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Instanton counting on blowup.
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Abstract. We give a mathematically rigorous proof of Nekrasov’s conjec-
ture: the integration in the equivariant cohomology over the moduli spaces
of instantons on R4 gives a deformation of the Seiberg-Witten prepotential
for N = 2 SUSY Yang-Mills theory. Through a study of moduli spaces
on the blowup of R4, we derive a differential equation for the Nekrasov’s
partition function. It is a deformation of the equation for the Seiberg-Witten
prepotential, found by Losev et al., and further studied by Gorsky et al.

Introduction

Let M(r, n) be the framed moduli space of torsion free sheaves E on P2 with
rank r, c2 = n, where the framing is a trivialization of the restricition of E
at the line at infinity �∞. There is a natural action of an (r+ 2)-dimensional
torus ˜T , coming from the symmetry of the base space C2 = P2 \ �∞ and the
change of the framing.

Nekrasov’s partition function [50] is the generating function of the inte-
gral of the equivariant cohomology class 1 ∈ H ∗̃

T
(M(r, n)):

Z(ε1, ε2, �a; q) =
∞
∑

n=0

qn
∫

M(r,n)

1,
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where ε1, ε2, �a = (a1, . . . , ar) are generators of H ∗̃
T
(pt) = S∗(Lie ˜T ). When

n > 0, M(r, n) is noncompact and the integration is given by formally
applying the localization formula in the equivariant cohomology. Then the
integration

∫

M(r,n)
1 is a rational function inC(ε1, ε2, a1, . . . , ar). (A precise

definition will be given in the main body of the paper.)
Nekrasov conjectures that Finst(ε1, ε2, �a; q) = ε1ε2 log Z(ε1, ε2, �a; q) is

regular at ε1, ε2 = 0, and Finst(0, 0, �a; q) is the instanton part of the Seiberg-
Witten prepotential for N = 2 supersymmetric 4-dimensional gauge the-
ory [52] with gauge group SU(r). Nekrasov’s definition is mathematically
rigorous. The Seiberg-Witten prepotential is also rigorously defined by cer-
tain period integrals of hyperelliptic curves (the so-called Seiberg-Witten
curves). The relation between the two, which is rather natural from a phys-
ical point of view, can be considered as a mathematically well formulated
conjecture. It is very similar to the mirror symmetry. The Nekrasov parti-
tion function is a counterpart of the Gromov-Witten invariants and is on the
‘symplectic’ side. Seiberg-Witten prepotential is on the ‘complex’ side.

Let us briefly recall the history on Donaldson invariants and Seiberg-
Witten prepotential. A reader can read the main body of the paper without
knowing the history, but then he/she loses the motivation why we study
Nekrasov’s partition function. In [56] Witten described Donaldson invari-
ants as the correlation functions of certain operators in a twisted N = 2
supersymmetric Yang-Mills theory. Several years later Seiberg-Witten found
that the prepotential, which controls the physics of the theory, can be com-
puted via the periods of hyperelliptic curves [52]. Then Moore-Witten
studied Donaldson invariants using the Seiberg-Witten prepotential [43].
In particular, they derived the blowup formula for Donaldson invariants
originally given by Fintushel-Stern [19]. These arguments were physical
and have no mathematically rigorous justification so far. It was very mis-
terious why Donaldson invariants are related to periods of Seiberg-Witten
curves. Nekrasov’s conjecture can be considered as a first step towards the
understanding of the misterious relation.

The main result in this paper can be summarized as follows. We con-
sider a similar partition function defined via the framed moduli space
̂M(r, k, n) on the blowup ̂C2. We also introduce an ‘operator’ µ(C) as-
sociated with the exceptional set C. We then show that the correlation
functions

∑∞
n=0 q

n
∫

̂M(r,0,n)
µ(C)d vanish for d = 1, . . . , 2r − 1. This sim-

plest case of the blowup formula gives a differential equation (6.14) satisfied
by Z(ε1, ε2, �a; q). We call it the blowup equation. The blowup equation is
a deformation of the differential equation (7.8) for the Seiberg-Witten pre-
potential originally found in the study of the contact term in the twisted
N = 2 supersymmetric gauge theory by Losev et al. [34,35]. This equa-
tion was derived also from the Seiberg-Witten curve in the frame work of
Whitham hierarchies by Gorsky et al. [23]. (A self-contained proof will be
given in [49].) By Edelstein et al. [14] the equation determines the instan-
ton corrections recursively (see also [40] and the references therein). An
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immediate application is an affirmative solution of Nekrasov’s conjecture:
Finst(0, 0, �a; q) is the instanton part of the Seiberg-Witten prepotential.

Our strategy goes in the inverse direction of the above mentioned his-
tory. We define the operator µ(C), mimicking the definition of the similar
operator for Donaldson invariants. Our vanishing is well-known for Don-
aldson invariants (see e.g., [20]) and our proof is exactly the same. But this
rather trivially looking observation leads to the powerful blowup equation
as we just mentioned. (We eventually recover the whole Fintushel-Stern’s
formula for arbitrary d and its higher rank analog given in [41] in Sect. 8.)
Let us remark that a relation between Fintushel-Stern’s blowup formula
and the Whitham hierarchy was pointed out in [35, §3]. We also remark
that there was an approach to Fintushel-Stern’s blowup formula based on
Uhlenbeck (partial) compactifications of framed moduli spaces [8]. The use
of the simplest (or lowest) case of the blowup formula to derive constraint
is not a new idea in the context of Donaldson invariants. The proof in [19]
was done essentially by this idea. Göttsche determined the wall-crossing
formula also by this idea [22].

The paper is organized as follows. In Sect. 1 we recall the Seiberg-
Witten prepotential. In Sects. 2, 3, we define framed moduli spaces of
coherent torsion free sheaves on the plane and its blowup. We define an
action of an (r + 2)-dimensional torus ˜T on framed moduli spaces, classify
the fixed point set and determine the weights of tangent spaces at fixed
points. In Sect. 4 we consider a natural K -theory analog of Nekrasov’s
partition function and identify it with a Hilbert series of the coordinate ring
of the framed moduli spaces. This result partly explains why Nekrasov’s
partition function is natural. But this reformulation is also used to prove the
simplest blowup formula. Section 5 is a small detour. We study the rank 1
case, i.e., when the moduli spaces are Hilbert schemes of points. Nekrasov’s
partition function and its blowup formula is easy to derive, but some feature
of the general cases can be seen in this simplest case. Sections 6, 7 are main
part of this paper. We introduce the operator µ(C) and derive the blowup
equation. We then prove Nekrasov’s conjecture. In Sect. 8 we derive the full
blowup formula for our correlation function of µ(C). In Sect. 9 we consider
the case when the gauge group is not necessarily SU(r). Moduli spaces of
torsion-free sheaves do not have generalization to other gauge groups, so we
are forced to use Uhlenbeck (partial) compactifications. Our formulation in
Sect. 4 has a modification by using Uhlenbeck compactifications. We then
prove the blowup equation under some technical assumptions on geometric
properties of Uhlenbeck compactifications.

In this paper, we treat only the pure gauge theory. Theories with matters,
as well as the inclusion of higher Casimir operators (i.e., we integrate more
general cohomology classes other than 1), will be studied in the later series.

Our project started in 1997 together with I. Grojnowski. The first goal
was a new proof of the blowup formula for Betti numbers of moduli spaces
originally given by the second author [57]. This part was finished soon
afterward, and was reported by the first author at Workshop on Complex
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Differential Geometry, 14–25 July 1997, Warwick and at Verallgemeinerte
Kac-Moody-Algebren, 19–25 July 1998, Oberwolfach. (There are closely
related results by W-P. Li and Z. Qin [30–32]. We explain this result in [49].)
We then tried to give a new proof of Fintushel-Stern’s blowup formula for
Donaldson invariants. The technique was to use the localization theorem
in the equivariant cohomology of the framed moduli space on the blowup,
which is basically the same technique taken in this paper. But we did
not understand how to take the ‘nonequivariant limit’ since a naive limit
diverges. Thus we did not succeed at that time, and a failure report was given
by the first author at a workshop at RIMS Kyoto, June 2000 [48]. The correct
choice of limit is provided via the use of the Nekrasov’s partition function,
and we finally succeed this time. And we get Nekrasov’s conjecture as
a bonus.

While we were writing this paper, we were informed that Nekrasov and
Okounkov also proved Nekrasov’s conjecture [51]. Their method is totally
different from ours.

After writing the first version of this paper, the authors gave series of
lectures on the subject at “Workshop on algebraic structures and moduli
spaces”, July 14–20, 2003, Universite de Montreal. The reader can find
physical backgrounds and various related topics in the lecture notes [49].

Acknowledgement. The authors are grateful to I. Grojnowski for discussion in the early
stage of our project. They also thank the referees for helpful suggestions and comments.

1. Seiberg-Witten prepotential

In this section, we briefly recall the definition of the Seiberg-Witten prepo-
tential for the sake of the reader. See [49, §2] for detail and proofs.

We consider a family of hyperelliptic curves parametrized by �u =
(u2, . . . , ur):

C �u : Λr

(

w+ 1

w

)

= P(z) = zr + u2zr−2 + u3zr−3 + · · · + ur .

We call them Seiberg-Witten curves. The projection C �u � (w, z) �→ z ∈ P1

gives a structure of hyperelliptic curves. The parameter space {�u ∈ Cr−1} is
called the u-plane.

Let z1, . . . , zr be the solutions of P(z) = 0. We will work on a region of
the u-plane where |zα − zβ|, |zα| are much larger than |Λ|. We can find z±α
near zα such that P(z±α ) = ±2Λr as |u| � |Λ|. These are the 2r-branched
points of the projection C �u → P1.

The hyperelliptic curve C �u is made of two copies of the Riemmann
sphere, glued along the r-cuts between z−α and z+α (α = 1, . . . , r), as
usual. Let Aα be the cycle encircling the cut between z−α and z+α . We have
∑

α Aα = 0. We take cycles Bα so that {Aα, Bα | α = 2, . . . , r} form a sym-
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plectic basis of H1(C �u,Z), i.e., Aα · Aβ = 0 = Bα · Bβ, Aα · Bβ = δαβ for
α, β = 2, . . . , r. (The cycle A1 is omitted.) See [49] for the precise choice.

Let us define the Seiberg-Witten differential by

dS = − 1

2π
z

dw

w
= − 1

2π

z P′(z)dz
√

P(z)2 − 4Λ2r
.

It is a meromorphic differential having poles at ∞±. We define functions
aα, aD

β on the u-plane by

aα =
∫

Aα

dS, aD
β = 2π

√−1
∫

Bβ

dS, α = 1, . . . , r, β = 2, . . . , r.

We have
∑

α aα = 0. In the gauge theory side, �a = (a1, . . . , ar) will be the
coordinate system on Lie T .

It can be shown that there exists a locally defined function F ( �a;Λ) on
the �u-plane such that

aD
α = −

∂F

∂aα

.

It is called the Seiberg-Witten prepotential. Note that

ταβ = − 1

2π
√−1

∂2F

∂aα∂aβ

is the period matrix of C �u.
One can show that F has the following behaviour at Λ→ 0:

F =
∑

α<β

[

(aα − aβ)
2 log

(√−1(aα − aβ)

Λ

)

− 3

2
(aα − aβ)

2

]

+Λ2r × O(Λ2r).

(1.1)

The first part (resp. second part Λ2r × O(Λ2r)) is called the perturbative
part (resp. instanton part) of the prepotential. For the choice of the branch
of log, see [49, §2].

We rewrite (1.1) using terminology for root systems of Lie algebras. The
change is useful for considering generalization to other gauge groups (see
Sect. 9).

We consider �a as an element of the Cartan subalgebra h of slr . Let
∆ ⊂ h∗ be the set of roots. We take standard simple roots αi ∈ h∗ and simple

coroots α∨i ∈ h (i = 1, . . . , r − 1), i.e., αi = (0, . . . , 0,
i
1,

i+1−1, 0, . . . , 0).

Let ∆+ denote the set of positive roots, i.e., ∆+ = {eα,β = (0, . . . , 0,
α

1, 0,

. . . , 0,
β−1, 0, . . . , 0) | α < β}. If �a = (a1, . . . , ar), then 〈 �a, eα,β〉 = aα−aβ.
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We write �a = ∑i aiα∨i . Let Q be the coroot lattice of h, i.e., Q = {�k =
(k1, . . . , kr) ∈ Zr |∑α kα = 0}. We write �k =∑ kiα∨i as above.

The perturbative part of the prepotential is rewritten as

∑

α∈∆+

[

〈 �a, α〉2 log

(√−1〈 �a, α〉
Λ

)

− 3

2
〈 �a, α〉2

]

.

The period matrix is

τij = − 1

2π
√−1

∂2F

∂ai∂a j

=
√−1

π

∑

α∈∆+
〈α∨i , α〉〈α∨j , α〉 log

(√−1〈 �a, α〉
Λ

)

+Λ2r × O(Λ2r).

