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1. Introduction

Many classical problems in geometry and analysis involve the gluing to-
gether of local information to produce a coherent global picture. Inevitably,
the difficulty of such a procedure lies at the local boundary, where overlap-
ping views of the same locality must somehow be merged. It is therefore
desirable that the boundaries be “smooth,” allowing a graceful transition
from one viewpoint to the next. For instance, one may point to Whitney’s
use of partitions of unity in studying what is now known as the Whitney
extension problem [37,38].

In the present work, we consider what is perhaps the most basic Whitney-
type extension problem, that of extending a Lipschitz function so that it
remains Lipschitz. Often such a map is extended by first producing a cover
of the new domain, extending the mapping locally, and then gluing together
the individual pieces. Our main observation is that in many cases, if one
chooses a random cover from the right distribution, the boundary can be
made “smooth” on average, even when the local maps are individually quite
coarse. This insight leads to the unification, generalization, and improve-
ment of many known results, as well as to new results for many interesting
spaces.

� Work partially supported by NSF grant CCR-0121555 and an NSF Graduate Research
Fellowship. The majority of this work was completed while the author was an intern at
Microsoft Research, Redmond, WA.
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1.1. The Lipschitz extension problem

Let (Y, dY ), (Z, dZ ) be metric spaces, and for every X ⊆ Y , denote by
e(X, Y, Z) the infimum over all constants K such that every Lipschitz
function f : X → Z can be extended to a function f̃ : Y → Z satisfying
‖ f̃ ‖Lip ≤ K‖ f ‖Lip. (If no such K exists, we set e(X, Y, Z) = ∞). We
also define e(Y, Z) = sup{e(X, Y, Z) : X ⊆ Y } and for every integer n,
en(Y, Z) = sup{e(X, Y, Z) : X ⊆ Y, |X| ≤ n}.

Estimating e(Y, Z) is a classical and fundamental problem that has at-
tracted a lot of attention due to its intrinsic interest and applications to
geometry and approximation theory. It is a classical fact that for every met-
ric space Y , e(Y, �∞) = 1, and Kirszbraun’s famous extension theorem [19]
states that whenever H1 and H2 are Hilbert spaces, e(H1, H2) = 1. We refer
to the books [3,36] for a detailed account of the case e(Y, Z) = 1.

Typically, proofs of the fact that e(Y, Z) = 1 involve showing that it is
possible to extend an arbitrary Lipschitz function to an additional point while
preserving the Lipschitz constant. Once this is achieved, the existence of
the required extension follows from Zorn’s lemma. When e(Y, Z) > 1, this
“one point at a time” argument cannot work, since the Lipschitz constant will
deteriorate with each iteration. Hence, in proving “non-isometric” extension
results, one must argue that it is possible to extend Lipschitz functions to
arbitrarily many points at once, and it is therefore not surprising that such
results are more recent.

The following theorem was proved by Marcus and Pisier in [28], via
a probabilistic argument.

Theorem 1.1 (Marcus-Pisier [28]). For every 1 < p < 2 there exists
a constant C(p) such that for every integer n,

en(L p, L2) ≤ C(p) (log n)1/p−1/2.

The Marcus-Pisier theorem initiated the study of the parameter en(·, ·),
and using a different probabilistic argument, Johnson and Lindenstrauss [17]
subsequently proved the following theorem.

Theorem 1.2 (Johnson-Lindenstrauss [17]). For every metric space Y
and every integer n,

en(Y, L2) ≤ 2
√

log n.

In [17], it was also shown that Theorem 1.1 and Theorem 1.2 are
almost optimal, in the sense that, for every 1 ≤ p < 2, en(L p, L2) ≥
C(p)

( log n
log log n

)1/p−1/2
.

In [18] Johnson, Lindenstrauss and Schechtman studied the case when
the target space is an arbitrary Banach space, proving the following two
theorems.
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Theorem 1.3 (Johnson-Lindenstrauss-Schechtman [18]). There exists
a universal constant C such that for every metric space Y, every Banach
space Z and every integer n,

en(Y, Z) ≤ C log n.

Theorem 1.4 (Johnson-Lindenstrauss-Schechtman [18]). There exists
a universal constant C such that for every d-dimensional normed space Y
and every Banach space Z, e(Y, Z) ≤ Cd.

Additionally, Matoušek has shown in [29] that

Theorem 1.5 (Matoušek [29]). There exists a universal constant C such
that for every metric tree T and every Banach space Z, e(T, Z) ≤ C.

In the important paper [1] (which introduced, among other things, the
notion of Markov type), K. Ball has shown that for every 1 < p < 2,
e(L2, L p) ≤ 6√

p−1
. More recently Tsar’kov [35] proved that for every

2 < p < ∞, e(L p, L2) ≤ C(p) < ∞ and the second named author proved
in [31] that in the same range of p, e(L2, L p) = ∞. A quantitative version
of the last result is discussed in the next section.

The extension problem when the target space Z is not linear (e.g.
Hadamard manifolds) has also received a lot of attention. We deal with
this problem in Sect. 1.3 below.

1.2. Absolute Lipschitz extendability

We return to these old problems with the new perspective made possible by
recent advances in combinatorics and theoretical computer science. Often
in theoretical computer science, one needs to analyze data with an inherent
metric structure (e.g. graphs). A technique developed over the past decade to
handle such problems can be referred to as the method of stochastic metric
decomposition. The basic idea is that given a metric space X, one constructs
a distribution over partitions of X with certain desirable properties. For
example, one often requires that each set in the partition has small diameter
and yet, in expectation, that every point is “far from the boundary” of the
partition. Variants of this approach have appeared in numerous contexts;
see for instance [27,20,2].

We offer a new approach to extension problems by showing that one can
pass from a stochastic decomposition to a “well-behaved” partition of unity
which, in turn, can be used to extend Lipschitz functions in such a way that
we have control on the growth of the Lipschitz constant. This allows us to
obtain simple proofs of many of the extension theorems stated above, and
more importantly, to obtain new extension theorems which, in some cases,
are significant generalizations of the above results.

Additionally, we observe a new phenomenon underlying some of the
previous results which we refer to as absolute extendability – the notion
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that for some spaces X, Lipschitz functions f from X into any Banach
space Z can be extended to any containing space Y ⊇ X, where the loss
in the Lipschitz constant is independent of Y , Z, and f , and thus depends
only on X. To this end, let us define, for a metric space X, the absolute
extendability constant ae(X) by

ae(X) = sup{e(X, Y, Z) : Y ⊇ X, Z a Banach space}.
If ae(X) < ∞, we say that X is absolutely extendable. Additionally, for
a family of metric spaces M, let us define ae(M) = supX∈M ae(X) to be
a uniform bound on the extendability of metrics in M. As far as we are
aware, the only previously known families of absolutely extendable metrics
had such a property for a “trivial” reason; these are the cases when X is an
absolute Lipschitz retract or when the family M consists of finite metrics of
uniformly bounded cardinality (it is not to difficult to see that Theorem 1.3
is true when log n is replaced by n). We now turn to our results, some of
which have been announced in [25].

Recall that the doubling constant (see, e.g. [15]) of a metric space X,
denoted λ(X), is the infimum over all numbers λ such that every ball in X
can be covered by λ balls of half the radius. When λ(X) < ∞, one says
that X is doubling. Applying our approach to the stochastic decomposition
of [14] yields the following result.

Theorem 1.6. There exists a universal constant C > 0 such that

ae(X) ≤ C log λ(X).

Since log λ(X) = O(log n) for any n-point metric space X, and log λ(X)
= O(d) whenever X is a subset of some d-dimensional normed space,
Theorem 1.6 unifies and generalizes Theorems 1.3 and 1.4. Moreover, it
is interesting to note that, unlike Theorem 1.4, Theorem 1.6 only assumes
a bound on the dimension of some normed space containing X, while Y is
allowed to be arbitrary. The proof of Theorem 1.4 in [18] cannot be used
to obtain such a result, since their proof uses nets in the complement of X.
Techniques used in the proof of the above theorem also allow one to extend
Lipschitz functions to neighborhoods of subsets of manifolds of negative
curvature using an estimate of Bishop (see Corollary 3.13 in Sect. 3.2).

Our next theorem provides a significant generalization of Theorem 1.5.
Let G = (V, E) be a countable graph with edge weights in [0,∞]. Denote
by Σ(G) the one-dimensional simplicial complex that arises from G by
replacing every edge e of G by an interval whose length is equal to the
weight of e. Note that Σ(G) has a natural Riemannian metric structure and
that the shortest path metric on G occurs as a submetric. For a family of
metric spaces M, define M = {(X, d) : X ⊆ Y for some (Y, d) ∈ M}, i.e.
the closure of M under taking submetrics. We now define the set of metrics
supported on G by

〈G〉 =
⋃

all weights

Σ(G)
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where the union is taken over all possible weights on edges of G. Finally,
for a family of graphs F , let 〈F 〉 = ⋃

G∈F 〈G〉. Given such a family
of graphs F , one can ask when there exists a constant KF such that,
ae(〈F 〉) ≤ KF . For instance, note that if F is the family of graph-theoretic
trees, then 〈F 〉 is precisely the class of metrics which are a submetric of
a separable metric tree, and such a result would strengthen Theorem 1.5 in
the separable case. We will see momentarily that such a result does follow
and thus implies that a Lipschitz function on any subset of a separable
metric tree can be extended to any superspace with a universally bounded
loss in the Lipschitz constant, while Matoušek’s proof relies heavily on the
fact that the superspace is a tree.

To state the next result, we need to recall the definition of a graph minor.
Namely, consider the following two operations on a graph G = (V, E).

1. Removal of an edge e ∈ E, i.e. moving to the graph G′ = (V, E \ {e}).
2. Contraction of an edge {u, v} ∈ E, yielding the graph G′ = (V ′, E ′),

where V ′ = V \ {u, v} ∪ {v∗} and {s, t} ∈ E ′ precisely when either
(i) {s, t} ∈ E for v∗ /∈ {s, t} or when (ii) s = v∗, t �= v∗, and either
{u, t} ∈ E or {v, t} ∈ E.

When a graph G′ is obtainable from G by a finite sequence of such opera-
tions, G′ is called a minor of G. If a family of graphs F has the property
that G′ ∈ F whenever G ∈ F and G′ is a minor of G, we say that F
is minor-closed. Finally, we say that a graph G excludes Kr if it does not
contain the complete graph on r vertices as a minor. Using the decompos-
ition of [20], along with its stochastic formulation in [32] and a quantitative
improvement due to [10] yields

Theorem 1.7. If a graph G excludes Kr, then ae(〈G〉) ≤ C r2 for some
universal constant C.

In particular, it is not difficult to see that trees are precisely the class of
graphs which exclude K3 as a minor. But the above result provides an even
more significant extension to Theorem 1.5 by showing, for instance, that
the family of planar metrics is absolutely extendable (it is well-known that
every planar graph excludes K5 as a minor).

To see a striking consequence of this result, which is proved in Sect. 5
in conjunction with a deep theorem of Robertson and Seymour [33], let
us restrict ourselves (for the moment) to families of finite graphs and ask
the question, for such a family, when is it that ae(〈F 〉) ≤ KF and when
do we have ae(〈F 〉) = ∞? Clearly if 〈F 〉 contains all finite metrics,
then ae(〈F 〉) = ∞ (see, for instance, the remark after the statement of
Theorem 1.2, which shows that there is no uniform bound for finite subsets
of L1). It happens that this is the only case.

Corollary 1.8. For a family of finite graphs F , ae(〈F 〉) < ∞ if and only
if 〈F 〉 does not contain all finite metrics.
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The techniques used in proving Theorem 1.7 also yield the following
result.

Corollary 1.9. If M is a two-dimensional Riemannian manifold of genus g,
then for every subset X ⊆ M, we have ae(X) ≤ C·(g+1) for some universal
constant C.

We note here that since any n-point metric space is isometrically em-
beddable in a two-dimensional Riemannian manifold of genus O(n3), in
Corollary 1.9, ae(M) must tend to infinity with the genus of M.

