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Abstract. If g is a complex simple Lie algebra, and k does not exceed the
dual Coxeter number of g, then the absolute value of the kth coefficient of
the dim g power of the Euler product may be given by the dimension of
a subspace of ∧kg defined by all abelian subalgebras of g of dimension k.
This has implications for all the coefficients of all the powers of the Euler
product. Involved in the main results are Dale Peterson’s 2rank theorem on
the number of abelian ideals in a Borel subalgebra of g, an element of
type ρ and my heat kernel formulation of Macdonald’s η-function theorem,
a set Dalcove of special highest weights parameterized by all the alcoves
in a Weyl chamber (generalizing Young diagrams of null m-core when
g = Lie Sl(m,C)), and the homology and cohomology of the nil radical of
the standard maximal parabolic subalgebra of the affine Kac–Moody Lie
algebra.

0. Introduction

0.1.

In this paper the Euler product is the formal power series in the variable
x obtained from the expansion of the infinite product Π∞

n=1(1 − xn). This,
perhaps unorthodox terminology, is taken from (12.2.3) in [Ka]. However
even in that reference x = e2πiτ where τ is a complex number in the upper
half plane. This understanding of x plays no role in this paper. Of course
with that understanding of x the Dedekind η-function is x1/24 times the Euler
product. We use the term Euler product instead of Dedekind η-function
because we wish to ignore the factor x1/24.
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Let g be a complex simple Lie algebra, and let K be a simply connected
compact group such that k = Lie K is a compact form of g. Let � be the
rank of K and let T ⊂ K be a maximal torus of K . Macdonald has given
a formula for the dim K power of the Euler product in terms of a summation
over a lattice in h. See [Ma-1]. A new understanding of this formula was
made by V. Kac. It arose from his denominator identity. See Chap. 12 in
[Ka]. Another approach to the formula was a consequence of the Laplacian
determination (an infinite dimensional analogue of Theorem 5.14 in [Ko-3])
of the homology of the “nilradical” of the standard maximal parabolic
subalgebra of the affine Kac–Moody Lie algebra. This is due to H. Garland
in [G]. Because the Laplacian is positive semidefinite this approach has the
advantage of implying some very important inequalities. Garland’s result is
a special case of a much more general result of Shrawan Kumar. See [Ku-1]
(or Theorem 3.4.2 in [Ku-2]). Kumar’s Theorem 3.4.2 is a far reaching
infinite dimensional analogue of Theorem 5.7 in [Ko-1].

Let h = i Lie T and identify hwith its dual using the Killing form so that
∆ ⊂ h where ∆ is the set of roots for the pair (hC, g). Let h+ ⊂ h be a Weyl
chamber defined by a choice, ∆+, of positive roots and let D ⊂ h+ be the set
of dominant integral forms on h. For each λ ∈ D let πλ : K → Aut Vλ be
an irreducible representation with highest weight λ. Let χλ be the character
of πλ and let Cas(λ) be the scalar value taken by the Casimir element
(relative to the Killing form) on Vλ. Let ρ be one half the sum of the
positive roots and let aP = exp 2πi 2ρ. An element in K conjugate to aP is
referred to in [Ko-3] as an element of type ρ. Using Macdonald’s formula
the following result was established as part of Theorem 3.1 in [Ko-3].

Theorem 0.1. For any λ ∈ D one has χλ(aP) ∈ {−1, 0, 1} and

( ∞∏
n=1

(1 − xn)
)dim K =

∑
λ∈D

χλ(aP) dim Vλ xCas(λ). (0.1)

For a heat kernel (on K ) interpretation of (0.1) see Sect. 5 in [Ko-3]
or [F].

Of course the only dominant weights λ which contribute to the sum
(0.1) are those in the subset {λ ∈ D | χλ(aP) ∈ {−1, 1}}. The determination
of this subset is implicit in Lemma 3.5.2 of [Ko-3]. This is clarified in
Sect. 2.2 of the present paper. In more detail let W f be the affine Weyl
group operating in h and let A1 = {x ∈ h+ | ψ(x) ≤ 1} where ψ ∈ ∆+
is the highest root. Then A1 is a fundamental domain for the action of W f
and any subset of form Aσ = σ(A1), for σ ∈ W f , is referred to as an
alcove. Let W+

f = {σ ∈ W f | Aσ ⊂ h+}. An alcove Aσ is called dominant if
σ ∈ W+

f . (A study of the set of dominant alcoves was made by Bott in [B] in
connection with the topology of the loop group Ω(K )). The set of dominant
alcoves, or rather W+

f , parameterizes a subset Dalcove of D by defining



Powers of the Euler product 183

λσ = σ(2ρ)/2 − ρ, for any σ ∈ W+
f , and putting Dalcove = {λσ | σ ∈ W+

f }.
The element 2(ρ+λσ) is in the interior of Aσ and in fact, if g is simply-laced,
this element is the center of the inscribed sphere of the simplex Aσ . (See
the cautionary statement about λσ in Remark 3.4). Let bk, k ∈ Z+, be the
coefficients defined by the expansion (

∏∞
n=1(1 − xn))dim K = ∑∞

k=0 bkxk.
One then has (taken from Theorem 2.4 and (3.40))

Theorem 0.2. Let λ ∈ D. Then χλ(aP) ∈ {−1, 1} if and only if λ ∈ Dalcove
so that in such a case λ = λσ for a unique σ ∈ W+

f . Moreover in such a case
χλσ (aP) = (−1)�(σ) where �(σ) is the length of σ . In addition Cas(λσ) ∈ Z+
and one has the finite sum

bk =
∑

σ∈W+
f ,Cas(λσ )=k

(−1)�(σ) dim Vλσ . (0.2)

Remark 0.3. If K = SU(m) then as one knows the representation theory of
SU(m) defines a bijection

D → P (0.3)

where P is the set of partitions of length at most m − 1. For any p ∈ P
one defines another partition p̃ called its m-core. One says that p has null
m-core if p̃ is the empty partition. From the first statement in Theorem 0.2 it
follows from Exercise 1.1.8(c) in [Ma-2] or Sect. 3.4 in [A-F] or p. 467–469
in [St] that the image of Dalcove in (0.3) is exactly the set of p ∈ P with
empty m-core. Such a partition exists only if the size of p is an integral
multiple mk of m and using, for example results of Bott, one can show, in
this case, that the number of such partitions is ( m+k−2

m−2 ).

0.2.

