ) < ∞.
Here and below RQ := Q × (0, l(Q)] denotes the Carleson box of any
cube Q. We recall the following theorem of Carleson.

Theorem 5.8. [31, p. 59] If µ is a Carleson measure on Rn × R+ then
∫∫

Rn×(0,∞)

|Atu(x)|2 dµ(x, t) ≤ C‖µ‖C‖u‖2

for every u ∈ H . Here C > 0 is a constant that depends only on n.

Thus, in order to prove (22) it suffices to show that
∫∫

RQ

|γt(x)|2 dxdt

t
� |Q|(27)

for every dyadic cube Q ∈ �. Following [2] or more precisely [4], we set
σ > 0; the exact value to be chosen later. Let V be a finite set consisting of
ν ∈ L(CN ) with |ν| = 1, such that

⋃
ν∈V Kν = L(CN ) \ {0}, where

Kν :=
{
ν′ ∈ L(CN ) \ {0} :

∣∣∣∣ ν′

|ν′| − ν

∣∣∣∣ ≤ σ

}
.

To prove (27) it suffices to show that
∫∫

(x,t)∈RQ
γt (x)∈Kν

|γt(x)|2 dxdt

t
� |Q|(28)

for every ν ∈ V. By the John-Nirenberg lemma for Carleson measures as
applied in [2, Sect. 5], in order to prove (28) it suffices to prove the following
claim.
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Proposition 5.9. There exists β > 0 such that for every dyadic cube Q ∈ �
and ν ∈ L(CN ) with |ν| = 1, there is a collection {Qk}k ⊂ � of disjoint
subcubes of Q such that |EQ,ν| > β|Q| where EQ,ν = Q \⋃

k Qk, and such
that ∫∫

(x,t)∈E∗
Q,ν

γt (x)∈Kν

|γt(x)|2 dxdt

t
� |Q|

where E∗
Q,ν = RQ \ ⋃

k RQk .

Fix a dyadic cube Q ∈ � and fix ν ∈ L(CN ) with |ν| = 1. Choose
ŵ,w ∈ CN with |ŵ| = |w| = 1 and ν∗(ŵ) = w. Let ηQ be a smooth cutoff
function with range [0, 1], equal to 1 on 2Q, with support in 4Q, and such
that ‖∇ηQ‖∞ ≤ 1

l where l = l(Q). Define wQ := ηQw, and for each ε > 0,
let

f w

Q,ε
:= wQ − εliΓ(1 + εliΠB)−1wQ

= (
1 + εliΓ∗

B

)
(1 + εliΠB)−1wQ .

Lemma 5.10. We have ‖ f w
Q,ε‖ � |Q|1/2,∫∫

RQ

∣∣ΘB
t f w

Q,ε

∣∣2 dxdt

t
� 1

ε2
|Q| and

∣∣∣∣
∫

Q
f w

Q,ε − w

∣∣∣∣ ≤ cε1/2

for every ε > 0. Here c > 0 is a constant that depends only on hypotheses
(H1–8).

Proof. The first estimate can be deduced from Proposition 2.5 and Lem-
ma 4.2. To obtain the second estimate, observe by the nilpotency of Γ∗

B
that

ΘB
t f w

Q,ε = (
I + t2Π2

B

)−1
tΓ∗

B

(
I + εliΓ∗

B

)
(I + εliΠB)−1wQ

= t
εl

(
I + t2Π2

B

)−1
εlΓ∗

B (I + εliΠB)−1wQ

and therefore by Proposition 2.5 and Lemma 4.2 that∫∫
RQ

∣∣ΘB
t f w

Q,ε

∣∣2 dxdt

t
� |Q|

∫ l

0

(
t

εl

)2 dt

t
� 1

ε2
|Q|.

To obtain the last estimate, we use Lemma 5.6 with Υ = Γ and u =
(I + εliΠB)−1wQ to show that∣∣∣∣
∫

Q
f w

Q,ε − w

∣∣∣∣ =
∣∣∣∣
∫

Q
εlΓ(I + εliΠB)−1wQ

∣∣∣∣
� ε1/2

(∫
Q

|(I+ εliΠB)−1wQ|2
)1/4(∫

Q
|εlΓ(I+ εliΠB)−1wQ |2

)1/4

� ε1/2.

This completes the proof. ��
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For the choice ε = 1
4c2 , let f w

Q = f w
Q,ε. The above lemma implies that

Re

(
w,

∫
Q

f w
Q

)
≥ 1

2
.

Lemma 5.11. There exists β, c1, c2 > 0 that depend only on (H1–8), and
there exists a collection {Qk} of dyadic subcubes of Q such that |EQ,ν| >
β|Q| where EQ,ν = Q \ ⋃

k Qk, and such that

Re
(

w,

∫
Q ′

f w
Q

)
≥ c1 and

∫
Q ′

∣∣ f w
Q

∣∣ ≤ c2(29)

for all dyadic subcubes Q′ ∈ � of Q which satisfy RQ ′ ∩ E∗
Q,ν �= ∅, where

E∗
Q,ν = RQ \ ⋃

k RQk .

