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Abstract. We prove that every mapping torus of any free group endomor-
phism is residually finite. We show how to use a not yet published result
of E. Hrushovski to extend our result to arbitrary linear groups. The proof
uses algebraic self-maps of affine spaces over finite fields. In particular, we
prove that when such a map is dominant, the set of its fixed closed scheme
points is Zariski dense in the affine space.

1. Introduction

This article contains results in group theory and algebraic geometry. We
think that both the results and the relationship between them are interesting
and will have other applications in the future.

We start with group theory. Let G be a group given by generators
x1, ..., xk and a set of defining relations R, and let φ : xi �→ wi , 1 ≤ i ≤ k
be an injective endomorphism of G. Then the group

HNNφ(G) = 〈
x1, ..., xk, t | R, txi t

−1 = wi, i = 1, ..., k
〉

is called the mapping torus of φ (or ascending HNN extension of G cor-
responding to φ). This group has an easy geometric interpretation as the
fundamental group of the mapping torus of the standard 2-complex of G
with bounding maps the identity and φ. The simplest and one of the most
important cases is when G is the free group Fk of rank k, i.e. when R is

� The research of the second author was supported in part by the NSF grants DMS
9978802, 0072307, 0245600, and the US-Israeli BSF grant 1999298.



342 A. Borisov, M. Sapir

empty. These groups appear often in group theory and topology. In particu-
lar, many one-relator groups are ascending HNN extensions of free groups
(more on that below).

Some essential information about the mapping tori of free group endo-
morphisms is known. In particular, Feighn and Handel [FH] proved that
these groups are coherent, that is, all their finitely generated subgroups are
finitely presented. They also characterized all finitely generated subgroups
of such groups. We know [GMSW] that these groups are Hopfian, that is
every surjective endomorphism of such a group must be injective. On the
other hand, ascending HNN extensions of arbitrary residually finite groups
are not necessarily Hopfian [SW].

Many of the groups of the form HNNφ(Fk) are hyperbolic (see [BF]
and [Kap1]). One of the outstanding problems about hyperbolic groups is
whether they are residually finite. Recall that a group is called residually
finite if the intersection of its subgroups of finite index is trivial. This leads
to the following question:

Problem 1.1. Are all mapping tori of free groups residually finite?

This question also arises naturally when one tries to characterize residu-
ally finite one-related groups. As far as we know Problem 1.1 was explicitly
formulated first by Moldavanskii in [Mol] (it is also mentioned in [Wise]
and listed as Problem 1 in the list of ten interesting open problems about
ascending HNN extensions of free groups in [Kap1]).

Notice that ascending HNN extensions of residually finite groups may
be not residually finite. They can even have very few finite homomorphic
images as is the case for Grigorchuk’s group [SW]. However if φ is an
automorphism and G is residually finite then HNNφ(G) is also residually
finite [Mal2]. Thus the interesting case in Problem 1.1 is when φ is not
surjective. Some special cases of Problem 1.1 have been solved in [Wise]
(these cases proved to be useful in Wise’s residually finite version of Rips’
construction), and in [HW] (where it is proved that the mapping tori of
polycyclic groups are residually finite).

Notice also that the groups HNNφ(Fk) do not necessarily satisfy prop-
erties that are known to be somewhat stronger than the residual finiteness.
For example, the group 〈a, t | tat−1 = a2〉 is not a LERF group (a cannot
be separated from the cyclic group 〈a2〉 by a homomorphism onto a finite
group).

It is worth noting also that groups HNNφ(Fk) are not necessarily linear
(over any field). For example the groups 〈a, b, t | tat−1 = ak, tbt−1 = bl〉,
where |k|, |l| �∈ {1,−1}, and 〈a, b, t | tat−1 = b, tbt−1 = a2〉 are not linear
[Wer], [DS]. A conjecture from [DS] states that “most” groups of the form
HNNφ(Fk) are not linear provided φ is not an automorphism.

One of the main goals of this paper is to solve Problem 1.1.

Theorem 1.2. The mapping torus of any injective endomorphism of a free
group is residually finite.
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Computer experiments conducted by Ilya Kapovich, Paul Schupp, and
the second author of this paper seem to show that most 1-related groups
are subgroups of ascending HNN extensions of a free group1. Thus it could
well be true that groups with one defining relation are generically inside
ascending HNN extensions of free groups. If this conjecture turns out to be
true then Theorem 1.2 would imply that one-related groups are generically
residually finite. (Recall that there exist non-residually finite one-related
groups, for example the Baumslag-Solitar group BS(2, 3) = 〈a, t | ta2t−1

= a3〉.) Anyway, it is clear that Theorem 1.2 applies to very many one-
related groups.

The proof of Theorem 1.2 was obtained in a rather unexpected way.
The proofs of the previous major results about mapping tori of groups
(see for example [FH], [GMSW], [Kap1]) were of topological nature. We
know of several attempts (see [HW], [Wise]) to apply similar methods
to Problem 1.1: residual finiteness of the fundamental group of a CW-
complex is equivalent to the existence of enough finite covers of that
complex to separate all elements of the fundamental groups. But these ap-
proaches produced only partial results. Even simple examples like the group
〈a, b, t | tat−1 = ab, tbt−1 = ba〉 have been untreatable so far by the topo-
logical methods.