(1.2)

In our proof of Nekrasov’s conjecture, we use the following two equa-
tions:

∂F

∂ log Λ
= −2ru2,(1.3)

∂u2

∂ log Λ
=− 2r

π
√−1

∂u2

∂ai

∂u2

∂a j

∂

∂τij
log ΘE(�0|τ),(1.4)

where

ΘE(�ξ|τ) =
∑

�k∈Q

exp

⎛

⎝π
√−1

∑

i, j

τij k
ik j + 2π

√−1
∑

i

ki

(

ξ i + 1

2

)

⎞

⎠ .

(1.5)

The first equation (1.3) is called the renormalization group equation, and
was obtained by [53]. (See also [42,16,10].)

The second equation (1.4) is called the contact term equation. It was orig-
inally found in the context of the N = 2 supersymmetric gauge theory [34,
35], and derived also from the above Seiberg-Witten curve in a mathemati-
cally rigorous way [23].

Remark 1.6. In order to get the exact match with the physics literature, we
need to note �a = −√−1 �a Phys, u p = −uPhys

p .

2. Framed moduli spaces on the projective plane

In this section, we define framed moduli spaces on P2 and study their
basic properties. All of results are straightforward generalizations of the
corresponding results for Hilbert schemes on C2, which were explained
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in [47]. In fact, the results were obtained long time ago and mentioned
in [47, Exercise 5.15].

Let M(r, n) be the framed moduli space of torsion free sheaves on P2

with rank r and c2 = n, which parametrizes isomorphism classes of (E,Φ)
such that

(1) E is a torsion free sheaf of rank E = r, 〈c2(E), [P2]〉 = n which is
locally free in a neighborhood of �∞,

(2) Φ : E|�∞ ∼→O⊕r
�∞ is an isomorphism called ‘framing at infinity’.

Here �∞ = {[0 : z1 : z2] ∈ P2} ⊂ P2 is the line at infinity. Notice that the
existence of a framing Φ implies c1(E) = 0.

The framed moduli spaces were constructed by Huybrechts-Lehn [25]
(in more general framework). The tangent space is Ext1(E, E(−�∞)) and
the obstruction space is Ext2(E, E(−�∞)). In our situation, we have the
following vanishing theorem:

Proposition 2.1. Hom(E, E(−�∞)) = Ext2(E, E(−�∞)) = 0.

Proof. By the Grothendieck-Serre duality theorem, Ext2(E, E(−�∞)) is the
dual of Hom(E, E(−2�∞)). We shall show that Hom(E, E(−k�∞)) = 0
for any k ∈ Z>0.

From a short exact sequence

0→ E(−(k + 1)�∞)
mult. by z0−−−−−→ E(−k�∞)→ E(−k�∞)⊗O�∞ → 0,

we obtain an exact sequence

0→ Hom(E, E(−(k + 1)�∞))→ Hom(E, E(−k�∞))

→ Hom(E, E(−k�∞)⊗O�∞).

Since the restriction of E to �∞ is trivial, we have

Hom(E, E(−k�∞)⊗O�∞) = 0.

Hence we get

Hom(E, E(−�∞)) ∼= Hom(E, E(−2�∞)) ∼= · · ·
∼= Hom(E, E(−k�∞)) ∼= · · · .

But Hom(E, E(−k�∞)) ∼= Ext2(E, E((k − 3)�∞))∗ vanishes for sufficient
large k by the Serre vanishing theorem. Thus we get the assertion. ��
Corollary 2.2. M(r, n) is a nonsingular variety of dimension 2nr.

Proof. This follows from the above vanishing theorem together with the
Riemann-Roch formula. ��

In fact, we have another way to define the framed moduli space and prove
this corollary in our setting. By a result of Barth [5] (see [47, Theorem 2.1]
for the proof), we have an isomorphism between M(r, n) and the quotient
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space of B1, B2 ∈ End(Cn), i ∈ Hom(Cr,Cn) and j ∈ Hom(Cn,Cr)
satisfying

(1) [B1, B2] + ij = 0,
(2) there exists no proper subspace S � Cn such that Bα(S) ⊂ S (α = 1, 2)

and im i ⊂ S

modulo the action of GLn(C) given by

g · (B1, B2, i, j) = (gB1g−1, gB2g−1, gi, jg−1).

We say (B1, B2, i, j) is stable when it satisfies the condition (2). It can be
shown that the differential of the defining equation (1) is surjective and
the action is free on stable points. This shows the smoothness of M(r, n).
(See [47, §3].)

Let M0(r, n) be the framed moduli space of ideal instantons on S4 =
C

2 ∪ {∞}, that is

M0(r, n) =
n
⊔

n′=0

Mreg
0 (r, n′)× Sn−n′

C
2,

where Mreg
0 (r, n′) is the framed moduli space of genuine instantons on S4

and Sk
C

2 is the kth symmetric product of C2. We endow a topology to
M0(r, n) as in [12, 4.4]. By a result of Donaldson [11] (which is based on
the ADHM description [1]), Mreg

0 (r, n) can be identified with the framed
moduli space of locally free sheaves on P2, and also with the open subset
of the space of linear data (B1, B2, i, j) with an extra condition that the
transposes tB1, tB2, tj satisfy the above condition (2). Then by [12, 3.4.10]
together with [47, Chap. 3], M0(r, n) can be identified (as a topological
space) with

{(B1, B2, i, j) | [B1, B2] + ij = 0} // GLn(C),(2.3)

where // denotes the affine algebro-geometric quotient. The open locus
Mreg

0 (r, n) consists of closed orbits GLn(C) · (B1, B2, i, j) such that the
stabilizer is trivial.

As in [47, Chap. 3], M(r, n) has a structure of hyper-Kähler manifold of
dimension 4nr if we put the standard inner products on Cn and Cr . In fact,
M(r, n) is isomorphic to the hyper-Kähler quotient

{

(B1, B2, i, j)

∣

∣

∣

∣

(i) [B1, B2] + ij = 0

(ii)
[

B1, B†1
]+ [B2, B†2

]+ ii† − j† j = ζ id

}/

U(n),

(2.4)

where ( )† is the Hermitian adjoint and ζ is a fixed positive real number.
This hyper-Kähler structure plays no role later.

By these descriptions via linear data, we have a projective morphism

π : M(r, n)→ M0(r, n),
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where we endow M0(r, n) with a scheme structure by the description (2.3).
(See [47, 3.51].) In terms of the original definition as framed moduli spaces,
the corresponding map between closed points can be identified with

(E,Φ) �−→ ((E∨∨,Φ), Supp(E∨∨/E)) ∈ Mreg
0 (r, n′)× Sn−n′

C
2.(2.5)

where E∨∨ is the double dual of E and Supp(E∨∨/E) is the support of
E∨∨/E counted with multiplicities. Note that E∨∨ is a locally free sheaf.
(This identification can be proved easily from results in [47, Chaps. 2, 3]
and details were given in [55].)

Remark 2.6. Morphisms from moduli spaces of semistable torsion-free
sheaves to moduli spaces of ideal instantons on general projective surfaces
were constructed by J. Li [29] and Morgan [44] in this way. (See also [26,
§8.2].) But it is not clear that the scheme structure is the same as one given
above.

Let T be the maximal torus of GLr(C) consisting of diagonal matrices
and let ˜T = C∗ × C∗ × T . We define an action of ˜T on M(r, n) as follows:
For (t1, t2) ∈ C∗ × C∗, let Ft1,t2 be an automorphism of P2 defined by

Ft1,t2([z0 : z1 : z2]) = [z0 : t1z1 : t2z2].
For diag(e1, . . . , er) ∈ T let Ge1,...,er denote the isomorphism of O⊕r

�∞ given
by

O⊕r
�∞ � (s1, . . . , sr) �−→ (e1s1, . . . , ersr).

Then for (E,Φ) ∈ M(r, n), we define

(t1, t2, e1, . . . , er) · (E,Φ) = ((F−1
t1,t2

)∗
E,Φ′

)

,(2.7)

where Φ′ is the composite of homomorphisms

(

F−1
t1,t2

)∗
E|�∞

(

F−1
t1,t2

)∗
Φ

−−−−−→ (

F−1
t1,t2

)∗
O⊕r

�∞ −→ O⊕r
�∞

Ge1,...,er−−−−→ O⊕r
�∞ .

Here the middle arrow is the homomorphism given by the action.
In a similar way, we have a ˜T -action on M0(r, n). The map π : M(r, n)→

M0(r, n) is equivariant.

Lemma 2.8. These actions can be identified with the actions on the linear
data defined by

(B1, B2, i, j) �−→ (

t1 B1, t2 B2, ie−1, t1t2e j
)

,

for t1, t2 ∈ C∗, e = diag(e1, . . . , er) ∈ (C∗)r .

Note that this action preserves the equation [B1, B2] + ij = 0 and the
stability condition, and commutes with the action of GLn(C). Hence it
induces an action on M(r, n) and M0(r, n).
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Proof. The sheaf E is given as the middle cohomology group of the complex

V⊗OP2(−1)−−−−−−−−→
a=

(

z0 B1−z1
z0 B2−z2

z0 j

)

V ⊗OP2

⊕
V ⊗OP2

⊕
W ⊗OP2

−−−−−−−−−−−−−−−−−→
b= (−(z0B2−z2) z0 B1−z1 z0i )

V⊗OP2(1).

(See [47, Chap. 2].) Let us pull back this complex by F−1
t1,t2:

V ⊗OP2(−1) −−−−−−−−−−→
a=

⎛

⎝

z0 B1−t−1
1 z1

z0 B2−t−1
2 z2

z0 j

⎞

⎠

V ⊗OP2

⊕
V ⊗OP2

⊕
W ⊗OP2

−−−−−−−−−−−−−−−−−−−−−−→
b=

(

−
(

z0 B2−t−1
2 z2

)

z0 B1−t−1
1 z1 z0i

)

V ⊗OP2(1).

Under the isomorphism

V ⊗OP2

⊕
V ⊗OP2

⊕
W ⊗OP2

�
(

v1
v2
w

)

�−→
⎛

⎝

t−1
2 v1

t−1
1 v2
w

⎞

⎠ ,

the kernel of b is mapped to the kernel of
(−(z0t2 B2 − z2) z0t1 B1 − z1 z0i

)

.

Also under the above isomorphism, the image of a is mapped to the image
of

1

t1t2

(

z0t1 B1 − z1
z0t2 B2 − z2

z0t1t2 j

)

.

Thus the pull-back sheaf (F−1
t1,t2

)∗E corresponds to the data (t1 B1, t2 B2,
i, t1t2 j). Composing the change of the framing by Ge1,...,er , we get the
assertion. ��
Proposition 2.9. (1) (E,Φ) ∈ M(r, n) is fixed by the ˜T-action if and only if
E has a decomposition E = I1⊕· · ·⊕ Ir satisfying the following conditions
for α = 1, . . . , r:

a) Iα is an ideal sheaf of 0-dimensional subscheme Zα contained in
C

2 = P2 \ �∞.
b) Under Φ, Iα|�∞ is mapped to the α-th factor O�∞ of O⊕r

�∞ .
c) Iα is fixed by the action of C∗ × C∗, coming from that on P2.
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(2) The fixed point set consists of finitely many points parametrized by
r-tuple (Y1, . . . , Yr) of Young diagrams such that

∑

α |Yα| = n (by a way
explained in the proof ).

(3) The fixed point set in M0(r, n) (more strongly, the fixed point set
with respect to the first two factors T 2 of T r+2) consists of a single point
n[0] ∈ Sn

C
2 ⊂ M0(r, n).

Proof. (1) E ∈ M(r, n) is fixed by the latter T -action if and only if it
decomposes as E = I1⊕· · ·⊕ Ir (Iα ∈ M(1, nα)) such that Iα|�∞ is mapped
to the α-th factor O�∞ of O⊕r

�∞ under Φ. Since the double dual I∨∨α of Iα is
a line bundle with c1(I∨∨α ) = 0, it is the structure sheaf OP2 . Via the natural
inclusion Iα ⊂ I∨∨α = OP2 , Iα is an ideal sheaf of 0-dimensional subscheme
Zα contained in C2. Thus conditions a),b) are met for Iα. If E is fixed also
by the first T 2-action, then the condition c) must be satisfied. The converse
is clear.