Proof. Fix α > 0. Let B1 ⊂ � be the collection of maximal dyadic
subcubes S ∈ � of Q such that

Re

(
w,

∫
S

f w
Q

)
< α

and let B2 ⊂ � be the collection of maximal dyadic subcubes S ∈ � of Q
such that ∫

S

∣∣ f w
Q

∣∣ >
1

α
.

Let {Qk} be an enumeration of the maximal cubes in B1 ∪B2. These are the
bad cubes. By construction we have each dyadic subcube Q′ ∈ � of Q with
RQ ′ ∩ E∗

Q,ν �= ∅ satisfies (29) with c1 = α and c2 = 1
α

. These are the good
cubes. Thus, to prove the lemma it suffices to show that for an appropriate
choice of α > 0, that depends only on (H1–8), there exists β > 0 such that
|EQ,ν| > β|Q|.

We use the rough estimate

|EQ,ν| ≥ |Q \
⋃

B1| − |
⋃

B2|.
By construction and by Lemma 5.10 we have

|
⋃

B2| =
∑
S∈B2

|S| ≤ α
∑
S∈B2

∫
S

∣∣ f w
Q

∣∣ ≤ α

∫
Q

∣∣ f w
Q

∣∣ � α|Q|

and

1

2
|Q| ≤ Re

(
w,

∫
Q

f w
Q

)
=

∑
S∈B1

Re
(

w,

∫
S

f w
Q

)
+ Re

(
w,

∫
Q\⋃B1

f w
Q

)

� α
∑
S∈B1

|S| +
(∫

Q

∣∣ f w
Q

∣∣2
)1/2

|Q \
⋃

B1|1/2

� α|Q| + |Q|1/2|Q \
⋃

B1|1/2.
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The desired estimate follows by a sufficiently small choice of α > 0 that
depends only on (H1–8). This completes the proof. ��

We now choose σ = c1
2c2

.

Lemma 5.12. If (x, t) ∈ E∗
Q,ν and γt(x) ∈ Kν then

∣∣γt(x)
(

At f w
Q (x)

)∣∣ ≥ 1
2c1|γt(x)|.

Proof. To see the result apply the previous lemma to deduce that∣∣ν (
At f w

Q (x)
)∣∣ ≥ Re

(
ŵ, ν

(
At f w

Q (x)
)) = Re

(
w, At f w

Q (x)
) ≥ c1

and then furthermore that∣∣∣∣ γt(x)

|γt(x)|
(

At f w
Q (x)

)∣∣∣∣ ≥ ∣∣ν (
At f w

Q (x)
)∣∣ −

∣∣∣∣ γt(x)

|γt(x)| − ν

∣∣∣∣
∣∣At f w

Q (x)
∣∣

≥ c1 − σc2 = 1
2 c1. ��

Proof of Proposition 5.9. By Lemma 5.12 we have
∫∫

(x,t)∈E∗
Q,ν

γt (x)∈Kν

|γt(x)|2 dxdt

t
�

∫∫
RQ

∣∣γt(x)
(

At f w
Q (x)

)∣∣2 dxdt

t

�
∫∫

RQ

∣∣ΘB
t f w

Q − γt At f w
Q

∣∣2 dxdt

t

+
∫∫

RQ

∣∣ΘB
t f w

Q

∣∣2 dxdt

t
.

Lemma 5.10 implies that the last term in the above inequality is bounded
by a constant (that depends only on (H1–8)) times |Q|.

It remains to show that∫∫
RQ

∣∣ΘB
t f w

Q − γt At f w
Q

∣∣2 dxdt

t
� |Q|.(30)

Observe that

ΘB
t f w

Q − γt At f w
Q = − (

ΘB
t − γt At

)
εliΓ(1 + εliΠB)−1wQ

+ (ΘB
t − γt At)wQ .

(31)

Since εliΓ(1 + εliΠB)−1wQ ∈ R(Γ), we have by the results of Sects. 4
and 5.2 (specifically, part (i) in the proof of Proposition 4.8, and also 5.5
and 5.7) that

∫∫
RQ

∣∣(ΘB
t − γt At

)
εliΓ(1 + εliΠB)−1wQ

∣∣2 dxdt

t
� ‖wQ‖2 � |Q|.
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We also have
(
ΘB

t − γt At
)
wQ(x) = ΘB

t ((ηQ − 1)w)(x)

for every x ∈ Q and t > 0. Since
(
supp (ηQ − 1)w

) ∩ 2Q = ∅, then (24)
implies that

∫
Q

∣∣ΘB
t ((ηQ − 1)w)(x)

∣∣2
dx � t|Q|

l

when 0 < t ≤ l, and therefore that
∫∫

RQ

∣∣(ΘB
t − γt At

)
wQ(x)

∣∣2 dxdt

t
� |Q|.