Our approach is based on a reduction of Problem 1.1 to some questions
about periodic orbits of algebraic maps over finite fields (see Sect. 2).
More precisely, we study the orbits consisting of points conjugate over the
base field. In the language of schemes these orbits correspond to the fixed
closed scheme points. Such points appeared in the Deligne Conjecture, and
were extensively studied before (see, e.g., [Fu], [Pink]). However, these
investigations were limited to the quasi-finite maps (that is such maps that
the preimage of every geometric point is finite). Most of our maps are not
quasi-finite.

Let Φ : An(Fq) → An(Fq) be a polynomial map, defined over the fi-
nite field Fq. It is given in coordinates by the polynomials φ1, ..., φn from
Fq[x1, ..., xn]. Suppose a point a = (a1, a2, ..., an) ∈ An is defined over the
algebraic closure Fq of Fq. We will call this point a quasi-fixed point of Φ
if for some Q = qm for all i

φi(a1, a2, ..., an) = aQ
i .

More generally, for any algebraic variety X, we have the following

Definition 1.3. Suppose Φ : X → X is a self-map of a variety over a finite
field Fq. A geometric point x of X over some finite extension of Fq is called

1 A simple Maple program written by the second author of this paper checked 30,000
random two-letter group words of length 300,000 Schupp’s program checked 50,000 two-
letter random words of length between 100,000 and 110,000. Both programs found that
at least 99.6% of the corresponding 1-related groups are subgroups of ascending HNN
extensions of finitely generated free groups.



344 A. Borisov, M. Sapir

quasi-fixed with respect to Φ if Φ(x) = Frm(x). Here Frm is the m-th
composition power of the geometric Frobenius morphism.

Here is our main theorem regarding such maps.

Theorem 1.4. Let Φn : An(Fq) → An(Fq) be the n-th iteration of Φ. Let
V be the Zariski closure of Φn(An). It is defined over Fq. The set of its
geometric points is V(Fq), where Fq is the algebraic closure of Fq. Then the
following holds.

1. All quasi-fixed points of Φ belong to V(Fq).
2. Quasi-fixed points of Φ are Zariski dense in V . In other words, suppose

W ⊂ V is a proper Zariski closed subvariety of V . Then for some
Q = qm there is a point (a1, ..., an) ∈ V(Fq) \ W(Fq) such that for all i
fi(a1, ...an) = aQ

i .

After we obtained the proof of Theorem 1.4, we received a preprint [Hr]
of E. Hrushovski where he proves a more general result. In particular, his
results imply the following statement. Recall that a rational map Φ : X → Y
is called dominant if Φ(X) is Zariski dense in Y .

Theorem 1.5 (Hrushovski, [Hr, Corollary 1.2]). Let Φ : X → X be
a dominant self-map of an absolutely irreducible variety over a finite field.
Then the set of the quasi-fixed points of Φ is Zariski dense in X.

Our Theorem 1.4 is a partial case of Theorem 1.5 where X is the Zariski
closure of Φn(An). In particular, our theorem captures the (non-trivial) case
when Φ : An → An is dominant.

Theorem 1.5 allowed us to prove the following statement that is much
stronger than Theorem 1.2.

Theorem 1.6. The mapping torus of any injective endomorphism of a fi-
nitely generated linear group2 is residually finite.

As we mentioned before, for non-linear residually finite groups this
statement is not true [SW]. In fact Theorem 1.2 can serve as a tool to show
that a group is not linear. For example, the non-Hopfian example from [SW]
is an ascending HNN extension of a residually finite finitely generated group
that is an amalgam of two free groups. By Theorem 1.6 that amalgam of
free groups is not linear.

It is well known that free groups, polycyclic groups, etc. are linear.
Thus Theorem 1.2 immediately implies all known positive results about
residual finiteness of mapping tori of non-surjective endomorphisms [HW],
[GMSW], [Mol], [Wise].

The proof of Theorem 1.5 is complicated and uses some heavy machinery
from algebraic geometry and Hrushovski’s theory of difference schemes. In
comparison, our proof of Theorem 1.4 is basically elementary.

2 That is a group representable by matrices of any size over any field.
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Remark 1.7. Theorems 1.2 and 1.6 will remain true if we drop the re-
quirement that the endomorphism φ is injective. Indeed, it is easy to
see that for every endomorphism φ of a linear group G, the sequence
Ker(φ) ⊆ Ker(φ2) ⊆ Ker(φ3) ⊆ ... eventually stabilizes (see [Mal1, Theo-
rem 11]). Then, for some n, φ is injective onφn (G), and the group HNNφ (G)
is isomorphic to the ascending HNN extension of φn(G). Since φn(G) is
again a linear group, we can apply Theorem 1.6 (see details in [Kap2]).