Let ĝ be the affine Kac–Moody Lie algebra corresponding to g. The
“nil radical” of a standard maximal parabolic subalgebra is either u− =
t−1g[t−1] or the opposed algebra u = t g[t]. The exterior algebra ∧u− is
bigraded by Z+ ×Z+ with homogeneous components (∧nu−)k where −k is
the t-degree. Furthermore ∧u− is an underlying space for the chain complex
whose derived homology is H∗(u−). In addition it is also the underlying
space for a cochain complex whose derived cohomology H(u) is a re-
stricted form (see Sect. 4.3) of H∗(u). Garland’s theorem (Theorem 3.10
here), Theorem 3.13 and Theorem 4.8 yield

Theorem 0.4. As g-modules, H∗(u−) and H∗(u) are equivalent and multi-
plicity free. In fact

H∗(u−) ≡ H(u)

≡
∑

σ∈W+
f

Vλσ . (0.4)
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With respect to the bigrading

(Hn(u
−))k ≡ (Hn(u))k

≡
∑

σ∈W+
f , �(σ)=n,Cas(λσ )=k

Vλσ . (0.5)

0.3.

For k ∈ Z+ let Ck ⊂ ∧k g be the span of all 1-dimensional subspaces of the
form ∧ka where a ⊂ g is any k-dimensional abelian subalgebra of g. Let M
be the maximal dimension of a commutative subalgebra of g. Obviously
Ck 	= 0 if and only if k ≤ M. The value of M was computed by Malcev for
each g-type (e.g., M = 36 if the g type is E8).

If v ⊂ g is any (complex) subspace of g which is stable under ad h, let
∆(v) = {ϕ ∈ ∆ | eϕ ∈ v} where eϕ is a root vector for ϕ. Let b ⊂ g be
the Borel subalgebra containing h such that ∆(b) = ∆+ and let n = [b, b].
Let Ξ be an index set parameterizing the set of all abelian ideals of b and
for any ξ ∈ Ξ let aξ be the corresponding ideal. It is immediate that aξ ⊂ n.
Let

λξ =
∑

ϕ∈∆(aξ )

ϕ. (0.6)

Let Ξk = {ξ ∈ Ξ | dim aξ = k}. If ξ ∈ Ξk let Vξ ⊂ ∧kg be the g-submodule
generated by ∧kaξ with respect to the adjoint action of g on ∧g. Obviously
Vξ ⊂ Ck. Furthermore it is immediate that Vξ is irreducible, ∧kaξ is the
highest weight space in Vξ and λξ is the highest weight of Vξ . Moreover we
have proved (see Theorem 4.2) the following result as part of Theorem (8)
in [Ko-3].

Theorem 0.5. For any k ∈ Z+ where 0 ≤ k ≤ M one has the direct sums

Ck =
∑
ξ∈ Ξk

Vξ (0.7)

and

C =
∑
ξ∈ Ξ

Vξ . (0.8)

Furthermore C and, a fortiori, Ck, are multiplicity-free g-modules.

It is a beautiful later result of Dale Peterson that card Ξ = 2�. A simpler
proof of Peterson’s theorem was given in [C-P]. See Theorem 2.9 in that
reference. It is clear that there are 2� alcoves in 2 A1. They are parameterized
by W (2)

f = {σ ∈ W+
f | Aσ ⊂ 2 A1}. The Cellini-Papi proof of Peterson’s
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theorem is obtained by establishing a bijection Ξ → W (2)
f . The bijection is

stated in a new way here (Theorem 0.6 below) using Dalcove and the weights
{λξ | ξ ∈ Ξ}. Recently R. Suter in [Su] has shown the Peterson’s theorem
follows from Theorem (8) in [Ko-3]. With the benefit of this knowledge
we have found a new proof of Theorem 0.6 without the use of [C-P]. The
following statement is Theorem 4.4.

Theorem 0.6. For any ξ ∈ Ξ there exists an (necessarily unique) element
σξ ∈ W+

f such that

λξ = λσξ . (0.9)

Moreover σξ ∈ W (2)
f and the map

Ξ → W (2)
f , Ξ 
→ σξ (0.10)

is a bijection. In particular one has the inclusion

P{λξ | ξ ∈ Ξ} ⊂ Dalcove (0.11)

and the count (Peterson’s theorem)

card Ξ = 2�. (0.12)

Remark 0.7. Suter in [Su] has independently discovered (0.9).

The 2� element subset {λσ | σ ∈ W (2)
f } of Dalcove is characterized in (see

Theorem 4.5).

Theorem 0.8. Let σ ∈ W+
f . Then

Cas(λσ) ≥ �(σ) (0.13)

and equality occurs in (0.13) if and only if σ ∈ W (2)

f . Furthermore in that
case writing σ = σξ for ξ ∈ Ξ (Theorem 0.6) one has

Cas(λσ) = �(σ)

= dim aξ .
(0.14)

Cup product (∨) defines the structure of an algebra on H(u). Theo-
rem 0.8 has implications for the determination of an important subalgebra
of H(u). Following a suggestion of Pavel Etingof, introduce a new grading,
H [ j](u), j ∈ Z+, in H(u) by putting H [ j](u) = ∑

n,k∈Z, k−n= j (H
n(u))k.

The homogeneous components are finite dimensional and one has

H(u) =
∞∑
j=0

H [ j](u)
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and

H [ j](u) ∨ H [ j ′](u) ⊂ H [ j+ j ′](u).

In particular H [0](u) is a finite dimensional subalgebra of H(u). See Propo-
sition 4.12. Etingof suggested that our results should yield the structure of
H [0](u). Indeed this is the case. Identify g with its dual using the Killing
form. Then d : g→ ∧2gwhere d is the Cartan–Eilenberg–Koszul cobound-
ary operator whose derived cohomology is H∗(g). Let (d g) be the ideal in
∧g generated by d g. Theorem 4.3 of [Ko-6] establishes that one has the
following direct sum

∧g = C ⊕ (d g) (0.15)

so that C inherits an algebra structure. I had no idea of the meaning of this al-
gebra when [Ko-6] was written. Its meaning is clarified in (see Theorem 4.16
in the present paper)

Theorem 0.9. As a g-module H [0](u) is multiplicity-free with 2� irreducible
components. In fact (see (0.8))

H [0](u) ≡
∑
ξ∈Ξ

Vξ . (0.16)

As an algebra (under cup product)

H [0](u) ≡ ∧g/(dg). (0.17)

Let (dg)k = (dg) ∩ ∧kg. Also let θ(Cas) ∈ End ∧ g be the action of
Cas induced by the adjoint representation of g on ∧g. Then (2.1.7) and
Theorem (5) in [Ko-2] yield

Theorem 0.10. Let k ∈ Z+. Then the following four numbers are all equal.

[1] dim Ck

[2] dim ∧kg/(dg)k

[3] dim{v ∈ ∧kg|θ(Cas) v = k v}
[4] dim(H k(u))k

0.4.

One difficulty in using (0.2) to compute the coefficient bk is the alternation
in signs in (0.2). By Theorem 0.8 this difficulty would disappear if k were
such that Cas(λσ) = k implies that σ ∈ W (2)

f . But this is the case if k ≤ h∨
where h∨ is the dual Coxeter number. The following is one of our main
results (see Theorem 4.23).
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Theorem 0.11. Let k ≤ h∨. The following seven numbers are all equal.