This proves (30) and so completes the proof of Proposition 5.9. ��
Proof of Theorems 2.7 and 2.10. We have demonstrated in this section that
the square function estimate (19) holds for all u ∈ R(Π) and some constant c
which depends only on the bounds in (H1–8). These hypotheses are invariant
on replacing {Γ, B1, B2} by {Γ∗, B2, B1}, {Γ∗, B∗

2, B∗
1} and {Γ, B∗

1, B∗
2}. So,

by Proposition 4.8, we conclude that ΠB satisfies the quadratic estimate (6)
for all u ∈ R(ΠB), and has a bounded holomorphic So

µ functional calculus.
��

6. Holomorphic dependence

In this section we show that under the appropriate hypotheses, resolvents,
projections, bounded members of the functional calculus, and quadratic
estimates, all depend holomorphically on holomorphic perturbations of ΠB.
Recall that if H and K are Hilbert spaces and U ⊂ C is open, then an
operator valued function T : U → L(H,K) is said to be holomorphic if
it is (complex) differentiable in the uniform topology everywhere in U .

Theorem 6.1. Let U ⊂ C be open, let B1, B2 : U → L(H ) be holomor-
phic functions such that B1(z) and B2(z) satisfy (H1–3) uniformly for each
z ∈ U, and let τ ∈ C \ Sµ. Then the function given by z �→ (1 + τΠB(z))

−1

is holomorphic on U, the function given by z �→ P0
B(z) is holomorphic on U,

and the function given by z �→ ψ(ΠB(z)) is holomorphic on U for every
ψ ∈ Ψ(So

µ).

Remark 6.2. An interesting observation that arose from our consideration
of Theorem 6.1 is that under its hypotheses, not only is the function given
by z �→ P0

B(z) holomorphic on U , but so too are the functions given by
z �→ P1

B(z) and z �→ P2
B(z). This means that the Hodge decomposition (5) is

holomorphic on U .
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Moreover, we have

d

dz
P0

B = −P0
B A1P̃1

B − P̃2
B A2P0

B,(32)

d

dz
P1

B = P0
B A1P̃1

B − P̃2
B A2P1

B,(33)

and

d

dz
P2

B = −P2
B A1P̃1

B + P̃2
B A2P0

B .(34)

Here A1(z) = d
dz B1(z) and A2(z) = d

dz B2(z), and the operators P̃1
B and P̃2

B in
L(H ) are defined in Appendix A, and satisfy P1

B = B1P̃1
B and P2

B = P̃2
B B2.

The claims of this remark are verified in the Appendix A.

Before proving Theorem 6.1 we recall some standard results from oper-
ator theory. The function T : U → L(H,K) is holomorphic if and only if
it is locally uniformly bounded (that is, uniformly bounded on each compact
subset of U), and strongly differentiable (see [19, p. 365]). Cauchy’s Theo-
rem, and indeed many standard results about complex-valued holomorphic
functions extend to the operator valued setting. A suitable reference is [13,
III.14]. In particular, the following holds:

Lemma 6.3. Let U ⊂ C be an open set, and let Tn, T : U −→ L(H,K)
be functions with Tn holomorphic for each n ∈ N. Suppose that Tn(z)u →
T(z)u as n → ∞, for every z ∈ U and u ∈ H , and that for every compact
K ⊂ U there exists L > 0 such that ‖Tn(z)‖ ≤ L for every z ∈ K and
n ∈ N. Then T is holomorphic, and moreover for every u ∈ H , we have
(Tnu) and ( d

dz Tnu) converge locally uniformly to Tu and d
dz Tu respectively.

(i.e. the convergence is uniform on each compact subset of U.)

A sequence (Tn) ⊂ L(H ) is said to converge to T ∈ L(H ) strongly if
for every u ∈ H we have ‖Tnu − Tu‖ → 0 as n → ∞. We use the fact that,
for any pair of sequences (Sn), (Tn) ⊂ L(H ) with Sn → S and Tn → T
strongly as n → ∞, where S, T ∈ L(H ), then SnTn → ST strongly.

Proof of Theorem 6.1. Fix τ ∈ C \ So
µ. Then

d

dz
(I +τΠB)−1 = − (I +τΠB)−1 A1τΓ∗ B2(I +τΠB)−1

− (I +τΠB)−1 B1τΓ∗ A2(I +τΠB)−1
(35)

where A1(z) = d
dz B1(z) and A2(z) = d

dz B2(z). The fact that the above
operators are all uniformly bounded can be obtained from (12), (13) and
Lemma 4.2. This proves the first claim. Thus {z �→ (I +inΠB)−1}n is
a collection of uniformly bounded functions holomorphic on U . Moreover
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P0
Bu = limn→∞(I +inΠB(z))

−1u for all u ∈ H . (This is proved in a set-
ting similar to ours in [12, Theorem 3.8]; we also prove it as a part of
Lemma A.1). The second claim now follows from Lemma 6.3. We now
prove the third claim. Fix ψ ∈ Ψ(So