The paper is organized as follows. In Sect. 2, we reduce Theorems 1.2
and 1.6 to Theorems 1.4 and 1.5. In Sect. 3, we give a proof of Theorem 1.4.
In Sect. 4 we apply Theorem 1.6 to a question about extendability of endo-
morphisms of linear groups to automorphisms of their profinite completions.
We also present some open problems.

Acknowledgments. The authors are grateful to Ilya Kapovich, Yakov Varshavsky, Dani
Wise, and the referee for very useful remarks.

2. HNN extensions and dynamical systems

Let T = HNNφ(G) be the ascending HNN extension of a group

G = 〈x1, ..., xk | R〉
corresponding to an injective endomorphism φ. Let t be the free letter of
this HNN extension, so that txi t−1 = φ(xi) for every i = 1, ..., k.

It is easy to see that every element g of T can be written as a product
tawtb for some integers a ≤ 0 and b ≥ 0, w ∈ G. The map z : T → Z that
sends tawtb to a + b is a homomorphism, so if a + b �= 0 then g can be
separated from 1 by a homomorphism onto a finite group. If a = −b then g
and w are conjugate, so for every homomorphism ψ, ψ(g) �= 1 if and only
if ψ(w) �= 1. Therefore the following fact is true.

Lemma 2.1. The group T is residually finite if and only if for every w ∈ G,
w �= 1, there exists a homomorphism ψ of T onto a finite group such that
ψ(w) �= 1.

Let φ be an endomorphism of G defined by a sequence of words
w1, ..., wk from Fk (that is the images of wi in G under the natural homo-
morphism Fk → G generate a subgroup that is isomorphic to G). Let H be
any group (or, more generally, a group scheme). Then we can define a map
φH : Hk → Hk that takes every k-tuple (h1, ..., hk) to the k-tuple

(w1(h1, ..., hk),w2(h1, ..., hk), . . . , wk(h1, ..., hk)).

Notice that this map is not a homomorphism. Nevertheless it defines a dy-
namical system on Hk.

The following lemma reformulates residual finiteness in terms of these
dynamical systems.
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Lemma 2.2. The group T = HNNφ(G) is residually finite if and only if for
every w = w(x1, ..., xk) �= 1 in G there exists a finite group H = Hw and
an element h = (h1, ..., hk) in Hk such that

(i) h1, ..., hk satisfy the relations from R (where hi is substituted for xi ,
i = 1, ..., k).

(ii) h is a fixed point of some power of φH, and
(iii) w(h1, ..., hk) �= 1 in H.

Proof. ⇒ Suppose T is residually finite. Take any word w �= 1 in G. Then
there exists a homomorphism γ from G onto a finite group H such that
γ(w) �= 1. Let t be the free letter in G. Then γ(t)γ(G)γ(t−1) ⊆ γ(G).
Since H is finite, γ(t) acts on γ(G) by conjugation. It is clear that for every
element h = (h1, ..., hk) in γ(G)k,

φH(h) = (
γ(t)h1γ(t−1), ..., γ(t)hkγ(t−1)

) ∈ γ(Fk)
k. (2.1)

Take h = (γ(x1), ..., γ(xk)). Property (i) is obvious. Property (iii) holds
because γ(w) �= 1. Property (ii) holds also because by (2.1) powers of φH
act on γ(G)k as conjugation by the corresponding powers of γ(t), and some
power of γ(t) is equal to 1 since H is finite.

⇐ Suppose that for every w �= 1 in G there exists a finite group H = Hw

and an element h = (h1, ..., hk) in Hk such that conditions (i), (ii) and (iii)
hold. We need to prove that G is residually finite. By Lemma 2.1, it is enough
to show that every such w can be separated from 1 by a homomorphism
of G onto a finite group.

Pick a w �= 1 in G. Let a finite group H , h ∈ Hk, be as above. By (ii),
there exists an integer n ≥ 1 such that φn

H(h) = h. Let P be the wreath
product of H and a cyclic group C = 〈c〉 of order n. Recall that P is the
semidirect product of Hn and C where elements of C act on Hn by cyclically
permuting the coordinates.

Consider the φH -orbit h(0) = h, h(1) = φH(h), ..., h(n−1) = φn−1
H (h)

of h. Let h(i) = (h(i)
1 , ..., h(i)

k ), i = 0, ..., n − 1. For every j = 1, ..., k
let y j be the n-tuple (h(0)

j , h(1)
j , ..., h(n−1)

j ). Notice that since h satisfies
relations from R, φH(h), φ2

H(h),... also satisfy these relations because φ
is an endomorphism of G. This and (ii) immediately imply that the map
φ : t �→ c, x j �→ y j, j = 1, ..., k, can be extended to a homomorphism
of T onto a subgroup of P generated by c, y1, ..., yk. Notice that the image
of w under this homomorphism is an n-tuple w(y1, ..., yk) from Hn whose
first coordinate is w(h1, ..., hk) �= 1 in H by property (iii). Thus w can be
separated from 1 by a homomorphism of T onto a finite group. �

Now we are going to show how to apply Lemma 2.2 to free groups and
other linear groups. First we need to fix some notation.

