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1. Introduction

The purpose of this paper is to give a simple proof of global existence for
quadratic quasilinear Dirichlet-wave equations outside of a wide class of
compact obstacles in the critical case where the spatial dimension is three.
Our results improve on earlier ones in Keel, Smith and Sogge [9] in several
ways. First, and most important, we can drop the star-shaped hypothesis and
handle non-trapping obstacles as well as any obstacle that has exponential
local decay rate of energy for H2 data for the linear equation (see (1.4)
below). This hypothesis is fulfilled in the non-trapping case where there is
actually exponential local decay of energy [19] with no loss of derivatives.
This hypothesis (1.4) is also known to hold in several examples involv-
ing hyperbolic trapped rays. For instance, our results apply to situations
where the obstacle is a finite union of convex bodies with smooth boundary
(see [7], [8]). In addition to improving the hypotheses on the obstacles, we
can also improve considerably on the decay assumptions on the initial data
at infinity compared to the results in [9] which were obtained by the confor-
mal method. Lastly, we are able to handle non-diagonal systems involving
multiple wave speeds.

We shall use a refinement of techniques developed in earlier work of
Keel, Smith and Sogge [10], [11]. In particular, we shall use a modifica-
tion of Klainerman’s commuting vector fields method [13] that only uses
the collection of vector fields that seems “admissible” for boundary value
problems.

The main innovation in this approach versus the classical one for the
boundaryless case is the use of weighted space-time L2 estimates to handle
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the various lower order terms that necessarily arise in obstacle problems.
The weights involved are just negative powers of 〈x〉. These couple well
with the pointwise estimates that we use, which involve O(〈x〉−1) decay of
solutions of linear inhomogeneous Dirichlet-wave equations, as opposed to
the more standard O(t−1) decay for the boundaryless case, which are much
more difficult to obtain for obstacle problems. Because of the fact that we
are dealing with such problems, it does not seem that we can use vector
fields such as the generators of hyperbolic rotations, xi∂t + t∂i , i = 1, 2, 3.
Additionally, it seems that these cannot be used for multiple wave speed
problems since they have an associated speed (one in the above case).
So, unlike in Klainerman’s argument [13] for the Minkowski space case,
we are only able to use the generators of spatial rotations and space-time
translations

Z = { ∂i, x j∂k − xk∂ j, 0 ≤ i ≤ 3, 1 ≤ j < k ≤ 3},(1.1)

as well as the scaling vector field

L = t∂t + r∂r .(1.2)

Here, and in what follows, we are using the notation that (x1, x2, x3) denote
the spacial coordinates, while either x0 or t will denote the time coordinate,
depending on the context. Also, r = |x|, and 〈x〉 = 〈r〉 = √

1 + r2. We
shall also let u′ = ∂u = ∂t,xu denote the space-time gradient.

Another difficulty that we encounter in the obstacle case is related to the
simple fact that while the vector fields

Ωij = xi∂ j − x j∂i, 1 ≤ i < j ≤ 3(1.3)

and L preserve the equation (∂2
t − ∆)u = 0 in the Minkowski space case if

u is replaced by either Lu or Ωiju, this is not true in the obstacle case due
to the fact that the Dirichlet boundary conditions are not preserved by these
operators. Since the generators of spatial rotations, Ωij , have coefficients
that are small near our compact obstacle, this fact is somewhat easy to get
around when dealing with them; however, it is a bit harder to deal with the
scaling vector field, L , since its coefficients become large on the obstacle
as t goes to infinity. As a result, we are forced to consider in our estimates
combinations of the Z operators and the L operators that involve relatively
few of the scaling vector fields. This, together with the fact that there is
necessarily a loss of smoothness in the local energy estimates for obstacles
with trapped rays, makes the combinatorics that arise more complicated
than in the Minkowski space case first studied by Klainerman [13].

In earlier works [9], [11] the obstacle was assumed to be star-shaped.
This was a convenient assumption in proving energy estimates involving
the scaling operator L . For instance, in proving energy estimates for Lu for
solutions of (∂2

t −∆)u = 0 one finds that if K is star-shaped then, although
energy is not conserved, the contribution from the boundary to energy
identities has a favorable sign. This is in the spirit of Morawetz’s original
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argument [18]. If one drops the star-shaped assumption this argument of
course breaks down. However, in this paper we exploit the fact that we
still can prove favorable estimates for solutions of nonlinear equations.
The additional terms arising from the boundary can be estimated using
Lemma 2.9 and the L2

t L2
x(〈x〉−1/2dxdt) estimates since the forcing terms

are nonlinear functions of (du, du2) that vanish to second order.
Let us now describe more precisely our assumptions on our obstacles

K ⊂ R3. We shall assume that K that is smooth and compact. We do not
assume that K is connected. Without loss of generality, we may assume
throughout that

K ⊂ {x ∈ R3 : |x| < 1}.
Our only additional assumption is that there is exponential local decay of
energy with a possible loss of derivatives. To be specific, we require that
there be a c > 0, a constant C so that

(1.4)
(∫

{x∈R3\K: |x|<10}
|u′(t, x)|2 dx

)1/2 ≤ Ce−ct
∑
|α|≤1

∥∥∂α
x u′(0, · )∥∥2,

if �u = 0, and u(0, x) = ∂tu(0, x) = 0, for |x| > 10.

We remark that our results do not actually require exponential decay of
local energy. A decay rate of O(〈t〉−3−δ), δ > 0 would suffice since our
main L2-estimates involve 3 or fewer powers of the scaling operator L . By
tightening the arguments one might even be able to show that O(〈t〉−1−δ)
is sufficient. On the other hand, we shall assume (1.4) throughout since the
proofs under this weaker decay rate would be more technical. Moreover,
in the 3-dimensional case, all of the examples that we know that involve
polynomial decay actually have exponential decay of local energy. For
related problems in general relativity, though, it might be much easier to
establish local polynomial decay of energy.

Recall that if the obstacle is star-shaped or non-trapping a stronger
version of (1.4) is always valid where in the right one just takes the H1×L2-
norm of (u(0, · ), ∂tu(0, · )) (see Lax, Morawetz and Phillips [15] for the
star-shaped case, and Morawetz, Ralston and Strauss [19] for the non-
trapping case, and Melrose [17] for further results of this type). On the
other hand, if R3\K contains any trapped rays, then Ralston [20] showed
that this stronger inequality cannot hold. So there must be some “loss”
� > 0 of regularity if there is energy decay when there are trapped rays.
In (1.4) we are assuming that � = 1. By interpolation, there is no loss of
generality in making this assumption since if the analog of (1.4) held where
the sum was taken over a given � > 1 then (1.4) would still be valid (with
a different constant in the exponential). (The same argument shows that
a variant of (1.4) holds where one has ‖u(0, · )‖H1+δ

D
+‖∂tu(0, · )‖Hδ

D
in the

right for δ > 0.)
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In other direction, Ikawa [7], [8] was able to show that if K is a finite
union of convex obstacles with smooth boundary then one has exponential
decay of local energy with a loss of � = 7 derivatives, which as we just
pointed out leads to (1.4) here. Ikawa’s theorem requires additional technical
assumptions that we shall not describe (see [8]); however, they are always
satisfied for instance in the case where K is the union of two disjoint convex
obstacles or any number of balls that are sufficiently separated. Thus, even
for the case where K is the union of 3 sufficiently separated balls one
can always have infinitely many trapped rays and still have (1.4) (and the
nonlinear results to follows). We also mention the work of Burq [1] who
showed that for any compact obstacle K with smooth boundary, one has
a local decay that is O((log(2 + t))−k) for any k if one takes the loss of
regularity to be � = k. Such a decay rate is not fast enough for us to
be able to prove global existence for this class of obstacles, and it seems
doubtful that such results could hold in this context since Burq’s results
include the case where R3\K has trapped elliptic rays. On the other hand,
an interesting question would be whether our hypothesis (1.4) might hold
under the assumption that R3\K only contains hyperbolic trapped rays.

For obstacles K ⊂ R
3, as above satisfying (1.4) we shall consider

smooth, quadratic, quasilinear systems of the form



�u = Q(du, d2u), (t, x) ∈ R+ × R3\K
u(t, ·)|∂K = 0
u(0, ·) = f, ∂tu(0, ·) = g.

(1.5)

Here,

� = (�c1,�c2, . . . ,�cD),(1.6)

is a vector-valued multiple speed D’Alembertian with

�cI = ∂2
t − c2

I∆,

where we assume that the wave speeds cI are all positive but not necessarily
distinct. Also, ∆ = ∂2

1+∂2
2+∂2

3 is the standard Laplacian. By a simple scaling
argument, in showing that (1.5) admits global small amplitude solutions,
as mentioned before, we shall assume without loss of generality that K ⊂
{x ∈ R3 : |x| < 1}.

By quasilinear we mean that the nonlinear term Q(du, d2u) is linear
in the second derivatives of u. We shall also assume that the highest order
nonlinear terms are symmetric, by which we mean that, if we let ∂0 = ∂t ,
then

QI (du, d2u) = BI(du) +
∑

0≤ j,k,l≤3
1≤J,K≤D

BIJ, jk
K,l ∂lu

K ∂ j∂ku J , 1 ≤ I ≤ D,(1.7)
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with BI(du) a quadratic form in the gradient of u, and BIJ, jk
K,l real constants

satisfying the symmetry conditions

BIJ, jk
K,l = B JI, jk

K,l = BIJ,k j
K,l .(1.8)

To obtain global existence, we shall also require that the equations sat-
isfy a form of the null condition of Christodoulou and Klainerman. Let us
first assume, for simplicity that the wave speeds cI , I = 1, . . . , D are dis-
tinct. In this case, the null condition for the quasilinear terms only involves
self-interactions of each wave family. Specifically, we require that self-
interactions among the quasilinear terms satisfy the standard null condition
for the various wave speeds:

∑
0≤ j,k,l≤3

BIJ, jk
J,l ξ jξkξl = 0

whenever
ξ2

0

c2
J

− ξ2
1 − ξ2

2 − ξ2
3 = 0, I, J = 1, . . . , D.

(1.9)

For the quasilinear terms, if one allows repeated wave speeds, it will be
required that the interactions of families with the same speed satisfy a null
condition. Specifically if we let �p = {I : cI = cIp , 1 ≤ I ≤ D} then the
above null condition is extended to∑

j,k,l≤3

BIJ, jk
K,l ξ jξkξl = 0

whenever
ξ2

0

c2
Ip

− ξ2
1 − ξ2

2 − ξ2
3 = 0, (J, K ) ∈ �p × �p, 1 ≤ I ≤ D.

To describe the null condition for the lower order terms, we note that we
can expand

BI(du) =
∑

1≤J,K≤D
0≤ j,k≤3

AI, jk
JK ∂ ju

J∂kuK .

We then require that each component satisfy the standard null condition for
multiple wave speeds

∑
0≤ j,k≤3

AI, jk
JK ξ jξk = 0 for all ξ ∈ R× R3, 1 ≤ J, K ≤ D.(1.10)

This means that BI(du) is an asymmetric quadratic form in du. That is, it
must be a linear combination of the gauge-type null forms

QI
JK, jk(du) = (

∂ ju
J∂kuK − ∂ ju

K∂ku J
)
, 0 ≤ j < k ≤ 3, 1 ≤ J ≤ K ≤ D.

It seems likely that one could also allow diagonal terms involving the
relativistic null forms QI

0(du) = (∂0uI )2 − c2
I |∇xuI |2, by using a gauge
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transformation to reduce to the above types of equations; however, this case
will not be explored here. One should also be able to allow cubic quasilinear
nonlinearities of the form R(u, du, d2u) that vanish to second order in the
last two variables. Doing this, though, would require handling more powers
of L , which would complicate the combinatorics in the continuity argument
used to prove global existence.