(2) By a result of Ellingsrud and Strømme [18] (see [47, §5.2]) that Iα
is fixed if and only if it is generated by monomials xi y j , where we consider
Iα as an ideal of C[x, y], the coordinate ring of C2. Thus Iα corresponds
to a Young diagram Yα by the rule indicated by the Fig. 1. (A monomial
xi−1 y j−1 is placed at (i, j). The ideal Iα is linearly spanned by monomials
outside the Young diagram Yα. Note that our Young diagrams are rotated
90◦ from ones used in [39].)

i

j

x5

x3 y2

xy3

y5

x4 y

Fig. 1. Young diagram and ideal

(3) Let us use the description (2.3). Suppose that the equivalence class
of (B1, B2, i, j) is fixed by the T 2-action. We may assume that (B1, B2, i, j)
has a closed GLn(C)-orbit. Then the equivalence class is fixed if and only if
(t1 B1, t2 B2, i, t1t2 j) lies in the same GLn(C)-orbit. Since (t1 B1, t2 B2, i, t1t2 j)
converges to (0, 0, i, 0) when t1, t2 → 0, (0, 0, i, 0) lies in the closure
of the orbit. But the orbit is closed, so (0, 0, i, 0) must be in the orbit.
But GLn(C) · (0, 0, i, 0) is closed if and only if i = 0. Hence we have
(B1, B2, i, j) = (0, 0, 0, 0). ��
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We denote by �Y an r-tuple of Young diagrams (Y1, . . . , Yr). We write
the number of boxes of Yα by |Yα| and we set | �Y | =∑α |Yα|.

Let T(E,Φ)M(r, n) be the tangent space of M(r, n) at a point (E,Φ).
If (E,Φ) is fixed by the torus action, then T(E,Φ)M(r, n) is a module of
the torus. In order to express the module structure in terms of Young dia-
grams Yα, we introduce the following notation. Let Y = (λ1 ≥ λ2 ≥ . . . )
be a Young diagram, where λi is the length of the ith column. Let Y ′ =
(λ′1 ≥ λ′2 ≥ . . . ) be the transpose of Y . Thus λ′j is the length of the jth row
of Y . Let l(Y ) denote the number of columns of Y , i.e., l(Y ) = λ′1. Let

aY (i, j) = λi − j, a′(i, j) = j − 1

lY (i, j) = λ′j − i, l′(i, j) = i − 1.

Here we set λi = 0 when i > l(Y ). Similarly λ′j = 0 when j > l(Y ′). When
the square s = (i, j) lies in Y , these are called arm-length, arm-colength,
leg-length, leg-colength respectively, and we usually consider in this case.
But our formula below involves these also for squares outside Y . So these
take negative values in general. Note that a′ and l′ does not depend on the
diagram, and we do not write the subscript Y .

If two Young diagrams Yα and Yβ are given, we separate Yα into two
regions ♥Yα and ♠Yα as

♥Yα =
{

(i, j) ∈ Yα | j ≤ l(Y ′β)
}

, ♠Yα =
{

(i, j) ∈ Yα | j > l(Y ′β)
}

.

If l(Y ′α) ≤ l(Y ′β), then ♠Yα = ∅. Exchanging the role of α and β, we divide
Yβ into ♥Yβ and ♠Yβ. Note that either ♠Yα or ♠Yβ is the empty set.

Notation 2.10. We denote by eα (α = 1, . . . , r) the one dimensional
˜T -module given by

˜T � (t1, t2, e1, . . . , er) �→ eα.

Similarly, t1, t2 denote one-dimensional ˜T -modules. Thus the representation
ring R(˜T ) is isomorphic toZ[t±1 , t±2 , e±1 , . . . , e±r ], where e−1

α is the dual of eα .

Theorem 2.11. Let (E,Φ) be a fixed point of ˜T-action corresponding to
�Y = (Y1, . . . , Yr). Then the ˜T-module structure of T(E,Φ)M(r, n) is given by

T(E,Φ)M(r, n) =
r
∑

α,β=1

Nα,β(t1, t2),

where

Nα,β(t1, t2) = eβ e−1
α ×

⎧

⎨

⎩

∑

s∈Yα

(

t
−lYβ

(s)

1 t
aYα (s)+1
2

)

+
∑

t∈Yβ

(

t
lYα (t)+1
1 t

−aYβ
(t)

2

)

⎫

⎬

⎭

.
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Remark 2.12. (1) After the first version of this paper was written, the authors
noticed that this formula already appeared in the context of the wall-crossing
formula for the Donaldson invariants [17, Lemma 6.2]. Their proof does
not use the ADHM description, so different from ours. We will discuss the
relation between Nekrasov’s prepotential and the wall-crossing formula in
a future publication with L. Göttsche.

(2) The following proof was mentioned also in [7].
(3) For the proof of the blowup equation, we only need the relation

between Nα,β(t1, t2) and similar weights on the blowup (Theorem 3.4).
A reader in hurry can safely skip the proof.

Proof of Theorem 2.11. We use the description by linear data for the calcu-
lation, which is very similar to that in [47, 5.8].

Let (B1, B2, i, j) be a datum as above. We consider a complex

Hom(V, V )
σ−→

Hom(V, V )⊕ Hom(V, V )
⊕

Hom(W, V )⊕ Hom(V, W )

τ−→ Hom(V, V ),(2.13)

where σ and τ are defined by

σ(ξ) =
⎛

⎜

⎝

ξB1 − B1ξ
ξB2 − B2ξ

ξi
− jξ

⎞

⎟

⎠
, τ

⎛

⎜

⎝

C1
C2
I
J

⎞

⎟

⎠
= [B1, C2] + [C1, B2] + i J + I j.

This σ is the differential of GL(V )-action and τ is the differential of the
map (B1, B2, i, j) �→ [B1, B2] + ij. One can show that σ is injective and
τ is surjective, and the tangent space of M(r, n) at GL(V ) · (B1, B2, i, j) is
isomorphic to the middle cohomology group of the above complex (cf. [47,
1.9] or [46, 3.10]).

Now suppose GL(V ) · (B1, B2, i, j) is fixed by the ˜T -action. This means
that for any (t1, t2, e) ∈ ˜T there exists an element g(t1, t2, e) ∈ GL(V ) such
that

(

t1 B1, t2 B2, ie−1, t1t2e j
) = g(t1, t2, e)−1 · (B1, B2, i, j).

Moreover, such g(t1, t2, e) is unique since the GL(V )-action on the set of
stable points is free. In particular, it implies that the map (t1, t2, e) �→
g(t1, t2, e) is a group homomorphism. We consider V as a ˜T -module via it.
Also W is a ˜T -module via (t1, t2, e) �→ e ∈ GL(W ).

We can make the complex (2.13) ˜T-equivariant by modifying it as

Hom(V, V )
σ−→

t1 Hom(V, V )⊕ t2 Hom(V, V )
⊕

Hom(W, V )⊕ t1t2 Hom(V, W )

τ−→ t1t2 Hom(V, V ),

(2.14)

where t1, t2 denote the one dimensional ˜T -modules as in Notation 2.10.
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We have a decomposition W =⊕r
α=1 eα as ˜T -modules. From the stabil-

ity condition, it is easy to see that V decomposes as V =⊕ Vαeα, where Vα

is a T 2-module (i.e., T r acts trivially on Vα). Thus Ker τ/ Im σ decomposes
as
⊕

α,β

(

Ker τβα/ Im σβα

)

eβe−1
α where

Hom(Vα, Vβ)
σβα−→

t1 Hom(Vα, Vβ)⊕ t2 Hom(Vα, Vβ)
⊕

Hom(Wα, Vβ)⊕ t1t2 Hom(Vα, Wβ)
τβα−→t1t2 Hom(Vα, Vβ).

(2.15)

It is clear that each summand has the weight eβe−1
α as a latter torus T ,

so we suppress this factor and only consider the C∗ × C∗-module structure
hereafter.

Let us write Yα = (λα,1 ≥ λα,2 ≥ . . . ), Y ′α = (λ′α,1 ≥ λ′α,2 ≥ . . . ). Since
Vα has a basis {xi−1 y j−1} ((i, j) ∈ Yα), we have

Vα =
λα,1
∑

j=1

λ′α, j
∑

i=1

t−i+1
1 t− j+1

2 =
λ′α,1
∑

i=1

λα,i
∑

j=1

t−i+1
1 t− j+1

2 .

Hence we get

(t1 + t2 − 1− t1t2)V ∗α ⊗ Vβ

=
λ′α,1
∑

i=1

λα,i
∑

j ′=1

ti−1
1 t j ′−1

2 (t2 − 1) ×
λβ,1
∑

j=1

λ′β, j
∑

i′=1

t−i′+1
1 (1− t1) t− j+1

2

=
λ′α,1
∑

i=1

λβ,1
∑

j=1

(

t
i−λ′β, j

1 − ti
1

)(

t
− j+λα,i+1
2 − t− j+1

2

)

=
λ′α,1
∑

i=1

λβ,1
∑

j=1

[

t
i−λ′β, j

1 t
− j+λα,i+1
2 − ti

1t− j+1
2 − (ti−λ′β, j

1 − ti
1

)

t− j+1
2

− ti
1

(

t
− j+λα,i+1
2 − t− j+1

2

)]

.

Note that

λ′α,1
∑

i=1

λβ,1
∑

j=1

(

t
i−λ′β, j

1 − ti
1

)

t− j+1
2 =

λβ,1
∑

j=1

λ′β, j
∑

i=1

(

t1−i
1 − t

λ′α,1−i+1
1

)

t− j+1
2

= Vβ −
λβ,1
∑

j=1

λ′β, j
∑

i=1

t
λ′α,1−i+1
1 t− j+1

2 .
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Similarly note that

λ′α,1
∑

i=1

λβ,1
∑

j=1

ti
1

(

t− j+λα,i+1
2 − t− j+1

2

) = t1t2V ∗α −
λ′α,1
∑

i=1

λα,i
∑

j=1

ti
1t
−λβ,1+ j
2 .

Thus we have

Ker τβα/ Im σβα = (t1 + t2 − 1− t1t2)V ∗α ⊗ Vβ + Vβ + t1t2V ∗α

=
λ′α,1
∑

i=1

λβ,1
∑

j=1

(

t
i−λ′β, j

1 t
− j+λα,i+1
2 − ti

1t− j+1
2

)+
λβ,1
∑

j=1

λ′β, j
∑

i=1

t
λ′α,1−i+1
1 t− j+1

2

+
λ′α,1
∑

i=1

λα,i
∑

j=1

ti
1t
−λβ,1+ j
2 .

(2.16)

This is equal to Nα,β(t1, t2), which we want to compute. We decompose it
as Nα,β(t1, t2) = N>0

α,β(t1, t2) + N≤0
α,β(t1, t2), according to the power of t2.

Then

N>0
α,β(t1, t2) =

λ′α,1
∑

i=1

min(λβ,1,λα,i )
∑

j=1

t
i−λ′β, j

1 t
− j+λα,i+1
2 +

λ′α,1
∑

i=1

λα,i
∑

j=λβ,1+1

ti
1t
−λβ,1+ j
2

=
∑

s∈♥Yα

t
−lYβ

(s)

1 t
aYα (s)+1
2 +

∑

s∈♠Yα

tl′(s)+1
1 t

a′(s)−l(Y ′β)+1

2 ,

(2.17)

where the sum
∑λα,i

j=λβ,1+1 is understood as 0 unless λβ,1 < λα,i .

Noticing the symmetry Nα,β(t1, t2) = Nβ,α(t
−1
1 , t−1

2 )t1t2, we get the
following from (2.16):

Nα,β(t1, t2) =
λ′β,1
∑

i=1

λα,1
∑

j=1

(

t
−i+λ′α, j+1

1 t
j−λβ,i

2 − t−i+1
1 t j

2

)+
λα,1
∑

j=1

λ′α, j
∑

i=1

t
−λ′α,1+i

1 t j
2

+
λ′β,1
∑

i=1

λβ,i
∑

j=1

t−i+1
1 tλα,1− j+1

2 .

This implies that

N≤0
α,β(t1, t2) =

λ′β,1
∑

i=1

min(λα,1,λβ,i )
∑

j=1

t
−i+λ′α, j+1

1 t
j−λβ,i

2 +
λ′β,1
∑

i=1

λβ,i
∑

j=λα,1+1

t−i+1
1 t

λα,1− j+1
2

=
∑

t∈♥Yβ

t
lYα (t)+1
1 t

−aYβ
(t)

2 +
∑

t∈♠Yβ

t−l′(t)
1 t

−a′(t)+l(Y ′α)

2 ,

(2.18)
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where the sum
∑λβ,i

j=λα,1+1 is understood as 0 unless λα,1 < λβ,i . Combining
(2.17) with (2.18), we get the assertion. We use −lYβ

(s) = l′(s) + 1 for
s ∈ ♠Yα and re-order the product in s ∈ ♠Yα. ��

3. Moduli spaces on the blowup

Let ̂P2 be the blowup of P2 at [1 : 0 : 0]. Let p : ̂P2 → P
2 denote the

projection. The manifold̂P2 is the closed subvariety of P2 × P1 defined by
{([z0 : z1 : z2], [z : w]

) ∈ P2 × P1
∣

∣z1w = z2z
}

,

where the map p : ̂P2 → P2 is the projection to the first factor. Let us denote
the inverse image of �∞ under̂P2 → P2 also by �∞ for brevity. It is given
by the equation z0 = 0. The complement̂P2 \ �∞ is the blowup̂C2 of C2 at
the origin. Let C denote the exceptional set. It is given by z1 = z2 = 0.