Let us identify the scheme Mr of all r by r matrices with the scheme
SpecZ[ai, j ], 1 ≤ i, j ≤ r. The scheme GLr is its open subscheme obtained
by localization by the determinant polynomial det. This is a group scheme
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(see [Wat]). The group scheme SLr = SpecZ[ai, j ]/(det −1) is a closed
subscheme of Mr . For every field K the group schemes GLr(K ) and SLr(K )
are obtained from GLr and SLr by the base change. Then the groups GLr(K )
and SLr(K ) are the groups of the K−rational geometric points of the
corresponding group schemes.

The multiplicative abelian group scheme Tm acts on Mr by scalar mul-
tiplication. The scheme GLr is invariant under this action. This induces the
action of the multiplicative group K∗ on the group GLr(K ). The quotient
of GLr(K ) by this action is the group PGLr(K ).

For every group word w we consider the formal expression w̄ which is
obtained from w by replacing every letter x−1 by the symbol adj(x). Thus to
every word w in k letters, we can associate a polynomial map πw : Mk

r → Mr
which takes every k-tuple of matrices (A1, ..., Ak) to w̄(A1, ..., Ak) where
adj(Ai) is interpreted as the adjoint of Ai . This map coincides with w
on SLr since for the matrices in SLr , the adjoint coincides with the in-
verse.

Similarly, for every endomorphism φ of the free group Fk, we can
extend the map φSLr : SLk

r → SLk
r to a self-map of Mk

r which we shall
denote by Φ.

The map Φ is a self-map of the scheme SpecZ[am
i, j ], 1 ≤ i, j ≤ r, 1 ≤

m ≤ k. By base change it induces a self-map of the scheme SpecK [am
i, j ].

1 ≤ i, j ≤ r, 1 ≤ m ≤ k for every field K . This map can be restricted
to the self-map of GLk

r (K ). The induced map on the K−rational points is
φGLr (K ). It descends to the self-map of PGLk

r (K ) which coincides with the
map φPGLr (K ) defined above.

Now we are ready to derive Theorems 1.2 and 1.6 from Theorems 1.4
and 1.5, respectively.

Proof of Theorem 1.2. Let φ be an injective endomorphism of the free
group Fk =< x1, ..., xk > and 1 �= w ∈ Fk. Consider the self-map Φ
of the scheme Mk

2 as above. Denote n = 4k. Similarly to Theorem 1.4,
we denote by V the Zariski closure of Φn(Mk

2). This is a scheme over
SpecZ. Consider the map πw : V → M2 as above. We have the following
lemma.

Lemma 2.3. In the above notation, πw(V ) is not contained in the scheme
of the scalar matrices.

Proof. It is enough to find a point of V over C which is not mapped to
a scalar matrix by πw. By the result of Sanov [San] there is an embedding
γ : Fk → SL2(Z). Obviously, γ(Fk) does not contain the matrix −Id, so
all nontrivial elements of Fk are mapped to non-scalar matrices. Consider
the point u ∈ V(C) defined as u = Φn(γ(x1), ..., γ(xk)). By the definitions
of πw and Φ we get πw(u) = γ(φn(w)). Since φ is injective, φn(w) �= 1.
Therefore πw(u) is not a scalar matrix. �
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Now we fix a big enough prime p and make a base change from Z to
the finite field Fp. Slightly abusing the notation, we will from now on de-
note by Φ and πw the maps of the corresponding schemes over Fp. And V
will also denote the corresponding scheme over Fp. From Lemma 2.3,
for big enough p, πwV is not contained in the scheme of scalar matrices.
Consider the subscheme Zw of V which is the union of the πw-pullback
of scalar matrices and the subscheme of V consisting of k-tuples where
one of the coordinates is singular. We have that Zw is a proper subscheme
of V . By Theorem 1.4 there exists a point h = (a1, ..., ak) ∈ V \ Zw

such that Φ(h) = (aQ
1 , ..., aQ

k ) for some Q = ps . Then the powers of
Φ take the point h to (aQl

1 , ..., aQl

k ), l ≥ 1 (we use the fact that, in char-
acteristic p, the Frobenius commutes with every polynomial map defined
over Fp). Therefore some power of Φ fixes h. In addition πw(h) is not
a scalar matrix and each ai is not a singular matrix because h �∈ Zw.
Taking the factor over the torus action, we get a point h ′ in PGLk

2(Fpi )
that is fixed by some power of the map Φ and such that w(h ′) �= 1
in PGL2(Fpi ). Thus the group PGL2(Fpi ) and the point h ′ satisfy all
three conditions of Lemma 2.2. Since w ∈ Fk was chosen arbitrarily, the
group HNNφ(Fk) is residually finite. This completes the proof of Theo-
rem 1.2.