In order to solve (1.5) we must also assume that the data satisfies the rele-
vant compatibility conditions. Since these are well known (see e.g., [9]), we
shall describe them briefly. To do so we first let Jku = {∂α

x u : 0 ≤ |α| ≤ k}
denote the collection of all spatial derivatives of u of order up to k. Then
if m is fixed and if u is a formal Hm solution of (1.5) we can write
∂k

t u(0, ·) = ψk(Jk f, Jk−1g), 0 ≤ k ≤ m, for certain compatibility functions
ψk which depend on the nonlinear term Q as well as Jk f and Jk−1g. Having
done this, the compatibility condition for (1.5) with ( f, g) ∈ Hm × Hm−1 is
just the requirement that the ψk vanish on ∂K when 0 ≤ k ≤ m − 1. Addi-
tionally, we shall say that ( f, g) ∈ C∞ satisfy the compatibility conditions
to infinite order if this condition holds for all m.

We can now state our main result:

Theorem 1.1. Let K be a fixed compact obstacle with smooth boundary
that satisfies (1.4). Assume also that Q(du, d2u) and � are as above. Sup-
pose that ( f, g) ∈ C∞(R3\K) satisfies the compatibility conditions to
infinite order. Then there is a constant ε0 > 0, and an integer N > 0 so that
for all ε ≤ ε0, if

∑
|α|≤N

∥∥〈x〉|α|∂α
x f

∥∥
2 +

∑
|α|≤N−1

∥∥〈x〉1+|α|∂α
x g

∥∥
2 ≤ ε,(1.11)

then (1.5) has a unique solution u ∈ C∞([0,∞) × R3\K).

This paper is organized as follows. In the next section we shall collect
the L2 estimates that will be needed for the proof of this existence theorem.
In Sect. 3 we shall prove the necessary pointwise decay estimates that
will be needed. The results in these two sections involve variants of those
in [11]. Section 4 will include weighted estimates that are related to the
null condition, which are obstacle variants of ones for the Minkowski space
setting (cf. Hidano [4], Sideris and Tu [24], Sogge [27], and Yokoyama [28]).
Finally, in Sect. 5, we shall use all of these estimates to prove the global
existence theorem.

Acknowledgements. We are very grateful to S. Zelditch for pointing out the work of Ikawa
and many other suggestions. It is also a pleasure to thank N. Burq and S. Klainerman for
helpful conversations that simplified the exposition. We would also like to thank Makoto
Nakamura and the referee for helpful suggestions that improved the exposition. The second
author is also grateful for his collaboration with M. Keel and H. Smith that preceded this
paper.
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2. L2 estimates

We shall be concerned with solutions u ∈ C∞(R+×R3\K) of the Dirichlet-
wave equation



�γ u = F
u|∂K = 0
u|t=0 = f, ∂tu|t=0 = g,

(2.1)

where

(�γ u)I = (
∂2

t − c2
I ∆

)
uI +

D∑
J=1

3∑
j,k=0

γ IJ, jk(t, x)∂ j∂ku J , 1 ≤ I ≤ D.

We shall assume that the γ IJ, jk satisfy the symmetry conditions

γ IJ, jk = γ JI, jk = γ IJ,k j ,(2.2)

as well as the size condition

D∑
I,J=1

3∑
j,k=0

‖γ IJ, jk(t, x)‖∞ ≤ δ/(1 + t)(2.3)

for δ > 0 sufficiently small (depending only on the wave speeds). The
energy estimate will involve bounds for the gradient of the perturbation
terms

‖γ ′(t, · )‖∞ =
D∑

I,J=1

3∑
j,k,l=0

∥∥∂lγ
IJ, jk(t, x)

∥∥∞,

and it will of course involve the energy form associated with �γ , e0(u) =∑D
I=1 eI

0(u), where

(2.4) eI
0(u) = (

∂0uI
)2 +

3∑
k=1

c2
I

(
∂kuI

)2

+ 2
D∑

J=1

3∑
k=0

γ IJ,0k∂0uI∂ku J −
D∑

J=1

3∑
j,k=0

γ IJ, jk∂ ju
I ∂ku J .

The most basic estimate will involve

EM(t) = EM(u)(t) =
∫ M∑

j=0

e0
(
∂

j
t u

)
(t, x) dx.
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Lemma 2.1. Fix M = 0, 1, 2, . . . and assume that the perturbation terms
γ IJ, jk are as above. Suppose also that u ∈ C∞ solves (2.1), and for every t,
u(t, x) = 0 for large x. Then there is an absolute constant C so that

∂t E
1/2
M (t) ≤ C

M∑
j=0

∥∥�γ ∂
j
t u(t, · )∥∥2 + C‖γ ′(t, · )‖∞E1/2

M (t).(2.5)

Although the result is standard, we shall present its proof since it serves
as a model for the more difficult variations that are to follow. We first notice
that it suffices to prove the result for M = 0 in view of our assumption that
the ∂

j
t u satisfy the Dirichlet boundary conditions for 1 ≤ j ≤ M.

To proceed, we need to define the other components of the energy-
momentum vector. For I = 1, 2, . . . , D, and k = 1, 2, 3, we let

eI
k = eI

k(u) = −2 c2
I ∂0uI∂kuI + 2

D∑
J=1

3∑
j=0

γ IJ, jk∂0uI∂ ju
J .(2.6)

Then if e0 is the component defined before in (2.4), we have

∂0eI
0 = 2 ∂0uI∂2

0uI + 2
3∑

k=1

c2
I∂kuI∂0∂kuI + 2 ∂0uI

D∑
J=1

3∑
k=0

γ IJ,0k∂0∂ku J

(2.7)

+ 2
D∑

J=1

3∑
k=0

γ IJ,0k∂2
0uI∂ku J

−
D∑

J=1

3∑
j,k=0

γ IJ, jk
[
∂0∂ ju

I∂ku J + ∂ ju
I ∂0∂ku J

] + RI
0,

where

RI
0 = 2

D∑
J=1

3∑
k=0

(
∂0γ

IJ,0k
)
∂0uI ∂ku J −

D∑
J=1

3∑
j,k=0

(
∂0γ

IJ, jk
)
∂ ju

I ∂ku J .

Also,

3∑
k=1

∂keI
k = − 2 ∂0uI c2

I ∆uI − 2
3∑

k=1

c2
I∂kuI∂0∂kuI(2.8)

+ 2 ∂0uI
D∑

J=1

3∑
j=0

3∑
k=1

γ IJ, jk∂ j∂ku J

+ 2
D∑

J=1

3∑
j=0

3∑
k=1

γ IJ, jk∂0∂kuI∂ ju
J +

3∑
k=1

RI
k ,
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where

RI
k = 2

D∑
J=1

3∑
j=0

(∂kγ
IJ, jk)∂0uI∂ ju

J .

Note that by the symmetry conditions (2.2) if we sum the second to last
term and the third to last terms in (2.7) over I , we get

−2
D∑

I,J=1

3∑
j=0

3∑
k=1

γ IJ, jk∂0∂kuI ∂ ju
J ,

which is −1 times the sum over I of the second to last term of (2.8). From
this, we conclude that if we set

e j = e j(u) =
D∑

I=1

eI
j , j = 0, 1, 2, 3,

and

R = R(u′, u′) =
D∑

I=1

3∑
k=0

RI
k ,

then

∂te0 +
3∑

k=1

∂kek = 2〈∂tu,�γ u〉 + R(u′, u′),

with 〈 · , · 〉 denoting the standard inner product in RD.
If we integrate this identity over R3\K and apply the divergence theo-

rem, we obtain

(2.9) ∂t

∫
R3\K

e0(t, x) dx −
∫

∂K

3∑
j=1

e jn j dσ

= 2
∫
R3\K

〈∂tu,�γ u〉 dx +
∫
R3\K

R(u′, u′) dx .

Here, n = (n1, n2, n3) is the outward normal to K , and dσ is surface
measure on ∂K .

Since we are assuming that u solves (2.1), and hence ∂tu vanishes on
∂K , the integrand in the last term in the left side of (2.9) vanishes identically.
Therefore, we have

∂t

∫
R3\K

e0(t, x) dx = 2
∫
R3\K

〈∂tu,�γ u〉 dx +
∫
R3\K

R(u′, u′) dx.
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Note that if δ in (2.3) is small, then
(
2 max

I

{
c2

I , c−2
I

})−1|u′(t, x)|2 ≤ e0(t, x) ≤ 2 max
I

{
c2

I , c−2
I

}|u′(t, x)|2.(2.10)

This yields

∂t

( ∫
R3\K

e0(t, x) dx
)1/2 ≤ C‖�γ u(t, · ), ‖L2(R3\K)

+ C
D∑

I,J=1

3∑
i, j,k=0

∥∥∂iγ
IJ, jk(t, · )∥∥∞

( ∫

R3\K
e0(t, x) dx

)1/2
,

as desired. ��
We require a minor modification of this energy estimate that involves

a slight variant of the scaling vector field L = r∂r + t∂t .
Before stating the next result, let us introduce some notation. If P =

P(t, x, Dt , Dx) is a differential operator, we shall let
[
P, γ kl∂k∂l

]
u =

∑
1≤I,J≤D

∑
0≤k,l≤3

∣∣[P, γ IJ,kl∂k∂l
]
u J

∣∣.

We can now state the simple variant of Lemma 2.1 that we require.

Lemma 2.2. Fix a bump function η ∈ C∞(R3) satisfying η(x) = 0, for
x ∈ K and η(x) = 1, |x| > 1. Let L̃ = η(x)r∂r + t∂t , and set

Xν, j =
∫

e0
(
L̃ν∂

j
t u

)
(t, x) dx.

Then if u ∈ C∞(R+ × R3\K) solves (2.1) and vanishes for large x for
every t

∂t Xν, j ≤ CX1/2
ν, j

∥∥L̃ν∂
j
t �γ u(t, · )∥∥2 + C‖γ ′(t, · )‖∞ Xν, j(2.11)

+ CX1/2
ν, j

∥∥ [
L̃ν∂

j
t , γ

kl∂k∂l
]
u(t, · )∥∥2

+ CX1/2
ν, j

∑
µ≤ν−1

∥∥Lµ∂
j
t �u(t, · )∥∥2

+ CX1/2
ν, j

∑
µ+|α|≤ j+ν

µ≤ν−1

‖Lµ∂αu′(t, · )‖L2({x∈R3\K: |x|<1}).

Proof. Note that like u, L̃ν∂
j
t u(t, x) vanishes when x ∈ ∂K . Therefore by

the special case where M = 0 in Lemma 2.1 we have

∂t Xν, j ≤ CX1/2
ν, j

∥∥�γ L̃ν∂
j
t u(t, · )∥∥2 + C‖γ ′(t, · )‖∞ Xν, j .(2.12)
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To proceed we need to estimate the first term in the right by noting that

∣∣�γ L̃ν∂
j
t u

∣∣ ≤ ∣∣L̃ν∂
j
t �γ u

∣∣ + ∣∣[L̃ν∂
j
t , γ

kl∂k∂l
]
u
∣∣ + ∣∣[L̃ν,�]∂ j

t u
∣∣

≤ ∣∣L̃ν∂
j
t �γ u

∣∣ + ∣∣[L̃ν∂
j
t , γ

kl∂k∂l
]
u
∣∣ + ∣∣[Lν,�]∂ j

t u
∣∣

+ ∣∣[L̃ν − Lν,�]∂ j
t u

∣∣
≤ ∣∣L̃ν∂

j
t �γ u

∣∣ + ∣∣[L̃ν∂
j
t , γ

kl∂k∂l
]
u
∣∣ + 2

∑
µ≤ν−1

∣∣Lµ∂
j
t �u

∣∣

+ Cχ|x|<1(x)
∑

µ+|α|≤ j+ν
µ≤ν−1

|Lµ∂αu′(t, x)|.

In the last step we used the fact that [�, L] = 2�, and ∇xη(x) = 0, |x| > 1.
If we combine the last inequality and (2.12) we get (2.11). ��

The last lemma involved estimates for powers of L and ∂t . Let us now
prove a simple result which shows how these lead to estimates for powers
of L and ∂ = ∂t,x .

Lemma 2.3. Fix N0 and ν and suppose that u ∈ C∞(R+ × R3\K) solves
(2.1) and vanishes for large x for each t. Then

(2.13)
∑

|α|≤N0

‖Lν∂αu′(t, · )‖2 ≤ C
∑

j+µ≤ν+N0
µ≤ν

∥∥Lµ∂
j
t u′(t, · )∥∥2

+ C
∑

|α|+µ≤N0+ν−1
µ≤ν

‖Lµ∂α�u(t, · )‖2.