Using our approach, together with the stochastic decomposition of [6]
and the improved analysis of [8,9] (which we generalize to arbitrary measur-
able metric spaces in Theorem 3.17), it is possible to obtain an asymptotic
improvement over Theorem 1.3.

Theorem 1.10. There exists a universal constant C such that for every
n-point metric space X,

ae(X) ≤ C
log n

log log n
.

Our techniques, in conjunction with the decomposition of [7], also give
a different kind of improvement to Theorem 1.4 (of a geometric flavor).

Theorem 1.11. For any Banach space Z, e
(
�d

2, Z
) ≤ C

√
d.

It follows that for any normed space Y , we have

e(Y, Z) ≤ C
√

d · dist
(
Y, �d

2

)
,

where dist is the Banach-Mazur distance. In particular, when Y is a d-dimen-
sional normed space, John’s theorem [16] implies that e(Y, Z) ≤ C ·d. When
Y is closer to a Hilbert space, improved bounds are achieved.

Finally, in the case when Y is an L p space and 1 < p ≤ 2, we obtain
the following estimate for finite subsets.

Theorem 1.12. For every 1 < p ≤ 2 there exits a constant C(p) such that
for every integer n and every Banach space Z,

en(L p, Z) ≤ C(p) (log n)1/p.

The case p = 2 in Theorem 1.12 may be viewed as a “dual” to Theo-
rem 1.2.

It has been asked in [18] whether en(L2, Z) is bounded for every Ba-
nach space Z. Since in [31] it was shown by the second named author
that for 2 < p < ∞, e(L2, L p) = ∞, it follows that the answer to this
question is negative (this fact was overlooked in [31]). Since en(L2, L2) =
en(L2, L∞) = 1, it is of interest to give quantitative lower bounds on
en(L2, L p) for 2 < p < ∞. We therefore analyze the proof in [31] and
obtain the following lower bound.
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Lemma 1.13. For every integer n and every 2 < p < ∞,

en(L2, L p) ≥ C

(
log n

log log n

) p−2
p2

,

where C is a universal constant.

1.3. Lipschitz functions which take values in a barycentric metric space

In recent years there has been considerable effort to obtain extension theo-
rems for Lipschitz functions which take values in spaces which are not
Banach spaces. A generalization of Kirszbraun’s extension theorem to met-
ric spaces with certain curvature bounds was proved by Lang and Schroeder
in [24]. The problem of estimating e(X, Y, Z) when Z is the hyperbolic
space Hn arose in the context of geometric group theory. This problem
was posed by Gromov in [11] and has been subsequently studied by Lang,
Pavlović and Schroeder in [23]. We refer to [5,23,24] and the references
therein for a selection of related results.

Since our approach to the extension problem is based on a random
construction and an averaging argument, it is most natural to present it
in the context of Banach spaces (as in this case taking expectation has
a concrete meaning). However, our methods generalize to a wider class of
target spaces which encompasses, for example, the spaces considered by
Lang, Pavlović and Schroeder in [23]. The basic idea is that instead of taking
expectations, we need to require that every compactly supported measure
on the target space Z has a barycenter, and that the map which assigns to
each measure its barycenter is Lipschitz continuous. A similar notion was
introduced by Gromov in [13] (see also [34]). It will be instructive to begin
by presenting the definition of Gromov codiffusion spaces from [13,34].
For a metric space Z let MZ be the set of all regular Borel probability
measures on X, topologized with the total variation norm ‖ · ‖TV . A random
walk, or a diffusion, on Z is a continuous map µ : Z → MZ . A codiffusion
on Z is a continuous map c : M → Z defined on a convex subset M ⊆ MZ
containing all the Dirac measures δz such that c(δz) = z for every z ∈ Z and
such that c−1(z) is convex for every z ∈ Z. The notion of a codiffusion is
close to what we need, except that in the context of the Lipschitz extension
problem it is natural to require that c is not only continuous, but also satisfies
a certain Lipschitz condition, described in the following definition.

Definition 1.14 (Barycentric metric space). For a metric space Z let
Mbounded

Z be the set of all regular Borel probability measures on Z with
bounded support. We shall say that Z is barycentric if there exists a constant
β > 0 and a map c : Mbounded

Z → Z such that c(δz) = z for every z ∈ Z and
for every µ, ν ∈ Mbounded

Z ,

dZ(c(µ), c(ν)) ≤ β · diam(supp(µ + ν)) · ‖µ − ν‖TV . (1)
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The least constant β for which there exists such a mapping c is denoted
β(Z). When β(Z) ≤ β we say that Z is β-barycentric.

If Z is a Banach space then β(Z) = 1. Indeed, for µ ∈ Mbounded
Z we

define c(µ) to be the usual “center of mass”
∫

Z xdµ(x). Barycentric met-
ric spaces need not, however, be linear. Examples of barycentric spaces
are Hadamard spaces, i.e. complete geodesic metric spaces satisfying the
CAT(0) comparison inequality of Alexandrov-Toponogov (see [23]). This
class of spaces includes Hadamard manifolds, i.e. complete, simply con-
nected Riemannian manifolds of nonpositive sectional curvature and is
closed under taking products and gluing along closed convex subsets. If
Z is a Hadamard space and µ ∈ Mbounded

Z then c(µ) is defined as the
unique minimizer of the function z �→ ∫

Z d(y, z)2dµ(y). The existence and
uniqueness of c(µ), as well as the fact that this map satisfies the barycentric
condition (1) with β = 1 are proved in Sect. 4 of [23].

Most of the results presented above (namely Theorem 1.6, Theorem 1.7,
Corollary 1.8, Corollary 1.9, Theorem 1.11 and Theorem 1.12) transfer to
the case when the target space Z is allowed to be any complete barycentric
metric space, the only difference being that when Z is β-barycentric, the
estimates for the Lipschitz constant of the extended function are multiplied
by β. Our proof of Theorem 1.10 does not seem to admit such a gener-
alization – this issue is briefly discussed in Appendix 6. We present our
results first for the case of linear Z, and in Appendix 6 we explain the sim-
ple modifications required to transfer them to arbitrary barycentric target
spaces.

1.4. Some open problems

We end this introduction by recalling some related problems which remain
open. In [1], K. Ball asked whether e(L2, L1) is finite or infinite. Similarly,
it is not known whether for 2 < p < ∞ and 1 < q < 2, e(L p, Lq) < ∞.
The second problem will be answered affirmatively if Ball’s Markov type 2
problem [1] is resolved positively. Finally, it is not known whether, for
every metric space X and every normed space Z, en(X, Z) = O(

√
log n).

All known lower bounds fail to beat the “
√

log n barrier.”
The flexibility of our approach suggests that it could be applied to other

extension problems. For example, the extendability of large scale Lipschitz
maps (studied in [22]), Hölder maps (studied in [31]) and uniformly con-
tinuous maps (studied in [4]) are all of great interest. It is also interesting to
study the applicability of the random method presented in this paper to the
higher order Whitney extension problem.

Acknowledgements. We are grateful to Misha Gromov for his support and many helpful
suggestions. Specifically, we thank him for suggesting that we look at codiffusion spaces.
We also thank Yuval Peres for several useful discussions.
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2. Gentle partitions of unity

Let (Y, d) be a metric space, X a subspace of Y and (Ω,F , µ) a measure
space. Given K > 0 we shall say that a function Ψ : Ω × Y → [0,∞) is
a K-gentle partition of unity with respect to X if the following conditions
hold true:

1. For every x ∈ Y \ X the function ω �→ Ψ(ω, x) is measurable and∫
Ω

Ψ(ω, x)dµ(ω) = 1.
2. For every ω ∈ Ω and x ∈ X, Ψ(ω, x) = 0.
3. There exists a Borel measurable function γ : Ω → X such that for every

x, y ∈ Y ,
∫

Ω

d(γ(ω), x) · |Ψ(ω, x) − Ψ(ω, y)| dµ(ω) ≤ Kd(x, y).

If in condition (1) above, we require that for all x ∈ Y the set {ω ∈ Ω :
Ψ(ω, x) > 0} is finite, we shall say the partition of unity Ψ is locally finite.

Lemma 2.1. Let (Y, d) be a metric space and X a subspace of Y . Fix K ≥ 1
and assume that Y admits a K-gentle partition of unity Ψ : Ω×Y → [0,∞)
with respect to X. Let C be a closed convex set in some Banach space Z. If Ψ
is locally finite or if X is separable, then every Lipschitz function f : X → C
can be extended to a function f̃ : Y → C such that || f̃ ||Lip ≤ 3K || f ||Lip.
Furthermore, the extension depends linearly and continuously on f .

Proof. The completeness of C implies that f can be extended to the closure
of X with the same Lipschitz constant, so we may assume without loss of
generality that X is closed. Let γ : Ω → T be as in condition (3) above. If
Ψ is locally finite, then all integrals appearing below reduce to finite sums,
and we may ignore measurability issues. Thus we now assume that X is
closed and separable.

In what follows we refer to [3] for the basic facts on Bochner integration
which we use. Since X is separable we may assume that Z is separable.
In this case, Pettis’ measurability lemma implies that for every y ∈ Y the
function ω �→ f(γ(ω))Ψ(ω, y) is Bochner measurable. Moreover, for every
x ∈ X,

∫

Ω

‖ f(γ(ω))‖Ψ(ω, y)dµ(ω)

≤
∫

Ω

(‖ f(γ(ω)) − f(x)‖ + ‖ f(x)‖)Ψ(ω, y)dµ(ω)

≤ ‖ f ‖Lip ·
∫

Ω

d(γ(ω), x) · |Ψ(ω, x) − Ψ(ω, y)|dµ(ω) + ‖ f(x)‖
≤ ‖ f ‖Lip · Kd(x, y) + ‖ f(x)‖ < ∞,

where in the second line above we have used the fact that Ψ(ω, x) = 0. Since
C is closed, it follows that the Bochner integral

∫
Ω

f(γ(ω))Ψ(ω, y) dµ(ω)
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is a well-defined element of C. We can therefore define, for x ∈ Y,

f̃ (x) =
{∫

Ω
f(γ(ω))Ψ(ω, x) dµ(ω) x ∈ Y \ X,

f(x) x ∈ X.
(2)

Clearly f̃ is an extension of f . To check the Lipschitz condition, take
x ∈ Y and y ∈ Y \ X. Fix z ∈ X such that d(x, z) ≤ 2 d(x, X), and observe
that

f̃ (y) − f̃ (x) =
∫

Ω

[
f(γ(ω)) − f(z)

] · [Ψ(ω, y) − Ψ(ω, x)
]

dµ(ω).

Indeed, this is obviously true if x, y ∈ Y \ X, while if x ∈ X then neces-
sarily x = z, and the required identity follows from (2) and the fact that
Ψ(ω, z) ≡ 0.

Now,

|| f̃ (x) − f̃ (y)||
≤ ‖ f ‖Lip

∫

Ω

d(γ(ω), z) · |Ψ(ω, x) − Ψ(ω, y)|dµ(ω)

≤ ‖ f ‖Lip

∫

Ω

[
d(γ(ω), x) + d(x, z)

] · |Ψ(ω, x) − Ψ(ω, y)|dµ(ω)

≤ 3‖ f ‖Lip

∫

Ω

d(γ(ω), x) · |Ψ(ω, x) − Ψ(ω, y)|dµ(ω)≤3K · ‖ f ‖Lip d(x, y).

��

3. Stochastic metric decomposition

In this section, we introduce various notions of “well-behaved” random
(pointed) partitions of a metric space and show that they exist in several
important cases. Section 4 establishes that such decompositions imply the
existence of gentle partitions of unity.

3.1. Well-behaved decompositions

In what follows, we use the convention that the distance from a point in
a metric space to the empty set is ∞.