Proof of Theorem 1.6. Suppose G ⊆ SLr(K ). Here K is some field and
G =< x1, ..., xk | R > . Let UG be the representation scheme of the group
G in SLr , i.e. the reduced scheme of k-tuples of matrices from SLr satisfying
the relations from R. This is a scheme over SpecK. Suppose φ is an injective
endomorphism of G and 1 �= w ∈ G. We choose a representation of φ and w
using the words on x1, ..., xk and consider the maps Φ and πw. Since φ is an
endomorphism of G, the representation subscheme UG is invariant under Φ.
Obviously, for big enough m the map Φ is dominant on the subscheme V,
which is the Zariski closure of Φm(UG ). Note that V may be reducible
because UG may be reducible. Since φ is injective, φm(w) �= 1. Therefore
πw(V ) �= {Id}. By the usual specialization argument (as in [Mal1]) there
exists a finite field Fq such that for the corresponding schemes and maps
over Fq the same properties are satisfied. That is, Φ is dominant on V,
where V is the Zariski closure of Φm(UG ), everything over Fq. In addition,
πw(V ) �= {Id}. Consider the subscheme Zw of V which is the πw-pullback
of the identity. We have that Zw is a proper subscheme of V . We enlarge
the finite field to make all irreducible components of V defined over Fq.
Some power of Φ maps each of these components into itself, dominantly.
We now apply Theorem 1.5 to this power of Φ, the scheme V ⊆ SLk

r
and its subscheme Zw. As in the proof of Theorem 1.2, we find a point
h ∈ V(Fqi) \ Zw(Fqi) that is fixed by some power of Φ. Since h belongs to
the representation variety UG , its coordinates satisfy all the relations from R,
so the condition (i) of Lemma 2.2 is satisfied. Other conditions of the lemma
hold as before. Thus we can take the group SLr(Fqi) as Hw, and h as the
point required by Lemma 2.2. This completes the proof of Theorem 1.6.
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3. Polynomial maps over finite fields

In this section, we shall give a self-contained proof of Theorem 1.4. It is
of independent interest from an algebraic geometry perspective. So while
writing it we tried to strike a balance between using a formal algebraic
geometry language best suitable for generalizations and keeping the alge-
braic geometry to the minimum for the benefit of the group theorists. Except
for the reference to the Fulton’s book at the end (in one of the two versions
of the proof) all algebraic geometry used here is very basic. It is certainly
covered by the Atiyah-Macdonald’s commutative algebra textbook [AM]
together with the first few chapters of most algebraic geometry textbooks
(for example, [Bump]).

Let An be the affine space. Consider a map Φ : An → An given in
coordinates by polynomials

f1(x1, ..., xn), f2(x1, ..., xn), ..., fn(x1, ..., xn).

The coordinate functions of the composition power Φk will be denoted by
f (k)
i (x1, ..., xn), for 1 ≤ i ≤ n. In what follows, Φ will be defined over the

finite field Fq of q elements (this just means that all coefficients of fi belong
to Fq). The number Q will always mean some (big enough) power of q.

We define by induction a chain of irreducible closed subvarieties of An .
Let V0 = An, and for every i ≥ 1 let Vi be the Zariski closure in An of
Φ(Vi−1). Alternatively, Vi is the Zariski closure of Φi(An).

The varieties Vi are irreducible (as polynomial images of an irreducible
variety) and Vi+1 ⊆ Vi for all i. Because the dimension could only drop
n times, Vn = Vn+1 = .... We will denote this variety Vn by V . Note that
V = An if and only if Φ is a dominant map.

Suppose a point a = (a1, a2, ..., an) ∈ An is defined over the algebraic
closure Fq of Fq. Recall that a is called quasi-fixed (with respect to Φ) if
there exists Q = qm such that fi(a1, a2, ..., an) = aQ

i , i = 1, ..., n.
In other words, the quasi-fixed points are those that are mapped by Φ to

their conjugates. They correspond to the closed scheme points of An, which
are fixed by Φ.

The following lemma is the first part of Theorem 1.4.

Lemma 3.1. All quasi-fixed points belong to the variety V .

Proof. Since Φ is defined over Fq, all varieties Vi, i = 1, 2, ..., n are
defined over Fq. For a point a = (a1, ..., an) ∈ An we denote by aQ the
point Frm

q (a) = (aQ
1 , ..., aQ

n ). Then suppose Φ(a) = aQ, for Q = qm .

This implies that aQ ∈ V1. Since the Frobenius Frq commutes with Φ,
all varieties Vi are invariant with respect to Frq. Therefore a ∈ V1. Hence
aQ = Φ(a) ∈ V2 and a ∈ V2. By induction, we get a ∈ V . �

In the above notation, our main goal is to prove the following (this is the
second part of Theorem 1.4).
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Theorem 3.2. Let V be the Zariski closure of Φn(An). Then quasi-fixed
points of Φ are Zariski dense in V . In other words, suppose W ⊂ V
is a proper Zariski closed subvariety. Then for some Q there is a point
(a1, ..., an) ∈ V(Fq) \ W(Fq) such that fi(a1, ...an) = aQ

i , i = 1, ..., n.