Proof. We shall prove this inequality by induction on ν. Since, by elliptic
regularity estimates, the inequality holds when ν = 0, let us therefore
assume that it is valid when ν is replaced by ν − 1 and use this to prove it
for a given ν = 1, 2, 3, . . . .

Since K ⊂ {|x| < 1} it is straightforward to see that

∑
|α|≤N0

‖Lν∂αu′(t, · )‖L2(|x|>1)

is dominated by the right side of (2.13). Therefore, it suffices to show that
we can prove the analog of (2.13) where the norm is taken over |x| < 2.

For the latter, we shall use the fact that
∑

|α|≤N0

‖Lν∂αu′(t, · )‖L2(|x|<2) ≤ C
∑

|α|+µ≤N0+ν
µ≤ν

tµ
∥∥∂

µ
t ∂αu′(t, · )∥∥

L2(|x|<2)
.
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By elliptic regularity, if we fix R ≥ 2 then

∑
|α|+µ≤N0+ν

µ≤ν

∥∥∂α∂
µ
t u′(t, · )∥∥

L2(|x|<R)
≤ C

∑
j+µ≤N0+ν

µ≤ν

∥∥∂
j+µ
t u′(t, · )∥∥

L2(|x|<R+2)

+ C
∑

|α|+µ≤N0+ν−1
µ≤ν

∥∥∂α∂
µ
t �u(t, · )∥∥

L2(|x|<R+2)
.

Therefore,

∑
|α|≤N0

‖Lν∂αu′(t, · )‖L2(|x|<R)(2.14)

≤ C
∑

j+µ≤N0+ν
µ≤ν

∥∥tµ∂
µ+ j
t u′(t, · )∥∥

L2(|x|<R+2)

+ C
∑

|α|+µ≤N0+ν−1
µ≤ν

∥∥tµ∂
µ
t ∂α�u(t, · )∥∥

L2(|x|<R+2)

≤ C
∑
j≤N0

∥∥Lν∂
j
t u′(t, · )∥∥2 + C

∑
|α|+µ≤N0+ν

µ≤ν−1

‖Lµ∂αu′(t, · )‖2

+ C
∑

|α|+µ≤N0+ν−1
µ≤ν

‖Lµ∂α�u(t, · )‖2.

As a result, we get (2.13) by the inductive step and the fact that, we can
control the norms over the set where |x| > 1. ��

Using (2.13) we can prove the following estimate.

Proposition 2.4. Suppose that the constant δ in (2.3) is small. Suppose
further that

‖γ ′(t, · )‖∞ ≤ δ/(1 + t),(2.15)

and

(2.16)
∑

j+µ≤N0+ν0
µ≤ν0

(∥∥L̃µ∂
j
t �γ u(t, · )∥∥2 + ∥∥ [

L̃µ∂
j
t , γ

kl∂k∂l
]
u(t, · )∥∥2

)

≤ δ

1 + t

∑
j+µ≤N0+ν0

µ≤ν0

∥∥L̃µ∂
j
t u′(t, · )∥∥2 + Hν0,N0(t),
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where N0 and ν0 are fixed. Then∑
|α|+µ≤N0+ν0

µ≤ν0

‖Lµ∂αu′(t, · )‖2(2.17)

≤ C
∑

|α|+µ≤N0+ν0−1
µ≤ν0

‖Lµ∂α�u(t, · )‖2 + C(1 + t)Aδ
∑

µ+ j≤N0+ν0
µ≤ν0

X1/2
µ, j(0)

+ C(1 + t)Aδ
(∫ t

0

∑
|α|+µ≤N0+ν0−1

µ≤ν0−1

‖Lµ∂α�u(s, · )‖2 ds +
∫ t

0
Hν0,N0(s)ds

)

+ C(1 + t)Aδ

∫ t

0

∑
|α|+µ≤N0+ν0

µ≤ν0−1

‖Lµ∂αu′(s, · )‖L2(|x|<1) ds,

where the constants C and A depend only on the constants in (2.11).

Note that because of (2.16) the term in (2.17) involving Hν0,N0 must
involve bounds for derivatives of �γ u. For our application to equations
with quadratic nonlinearities (1.5), it will mainly involve involve L2

x norms
of |Lµ∂αu′|2 with µ + |α| much smaller than N0 + ν0, and so the integral
involving Hν0 ,N0 can be dealt with using an inductive argument and weighted
L2

t L2
x estimates that will be presented at the end of this section.

Proof. We first note that by (2.3) and the definition (2.4) of the energy form
∑

j+µ≤N0+ν0
µ≤ν0

∥∥L̃µ∂
j
t u′(t, · )∥∥2 ≤ 2

∑
j+µ≤N0+ν0

µ≤ν0

X1/2
µ, j(t),(2.18)

if δ is sufficiently small. Therefore, by (2.11) and (2.15)–(2.16) we have

∂t

∑
j+µ≤N0+ν0

µ≤ν0

X1/2
µ, j(t) ≤ Aδ

1 + t

∑
j+µ≤N0+ν0

µ≤ν0

X1/2
µ, j(t) + AHν0,N0(t)

+ A
∑

µ+ j≤N0+ν0−1
µ≤ν0−1

∥∥Lµ∂
j
t �u(t, · )∥∥2

+ A
∑

|α|+µ≤N0+ν0
µ≤ν0−1

‖Lµ∂αu′(t, · )‖L2(|x|<1),

where A depends on the constants in (2.11). By Gronwall’s inequality
∑

j+µ≤N0+ν0
µ≤ν0

X1/2
µ, j

is dominated by the right side of (2.17). By applying (2.13) and (2.18), we
conclude that (2.17) must be valid. ��
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In proving our existence results for (1.5) the key step will be to obtain
a priori L2-estimates involving LµZαu′. The next result indicates how these
can be obtained from ones involving Lµ∂αu′.

Proposition 2.5. Fix N0 and ν0, and set

YN0,ν0(t) =
∑

|α|+µ≤N0+ν0
µ≤ν0

∫
e0(LµZαu)(t, x) dx.(2.19)

Suppose that the constant δ in (2.3) is small and that (2.15) holds. Then

∂tYN0,ν0 ≤ CY 1/2
N0,ν0

∑
|α|+µ≤N0+ν0

µ≤ν0

∥∥�γ LµZαu(t, · )∥∥2(2.20)

+ C‖γ ′(t, · )‖∞YN0,ν0 + C
∑

|α|+µ≤N0+ν0+1
µ≤ν0

‖Lµ∂αu′(s, · )‖2
L2(|x|<1)

.

Proof. If we argue as in the proof of Lemma 2.1 we find that

(2.21) ∂tYN0,ν0 ≤ CY 1/2
N0,ν0

∑
|α|+µ≤N0+ν0

µ≤ν0

∥∥�γ LµZαu(t, · )∥∥2

+ C‖γ ′(t, · )‖∞YN0,ν0 + C
∫

∂K

3∑
a=1

|eana| dσ,

where n = (n1, n2, n3) is the outward normal at a given point in ∂K , and

ea =
∑

|α|+µ≤N0+ν0
µ≤ν0

ea(LµZαu)(t, x), a = 1, 2, 3,

are the components of the energy-momentum tensor defined in (2.6). Since
K ⊂ {|x| < 1} and since

∑
|α|+µ≤N0+ν0

µ≤ν0

|LµZαu(t, x)| ≤ C
∑

|α|+µ≤N0+ν0
µ≤ν0

|Lµ∂αu(t, x)|, x ∈ ∂K,

we have

∫
∂K

3∑
a=1

|eana| dσ ≤ C
∫

{x∈R3\K: |x|<1}

∑
|α|+µ≤N0+ν0+1

µ≤ν0

|Lµ∂αu′(t, x)|2 dx.

��
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As in [10] and [11] we shall control the local L2 norms, such as the last
term in (2.20) by using weighted L2

t L2
x estimates. They will also be used in

obtaining decay estimate for solutions of the nonlinear equation. To avoid
cumbersome notation, for the rest of the section we shall abuse notation a bit
by letting � = ∂2

t − ∆ denote the unit speed D’Alembertian. The passing
from the ensuing estimates involving this case to ones involving (1.6) is
straightforward. Also, in what follows, we shall let

ST = {[0, T ] × R3\K}

denote the time strip of height T in R+ × R3\K .

Proposition 2.6. Fix N0 and ν0. Suppose that K satisfies the local expo-
nential energy decay bounds (1.4). Suppose also that u ∈ C∞ solves (2.1)
and satisfies u(t, x) = 0, t < 0. Then there is a constant C = CN0,ν0,K so
that if u vanishes for large x for every fixed t

(
log(2 + T )

)−1/2 ∑
|α|+µ≤N0+ν0

µ≤ν0

‖〈x〉−1/2Lµ∂αu′‖L2(ST )(2.22)

≤ C
∫ T

0

∑
|α|+µ≤N0+ν0+1

µ≤ν0

‖�Lµ∂αu(s, · )‖2 ds

+ C
∑

|α|+µ≤N0+ν0
µ≤ν0

‖�Lµ∂αu‖L2(ST ).

Also, if N0 and ν0 are fixed

(
log(2 + T )

)−1/2 ∑
|α|+µ≤N0+ν0

µ≤ν0

‖〈x〉−1/2 LµZαu′‖L2(ST )(2.23)

≤ C
∫ T

0

∑
|α|+µ≤N0+ν0+1

µ≤ν0

‖�LµZαu(s, · )‖2 ds

+ C
∑

|α|+µ≤N0+ν0
µ≤ν0

‖�LµZαu‖L2(ST ).

The constants in (2.22) and (2.23) of course do not depend on the size
of the set where u does not vanish. To prove these estimates we shall need
a couple of lemmas. The first says that these estimates hold (with no loss of
derivatives) in the boundaryless case.
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Lemma 2.7. Suppose that v ∈ C∞(R×R3) vanishes for large x for every t.
Then there is a uniform constant C so that if v has vanishing Cauchy data

(ln(2 + T ))−1/2‖〈x〉−1/2v′‖L2([0,T ]×R3) ≤C
∫ T

0
‖�v(s, · )‖L2(R3) ds.(2.24)

Also, given µ and α,

(2.25) (ln(2 + T ))−1/2‖〈x〉−1/2(LµZαv)′‖L2([0,T ]×R3)

≤ C
∫ T

0
‖�LµZαv(s, · )‖L2(R3) ds.

The first inequality, (2.24), was proved in [10]. The second follows from
the first.

As was shown in [10], (2.24) follows immediately from the fact that
stronger bounds hold when one restricts the norms in the left to regions
where |x| is bounded. In particular, just by using Huygens principle, one
can show that if R is fixed then there is a uniform constant C = CR so that

‖v′‖L2([0,T ]×{x∈R3:|x|<R}) + ‖v‖L2
t L6

x([0,T ]×{x∈R3:|x|<R})(2.26)

≤ C
∫ T

0
‖�v(s, · )‖L2(R3) ds.

To prove Proposition 2.6 we shall need the following local estimates
which follow from the local exponential energy decay (1.4).

Lemma 2.8. Suppose that (1.4) holds and that �u(t, x) = 0 for |x| > 4
and t > 0. Suppose also that u(t, x) = 0 for t ≤ 0. Then if N0 and ν0 are
fixed and if c > 0 is as in (1.4)

∑
|α|+µ≤N0+ν0

µ≤ν0

‖Lµ∂αu′(t, · )‖L2({R3\K: |x|<4})(2.27)

≤ C
∑

|α|+µ≤N0+ν0−1
µ≤ν0

‖Lµ∂α�u(t, · )‖2

+ C
∫ t

0
e−(c/2)(t−s)

∑
|α|+µ≤N0+ν0+1

µ≤ν0

‖Lµ∂α�u(s, · )‖2ds.

The proof is quite simple. By (1.4) we have that
∑

j+µ≤N0+ν0
µ≤ν0

∥∥〈t〉µ∂
µ
t ∂

j
t u′(t, · )∥∥

L2({R3\K: |x|<6})
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is dominated by the last term in the right side of (2.27). By the first inequality
in (2.14) with R = 4, this implies (2.27) since

∑
|α|+µ≤N0+ν0−1

µ≤ν0

∥∥tµ∂
µ
t ∂α�u(t, · )∥∥

L2(|x|<6)

is dominated by the first term in the right side of (2.27).