[1] (−1)kbk

[2] dim Ck

[3]
∑
ξ∈Ξk

dim Vξ

[4] dim{v ∈ ∧k
g | θ(Cas) v = k v}

[5] dim ∧k
g/(dg)k

[6] dim H k(u)

[7] dim Hk(u
−)

Example. If K = SU(5), then since dim SU(5) = 24 one has bn = τ(n +1)
where n 
→ τ(n) is the Ramanujan tau function. Here h∨ = 5. Theorem 0.11
says ∧ Lie Sl(5,C) “sees” the first five nontrivial Ramanujan numbers. One
has τ(2) = −24, τ(3) = 252, τ(4) = −1472, τ(5) = 4830, τ(6) =
−6048. See [Se], p. 97. One readily checks that (choosing [4] in Theo-
rem 0.11 for the computation),

dim C1 = 24
dim C2 = 252
dim C3 = 1472
dim C4 = 4830
dim C5 = 6048.

P. Etingof points out that Theorem 0.11 can be expressed as a homology
acyclicity statement. Let ∂− be the boundary operator on ∧u− whose derived
homology is H∗(u−). The restriction of ∂− to (∧u−)k, for any k ∈ Z+, defines
a finite dimensional subcomplex (i.e., the t-degree is fixed to be −k)

(∧k
u

−)k −→ (∧k−1
u

−)k −→ · · · −→ (∧0
u

−)k −→ 0. (0.18)

We thank Etingof for the following statement (see Theorem 4.24).

Theorem 0.12. If k ≤ h∨ then the complex (0.18) is acyclic. That is,
(Hn(u

−))k = 0 unless n = k so that (H∗(u−))k = (Hk(u
−))k. In fact

(H∗(u−))k = Hk(u
−) and hence

dim(H∗(u−))k = (−1)kbk. (0.19)

0.5.

One can raise the Euler product to the s power where s is any complex
number, by taking its logarithm, multiplying by s and exponentiating. One
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then easily has that

(
Π∞

n=1(1 − xn)
)s =

∞∑
k=0

fk(s) xk (0.20)

where fk(s) is a polynomial of degree k. Obviously

bk = fk(dim K ). (0.21)

Although one can give an expression for these polynomials the expression
yields very little understanding of the nature of the polynomials. One ap-
proach could be a determination of the roots of the fk. It is a long standing
question (see p. 98 in [Se]) about the Ramanujan numbers as to whether 24 is
ever a root of the fk. The following result suggests a possible Lie-theoretic
connection with the roots. Obviously f1 = 1 and 0 is a root of fk for
all k > 0. Consider f2, f3 and f4. Since 4 is neither a pentagonal num-
ber nor a triangular number it follows from a formula (s=1) of Euler and
(s=3) of Jacobi that for one missing root r4 one has f4(s) = 1/4!s(s − 1)
(s−3)(s−r4). Similarly r3 and r2 exist so that − f3(s) = 1/3!s(s−1)(s−r3)
and f2(s) = 1/2!s(s − r2). On the other hand the only cases where M < h∨
are when g is of type A1, A2 and G2. As a consequence of Theorem 0.11
one has (Theorem 4.27).

Theorem 0.13. The missing roots r4, r3 and r2 are, respectively, the com-
plex dimensions of G2, A2 and A1, namely 14,8 and 3 so that

f4(s) = 1/4! s(s − 1)(s − 3)(s − 14)
− f3(s) = 1/3! s(s − 1)(s − 8)

f2(s) = 1/2! s(s − 3).

Let k be any positive integer. If m ∈ Z+ and m ≥ 2 let Ck(m) equal Ck
for the case where K = SU(m). If m ≥ k then k ≤ h∨ = m and hence, by
Theorem 0.11,

fk(m
2 − 1) = (−1)k dim Ck(m). (0.22)

The following result implies that fk(s) is encoded in the k-dimensional
commutative subalgebra structure of Lie Sl(m,C) for k different values
of m where m ≥ k and m > 1 (see Theorem 4.28).

Theorem 0.14. Let k be a positive integer. Then fk(s) is determined by the
numbers dim Ck(m) for k different values of m ∈ Z+ where m ≥ k and
m > 1.

0.6.

We wish to thank Pavel Etingof, Shrawan Kumar and Richard Stanley for
valuable informative conversations.
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1. Alcoves and the affine Weyl group

1.1.

Let g be a complex simple Lie algebra. The value of the Killing form B of g
on x, y ∈ g will be denoted by (x, y) and using B we will identify g with
its dual space. Let k be a compact form of g and let K be a corresponding
simply connected compact Lie group. Let T be a maximal torus of K and
let t = Lie T . Let tC ⊂ g be the complexification of t so that tC is a Cartan
subalgebra of g. The restriction of B to tC will be used to identify tC with
its dual space so that ∆ ⊂ tC where ∆ is the set of roots for the pair (tC,g).
The span of ∆ over R is a real form h of tC. In fact h = it and one knows
that B|h is positive definite.

Let � = rank k and let I = {1, . . . , �}. Let ∆+ ⊂ ∆ be a choice of
a positive root system and let Π be the set of simple positive roots. The
elements of Π will be indexed by I so that we can write Π = {αi}, i ∈ I .
Let ε be the epimorphism

ε : h→ T (1.1)

where ε(x) = exp 2πix. Let Γ be the kernel of ε so that Γ is a lattice in h.
For any ϕ ∈ ∆ one knows that

ϕ∨ ∈ Γ (1.2)

where ϕ∨ = 2 ϕ/(ϕ, ϕ). Furthermore the set of elements {α∨
i }, i ∈ I is

a basis of Γ so that any γ ∈ Γ can be uniquely written

γ =
∑
i∈I

mi 2 αi/(αi, αi). (1.3)

1.2.

For any z ∈ h let tz : h→ h be the translation map by z so that tz(x) = z +x
for any x ∈ h. Let W be the Weyl group for the pair (T, K ). Obviously Γ
is stabilized by W with respect to the action of W on h. Consequently the
translation group Γ̃ = {tγ | γ ∈ Γ} is normalized by W . The affine Weyl
group W f is the semidirect product

W f = Γ̃�W

and we will be mainly concerned with its natural affine action on h.
For any n ∈ Z and ϕ ∈ ∆+ let hϕ,n be the hyperplane in h defined by

putting

hϕ,n = {x ∈ h | (ϕ, x) = n}.
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We will use the word wall to refer to a hyperplane in h of this form. More
specifically a wall of the form hϕ,n will be referred to as a ϕ-wall. An element
x ∈ h will be called W f -singular if x ∈ Sing(h) where

Sing(h) =
⋃

ϕ∈∆+, n∈Z
hϕ,n.

An element y ∈ h will be called W f -regular if y lies in the complement
Reg(h) of Sing(h) in h. The closure A of a connected component of Reg(h)
is called an alcove. The connected component itself is clearly Reg(A) where
Reg(A) = A ∩ Reg(h) and one readily has that Reg(A) is the interior of A.
The affine Weyl group W f operates simply and transitively on the set A of
all alcoves. Let ψ ∈ ∆+ be the highest root. A special alcove A1, referred
to as the fundamental alcove, can be defined by

A1 = {x ∈ h | (αi, x) ≥ 0, i ∈ I, and (ψ, x) ≤ 1}.
We can then index the elements of A by W f where, if σ ∈ W f , we put
Aσ = σ(A1).