In this section, O denotes the structure sheaf of̂P2, O(C) the line bundle
associated with the divisor C, O(mC) its mth tensor power.

Let ̂M(r, k, n) be the framed moduli space of torsion free sheaves (E,Φ)
on̂P2 with rank r, 〈c1(E), [C]〉 = −k and 〈c2(E)− r−1

2r c1(E)2, [̂P2]〉 = n.
By the same argument as in Proposition 2.1 we have Hom(E, E(−�∞))

= Ext2(E, E(−�∞)) = 0 and ̂M(r, k, n) is a nonsingular variety of dimen-
sion 2nr.

Theorem 3.1. There is a projective morphism π̂ : ̂M(r, k, n)→ M0(r, n−
1
2r k(r − k)) (0 ≤ k < r) defined by

(E,Φ) �→ ((

(p∗E)∨∨,Φ
)

, Supp
(

p∗E∨∨/p∗E
)+ Supp

(

R1 p∗E
))

.

The proof of this result will be given in [49]. In fact, we prove also
the corresponding result for arbitrary projective surfaces. For the above
case with k = 0, we can use King’s result [28] instead. Namely there is
a morphism from the Uhlenbeck (partial) compactification ̂M0(r, 0, n) →
M0(r, n) defined via the ADHM descriptions of both spaces. Then we
compose the morphism ̂M(r, 0, n) → ̂M0(r, 0, n). This morphism can be
defined via a modification of King’s description as in the case of C2.

We use this result to prove the vanishing result (Proposition 6.11), which
is about the case k = 0, and we can avoid its usage for the definition of the
partition function ̂Z on the blowup. In this sense, this paper does not rely
on [49].

Let us define an action of the (r+2)-dimensional torus ˜T = C∗×C∗×T
on ̂M(r, k, n) by modifying the action on M(r, n) as follows. For (t1, t2) ∈
C
∗ × C∗, let F ′t1,t2 be an automorphism of̂P2 defined by

F ′t1,t2([z0 : z1 : z2], [z : w]) = ([z0 : t1z1 : t2z2], [t1z : t2w]).
Then we define the action by replacing Ft1,t2 by F ′t1,t2 in (2.7). The action of
the latter T is exactly the same as before. The morphism π̂ is equivariant.
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Note that the fixed point set of C∗ × C∗ in ̂C2 = ̂P2 \ �∞ consists of
two points ([1 : 0 : 0], [1 : 0]), ([1 : 0 : 0], [0 : 1]). Let us denote them p1
and p2.

Since C is invariant under the C∗ × C∗-action, the corresponding line
bundle O(C) is an equivariant line bundle. The section z1/z = z2/w is
equivariant.

Proposition 3.2. (1) (E,Φ) ∈ ̂M(r, k, n) is fixed by the ˜T-action if and
only if E has a decomposition E = I1(k1C)⊕ · · · ⊕ Ir(krC) satisfying the
following conditions for α = 1, . . . , r:

a) Iα(kαC) is the tensor product Iα ⊗ O(kαC), where kα ∈ Z and
Iα is an ideal sheaf of 0-dimensional subscheme Zα contained in
̂C

2 =̂P2 \ �∞.
b) Under Φ, Iα(kαC)|�∞ is mapped to the α-th factor O�∞ of O⊕r

�∞ .

c) Iα is fixed by the action of C∗ × C∗, coming from that on̂P2.

(2) The fixed point set consists of finitely many points parametrized by
r-tuples ((k1, Y 1

1 , Y 2
1 ), . . . , (kr, Y 1

r , Y 2
r )), where kα ∈ Z and Y 1

α , Y 2
α are

Young diagrams such that

∑

α

kα = k,
∑

α

(∣

∣Y 1
α

∣

∣+ ∣∣Y 2
α

∣

∣

)+ 1

2r

∑

α<β

|kα − kβ|2 = n(3.3)

(by a way explained in the proof ).

Proof. The proof is almost the same as that of Proposition 2.9.
E ∈ ̂M(r, k, n) is fixed by the latter T r -action if and only if it decomposes

as E = E1⊕· · ·⊕ Er (Eα ∈ ̂M(1, kα, nα)) such that Eα|�∞ is mapped to the
α-th factor O�∞ of O⊕r

�∞ under Φ. Since the double dual E∨∨α is a line bundle
which is trivial at �∞, it is equal to O(kαC) for some kα ∈ Z. Thus Eα is
equal to Iα(kαC) = Iα ⊗O(kαC) for some ideal sheaf Iα of 0-dimensional
subscheme Zα in ̂C2.

If E is fixed also by the first T 2-ation, then Iα (and Zα) is fixed. The
support of Zα must be contained in the fixed point set in ̂C2, i.e., {p1, p2}.
Thus Zα is a union of Z1

α and Z2
α, subschemes supported at p1 and p2

respectively. If we take a coordinate system (x, y) = (z1/z0, w/z) (resp.
= (z/w, z2/z0)) around p1 (resp. p2), then Z1

α (resp. Z2
α) is generated by

monomials xi y j . Then Z1
α (resp. Z2

α) corresponds to a Young diagram Y 1
α

(resp. Y 2
α) as before. ��

We denote by �k (resp. �Y i (i = 1, 2)) for the r-tuple (k1, . . . , kr) (resp.
(Y i

1, . . . , Y i
r )) as before. Thus the fixed point corresponds to (�k, �Y 1, �Y 2).

As in Theorem 2.11, the tangent space of ̂M(r, k, n) at a fixed point
(E,Φ) is a ˜T -module.
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Theorem 3.4. Let (E,Φ) be a fixed point of ˜T-action corresponding to
(�k, �Y 1, �Y 2). Then the ˜T-module structure of T(E,Φ)

̂M(r, k, n) is given by

T(E,Φ)
̂M(r, k, n)

=
r
∑

α,β=1

(

Lα,β(t1, t2)+ t
kβ−kα

1 M1
α,β(t1, t2)+ t

kβ−kα

2 M2
α,β(t1, t2)

)

,

where

Lα,β(t1, t2) = eβ e−1
α ×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

i, j≥0
i+ j≤kα−kβ−1

t−i
1 t− j

2 if kα > kβ,

∑

i, j≥0
i+ j≤kβ−kα−2

ti+1
1 t j+1

2 if kα + 1 < kβ,

0 otherwise,

and M1
α,β(t1, t2) (resp. M2

α,β(t1, t2)) is equal to Nα,β(t1, t2/t1) (resp.
Nα,β(t1/t2, t2)), with (Yα, Yβ) is replaced by (Y 1

α, Y 1
β) (resp. (Y 2

α, Y 2
β)).

Proof. According to the decomposition E = I1(k1C)⊕ · · · ⊕ Ir(krC), the
tangent space T(E,Φ)

̂M(r, k, n) = Ext1(E, E(−�∞)) is decomposed as

Ext1(E, E(−�∞)) =
⊕

α,β

Ext1(Iα(kαC), Iβ(kβC − �∞)).

The factor Ext1(Iα(kαC), Iβ(kβC − �∞)) has weight eβe−1
α as a T -module.

Thus our remaining task is to describe each factor as a T 2-module. We
suppress eβe−1

α hereafter.
Let Ext∗ denotes the alternating sum

∑

i(−1)i Exti considered as an
element of the representation ring. Then Ext∗ defines a homomorphism
from the equivariant K -group to the representation ring. By Proposition 2.1
we have Ext∗(Iα(kαC), Iβ(kβC− �∞)) = −Ext1(Iα(kαC), Iβ(kβC− �∞)).
Using the exact sequence 0→ Iα→ O→ OZα

→ 0, we have

Ext∗(Iα(kαC), Iβ(kβC − �∞))

= Ext∗(O(kαC),O(kβC − �∞))− Ext∗(O(kαC),OZβ
(kβC − �∞))

− Ext∗(OZα
(kαC),O(kβC − �∞))

+ Ext∗(OZα
(kαC),OZβ

(kβC − �∞)).

(3.5)

Let us first consider the term Ext∗(O(kαC),O(kβC − �∞)) =
−Ext1(O(kαC),O(kβC − �∞)) = −H1(O((kβ − kα)C − �∞)). We show
that this is equal to −Lα,β.

Set n = kα − kβ. If n = 0, we have H1(̂P2,O(−�∞)) = 0 by Proposi-
tion 2.1. Thus we have the expression Lα,β in this case.
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Next suppose n > 0. Consider the cohomology long exact sequence
associated with an exact sequence 0 → O(−nC) → O((−n + 1)C) →
OC((−n + 1)C) → 0. Note that this is equivariant under the C∗ × C∗-
action. Since C is a projective line P1 with self-intersection (−1), we have
H1(C,OC((−n + 1)C)) = H1(P1,OP1(n − 1)) = 0. Thus we have

0→ H0
(

P
1,OP1(n − 1)

)→ H1
(

̂P
2,O(−nC − �∞)

)

→ H1
(

̂P
2,O((−n + 1)C − �∞)

)→ 0.

This is an exact sequence in C
∗ × C∗-modules. Starting with

H1(̂P2,O(−�∞)) = 0, we get

H1(
̂P

2,O(−nC − �∞)
) =

n−1
⊕

d=0

H0(
P

1,OP1(d)
)

by induction. Since H0(P1,OP1(d)) is the space of homogeneous polyno-
mials in z, w of degree d, it is equal to

∑d
i=0 t−i

1 t−d+i
2 in the representation

ring of T 2. Thus we have the expression Lα,β in this case.
Finally consider the case n < 0. The proof is almost the same as that for

the case n > 0. We use 0→O((−n− 1)C)→O(−nC)→OC(−nC)→ 0
to get

0→ H1
(

̂P
2,O((−n − 1)C − �∞)

)→ H1
(

̂P
2,O(−nC − �∞)

)

→ H1
(

P
1,OP1(n)

)→ 0,

where we have used H0(P1,OP1(n))= 0. Starting with H1(̂P2,O((−n−1)C
− �∞)) = 0 for n = −1, we get H1(̂P2,O(−nC − �∞)) =
⊕−n

d=1 H1(P1,OP1(−d)) by induction. The canonical bundle KP1 of P1 is
isomorphic to OP1(−2). But this isomorphism is not equivariant, and the
actual formula is KP1 ∼= t−1

1 t−1
2 OP1(−2). Therefore the Serre duality says

H1(P1,OP1(−d)) is the dual of t−1
1 t−1

2 H0(P1,OP1(d− 2)). Thus we get the
assertion also in this case.

Now we turn to the remaining three terms in (3.5). We have

−Ext∗(O(kαC),OZβ
(kβC − �∞))− Ext∗(OZα

(kαC),O(kβC − �∞))

+Ext∗(OZα
(kαC),OZβ

(kβC − �∞))

=−Ext∗(O,OZβ
((kβ − kα)C − �∞))− Ext∗(OZα

((kα − kβ)C),O(−�∞))

+Ext∗(OZα
,OZβ

((kβ − kα)C − �∞)).

(3.6)

As in the proof of Proposition 3.2, we have decomposition Zα = Z1
α∪Z2

α

according to the support p1, p2. Hence each of the remaining terms in (3.6)
is the direct sum of the corresponding terms for Z1

α, Z1
β and Z2

α, Z2
β . (A mixed

term Ext∗(OZ1
α
(kαC),OZ2

β
(kβC − �∞)) is obviously zero.) We study each

summand separately.



332 H. Nakajima, K. Yoshioka

First consider terms for Z1
α, Z1

β . We take a coordinate system (x, y) =
(z1/z0, w/z) as in the proof of Proposition 3.2. Since the divisor C is given by
x = 0, the multiplication by xm induces an isomorphism OZ1

α
(mC) ∼= OZ1

α

of sheaves for m ∈ Z. It becomes an isomorphism of equivariant sheaves
if we twist it as OZ1

α
(mC) ∼= tm

1 OZ1
α
. Hence the summand of (3.6) for p1 is

equal to

t
kβ−kα

1

(− Ext∗(O,OZ1
β
(−�∞))− Ext∗(OZ1

α
,O(−�∞))

+ Ext∗(OZ1
α
,OZ1

β
(−�∞))

)

.
(3.7)

Since Z1
α is supported at the single point p1, we can consider it as a sub-

scheme of P2 supported at the origin [1 : 0 : 0], where the T 2-action on P2

is given by [z0 : z1 : z2] �→ [z0 : t1z1 : t2/t1z2]. Let I 1
α be the corresponding

ideal sheaves of OP2 . Using the 0→ I 1
α → OP2 → OZ1

α
→ 0, we find that

(3.7) is equal to

t
kβ−kα

1

(

Ext∗
(

I 1
α, I 1

β

)− Ext∗(OP2,OP2(−�∞))
)

.