Proof of Proposition 2.6. We shall only prove (2.22) since (2.23) follows
from the same argument. When x is near the obstacle, our proof will rely
mostly on the local energy decay (1.4). Away from the obstacle, we will
refer to the related bounds for the free wave equation from Lemma 2.7.

The first step in proving (2.22) will be to show that if we take the L2
t L2

x
norm over a region where |x| is bounded then we have better estimates, i.e.,

∑
|α|+µ≤N0+ν0

µ≤ν0

‖Lµ∂αu′‖L2(ST ∩|x|<2) ≤ C
∫ T

0

∑
|α|+µ≤N0+ν0+1

µ≤ν0

‖�Lµ∂αu(s, · )‖2ds

(2.28)

+ C
∑

|α|+µ≤N0+ν0−1
µ≤ν0

‖�Lµ∂αu‖L2(ST ).

To prove this, let us first assume that u is as in Lemma 2.8. Thus, if
we assume that �u(t, x) = 0 when |x| > 4, then by (2.27) we have for
0 < τ < T

∑
|α|+µ≤N0+ν0

µ≤ν0

‖Lµ∂αu′(τ, · )‖2
L2(|x|<2)

≤ C
∑

|α|+µ≤N0+ν0−1
µ≤ν0

‖Lµ∂α�u(τ, · )‖2
2

+ C
(∫ τ

0
e−(c/2)(τ−s)

∑
|α|+µ≤N0+ν0+1

µ≤ν0

‖Lµ∂α�u(s, · )‖2ds
)2

.

After integrating τ from 0 to T we obtain (2.28) under the support assump-
tions of Lemma 2.8.

Note that if we had applied Young’s inequality, we would have gotten
∑

|α|+µ≤N0+ν0
µ≤ν0

‖Lµ∂αu′‖2
L2(ST ∩|x|<2)

≤ C
∑

|α|+µ≤N0+ν0+1
µ≤ν0

‖Lµ∂α�u‖2
L2(ST )

,(2.29)

if �u(t, x) = 0 , |x| > 4.

This inequality will be useful in the last part of the proof of (2.28).
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We now need to show that the inequality (2.28) holds when we assume
that�u(t, x) vanishes for |x| < 3. To do this, we fix ρ ∈ C∞(R3) satisfying
ρ(x) = 1 for |x| < 2 and ρ(x) = 0 for |x| ≥ 3. We then write u = u0 + ur
where u0 solves the boundaryless wave equation �u0(t, x) = �u(t, x) if
|x| ≥ 3 and 0 otherwise with vanishing initial data . It then follows that ũ =
ρu0 +ur solves the Dirichlet-wave equation�ũ = −2∇xρ ·∇xu0 − (∆ρ)u0
with zero initial data. Therefore, by (2.29), we have∑

|α|+µ≤N0+ν0
µ≤ν0

‖Lµ∂αu′‖2
L2(ST∩|x|<2)

=
∑

|α|+µ≤N0+ν0
µ≤ν0

‖Lµ∂αũ′‖2
L2(ST ∩|x|<2)

≤
∑

|α|+µ≤N0+ν0+1
µ≤ν0

‖Lµ∂α�ũ‖2
L2(ST )

≤ C
∑

|α|+µ≤N0+ν0+1
µ≤ν0

(∥∥Lµ∂αu′
0

∥∥2
L2(ST ∩|x|<4)

+ ∥∥Lµ∂αu0

∥∥2
L2(ST∩|x|<4)

)
.

One now gets (2.28) for this by applying (2.26) since �u0 = �u in R3\K .
To finish the proof of (2.22) we must show that

(
log(2 + T )

)−1/2 ∑
|α|+µ≤N0+ν0

µ≤ν0

‖〈x〉−1/2Lµ∂αu′‖L2(ST ∩|x|>2)(2.30)

≤ C
∫ T

0

∑
|α|+µ≤N0+ν0+1

µ≤ν0

‖�Lµ∂αu(s, · )‖2 ds

+ C
∑

|α|+µ≤N0+ν0−1
µ≤ν0

‖�Lµ∂αu‖L2(ST ).

To do this, we fix β ∈ C∞(R3) satisfying β(x) = 1, |x| ≥ 2 and
β(x) = 0, |x| ≤ 3/2. By assumption the obstacle is contained in the set
|x| < 1. It follows that v = βu solves the boundaryless wave equation�v =
β�u−2∇xβ·∇xu−(∆β)u with vanishing initial data. Also u(t, x) = v(t, x)
for |x| > 2. We split v = v1 +v2 where v1 solves�v1 = β�u and v2 solves
�v2 = −2∇xβ · ∇xu − (∆β)u and both have zero initial data. By (2.25) if
we replace u by v1 in the left side of (2.30), then the resulting quantity is
dominated by the right side of (2.30).

Therefore, to finish the proof, we must show that

(2.31) (log(2 + T ))−1/2
∑

|α|+µ≤N0+ν0
µ≤ν0

∥∥〈x〉−1/2Lµ∂αv′
2

∥∥
L2(ST∩|x|>2)

≤ C
∫ T

0

∑
|α|+µ≤N0+ν0+1

µ≤ν0

‖�Lµ∂αu(s, · )‖2ds+C
∑

|α|+µ≤N0+ν0−1
µ≤ν0

‖�Lµ∂αu‖L2(ST ).
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To prove this, we note that G = −2∇xβ · ∇xu − (∆β)u = �v2 vanishes
unless 1 < |x| < 2. To use this, fix χ ∈ C∞

0 (R) satisfying χ(s) = 0 for s �∈
[1/2, 2] and

∑
j χ(s − j) = 1. We then split G = ∑

j G j where G j(s, x) =
χ(s − j)G(s, x), and let v2, j be the solution of the inhomogeneous wave
equation�v2, j = G j in Minkowski space with zero initial data. Since v2 also
has vanishing Cauchy data, by the sharp Huygens principle the functions
v2, j have finite overlap, so that we have |Lµ∂αv′

2|2 ≤ C
∑

j |Lµ∂αv′
2, j |2 for

some uniform constant C. Therefore, by (2.25), the square of the left side
of (2.31) is dominated by

∑
|α|+µ≤N0+ν0

µ≤ν0

∑
j

(∫ T

0

∥∥Lµ∂αG j(s, · )∥∥
L2(R3)

ds
)2

≤ C
∑

|α|+µ≤N0+ν0
µ≤ν0

‖Lµ∂αG‖2
L2([0,T ]×R3)

≤ C
∑

|α|+µ≤N0+ν0
µ≤ν0

(
‖Lµ∂αu′‖2

L2([0,T ]×|x|<2)
+ ‖Lµ∂αu‖2

L2([0,T ]×|x|<2)

)

≤
∑

|α|+µ≤N0+ν0
µ≤ν0

‖Lµ∂αu′‖2
L2(ST ∩|x|<2)

.

Consequently, the bound (2.31) follows from (2.28).
This finishes the proof of (2.22). Since the other part of the proposition

follow from the same argument, this completes the proof of Proposition 2.6.
��

To be able to handle the last term in the right side of (2.17) we shall
need the following result which follows from a similar argument.

Lemma 2.9. Suppose that (1.4) holds, and suppose that u ∈ C∞ solves
(2.1) and satisfies u(t, x) = 0, t < 0. Then if ν0 and N0 are fixed and if
c > 0 is as in (1.4)

∑
|α|+µ≤N0+ν0

µ≤ν0

‖Lµ∂αu′(t, · )‖L2(|x|<2)(2.32)

≤ C
∑

|α|+µ≤N0+ν0+1
µ≤ν0

[∫ t

0
e− c

2 (t−s)‖Lµ∂α�u(s, · )‖L2(|x|<4) ds

+ ‖Lµ∂α�u(t, · )‖L2(|x|<4)

]
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+ C
∑

|α|+µ≤N0+ν0+1
µ≤ν0

∫ t

0
e− c

2 (t−s)
(∫ s

0
‖Lµ∂α�u(τ, · )‖L2(| |x|−(s−τ) |<10) dτ

)
ds

+ C
∑

|α|+µ≤N0+ν0+1
µ≤ν0

∫ t

0
‖Lµ∂α�u(s, · )‖L2(| |x|−(t−s) |<10) ds.

Additionally, if t > 2,

∑
|α|+µ≤N0+ν0

µ≤ν0

∫ t

0
‖Lµ∂αu′(s, · )‖L2(|x|<2) ds(2.33)

≤ C
∑

|α|+µ≤N0+ν0+1
µ≤ν0

∫ t

0

(∫ s

0
‖Lµ∂α�u(τ, · )‖L2(| |x|−(s−τ) |<10) dτ

)
ds.

Proof. Since the first inequality obviously implies the second, we shall only
prove (2.32).

If�u(s, x) vanishes when |x| > 4, the result follows from (2.27). In this
case a stronger inequality holds where the last two terms in the right are not
present.

To finish we need to show that the inequality is valid when �u(s, x)
vanishes for |x| < 3. In this case, as in the proof of Proposition 2.6 we
write u = u0 + ur where u0 solves �u0 = �u with vanishing Cauchy data.
Then if as above ρ ∈ C∞(R3) equals 1 for |x| < 2 and 0 for |x| > 3, then
ũ = ρu0 +ur has vanishing Cauchy data and solves�ũ = −2∇xρ ·∇xu0 −
(∆ρ)u0. Thus, since �ũ = 0 for |x| > 3, by the above case

∑
|α|+µ≤N0+ν0

µ≤ν0

‖Lµ∂αu′(t, · )‖L2(|x|<2)

=
∑

|α|+µ≤N0+ν0
µ≤ν0

‖Lµ∂αũ′(t, · )‖L2(|x|<2)

≤ C
∑

|α|+µ≤N0+ν0+1
µ≤ν0

[∫ t

0
e− c

2 (t−s)‖Lµ∂α�ũ(s, · )‖2ds + ‖Lµ∂α�ũ(t, · )‖2

]

≤ C
∑

|α|+µ≤N0+ν0+1
µ≤ν0

[∫ t

0
e− c

2 (t−s)
(∥∥Lµ∂αu′

0(s, · )∥∥
L2(|x|<4)

+ ∥∥Lµ∂αu0(s, · )∥∥
L2(|x|<4)

)
ds

+ ∥∥Lµ∂αu′
0(t, · )∥∥

L2(|x|<4)
+ ∥∥Lµ∂αu0(t, · )∥∥

L2(|x|<4)

]
.
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Since �u = �u0 one can use the sharp Huygens principle to see that the
last term is dominated by the last term in the right side of (2.32), which
finishes the proof. ��

3. Pointwise estimates

We will estimate solutions of the scalar inhomogeneous wave equation




(∂2
t − ∆)w(t, x) = F(t, x), (t, x) ∈ R+ × R3\K

w(t, x) = 0, x ∈ ∂K

w(t, x) = 0, t ≤ 0.

(3.1)

If we assume, as before, that K ⊂ {x ∈ R3 : |x| < 1} then we have the
following

Theorem 3.1. Suppose that the local energy decay bounds (1.4) hold for K .
Suppose also that |α| = M. Then

(1 + t + |x|)|Lν Zαw(t, x)|(3.2)

≤ C
∫ t

0

∫
R3\K

∑
|β|+µ≤M+ν+7

µ≤ν+1

|LµZβ F(s, y)|dyds

|y|

+ C
∫ t

0

∑
|β|+µ≤M+ν+4

µ≤ν+1

‖Lµ∂β F(s, · )‖L2({x∈R3\K: |x|<2}) ds.

The special case of this estimate where ν = 0 was handled in [11] in
the non-trapping case. Since it is technically harder to handle pointwise
bounds involving powers of L , we shall give the proof of (3.2) for the sake
of completeness. Handling the case where there is a loss of regularity in the
energy decay as in (1.4) does not present any added difficulty. The fact that
(1.4) involves a loss of one derivative accounts why when ν = 0 the right
side of (3.2) involves on extra derivative versus the results in [11].

The proof will resemble that of Proposition 2.6. We shall prove the
estimate when x is near the obstacle primarily by using the local energy
decay estimates (1.4), while away from the obstacle we shall mainly use the
fact that related bounds hold in Minkowski space.