We denote by IQ the ideal in Fq[x1, ..., xn] generated by the polynomials
fi(x1, ..., xn) − xQ

i , for i = 1, 2, ..., n.

Lemma 3.3. For a big enough Q the ideal IQ has finite codimension in the
ring Fq[x1, ..xn].
Proof. We compactify An to the projective space Pn in the usual way. We
also projectivize the polynomials fi − xQ

i . If there is a curve in Pn on which
all of these projective polynomials vanish, then it must have some points
on the infinite hyperplane of Pn. But this is impossible if Q is bigger than
the degrees of fi . Thus the scheme of common zeroes is zero-dimensional,
which is equivalent to the ideal IQ having finite codimension (cf. [AM],
Theorem 8.5 and Exercise 8.3). �

One can also prove the above lemma directly, in the spirit of the proof
#2 below.

Lemma 3.4. For all 1 ≤ i ≤ n and j ≥ 1

f ( j)
i (x1, ..., xn) − xQ j

i ∈ IQ .

Proof. We use induction on j. For j = 1 the statement is obvious. Suppose
it is true for some j ≥ 1. Then

f ( j+1)

i (x1, ..., xn) = fi
(

f ( j)
1 , ..., f ( j)

n

) ≡ fi
(
xQ j

1 , ..., xQ j

n

) =
= fi(x1, ..., xn)

Q j ≡ xQ j+1

i (mod IQ). �

The next lemma is the crucial step in the proof.

Lemma 3.5. There exists a number k such that for every quasi-fixed point
(a1, ..., an) with big enough Q and for every 1 ≤ i ≤ n the polynomial

(
f (n)
i (x1, ..., xn) − f (n)

i (a1, ..., an)
)k

is contained in the localization of IQ at (a1, ..., an).

Proof. Let us fix i from 1 to n. The polynomials xi, fi, f (2)
i , ..., f (n)

i are
algebraically dependent over Fq. This means that

∑

s

as · (xi)
α0,s · ( fi)

α1,s · ... · (
f (n)
i

)αn,s = 0 (3.2)
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with some non-zero as ∈ Fq. By Lemma 3.4 the polynomial in the left hand
side of (3.2) is congruent modulo IQ to

PQ(xi) =
∑

s

as · xαs
i ,

where αs =
n∑

j=0
α j,s Q j . For big enough Q, the polynomial PQ is non-zero.

For any (a1, ...an) we rewrite PQ(xi) as
∑

t
bt · (xi − ai)

βt .

So in the local ring of (a1, ..., an), the polynomial PQ(xi) is equal to

(xi − ai)
β · u,

where u is invertible and β ≤ max βt . Clearly, max βt is bounded by kQn for
some k that does not depend on Q, a1, ..., an . Denote by I (a1,...,an)

Q the local-
ization of IQ in the local ring of (a1, ..., an). Then by (3.2) (xi − ai)

kQn ≡ 0
(mod I (a1,...,an)

Q ). Now we note that

f (n)
i (x1, ..., xn) − f (n)

i (a1, ..., an) =
= f (n)

i (x1, ..., xn) − aQn

i ≡ xQn

i − aQn

i = (xi − ai)
Qn(

mod I (a1,...,an)
Q

)
.

�

Let us fix some polynomial D with the coefficients in a finite extension
of Fq such that it vanishes on W but not on V . By base change we will
assume that all coefficients of D are in Fq.

Lemma 3.6. There exists a positive integer K such that for all quasi-fixed
points (a1, ..., an) ∈ W with big enough Q we get

(
D

(
f (n)
1 (x1, ..., xn), ..., f (n)

n (x1, ..., xn)
))K ≡ 0

(
mod I (a1,...,an)

Q

)
.

Proof. For every (a1, ..., an) ∈ W we can rewrite D(x1, ..., xn) as a poly-
nomial in xi −aQn

i . This polynomial has no free term because D vanishes on
W and (a1, ..., an) ∈ W by the assumption. The number of non-zero terms
of D is bounded independently of ai and Q by some number N. Then by
the binomial formula and Lemma 3.5 we can take K = N(k − 1)+ 1 where
k is the constant from Lemma 3.5. �

The polynomial P = (D( f (n)
1 (x1, ..., xn), ..., f (n)

n (x1, ..., xn)))
K is non-

zero because D does not vanish on the whole U and the map Φ is dominant
on U . We now complete the proof of Theorem 3.2.