The second term Ext∗(OP2,OP2(−�∞)) is zero. Thus we can use the formula
in Theorem 2.11 after replacing (t1, t2) by (t1, t2/t1), and get the expression
M1

α,β(t1, t2) in the assertion.
The terms for Z2

α, Z2
β can be calculated in a similar way. We get

M2
α,β(t1, t2). ��
For a future reference, we record the formula of the character:

Proposition 3.8.

ch H1(̂P2,O(−kC − �∞)) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

i, j≥0
i+ j≤k−1

t−i
1 t− j

2 if k > 0,

∑

i, j≥0
i+ j≤−k−2

ti+1
1 t j+1

2 if k < −1,

0 if k = 0 or −1.

4. Sums over Young tableaux and Hilbert series

Although our main concern is about equivariant homology groups of moduli
spaces, equivariant K -groups are more natural for an explanation of meaning
of Nekrasov’s partition function.

Let K˜T (M(r, n)) be the Grothendieck group of ˜T = T r+2-equivariant
coherent sheaves on M(r, n) and similarly for K˜T (̂M(r, k, n)),
K˜T (M0(r, n)). These are modules over the representation ring R(˜T ) of
the torus ˜T . As in 2.10, we identify it with the Laurent polynomial ring
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Z[t±1 , t±2 , e±1 . . . , e±r ]. Since M(r, n) and ̂M(r, k, n) are nonsingular,

K˜T (M(r, n)), K˜T (̂M(r, k, n)) are isomorphic to the Grothendieck groups of
˜T -equivariant locally free sheaves. In particular, they have the ring structures
given by tensor products. For an equivariant proper morphism f between
˜T -varieties, we have induced homomorphism f∗ between the Grothen-
dieck groups given by the alternating sum of higher direct image sheaves
∑

i(−1)i Ri f∗. In particular, we have

π∗ : K
˜T (M(r, n))→ K

˜T (M0(r, n)),

π̂∗ : K
˜T (̂M(r, k, n))→ K

˜T (M0(r, n)).

Let R = Q(t1, t2, e1, . . . , em) be the quotient field of R(˜T ). Let
ι : M(r, n)

˜T → M(r, n) be the inclusion of the ˜T -fixed point set. By the
localization theorem for the K -theory due to Thomason [54] (a prototype
of the localization theorem was in [3]), it is known that the homomorphism
ι∗ is an isomorphism after the localization:

ι∗ : K
˜T (M(r, n)

˜T )⊗R(˜T ) R
∼=−→ K

˜T (M(r, n))⊗R(˜T) R.

Since M(r, n)
˜T consists of finitely many points { �Y}, and K˜T of the point

is isomorphic to the representation ring, the left hand side is the direct
sum #{ �Y }-copies of R. Similarly, K˜T (̂M(r, k, n)) ⊗R(˜T ) R is isomorphic

to #{(�k, �Y 1, �Y 2)}-copies of R. On the other hand, M0(r, n)
˜T consists of

a single point {0}, hence K˜T (M0(r, n))⊗R(˜T) R ∼= R.
The inverse of ι∗ can be explicitly given by the following formula:

ι−1
∗ (•) =

⊕

�Y

ι∗�Y (•)
∧

−1T ∗�Y M(r, n)
,

where T ∗�Y M(r, n) is the cotangent bundle of M(r, n) at a fixed point of �Y
considered as a ˜T -module,

∧

−1 is the alternating sum of exterior pow-
ers, and ι∗�Y is the pull-back homomorphism with respect to the inclusion
ι �Y : { �Y } → M(r, n). Here the pull-back homomorphism is defined via the
isomorphism of K˜T (M(r, n)) and the Grothendieck group of ˜T -equivariant
locally free sheaves.

If M(r, n) would be compact, we have a pushforward homomorphism
p∗ : K˜T (M(r, n)) → R(˜T ) given by p : M(r, n) → {pt} and it can be
computed by the Bott’s formula:

p∗(•) =
∑

�Y

ι∗�Y (•)
∧

−1T ∗�Y M(r, n)
.
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However M(r, n) is noncompact, and p∗ is not defined. In fact, cohomology
groups Hi(M(r, n), •) may be infinite dimensional. But the right hand side
makes sense as an element in R. In fact, it computes the alternating sum of
Hilbert series of cohomology groups:

Proposition 4.1. Let E be a ˜T-equivariant coherent sheaf on M(r, n). Then
we have

2nr
∑

i=0

(−1)i ch Hi(M(r, n), E) =
∑

�Y

ι∗�Y E
∧

−1T ∗�Y M(r, n)
,

where ch denotes the Hilbert series.

Let us recall the definition of the Hilbert series. (See [9, §6.6] and the
reference therein for more detailed account.) Let V be a representation of the
torus ˜T . Let V = ⊕ Vµ (µ ∈ X∗(˜T )) be its weight space decomposition,
i.e.,

Vµ = {v ∈ V | t · v = µ(t)v for t ∈ ˜T }.
Here X∗(˜T ) denotes the group of characters of ˜T . When the dimensions of
weight spaces are finite dimensional, we define the character of V by

ch V =
∑

(dim Vµ)eµ.

We take coordinates (t1, t2, e1, . . . , er) ∈ ˜T as before, and we consider
the right hand side as an element in the Laurent power series in t1, t2,
e1, . . . , er .

We want to apply this definition to the cohomology groups of a ˜T -
equivariant coherent sheaf on M(r, n). Since M(r, n) is not projective
and cohomology groups are not finite-dimensional in general, we first
need to show that weight spaces are finite-dimensional and the above
definition makes sense. For this purpose, we consider a ˜T -equivariant co-
herent sheaf E on the affine algebraic variety M0(r, n). Then the space
M = H0(M0(r, n), E) of global sections of E is identified with a finitely
generated module over the coordinate ring of M0(r, n). (And the higher
cohomology groups vanishes.) Let M =⊕Mµ (µ ∈ X∗(˜T )) be the weight
space decomposition as above.

Lemma 4.2. A weight space Mµ is finite-dimensional as a vector space
over C.

Proof. By [37], the coordinate ring is generated by the following two types
of elements

(1) tr(BαN BαN−1 · · · Bα1 : V → V ),
(2) 〈χ, jBαN BαN−1 · · · Bα1i〉,
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where α1, . . . , αN is 1 or 2 and χ is a linear form on End(W ). Any of these
elements is contained in a weight space with a nonzero weight. From this
we get our assertion. ��

Now the Hilbert series of E (or M) is defined by

ch E ≡ ch M =
∑

µ

(dim Mµ)eµ.

By a well-known argument on Hilbert series, one can show that ch E is
a rational function, i.e., an element in R.

Now we can return to the situation in Proposition 4.1. Let E be
a ˜T -equivariant coherent sheaf on M(r, n). Since π : M(r, n) → M0(r, n)
is a projective morphism, the higher direct image sheaves Riπ∗E is an
equivariant coherent sheaf on M0(r, n). The space of its global sections is
the higher cohomology group Hi(M(r, n), E). Thus we can consider the
associated Hilbert series

ch Riπ∗E ≡ ch Hi(M(r, n), E).

Now we can finish the proof of Proposition 4.1 thanks to a general
result of Thomason [54]. The argument appears in [24] for r = 1, and his
argument can be applied to our situation, once the above property of the
coordinate ring of M0(r, n) is established.

The proof follows from the commutativity of the following square

K˜T (M(r, n))⊗R(˜T ) R
∼=−−−→

(ι∗)−1

⊕

�Y R

π∗
⏐

⏐

,

⏐

⏐

,

∑

�Y

K˜T (M0(r, n))⊗R(˜T ) R
∼=−−−→

(ι0∗)−1
R

and the observation (ι0∗)−1 = ch, which is a consequence of a trivial identity
ch ◦ι0∗ = id. Here ι0 is the inclusion of the unique fixed point of M0(r, n).

Let us give two examples. Let O be the structure sheaf of M(2, 1). We
directly check that Proposition 4.1 holds for E = O. We have two fixed
points �Y = ([1], [∅]), ([∅], [1]) in M(2, 1). The localization gives us

1

(1− t1)(1− t2)(1− e1
e2

)(1− t1t2
e2
e1

)
+ 1

(1− t1)(1− t2)(1− e2
e1

)(1− t1t2
e1
e2

)

= 1+ t1t2
(1− t1)(1− t2)(1− t1t2

e1
e2

)(1− t1t2
e2
e1

)
.

(4.3)

On the other hand, we have M(2, 1) ∼= C2 × T ∗P1. The C2-component is
given by (B1, B2) and T ∗P1-component is given by (Ker i, ji), where Ker i
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is a one-dimensional subspace in the two-dimensional space W , and ξ = ji
is an endomorphism of W satisfying ξ(Ker i) = 0, Im ξ ⊂ Ker i. The higher
cohomology groups Hi(M(2, 1),O) = 0 (i > 0) vanish, and the global
sections H0(M(2, 1),O) is identified with

C[x, y] ⊗ (C[s, t, u]/st = u2),

where x = B1, y = B2, s = j1i2, t = j2i1, u = j1i1 = − j2i2 with
i = [ i1 i2 ], j = [ j1

j2

]

. Since weights of x, y, s, t, u are t1, t2, t1t2e1/e2,
t1t2e2/e1, t1t2 respectively, the character of H0(M(2, 1),O) is also given
by (4.3).

Remark 4.4. We have used the following convention on the action on the
coordinate ring. Let Fg : M(r, n) → M(r, n) be the isomorphism given
an element g ∈ ˜T . It induces a map F∗g given by f �→ f ◦ Fg on the
coordinate ring. The same applies to Hi(M(r, n), E) for a ˜T -equivariant
sheaf E. Accordingly when we apply Proposition 4.1, we make ˜T acts on
the cotangent space T ∗�Y M(r, n) by d(Fg)

∗
�Y .

Next consider the rank 1 case. The moduli space M(1, n) is nothing but
the Hilbert scheme (C2)[n] of n points inC2. We apply Proposition 4.1 to the
structure sheaf O of M(1, n). The fixed points are parametrized by Young
diagrams Y of size n as Proposition 2.9. The weights of tangent spaces at
fixed points is given by the formula 2.11. In particular, the localization gives
us

∑

|Y |=n

1
∏

s∈Y

(

1− t−l(s)
1 t1+a(s)

2

)(

1− t1+l(s)
1 t−a(s)

2

) .

On the other hand, we have H0((C2)[n],O) = H0(Sn(C2),O) =
C[x1, y1, . . . , xn, yn]Sn , where Sn acts by permuting (x1, y1), . . . , (xn, yn).
Higher cohomology groups Hi((C2)[n],O) (i > 0) vanish since Sn

C
2 is a ra-

tional singularity. NowC[x1, y1, . . . , xn, yn]Sn is isomorphic to Sn(C[x, y]),
and the generating function of the Hilbert series is given by

∞
∑

n=0

q
n ch H0(Sn(C2),O) =

∏

p1,p2≥0

1

1− t p1
1 t p2

2 q

= exp

⎛

⎝−
∑

p1,p2≥0

log
(

1− t p1
1 t p2

2 q
)

⎞

⎠

= exp

⎛

⎝

∑

p1,p2≥0

∞
∑

r=1

trp1
1 trp2

2 q
r

r

⎞

⎠ = exp

( ∞
∑

r=1

qr

(

1− tr
1

)(

1− tr
2

)

r

)

.
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Thus we get

∑

Y

q|Y |
∏

s∈Y

(

1− t−l(s)
1 t1+a(s)

2

) (

1− t1+l(s)
1 t−a(s)

2

)

= exp

( ∞
∑

r=1

qr

(

1− tr
1

) (

1− tr
2

)

r

)

.

(4.5)

A purely combinatorial proof of this identity can be found in [39, VI].
A different geometric proof can be found in [24, Lemma 3.2]. It also uses
geometry of Hilbert schemes.

Let H˜T∗ (M(r, n)) be the ˜T -equivariant Borel-Moore homology group
of M(r, n) with rational coefficients. We define it as in [36, §2.8], but we
assign the degree as in [15] so that the fundamental class [M(r, n)] has
degree 2 dim M(r, n) = 4rn.

Let us recall the definition briefly. We have a finite dimensional approx-
imation of the classifying space E˜T → B˜T , i.e., for any n, there exists
a smooth irreducible variety U with ˜T -action such that

a) The quotient U → U/˜T exists and is a principal ˜T -bundle.
b) Hi(U) = 0 for i = 1, . . . , n.

We then define

H
˜T
n (X) = Hn−2 dim˜T+2 dimU(X ×

˜T U),

where H∗( ) in the right hand side is the Borel-Moore homology group (see
e.g., [21, §B.2]). Note that U is smooth, and dim U makes sense. One can
show that this is independent of the choice of U , using the double fibration
argument.