The Minkowski space estimates we shall use say that if w0 is a solution
of the inhomogeneous wave equation

{(
∂2

t − ∆
)
w0(t, x) = G(t, x), (t, x) ∈ R+ × R3

w0(0, x) = ∂tw0(0, x) = 0,
(3.3)
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then

(1 + t + |x|)∣∣Lν Zαw0(t, x)
∣∣ ≤ C

∫ t

0

∫
R3

∑
|β|+µ≤|α|+ν+3

µ≤ν+1

|LµZβG(s, y)| dyds

|y| .

(3.4)

This follows from inequalities (2.3) and (2.9) in [11] and the fact that
[∂2

t − ∆, Z] = 0, and [∂2
t − ∆, L] = 2(∂2

t − ∆). The estimate where the
weight in the left is (1 + t) was the main pointwise estimate in [11], while
the contribution of the weight |x| in the left just follows from the fact that

|x| |w0(t, x)| ≤ C
∫ t

0

∫ |x|+(t−s)

| |x|−(t−s) |
sup
|θ|=1

|G(s, rθ)| rdrds(3.5)

≤ C
∫ t

0

∫

{y∈R3: |y|∈[| |x|−(t−s) |,|x|+(t−s)]}

∑
|a|≤2

|Ωa G(s, y)| dyds

|y| .

Recall that we are assuming that K ⊂ {x ∈ R3 : |x| < 1}. With this in
mind, the first step is to see that (3.4) and (3.5) yield

(1 + t + |x|)|Lν Zαw(t, x)| ≤
∫ t

0

∫
R3\K

∑
|β|+µ≤|α|+ν+3

µ≤ν+1

|LµZβ F(s, y)| dyds

|y|

(3.6)

+ C sup
|y|≤2,0≤s≤t

(1 + s)
(|Lν Zαw′(s, y)| + |Lν Zαw(s, y)|).

The proof is exactly like that of Lemma 4.2 in [11]. One fixes ρ ∈ C∞(R)
satisfying ρ(r) = 1, r ≥ 2, ρ(r) = 0, r ≤ 1, and then applies (3.4)–(3.5)
to w0(t, x) = ρ(|x|)Lν Zαw(t, x), which solves the inhomogeneous wave
equation

(
∂2

t − ∆
)
w0(t, x) = ρ(|x|)(∂2

t − ∆
)
Lν Zαw(t, x)

− 2ρ′(|x|) x

|x| · ∇x Lν Zαw(t, x) − (∆ρ(|x|))Lν Zαw(t, x),

with zero initial data. When one applies (3.4), the first term in the right side
of this equation results in the first term in the right side of of (3.6), while
if one applies the first inequality in (3.5) one sees that the last two terms of
the equation result in the last two terms of (3.6).

It remains to prove pointwise bounds in the region where |x| < 2.
Additionally since the coefficients of Z are bounded, it suffices to show that
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if |γ | ≤ |α| + 1 = M + 1, then

t sup
|x|<2

|Lν∂γw(t, x)|(3.7)

≤ C
∫ t

0

∫

R3\K

∑
|β|+µ≤M+ν+7

µ≤ν+1

|Lµ Zβ F(s, y)| dyds

|y|

+ C
∫ t

0

∑
|β|+µ≤M+ν+4

µ≤ν+1

‖Lµ∂β F(s, ·)‖L2({x∈R3\K: |x|<4}) ds.

Using cutoffs for the forcing terms, we can split things into proving (3.7)
for the following two cases

• Case 1: F(s, y) = 0 if |y| > 4
• Case 2: F(s, y) = 0 if |y| < 3.

For either case, we shall use the following immediate consequence of
the Fundamental Theorem of Calculus:

|tLν∂γw(t, x)| ≤
∑
j=0,1

∫ t

0

∣∣(s∂s)
j Lν∂γw(s, x)

∣∣ ds.

If we apply the Sobolev lemma, using the fact that |γ | ≤ M + 1, and that
Dirichlet conditions allow us to control w locally by w′, then we get

t sup
|x|<2

|Lν∂γw(t, x)|

≤ C
∫ t

0

∑
|β|≤M+2,µ≤1

∥∥(s∂s)
µLν∂βw′(s, ·)∥∥

L2(R3\K: |x|<4)
ds

≤ C
∫ t

0

∑
|β|+µ≤M+ν+3

µ≤ν+1

‖Lµ∂βw′(s, · )‖L2(R3\K: |x|<4) ds.

If we are in Case 1, we apply (2.27) to get the variant of (3.7) involving
only the second term in the right.

In Case 2, we need to write w = w0 +wr where w0 solves the boundary-
less wave equation (∂2

t −∆)w0 = F with zero initial data. Fix η ∈ C∞
0 (R3)

satisfying η(x) = 1, |x| < 2 and η(x) = 0, |x| ≥ 3. It then follows that
if we set w̃ = ηw0 + wr , then since ηF = 0, w̃ solves the Dirichlet-wave
equation

(
∂2

t − ∆
)
w̃ = G = −2∇xη · ∇xw0 − (∆η)w0
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with zero initial data. The forcing term vanishes unless 2 ≤ |x| ≤ 4. Hence,
by Case 1

t sup
|x|<2

|Lν∂γw(t, x)| = t sup
|x|<2

|Lν∂γ w̃(t, x)|

≤ C
∫ t

0

∑
|β|+µ≤M+ν+4

µ≤ν+1

‖Lµ∂βG(s, · )‖L2(R3\K) ds

≤ C
∫ t

0

∑
|β|+µ≤M+ν+5

µ≤ν+1

∥∥Lµ∂βw0(s, · )∥∥
L∞(2≤|x|≤4)

ds.

To finish the argument, we apply (3.5) to obtain
∥∥Lµ∂βw0(s, · )∥∥L∞(2≤|x|≤4)

≤ C
∑
|a|≤2

∫ s

0

∫
|s−τ−|y| |≤4

|Lµ∂βΩa F(τ, y)| dydτ

|y| .

Note that the sets Λs = {(τ, y) : 0 ≤ τ ≤ s, |s − τ − |y| | ≤ 4} satisfy
Λs ∩ Λs′ = ∅ if |s − s′| ≥ 10. Therefore, if in the preceding inequality we
sum over |β|+µ ≤ M +ν+5, µ ≤ ν+1, and then integrate over s ∈ [0, t]
we conclude that (3.7) must hold for Case 2, which finishes the proof. ��

4. Estimates related to the null condition

Here we shall prove simple bounds for the null forms. They must involve
the weight < cJ t −r > due to the fact that we are not using the generators of
Lorentz rotations. The estimates will involve the admissible homogeneous
vector fields that we are using {Γ} = {Z, L}. Also, as before, ∂ denotes the
space-time gradient ∇t,x .

Lemma 4.1. Suppose that the quasilinear null condition (1.9) holds. Then

(4.1)
∣∣∣

∑
0≤ j,k,l≤3

BIJ, jk
J,l ∂lu∂ j∂kv

∣∣∣

≤ C < r >−1
(|Γu| |∂2v| + |∂u| |∂Γv|) + C

< cJ t − r >

< t + r >
|∂u| |∂2v|.

Also, if the asymmetric semilinear null condition (1.10) holds
∣∣∣

∑
0≤ j,k≤3

AI, jk
JK ∂ ju∂kv

∣∣∣ ≤ C < r >−1 (|Γu| |∂v| + |∂u| |Γv|).(4.2)
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Proof. The first estimate is well known. See, e.g., [24], [27]. It also follows
from the proof of (4.2).

Proving (4.2) is straightforward. Since we are assuming (1.10) the
quadratic form involved must be skew symmetric. If we write ∇x = x

r ∂r +
x
r2 ∧ Ω where ∧ is the usual vector cross product and Ω = (Ω23,Ω13,Ω12),
then since |( x

r2 ∧Ω)u| ≤ C〈r〉−1|Γu|, we conclude that the left side of (4.2)
must be dominated by

〈r〉−1(|Ωu| |∂v| + |∂u| |Ωv|) + |∂tu∂rv − ∂ru∂tv|.
If we write ∂r = r−1L + t

r ∂t then we can estimate the last term

|∂tu∂rv − ∂ru∂tv| ≤ 1
r

(|Lu| |∂tv| + |∂tu| |Lv|).
Combining these two steps yields (4.2). ��

We also need the following result.

Lemma 4.2. If h ∈ C∞
0 has Dirichlet boundary conditions then if R < t/2

and t ≥ 1

‖∂h ′(t, · )‖L2(R/2<|x|<R)(4.3)

≤ Ct−1
( ∑

|α|≤1

‖Γαh ′(t, · )‖L2(R/4<|x|<2R)

+ t
∥∥(

∂2
t − ∆

)
h(t, · )∥∥

L2(R/4<|x|<2R)

)

+ C‖〈x〉−1h ′(t, · )‖L2(R/4<|x|<2R) + C‖〈x〉−2h(t, · )‖L2(R/4<|x|<2R).

Also,

(4.4) ‖ < t − r > ∂h ′(t, · )‖L2(|x|>t/4)

≤ C
∑
|α|≤1

‖Γαh ′(t, · )‖2 + C
∥∥ < t + r >

(
∂2

t − ∆
)
h(t, · )∥∥2,

and if δ > 0 is fixed then

(4.5) ‖h ′(t, · )‖L6(|x|/∈[(1−δ)t,(1+δ)t], |x|>δt)

≤ Ct−1
(∑

|α|≤1

‖Γαh ′(t, · )‖2 + ‖ < t + r >
(
∂2

t − ∆
)
h(t, · )‖2

)
.

Proof. To prove (4.3) we need to use the fact (see [14], Lemma 2.3) that

〈t − r〉(|∂∂th(t, x)| + |∆h(t, x)|)(4.6)

≤ C
∑
|α|≤1

|∂Γαh(t, x)| + C〈t + r〉∣∣(∂2
t − ∆

)
h(t, x)

∣∣.
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Also, elliptic regularity gives

‖∇xh ′(t, · )‖L2(|x|∈[R/2,R]) ≤ C‖∆h(t, · )‖L2(|x|∈[R/4,2R])
+ CR−1‖h ′(t, · )‖L2(|x|∈[R/4,2R]) + CR−2‖h(t, · )‖L2(|x|∈[R/4,2R]).

If we combine these two inequalities then we get (4.3).
To prove (4.4) we need to use another estimate from [14], namely, if

g ∈ C∞
0 (R+ × R3),

∥∥〈t − r〉∇2
x g(t, · )∥∥

L2(R3)
≤ C

∑
|α|≤1

‖Γαg′(t, · )‖L2(R3)

+ C
∥∥〈t + r〉(∂2

t − ∆
)
g
∥∥

L2(R3)
.

If we fix η ∈ C∞(R3) satisfying η(x) = 1, |x| > 1/4 and η(x) = 0,
|x| < 1/8 and let g(t, x) = η(x/〈t〉)h(t, x) then we conclude that the analog
of (4.4) must hold where ∇h ′ is replaced by ∇xh ′. Since (4.6) yields the
same bounds for ∂th ′, we get (4.4).

Inequality (4.5) follows from the fact that its left side is dominated by

‖∇xh ′(t, · )‖L2(|x|/∈[(1−δ/2)t,(1+δ/2)t], |x|>δt/2) + t−1‖h ′(t, · )‖2.

Since the proof of (4.4) implies that the first term is dominated by the right
side of (4.5) if δ > 0 is fixed, we are done. ��

The following result will be useful for dealing with waves interacting at
different speeds.