Definition 3.1 (Stochastic decomposition). Let (Y, d) be a metric space
and X a subspace of Y . We shall say that (Ω, µ, {Γi (·), γ i(·)}i∈I ) is a stochas-
tic decomposition of Y with respect to X if I is some index set, (Ω, µ) is
a probability space, for every ω ∈ Ω, {Γi(ω)}i∈I is a partition of Y into Borel
subsets and for every x ∈ Y the set {i ∈ I : ∃ω ∈ Ω such that x ∈ Γi(ω)} is
countable. We assume that for every i ∈ I , γ i : Ω → X is a Borel measur-
able function such that for every ω ∈ Ω, d(γ i(ω),Γi(ω)) < 2d(X,Γi(ω)).
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Finally, we require that for every x ∈ Y and i ∈ I the set {ω ∈ Ω :
x ∈ Γi(ω)} is measurable.

If {{Γi(ω)}i∈I : ω ∈ Ω} ranges over only a finite number of partitions
of Y we shall say that the decomposition (Ω, µ, {Γi(·), γ i(·)}i∈I ) is finitely
supported.

Definition 3.2 (Bounded decomposition). Let (Ω, µ, {Γi(·), γ i(·)}i∈I ) be
a stochastic decomposition of Y with respect to X and ∆ > 0. We say that
it is ∆-bounded if for every ω ∈ Ω and i ∈ I , diam(Γi(ω)) ≤ ∆.

Definition 3.3 (Padded decomposition). Let (Ω, µ, {Γi(·), γ i(·)}i∈I ) be a
∆-bounded stochastic decomposition of Y with respect to X and ε, δ > 0.
We say that it is (ε, δ)-padded if for every x ∈ Y and i ∈ I the function
ω �→ d(x, Y \ Γi(ω)) is measurable and if d(x, X) ≤ ε∆ then

µ

(
⋃

i∈I

{
ω : d

(
x, Y \ Γi(ω)

) ≥ ε∆
}
)

≥ δ.

Observe that the assumptions in Definition 3.1 imply that the above union
is countable. Also note that the notion of (ε, δ)-padded decomposition im-
plicitly depends on ∆, but this will not cause any confusion in what follows
since we always state explicitly that the decomposition is ∆-bounded.

Remark 3.4. Note that when Y is countable, the requirement the function
ω �→ d(x, Y \Γi(ω)) is measurable is redundant (i.e. it is enough to demand
that {ω ∈ Ω : x ∈ Γi(ω)} is measurable). Indeed, for every ρ > 0,

{
ω ∈ Ω : d

(
x, Y \ Γi(ω)

)
< ρ

} =
⋃

y∈B◦(x,ρ)

{ω ∈ Ω : y /∈ Γi(ω)}.

This observation is useful since if we are interested in extending Lip-
schitz functions from a closed subset X of a separable space Y then it is
enough to restrict our attention to the case when Y is countable. Indeed, let
f : X → Z be a Banach space-valued Lipschitz function and S ⊆ X,
T ⊆ Y be countable dense subsets in X and Y \ X, respectively. Clearly S
is closed in S ∪ T and if we extend f |S to a Lipschitz function defined on
S ∪ T then we may pass to the closure and obtain the required extension
without further loss in the Lipschitz constant.

Definition 3.5 (Thick decomposition). Let (Ω, µ, {Γi(·), γ i(·)}i∈I ) be a
∆-bounded stochastic decomposition of Y with respect to X and ε, δ > 0.
We say that it is (ε, δ)-thick if for every x ∈ Y and i ∈ I the function
ω �→ d(x, Y \ Γi(ω)) is measurable and if d(x, X) ≤ ε∆ then

∫

Ω

∑

i∈I

min
{
d
(
x, Y \ Γi(ω)

)
,∆
}

dµ(ω) ≥ δ∆.

Observe that since {Γi(ω)}∞
i=1 is a partition of X, the above sum contains

only one element.
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Remark 3.6. Observe that if (Ω, µ, {Γi(·), γ i(·)}i∈I ) is (ε, δ)-padded then
it is also (ε, εδ)-thick.

Definition 3.7 (Separating decomposition). Let (Ω, µ, {Γi(·), γ i(·)}i∈I )
be a ∆-bounded stochastic decomposition of Y with respect to X and
ε, δ > 0. We say that it is (ε, δ)-separating if for every x, y ∈ Y such
that d({x, y}, X) ≤ ε∆,

∫

Ω

∑

i∈I

|1Γi (ω)(x) − 1Γi (ω)(y)| dµ(ω) ≤ 2d(x, y)

δ∆
.

The next lemma simply states that for a metric space (Y, d) and an
arbitrary closed subspace X, an (ε, δ)-padded decomposition of X (with
respect to itself) can be extended to a (roughly) (ε, δ)-padded decomposition
of Y with respect to X. This will make it possible for us to place assumptions
only on X, letting Y be arbitrary.

Lemma 3.8 (Partition extension). Let (Y, d) be a metric space and X
a closed subspace of Y . If X admits a finitely supported (ε, δ)-padded
∆-bounded stochastic decomposition (with respect to itself), then Y ad-
mits a finitely supported

(
ε

16+8ε
, δ
)
-padded

(
1 + ε

2

)
∆-bounded stochastic

decomposition with respect to X.

Proof. Let (Ω, µ, {Γi(·), γ i(·)}i∈I ) be a finitely supported (ε, δ)-padded
∆-bounded stochastic decomposition of X. For every point x ∈ Y , let
tx ∈ X be such that d(x, tx) ≤ 2d(x, X). Now, for every ω ∈ Ω and i ∈ I ,
create a new set

Γ̂i(ω) = Γi(ω)
⋃{

x ∈ Y : d
(
tx, X \ Γi(ω)

) ≥ ε∆

2
and d(x, tx) ≤ ε∆

4

}
.

Finally, for any point x ∈ Y \⋃i∈I Γ̂i(ω), place x in a singleton cluster {x}.
This constitutes a finitely supported distribution over partitions of Y . The
selection function corresponding to Γ̂i(·) is simply chosen to be γ̂ i = γ i ,
while the selection function corresponding to a singleton cluster {x} is an ar-
bitrary point t ∈ X satisfying d(t, x) ≤ 2d(x, X). The various measurability
conditions hold since the decomposition is finitely supported.

Let us now show that the above stochastic decomposition is
(

ε
16 , δ

)
-

padded and
(
1 + ε

2

)
∆-bounded. The

(
1 + ε

2

)
∆-bounded condition is easy;

singleton clusters have diameter zero. For points x, y ∈ Γ̂i(ω), i ∈ I , we
have

d(x, y) ≤ d(x, tx) + d(tx, ty) + d(y, ty)

≤ ε∆

4
+ diam

(
Γi(ω)

)+ ε∆

4
≤
(

1 + ε

2

)
∆.

Fix some x ∈ Y with d(x, X) ≤ ε
16+8ε

(
1 + ε

2

)
∆ = ε∆

16 . By the definition
of padded decompositions, with probability at least δ, d(tx, X \Γi(ω))≥ε∆
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for some i ∈ I . Our goal will be to show that in this case we have
d(x, Y \Γ̂i(ω)) ≥ ε∆

16 , which will complete the proof. Assume to the contrary
that there is some y ∈ Y \ Γ̂i(ω) with d(x, y) ≤ ε∆

16 . Observe that

d(tx, ty) ≤ d(tx, x) + d(x, y) + d(y, ty)

≤ 2d(x, X) + ε∆

16
+ 2 (d(x, X) + d(x, y)) <

ε∆

2
.

Hence,

d
(
ty, X \ Γi(ω)

) ≥ d
(
tx, X \ Γi(ω)

)− d(tx, ty) >
ε∆

2
,

Since we also have that

d(y, ty) ≤ 2d(y, X) ≤ 2d(x, X) + 2d(x, y) ≤ ε∆

4
,

we see that y ∈ Γ̂i(ω), which contradicts the choice of y. ��
Remark 3.9. For later applications, we note that if X is ε∆

32 -dense in Y
and ε < 1, then the above proof shows that Y admits an

(
ε

32 , δ
)
-padded

2∆-bounded stochastic decomposition with respect to itself.

Remark 3.10. Lemma 3.8 holds true when Y is countable and the decom-
position in not necessarily finitely supported (in which case the extended
decomposition is not necessarily finitely supported either). The proof is the
same, and all one has to observe is that in this case the resulting decompos-
ition satisfies the required measurability assumptions.

3.2. Constructions

In this section, we construct stochastic decompositions for various classes
of metric spaces. Most of the constructions come directly from the the-
oretical computer science literature, but since we are dealing here with
infinite spaces, we must be somewhat delicate in placing these finite ran-
dom processes into the appropriate probability spaces and dealing with the
measurability issues that arise. Because of this, some of the constructions
are restated in a form which is different than that in which they originally
appeared.

Let (X, d) be a metric space and R > r > 0. Denote by C(X; R, r) the
largest cardinality of a set N ⊆ X satisfying for every distinct x, y ∈ N,
r ≤ d(x, y) ≤ R. The following result is essentially contained in [14],
though we must deal with a technical issue due to our use of possibly
infinite nets.

Lemma 3.11. For every ∆ > 0, every metric space (X, d) admits an
(
ε, 1

2

)
-

padded ∆-bounded finitely supported stochastic decomposition of X with
respect to itself, where ε = 1

256 log[C(X;2∆,∆/4)].
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Proof. For ease of notation, we construct a 4∆-bounded decomposition.
We may assume that C(X; 8∆,∆) is finite, since otherwise the result holds
vacuously. Let N be a ∆-net of X. First, we need to introduce a distribution
over partial orders ≺ on N such that for every ball B ⊂ X of radius 3∆,
≺ is a uniformly random total order on B ∩ N (note that |B ∩ N| is finite).
To this end, consider the infinite graph G = (N, E) where {x, y} ∈ E if
and only if d(x, y) ≤ 3∆. The degree of G is at most C(X; 6∆,∆) < ∞,
and thus G admits a proper coloring using some finite number of color
classes; call these classes 1, 2, . . . , M. Now let σ be a random permutation
on {1, . . . , M} and let χ : N → {1, . . . , M} be a proper coloring. Finally,
define x ≺ y if and only if σ(χ(x)) < σ(χ(y)). It is easy to see that for a ball
B of radius 3∆, every point in B ∩ N receives a unique color, and thus σ
induces a uniformly random permutation on B. It follows that ≺ satisfies
the desired properties.

Now choose a radius R ∈ [∆, 2∆] uniformly at random. For each y ∈ N,
define a cluster

Cy = {x ∈ X : x ∈ B(y, R) and y ≺ z for all z ∈ N with x ∈ B(z, R)}.
Since N is a ∆-net and R ≥ ∆, P = {Cy}y∈N constitutes a partition of X.
Clearly all the clusters Cy have diameter at most 4∆. Finally, we construct
the required selectors as follows: for y ∈ N let γ y be the minimal element
of N in Cy (with respect to ≺).

Now fix a value t ∈ [0,∆] and some x ∈ X. Let W = B(x, 2∆+ t)∩ N,
and note that m =|W |≤C(X; 6∆,∆). Arrange the points w1, . . . , wm ∈ W
in order of increasing distance from x, and let Ik be the interval [d(x, wk)−t,
d(x, wk) + t]. Let us say that B(x, t) is cut if for some cluster Cwk , Cwk ∩
B(x, t) �= ∅, but B(x, t) � Cwk . Finally, write Ek for the event that wk is the
minimal element in W (according to ≺) for which Cwk cuts B(x, t). Observe
that for every 1 ≤ k ≤ m, Pr[Ek | R ∈ Ik] ≤ 1

k , since we require that in the
uniformly random permutation induced by σ on {w1, . . . , wm}, wk appears
before w1, . . . , wk−1. Now

Pr[B(x, t) is cut] ≤
m∑

k=1

Pr[Ek]

=
m∑

k=1

Pr[R ∈ Ik] · Pr[Ek | R ∈ Ik]

≤
m∑

k=1

2t

∆
· 1

k
≤ 2t

∆
(1 + log m) ≤ 8t

∆
log [C(X; 6∆,∆)] .

Setting t = ∆
64 log[C(X;6∆,∆)] yields the required result. We remark that the

stochastic decomposition can be made finitely supported by choosing R
uniformly from a sufficiently fine mesh in [∆, 2∆]. ��
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Corollary 3.12 (Doubling metrics). Let (X, d) be a doubling metric space.