µ). The desired result can now be de-
duced from the first claim and Lemma 6.3 by using a Riemann sum to
approximate the contour integral representation of ψ(ΠB(z)) as in (7). This
completes the proof. ��

We now adopt the notation from hypotheses (H1–8) and consider the
Hilbert space

K = L2

(
Rn × (0,∞),

dxdt

t
; CN

)

and for every ψ ∈ Ψ(So
µ) and z ∈ U , define the operator SB(z)(ψ) : H −→ K

by

(SB(z)(ψ)u)(x, t) = (
ψ(tΠB(z))u

)
(x)

for every u ∈ H , t > 0 and almost every x ∈ Rn.

Theorem 6.4. Let U ⊂ C be open, let B1, B2 : U → L(H ) be holomor-
phic functions such that B1(z) and B2(z) satisfy (H1–8) uniformly for each
z ∈ U, and let ω < µ < π

2 . Then the function given by z �→ f(ΠB(z)) is
holomorphic on U for every bounded f : So

µ ∪ {0} −→ C holomorphic
on So

µ, and the function given by z �→ SB(z)(ψ) is holomorphic on U for
every ψ ∈ Ψ(So

µ).

Proof. We prove the first claim. Let f be as above. Since by Theorem 6.1,
the function z �→ P0

B(z) is holomorphic on U , we can without loss of
generality further assume that f(0) = 0. Choose a uniformly bounded
sequence (ψn) ⊂ Ψ(So

µ) that converges locally uniformly to f on So
µ. By

Theorem 6.1 we have each function z �→ ψn(ΠB(z)) is holomorphic on U .
Moreover, by Theorem 2.10 and (10), we have that ψn(ΠB(z)) is uniformly
bounded (with respect to n ∈ N and z ∈ U) and that

(
ψn(ΠB(z))

)
converges

strongly to f(ΠB(z)) for every z ∈ U . The first claim of Theorem 6.4 now
follows from Lemma 6.3.

We now prove the second claim. Let n ∈ N, and define ψn
t : So

µ −→ C
by ψn

t (ζ) = ψ(tζ) whenever ζ ∈ So
µ and 1/n < t < n, and ψn

t = 0
otherwise. Next let Sn

B(z)(ψ) : H −→ K be given by
(
Sn

B(z)(ψ)u
)
(x, t) = (

ψn
t (ΠB(z))u

)
(x)

for every z ∈ U , u ∈ H , t > 0 and almost every x ∈ Rn. We deduce
from Theorem 6.1 that for every t > 0, the function z �→ ψn

t (ΠB(z)) is
holomorphic on U , and by Theorem 2.10 that this family of functions is
uniformly bounded with respect to t > 0. This with the fact that ψn

t is
only non-zero for t ∈ (1/n, n) allows us to deduce that the function given
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by z �→ Sn
B(z)(ψ) is holomorphic on U . However, by Remark 2.8 we have

‖Sn
B(z)(ψ)‖ is uniformly bounded over every z ∈ U and n ∈ N, and that

Sn
B(z)(ψ) strongly converges to SB(z)(ψ) as n → ∞ for every z ∈ U . The

second claim now follows from Lemma 6.3. This completes the proof. ��
We use the previous theorem to prove Lipschitz estimates on members

of the functional calculus of the perturbed Dirac operator ΠB, and Lipschitz
estimates on quadratic functions of ΠB.

Theorem 6.5. Let H,Γ, B1, B2, κ1, κ2 and n be as outlined in (H1–8). For
i = 1, 2, fix ηi < κi, and then let 0 < ω̂i < π

2 be given by cos ω̂i = κi−ηi
‖Bi‖+ηi

.

Next let ω̂ = 1
2(ω̂1 + ω̂2) and ω̂ < µ < π

2 . Then we have

‖ f(ΠB) − f(ΠB+A)‖ � (‖A1‖∞ + ‖A2‖∞)‖ f ‖∞

for every bounded f : So
µ ∪ {0} −→ C holomorphic on So

µ, and every
Ai ∈ L∞(Rn,L(CN )) with ‖Ai‖∞ ≤ ηi . Moreover, given ψ ∈ Ψ(So

µ), we
have

∫ ∞

0
‖ψ(tΠB)u − ψ(tΠB+A)u‖2 dt

t
�

(‖A1‖2
∞ + ‖A2‖2

∞
)‖u‖2

for all u ∈ H , and every Ai ∈ L∞(Rn,L(CN )) with ‖Ai‖∞ ≤ ηi .

Proof. For each i = 1, 2, define the functions Gi : C −→ L(H ) by
z �→ Bi + z Ai , and let

U = {
z ∈ C : |z| ≤ min

{
η1‖A1‖−1, η2‖A2‖−1}} .