Corollary 4.3. Fix c1, c2 > 0 satisfying c1 �= c2. Then if u, v ∈ C∞
0 (R+ ×

R
3\K) vanish on R+ × ∂K

∫
R3\K

|∂2u(t, x)| |v′(t, x)| < x >−1 dx(4.7)

≤ Ct−1
(∑

|α|≤1

‖Γαu′(t, · )‖2 + ∥∥ < t + r >
(
∂2

t − c2
1∆

)
u(t, · )∥∥2

)

× ‖ < x >−1 v′(t, · )‖2

+ C
∑

R=2k≤t/2

(‖〈x〉−1u′(t, · )‖L2(R/2<|x|<R) + ‖〈x〉−2u(t, · )‖L2(R/2<|x|<R)

)

× ‖ < x >−1 v′(t, · )‖L2(R/2<|x|<R)

+ Ct−4/3
(∑

|α|≤1

‖Γαu′(t, · )‖2 + ∥∥ < t + r >
(
∂2

t − c2
1∆

)
u(t, · )∥∥2

)

×
(∑

|α|≤1

‖Γαv′(t, · )‖2 + ∥∥ < t + r >
(
∂2

t − c2
2∆

)
v(t, · )∥∥2

)
.
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Proof. Let δ < |c1 − c2|. Then if we use Schwarz’s inequality, (4.3) and
(4.4) we see that we can bound

∫
|x|/∈((1−δ)c1t,(1+δ)c1t)

|∂2u(t, x)| |v′(t, x)| < x >−1 dx

by the first two terms in the right side of (4.7).
For a given j = 0, 1, 2, . . . we can use Hölder’s inequality, to find that

∫
<c1t−r>∈[2 j ,2 j+1)

|∂2u(t, x)| |v′(t, x)| < x >−1 dx

≤ Ct−1/32 j/3‖∂2u(t, · )‖L2(<c1t−r>∈(2 j,2 j+1))‖v′(t, · )‖L6(<c1t−r>∈(2 j ,2 j+1)),

assuming that r is bounded below by a fixed multiple of t when < c1t−r >∈
[2 j , 2 j+1). Since δ < |c1 − c2|, if {x :< c1t − r >∈ [2 j , 2 j+1)} ∩ {x : r ∈
((1 − δ)c1t, (1 + δ)c1t)} �= ∅, we can apply (4.4) and (4.5) to see that the
right side is bounded by 2−2 j/3 times the third term in the right side of (4.7).
After summing over j, this implies that when we restrict the integration in
the left side of (4.7) to the the set where r ∈ ((1 − δ)c1t, (1 + δ)c1t), the
resulting expression is dominated by the third term in the right of (4.7). This
completes the proof. ��

To handle same-speed interactions, we shall need the following similar
result.

Corollary 4.4. Let u, v ∈ C∞
0 (R+ × R3\K) vanish on R+ × ∂K . Then,

∫
R3\K

〈t − r〉
〈t + r〉 |∂

2u(t, x)| |v′(t, x)| 〈x〉−1 dx(4.8)

≤ Ct−1
(∑
|α|≤1

‖Γαu′(t, · )‖2 + ‖〈t + r〉�u(t, · )‖2
)‖〈x〉−1v′(t, · )‖2

+ C
∑

R=2k<t/2

(‖〈x〉−1u′(t, · )‖L2(R/4<|x|<2R) + ‖〈x〉−2u(t, · )‖L2(R/4<|x|<2R)

)

× ‖〈x〉−1v′(t, · )‖L2(R/4<|x|<2R).

Proof of Corollary 4.4. To prove (4.8) we just use Schwarz’s inequality and
(4.3) and (4.4) to see that its left side is dominated by

t−1‖〈t − r〉∂2u(t, · )‖L2(|x|>t/4)‖〈x〉−1v′(t, · )‖L2(|x|>t/4)

+
∑

R=2k<t/2

t−1‖〈t − r〉∂2u(t, · )‖L2(R/2<|x|<R)‖〈x〉−1v′(t, · )‖L2(R/2<|x|<R)
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≤ Ct−1
(∑
|α|≤1

‖Γαu′(t, · )‖2 + ‖〈t + r〉�u(t, · )‖2
)‖〈x〉−1v′(t, · )‖2

+ C
∑

R=2k<t/2

(‖〈x〉−1u′(t, · )‖L2(R/4<|x|<2R) + ‖〈x〉−2u(t, · )‖L2(R/4<|x|<2R)

)

× ‖〈x〉−1v′(t, · )‖L2(R/4<|x|<2R),

which completes the proof. ��
We also need the following consequence of the Sobolev lemma (see [13]).

Lemma 4.5. Suppose that h ∈ C∞(R3). Then for R ≥ 1

‖h‖L∞(R/2<|x|<R) ≤ CR−1
∑

|α|+|β|≤2

∥∥Ωα∂β
x h

∥∥
L2(R/4<|x|<2R)

.

Also,

‖h‖L∞(R<|x|<R+1) ≤ CR−1
∑

|α|+|β|≤2

∥∥Ωα∂β
x h

∥∥
L2(R−1<|x|<R+2)

.

5. Continuity argument

In this section we shall prove our main result, Theorem 1.1. We shall take
N = 101 in its smallness hypothesis (1.11), but this certainly is not optimal.

We start out with a number of straightforward reductions that will allow
us to use the estimates from Sects. 2–4.

First, let us assume that the wave speeds cI all are distinct since straight-
forward modifications of the argument give the more general case where
the various components are allowed to have the same speed.

To prove our global existence theorem we shall need a standard local
existence theorem:

Theorem 5.1. Suppose that f and g are as in Theorem 1.1 with N ≥ 6 in
(1.11). Then there is a T > 0 so that the initial value problem (1.5) with this
initial data has a C2 solution satisfying

u ∈ L∞([0, T ]; H N (R3\K)) ∩ C0,1([0, T ]; H N−1(R3\K)).

The supremum of such T is equal to the supremum of all T such that the
initial value problem has a C2 solution with ∂αu bounded for |α| ≤ 2. Also,
one can take T ≥ 2 if ‖ f ‖H N + ‖g‖H N−1 is sufficiently small.

This essentially follows from the local existence results Theorem 9.4
and Lemma 9.6 in [9]. The latter were only stated for diagonal single-speed
systems; however, since the proof relied only on energy estimates, it extends
to the multi-speed non-diagonal case if the symmetry assumptions (1.8) are
satisfied.
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Next, as in [11], in order to avoid dealing with compatibility conditions
for the Cauchy data, it is convenient to reduce the Cauchy problem (1.5) to
an equivalent equation with a nonlinear driving force but vanishing Cauchy
data. We then can set up a continuity argument for the new equation using
the estimates from Sects. 2–4 to prove Theorem 1.1.

Recall that our smallness condition on the data is
∑

|α|≤101

∥∥〈x〉α∂α
x f

∥∥
L2(R3\K)

+
∑

|α|≤100

∥∥〈x〉1+|α|∂xg
∥∥

L2(R3\K)
≤ ε.(5.1)

To make the reduction to an equation with zero initial data, we first note
that if the data satisfies (5.1) with ε > 0 small, then we can find a solution u
to the system (1.5) on a set of the form 0 < ct < |x| where c = 5 maxI cI ,
and that this solution satisfies

sup
0<t<∞

∑
|α|≤101

‖〈x〉α∂αu(t, · )‖L2(R3\K: |x|>ct) ≤ C0ε,(5.2)

where C0 is an absolute constant.
To prove this we shall repeat an argument from [11]. We note that by

scaling in the t-variable we may assume that maxI cI = 1/2. The above
local existence theorem yields a solution u to (1.5) on the set 0 < t < 2
satisfying the bounds (5.2). To see that this solution extends to the larger
set 0 < ct < |x|, we let R ≥ 4 and consider data ( fR, gR) supported
in the set R/4 < |x| < 4R which agrees with the data ( f, g) on the set
R/2 < |x| < 2R. Let uR(t, x) satisfy the boundaryless equation

�uR = Q
(
duR, R−1d2uR

)

with Cauchy data ( fR(R·), RgR(R·)). The solution uR then exists for 0 <
t < 1 by standard results (see [5]) and satisfies

sup
0<t<1

‖uR(t, · )‖H101(R3) ≤ C
(‖ fR(R·)‖H101(R3) + R‖gR(R·)‖H100(R3)

)

≤ CR−3/2
( ∑

|α|≤101

∥∥(R∂x)
α fR

∥∥
L2(R3)

+ R
∑

|α|≤100

∥∥(R∂x)
αgR

∥∥
L2(R3)

)
.

The smallness condition on |u′
R| implies that the wave speeds for the quasi-

linear equation are bounded above by 1. A domain of dependence argument
shows that the solutions uR(R−1t, R−1x) restricted to | |x| − R | < R

2 − t
agree on their overlaps, and also with the local solution, yielding a solution
to (1.5) on the set {R3\K : 2t < |x|}. A partition of unity argument now
yields (5.2).

We use the local solution u to set up the continuity argument. Fix a cutoff
function χ ∈ C∞(R) satisfying χ(s) = 1 if s ≤ 1

2c and χ(s) = 0 if s > 1
c ,

and set

u0(t, x) = η(t, x)u(t, x), η(t, x) = χ(|x|−1t),
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assuming as we may that 0 ∈ K . Note that since |x| is bounded below on
the complement of K , the function η(t, x) is smooth and homogeneous of
degree 0 in (t, x). Also

�u0 = ηQ(du, d2u) + [�, η]u.

Thus, u solves �u = Q(du, d2u) for 0 < t < T if and only if w = u − u0
solves 


�w = (1 − η)Q(du, d2u) − [�, η]u
w|∂K = 0
w(t, x) = 0, t ≤ 0

(5.3)

for 0 < t < T .
The key step in proving that (5.3) admits a global solution is to prove

uniform dispersive estimates for w on intervals of existence. To do this, let
us first note that since u0 = ηu by (5.2) and Lemma 4.5 there is an absolute
constant C1 so that

(5.4) (1 + t + |x|)
∑

µ+|α|≤99

∣∣LµZαu0(t, x)
∣∣

+
∑

µ+|α|+|β|≤101

∥∥〈t + r〉|β|LµZα∂βu0(t, · )∥∥2 ≤ C1ε.

Furthermore, if we let v be the solution of the linear equation


�v = −[�, η]u
v|∂K = 0
v(t, x) = 0, t ≤ 0,

(5.5)

then (5.2) and Theorem 3.1 implies that there is an absolute constant C2 so
that

(1 + t + |x|)
∑

µ+|α|≤90

|LµZαv(t, x)| ≤ C2ε.(5.6)

Indeed, by (3.2) the left side of (5.6) is dominated by
∫ t

0

∫
|x|>cs

∑
µ+|α|≤97

|LµZα([�, η]u)(s, x)| dxds

|x|

+
∫ t

0

∑
µ+|α|≤94

‖Lµ∂β([�, η]u)(s, ·)‖L2(R\K : |x|<2) ds

which by the Schwarz inequality is bounded by

∑
µ+|α|≤97

∞∑
j=0

sup
0<cs<2 j+1

‖〈x〉3/2LµZα[�, η]u(s, · )‖L2(R3\K: 2 j<|x|<2 j+1).
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Since this is bounded by

sup
0<t<∞

∑
µ+|α|≤97

‖〈x〉2 LµZα[�, η]u(t, · )‖2,

one gets (5.6) by (5.2) and the homogeneity of η.
Using this we can set up the continuity argument. If ε > 0 is as above we

shall assume that we have a C2 solution of our equation (1.5) for 0 ≤ t ≤ T
such that for t ∈ [0, T ] and small ε > 0 we have the pointwise dispersive
estimates

(1 + t + r)
∑

|α|≤40

(
|Zαw(t, x)| + |Zαw′(t, x)|

)
≤ A0ε(5.7)

(1 + t + r)
∑

|α|+ν≤55
ν≤2

|Lν Zαw(t, x)| ≤ B1ε(1 + t)1/5 log(2 + t),(5.8)

as well as the L2
x and weighted L2

t L2
x estimates

∑
|α|≤100

‖∂αw′(t, · )‖2 ≤ B2ε(1 + t)1/20(5.9)

∑
|α|+ν≤70

ν≤3

‖Lν Zαw′(t, · )‖2 ≤ B3ε(1 + t)1/10(5.10)

∑
|α|+ν≤68

ν≤3

‖〈x〉−1/2 Lν Zαw′‖L2(St) ≤ B4ε(1 + t)1/10(log(2 + t))1/2.(5.11)

Here, as before the L2
x-norms are taken overR3\K , and the weighted L2

t L2
x-

norms are taken over St = [0, t] × R3\K .
In our main estimate, (5.7), A0 = 4C2, where C2 is the constant occurring

for the bounds (5.6) for v. Clearly if ε is small then all of these estimates
are valid if T = 2, by Theorem 5.1. Keeping this in mind, we shall then
prove that for ε > 0 smaller than some number depending on the constants
B1, . . . , B4 that

i) (5.7) is valid with A0 replaced by A0/2;
ii) (5.8)–(5.11) are a consequence of (5.7) for suitable constants Bi .