The equivariant homology group is a module over the usual equivariant
cohomology of a point H ∗̃

T
(pt). The latter is the symmetric algebra of the

dual of the Lie algebra of ˜T , which we denote by S(˜T ). We choose its
generators ε1, ε2, a1, . . . , ar corresponding to t1, t2, e1, . . . , er respectively.
We use the vector notation �a for (a1, . . . , ar). We have H˜T

k (X) = 0 if
k > 2 dim X, but H˜T

k (X) may be nonzero for k < 0.
The results given in this section have counterparts for equivariant ho-

mology groups. For example, we have a commutative diagram

H˜T∗ (M(r, n))⊗S(˜T ) S
∼=−−−→

(ι∗)−1

⊕

�Y S

π∗
⏐

⏐

,

⏐

⏐

,

∑

�Y•

H˜T∗ (M0(r, n))⊗S(˜T) S
∼=−−−→

(ι0∗)−1
S,
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where S is the quotient field of S(˜T ). The proof of the localization theorem
for equivariant Borel-Moore homology can be found, for example, in [38,
4.4]. We have

∑

�Y

ι∗�Yα

e(T �Y )
= (ι0∗)−1π∗(α).

Further more, the right hand side has an interpretation as the equivariant
Hilbert polynomial of E if α is the Chern character of a vector bundle E.
For example, we have the following for E = O:

(ι0∗)−1π∗[M(r, n)] =
∑

�Y

1

e(T �Y )
= lim

t→0

∑

�Y

t2nr

∧

−1T ∗�Y

∣

∣

∣

∣

∣

∣t1=e−tε1 ,t2=e−tε2

eα=e−taα

= lim
t→0

t2nr
2nr
∑

i=0

(−1)i ch Hi(M(r, n),O)

∣

∣

∣

∣

∣t1=e−tε1 ,t2=e−tε2

eα=e−taα

.

(4.6)

This is our interpretation of Nekrasov’s partition function mentioned in the
introduction. For example, for r = 1, we can derive the following from (4.5):

∑

Y

q|Y |
∏

s∈Y

{−lY (s)ε1 + (1+ aY (s))ε2} {(1+ lY (s))ε1 − aY (s)ε2}

= exp
(

q

ε1ε2

)

.

(4.7)

As in the proof of (4.5), we can directly obtain the right hand side as follows.
We use localization on M0(1, n) = Sn(C2), instead of M(1, n) = (C2)[n].
The point is that Sn(C2) is an orbifold, and hence has an explicit formula
of (ι0∗)−1. This formula justifies the following definition of ‘generating
spaces’:

exp(qC2) =
∞
∑

n=0

q
n Sn(C2), or qC2 = log

( ∞
∑

n=0

q
n Sn(C2)

)

.

5. Rank 1 case

This section is a detour. We study Nekrasov’s partition function and its
analog for blowup in the rank 1 case.

The partition function for rank 1 is

Z(ε1, ε2; q) =
∞
∑

n=0

qn Zn(ε1, ε2) =
∞
∑

n=0

qn(ι0∗)−1π∗[Hilbn
C

2],
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where π : Hilbn
C

2 → Sn
C

2 is the Hilbert-Chow morphism and ι0 is the
inclusion of the unique fixed point n[0] in Sn

C
2. By Theorem 2.11 this is

equal to (4.7).
Next we consider the Hilbert scheme Hilbn

̂C
2 of n points on the

blowup ̂C2. The fixed points with respect to the C∗ × C∗-action are par-
ametrized by pairs of Young diagrams (Y 1, Y 2) by Proposition 3.2.

Let µ(C) ∈ H2
C∗×C∗(Hilbn

̂C
2) be the class attached to the exceptional

divisor C. (See the next section for the definition.) We then define the
partition function on the blowup by

̂Z(ε1, ε2; t; q) =
∞
∑

n=0

q
n
∞
∑

d=0

td

d!̂Zn,d(ε1, ε2)

=
∞
∑

n=0

q
n
∞
∑

d=0

td

d! (ι0∗)
−1π̂∗

(

µ(C)d ∩ [Hilbn
̂C

2]) ,

where π̂ is the composite of the Hilbert-Chow morphism Hilbn
̂C

2 → Sn
̂C

2

and the morphism Sn
̂C

2 → Sn
C

2.
By the Lemma 6.8 below, we have

ι∗
(Y1,Y2)

µ(C) = |Y 1|ε1 + |Y 2|ε2.

Together with Theorem 3.4 we have

∞
∑

d=0

td

d!
∑

(Y1,Y2)

(|Y 1|ε1 + |Y 2|ε2
)d

q|Y1|+|Y2|

nY1(ε1, ε2 − ε1) nY2(ε1 − ε2, ε2)
,

where nY (ε1, ε2) is the denominator of (4.7). This is equal to

∑

(Y1,Y2)

(qetε1)|Y1| (qetε2)|Y2|

nY1(ε1, ε2 − ε1) nY2(ε1 − ε2, ε2)

= Z
(

ε1, ε2 − ε1; qetε1
)

Z
(

ε1 − ε2, ε2; qetε2
)

= exp
(

qetε1

ε1(ε2 − ε1)
+ qetε2

(ε1 − ε2)ε2

)

.

We divide this by Z(ε1, ε2; q) and take the limit ε1, ε2 → 0:

lim
ε1,ε2→0

̂Z(ε1, ε2; t; q)
Z(ε1, ε2; q) = exp

(

−qt
2

2

)

.

This is a prototype of the blowup formula which will be discussed in Sect. 8.
It should be noticed that this is equal to the generating function of
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∫

Hilbn
̂X µ(C)2n for arbitrary smooth surface X. The minus sign comes from

the self-intersection number of C: [C]2 = −1. This can be shown roughly
as follows: first show that µ(C) is a pull-back of a class in Sn

̂X via the
Hilbert-Chow morphism Hilbn

̂X → Sn
̂X. Then the intersection numbers

are those on ̂Xn divided by n!. The class µ(C) corresponds to
∑

i p∗i [C],
where pi : ̂Xn → ̂X is the ith projection.

6. Instanton counting

We define the partition function as the following generating function:

Z(ε1, ε2, �a; q) =
∞
∑

n=0

qn Zn(ε1, ε2, �a ) =
∞
∑

n=0

qn(ι0∗)−1π∗[M(r, n)],(6.1)

where [M(r, n)] denote the fundamental class of H˜T∗ (M(r, n)). As we ex-
plained, this has an expression in terms of Hilbert series (4.6). By (the equiv-
ariant homology analog of) Proposition 4.1 together with Theorem 2.11,
we have

Z(ε1, ε2, �a; q) =
∑

�Y

q| �Y |

e(T �Y )
=
∑

�Y

q| �Y |
∏

α,β

n �Yα,β(ε1, ε2, �a )
,(6.2)

where

n �Yα,β(ε1, ε2, �a ) =
∏

s∈Yα

(−lYβ
(s)ε1 + (aYα

(s)+ 1)ε2 + aβ − aα

)

×
∏

t∈Yβ

(

(lYα
(t)+ 1)ε1 − aYβ

(t)ε2 + aβ − aα

)

.

This is nothing but Nekrasov’s definition of the partition function [50, (1.6),
(3.20)]. We set

Finst(ε1, ε2, �a; q) =
∞
∑

n=1

qn Finst
n (ε1, ε2, �a) = ε1ε2 log Z(ε1, ε2, �a; q).

We give elementary properties of the partition function.

Lemma 6.3. (1) Z(ε2, ε1, �a; q) = Z(ε1, ε2, �a; q).
(2) Z(ε1, ε2, w · �a; q) = Z(ε1, ε2, �a; q) where w is an element of the sym-

metric group of r letters.
(3) Z(−ε1,−ε2,−�a; q) = Z(ε1, ε2, �a; q).
Proof. (1) The exchange of ε1 and ε2 is compensated with the exchange of

the Young diagram Yα with its conjugate Y ′α.
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(2) The exchange of aα and aβ is compensated with the exchange of Yα

and Yβ.

(3) Clear from n �Yα,β(−ε1,−ε2,−�a) = (−1)|Yα |+|Yβ |n �Yα,β(ε1, ε2, �a ). ��
We now consider the moduli spaces on the blowup. By Theorem 3.4 the

Euler class of the tangent space of ̂M(r, k, n) at a fixed point (�k, �Y 1, �Y 2) is
given by

∏

α,β

l�kα,β(ε1, ε2, �a ) n �Y
1

α,β(ε1, ε2 − ε1, �a + ε1�k) n �Y
2

α,β(ε1 − ε2, ε2, �a + ε2�k),
(6.4)

where

l�kα,β(ε1, ε2, �a )

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∏

i, j≥0
i+ j≤kα−kβ−1

(−iε1 − jε2 + aβ − aα) if kα > kβ,

∏

i, j≥0
i+ j≤kβ−kα−2

(

(i + 1)ε1 + ( j + 1)ε2 + aβ − aα

)

if kα + 1 < kβ,

1 otherwise.

Note that l�kα,β(ε1, ε2, �a) is independent of �Y 1, �Y 2.
From now we use terminology for root systems of Lie algebras as in

Sect. 1, i.e., αi ∈ h∗, α∨i ∈ h, �a =
∑

aiα∨i , etc. Recall that Q is the
coroot lattice {(k1, . . . , kr) ∈ Zr | ∑α kα = 0}. In order to treat the
case k = ∑α kα �= 0 (this means that the gauge group is PU(n) rather
than SU(n)), we consider a normalization �l = (k1 − k

r , . . . , kr − k
r ) as an

element of the coweight lattice P = {�l = (l1, . . . , lr) ∈ Qr | ∑α lα = 0,

∃k ∈ Z ∀α lα ≡ − k
r mod Z}. There exists a homomorphism P → Z/rZ by

taking the fractional part of lα. It can be identified with the natural quotient
homomorphism P→ P/Q. We denote it by �l �→ {�l}. Hereafter we identify
�l with �k and denote both by �k. We write �k =∑i kiα∨i in either case k = 0,
�= 0. But ki may be rational in the latter case. Let ( , ) be the standard inner
product on h. The Killing form BSU(r) of SU(r) satisfies BSU(r) = 2r( , ).
The following formulas are useful later:

1

2r

∑

α,β

(kα − kβ)(aα − aβ) = (�k, �a) =
∑

ij

Cija
ik j,

1

2r

∑

α,β

(kα − kβ)
2 = (�k, �k) =

∑

i, j

Cijk
ik j,

∑

α<β

kα − kβ

2
= 〈�k, ρ〉 =

∑

i

ki .

(6.5)
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Here Cij is the Cartan matrix, and ρ is the half of the sum of positive roots,
as usual.

For a root α ∈ ∆, we define

l�kα(ε1, ε2, �a)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∏

i, j≥0
i+ j≤−〈�k,α〉−1

(−iε1 − jε2 + 〈 �a, α〉) if 〈�k, α〉 < 0,

∏

i, j≥0
i+ j≤〈�k,α〉−2

(

(i + 1)ε1 + ( j + 1)ε2 + 〈 �a, α〉) if 〈�k, α〉 > 1,

1 otherwise,

(6.6)

where l�kα,β in the previous notation corresponds to l�keβ,α
.

The following will be useful later:

Lemma 6.7. (1) l�kα(ε1, ε2, �a) = l�kα(ε2, ε1, �a).

(2) l�kα(ε1, ε2, �a) = (−1)〈�k,α〉(〈�k,α〉−1)/2 l−�k−α(−ε1,−ε2, �a).

(3) l�kα(ε1, ε2, �a) is regular at (ε1, ε2) = 0 and

l�kα(0, 0, �a ) = 〈 �a, α〉〈�k,α〉(〈�k,α〉−1)/2

Let E be a universal sheaf on̂P2 × ̂M(r, k, n). We define an equivariant
cohomology class µ(C) ∈ H2

˜T
(̂M(r, k, n)) by

(

c2(E )− r − 1

2r
c1(E )2

)

/[C],

where / denotes the slant product / : Hd
˜T
(̂P2 × ̂M(r, k, n)) ⊗ H˜T

i (̂P2) →
Hd−i
˜T

(̂M(r, k, n)). Note that we have c2(E )− r−1
2r c1(E )2 = 1

2r c2(End E ) on
the open locus ̂Mreg(r, k, n).

Let ι(�k, �Y1, �Y2) be the inclusion of the fixed point (�k, �Y 1, �Y 2) into ̂M(r, k, n).

Lemma 6.8.

ι∗
(�k, �Y1, �Y2)

µ(C) = | �Y 1| ε1 + | �Y 2| ε2 + (�k, �a)+ (�k, �k)
2

(ε1 + ε2).

Proof. Let E be a sheaf corresponding to the fixed point (�k, �Y 1, �Y 2). We
have

c2(E)− r − 1

2r
c1(E)2 = | �Y 1| [p1] + | �Y 2| [p2] + c2(E∨∨)− r − 1

2r
c1(E∨∨)2.
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The double dual E∨∨ is a direct sum
⊕

α OX(kαC)eα. Therefore

c2(E∨∨)− r − 1

2r
c1(E∨∨)2 = 1

2r
c2(End E∨∨)

= − 1

2r

∑

α<β

{

(kα[C] + aα)− (kβ[C] + aβ)
}2

.