For all z ∈ U and i = 1, 2 we have

Re((Bi + z Ai)u, u) ≥ (κi − ηi)‖u‖2

for every u ∈ H , and therefore

cos sup
u∈R(Γ∗)\{0}

| arg((Bi + z Ai)u, u)| ≥ κi − ηi

‖Bi‖ + ηi
= cos ω̂i.

We conclude that G1(z) and G2(z) satisfy (H2) with ω1 and ω2 replaced
by ω̂1 and ω̂2, and thence by Theorem 6.4, that the function given by
z �→ ΠG(z) is holomorphic on U . The first claim of the theorem then
follows by Schwarz’s Lemma. The second claim is proved by a similar
argument. ��
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7. Applications to Riemannian manifolds

We now consider applications to compact Riemannian manifolds M with
metric g. For each x ∈ M let ∧T ∗

x M denote the complex exterior algebra
over the cotangent space T ∗

x M. We then let ∧T ∗M and LM denote the
bundles over M whose fibres at each x ∈ M are given by ∧T ∗

x M and
L(∧T ∗

x M), respectively. We let H = L2(∧T ∗M) denote the collection
of L2 integrable sections of ∧T ∗M, and let L∞(LM) denote the bounded
measurable sections of LM . We let d∗

g denote the dual of d in H , and
consider the Hodge–Dirac operator Dg := d + d∗

g .

Theorem 7.1. Let M be a compact Riemannian manifold with metric g, let
B ∈ L∞(LM ) be invertible and so that there exists κ > 0 such that for
almost every x ∈ Rn, we have

Re(B(x)v, v) ≥ κ|v|2
for every v ∈ ∧T ∗

x M. Let ω < µ < π
2 where

ω := ess sup x∈M
v∈∧T∗

x M
| arg(B(x)v, v)|.

Then the operator DB = d + B−1d∗
g B has a bounded So

µ holomorphic
functional calculus in H . The constant in this bound depends only on
(M, g), ‖B‖ and κ.

We begin the proof of Theorem 7.1 with a localization lemma. Let
ρ : U −→ B(0, 4δ) be a diffeomorphism (or bi-Lipschitz mapping) for
some open U ⊂ M, δ > 0. Here we let B(x, r) denote the ball in Rn with
centre x ∈ Rn and radius r > 0, where n is the dimension of M. Let ρ∗
denote the pullback by a function ρ. Let ΘB

t be as given in Definition 4.7
with Γ := d and ΠB := DB.

Lemma 7.2. We have ∫ 1

0

∥∥ΘB
t u

∥∥2 dt

t
� ‖u‖2

for every u ∈ H with supp u ⊂ ρ−1(B(0, δ)). The bound here depends on δ,
the hypothesis of Theorem 7.1, and the gradient bounds of ρ and ρ−1.

Proof. By Proposition 5.2 (adapted to the setting of a compact Riemannian
manifold) we have that∫

M\ρ−1(B(0,2δ))

∣∣ΘB
t u

∣∣2
dx � t2‖u‖2

and therefore that∫ 1

0

∫
M\ρ−1(B(0,2δ))

∣∣ΘB
t u

∣∣2
dx

dt

t
�

∫ 1

0
t2‖u‖2 dt

t
� ‖u‖2.
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It remains to show that∫ 1

0

∫
ρ−1(B(0,2δ))

∣∣ΘB
t u

∣∣2
dx

dt

t
� ‖u‖2.(36)

We do this by pushing the problem onto Rn .
Let B̂ be the multiplication operator on L2(Rn;∧CRn) that coincides

with the identity on Rn \ B(0, 4δ), and is otherwise fixed by the condition
that (ρ−1)∗ DBρ∗ = DB̂, where we write DB̂ := d + (B̂)−1d∗ B̂, and where
d∗ denotes the adjoint of d under the standard Euclidean metric. Here
B̂ = (ρ∗/Jρ)Bρ∗, where ρ∗/Jρ : L2(∧T ∗U) → L2(B(0, 4δ);∧CRn) is
the adjoint of ρ∗ : L2(B(0, 4δ);∧CRn) → L2(∧T ∗U) and ρ∗ denotes the
pushforward and Jρ the Jacobian determinant of ρ. By our hypotheses on
B we then have B1 = (B̂)−1 and B2 = B̂ satisfy (H2,3,5) with bounds that
depend only on the hypotheses and the gradient bounds on ρ and ρ−1. By
Theorem 2.7 with {Γ = d, (B̂)−1, B̂} we then have

∫ 1

0

∥∥tDB̂

(
I + t2 DB̂

2)−1
v
∥∥2 dt

t
� ‖u‖2(37)

where, here and after we fix v = (ρ−1)∗u.
To complete the proof it suffices to show that