Then for every ∆ > 0, there exists a
(

1
C log λ(X )

, 1
2

)
-padded ∆-bounded

finitely supported stochastic decomposition of X with respect to itself, where
C is a universal constant.

Proof. This is a direct consequence of Lemma 3.11, since it is evident that
log [C(X; 2∆,∆/4)] = O (log λ(X)). Indeed, let N ⊆ X be a set such
that, for every distinct x, y ∈ N, ∆

4 ≤ d(x, y) ≤ 2∆. Then clearly X is
contained in a ball of radius 2∆ which can be covered by λ(X)4 balls of
radius ∆

8 . Since every such ball contains at most one point of N, we see that
|N| ≤ λ(X)4. ��
Corollary 3.13 (Negatively curved manifolds). Fix r > 0 and let M be
an n-dimensional Riemannian manifold satisfying Ricci(g) ≥ −(n − 1)rg,
where g is the Riemannian metric on M and Ricci(g) is the Ricci cur-
vature of g. Then for any subset A ⊆ M and every ∆ > 0, A admits an(
ε, 1

2

)
-padded ∆-bounded finitely supported stochastic decomposition (with

respect to itself), where ε = c
n(1+√

r∆)
and c is a universal constant.

Proof. Fix 0 < R1 < R2 and x ∈ M. The following inequality is a well
known consequence of Bishop’s inequality (see Lemma 5.3, p. 275 in [12]):

Vol (BM(x, R2))

Vol (BM(x, R1))
≤
∫ R2

0

(
e
√

rt − e−√
rt
)n−1

dt
∫ R1

0

(
e
√

rt − e−√
rt
)n−1

dt
.

By standard arguments it follows that:

log [C(A; 2∆,∆/4)] ≤ log [C(M; 2∆,∆/4)] ≤ O(1 + √
r∆) · n,

so that Lemma 3.11 implies the required result. ��
A strong decomposition for excluded-minor spaces follows from the

(graph) decompositions of [20], and a similar notion was used in [32] to
embed planar metrics into �2. We sketch the argument below.

Lemma 3.14 (Excluded minors). Let G be a graph which does not possess
Kr as a minor, and suppose that X ∈ 〈G〉. Then for every ∆ > 0, X admits
a
(

c
r2 ,

1
2

)
-padded ∆-bounded finitely supported stochastic decomposition

with respect to itself.

Proof. Let G be a weighted graph without a Kr minor such that X ⊆ Σ(G).
Fix some β ∈ (0, 1] and k ∈ N. Consider the distribution µ over partitions
of Σ(G) which arises from the following random process. We decompose
Σ(G) recursively. Let x0 be an arbitrary point of X. Choose now some
u ∈ [0, β∆) uniformly at random and consider, for each n ∈ N ∪ {0}, the
annuli

An = {
x ∈ Σ(G) : (n − 1)β∆ + u ≤ dΣ(G)(x, x0) < nβ∆ + u

}
.
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In general, the sets An may be disconnected in the topology of Σ(G). Let
C denote the set of (disjoint) connected components of the {An}, and apply
the above random process again to each component in C. The process ends
after k such steps, producing a partition P of Σ(G).

In [20], it is shown that for some fixed β = β(r) and k = r, the above
process produces a partition P such that for every C ∈ P, diam(C) ≤ ∆.
Improved quantitative bounds were obtained in [10], yielding β(r) = Ω

(
1
r

)
.

For every partition P and x ∈ X let πP(x) be the maximal r ≥ 0 for
which there exists A ∈ P such that BΣ(G)(x, r) ⊆ A. We claim that for

any x ∈ Σ(G) and every t > 0, Pr[πP(x) ≥ t] ≥ (
1 − 2t

β∆

)k
. To see

this, simply note that the probability of BΣ(G)(x, t) being separated into
two different connected components at any step of the decomposition is at
most 2t

β∆
. Choosing t = Ω

(
∆

r2

)
gives Pr[πP(x) ≥ t] ≥ 1

2 . This random
partition can be modified to have finite support by choosing u uniformly
from a sufficiently fine mesh in [0, β∆), so that Σ(G), and hence also X,
admits the required padded stochastic decomposition. ��
Corollary 3.15 (Surfaces of bounded genus). Let M be a two dimensional
Riemannian manifold with genus g and X ⊆ M. Then for every ∆ > 0,
X admits a

(
c

g+1 , 1
2

)
-padded ∆-bounded finitely supported stochastic decom-

position with respect to itself.

Proof. Let N be an η-net in X. For every x, y ∈ N let �x,y be a minimal
length geodesic joining x and y. Consider the set N ′ ⊇ N obtained from
adding all the points of intersection of the geodesics {�x,y}x,y∈N . Consider
the graph G = (N ′, E), where {u, v} ∈ E if there is some x, y ∈ N
such that u and v are connected by a sub-geodesic � ⊆ �x,y for which
� ∩ N ′ = {u, v}. By construction, the graph G is embedded in M (in the
graph-theoretic sense). It follows (see [30]) that G excludes a KΩ(

√
g+1)

minor. Furthermore, N is isometric to a subset of Σ(G) where the weight
of an edge {u, v} is equal to the length of the sub-geodesic connecting u
and v. Hence N is a KΩ(

√
g+1)-excluded metric, so that the required result

follows from Lemma 3.14 and Remark 3.9 (for η small enough). ��
Optimal decompositions for finite subsets of �d

2 were given in [7]. The
following lemma is based on their techniques.

Lemma 3.16 (Finite dimensional Hilbert space). For any closed subset
X of �d

2 and for every ∆ > 0 there exists a stochastic decomposition of �d
2

with respect to X which is (ε, δ)-separating and ∆-bounded for every ε > 0
and δ = 1

2
√

d
.

Proof. We construct a graph G = (Zd, E) where for u, v ∈ Zd, {u, v} is an
edge if and only if dist

(
u + [0, 1)d, v + [0, 1)d

) ≤ 8∆. As before, the de-
gree of G is uniformly bounded, and thus it admits an M-coloring χ : Zd →
{1, 2, . . . , M} such that χ(u) �= χ(v) whenever dist(u +[0, 1)d, v+[0, 1)d)
≤ 8∆.
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Denote by md the Lebesgue measure on [0, 1]d and by ν the uni-
form probability measure on {1, . . . , M}. Consider the product space Ω =∏∞

i=1([0, 1)d × {1, . . . , M}) equipped with the natural product measure µ.
Given ω = (x1, c1, x2, c2, . . . ) ∈ Ω we construct recursively a sequence of
disjoint subsets of Rd , {Γi,v(ω) : i ∈ N, v ∈ Zd} as follows:

Γk,v(ω) =
{

B2
(
v + xk,

∆
2

) \
(⋃k−1

j=1

⋃
u∈Zd Γ j,u(ω)

)
if χ(v) = ck

∅ otherwise,

where B2(y, ρ) denotes the closed Euclidean ball of radius ρ centered
at y. The sets {Γi,v(ω) : i ∈ N, v ∈ Zd} form a partition of [0, 1)d

with probability one. We claim that there exist measurable maps γ i,v :
Ω → X such that for every ω ∈ Ω, d(γ i,v(ω),Γi,v(ω)) ≤ 2d(X,Γi,v(ω)).
Indeed, by a classical measurable selection theorem of Kuratowski and
Ryll-Nardzewski [21] it is enough to check that for every open ball B ⊆ Rd

the set

{
ω ∈ Ω : B ∩ X ∩ {a ∈ Rd; d

(
a,Γi,v(ω)

) ≤ 2d
(
X,Γi,v(ω)

)} �= ∅}

is measurable, and this fact follows directly from the construction.
The above decomposition is trivially ∆-bounded. Now, fix x, y ∈ Rd.

Since the (ε, δ)-separating condition is trivial for ‖x − y‖2 > ∆/(2
√

d),
assume that ‖x − y‖2 ≤ ∆/(2

√
d). We now bound the probability that x and

y end up in different clusters. It follows from the construction that x and y are
separated in the partition induced by ω = (x1, c1, x2, c2, . . . ) precisely when
there is an index j for which

[
x j + χ−1(c j)

]∩[B2
(
x, ∆

2

) � B2
(
y, ∆

2

)] �= ∅
while

[
xi + χ−1(ci)

]∩ [B2
(
x, ∆

2

) ∩ B2
(
y, ∆

2

)] = ∅ for every i < j. Notice
that since ‖x − y‖2 ≤ ∆, no two cubes from {v + [0, 1)d : v ∈ Zd} which
intersect B2

(
x, ∆

2

)∪B2
(
y, ∆

2

)
have the same color. Denoting by K ⊆ Rd the

union of all the cubes which intersect B2
(
x, ∆

2

)∪ B2
(
y, ∆

2

)
, it follows that

for every Borel measurable A ⊆ K , µ
([xk + χ−1(ck)] ∩ A �= ∅) = Vol(A)

Vol(K )
.

Hence
∫

Ω

∑

i∈I

|1Γi (ω)(x) − 1Γi (ω)(y)|dµ(ω)

= 2µ({x and y are not in the same Γi(ω)})

≤ 2
∞∑

j=1

Vol
(
B2
(
x, ∆

2

)�B2
(
y, ∆

2

))

Vol(K )

[

1 − Vol
(
B2
(
x, ∆

2

) ∩ B2
(
y, ∆

2

))

Vol(K )

] j−1

= 2
Vol

(
B2
(
x, ∆

2

)�B2
(
y, ∆

2

))

Vol
(
B2
(
x, ∆

2

) ∩ B2
(
y, ∆

2

)) = 4

(
∆
2

)d
vd − Vol(A)

Vol(A)
, (3)
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where vd denotes the volume of the d-dimensional unit Euclidean ball and
A = B2

(
x, ∆

2

) ∩ B2
(
y, ∆

2

)
. It is straightforward to verify that

(
∆
2

)d
vd ≤

Vol(A)+‖x−y‖2
(

∆
2

)d−1
vd−1 (draw a picture). It follows that the ratio in (3)

is at most 8‖x−y‖2vd−1/vd
∆−2‖x−y‖2vd−1/vd

≤ 8‖x−y‖2
√

d
∆

, where we have used the standard

estimate vd−1/vd ≤ √
d/2 and our assumption that ‖x − y‖2 ≤ ∆/(2

√
d).

��
Finally, we present a decomposition theorem for general metric spaces Y

with respect to a compact, measurable submetric X. The analysis is based
on ideas from [6] and [9] for finite metrics.

Theorem 3.17. Let (Y, d) be a metric space and X a compact subspace
of Y . If σ is any non-degenerate Borel measure on X (i.e. one which assigns
non-zero measure to every ball in X), then for every ∆ > 0, there exists a
∆-bounded stochastic decomposition of Y with respect to X such that, for
every x, y ∈ Y with d({x, y}, X) < ∆

16 ,
∫

Ω

∑

i∈I

|1Γi (ω)(x) − 1Γi (ω)(y)| dµ(ω)

(4)

≤ 2 d(x, y)

∆

[
1 + log

(
σ(BX(x, 5∆))

σ(BX(x,∆))

)]
.

Proof. Since X is compact, we may assume that σ is a probability measure
on X. Let us then equip the product space Ω′ = ∏∞

i=1 X with the natural
product measure µ′. Finally, let Ω = Ω′ × [2∆, 4∆], equipped with the
probability measure Pr = µ′ × λ, where λ is the normalized Lebesgue
measure on [2∆, 4∆]. Given ω = (x1, x2, x3, . . . ) ∈ Ω′ and some R ∈
[2∆, 4∆], we construct recursively a sequence of disjoint subsets of Y ,
{Γi(ω, R) : i ∈ N} as follows,

Γk(ω, R) = B(xk, R) \



k−1⋃

j=1

Γ j(ω, R)



 .