Let σ ∈ W f and put Tσ = ε(Aσ ). One knows (1) that every element in
h is W f -conjugate to a unique element in A1, (2) ε : A1 → T1 is bijective
(see (1.1)), and (3) any element in K is K -conjugate to a unique element
in T1. Since these properties are clearly preserved by the action of W f one
immediately has

Proposition 1.1. Let σ ∈ W f . Then (1) every element in h is W f -conjugate
to a unique element in Aσ , (2) ε : Aσ → Tσ is bijective (see (1.1)), and (3)
any element in K is K-conjugate to a unique element in Tσ .

1.3.

For any (ϕ, n) ∈ ∆+ × Z let sϕ,n be the reflection in h defined by the wall
hϕ,n . We write sϕ = sϕ,0. Of course sϕ ∈ W . However for any n ∈ Z one
readily sees that

sϕ,n = tn ϕ∨ sϕ (1.4)

so that sϕ,n ∈ W f . In fact one knows that W f is a Coxeter group with
the � + 1 generators {si, sψ,1}, i ∈ I , where we have written si = sαi . In
particular one has a length function, σ 
→ �(σ) on W f . For any ϕ ∈ ∆+ and
σ ∈ W f let

nϕ(σ) = # of ϕ-walls separating Reg(Aσ ) from Reg(A1). (1.5)

It follows easily that if σ ∈ W f then �(σ) can be given geometrically by

�(σ) = # of walls separating Reg(Aσ ) from Reg(A1)

=
∑
ϕ∈∆+

nϕ(σ). (1.6)
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We adopt the convention that Z+ is the set of nonnegative integers and N
is the set of positive integers.

Remark 1.2. Note that for any σ ∈ W f and any ϕ ∈ ∆+ there exists n ∈ Z
such that for the open and closed unit intervals, (n, n + 1) and [n, n + 1]
in R, one has

ϕ(Reg(Aσ )) ⊂ (n, n + 1)

ϕ(Aσ ) ⊂ [n, n + 1]. (1.7)

This is immediate since it is clearly true for Aσ = A1. One notes also that
if n ∈ Z+ then

n = nϕ(σ). (1.8)

1.4.

Let h+ ⊂ h be the Weyl chamber corresponding to ∆+ so that

h
+ = {x ∈ h | (ϕ, x) ≥ 0, ∀ϕ ∈ ∆+}.

The interior Int(h+) can be characterized by

Int(h+) = {x ∈ h | (αi, x) > 0, ∀i ∈ I}. (1.9)

Let A+ be the set of all alcoves A such that A ⊂ h+. This defines a subset W+
f

of the affine Weyl group by the condition A+ = {Aσ | σ ∈ W+
f }. Note that

by Remark 1.2 and (1.9) one has σ ∈ W+
f if and only if Int(h+) ∩ Aσ 	= ∅.

It follows easily then that

h
+ =

⋃

σ∈W+
f

Aσ . (1.10)

Remark 1.3. One readily shows that W+
f is the set of minimal length rep-

resentatives of the right cosets of W in W f . In fact if w ∈ W and σ ∈ W+
f

then

�(wσ) = �(w) + �(σ). (1.11)

Indeed �(σ) walls of the form hϕ,n , where n 	= 0, clearly separate
Reg(w(Aσ )) from Reg(w(A1)), but �(w) walls of the form hϕ,0 separate
Reg(w(A1)) from Reg(A1).

Recall that ψ is the highest root. For any integer k ∈ Z+ let h(k) = {x ∈
h+ | (ψ, x) ≤ k}. Clearly h(k) = k A1 so that, if k ∈ N, the interior of h(k) is
given by

Int(h(k)) = {x ∈ h | (αi, x) > 0, ∀i ∈ I and (ψ, x) < k}. (1.12)
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Obviouslyh(k) is the closure of its interior. Furthermore since every point inh
lies in at most a finite number of alcoves (e.g., from volume considerations)
it follows from Remark 1.2 where ϕ = ψ and ϕ = αi, i ∈ I , that, if k ∈ N,
h(k) is a union of alcoves. The following very simple and neat observation
(and proof) was made in [C-P].

Proposition 1.4. There are exactly k� alcoves in h(k).

Proof (Cellini and Papi). Since h(k) = k A1 the volume of h(k) is k� times
the volume of A1. The result then follows since every alcove necessarily
has the same volume. ��
Remark 1.5. Assume σ ∈ W+

f . If �(σ) < k note that

Aσ ⊂ h(k). (1.13)

Indeed otherwise the ψ-walls hψ, j , j = 1, . . . , k, would separate Reg(Aσ )
from Reg(A1) contradicting the fact that �(σ) < k. ��

It follows from Proposition 1.4 and Remark 1.5 that there exists a formal
power series P(t) with coefficients in Z+ such that

P(t) =
∑

σ∈W+
f

t�(σ). (1.14)

The alcoves in h+ have a well-known connection with the loop group Ω(K ).
See [B] and p. 444 in [Ku-2]. Conforming to much of current terminology
we take the exponents {mi}, i ∈ I , of K to be the positive integers (in
nondecreasing order) such that the product of (1 + t2mi+1) over i ∈ I is the
Poincaré polynomial of K . This makes mi here have value 1 less than the
value assigned to mi in [B]. The following is a classic result of Bott on the
Poincaré series of Ω(K ). See Theorem B and (13.2) in [B].

Theorem 1.6 (Bott). The Poincaré series of the loop group Ω(K ) is P(t2).
Furthermore

P(t) =
∏
i∈I

1/(1 − tmi ). (1.15)

1.5.

Let D ⊂ h+ be the set of all dominant integral linear forms on h and for each
λ ∈ D let πλ : K → Aut Vλ be an irreducible representation with highest
weight λ. As usual πλ will also denote the corresponding representation of
g and the universal enveloping algebra U(g) on Vλ. Let Cas ∈ Cent(U(g))
be the quadratic Casimir element corresponding to the Killing form. For
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any λ ∈ D let Cas(λ) be the value of the infinitesimal character of πλ on
Cas. We recall that Cas(λ) = (λ + ρ, λ + ρ) − (ρ, ρ) or

Cas(λ) = (λ, λ) + (2 ρ, λ) (1.16)

where as usual ρ = 1/2
∑

ϕ∈∆+ ϕ.
Recall that ψ is the highest root. As in Sect. 2.2 in [Ko-3] let

h P = 1/(ψ,ψ). (1.17)

Of course ψ is the highest weight of the adjoint representation so that
Cas(ψ) = 1. Thus as already noted in (2.2.3) in [Ko-3] one has (see (1.16))
1 = (2ρ,ψ) + (ψ,ψ). This immediately implies that

h P = (2ρ,ψ)/(ψ,ψ) + 1 (1.18)

(see (2.2.4) in [Ko-3]). Since ψ is a long root one has h P = 1/(ϕ, ϕ) for
any long root and h P is a positive integer. Let h be the Coxeter number of g.