By the local existence theorem it will follow that a solution exists for all
t > 0 if ε is small enough.

Let us first deal with i). Since we already know that v satisfies (5.6) to
achieve i), by Theorem 3.1 it suffices to show that

I + II ≤ Cε2,(5.12)
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where

I =
∫ t

0

∫

R3\K

∑
|α|+µ≤48

µ≤1

|LµZαQ(du, d2u)(s, y)|dsdy

|y|(5.13)

II =
∫ t

0

∑
|α|+µ≤45

µ≤1

‖Lµ∂αQ(du, d2u)(s, · )‖L2(|x|<2) ds,(5.14)

since this implies the same sort of bounds where Q is replaced by (1 −η)Q
in (5.13) and (5.14).

Let us first deal with I . This term was the only one that had to be dealt
with in the boundaryless case, and the argument for it is similar to the
corresponding one in [27].

To handle I we shall have to employ a different argument for the
quadratic terms satisfying the null condition and the quasilinear ones that
do not. Therefore, let us write

Q = �u = N(u′, u′′) +
∑
J �=K

3∑
j,k,l=0

BIJ, jk
K,l ∂lu

K∂ j∂ku J , u = u0 + w,(5.15)

where the “null term” N(u′, u′′) satisfies the bounds in Lemma 4.1, while
the second term in the right of (5.15) involves interactions between waves
of different speeds.

Let us first handle the contribution of N(u′, u′′) to I . By Lemma 4.1

∑
|α|+µ≤48

µ≤1

|LµZαN(u′, u′′)| ≤ C

|y|
∑

|α|+µ≤50
µ≤2

|Lµ Zαu|
∑

|α|+µ≤50
µ≤2

|LµZαu′|(5.16)

+ C
∑

J

〈cJ t − r〉
〈t + r〉

∑
|α|+µ≤48

µ≤1

|LµZα∂u|
∑

|α|+µ≤48
µ≤1

|LµZα∂2u|.

To handle the contribution of the first term in the right side of (5.16)
to I , we apply (5.8) to get that

∑
|α|+µ≤50

µ≤2

|LµZαu(y, s)| ≤ Cε(|y| + s)−4/5 log(2 + s),

which means that the first term in the right side of (5.16) has a contribution
to I which is dominated by
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ε

∫ t

0

∫
R3\K

∑
|α|+µ≤50

µ≤2

|LµZαu′(s, y)| log(2 + s) dyds

|y|2(|y| + s)4/5

≤ Cδε

∫ t

0

∑
|α|+µ≤50

µ≤2

‖〈y〉−1/2Lµ Zαu′(s, · )‖2〈s〉−4/5+δ ds,

if δ > 0. But if δ is chosen small enough so that 4/5 − δ > 1/2 + 1/10
then we can use Schwarz’s inequality along with (5.11) to see that the last
expression is O(ε2). We are using here the fact that u = u0 + w, as well
as the fact that u0 satisfies better bounds than those in (5.11) because of
(5.4).

Let us see that the contribution of the second term in the right side of
(5.16) enjoys the same bound. For a given J we can use (4.8) to see that the
contribution is dominated by

∫ t

0
〈s〉−1

( ∑
|α|+µ≤51

µ≤2

‖LµZαu′(s, · )‖2 +
∑

|α|+µ≤50
µ≤1

‖〈t + r〉LµZα�u(s, · )‖2

)(5.17)

×
∑

|α|+µ≤50
µ≤1

‖〈y〉−1LµZαu′(s, · )‖2 ds

+
∫ t

0

∑

R=2k<
c0s
2

∑
|α|+µ≤50

µ≤1

(
‖〈y〉−1LµZαu′(s, · )‖L2(|y|≈R)

+ ‖〈y〉−1Lµ Zαu(s, · )‖L2(|y|≈R)

)

×
∑

|α|+µ≤50
µ≤1

‖〈y〉−1LµZαu′(s, · )‖L2(|y|≈R) ds,

with c0 = minI cI , and L2(|y| ≈ R) indicating L2-norms over {y ∈ R3\K :
|y| ∈ [R/4, 2R]}. If one uses (5.4) and (5.8) to estimate the first factor in
the last term, one concludes that this term is dominated by

ε

∫ t

0
(log(2 + s))2〈s〉−4/5

∑
|α|+µ≤50

µ≤1

‖〈y〉−1/2LµZαu′(s, · )‖2 ds = O(ε2),

using (5.11) and (5.4) in the last step. For the first term of (5.17), we note
that by (5.8)
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〈s + r〉
∑

|α|+µ≤50
µ≤1

|LµZα�u| ≤ C〈s + r〉
∑

|α|+µ≤51
µ≤1

|LµZαu′|2(5.18)

≤ Cε log(2 + s)(1 + s)1/5
∑

|α|+µ≤51
µ≤1

|LµZαu′|,

assuming, as we may, that ε ≤ 1. Thus, by (5.10) and (5.4) the contribution
of the first term in the right side of (5.17) must be dominated by

∫ t

0
〈s〉−1

(
ε〈s〉1/10 + ε log(2 + s)〈s〉1/10+1/5

)

×
∑

|α|+µ≤51
µ≤2

‖〈y〉−1LµZαu′(s, · )‖2 ds,

which is also O(ε2) by (5.11) and (5.4).
This concludes the proof that the null form terms have O(ε2) contribu-

tions to I . If we use (4.7) it is clear that the multi-speed quadratic terms

3∑
j,k,l=0

BIJ, jk
K,l ∂lu

K∂ j∂ku J , J �= K

will have the same contribution. This completes the proof that I satisfies
the bounds in (5.12).

It is also easy to see now that II is O(ε2). If we use (5.18), we see that
II is dominated by

ε

∫ t

0
〈s〉−4/5 log(2 + s)

∑
|α|+µ≤51

µ≤1

‖Lµ Zαu′(s, · )‖L2(|y|<4) ds,

which is O(ε2) by (5.11) and (5.4).
This completes step i) of the proof, which was to show that (5.8)–(5.11)

imply (5.7).
To finish the proof of Theorem 1.1 we need to show how (5.7) implies

(5.8)–(5.12). In proving the L2 estimates we shall use the fact that, in the
notation of Sect. 1, �γ u = B(du), where the quadratic form B(du) is the
semilinear part of the nonlinearity Q, and

γ IJ, jk = γ IJ, jk(u′) = −
∑

0≤l≤3
1≤K≤D

BIJ, jk
K,l ∂lu

K .

Depending on the linear estimates we shall employ, at times we shall prove
certain L2 bounds for u while at other times, we shall prove them for w.
Since u = w + u0 and u0 satisfies the bounds in (5.4) it will always be the
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case that bounds for w will imply those for u and vice versa. Also note that
by (5.7)

‖γ ′(s, · )‖∞ ≤ Cε

(1 + s)
.(5.19)

Using these facts we can prove (5.9). Let us first notice that if we use
(2.5) and (5.7) then we can estimate the energy of ∂

j
t u for j ≤ M ≤ 100.

We shall use induction on M.
We first notice that by (2.5) and (5.19) we have

∂t E
1/2
M (u)(t) ≤ C

∑
j≤M

∥∥�γ ∂
j
t u(t, · )∥∥2 + Cε

1 + t
E1/2

M (u)(t).(5.20)

Note that for M = 1, 2, . . .

∑
j≤M

∣∣�γ ∂
j
t u

∣∣ ≤ C
(∑

j≤M

∣∣∂ j
t u′∣∣ +

∑
j≤M−1

∣∣∂ j
t ∂

2u
∣∣) ∑

|α|≤40

|∂αu′|

+ C
∑

|α|≤M−41

|∂αu′|
∑

40<|α|≤M/2

|∂αu′|

≤ Cε

1 + t

(∑
j≤M

∣∣∂ j
t u′∣∣ +

∑
j≤M−1

∣∣∂ j
t ∂

2u
∣∣)

+ C
∑

|α|≤M−41

|∂αu′|
∑

|α|≤M/2

|∂αu′|,

since (5.7) and (5.4) imply |∂αu′| ≤ Cε/(1 + t) if |α| ≤ 40. Also, if we use
elliptic regularity and repeat this argument we get
∑

j≤M−1

∥∥∂
j
t ∂

2u(t, · )∥∥2 ≤ C
∑
j≤M

∥∥∂
j
t u′(t, · )∥∥2 + C

∑
j≤M−1

∥∥∂
j
t �u(t, · )∥∥2

≤ C
∑
j≤M

∥∥∂
j
t u′(t, · )∥∥2 + Cε

1 + t

∑
j≤M−1

∥∥∂
j
t ∂

2u(t, · )∥∥2

+ C
∑

|α|≤M−41,|β|≤M/2

‖∂αu′(t, · )∂βu′(t, · )‖2.

If ε is small we can absorb the second to last term into the left side of the
preceding inequality. Therefore, if we combine the last two inequalities we
conclude that

∑
j≤M

∥∥�γ ∂
j
t u(t, · )∥∥2 ≤ Cε

1 + t

∑
j≤M

∥∥∂
j
t u′(t, · )∥∥2

+ C
∑

|α|≤M−41,|β|≤M/2

‖∂αu′(t, · )∂βu′(t, · )‖2.
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If we combine this with (5.20) we get that for small ε > 0

∂t E
1/2
M (u)(t) ≤ Cε

1 + t
E1/2

M (u)(t)(5.21)

+ C
∑

|α|≤M−41,|β|≤M/2

‖∂αu′(t, · )∂βu′(t, · )‖2,

since when ε is small 1
2 E1/2

M (u)(t) ≤ ∑
j≤M ‖∂ j

t u′(t, · )‖2 ≤ 2E1/2
M (u)(t).

If M = 40, the last term in (5.21) drops out and so

∂t E
1/2
40 (u)(t) ≤ Cε

1 + t
E1/2

40 (u)(t).

Since E1/2
100(u)(0) ≤ Cε, an application of Gronwall’s inequality yields

∑
j≤40

∥∥∂
j
t u′(t, · )∥∥2 ≤ 2E1/2

40 (u)(t) ≤ Cε(1 + t)Cε.(5.22)

By elliptic regularity and (5.7) this leads to the bounds
∑

|α|≤40

‖∂αu′(t, · )‖2 ≤ Cε(1 + t)Cε.

If M > 40 we have to deal with the last term in (5.21). To do this we
first note that by Lemma 4.5 we have

∑
|α|≤M−41,|β|≤M/2

‖∂αu′(t, · )∂βu′(t, · )‖2

≤ C
∑

|γ |≤max(M−39,2+M/2)

‖〈x〉−1/2 Zγ u′(t, · )‖2
2,

which means that for 40 < M ≤ 100, (5.21) and Gronwall’s inequality
yield

E1/2
M (u)(t) ≤ C(1 + t)Cε

[
ε +

∑
|α|≤max(M−39,2+M/2)

‖〈x〉−1/2 Zαu′‖2
L2(St)

]
,

(5.23)

if, as before, St = [0, t] × R3\K .
If we use (5.22) and (5.23) along with a simple induction argument we

conclude that we would have the desired bounds

E1/2
100(u)(t) ≤ Cε(1 + t)Cε+σ(5.24)

for arbitrarily small σ > 0 if we could prove the following
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Lemma 5.2. Under the above assumptions if M ≤ 100 and

(5.25)
∑

|α|≤M

‖∂αu′(t, · )‖2 +
∑

|α|≤M−3

‖〈x〉−1/2∂αu′‖L2(St)

+
∑

|α|≤M−4

‖Zαu′(t, · )‖2 +
∑

|α|≤M−6

‖〈x〉−1/2 Zαu′‖L2(St) ≤ Cε(1 + t)Cε+σ,

with σ > 0, then there is a constant C′ so that

(5.26)
∑

|α|≤M−2

‖〈x〉−1/2∂αu′‖L2(St) +
∑

|α|≤M−3

‖Zαu′(t, · )‖2

+
∑

|α|≤M−5

‖〈x〉−1/2 Zαu′‖L2(St) ≤ C ′ε(1 + t)C′ε+C′σ .