Let S = {y ∈ Y : d(x, y) < ∆
2 }, then with probability 1, for any R ∈

[2∆, 4∆], the sets {Γi(ω, R) ∩ S}∞
i=1 form a partition of S. To see this, let

N be a ∆
4 -net in X, and consider the balls B(x, ∆

8 ) for x ∈ N. Since σ is
non-degenerate, it assigns any such ball positive measure, and hence with
probability 1, we have x j ∈ B(x,∆/8) for some j ∈ N. Now fix a point
y ∈ Y such that d(y, X) < ∆

2 , and let z ∈ X be such that d(y, z) < 2 d(y, X).
Observe that z is within ∆

4 of some point of N, and hence within 3∆
8 of some

x j with probability 1. But now we see that d(y, x j) ≤ d(y, z) + d(z, x j) <

∆ + 3∆
8 < 2∆, hence y ∈ B(x j, R). It follows that the proposed sets are

indeed a partition of S with probability 1.
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We define the final partition by

{Γi(ω, R)}∞
i=1

⋃
{

{y} : y ∈ Y \
⋃

i∈N
Γi(ω, R)

}

,

and note that the required selectors exist due to an application of the Kura-
towski, Ryll-Nardzewski Theorem as in the proof of Lemma 3.16.

Fix x ∈ Y such that d(x, X) < ∆
2 and denote by ν the distribution of the

random variable z �→ d(z, x), i.e. for 0 ≤ α < β, ν([α, β)) = σ({z ∈ X :
α ≤ d(z, x) < β}). Fix t ≤ ∆ and for every R ∈ [2∆, 4∆] denote by DR
the set of all z ∈ X for which B(z, R) ∩ B(x, t) /∈ {∅, B(x, t)} (when this
happens we say that B(x, t) is cut by B(z, R)). Finally, let

Ωi,R = {ω ∈ Ω′ : ωi ∈ DR} \
i−1⋃

j=1

{ω ∈ Ω′ : ω j ∈ DR}.

Observe that for ω = (ω1, ω2, . . . ) ∈ Ω′, if ω ∈ Ωi,R then the triangle
inequality implies that R ∈ [d(x, ωi) − t, d(x, ωi) + t]. Moreover, if ωi ∈
B(x,∆) then B(x, t) ⊆ B(ωi, R), since t ≤ ∆ and R ≥ 2∆, so that
B(ωi, R) can’t cut B(x, t). Additionally, B(ωi, R) ∩ B(x, t) �= ∅ implies
ωi ∈ B(x, 5∆), since R ≤ 4∆. It follows that if ω ∈ Ωi,R, then ∆ <
d(ωi, x) ≤ 5∆. Finally, if ω ∈ Ωi,R then d(ω j, x) > d(ωi, x) for j < i,
since otherwise B(ωi, R) will not be the first ball to cut B(x, t). These
observations imply that for every i = 1, 2, . . . , every R ∈ [2∆, 4∆] and
every ρ > 0,

µ′(Ωi,R|d(x, ωi) = ρ) ≤ 1{R∈[ρ−t,ρ+t]} · 1{∆<ρ≤5∆}[1 − ν([0, ρ])]i−1.

Hence,

Pr[B(x, t)is cut]
= 1

2∆

∫ 4∆

2∆

( ∞∑

i=1

µ′(Ωi,R)

)

dR

= 1

2∆

∫ 4∆

2∆

( ∞∑

i=1

∫ ∞

0
µ′(Ωi,R|d(x, ωi) = ρ)dν(ρ)

)

dR

≤ 1

2∆

∫ 4∆

2∆

( ∞∑

i=1

∫

(∆,5∆]
1{R∈[ρ−t,ρ+t]} · [1 − ν([0, ρ])]i−1dν(ρ)

)

dR

≤ t

∆

∫

(∆,5∆]
dν(ρ)

ν([0, ρ])
≤ t

∆
log

(
ν([0, 5∆])
ν([0,∆])

)
= t

∆
log

(
σ(BX(x, 5∆))

σ(BX(x,∆))

)
. (5)
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The last inequality above is a classical fact, which can be proved as follows:
approximate the integral by the sum

∑k
i=1

ν([0,ρi])−ν([0,ρi−1])
ν([0,ρi]) for some ∆ <

ρ0 < ρ1 < . . . < ρk = 5∆, and use the estimate ν([0,ρi])−ν([0,ρi−1])
ν([0,ρi]) ≤

∫ ν([0,ρi])
ν([0,ρi−1])

ds
s .

Observe that (4) holds trivially if d(x, y) ≥ ∆. Otherwise, choosing
t = d(x, y) in (5) yields the required result. ��

4. Constructing gentle partitions

In this section we show that the various decompositions that were introduced
in the previous section can be used to construct gentle partitions of unity.

Theorem 4.1 (Stochastic decompositions yield gentle partitions). There
exists a universal constant C > 0 such that for every metric space (Y, d)
and every subspace X ⊆ Y the following assertions hold true:

1. If for every n ∈ Z, Y admits an (ε, δ)-thick 2n-bounded stochastic
decomposition with respect to X, then Y also admits a C

εδ
-gentle partition

of unity with respect to X.
2. If for every n ∈ Z, Y admits an (ε, δ)-padded 2n-bounded stochastic

decomposition with respect to X, then Y also admits a C
εδ

-gentle partition
of unity with respect to X.

3. If for every n ∈ Z, Y admits an (ε, δ)-separating 2n-bounded stochastic
decomposition with respect to X, then Y also admits a C

(
1
ε

+ 1
δ

)
-gentle

partition of unity with respect to X.

Proof. For every n ∈ Z let (Ωn, µn, {Γi
n(·), γ i

n(·)}i∈I ) be a 2n-bounded
stochastic decomposition of Y with respect to X. Let ϕ : R → R+ be
any 2-Lipschitz map with supp(ϕ) ⊂ [ 1

2 , 4] and ϕ ≡ 1 on [1, 2]. Define
ϕn(x) = ϕ

( d(x,X )

ε2n−3

)
and let (Ω, µ) be the disjoint union of {I ×Ωn}n∈Z (where

the measure on I is the counting measure). In all the cases of the theorem
the partition of unity which we construct will have the following form: For
every n ∈ Z, ω ∈ Ωn, i ∈ I and x ∈ Y denote:

Ψ(i, ω, x) = 1

S(x)
θn
ω(x)ϕn(x)1Γi

n(ω)(x), (6)

where for every n ∈ Z and x ∈ Y the function ω �→ θn
ω(x) ∈ [0,∞) is

µn-integrable and

S(x) =
∑

n∈Z

∑

i∈I

∫

Ωn

θn
ω(x)ϕn(x)1Γi

n(ω)(x) dµn(ω)

=
∑

n∈Z
ϕn(x)

∫

Ωn

θn
ω(x) dµn(ω).

Additionally define γ(i, ω) = γ i
n(ω).
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Observe that supp(ϕn) ⊆ {x ∈ Y : d(x, X) ∈ [ε2n−4, ε2n−1]}, so the
sum in the denominator of (6) contains at most 5 terms, and is therefore
finite. Additionally, the definition of ϕn ensures that for every x ∈ X and
ω ∈ Ω, Ψ(ω, x) = 0.

The functions θn
ω(x) will be different in each particular case, but we

begin by making some general comments. Our goal is to show that for
every x, y ∈ Y ,

∑

n∈Z

∑

i∈I

∫

Ωn

d(γ(i, ω), x) · |Ψ(i, ω, x)Ψ(i, ω, y)|dµn(ω)

(7)

≤ C

εδ
· d(x, y),

in cases (1) and (2) above and

∑

n∈Z

∑

i∈I

∫

Ωn

d(γ(i, ω), x) · |Ψ(i, ω, x) − Ψ(i, ω, y)| dµn(ω)

(8)

≤ C

(
1

ε
+ 1

δ

)
· d(x, y).

in case (3).

Claim 4.2. Fix ω ∈ Ωn and assume that Ψ(i, ω, x) �= Ψ(i, ω, y). Then

d(γ(i, ω), x) ≤ d(x, y) + 18

ε
· max{d(x, X), d(y, X)}.

Proof. Our assumption implies that either Ψ(i, ω, x) > 0 or Ψ(i, ω, y) > 0.
In the first case, x ∈ Γi

n(ω) and

d (γ(i, ω), x) ≤ d
(
γ(i, ω),Γi

n(ω)
)+ diam

(
Γi

n(ω)
) ≤ 2d

(
X,Γi

n(ω)
)+ 2n

≤ 2d(x, X) + 2n.

On the other hand, ϕn(x) > 0, so d(x, X) ≥ ε2n−4, which implies the
required estimate. In the second case, Ψ(i, ω, y) > 0, so that

d(γ(i, ω), x) ≤ d(γ(i, ω), y) + d(x, y)

≤ 2d(y, X) + diam
(
Γi

n(ω)
)+ d(x, y)

≤ 2d(y, X) + 2n + d(x, y) ≤ 18

ε
· d(y, X) + d(x, y).

��
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By Claim 4.2 we can estimate the left-hand side of (7) and (8) as follows:

∑

n∈Z

∑

i∈I

∫

Ωn

d(γ(i, ω), x) · |Ψ(i, ω, x) − Ψ(i, ω, y)| dµn(ω)

≤ d(x, y) ·
∑

n∈Z

∑

i∈I

∫

Ωn

[Ψ(i, ω, x) + Ψ(i, ω, y)] dµn(ω)

+ 18

ε
· max{d(x, X), d(y, X)}

·
∑

n∈Z

∑

i∈I

∫

Ωn

|Ψ(i, ω, x) − Ψ(i, ω, y)| dµn(ω)

= 2d(x, y) + 18

ε
· max{d(x, X), d(y, X)}

·
∑

n∈Z

∑

i∈I

∫

Ωn

|Ψ(i, ω, x) − Ψ(i, ω, y)| dµn(ω).

It is therefore enough to show that:

∑

n∈Z

∑

i∈I

∫

Ωn

|Ψ(i, ω, x) − Ψ(i, ω, y)| dµn(ω)

(9)
≤ C ′

δ
· d(x, y)

max{d(x, X), d(y, X)} ,

when the decompositions are either (ε, δ)-padded or (ε, δ)-thick and

∑

n∈Z

∑

i∈I

∫

Ωn

|Ψ(i, ω, x) − Ψ(i, ω, y)| dµn(ω)

(10)
≤ C ′

(
1 + ε

δ

)
· d(x, y)

max{d(x, X), d(y, X)} ,

when the decompositions are (ε, δ)-separating. Here C′ is a universal con-
stant.

We may assume that C′ > 4, in which case inequality (9) (resp. in-
equality (10)) holds trivially when d(x, y) ≥ d({x, y}, X). Indeed, in this
case d(x, X) ≤ d(x, y) + d(y, X) ≤ 2d(x, y) and analogously d(y, X) ≤
2d(x, y). Hence the right-hand side of (9) (resp. (10)) is greater than 2
while the left-hand side of (9) (resp. (10)) is at most 2 since by construction∑

n∈Z
∑

i∈I

∫
Ωn

Ψ(i, ω, z)dµn(ω) = 1 for every z ∈ Y .
Our goal is therefore to prove (9) (resp. (10)) under the assumption

d(x, y) < d({x, y}, X). We may also assume without loss of generality that
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d(x, X) ≥ d(y, X). Now,

∑

n∈Z

∑

i∈I

∫

Ωn

|Ψ(i, ω, x) − Ψ(i, ω, y)| dµn(ω)

=
∑

n∈Z

∫

Ωn

∑

i∈I

∣∣
∣∣
θn
ω(x)ϕn(x)1Γi

n(ω)(x)S(y) − θn
ω(y)ϕn(y)1Γi

n(ω)(y)S(x)

S(x)S(y)

∣∣
∣∣dµn(ω)

≤
∑

n∈Z

∫

Ωn

∑

i∈I

∣∣θn
ω(x)ϕn(x)1Γi

n(ω)(x) − θn
ω(y)ϕn(y)1Γi

n(ω)(y)
∣∣

S(x)
dµn(ω)

+
(
∑

n∈Z

∫

Ωn

θn
ω(y)ϕn(y) dµn(ω)

)
|S(x) − S(y)|

S(x)S(y)

≤
∑

n∈Z

∫

Ωn

∑

i∈I

∣∣θn
ω(x)ϕn(x)1Γi

n(ω)(x) − θn
ω(y)ϕn(y)1Γi

n(ω)(y)
∣∣

S(x)
dµn(ω)