In the later publication, [Ka], the number h P was referred to as the dual
Coxeter number and was denoted by h∨. It plays a major role in Kac–Moody
theory. Conforming to this now well accepted terminology one has

Proposition 1.7. One has that 1/(ϕ, ϕ) is the dual Coxeter number h∨ for
any long root ϕ ∈ ∆. Furthermore h∨ = h if g is simply-laced.

Proof. For the first statement see the argument at the end of exercise 6.2 in
Sect. 6.8 of [Ka]. The last statement is Proposition 2.2 in [Ko-3]. ��
Remark 1.8. One has that 1/(ϕ, ϕ) is a positive integral multiple of the
dual Coxeter number for any ϕ ∈ ∆. See Proposition 2.3.1 and its proof in
[Ko-3]. In particular 1/(ϕ, ϕ) is a positive integer for any ϕ ∈ ∆.

1.6.

By definition (see Sect. 1.1) for any σ ∈ W f there uniquely exists wσ ∈ W
and zσ ∈ Γ such that for any x ∈ h one has

σ(x) = wσ(x) + zσ . (1.19)

Let ∆− = −∆+ and for any w ∈ W let Φw = w(∆−) ∩ ∆+ so that, as one
knows,

�(w) = card Φw. (1.20)

Proposition 1.9. Let σ ∈ W+
f . Then

�(σ) + �(wσ) = (2ρ, zσ ). (1.21)
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Proof. Let x ∈ Reg(A1) so that y ∈ Reg(Aσ ) where y = σ(x). Let ϕ ∈ ∆+.
By (1.7) and (1.8) one has that

nϕ(σ) + 1 > ϕ(y) > nϕ(σ). (1.22)

For notational convenience put w = wσ . But since ϕ(w(x)) = w−1(ϕ)(x)
one has, by (1.19),

ϕ(y) = w−1(ϕ)(x) + ϕ(zσ ). (1.23)

But 0 < |w−1(ϕ)(x)| < 1. Since ϕ(zσ ) is an integer, one has, by (1.22),
ϕ(zσ ) = nϕ(σ) or nϕ(σ) + 1, according as w−1(ϕ) ∈ ∆+ or w−1(ϕ) ∈ ∆−,
that is, according as ϕ /∈ Φw or ϕ ∈ Φw. But then summing ϕ(zσ ) over all
ϕ ∈ ∆+ yields (1.21), by (1.6) and (1.20). ��

2. Powers of the Euler product and the set of weights Dalcove

2.1.

Let i ∈ � . One knows (ρ, α∨
i ) = 1 so that

(2ρ, αi) = (αi, αi). (2.1)

On the other hand by (1.17) and (1.18) one has

(2ρ,ψ) = 1 − (ψ,ψ). (2.2)

It follows from (2.1) and (2.2) that

2ρ ∈ Reg(A1). (2.3)

As in [Ko-3] (see Sect. 3.1) let aP ∈ K be defined by putting aP =
exp 2πi 2ρ. Let a ∈ K . In [Ko-3], Sect. 3.1, we said that a will be called an
element of type ρ if it is conjugate to aP . (Because of the factor 2 this choice
of terminology is perhaps inappropriate but it will be retained nonetheless.)
For any λ ∈ D let χλ be the K -character of the irreducible πλ. In [Ko-3],
Sect. 3.1, we proved the following theorem about the dim K power of the
Euler product

∏∞
n=1(1 − xn).

Theorem 2.1. For any λ ∈ D one has χλ(aP) ∈ {−1, 0, 1} and as formal
power series

(

∞∏
n=1

(1 − xn))dim K =
∑
λ∈D

χλ(aP) dim Vλ xCas(λ). (2.4)

See Theorem 3.1 in [Ko-3].

Remark 2.2. For a relation between (2.4) and the Laplace–Beltrami operator
on K (and implicitly the heat kernel on K ) see Sect. 5 in [Ko-3] and [F]. See
also [Ze] for a recent physical application of the heat kernel aspect of (2.4).
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2.2.

For any σ ∈ W+
f let λσ ∈ h be defined by putting

λσ = (wσ(ρ) − ρ) + zσ/2. (2.5)

Proposition 2.3. Let σ ∈ W+
f . Then λσ ∈ D. Furthermore λσ is in the root

lattice.

Proof. Since wσ(ρ) and ρ are two weights of the representation πρ it follows
that wσ(ρ)−ρ is in the root lattice. But, by (1.3), zσ /2 is in the lattice spanned
by αi/(αi, αi), i ∈ I . Hence zσ/2 is in the root lattice by Remark 1.9.
Thus λσ is in the root lattice. In particular λσ is in the weight lattice.
But then λσ + ρ is in the weight lattice. But by the definition (2.5) one
immediately has

2(λσ + ρ) = σ(2ρ). (2.6)

Thus

2(λσ + ρ) ∈ Reg(Aσ ). (2.7)

In particular 2(λσ + ρ) ∈ Int(h+). But then λσ + ρ ∈ Int(h+). But this
implies that λσ is dominant so that λσ ∈ D. ��

Let Dalcove = {λσ | σ ∈ W+
f }. By drawing attention to Dalcove we have

in effect isolated what will be seen to be a distinguished subset of D or,
more significantly, a distinguished subset of the set of all finite dimensional
irreducible representations of K . It is obvious from (2.7) that the map

W+
f → Dalcove σ 
→ λσ (2.8)

is bijective so that the subset Dalcove is parameterized by the set of all alcoves
in a Weyl chamber.

Obviously in the formula (2.4) the only contributions to the sum on the
right hand side correspond to those λ ∈ D such that χλ(aP) ∈ {−1, 1}. We
now find that this condition characterizes Dalcove.

Theorem 2.4. Let λ ∈ D so that χλ(aP) ∈ {−1, 0, 1}. Then χλ(aP) ∈
{−1, 1} if and only if λ ∈ Dalcove. In particular the equality (2.4) simplifies
to

(

∞∏
n=1

(1 − xn))dim K =
∑

σ∈W+
f

χλσ (aP) dim Vλσ xCas(λσ ). (2.9)

Furthermore if σ ∈ W+
f then

χλσ (aP) = (−1)�(σ)

= (−1)�(wσ).
(2.10)
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Proof. We will use results and notations of [Ko-3]. By Lemma 3.6 in loc.
cit. one has

χλ(aP) = εP(λ) (2.11)

where εP(λ) is defined following Lemma 3.5.2, p. 199. The definition of
εP(λ) rests upon an earlier definition of the lattice MP . This lattice is
defined in the line preceding Proposition 2.3.1. In the notation of the present
paper MP = Γ/2. Lemma 3.5.2 can then be restated as follows: either
(1) v(λ + ρ) − ρ /∈ Γ/2 for all v ∈ W or (2) there exists a unique v ∈ W
such that v(λ + ρ) − ρ ∈ Γ/2. By definition εP(λ) = 0 in case (1) and
εP(λ) = (−1)�(v) in case (2). But then, by (2.11), χλ(aP) = 0 in case (1)
and

χλ(aP) = (−1)�(v) (2.12)

in case (2). We will prove that λ ∈ Dalcove if and only if λ satisfies the
condition of case (2). Assume case (2). Let v ∈ W be such that v(λ+ρ)−ρ ∈
Γ/2. Then there exists γ ∈ Γ such that

v(2(λ + ρ)) − 2ρ = γ.