In fact we give two proofs. The first one uses the Bezout theorem, while
the second one is elementary and self-contained.
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Proof #1. We denote by Z the subscheme of An that corresponds to P.
Note that Z does not depend on Q. Now for every Q consider the Fq−linear
subspace of polynomials spanned by fi − xQ

i , 1 ≤ i ≤ n. By Lemma 3.3
its base locus is zero-dimensional, i.e. these polynomials do not vanish
simultaneously on any curve. The scheme Z is of pure dimension (n − 1).
A general element τ1 of the above linear subspace does not vanish at any
of the irreducible components of Z, or their positive-dimensional intersec-
tions. So its scheme of zeroes intersects Z properly, the intersection Z1 has
pure dimension (n − 2). Then we choose τ2 that intersects Z1 properly to
get Z2, and so on. After choosing (n −1) elements τ1, τ2, ..., τn−1 we get an
ideal I ′

Q〈Dk, τ1, τ2, ..., τn−1〉 of finite codimension. After localization at any
(a1, ...an) ∈ W this ideal is contained in IQ. By Bezout theorem (cf., e.g.
[Ful]) ) the codimension of I ′

Q is equal to const · Qn−1. But the codimension
of IQ is equal to Qn, which is bigger for big enough Q. This implies the
existence of quasi-fixed points in V \ W. �
Proof #2. This proof is elementary. Though it may appear to be longer than
Proof #1, it bypasses a lot of the intersection theory that is hidden there
in the reference to the Bezout theorem. Our main object will be the ring
R = Fq[x1, ..xn], where Fq is the algebraic closure of Fq. Fix Q = qi such
that it is bigger than the degrees of fi and P. By Lemma 3.1 all points with
Φ(x) = xQ belong to V . We want to prove that some of them do not belong
to W .

We suppose that they all do, and we are going to derive a contradiction.
First of all, we claim that in this case P lies in the localizations of IQ
with respect to all maximal ideals of R. Indeed, the localization of IQ with
respect to the maximal ideal of a point not satisfying Φ(x) = xQ is the
whole ring. And all the localizations at the points satisfying Φ(x) = xQ are
handled by Lemma 3.6.

This implies that P ∈ IQ . This is essentially contained in [AM], Propo-
sition 3.8, but here is a direct argument. For every maximal ideal M of R
there is an element u not in M such that u · P ∈ IQ. Consider the ideal
IQ : P. It consists of all elements u ∈ R such that u · P ∈ IQ. Since it is not
contained in any maximal ideal of R, it must be the whole R. In particular,
it contains the identity, which means that P ∈ IQ.

This means that there exist polynomials u1, ...un in R such that

P =
n∑

i=1

ui · (
fi − xQ

i

)
. (3.3)

The system of polynomials u1, ..., un as above is not unique. In fact, we can
always modify it as follows. For every i < j and every polynomial A, we
can add A( f j − xQ

j ) to ui and subtract A( fi − xQ
i ) from u j . We are going

to use this to get a system with the following property:
(*) For every i < j the degree of xi in every monomial in u j is smaller

than Q.
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Here is how we can do it. Suppose that for some i < j there is a monomial
in u j with the degree of xi being at least Q. That is, u j = ... + c · xa1

1 · ... ·
xai+Q

i · ... · xan
n + ..., where al ≥ 0 for all l. Then we can replace the system

(u1, ..., ui, ..., u j , ..., un) by the following system
(
u1, ..., ui − c · xa1

1 · ... · xai
i · ... · xan

n

(
f j − xQ

j

)
, ...,

u j + c · xa1
1 · ... · xai

i · ... · xan
n

(
fi − xQ

i

)
, ..., xn

)
.

Because Q > deg fl for all l, by repeating this procedure a finite number
of times for j = n we get a system (u1, ..., un) such that for all i ≤ (n − 1)
the degree of un with respect to xi is less than Q. Then we do the same
for j = (n − 1), (n − 2), and so on. As a result we get a system satisfying
property (*). From now on, this is going to be our system. We look at
a monomial of the highest total degree among all the monomials in all
the ui, i = 1, ..., n. Suppose it belongs to u j and equals cxa1

1 ...xan
n . Then

the right hand side of the equation (3.3) contains (after multiplying out)
the monomial M = −cxa1

1 ...x
a j+Q
j ...xan

n . All monomials of the left hand
side have smaller total degree because Q > deg P. So there must be another
monomial, M′, on the right hand side with the same degrees for all variables.
Because we chose the monomial of the highest total degree, and Q > deg fl

for all l, the monomial M′ must also be of the form c′xa′
1

1 ...x
a′

n
n · xQ

i , for some
i �= j.

If i < j then the degree of xi on M′ is at least Q, while the degree of
xi in M is less than Q by the property (*) of the system (u1, ..un). If j < i
then the degree of x j in M is at least Q while the degree of x j in M′ is
less than Q. So in both cases we have a contradiction which completes the
proof. �

4. Extendable endomorphisms of linear groups, and some open
problems

Recall that a profinite group is, by definition, a projective limit of finite
groups.

Definition 4.1. Let G be a residually finite group, φ be an endomorphism
of G. We say that φ is extendable if there exists a profinite group Ḡ contain-
ing G as a dense subgroup, and a (continuous) automorphism φ̄ of Ḡ such
that φ is the restriction of φ̄ on G.

Notice that even if φ is injective and continuous in a profinite topology
of G, its (unique) extension to the corresponding completion of G may not
be injective. Injective endomorphisms of free groups that have injective ex-
tensions in p-adic (resp. pro-solvable, and many other profinite) topologies
of a free group are completely described in [CSW].