∥∥(ρ−1)∗itDB
(

I + t2 DB
2
)−1

ρ∗v − itDB̂

(
I + t2 DB̂

2
)−1

v
∥∥

L2(B(0,2δ))
� t‖v‖

(38)

for every 0 < t ≤ 1, and that these bounds depend on the hypotheses
and the gradient bounds on ρ and ρ−1. (Indeed, we can then apply the
triangle inequality with (37) to the bound the left-hand side of (36) by
a controlled constant times ‖u‖2 + ∫ 1

0 t2‖u‖2 dt
t � ‖u‖2.) To see (38) holds,

let η1, η2 : Rn −→ R be smooth cut-off functions with

ηi(x) =
{

1 if x ∈ B(0, (i + 1)δ)

0 if x ∈ Rn \ B(0, (i + 2)δ)

and |∇ηi | ≤ 2δ−1 for i = 1, 2. Observe that

(I + itDB̂)−1v(x) − (ρ−1)∗(I + itDB)−1ρ∗v(x)
= (ρ−1)∗(I + itDB)−1ρ∗η2

(
(ρ−1)∗(I + itDB)ρ∗η1

− (I + itDB̂)
)
(I + itDB̂)−1v(x)

= (ρ−1)∗(I + itDB)−1ρ∗η2(I + itDB̂)(η1 − 1)(I + itDB̂)−1v(x)

= (ρ−1)∗(I + itDB)−1ρ∗η2[itDB̂, η1](I + itDB̂)−1v(x)

for almost every x ∈ B(0, 2δ), and by Proposition 5.2 has norm in
L2(B(0, 2δ);∧CRn) bounded by a constant multiple of t‖∇η1‖‖v‖ � t‖v‖,
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where the constant depends only on the assumed constants of the hypothe-
ses. Estimate (38) now follows by writing Q B

t = 1
2i (−RB

t + RB−t). This
completes the proof. ��
Proof of Theorem 7.1. By Proposition 4.8, we need to establish (19) for
every u ∈ R(Γ), for each case where {Γ, B−1, B} is given by {d, B−1, B},
{d∗

g, B, B−1}, {d∗
g, B∗, (B−1)∗} and {d, (B−1)∗, B∗}. Let H be the Hodge-

star operator on M and let N be the operator that changes sign of forms of
odd degree. Then we have the unitary equivalence

H∗(d∗
g + BdB−1

)
H = Nd + B̃−1(Nd)∗ B̃

where B̃ = H∗ B−1 H satisfies the same hypothesis as B. Consequently, all
four cases are essentially of the form {d, B−1, B} which we now consider.

Since M is compact we can use Lemma 7.2 with a standard local
chart/partition of unity argument to deduce that

∫ 1

0

∥∥ΘB
t u

∥∥2 dt

t
� ‖u‖2.

Again because M is compact, and also because u ∈ R(d) and thus Ptu ∈
R(D), we can apply the Gaffney-Gårding inequality (see [29, The-
orem 7.3.2]) to deduce that ‖Ptu‖ � ‖DPtu‖, and therefore conclude
that ∫ ∞

1

∥∥ΘB
t Ptu

∥∥2 dt

t
�

∫ ∞

1
‖Ptu‖2 dt

t
�

∫ ∞

1
‖tDPtu‖2 dt

t3

�
∫ ∞

1
‖u‖2 dt

t3
� ‖u‖2.

This with Lemma 7.2 proves (19) and so completes the proof of Theorem 7.1.
��

We now state an application of the above theorem. Given a smooth
perturbation g + h of g we let

|hx| = sup{|hx(v, v)| : v ∈ ∧Tx M , gx(v, v) = 1}
for all x ∈ M, and define ‖h‖∞ := supx∈M |hx|. (This norm is equivalent to
the one given in the Introduction, but more useful for our purposes.)

Theorem 7.3. Let M be a compact Riemannian manifold with metric g,
let g + h be a measurable perturbation of g with ‖h‖∞ < 1/4, and let
0 < µ < π

2 be given by µ = cos−1(1/4). Then we have

‖ f(Dg+h) − f(Dg)‖ � ‖ f ‖∞‖h‖∞

for every bounded f : So
µ ∪ {0} −→ C holomorphic on So

µ. The constant in
the above bound depends only on (M, g).
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Remark 7.4. Lipschitz estimates like those in Theorem 7.3 also hold in
terms of the quadratic estimates appearing in the second part of Theorem 6.5.
These results are a consequence of the deeper fact that the mapping given by
z �→ f(Dg+zh) depends holomorphically on z ∈ C when |z| < ‖h‖−1∞ . These
same results hold for any manifold bi-Lipschitz equivalent to Euclidean
space, and follow by arguments similar to those used in this section. We
leave the details to the reader.

Proof of Theorem 7.3. We can implicitly define A ∈ L∞(LM) by the for-
mula

((I + A(x))u(x), v(x))g = (u(x), v(x))g+h

for every u, v ∈ L2(∧CT ∗M). Here we let (·, ·)g+h and (·, ·)g denote the
metrics on M corresponding to g+h and g, respectively. Our hypothesis on
g + h implies that A ∈ L∞(LM) with ‖A‖∞ = ‖h‖∞ ≤ 1/4 and therefore
also

‖I − (I + A)−1‖∞ ≤ ‖h‖∞
1 − ‖h‖∞

≤ 1/3.