Applying v−1 to this equality yields

2(λ + ρ) = w(2ρ) + z (2.13)

where we have put w = v−1 and z = w(γ). But clearly z ∈ Γ since Γ is
stable under the action of W . Let σ ∈ W f be defined by putting σ = tz w.
Then (2.13) asserts that

2(λ + ρ) = σ(2 ρ).

But 2(λ + ρ) ∈ Int(h+) since λ ∈ D. Thus σ ∈ W+
f and hence λ =

λσ ∈ Dalcove by (2.6). Also z = zσ and w = wσ . But now �(v) = �(wσ)
since wσ = v−1. But now clearly (2ρ, 2 ϕ/(ϕ, ϕ) ∈ 2Z for any ϕ ∈ ∆.
Thus (2 ρ, zσ ) ∈ 2Z. But then, recalling (1.21), this implies that the parity
of �(σ) is the same as the parity of �(wσ). Consequently

χλσ (aP) = (−1)�(σ) (2.14)

by (2.12).
Now conversely assume λ ∈ Dalcove so that λ = λσ for a unique σ ∈ W+

f .
Thus 2 (λσ + ρ) = wσ(2 ρ) + zσ by (2.6). Applying v where v−1 = wσ and
dividing by 2 yields the relation v(λ+ρ) = ρ + γ where γ = v(zσ )/2. But
then γ ∈ Γ/2 and hence λ satisfies the condition of case (2). The result then
follows from (2.12) and (2.14). ��
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2.3.

In this section we will consider the case where K = SU(m) (i.e., gC is
of type Am−1. In this case combinatorists have come upon the set Dalcove
from an entirely different perspective. Let Q be the set of all partitions
q = (q1, . . . , qm) of length at most m − 1 so that qm = 0. One has
a bijection

f : D → Q (2.15)

where if q = f(λ) then (λ, α∨
i ) = qi − qi+1, i ∈ I , where eαi is the matrix

unit ei,i+1.
Associated to q ∈ Q is another partition q̃ called m-core of q. See

Exercise 1.1.8(c) in [Ma-2] or Sect. 3.4 in [A-F] or p. 467–469 in [St]. The
partition q̃ is derived from q by a step-by-step process of appropriately
removing, from the Young diagram of q, what are called m-border strips in
[Ma-2], [St] or rim hooks of length m in [A-F]. The process is terminated
when no more removals are possible. What remains is the Young diagram
of q̃. The proof that q̃ is uniquely determined is particularly nice in [A-F].
One says q has a null m core if q̃ is the empty partition. Let Qo = {q ∈ Q | q
has null m core}. It is obvious that the size of any q ∈ Qo is a multiple of m.
See Lemma 3.4 in [A-F] for a neat characterization of the elements in Qo.

Theorem 2.5. One has f(Dalcove) ⊂ Qo and

f : Dalcove → Qo (2.16)

is a bijection.

Proof. Let λ ∈ D. Then by 1.3.17(a), p. 50 in [Ma-2] one has χλ(aP) ∈
{0, 1,−1} and χλ(aP) ∈ {1,−1} if and only if λ ∈ Qo. A similar statement
is made in Theorem 5.7 of [A-F]. (Of course these are statements for the
SU(m) case.) The result then follows from Theorem 2.4 in the present paper.

��
Remark 2.6. Using Bott’s formula (1.13), one can show that the number of
q ∈ Qo having size mk is ( m+k−2

m−2 ). However both R. Stanley and R. Adin
have pointed out that this statement can be deduced from known facts
about Qo.

3. The structure of the homology H∗(u−)

3.1.

The main results of this paper are given in Sect. 4. We have been convinced
by Pavel Etingof that the results are best illuminated using results of Gar-
land [G], Garland–Lepowsky [G-L] and [Ku-1,Ku-2] on the homology and
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cohomology of the “nilradical” of the standard maximal parabolic subalge-
bra of the affine Kac–Moody Lie algebra associated to g. For the definition
of the affine Kac–Moody Lie algebra see Sect. 6 in [Ka] or Sect. 13.1
in [Ku-2]. For the most part we will adhere to the development of affine
Kac–Moody Lie algebras in these references except for some changes in
notation. In particular we retain our previous meaning of g (and not write

◦
g

for the finite dimensional complex simple Lie algebra). Also we write ĝ
for the affine Kac–Moody Lie algebra L̂(

◦
g) given in (1), p. 482 in [Ku-2].

One has g ⊂ ĝ and if c, d ∈ ĝ are as in Sect. 13.1.1 in [Ku-2] then, writing δ

for c, the complexification ĥC of the real � + 2-dimensional abelian Lie
subalgebra

ĥ = h+ Rδ + Rd (3.1)

“serves” as a Cartan subalgebra of ĝ. Let d = Rδ + Rd. We extend the
positive definite bilinear form B|h to a nonsingular bilinear form (x, y) on ĥ
so that h is orthogonal to d, (d, d) = (δ, δ) = 0 and (d, δ) = 1. This is
further extended to ĥC by complex linearity. Using the latter extension we
identify ĥC with its dual space. As a linear space one has the direct sum
decomposition

ĝ = gd + t g[t] + t−1
g[t−1] (3.2)

where dC is the complexification of d and we have put gd = g + dC. For
a parameter u the space g[u] is the direct sum

g[u] =
∞∑

k=0

uk g. (3.3)

The commutation relations in ĝ are given in (2), Sect. 13.1.1 in [Ku-2]. In
particular dC = Cent gd and the adjoint action of g on ĝ stabilizes C[t, t−1]g
and is linear with respect to the C[t, t−1]-module structure on C[t, t−1]g. It
is otherwise obvious. One has ad δ = 0 and ad d is the t-degree operator t d

dt .
For any ϕ ∈ ∆ let 0 	= eϕ ∈ g be a corresponding weight vector. The

set ∆̂′ of affine roots is just the set of nonzero weights for the adjoint action
of ĥC on ĝ. For any affine root β let ĝβ ⊂ ĝ be the corresponding root space.
One has the disjoint union

∆̂′ = ∆̂Im ∪ ∆̂

where ∆̂Im = (Z− {0})δ. The elements in ∆̂Im are called imaginary affine
roots. If β is an imaginary affine root so that β = m δ for a nonzero integer m,
then ĝβ = tm hC. One has