+
∑

n∈Z

∫

Ωn

θn
ω(y)ϕn(y) dµn(ω)

·
∑

k∈Z

∫

Ωk

∑

i∈I

∣∣θn
τ (x)ϕk(x)1Γi

k(τ)
(x) − θn

τ (y)ϕk(y)1Γi
k(τ)

(y)
∣∣

S(x)S(y)
dµk(τ)

= 2

S(x)

∑

n∈Z

∫

Ωn

∑

i∈I

∣∣θn
ω(x)ϕn(x)1Γi

n(ω)(x)−θn
ω(y)ϕn(y)1Γi

n(ω)(y)
∣∣dµn(ω). (11)

We now deal with each of the particular cases in the statement of the
theorem:

Case 1. The stochastic decomposition (Ωn, µn, {Γi
n(·), γ i

n(·)}i∈I ) is (ε, δ)-
thick and 2n-bounded for all n ∈ Z. In this case we take θn

ω(x) = πn
ω(x),

where for every ω ∈ Ωn and x ∈ Y ,

πn
ω(x) =

∑

i∈I

min
{
d
(
x, Y \ Γi

n(ω)
)
, 2n

}
. (12)

Observe that since {Γi
n(ω)}i∈I is a partition of Y , the above sum consists of

only one element.
Let n0 be an integer such that d(x,X )

ε2n0−3 ∈ [1, 2]. Then

S(x) ≥
∑

n: d(x,X )≤ε2n

ϕn(x)
∫

Ωn

πn
ω(x) dµn(ω)

≥
∑

n: d(x,X )≤ε2n

δ2nϕn(x) ≥ δ2n0ϕ

(
d(x, X)

ε2n0−1

)
≥ δ2n0 ≥ δ

ε
d(x, X). (13)
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We now estimate the numerator in (11). Fix n ∈ Z and ω ∈ Ωn . Assume
first of all that x, y ∈ Γ

j
n(ω) for some j ∈ I . Hence

∑

i∈I

∣∣πn
ω(x)ϕn(x)1Γi

n(ω)(x) − πn
ω(y)ϕn(y)1Γi

n(ω)(y)
∣∣

=
∣
∣∣
∣π

n
ω(x)ϕ

(
d(x, X)

ε2n−3

)
− πn

ω(y)ϕ

(
d(y, X)

ε2n−3

)∣∣∣
∣

≤ ϕ

(
d(x, X)

ε2n−3

) ∣∣πn
ω(x) − πn

ω(y)
∣∣+ πn

ω(y)

∣
∣∣
∣ϕ
(

d(x, X)

ε2n−3

)
− ϕ

(
d(y, X)

ε2n−3

)∣∣∣
∣

≤ d(x, y) + πn
ω(y)

16d(x, y)

ε2n
≤d(x, y) + 2n · 16d(x, y)

ε2n
≤ 17

ε
d(x, y). (14)

If, on the other hand, there are distinct i, j ∈ I such that x ∈ Γi
n(ω) and

y ∈ Γ
j
n(ω) then clearly πn

ω(x), πn
ω(y) ≤ d(x, y), so:

∑

�∈I

∣
∣πn

ω(x)ϕn(x)1Γ�
n(ω)(x) − πn

ω(y)ϕn(y)1Γ�
n(ω)(y)

∣
∣

= πn
ω(x)ϕ

(
d(x, X)

ε2n−1

)
+ πn

ω(y)ϕ

(
d(y, X)

ε2n−1

)

≤ πn
ω(x) + πn

ω(y) ≤ 2 d(x, y). (15)

Plugging the estimates (13), (14), (15) into (11) we obtain

∑

n∈Z

∑

i∈I

∫

Ωn

|Ψ(i, ω, x) − Ψ(i, ω, y)| dµn(ω)

≤ 2ε

δ d(x, X)

∑

n: {x,y}∩supp(ϕn) �=∅

∫

Ωn

17

ε
d(x, y)dµn

≤ 340 d(x, y)

δ d(x, X)
, (16)

where we have used the fact that for every z ∈ Y , |{n : z ∈ supp(ϕn)}| ≤ 5.

Case 2. The stochastic decomposition (Ωn, µn, {Γi
n(·), γ i

n(·)}i∈I ) is (ε, δ)-
padded and 2n-bounded for all n ∈ Z. In this case let g : [0,∞) → [0,∞)
be given by:

g(x) =





1 x ≥ 2
x − 1 1 ≤ x ≤ 2
0 0 ≤ x ≤ 1,
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and define θn
ω(x) = g

(
πn

ω(x)
ε2n−1

)
, where πn

ω(x) is as in (12). Let n0 be as in the

proof of (13). Then:

S(x) ≥
∑

n: d(x,X )≤ε2n

ϕn(x)
∫

{ω∈Ωn : πn
ω(x)≥ε2n}

g

(
πn

ω(x)

ε2n−1

)
(x) dµn(ω)

≥ ϕ

(
d(x, X)

ε2n0−3

)
µn0

(
⋃

i∈I

{
ω ∈ Ωn0 :d(x, X\Γi

n(ω)
)≥ε2n0

}
)

≥δ. (17)

Fix n ∈ Z and ω ∈ Ωn. Assume ϕn(x) + ϕn(y) > 0. In this case
{d(x, X), d(y, X)} ∩ [ε2n−4, ε2n−1] �= ∅, so that in particular d(y, X) ≤
ε2n−1. We are assuming that d(x, y) < d(y, X), so d(x, X) ≤ d(x, y) +
d(y, X) ≤ 2d(y, X) ≤ ε2n . If x, y ∈ Γ

j
n(ω) for some j ∈ I then since g is

Lipschitz with constant 1 and bounded by 1, the same reasoning as in (14)
gives:

∑

i∈I

∣∣θn
ω(x)ϕn(x)1Γi

n(ω)(x) − θn
ω(y)ϕn(y)1Γi

n(ω)(y)
∣∣

≤ 6d(x, y)

ε2n
≤ 6d(x, y)

d(x, X)
. (18)

On the other hand, if there exist distinct i, j ∈ I such that x ∈ Γi
n(ω) and

y ∈ Γ
j
n(ω) then using the fact that πn

ω(x), πn
ω(y) ≤ d(x, y) we get:

∑

�∈I

∣
∣πn

ω(x)ϕn(x)1Γ�
n(ω)(x) − πn

ω(y)ϕn(y)1Γ�
n(ω)(y)

∣
∣

≤
(

πn
ω(x)

ε2n−1

)
+ g

(
πn

ω(y)

ε2n−1

)
≤ πn

ω(x)

ε2n−1
+ πn

ω(y)

ε2n−1
≤ 4d(x, y)

d(x, X)
, (19)

and we conclude as in (16).

Case 3. The stochastic decomposition (Ωn, µn, {Γi
n(·), γ i

n(·)}i∈I ) is (ε, δ)-
separating 2n -bounded for all n ∈ Z. This case is simpler: we take θn

ω(x) ≡ 1.
Arguing as in (13) we get that S(x) ≥ 1. Fix n ∈ Z and ω ∈ Ωn and assume
as before that ϕn(x) + ϕn(y) > 0. Observe that

∑

i∈I

∣
∣ϕn(x)1Γi

n(ω)(x) − ϕn(y)1Γi
n(ω)(y)

∣
∣

≤ |ϕn(x) − ϕn(y)| + ϕn(x) + ϕn(y)

2

∑

i∈I

∣∣1Γi
n(ω)(x) − 1Γi

n(ω)(y)
∣∣

≤ 16d(x, y)

ε2n
+
∑

i∈I

∣
∣1Γi

n(ω)(x) − 1Γi
n(ω)(y)

∣
∣

≤ 16d(x, y)

d(x, X)
+
∑

i∈I

∣
∣1Γi

n(ω)(x) − 1Γi
n(ω)(y)

∣
∣ . (20)
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Plugging this estimate into (11) we get

∑

n∈Z

∑

i∈I

∫

Ωn

|Ψ(i, ω, x) − Ψ(i, ω, y)| dµn(ω)

≤ 16d(x, y)

d(x, X)
· |{n : {x, y} ∩ supp(ϕn) �= ∅}|

+
∑

n: {x,y}∩supp(ϕn) �=∅

∫

Ωn

∑

i∈I

∣
∣1Γi

n(ω)(x) − 1Γi
n(ω)(y)

∣
∣ dµn

≤ 80 d(x, y)

d(x, X)
+

∑

n: {x,y}∩supp(ϕn) �=∅

2d(x, y)

δ2n

≤ 80 d(x, y)

d(x, X)
+ 20εd(x, y)

δd(x, X)
,

where we have used the (ε, δ)-separating condition and the fact that in the
above sum, d(x, X) ≤ ε2n . ��

We proceed to construct gentle partitions of unity when X is finite. The
proof is analogous to the proof of Theorem 4.1, but there are several subtle
differences, so we deal with this important case separately. The analysis uses
ideas from [8,9], namely that a certain sum of logarithms collapses in the
analysis of the decomposition of Lemma 3.17. This allows the smoothing
function ϕ to have larger support, which will be the key to achieving an
improved result.

Theorem 4.3. There exists a universal constant C > 0 such that for all
m ∈ N, any metric space (Y, d) and any m-point subset X ⊆ Y, Y admits a
C log m

log log m -gentle partition of unity with respect to X.

Proof. Let M > 2 be an integer which will be determined later. Let ϕ :
R → R+ be a 5-Lipschitz map with supp(ϕ) ⊆ [

1
5 , 5M+1

]
and ϕ ≡ 1 on

[1, 5M ]. By Theorem 3.17, with σ the counting measure on X, for every
n ∈ Z there exists a stochastic decomposition of Y with respect to X,
(Ωn, µn, {Γi

n(·), γ i
n(·)}i∈I ), which is 5n-bounded and for every x, y ∈ Y

satisfying d({x, y}, X) ≤ 5n−2,
∫

Ωn

∑

i∈I

∣∣1Γi
n(ω)(x) − 1Γi

n(ω)(y)
∣∣ dµn(ω)

(21)
≤ 2d(x, y)

5n

[
1 + log

( |BX(x, 5n+1)|
|BX(x, 5n)|

)]
.

Define ϕn(x) = ϕ
( d(x,X )

5n−M−4

)
, and let (Ω, µ), Ψ(i, ω, x), γ(i, ω), S(x) be as

in the proof of Theorem 4.1, with θn
ω(x) ≡ 1. Our goal is to show that for
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every x, y ∈ Y ,

∑

n∈Z

∑

i∈I

∫

Ωn

d(γ(i, ω), x) · |Ψ(i, ω, x) − Ψ(i, ω, y)| dµ(ω)

≤ O

(
log m

log log m

)
· d(x, y).

In what follows we fix x, y ∈ Y and we may assume without loss
of generality that d(x, X) ≥ d(y, X). As in the proof of Claim 4.2, if
|Ψ(i, ω, x)−Ψ(i, ω, y)| > 0 then d(γ(i, ω), x) ≤ 5n +d(x, y). It is therefore
enough to show that

∑

n∈Z
5n
∑

i∈I

∫

Ωn

|Ψ(i, ω, x) − Ψ(i, ω, y)| dµ(ω) ≤ O

(
log m

log log m

)
· d(x, y).

Since ϕn(x) = 1 for at least M − 1 values of n, S(x) = ∑
n∈Z ϕn(x) ≥

M − 1 ≥ M
2 . Hence, arguing as in (11) we get that

∑

n∈Z
5n
∑

i∈I

∫

Ωn

|Ψ(i, ω, x) − Ψ(i, ω, y)| dµ(ω)

≤ 2

M

∑

n∈Z
5n
∫

Ωn

∑

i∈I

∣
∣ϕn(x)1Γi

n(ω)(x) − ϕn(y)1Γi
n(ω)(y)

∣
∣ dµn(ω)

+ 4

M2

(
∑

n∈Z
5nϕn(y)

)

|S(x) − S(y)|. (22)

Let j be the maximal integer for which ϕ j(y) > 0. Then 5 j ≤ 5M+5d(y, X)
and ∑

n∈Z
5nϕn(y) ≤

∑

n≤ j

5n ≤ 5 j+1 ≤ 5M+6d(y, X).