Moreover, we have(
(I + A)d∗

g+hu, v
)

g
= (

d∗
g+hu, v

)
g+h

= (u, dv)g+h

= ((I + A)u, dv)g = (
d∗

g(I + A)u, v
)

g

for every u, v ∈ L2(∧CT ∗M) with u ∈ D(d∗
g+h) and v ∈ D(d), and therefore

Dg+h = d + d∗
g+h = d + (I + A)−1d∗

g(I + A).

The desired result now follows from an application of Theorem 7.1 and
results analogous to Theorem 6.5 with A2 = A, A1 = (I + A)−1 − I ,
ηi = 1/2, κi = 1, and Bi = I for i = 1, 2. ��

Appendix A. Further properties of the Hodge decomposition

In this appendix we verify the claim of Remark 6.2. As in Sect. 4, we
assume that the triple of operators {Γ, B1, B2} in a Hilbert space H satisfies
properties (H1–3). We begin with a lemma.

Lemma A.1. The Hodge projections can be represented as limits of resol-
vents in the following ways:

P0
Bu = lim

n→∞(I + inΠB)−1u = lim
n→∞(I − inΠB)−1u for all u ∈ H;

P1
Bu = lim

n→∞ inΓ∗
B (I + inΠB)−1u = lim

n→∞ inΓ∗
B (− I + inΠB)−1u

for all u ∈ H;
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P1
Bu = lim

n→∞(I + inΠB)−1inΓu = lim
n→∞(− I + inΠB)−1inΓu

for all u ∈ D(Γ);
P2

Bu = lim
n→∞ inΓ(I + inΠB)−1u = lim

n→∞ inΓ(− I + inΠB)−1u

for all u ∈ H;
P2

Bu = lim
n→∞(I + inΠB)−1inΓ∗

B u = lim
n→∞(− I + inΠB)−1inΓ∗

B u

for all u ∈ D(Γ∗
B ).

Remark A.2. If N(ΠB) = {0}, then P1
B = Γ∗

BΠ−1
B = Π−1

B Γ and P2
B = ΓΠ−1

B

= Π−1
B Γ∗

B on the appropriate domains, in which case the proofs would be
somewhat more direct.

Note that, by Proposition 2.5 and Lemma 4.2, each of the operator
sequences (I + inΠB)−1, inΓ∗

B (I + inΠB)−1, etc, is uniformly bounded in n.
It is not a-priori clear that their strong limits exist. This will be shown in the
course of the proof.

Proof. We begin by showing that

Q B
n u = nΠB

(
I + n2ΠB

2
)−1

u → 0(39)

as n → ∞ for every u ∈ H . The expression on the left vanishes if u ∈
N(ΠB), so it suffices to consider the case when u ∈ R(ΠB). If u = ΠBv ∈
R(ΠB), then

∥∥Q B
n u

∥∥ = ∥∥Q B
n ΠBv

∥∥ = 1
n

∥∥v − PB
n v

∥∥ � 1
n ‖v‖ → 0

as n → ∞. Since, by Proposition 2.5, the sequence ‖Q B
n ‖ is uniformly

bounded, we conclude by a standard continuity argument that (39) holds for
every u ∈ R(ΠB).

Define operators T0, T1 and T2 on H by

T0u = lim
n→∞(I + inΠB)−1u,

T1u = lim
n→∞ inΓ∗

B (I + inΠB)−1u and T2u = lim
n→∞ inΓ(I + inΠB)−1u

whenever u ∈ H and the corresponding limit exists. We next show that

T0u = lim
n→∞(I − inΠB)−1u,(40)

T1u = lim
n→∞ inΓ∗

B (− I + inΠB)−1u = lim
n→∞(I + inΠB)−1inΓu

= lim
n→∞(− I + inΠB)−1inΓu

(41)
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and

T2u = lim
n→∞ inΓ(− I + inΠB)−1u = lim

n→∞(I + inΠB)−1inΓ∗
B u

= lim
n→∞(− I + inΠB)−1inΓ∗

B u
(42)

whenever u ∈ H (and when required, u ∈ D(Γ) or u ∈ D(Γ∗
B )) and the

corresponding limit exists. Here we interpret the above as saying that if one
such limit exists, then the limits that are indicated to be equal, also exist.

Equation (40) follows by (39) and the fact that

(I + inΠB)−1 − (I − inΠB)−1 = −2inΠB
(

I + n2Π2
B

)−1
.