∆̂ = ∆ + Z δ. (3.4)
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One notes that

∆̂′ ⊂ ĥ. (3.5)

The elements of ∆̂ are called real affine roots. If β is a real affine root, so
that β = ϕ + k δ, where ϕ ∈ ∆ and k ∈ Z, put

eβ = tk eϕ (3.6)

(this is clearly unambiguous even if β = ϕ) and one has

ĝβ = Ceβ. (3.7)

One introduces the set ∆̂′+ of positive affine roots by putting

∆̂′
+ = ∆̂Im

+ ∪ ∆̂+ (3.8)

where ∆̂Im+ = Nδ and

∆̂+ = (∆+ + Z+ δ) ∪ (∆− + N δ). (3.9)

The sets obtained by multiplying each of the 3 sets in (3.8) by −1 is denoted
by replacing the subscript + by the subscript −. If β is a real affine root
then clearly (β, β) > 0 (see (3.4) and (3.5)) so that ĥβ, defined as the
orthocomplement of β in ĥ, is a subspace of codimension 1 in ĥβ . Let sβ

be the (linear) orthogonal reflection of ĥ defined by the subspace ĥβ . Let
I∗ = I ∪ {0} and let α0 ∈ ∆̂+ be defined by putting α0 = δ − ψ. The “Weyl
group” of ĝ is the Coxeter group Ŵ with simple generators {sαi }, i ∈ I∗,
operating linearly on ĥ. See Sect. 1.3.1 in [Ku-2]. As such one has a length
function τ 
→ �(τ) on Ŵ . Also sβ ∈ Ŵ for any real affine root β. Since
the simple generators of Ŵ include the simple generators of W one has
a natural embedding of W in Ŵ . The definition of Φw for w ∈ W (see
Sect. 1.6) extends to any τ ∈ Ŵ by putting Φτ = ∆̂′+ ∩ τ(∆̂′−). Since δ is
fixed under the action of Ŵ one notes that

Φτ = ∆̂+ ∩ τ(∆̂−). (3.10)

Furthermore not only is Φτ a finite set but in fact

�(τ) = card Φτ . (3.11)

See e.g., Lemma 1.3.14 in [Ku-2].
Let ĥ1 be the hyperplane in ĥ defined by putting ĥ1 = {x ∈ ĥ | (δ, x)

= 1} so that ĥ1 = d + R δ + h. It is clear that ĥ1 is stable under the action
of Ŵ . Let ζ : ĥ→ h be the projection with kernel d. Then

Ŵ → W f , τ 
→ τ (3.12)
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is a group isomorphism where for any x ∈ h,
τ(x) = ζ(τ(d + x)). (3.13)

See Sect. 6.6 in [Ka]. If ϕ ∈ ∆+, n ∈ N and and k ∈ Z+ one readily notes
that

snδ−ϕ = sϕ,n

skδ+ϕ = sϕ,−k.
(3.14)

See e.g., p. 132 in [C-P]. Extend the map (3.12) to be an involutory bijection
on the set Ŵ � W f by putting

σ = τ (3.15)

where σ ∈ W f and τ ∈ Ŵ is such that τ = σ .
Let σ ∈ W+

f . It is clear that any wall which separates Reg(A1) from
Reg(Aσ ) is necessarily of the form hϕ,n where n > 0 and ϕ ∈ ∆+. On
the other hand it is immediate, say, from Lemma 1.3.14 in [Ku-2] and
(3.14) (see also (1.1), p. 132 in [C-P]) that hϕ,n is such a wall if and only if
nδ − ϕ ∈ Φσ . That is, one has

Proposition 3.1. Let σ ∈ W+
f . Then

Φσ = {nδ − ϕ | hϕ,n separates Reg(A1) from Reg(Aσ )}.

3.2.

Let

ρ̂ = d/2 + ρ. (3.16)

We note that for i ∈ I∗ one has

(ρ̂, αi) = (αi, αi)/2. (3.17)

Indeed the equality (3.17) is well known for i ∈ I . Since α0 = δ − ψ, for
i = 0, one has

(ρ̂, α0) = 1/2 − (ρ,ψ)

= (ψ,ψ)/2
= (α0, α0)/2

by (1.17) and (1.18). This proves (3.17).
For any subset Φ ⊂ ∆̂+ let 〈Φ〉 = ∑

β∈Φ β. For the proof of the fol-
lowing ((3.18)) extension of (5.10.1) in [Ko-1] to the Kac–Moody case see
Proposition 2.5 in [G-L] or (3) in Corollary 1.3.22 in [Ku-2]. For any τ ∈ Ŵ
one has

ρ̂ − τ(ρ̂) = 〈Φτ 〉. (3.18)

For any σ ∈ W f and ϕ ∈ ∆+ recall the definition, in (1.5), of the integer
nϕ(σ).
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Lemma 3.2. Let σ ∈ W+
f . Then

ρ̂ − σ(ρ̂) =
( ∑

ϕ∈∆+

nϕ(σ)(nϕ(σ) + 1)/2
)

δ −
( ∑

ϕ∈∆+

nϕ(σ) ϕ
)
. (3.19)

Proof. Let ϕ ∈ ∆+. It is immediate from (1.7) and (1.8) that the wall hϕ, j
separates Reg(A1) from Reg(Aσ ) if and only if j is a positve integer such that
1 ≤ j ≤ nϕ(σ). But then (3.19) follows immediately from Proposition 3.1
and (3.18) where τ = σ . ��

One now has the following explicit expression for the elements in
Dalcove (see Sect. 2.2).

Theorem 3.3. Let σ ∈ W+
f so that λσ ∈ Dalcove (see Sect. 2.2). Then

λσ =
∑
ϕ∈∆+

nϕ(σ) ϕ. (3.20)

Proof. By definition ρ̂ = d/2 + ρ (see (3.16)). Thus 2 ρ̂ = d + 2ρ. On the
other hand by the definition of σ (see (3.12), (3.13) and (3.15)) one has

σ(2 ρ) = ζ(σ(d + 2ρ))

= ζ(σ(2 ρ̂)).
(3.21)

But 2 ρ = ζ(2 ρ̂). But then

σ(2 ρ) − 2ρ = ζ(σ(2 ρ̂)) − ζ(2 ρ̂).

But σ is linear. Thus, by (3.19),

σ(2 ρ) − 2ρ = 2 ζ(σ(ρ̂) − ρ̂)

= 2
∑

ϕ∈∆+

nϕ(σ) ϕ. (3.22)

But σ(2 ρ) − 2ρ = 2 λσ by (2.6). But then (3.20) follows from (3.22). ��

Remark 3.4. As mentioned in the proof above σ is linear and we have used
this fact. However σ is not linear and (2.6) does not imply that σ(ρ)−ρ = λσ .
In fact in general σ(ρ) − ρ 	= λσ . Instead one has σ(2ρ)/2 − ρ = λσ by
(2.6).
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3.3.