There is a close connection between extendable endomorphisms and
residually finite HNN extensions.
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Theorem 4.2. An injective endomorphism φ of a residually finite group G
is extendable if and only if HNNφ(G) is residually finite.

Proof. Suppose that P = HNNφ(G) is residually finite. Let Ψ be the set
of all homomorphisms of P onto finite groups, Ψ′ be the set of all restric-
tions of homomorphisms from Ψ to G. Let T be the smallest profinite
topology on G for which all the homomorphisms from Ψ′ are continuous.
The base of neighborhoods of 1 for T is formed by the kernels of all the
homomorphisms from Ψ′.

It is easy to see that for every ψ ∈ Ψ′, the homomorphism φψ (φ acts
first) is also in Ψ′. Therefore the endomorphism φ is continuous in the top-
ology T . Let Ḡ be the profinite completion of G with respect to T , and let
φ̄ be the (unique) continuous extension of φ onto Ḡ. Let us prove that φ̄ is
an automorphism of Ḡ.

Suppose that φ̄ is not injective. This means that there is a sequence of
elements wi , i ≥ 1, in G such that wi do not converge to 1 in Ḡ but φ(wi)
converge to 1. The latter means that there exists a sequence of subgroups
Ni = Ker(ψi) ⊂ P, ψi ∈ Ψ, such that ∩Ni = {1}, φ(wi) ∈ Ni , i ≥ 1.

Notice that by definition of P = HNNφ(G), φ(wi)Ni is a conjugate of
wi Ni in P/Ni (the conjugating element is tNi where t is the free letter of
the HNN extension). Thus we can conclude that wi ∈ Ni , i ≥ 1. Hence
wi → 1 in T , a contradiction. Therefore φ̄ is injective.

Let us prove that φ̄ is surjective. Consider a Cauchy sequence w =
{wi, i ≥ 1} in G, that is suppose there exist Ni = Ker(ψi), ψi ∈ Ψ, i ≥ 1,
such that ∩Ni = {1} and w−1

i w j ∈ Ni for every j > i.
For every x ∈ G we have φ(x)Ni = txt−1 Ni , and P/Ni is finite. So φ

induces an automorphism in G/(Ni ∩G). Hence for every i ≥ 1, we can find
an element ui in G such that φ(ui)Ni = wi Ni . Moreover since w−1

i w j ∈ Ni

for all j > i, u−1
i u j ∈ Ni as well. Therefore {ui, i ≥ i} is a Cauchy sequence

and φ̄(u) = w. Thus φ̄ is an automorphism of Ḡ. Notice that since Ḡ is
compact, φ−1 is also continuous.

Suppose now that φ can be extended to a continuous automorphism φ̄

of a profinite group Ḡ ≥ G. Let w �= 1 ∈ G. Notice that for every w ∈ G,
φ̄(w) = φ(w). Therefore there exists a homomorphism θ from P to the
semidirect product Ḡ � 〈φ̄〉 which is identity on G and sends t to φ̄. This
homomorphism is clearly injective: it is easy to check that no non-trivial
element tkwtl can lie in the kernel of θ. It remains to prove that Ḡ � 〈φ̄〉
is residually finite. But that can be done exactly as in the case of split ex-
tensions of finitely generated residually finite groups [Mal2]. Indeed, since
Ḡ is finitely generated as a profinite group, it has only finitely many open
subgroups of any given (finite) index, and the automorphism φ̄ permutes
these subgroups. Hence φ̄ leaves invariant their intersection which also is
of finite index. Therefore Ḡ � 〈φ〉 is residually finite-by-cyclic, so G � 〈φ〉
is residually finite. �
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Theorems 1.6 and 4.2 immediately imply:

Corollary 4.3. Every injective endomorphism of a finitely generated linear
group is extendable.

Finally let us mention two open problems.

Problem 4.4. Let φ and ψ be two injective endomorphisms of the free
group Fk = 〈x1, ..., xk〉. Consider the corresponding HNN extension of Fk
with two free letters t, u:

HNNφ,ψ(Fk) =
= 〈

x1, ..., xk, t, u | txi t
−1 = φ(xi), uxiu

−1 = ψ(xi), 1 ≤ i ≤ k
〉
.

Is HNNφ,ψ(Fk) always residually finite?

We believe that the answer is negative in a very strong sense: the groups
HNNφ,ψ should be generically non-residually finite. Since many of these
groups are hyperbolic, this may provide a way to construct hyperbolic non-
residually finite groups.

The next question is natural to ask for any residually finite groups.

Problem 4.5. Are mapping tori of generic free group endomorphisms non-
linear?

Notice that not all mapping tori of free groups are linear [DS] and we
conjecture that the answer to Problem 4.5 is positive for an appropriate
choice of the meaning of the word “generic”. It is easy to extract from our
proof that the mapping torus of a linear group endomorphism is embeddable
into the wreath product of a linear group and the infinite cyclic group. Notice
that this wreath product is not even residually finite.
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