Proof of Lemma 5.2. Let us start out by estimating the first term in the right
side of (5.26). By (5.4) and (2.22) we have

(log(2 + t))−1/2
∑

|α|≤M−2

‖〈x〉−1/2∂αu′‖L2(St)(5.27)

≤ Cε + (log(2 + t))−1/2
∑

|α|≤M−2

‖〈x〉−1/2∂αw′‖L2(St)

≤ Cε + C
∑

|α|≤M−1

∫ t

0
‖∂α�w(s, · )‖2 ds + C

∑
|α|≤M−2

‖∂α�w‖L2(St).

Since ∂α�w = ∂α�u − ∂α�u0, (5.4) implies that the right side is

≤ Cε + C
∑

|α|≤M−1

∫ t

0
‖∂α�u(s, · )‖2ds + C

∑
|α|≤M−2

‖∂α�u‖L2(St).

If M ≤ 40 we can use (5.7) and (5.25) to see that the last two terms are
≤ Cε(1 + t)Cε+σ . If 40 < M ≤ 100 we can repeat the proof of (5.23) to
conclude that they are

≤ Cε(1 + t)2Cε+2σ + C
∑

|α|≤max(M−39,2+M/2)

‖〈x〉−1/2 Zαu′‖2
L2(St)

+ C sup
0≤s≤t

( ∑
|α|≤M−6

‖Zαu′(s, · )‖2

) ∑
|α|≤max(M−39,2+M/2)

‖〈x〉−1/2 Zαu′‖L2(St)

≤ Cε(1 + t)2Cε+2σ,
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using the induction hypothesis (5.25) and the fact that max(M − 39, 2 +
M/2) ≤ M−6 if M ≥ 40. Thus, the left side of (5.27) is ≤ Cε(1+ t)2Cε+2σ ,
which by (5.4) means that

∑
|α|≤M−2

‖〈x〉−1/2∂αu′‖L2(St) ≤ Cε(1 + t)2Cε+2σ log(2 + t).

Thus, we have the desired bounds for the first term in the left side of (5.26).
We need to control the second term in the left side of (5.26). Here we

need to use (2.20). In order to do so, we need to estimate the first term in its
right side. We note that if YM−3,0(t) is as in (2.20), then

∑
|α|≤M−3

∥∥�γ Zαu(t, · )∥∥2

≤ C
∑

|β|+|γ |≤M−3

‖Zβu′(t, · )Zγ u′(t, · )‖2

≤ C
∑

|β|≤M−3,|γ |≤40

‖Zβu′(t, · )‖2‖Zγ u′(t, · )‖∞

+ C
∑

|β|,|γ |≤M−43

‖Zβu′(t, · )Zγ u′(t, · )‖2

≤ Cε

1 + t
Y 1/2

M−3,0(t) + C
∑

|β|≤M−41

‖〈x〉−1/2 Zβu′(t, · )‖2
2.

In the last step, we used (5.7) and Lemma 4.5. By plugging this into (2.20),
we conclude that

∂tYM−3,0(t) ≤ Cε

1 + t
YM−3,0(t) + C

∑
|β|≤M−41

‖〈x〉−1/2 Zβu′(t, · )‖2
2Y 1/2

M−3,0(t)

+ C
∑

|α|≤M−2

‖〈x〉−1/2∂αu′(t, · )‖2
2.

Therefore, by Gronwall’s inequality, we have

∑
|α|≤M−3

‖Zαu′(t, · )‖2
2 ≤ CYM−3,0(t)

≤ C(1 + t)Cε
(
ε2 +

∑
|β|≤M−41

‖〈x〉−1/2 Zβu′(t, · )‖2
L2(St)

sup
0<s<t

Y 1/2
M−3,0(s)

+
∑

|α|≤M−2

‖〈x〉−1/2∂αu′(t, · )‖2
L2(St)

)
.

In the previous step we estimated the last term in the right. Since the
inductive hypothesis handles the first factor of the second term, we conclude
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that the second term in (5.26) also satisfies the desired bounds. Using (2.23),
this in turn implies that the third term satisfies the bounds, which completes
the proof. ��

This proves (5.24). By elliptic regularity, we get
∑

|α|≤100

‖∂αu′(t, · )‖2 ≤ Cε(1 + t)Cε+σ ,

which in turn yields (5.9). We also get from Lemma 5.2 that

(5.28)
∑

|α|≤98

‖〈x〉−1/2∂αw′‖L2(St) +
∑

|α|≤97

‖Zαw′(t, · )‖2

+
∑

|α|≤95

‖〈x〉−1/2 Zαw′‖L2(St) ≤ C ′ε(1 + t)C′ε+C′σ ,

since the same sort of bounds hold when u is replaced by w.
Here and in what follows σ denotes a small constant that must be taken

to be larger and larger at each occurrence. Note that in terms of the number
of Z derivatives (5.26) is considerably stronger than the variants of (5.10)
and (5.11) where one just takes the terms with ν = 0. This is because just
as in going from (5.9) to (5.28) there is a loss of derivatives, there will be
a loss of derivatives in going from L2 bounds for terms of the form Lν Zαw′
to those of the form Lν+1 Zαw′.

The proof of the estimates involving powers of L is a bit more compli-
cated. Still we shall follow the above strategy. First we shall estimate Lν∂αu′
in L2 when α is small using (5.7). Then we shall estimate the remaining
parts of (5.10) and (5.11) for this value of ν by an inductive argument that
is similar to the one in Lemma 5.2.

The main part of the next step will be to show that
∑

|α|+µ≤92
µ≤1

‖Lµ∂αu′(t, · )‖2 ≤ Cε(1 + t)Cε+σ .(5.29)

For this we shall want to use (2.17). We first must establish appropriate
versions of (2.16) for N0 + ν0 ≤ 92, ν0 = 1. For this we note that for
M ≤ 92

∑
j+µ≤M

µ≤1

(∣∣L̃µ∂
j
t �γ u

∣∣ + ∣∣[L̃µ∂
j
t ,�−�γ

]
u
∣∣)

≤ C
( ∑

j≤M−1

∣∣L̃∂
j
t u′∣∣ +

∑
j≤M−2

∣∣L̃∂
j
t ∂

2u
∣∣) ∑

|α|≤40

|∂αu′|

+ C
∑

|α|≤M−41

|L∂αu′|
∑

|α|≤M

|∂αu′| + C
∑

|α|≤M

|∂αu′|
∑

|α|≤max(M/2,M−40)

|∂αu′|.
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From this, (5.7), Lemma 4.5 and elliptic regularity we get that for M ≤ 92

∑
j+µ≤M

µ≤1

(∥∥L̃µ∂
j
t �γ u(t, · )∥∥2 + ∥∥[

L̃µ∂
j
t ,�−�γ

]
u(t, · )∥∥2

)

≤ Cε

1 + t

∑
j+µ≤M

µ≤1

∥∥L̃µ∂
j
t u′(t, · )∥∥2

+ C
∑

|α|≤M−41

‖〈x〉−1/2L∂αu′(t, · )‖2

∑
|α|≤94

‖〈x〉−1/2 Zαu′(t, · )‖2

+ C
∑

|α|≤max(M,2+M/2)

‖〈x〉−1/2 Zαu′(t, · )‖2
2.

Based on this if ε is small then (2.16) holds with δ = Cε and

H1,M−1(t) = C
∑

|α|≤M−41

‖〈x〉−1/2L∂αu′(t, · )‖2
2

+ C
∑

|α|≤94

‖〈x〉−1/2 Zαu′(t, · )‖2
2.

Therefore since the conditions on the data give Xµ, j(0) ≤ Cε if µ+ j ≤ 100
it follows from (2.17) and (5.28) that for M ≤ 92

∑
|α|+µ≤M

µ≤1

‖Lµ∂αu′(t, · )‖2 ≤ Cε(1 + t)Cε+σ(5.30)

+ C(1 + t)Cε
∑

|α|≤M−41

‖〈x〉−1/2L∂αu′‖2
L2(St)

+ C(1 + t)Cε

∫ t

0

∑
|α|≤M+1

‖∂αu′(s, · )‖L2(|x|<1) ds.

If we apply (2.33) and (5.4) we get that the last integral is dominated by
ε log(2 + t) plus

∫ t

0

∑
|α|≤M+1

‖∂αw′(s, · )‖L2(|x|<1)ds

≤ C
∑

|α|≤M+2

∫ t

0

(∫ s

0
‖∂α�w(τ, · )‖L2(| |x|−(s−τ) |<10)dτ

)
ds.

By (5.4) if we replace w by u0 we see that the analog of the last term is
O(log(2 + t)ε). We therefore conclude that
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∑
|α|≤M+1

∫ t

0
‖∂αu′(s, · )‖L2(|x|<1)ds ≤ C log(2 + t)ε

+ C
∑

|α|≤M+2

∫ t

0

(∫ s

0
‖∂α�u(τ, · )‖L2(| |x|−(s−τ) |<10)dτ

)
ds.

Since ∑
|α|≤M+2

|∂α�u| ≤ C
∑

|α|≤M+3

|∂αu′|
∑

|α|≤1+M/2

|∂αu′|,

an application of Lemma 4.5 yields
∑

|α|≤M+2

‖∂α�u(τ, · )‖L2(| |x|−(s−τ) |<10)

≤ C
∑

|α|≤95

‖〈x〉−1/2 Zαu′‖2
L2(| |x|−(s−τ) |<20)

,

since 3+M/2 ≤ 95 if M ≤ 92. Since the sets {(τ, x) : | |x|−( j−τ) | < 20},
j = 0, 1, 2, . . . have finite overlap, we conclude that for M ≤ 92

∑
|α|≤M+1

∫ t

0
‖∂αu′(s, · )‖L2(|x|<1)ds ≤ Cε log(2 + t)

+ C
∑

|α|≤95

‖〈x〉−1/2 Zαu′‖2
L2(St)

≤ Cε(1 + t)Cε+σ .

Therefore, by (5.30) we have that
∑

|α|+µ≤M
µ≤1

‖Lµ∂αu′(t, · )‖2 ≤ Cε(1 + t)Cε+σ

+ C(1 + t)Cε
∑

|α|≤M−41

‖〈x〉−1/2L∂αu′‖2
L2(St)

.

This gives the desired bounds when M ≤ 40.
If we now use (2.22) with ν0 = 1 and N0 + ν0 = 92, then the analog of

Lemma 5.2 where M = 100 is replaced by M = 92 and u is replaced by
Lu is valid. By an induction argument we get (5.29) from this as well as

(5.31)
∑

|α|+µ≤90
µ≤1

‖〈x〉−1/2Lµ∂αw′‖L2(St) +
∑

|α|+µ≤89
µ≤1

‖Lµ Zαw′(t, · )‖2

+
∑

|α|+µ≤87
µ≤1

‖〈x〉−1/2 LµZαw′‖L2(St) ≤ Cε(1 + t)Cε+Cσ .
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If we repeat this argument we can estimate L2 Zαu′ and L3 Zαu′ for
appropriate Zα. Using (5.29) and (5.31) and the last argument gives

∑
|α|+µ≤84

µ≤2

‖Lµ∂αw′(t, · )‖2 +
∑

|α|+µ≤81
µ≤2

‖Lµ Zαw′(t, · )‖2

+
∑

|α|+µ≤79
µ≤2

‖〈x〉−1/2LµZαw′‖L2(St) ≤ Cε(1 + t)Cε+Cσ .

Then using the estimates for LµZαu′, µ ≤ 2 we can argue as above to
finally get

∑
|α|+µ≤76

µ≤3

‖Lµ∂αw′(t, · )‖2 +
∑

|α|+µ≤73
µ≤3

‖Lµ Zαw′(t, · )‖2

+
∑

|α|+µ≤71
µ≤3

‖〈x〉−1/2LµZαw′‖L2(St) ≤ Cε(1 + t)Cε+Cσ .

If we combine this with our earlier bounds, we conclude that (5.10) and
(5.11) must be valid.

It remains to prove (5.8). This is straightforward. If we use Theorem 3.1
we find that its left side is dominated by the square of that of (5.11). Hence
(5.11) implies (5.8), which finishes the proof.
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