Analogously,
∑

n∈Z 5nϕn(x) ≤ 5M+6d(x, X). Since in |S(x) − S(y)| there
are at most 4M non-zero summands, each of which is bounded by 2, we get
the following estimate:

∑

n∈Z
5n
∑

i∈I

∫

Ωn

|Ψ(i, ω, x) − Ψ(i, ω, y)| dµ(ω)

≤ 4

M

∑

n: {x,y}∩supp(ϕn) �=∅
5n + 5M+9d(y, X)

M

≤ 5M+7

M
[d(x, X) + d(y, X)] + 5M+9d(y, X)

M

≤ 5M+10

2M
[d(y, X) + d(x, y)].
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Corollary 4.4. If d(y, X) ≤ d(x, y) then:

∑

n∈Z
5n
∑

i∈I

∫

Ωn

|Ψ(i, ω, x) − Ψ(i, ω, y)| dµ(ω) ≤ 5M+10

M
d(x, y).

We now deal with the case d(x, X) ≥ d(y, X) > d(x, y). The reasoning
above shows that the estimate (22) can be written as

∑

n∈Z
5n
∑

i∈I

∫

Ωn

|Ψ(i, ω, x) − Ψ(i, ω, y)| dµ(ω)

≤ 2

M

∑

n∈Z
5n
∫

Ωn

∑

i∈I

∣
∣ϕn(x)1Γi

n(ω)(x) − ϕn(y)1Γi
n(ω)(y)

∣
∣ dµn(ω)

+ 5M+7

M2
· d(x, X) · |S(x) − S(y)|. (23)

For the sake of simplicity, denote

Ex,y = {n ∈ Z : ϕn(x) = ϕn(y) = 1} and
Fx,y = {n ∈ Z : ϕn(x) + ϕn(y) > 0} \ Ex,y.

By the definition of ϕn , if n ∈ Fx,y then 5n must be in

[53d(x, X), 5M+5d(x, X)] ∪ [53d(y, X), 5M+5d(y, X)]
but not in

[54d(x, X), 5M+4d(x, X)] ∩ [54d(y, X), 5M+4d(y, X)].
Since d(y, X) ≤ d(x, X) ≤ d(y, X) + d(x, y) ≤ 2d(y, Y ), it follows that n
can take at most 10 values. We have shown that |Fx,y| ≤ 10. Hence, using
the fact that ϕ is 5-Lipschitz,

|S(x) − S(y)|≤
∑

n∈Fx,y

|ϕn(x) − ϕn(y)|≤10
d(x, y)

5n−M−5
≤5M+7 · d(x, y)

d(x, X)
. (24)

Fix n ∈ Z and ω ∈ Ωn and argue as in (20) to get that
∑

i∈I

∣
∣ϕn(x)1Γi

n(ω)(x) − ϕn(y)1Γi
n(ω)(y)

∣
∣

≤ d(x, y)

5n−M−5
· 1Fx,y(n) +

∑

i∈I

∣
∣1Γi

n(ω)(x) − 1Γi
n(ω)(y)

∣
∣ .

Since for n ∈ Ex,y ∪ Fx,y, d(x, X) ≤ 5n−2, we may use (21) to get that
∫

Ωn

∑

i∈I

∣∣ϕn(x)1Γi
n(ω)(x) − ϕn(y)1Γi

n(ω)(y)
∣∣ dµn(ω)

≤ d(x, y)

5n−M−5
· 1Fx,y (n) + 2d(x, y)

5n

[
1 + log

( |BX(x, 5n+1)|
|BX(x, 5n)|

)]
. (25)
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Let j, J be the minimal and maximal integers i, respectively, for which
ϕi(x)+ϕi(y) > 0. Observe that in this case J − j ≤ 4M and 5 j−3 ≥ d(x,X )

2 .
Hence

∑

n∈Z
5n
∫

Ωn

∑

i∈I

∣
∣ϕn(x)1Γi

n(ω)(x) − ϕn(y)1Γi
n(ω)(y)

∣
∣ dµn(ω)

≤
∑

n∈Fx,y

5n · d(x, y)

5n−M−5
+

∑

n∈Ex,y∪Fx,y

5n
∫

Ωn

∑

i∈I

∣∣1Γi
n(ω)(x) − 1Γi

n(ω)(y)
∣∣ dµn

≤ 10 · 5M+5d(x, y) +
J∑

n= j

2d(x, y)

[
1 + log

( |BX(x, 5n+1)|
|BX(x, 5n)|

)]

≤ 5M+7d(x, y) + 2d(x, y)

[
4M + log

( |BX(x, 5J+1)|
|BX(x, 5 j )|

)]

≤ (
5M+7 + 8M + 2 log m

) · d(x, y), (26)

Plugging (24) and (26) into (23) we arrive at the following corollary:

Corollary 4.5. If d(x, y) < d(y, X) then

∑

n∈Z
5n
∑

i∈I

∫

Ωn

|Ψ(i, ω, x)−Ψ(i, ω, y)| dµ(ω)≤ O

(
52M

M2
+ log m

M

)
·d(x, y).

Using Corollary 4.4 and Corollary 4.5 with M ≈ log log m yields the
required result. ��

5. Extension theorems

The following theorem is a direct consequence of the results of Sects. 2, 3
and 4.

Theorem 5.1. There exists a universal constant C > 0 such that

1. For every metric space X, ae(X) ≤ C log λ(X).
2. For every r > 0 and any Kr-excluded graph G, ae(〈G〉) ≤ C · r2.
3. Let M be a two dimensional Riemannian manifold with genus g and

X ⊆ M. Then ae(X) ≤ C · (g + 1).
4. If X is an n-point metric space then ae(X) ≤ C log n

log log n .

5. For every integer d and every Banach space Z, e(�d
2, Z) ≤ C

√
d.

We also have the following extension result for neighborhoods of subsets
of negatively curved manifolds.
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Proposition 5.2. Fix r > 0 and let M be an n-dimensional Riemannian
manifold satisfying Ricci(g) ≥ −(n − 1)rg, where g is the Riemannian
metric on M. Then for any subset X ⊆ M, any metric space Y ⊇ X such that
X is ∆-dense in Y , and any Banach space Z, e(X, Y, Z) ≤ C ·n(1+√

r∆).
Here C is a universal constant.

Proof. Observe that in this case in the proof of 4.1 we only require the
existence of 2n-padded decomposition with 2n ≤ ∆. Hence the required
result follows from an application of Corollary 3.13 and Lemma 3.8. ��

Let us recall that for a family of finite graphs F, we claim that ae(〈F 〉) <
+∞ if and only if 〈F 〉 does not contain all finite metrics. We now give a sim-
ple proof which is based on a deep result of Robertson and Seymour [33].

Proof of Corollary 1.8. For a family of graphs F, let mc(F ) denote its
closure under taking minors, i.e. the minimal minor-closed family contain-
ing F. Robertson and Seymour proved that if mc(F ) is non-trivial, i.e.
does not contain all finite graphs, then there is some finite list of graphs
H1, · · · , Hk such that G ∈ mc(F ) if and only if G does not contain any Hi
as a minor.

Observe that contraction/deletion of an edge corresponds to weighting
by 0/∞, respectively. It follows that 〈F 〉 = 〈mc(F )〉, thus if 〈F 〉 does
not contain all finite metrics, then certainly mc(F ) does not contain all
finite graphs, hence if X ∈ 〈F 〉, it must be supported on some graph G
which excludes a Kr minor with r = maxi |Hi|, and in this case part (2) of
Theorem 5.1 applies. ��

We are now in position to prove Theorem 1.12 which was stated in the
introduction.

Proof of Theorem 1.12. We begin with the case p = 2. Let X be an n-point
subset of L2, Z a Banach space and f : X → Z a Lipschitz function. Let
H be the linear span of X and let Q be the orthogonal projection from L2
onto H . By the proof of the Johnson-Lindenstrauss dimension reduction
lemma [17] there is a probability space (Ω, P) such that for every ω ∈ Ω
there is a rank d linear operator Tω : H → H such that for every x ∈ H the
mapping ω �→ Tω(x) is measurable and P

(∣∣‖Tω(x)‖2 − ‖x‖2

∣∣ ≥ 1
2‖x‖2

) ≤
2e−cd , where c is a universal constant. We can therefore find for d ≈ 4

c log n
a subset A ⊂ Ω with P(A) ≥ 1

2 such that for every x, y ∈ X and ω ∈ A,
‖Tω(x) − Tω(y)‖2 ≥ 1

2‖x − y‖2. The function gω = f ◦ (Tω|Tω(X ))
−1

is Lipschitz on Tω(X) with constant 2‖ f ‖Lip. By Theorem 5.1, there is
a function g̃ω : Tω(H) → Z such that g̃ω|Tω(X ) = gω and ‖g̃ω‖Lip ≤
4C√

c

√
log n · ‖ f ‖Lip. Define f̃ : L2 → Z by:

f̃ (x) = 1

P(A)

∫

A
g̃ω(TωQx)dP(ω).
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Clearly f̃ is an extension of f and since P(A) ≥ 1
2 , for every x, y ∈ L p,

‖ f̃ (x) − f̃ (y)‖Z ≤ 1

P(A)

∫

A
‖g̃ω(TωQx) − g̃ω(TωQy)‖Z dP(ω)

≤ O(
√

log n)‖ f ‖Lip ·
∫

Ω

‖Tω(Qx − Qy)‖2 dP(ω)

= O(
√

log n)‖ f ‖Lip · ‖x − y‖2,

where we have used the fact that the concentration inequality for ‖Tωz‖2,
z ∈ H , implies that

∫
Ω

‖Tωz‖dP(ω) = O(‖z‖2).

We pass to general 1 < p ≤ 2 via a method due to Marcus and Pisier [28].
In [28] they show that for every 0 < p ≤ 2 there is a probability space
(Ω′, P′) such that for every ω ∈ Ω′ there is a linear operator Sω : L p → L2

such that for every x ∈ L p \ {0} the random variable X = ‖Sω(x)‖2
‖x‖p

satis-

fies for every a ∈ R, Ee−aX2 = e−a p/2
. Let T be an n-point subset of L p,

Z a Banach space and f : T → Z a Lipschitz function. A standard appli-
cation of Markov’s inequality shows that there is constant cp and a subset
A′ ⊂ Ω with P′(A′) ≥ 1

2 such that for every x, y ∈ T and ω ∈ A′,

‖x − y‖p ≤ cp(log n)
1
p − 1

2 ‖Sω(x) − Sω(y)‖2.

For every ω ∈ A′ the function gω = f ◦(Sω|Sω(X ))
−1 is O

(
(log n)

1
p − 1

2
)‖ f ‖Lip

Lipschitz. By the above reasoning for the case p = 2, gω can be extended
to a function g̃ω defined on all of L2 which is Lipschitz with constant
O
(
(log n)1/p

) ‖ f ‖Lip. Define f̃ : L p → L2 by:

f̃ (x) = 1

P′(A′)

∫

A′
g̃ω(Sω(x)) dP′(ω).

Clearly f̃ is an extension of f and since P′(A′) ≥ 1
2 , for every x, y ∈ L p,

‖ f̃ (x) − f̃ (y)‖Z ≤ 1

P′(A′)

∫

A′
‖g̃ω(Sω(x)) − g̃ω(Sω(y))‖Z dP′(ω)

≤ O
(
(log n)1/p

) ‖ f ‖Lip ·
∫

Ω

‖Sω(x − y)‖2 dP′(ω)

= O
(
(log n)1/p

) ‖ f ‖Lip · ‖x − y‖p · EX,

and we conclude since for p > 1, EX = Cp < ∞. ��
Remark 5.3. As stated in the introduction, it was asked in [17] and [18]
whether for every Banach space X, supn en(L2, X) < ∞. This is false since
in [31] it was shown that for 2 < p < ∞, e(L2, L p) = ∞. We end by
reproducing the argument from [31] (which is based on ideas from [26]) in
such a way that we get quantitative lower bounds on en (L2, �p), 2 < p < ∞.
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Since we are essentially repeating the proof from [31], our argument will
be somewhat sketchy.