To see the first equality in (42), observe that by (39) and Lemma 4.2 we
have
∥∥inΓ(I + inΠB)−1u − inΓ(− I + inΠB)−1u

∥∥=∥∥2inΓ(I + n2ΠB
2)−1u

∥∥
�

∥∥nΠB(I + n2ΠB
2)−1u

∥∥→0

as n → ∞. The second equality in (42) follows from (39) and the identity

inΓ(− I + inΠB)−1u − (I + inΠB)−1inΓ∗
B u

= (I+ inΠB)−1((I+ inΠB)inΓ− inΓ∗
B (− I+ inΠB)

)
(− I+ inΠB)−1u

= (I + inΠB)−1(inΓ + inΓ∗
B )(− I + inΠB)−1u

= −inΠB(I + n2ΠB
2)−1u = −iQ B

n u

(43)

for all u ∈ D(Γ∗
B ).

The remaining equality in (42) as well as Equation (41) can be proved
by similar arguments.

We note that T0u = u when u ∈ N(ΠB), and, by adapting the proof of
(39), that T0u = 0 when u ∈ R(ΠB) and hence when u ∈ R(ΠB). Therefore
T0 = P0

B.
Now investigate T1. By (41), T1u = 0 when u ∈ N(Γ). If u ∈ R(Γ∗

B ), let
u = Γ∗

Bv, where, by Proposition 2.2, we may assume that v ∈ R(Γ). Using
the facts that T0v = 0 and that Γ∗

B is closed, we obtain

T1u = lim
n→∞ inΓ∗

B (I + inΠB)−1ΠBv = lim
n→∞ Γ∗

B

(
I −(I + inΠB)−1)v

= Γ∗
Bv = u.

(44)

By a standard argument, we find that T1u = u when u ∈ R(Γ∗
B ). Therefore

T1 = P1
B.

Similarly, T2u = 0 when u ∈ N(Γ∗
B ), and T2u = u when u ∈ R(Γ), so

that T2 = P2
B. ��
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Define operators P̃1
B and P̃2

B on H by

P̃1
Bu = lim

n→∞ inΓ∗ B2(I + inΠB)−1u for all u ∈ H ,

P̃2
Bu = lim

n→∞(I + inΠB)−1inB1Γ
∗u for all u ∈ D(Γ∗).

The fact that the limits defining P̃1
B and P̃2

B exist and define bounded opera-
tors, as well as the fact that P1

B = B1P̃1
B and P2

B = P̃2
B B2, now follow from

(12), (13). We remark that for (32), (33) and (34) to be true, the sum of the
right-hand sides must equal zero, which requires

P2
B A1P̃1

B + P̃2
B A2P1

B = 0.

Indeed, this is a consequence of the assumption Γ∗ B2 B1Γ
∗ = 0.

Proof of Remark 6.2. Let T n
0 = (I +inΠB)−1, T n

1 = inΓ∗
B (I +inΠB)−1 and

T n
2 = inΓ(I +inΠB)−1. By Proposition 2.2 and Lemma 4.2 we have that

the mappings z �→ T n
0 , z �→ T n

1 and z �→ T n
2 are uniformly bounded.

Furthermore Lemma A.1 shows that T n
0 → P0

B, T n
1 → P1

B and T n
2 → P2

B
strongly. Thus it will follow from Lemma 6.3 that z �→ P0

B(z), z �→ P1
B(z) and

z �→ P2
B(z) are holomorphic with derivatives as stated in (32), (33) and (34)

once we prove that T n
i , i = 1, 2, 3 are holomorphic functions and that d

dz T n
i

have as strong limits the right hand sides in (32), (33) and (34) respectively.
For T n

0 , we see that

d

dz
T n

0 u = d

dz
(I + inΠB)−1u

= −(I + inΠB)−1 A1inΓ∗ B2(I + inΠB)−1u

− (I + inΠB)−1 B1inΓ∗ A2(I + inΠB)−1u

→ ( − P0
B A1P̃1

B − P̃2
B A2P0

B

)
u.

(45)

For T n
1 , we see that when u ∈ D(Γ),

d

dz
T n

1 u = d

dz
(I + inΠB)−1inΓu

= −(I + inΠB)−1 A1inΓ∗ B2(I + inΠB)−1inΓu

− (I + inΠB)−1 B1inΓ∗ A2(I + inΠB)−1inΓu.

(46)

The second term on the right-hand side converges to −P̃2
B A2P1

Bu. In order
to calculate the first term on the right-hand side, we note by an argument
similar to (43) that

inΓ∗
B (I + inΠB)−1 − (− I + inΠB)−1inΓ

= −inΠB(I + inΠB)−1(− I + inΠB)−1.
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This with the fact that Γ2 = 0 implies that

inΓ∗
B (I + inΠB)−1inΓ = −inΠB(I + inΠB)−1(− I + inΠB)−1inΓ

→ (
P0

B − I
)
P1

B = −P1
B

as n → ∞. Therefore the first term on the right-hand side of (46) converges
to P0

B A1P̃1
Bu as n → ∞.

A similar argument shows that d
dz T n

2 u → (−P2
B A1P̃1

B +P̃2
B A2P0

B)u. This
completes the proof. ��
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