Substituting
∫

̂P 2
[p1][C] = ε1,

∫

̂P 2
[p2][C] = ε2,

∫

̂P 2
[C] = 0,

∫

̂P 2
[C]2 = −1,

∫

̂P 2
[C]3 = −(ε1 + ε2),

into this, we get

ι∗
(�k, �Y1, �Y2)

µ(C) = | �Y 1| ε1 + | �Y 2| ε2

+ 1

2r

∑

α<β

(

2(kα − kβ)(aα − aβ)+ (kα − kβ)
2(ε1 + ε2)

)

.

This is the desired formula thanks to (6.5). ��
We now define the partition function on the blowup:

̂Z k(ε1, ε2, �a; t; q) =
∑

n

qn
∞
∑

d=0

td

d!̂Z
k
n,d(ε1, ε2, �a )

=
∑

n

qn
∞
∑

d=0

td

d! (ι0∗)
−1π̂∗

(

µ(C)d ∩ [̂M(r, k, n)]) ,

where n runs over Z≥0 − 1
2r k(r − k). By (6.4, 6.8) this can be represented

in terms of Nekrasov’s partition function:

̂Z k
n,d(ε1, ε2, �a )

=
∑

1
2 (�k,�k)+l+m=n

(

lε1+mε2+ (�k, �a)+ (�k, �k)
2

(ε1 + ε2)

)d
1

∏

α∈∆ l�kα(ε1, ε2, �a)

× Zl(ε1, ε2 − ε1, �a + ε1�k)Zm(ε1 − ε2, ε2, �a + ε2�k).

(6.9)

The generating function is

̂Z k(ε1, ε2, �a; t; q)

=
∑

{�k}=− k
r

exp

[

t

(

(�k, �a )+ (�k, �k)
2

(ε1 + ε2)

)]

q
1
2 (�k,�k)

∏

α∈∆ l�kα(ε1, ε2, �a)

× Z
(

ε1, ε2 − ε1, �a + ε1�k; qetε1
)

Z
(

ε1 − ε2, ε2, �a + ε2�k; qetε2
)

.

(6.10)
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We now only consider the case k = 0 for a while. We omit the superscript
in this case.

Proposition 6.11. (1) π̂∗[̂M(r, 0, n)] = [M0(r, n)].
(2) π̂∗

(

µ(C)d ∩ [̂M(r, 0, n)]) = 0 for 1 ≤ d ≤ 2r − 1.

Proof. Both results are well-known in Donaldson theory (see e.g., [20,
3.8.1]). We give a proof for the completeness.

(1) By the dimension reason, the inclusion i of Mreg
0 (r, n) in M0(r, n)

induces an isomorphism in degree 4nr:

H˜T
4nr(M0(r, n))

i∗−→∼= H˜T
4nr

(

Mreg
0 (r, n)

)

.

Therefore it is enough to show that i∗π̂∗([̂M(r, 0, n)]) = [Mreg
0 (r, n)]. But

this is clear since π̂ becomes an isomorphism over the set Mreg
0 (r, n).

(2) First note that µ(C) is equal to c1(L), where L is the determinant
line bundle over ̂M(r, 0, n) where the fiber over (E,Φ) is

(

Λmax H1(
̂P

2, E(−�∞)
))∗ ⊗Λmax H1(

̂P
2, E(C − �∞)

)

.

This line bundle has a natural section s whose zero set is a representative
of µ(C) = c1(L) and consists of bundles that restrict to C in a non-trivial
way. (See [8, 4.6].)

Consider

{0} × Mreg
0 (r, n − 1).

This has complex codimension 2r. Therefore if i : U → M0(r, n) denote
the inclusion of the complement, the pullback homomorphism i∗ is an
isomorphism in degree ≥ 4nr − 4r+ 2. Therefore we can restrict π̂ to U as
in (1). Now the vanishing is clear since the section s of L does not vanish
there as explained above. ��

If we apply this to (6.9) with d = 1, 2, we get

nε1 Zn(ε1, ε2 − ε1, �a)+ nε2 Zn(ε1 − ε2, ε2, �a) = A,

n2ε2
1 Zn(ε1, ε2 − ε1, �a)+ n2ε2

2 Zn(ε1 − ε2, ε2, �a) = B,

where A and B are given by lower terms l, m < n (but �a may be shifted
by �k). Therefore we can determine Zn(ε1, ε2 − ε1, �a ), Zn(ε1 − ε2, ε2, �a )
recursively. Changing ε2 by ε1 + ε2, we get Zn(ε1, ε2, �a ).

In order to express these assertions by differential equations, we intro-
duce the following generalization of the Hirota differential:

(

D(ε1,ε2)
x

)m
( f · g) =

(

d

dy

)m

f(x + ε1 y)g(x + ε2 y)

∣

∣

∣

∣

y=0

=
m
∑

k=0

εk
1ε

m−k
2

(

m

k

)

dk f

dxk

dm−kg

dxm−k
.
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(D(1,−1)
x )m is the ordinary Hirota differential. We have

Z
(

ε1, ε2 − ε1, �a + ε1�k; qetε1
)

Z
(

ε1 − ε2, ε2, �a + ε2�k; qetε2
)

= exp
(

tD(ε1,ε2)
logq

)

(

Z(ε1, ε2 − ε1, �a + ε1�k; q) · Z(ε1 − ε2, ε2, �a + ε2�k; q)
)

Corollary 6.12. The followings hold:

Z(ε1, ε2, �a; q)(6.13)

=
∑

�k

q
1
2 (�k,�k)

∏

α∈∆ l�kα(ε1, ε2, �a)
Z(ε1, ε2− ε1, �a+ ε1�k; q)Z(ε1− ε2, ε2, �a+ ε2�k; q)

0 =
∑

�k

q
1
2 (�k,�k)

∏

α∈∆ l�kα(ε1, ε2, �a)

(

D(ε1,ε2)

logq + (�k, �a)+ (�k, �k)

2
(ε1 + ε2)

)d

(

Z(ε1, ε2 − ε1, �a + ε1�k; q) · Z(ε1 − ε2, ε2, �a + ε2�k; q)
)

(6.14)

for 1 ≤ d ≤ 2r − 1.

The second equation (6.14) will play a fundamental role in our study of
the partition function Z. We call it the blowup equation.

Proof. (6.12) follows from Proposition 6.11(1) by setting t = 0 in (6.9).
Proposition 6.11(2) means that ( d

dt )
d
̂Z(ε1, ε2, �a; t; q)|t=0 = 0 with 1 ≤ d ≤

2r − 1. We get the above if we differentiate the right hand side of (6.9). ��

For a later purpose, we divide the blowup equations for d = 1, 2 by
Z(ε1, ε2 − ε1, �a; q)Z(ε1 − ε2, ε2, �a; q) and write down explicitly as

0 =(6.15)

∑

�k

q
1
2 (�k,�k)

∏

α∈∆ l�kα(ε1, ε2, �a)

[

1

ε2− ε1

(

q
∂

∂q
Finst

a ( �a+ ε1�k)− q ∂

∂q
Finst

b ( �a+ ε2�k)
)

+ (�k, �a)+ (�k, �k)

2
(ε1 + ε2)

]

× exp

[

1

ε2− ε1

(

Finst
a ( �a+ ε1�k)− Finst

a ( �a)

ε1
− Finst

b ( �a+ ε2�k)− Finst
b ( �a)

ε2

)]

,
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0 =(6.16)

∑

�k

q
1
2 (�k,�k)

∏

α∈∆ l�kα(ε1, ε2, �a)

[{

(�k, �a)+ (�k, �k)

2
(ε1 + ε2)

+ 1

ε2 − ε1

(

q
∂

∂q
Finst

a ( �a + ε1�k)− q ∂

∂q
Finst

b ( �a + ε2�k)
)}2

+ 1

ε2 − ε1

(

ε1

(

q
∂

∂q

)2

Finst
a ( �a + ε1�k)− ε2

(

q
∂

∂q

)2

Finst
b ( �a + ε2�k)

)

]

× exp

[

1

ε2− ε1

(

Finst
a ( �a+ ε1�k)− Finst

a ( �a)

ε1
− Finst

b ( �a+ ε2�k)− Finst
b ( �a)

ε2

)]

,

where

exp
Finst

a ( �a)

ε1(ε2 − ε1)
= Z(ε1, ε2 − ε1, �a; q),

exp
Finst

b ( �a)

(ε1 − ε2)ε2
= Z(ε1 − ε2, ε2, �a; q).

The functions Finst
a , Finst

b depends also on ε1, ε2, but we omit them from the
notation for brevity.

7. Behavior at ε1, ε2 = 0

We prove Nekrasov’s conjecture in this section.

Lemma 7.1. Z(ε1,−2ε1, �a; q) = Z(2ε1,−ε1, �a; q).
Proof. We set ε2 = −ε1 in (6.9) with d = 1. Then we have

nε1
(

Zn(ε1,−2ε1, �a)− Zn(2ε1,−ε1, �a)
)

=
∑

1
2 (�k,�k)+l+m=n

l �=n,m �=n

{

(l − m)ε1 + (�k, �a)
}

× Zl(ε1,−2ε1, �a + ε1�k)Zm(2ε1,−ε1, �a − ε1�k)
∏

α∈∆ l�kα(ε1,−ε1, �a)
.

We show Zn(ε1,−2ε1, �a) = Zn(2ε1,−ε1, �a) by the induction on n. The
assertion is trivial for n = 1. Suppose that it is true for l, m < n. Then the
right hand side of the above equation vanishes, as terms with (�k, l, m) and
(−�k, m, l) cancel and the term (0, l, l) is 0. Here we have used l�kα(ε1,−ε1, �a )
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= (−1)〈�k,α〉(〈�k,α〉−1)/2l−�k−α(ε1,−ε1, �a) which follows from Lemma 6.7, and
that

∑

α∈∆
〈�k, α〉(〈�k, α〉 − 1)/2 = r(�k, �k)

is an even number. ��
The following follows from this lemma and its proof:

Corollary 7.2. ̂Zn,d(ε1,−ε1, �a ) vanishes for odd d.

This is compatible with what is known for the usual blowup formula for
Donaldson invariants (cf. [19].)

The following is the first part of Nekrasov’s conjecture:

Proposition 7.3. Finst(ε1, ε2, �a; q) is regular at ε1 = ε2 = 0.

Proof. The point of the proof is a recursive structure of the blowup equation
(6.15, 6.16). Let us separate terms with �k = 0:

1

ε2 − ε1

(

q
∂

∂q
Finst

a ( �a)− q ∂

∂q
Finst

b ( �a)

)

= A,

1

(ε2 − ε1)2

(

q
∂

∂q
Finst

a ( �a)− q ∂

∂q
Finst

b ( �a)

)2

+ 1

ε2 − ε1

(

ε1

(

q
∂

∂q

)2

Finst
a ( �a)− ε2

(

q
∂

∂q

)2

Finst
b ( �a)

)

= B,

where A and B are terms with �k �= 0 and hence divisible by q. We further
replace the first term in the second equation by A2. If we express Finst

a ( �a),
Finst

b ( �a) by formal power series in q, then the above equations determine the
coefficients recursively. We want to show that Finst

n (ε1, ε2, �a) is regular at
ε1 = ε2 = 0 by the induction using this recursive system. This is equivalent
to showing that A and B are regular under the assumption that Finst

a ( �a),
Finst

b ( �a) are regular. This follows from the following lemma. ��
Lemma 7.4. Suppose that Finst(ε1, ε2, �a; q) is regular at (ε1, ε2) = 0. Then
the following are also regular and their values are given by

1

ε2 − ε1

(

q
∂

∂q
Finst

a ( �a + ε1�k)− q ∂

∂q
Finst

b ( �a + ε2�k)
)∣

∣

∣

∣

(ε1,ε2)=0

= −
∑

i

ki q
∂2Finst

∂q∂ai
(0, 0, �a; q),
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1

ε2 − ε1

(

ε1

(

q
∂

∂q

)2

Finst
a ( �a)− ε2

(

q
∂

∂q

)2

Finst
b ( �a)

)∣

∣

∣

∣

∣

(ε1,ε2)=0

= −
(

q
∂

∂q

)2

Finst(0, 0, �a; q),

1

ε2 − ε1

(

Finst
a ( �a + ε1�k)− Finst

a ( �a)

ε1
− Finst

b ( �a+ ε2�k)− Finst
b ( �a)

ε2

)∣

∣

∣

∣

∣

(ε1,ε2)=0

= −1

2

∑

i, j

∂2Finst

∂ai∂a j
(0, 0, �a; q)kik j .

Proof. The regularity is a consequence of the symmetry Finst
b ( �a) =

Finst
a ( �a)

∣

∣

ε1↔ε2
. In order to show the above equalities, we just need to note

∂Finst

∂ε1
(0, 0, �a; q) = ∂Finst

∂ε2
(0, 0, �a; q) = 0.