We claim that, for every integer n and every 2 < p < ∞,

en(L2, L p) ≥ Ω

[(
log n

log log n

) p−2
p2

]

.

Proof (sketch). Fix an integer m and set ε = 1
m1/2−1/p . Let N be an ε net

in the unit ball of �2m
2 , denoted B. By standard (crude) volume estimates

|N| ≤ m2m . Consider the Mazur map f : �2m
2 → �2m

p given by f(x)i =
|xi |2/psign(xi). From the numerical inequality |a2/psign(a)−b2/psign(b)| ≤
21−2/p|a − b|2/p it follows that for every x, y ∈ �2m

2 , ‖ f(x) − f(y)‖p ≤
2‖x − y‖2/p

2 . Since the elements of N are ε separated, the restriction of f to
N is Lipschitz with constant 2/ε1−2/p = 2m(1−2/p)(1/2−1/p). Assume that it
is possible to extend f |N to a function g : �2m

2 → �2m
p which is K Lipschitz.

Since N is ε-dense in B, for every x ∈ B, ‖ f(x)− g(x)‖p ≤ Kε+2ε2/p. As
in [31], by averaging g over all permutations and sign changes we arrive at
a function h satisfying h(a1A) = b1A for all scalars a and A ⊂ {1, . . . , 2m},
where b depends only on the a and the cardinality of A. Additionally,
h is K Lipschitz, and since f is invariant under permutations and changes
of sign of the coordinates,for every x ∈ B, ‖h(x) − f(x)‖p ≤ Kε + 2ε2/p.
Setting xk = 1√

2m
1{k,... ,k+m−1} it follows that ‖h(xm+1) − h(x1)‖p

p =
∑m

k=1 ‖h(xk+1) − h(xk)‖p
p, and since h is K -Lipschitz we get the estimate

‖h(xm+1) − h(x1)‖p ≤ K
m1/2−1/p = Kε. On the other hand,

2Kε + 2ε2/p ≥ ‖h(xm+1) − f(xm+1)‖p + ‖h(x1) − f(x1)‖p

≥ ‖ f(xm+1) − f(x1)‖p − ‖h(xn+1) − h(x1)‖p ≥ 1 − Kε.

This implies that the ratio between K and the Lipschitz constant of f is at

least K/(2ε2/p−1) = Ω(ε−2/p) = Ω
{[

(log n)/(log log n)
](p−2)/p2}

, where
n = m2m ≥ |N|. ��

6. Appendix: Passing to arbitrary barycentric target spaces

In order to deal with barycentric metric spaces it is convenient to introduce
the following variant of the notion of a gentle partition of unity. Let (Y, d)
be a metric space, X a subspace of Y and (Ω,F , µ) a measure space. Given
K, L > 0 we shall say that a function Ψ : Ω × Y → [0,∞) is a (K, L)-
gentle partition of unity with respect to X if the following conditions hold
true:

1. For every x ∈ Y \ X the function ω �→ Ψ(ω, x) is measurable and∫
Ω

Ψ(ω, x)dµ(ω) = 1.
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2. There exists a Borel measurable function γ : Ω → X such that for every
x, y ∈ Y ,

diam({x, y} ∪ {γ(ω) : Ψ(ω, x) + Ψ(ω, y) > 0})
≤ K · [d(x, y) + max{d(x, X), d(y, X)}],

3. For every x, y ∈ Y , x �= y,
∫

Ω

|Ψ(ω, x) − Ψ(ω, y)| dµ(ω) ≤ L · d(x, y)

d(x, y) + max{d(x, X), d(y, X)} .

The following lemma is a variant of Lemma 2.1.

Lemma 6.1. Let (Y, dY ) be a metric space and X a subspace of Y . Fix
K, L > 0 and assume that Y admits a (K, L)-gentle partition of unity
Ψ : Ω × Y → [0,∞) with respect to X. Let (Z, dZ ) be a complete
barycentric metric space and β > β(Z). Then every Lipschitz function
f : X → Z can be extended to a function f̃ : Y → Z such that
‖ f̃ ‖Lip ≤ β max{KL, 2K + 2}.
Proof. As in the proof of Lemma 2.1, we may assume that X is closed. Let
c : Mbounded

Z → Z be a mapping satisfying the conditions of Definition 1.14
and let γ : Ω → X be as in condition 2 above.

For every x ∈ Y \ X define νx ∈ Mbounded
Z by

νx(A) =
∫

γ−1( f −1(A))

Ψ(ω, x)dµ(ω).

In other words, νx is the pullback of the probability measure Ψ(·, x)dµ
under the mapping f ◦γ . For x ∈ X we define νx = δ f(x). Finally, for x ∈ Y
set f̃ (x) = c(νx). Clearly f̃ is an extension of f .

If x, y ∈ Y then by (1),

dZ( f̃ (x), f̃ (y)) ≤ β · diam(supp(νx + νy)) · ‖νx − νy‖TV .

Now, if x, y ∈ Y \ X then

diam(supp(νx + νy)) ≤ ‖ f ‖Lip · diam({γ(ω) : Ψ(ω, x) + Ψ(ω, y) > 0})
≤ ‖ f ‖Lip · K · [d(x, y) + max{d(x, X), d(y, X)}]

and

‖νx − νy‖TV ≤
∫

Ω

|Ψ(ω, x) − Ψ(ω, y)|dµ(y)

≤ L · d(x, y)

d(x, y) + max{d(x, X), d(y, X)} .

This implies that for x, y ∈ Y \ X,

dZ( f̃ (x), f̃ (y)) ≤ βKL · ‖ f ‖Lip.
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It remains to deal with the case x ∈ X and y ∈ Y \ X. In this case set
Γ = {γ(ω) : Ψ(ω, y) > 0}. Condition 2 (applied with x = y) implies that
diam({y} ∪ Γ) ≤ Kd(y, X). In particular, d(x,Γ) ≤ d(x, y) + d(y,Γ) ≤
d(x, y) + Kd(y, X) ≤ (K + 1)d(x, y). It follows that

diam(supp(νx + νy)) ≤ ‖ f ‖Lip · diam({x, y} ∪ Γ) ≤ ‖ f ‖Lip(K + 1)d(x, y).

On the other hand, ‖νx − νy‖TV ≤ 2, and the required result follows. ��
The following theorem is a simple variant of Theorem 4.1, adapted to

the case of (K, L) gentle partitions of unity.

Theorem 6.2. For every ε, δ ∈ (0, 1), every metric space (Y, d) and every
subspace X ⊆ Y the following assertions hold true:

1. If for every n ∈ Z, Y admits an (ε, δ)-thick 2n-bounded stochastic
decomposition with respect to X, then Y also admits a

(
36
ε
, 680

δ

)
-gentle

partition of unity with respect to X.
2. If for every n ∈ Z, Y admits an (ε, δ)-padded 2n-bounded stochastic

decomposition with respect to X, then Y also admits a
(

36
ε
, 680

δ

)
-gentle

partition of unity with respect to X.
3. If for every n ∈ Z, Y admits an (ε, δ)-separating 2n-bounded stochastic

decomposition with respect to X, then Y also admits a
(

36
ε
, 160

(
1 + ε

δ

))
-

gentle partition of unity with respect to X.

Proof. Since the proof is a straightforward modification of the proof of
Theorem 4.1, we will only sketch the necessary changes. As before, for every
n ∈ Z let (Ωn, µn, {Γi

n(·), γ i
n(·)}i∈I ) be a 2n-bounded stochastic decompos-

ition of Y with respect to X. Let ϕ : R→ R+ be any 2-Lipschitz map with
supp(ϕ) ⊂ [

1
2 , 4

]
and ϕ ≡ 1 on [1, 2]. Define ϕn(x) = ϕ

(d(x,X )

ε2n−3

)
and let

(Ω, µ) be the disjoint union of {I × Ωn}n∈Z (where the measure on I is
the counting measure). The partition of unity which we construct has the
following form: For every n ∈ Z, ω ∈ Ωn, i ∈ I and x ∈ Y denote:

Ψ(i, ω, x) = 1

S(x)
θn
ω(x)ϕn(x)1Γi

n(ω)(x), (27)

where for every n ∈ Z and x ∈ Y the function ω �→ θn
ω(x) ∈ [0,∞) is

µn-integrable and

S(x) =
∑

n∈Z

∑

i∈I

∫

Ωn

θn
ω(x)ϕn(x)1Γi

n(ω)(x) dµn(ω)

=
∑

n∈Z
ϕn(x)

∫

Ωn

θn
ω(x) dµn(ω).

Additionally define γ(i, ω) = γ i
n(ω). Fix n ∈ Z, ω ∈ Ωn , i ∈ I and assume

that x ∈ Y is such that Ψ(i, ω, x) > 0. Then x ∈ Γi
n(ω) and d(x, X) ∈



Extending Lipschitz functions via random metric partitions 93

[ε2n−4, ε2n−1]. Since d(γ i
n(ω),Γi

n(ω)) < 2d(X,Γi
n(ω)) ≤ 2d(x, X) there is

x ′ ∈ Γi
n(ω) for which d(γ i

n(ω), x ′) < 2d(x, X). Hence,

d
(
γ i

n(ω), x
) ≤ 2d(x, X) + diam

(
Γi

n(ω)
) ≤ 2d(x, X) + 2n

≤
(

2 + 16

ε

)
d(x, X) ≤ 18

ε
d(x, X).

Similarly, if m ∈ Z, ω′ ∈ Ωm , j ∈ I are such that Ψ( j, ω′, y) > 0 for some
y ∈ Y then

d
(
γ j

m(ω′), y
) ≤ 18

ε
d(y, X).

It follows that

d
(
γ i

n(ω), γ j
m(ω′)

) ≤ d(x, y) + 18

ε
d(x, X) + 18

ε
d(y, X)

≤ 36

ε
(d(x, y) + max{d(x, X), d(y, X)}) .

Hence,

diam ({x, y} ∪ {γ(i, ω) : Ψ(i, ω, x) + Ψ(i, ω, y) > 0})
≤ 36

ε
(d(x, y) + max{d(x, X), d(y, X)}) .

It is therefore enough to show that:

∑

n∈Z

∑

i∈I

∫

Ωn

|Ψ(i, ω, x) − Ψ(i, ω, y)| dµn(ω)

≤ 680

δ
· d(x, y)

d(x, y) + max{d(x, X), d(y, X)} ,

when the decompositions are either (ε, δ)-padded or (ε, δ)-thick and

∑

n∈Z

∑

i∈I

∫

Ωn

|Ψ(i, ω, x) − Ψ(i, ω, y)| dµn(ω)

≤ 160
(

1 + ε

δ

)
· d(x, y)

d(x, y) + max{d(x, X), d(y, X)} ,

when the decompositions are (ε, δ)-separating. From here on the proof is
exactly as in the proof of Theorem 4.1. ��

Lemma 6.1, Theorem 6.2 and the results of Sect. 3.2 imply the exten-
sion results stated in the introduction, in the case when the target space
Z is a complete barycentric metric space. The above argument does not
yield a similar generalization of Theorem 1.10, since the construction of
Theorem 4.3 does not imply a satisfactory bound as in condition 2 in the
definition of a (K, L) gentle partition of unity. An inspection of the proof
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of Lemma 2.1 shows that we have only used the following property of the
Banach space Z: There exists a map c : Mbounded

Z → Z such that c(δz) = z
for every z ∈ Z and for every µ, ν ∈ Mbounded

Z and p ∈ Z,

dZ(c(µ), c(ν)) ≤ C
∫

Z
d(p, z)d|µ − ν|(z), (28)

where C is a constant (depending on Z). This inequality holds true in Banach
spaces due to the identity

∫

Z
zdµ(z) −

∫

Z
zdν(z) =

∫

Z
(z − p)d(µ − ν)(z).

All the results presented in this paper extend to target spaces satisfying
(28) (using K -gentle partitions of unity), and it would be of interest to find
a wider class of spaces with this property.
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