The first equality is the consequence of Lemma 6.3(1), and the second
equality follows from Lemma 7.1. ��

We now take the limit ε1, ε2 → 0 of (6.16). (The limit of (6.15) be-
comes the trivial identity 0 = 0.) We set F inst( �a; q) = Finst(0, 0, �a; q). By
Lemma 6.7(3), we have

∏

α∈∆
l�kα(0, 0, �a ) =

∏

α∈∆+
(−1)〈�k,α〉(〈�k,α〉+1)/2 〈 �a, α〉〈�k,α〉2

= (−1)〈�k,ρ〉
∏

α∈∆+

{√−1〈 �a, α〉
}〈�k,α〉2

.

Therefore we get

0 =
∑

�k

(−1)〈�k,ρ〉q 1
2 (�k,�k)

∏

α∈∆+
{√−1〈 �a, α〉}〈�k,α〉2

×
⎡

⎢

⎣

⎧

⎨

⎩

∑

i

ki

⎛

⎝

∑

j

Cija
j − q∂

2F inst

∂q∂ai
( �a; q)

⎞

⎠

⎫

⎬

⎭

2

−
(

q
∂

∂q

)2

F inst( �a; q)
⎤

⎥

⎦

× exp

⎛

⎝−1

2

∑

i, j

∂2F inst

∂ai∂a j
( �a; q)kik j

⎞

⎠ .

(7.5)
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In order to compare this with the formula in literature, we introduce the
following functions:

τij =
√−1

π

∑

α∈∆+
〈α∨i , α〉〈α∨j , α〉 log

(√−1〈 �a, α〉
q

1
2r

)

− 1

2π
√−1

∂2F inst

∂ai∂a j
( �a; q),

(7.6)

u2 = 1

2
( �a, �a)− q∂F inst

∂q
( �a; q).(7.7)

Now (7.5) can be written as
(

q
∂

∂q

)2

F inst( �a; q) =
∑

i, j

∂u2

∂ai

∂u2

∂a j

1

π
√−1

∂

∂τij
log ΘE(0|τ),(7.8)

where we have used (6.5) several times and ΘE is as in (1.5). This, combined
with (7.7), is exactly the contact term equation (1.4) if we replace q

1
2r by Λ.

Note also that (7.6) coincides with (1.2). And (7.7) is nothing but (1.3).
The equation (7.8) has the same structure as the blowup equation (6.14).

When we expand F inst as a formal power series in q, coefficients are de-
termined inductively. In particular, the solution to the above equation is
unique. This observation was due to [14]. (See also [42] for an earlier result
for SU(2).) Since the Seiberg-Witten prepotential satisfies (7.8), we con-
clude that F inst coincides with its instanton part. This is our confirmation
of Nekrasov’s conjecture.

8. Blowup formula

We divide (6.10) by Z(ε1, ε2−ε1, �a; q)Z(ε1−ε2, ε2, �a; q) and take the limit
ε1, ε2 → 0. We need the following generalization of the third equation in
Lemma 7.4:

1

ε2 − ε1

(

Finst(ε1, ε2 − ε1, �a + ε1�k; qetε1)− Finst(ε1, ε2 − ε1, �a; q)
ε1

−Finst(ε1 − ε2, ε2, �a + ε2�k; qetε2)− Finst(ε1 − ε2, ε2, �a; q)
ε2

)∣

∣

∣

∣

∣

(ε1,ε2)=0

= − 1

2

(

q
∂

∂q

)2

F inst( �a; q) t2 − 1

2

∑

i, j

∂2F inst

∂ai∂a j
( �a; q)kik j

−
∑

i

q
∂2F inst

∂q∂ai
( �a; q) tki .

Here we have used ∂
∂ logq = q ∂

∂q
. Therefore we get
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Theorem 8.1. ̂Z k(ε1, ε2, �a; t; q)/Z(ε1, ε2, �a; q) is regular at (ε1, ε2) = 0.
Its value is

exp

(

−1

2

(

q
∂

∂q

)2

F inst( �a; q) t2

)

×
∑

�k∈P:{�k}=− k
r

{

(−1)〈�k,ρ〉q
1
2 (�k,�k)

∏

α∈∆+
{√−1〈 �a, α〉}(�k,α)2

exp
(

− 1

2

∑

i, j

∂2F inst

∂ai∂a j
( �a; q)kik j

+
∑

i

(

∑

j

Cija
j − q∂

2F inst

∂q∂ai
( �a; q)

)

tki

)}

×
⎡

⎣

∑

�k∈Q

(−1)〈�k,ρ〉q 1
2 (�k,�k)

∏

α∈∆+
{√−1〈 �a, α〉}(�k,α)2

exp

(

− 1

2

∑

i, j

∂2F inst

∂ai∂a j
( �a; q)kik j

)

⎤

⎦

−1

.

If we use the theta function in (1.5), this can be written simply as

exp

(

−1

2

(

q
∂

∂q

)2

F inst( �a; q) t2

)

Θk(�ξ|τ)
ΘE(0|τ) , where ξ i = t

2π
√−1

∂u2

∂ai
.

Here Θk is defined as in (1.5) where the summation is over �k ∈ P with
{�k} = − k

r . This form of the blowup formula for Donaldson invariants and
its higher rank analog coincides with one given in [43,34,41].

9. General gauge groups

Our proof relies only on the blowup formula for degree d = 1, 2. Hence it
has a natural generalization to more general gauge groups. The point is that
we do not need the explicit formula (6.2) in terms of Young tableaux.

Let G be a compact semisimple Lie group. Let Mreg(G, n) be the framed
moduli space of G-instantons on S4 = R4 ∪ {∞} with instanton number n,
which corresponds to π3(G) ∼= Z. By [2] it is a nonsingular manifold, whose
dimension can be computed by the index theorem (and a standard calculation
in the Lie algebra of G). By the Hitchin-Kobayashi correspondence, the
moduli space can be identified with the framed moduli space of principal Gc -
bundles on P2 = C2∪�∞, where Gc is the complexification of G. When G is
a classical group, this version of the Hitchin-Kobayashi correspondence was
proved in [11] via the ADHM description. Bando’s analytic argument [4]
works for arbitrary G. It is not clear, as far as the authors know, whether
we have a natural generalization of M(r, n) for the group G. Thus we can
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use only the Uhlenbeck compactification M0(G, n) =⊔m≤n Mreg(G, m)×
Sn−m

C
2. We also consider the framed moduli spaces ̂Mreg(G, k, n) and

its Uhlenbeck compactification ̂M0(G, k, n) on the blowup. Here k is the
characteristic class in H2, which is considered as an element in π1(G).

Let T be a maximal torus of G. (In the other part of the paper, T was
a complex torus. We hope that this does not make a confusion.) Then we have
an action of ˜T = T 2× T on the moduli spaces M0(G, n), ̂M0(G, k, n). Let
HT∗ (M0(G, n)), HT∗ (̂M0(G, k, n)) denote the equivariant homology groups.
The only fixed point in M0(G, n) is the ideal instanton consisting of the triv-
ial connection and the singularity concentrated at the origin. We denote this
point by 0, and the inclusion 0 → M0(G, n) by ι0. We assume that the
localization theorem is applicable to M0(G, n). This is guaranteed when
M0(G, n) can be equivariantly embedded in a finite dimensional represen-
tation of ˜T , or M0(G, n) can be endowed with a structure of ˜T -algebraic
variety. We define the partition function by

Z(ε1, ε2, �a; q) =
∞
∑

n=0

qn(ι0∗)−1[M0(G, n)],

where [M0(G, n)] is the fundamental class of M0(G, n). The fundamental
class is defined since the singular locus is lower dimensional as fundamental
classes of algebraic cycles are always defined.

Proposition 9.1. The fixed points in ̂M0(G, k, n) are parametrized by triples
(�k, l, m) where �k ∈ π1(T ) ∼= Hom(S1, T ) and l, m are nonnegative integers.
They satisfy the constraint ρ(�k) = k and 1

2(
�k, �k) + l + m = n, where ρ is

the homomorphism π1(T )→ π1(G) induced by the inclusion T ⊂ G, and
( , ) is the inner product on Lie T such that the square of the length of the
highest root θ with respect to the induced inner product on the dual space
Lie T ∗ is equal to 2.

If we choose simple coroots α∨i (1 ≤ i ≤ dim T = rank G), �k can
be identified with an r-tuple of rational numbers (k1, . . . , kr) ∈ Qr by
�k =∑i kiα∨i .

Proof. A fixed point in ̂M0(G, k, n) is (A, l[p1] + m[p2]), where A is
a reducible instanton (or a Gc-principal bundle which is reducible to a
T c-bundle) with instanton number n(A) and l, m are integers with n(A) +
l+m = n. A reducible instanton A on the blowup is classified by �k ∈ π1(T ).
We have constraint ρ(�k) = k, so that the induced bundle has the right
characteristic k. We also have

n(A) = 1

2
(�k, �k),
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where ( , ) is the inner product as above. This can be proved as follows. Let
gc be the complexification of the vector bundle associated with the adjoint
representation. We have

c2(g
c) = 1

2

∑

α∈∆
〈�k, α〉2 = 1

2
BG(�k, �k) = h∨(�k, �k),

where BG is the Killing form, and h∨ is the dual Coxeter number. For the
last equality, see [27, Exercise 6.1]. On the other hand, the instanton number
is given by c2(g

c)

2h∨ . (See [2, §8].) ��
For G = SU(r), the inner product ( , ) is the standard one used in earlier

sections, and we have h∨ = r. Note that c2(g
c) is the complex dimension of

the framed moduli space ̂M(G, k, n(A)), so it is given by 2h∨n(A), as was
shown in [2].

For a root α ∈ ∆, we define l�kα(ε1, ε2, �a ) by the same formula as as (6.6).
The Euler class of tangent space of ̂Mreg(G, k, 1

2 (�k, �k)) at the reducible

instanton A is given by
∏

α∈∆ l�kα(ε1, ε2, �a).

Conjecture 9.2. (1) There exists a proper continuous map π̂0 : ̂M0(G, k, n)
→ M0(G, n′) for some n′.

(2) A neighborhood of the fixed point (�k, l, m) in ̂M0(G, k, n) is iso-
morphic to a neighborhood of (�k, 0, 0) × 0× 0 in ̂M0(G, k, n − l − m)×
M0(G, l) × M0(G, m) as a ˜T -space, where the T 2-actions on the latter
two factors are modified as (t1, t2) �→ (t1, t2/t1) and (t1, t2) �→ (t1/t2, t2)
respectively.

We define an equivariant cohomology class µ(C) ∈ H2
˜T
(̂Mreg(G, k, n))

by

− 1

2h∨
p1( g̃ )/[C],

where g̃ is the universal adjoint bundle, i.e., the fiber is the Lie algebra g.

Conjecture 9.3. (1) The class µ(C) extends to a class in H2
˜T
(̂M0(G, k, n)).

We denote the extended class by the same notation.
(2) If ι(�k,l,m) denotes the inclusion of the fixed point (�k, l, m) in

̂M0(G, k, n), we have

ι∗
(�k,l,m)

(µ(C)) = lε1 + mε2 + (�k, �a)+ (�k, �k)

2
(ε1 + ε2).

We define the partition function on the blowup by

̂Z(ε1, ε2, �a; t; q) =
∞
∑

n=0

qn
∞
∑

d=0

td

d! (ι0∗)
−1π̂0∗

(

µ(C)d ∩ [̂M0(G, 0, n)]) .
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Then (6.10) holds if we assume Conjectures 9.2, 9.3. Proposition 6.11 can
be modified as

π̂0∗[̂M0(G, 0, n)] = [M0(G, n)],
π̂0∗
(

µ(C)d ∩ [̂M0(G, 0, n)]) = 0 for 1 ≤ d ≤ 2h∨ − 1.

The proof of the first equality is exactly the same. For the proof of the second
equality, we need a line bundle L and a section which does not vanish on
π̂−1

0 ({0} × Mreg
0 (G, n − 1)). I do not know such things exists for genuine

µ(C). But probably there exists such things for 2h∨µ(C). If this is indeed
true, the rest of the argument is the same as before.

We can now proceed as in the SU(r) case, we use this formula d = 1, 2
to get (6.15, 6.16). Considering the limit ε1, ε2 → 0, we get (7.8) exactly
as before. On the other hand, the proof that the Seiberg-Witten prepotential
satisfies (7.8) was generalized to classical groups [13].

Remark 9.4. The assumption that the localization theorem is applicable to
M0(G, n) and ̂M(G, k, n) follows from the description in [28] for a classical
group G, since they are algebraic varieties. For general group, one can
probably use the method in [6]. Conjectures 9.2, 9.3 are true in view of
King’s description, except 9.2(2). We believe that 9.2(2) can be also checked,
but we need a further study.
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