Recall (3.2). For notational simplicity put u = t g[t] and u− = t−1 g[t−1].
To state the results of [G], [G-L] and [Ku-1,Ku-2] on the homology H∗(u−)

it is clarifying to write down a ĥ-weight basis of the exterior algebra ∧u−.
Let J = {1, 2, . . . , dim k} and let x j , j ∈ J , be a h-weight basis of g

(under the adjoint representation). For any j ∈ J let µ j ∈ h be the weight
corresponding to x j so that µ j ∈ ∆∪{0}. For any n ∈ N let In = {1, . . . , n}
and Pn be the set of all partitions p = (p1, . . . , pn) of length (exactly) n.
Let Rn be the set of all maps

r : In → N× J (3.23)

where if r(i) = (ri, r[i]) then (1) p(r) = (r1, . . . , rn) ∈ Pn and (2) if i < j
and ri = r j then

r[i] > r[ j]. (3.24)

Given r ∈ Rn let

zr = t−r1 xr[1] ∧ · · · ∧ t−rn xr[n] (3.25)

so that

zr ∈ ∧nu−.

Let µ(r)=∑
i∈In

µr[i] . The size |p(r)| of the partition p(r) equals
∑

i∈In
ri .

Since d ∈ ĥ operates as t d
dt one immediately has

Proposition 3.5. Let r ∈ Rn. Then zr ∈ ∧nu− is a ĥ-weight vector of weight

−|p(r)|δ + µ(r).

The condition (3.24) in the definition of r guarantees that the elements
zr, r ∈ Rn , are linearly independent. In fact one immediately notes

Proposition 3.6. The set {zr}, r ∈ Rn, is a ĥ-weight basis ∧nu−.

Let R = ∪n∈Z+ Rn so that {zr}, r ∈ R, is a ĥ-weight basis ∧u−. If Y is any
ĥ-module and k ∈ Zwe will denote the eigensubspace of Y , with eigenvalue
(t-weight) −k, for the action of d, by (Y )k. Clearly {zr}, r ∈ R, |p(r)| = k,
is a basis of (∧u−)k. It is immediate from (3.25) that (∧u−)k is finite
dimensional and one has the direct sum

∧u− =
∑
k∈Z+

(∧u−)k. (3.26)
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3.4.

Now u− (and of course also u) is a Lie subalgebra of ĝ and ∧u− is a chain
complex for the Lie algebra homology space H∗(∧u−). Since gd (see (3.2))
obviously normalizes u− one notes that ∧u− and H∗(∧u−) are completely
reducible gd-modules with finite dimensional irreducible components. In
fact since d is central in gd it is immediate that (∧u−)k is a finite dimen-
sional, completely reducible, g-module subcomplex (with homogeneous
components (∧nu−)k = ∧nu− ∩(∧u−)k) and (H∗(∧u−))k is just the homol-
ogy of (∧u−)k. The decomposition (3.26) yields the direct sum, g-module
decomposition, with completely reducible finite dimensional components,

H∗(∧u−) =
∑
k∈Z+

(H∗(∧u−))k. (3.27)

The determination of H∗(∧u−) as a g-module is due to H. Garland. See
Theorem 3.2 in [G]. This result was extended to the general symmetrizable
Kac–Moody case (and, in addition, with values in a suitable module) in
[G-L]. See Theorem 8.5 in [G-L]. An elegant presentation of the Garland-
Lepowsky theory is given in Sect. 3.2 of [Ku-2]. The proof of Theorem 3.2
depends upon Theorem 2.5 in [G]. The latter (see Theorem 3.7 below), of
interest in itself, is a statement about the Laplacian operator L (denoted by
∆ in [G]) associated to the boundary operator of ∧u− and a positive definite
Hermitian structure on ∧u−. The operator L commutes with the action of
gd so that if Har(u−) = Ker L and Harn(u

−) = Ker L| ∧n u− then one has
an isomorphism

Har(u−) ≡ H∗(∧u−) (3.28)

of graded gd-modules. Thus it suffices to explicitly determine L and its
kernel. This determination rests upon Theorem 2.5 of [G]. As far as I am
aware, a proof of this theorem has not appeared in the literature. However the
result is established as a special case of a much stronger theorem (arbitrary
symmetrizable Kac–Moody case together with a suitable module) due to
Kumar in [Ku-1]. Also see Theorem 3.4.2 in [Ku-2] and the final remark on
p. 107 in [Ku-2].

If ξ ∈ ĥ is an ĥ-weight occurring in ∧u− then ξ = aδ + ν where
−a ∈ Z+ and ν is in the ordinary root lattice of h. We may refer to a as
the δ component of ξ and ν as the h component of ξ . The statement that ξ
is dominant is just the statement that ν ∈ D. In particular if ξ is the highest
weight of a gδ irreducible component of ∧u− then certainly ν ∈ D.

Theorem 3.7 (Garland). Let k ∈ Z+ and let mk be the maximal eigenvalue
of Cas on (∧u−)k. Then

mk ≤ k. (3.29)
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Furthermore one has equality in (3.29) if and only if (Har(u−))k 	= 0.
Moreover in such a case (Har(u−))k is the eigenspace in (∧u−)k for Cas
belonging to the eigenvalue k.

Proof (Kumar). Let Z be an irreducible gd-submodule of (∧u−)k and let ξ
be the highest weight. Then ξ = −kδ + ν for some ν ∈ D. Then L|Z
operates as the scalar operator

c = 1/2((ρ̂, ρ̂) − (ρ̂ − kδ + ν, ρ̂ − kδ + ν))

by Theorem 3.4.2 in [Ku-2] since in the case at hand λ = 0. But ρ̂ =
ρ + d/2 by (3.16). Thus c = 1/2((ρ, ρ) − (ρ + ν, ρ + ν) + k). That is
c = 1/2(k − Cas(ν)). But L|Z is positive semidefinite. This implies the
inequality (3.29). But c = 0 if and only if Cas(ν) = k and this must be the
case if and only if mk = k and Z ⊂ (Har(u−))k. ��
Remark 3.8. Garland remarks that his Theorem 3.2 is an analogue of results
in [Ko-1]. At first glance Theorem 2.5 in [G], upon which his Theorem 3.2
depends, appears to have no analogue in [Ko-1]. However Kumar’s more
general result, Theorem 3.4.2 in [Ku-2], is in fact manifestly an infinite-
dimensional analogue of Theorem 5.7 in [Ko-1].

The following statement is a corollary of Theorem 3.7.

Theorem 3.9. Let 0 	= z be an ĥ-weight vector in ∧u− and let Z ⊂ ∧ u−
be the gd-submodule generated by z. Let ξ ∈ ĥ be the weight of z and let λ
be the h-component of ξ . Then Z ⊂ Har(∧u−) and z is a highest weight
vector of Z (so that Z is an irreducible gd-submodule) if and only if the
δ-component of ξ equals (ρ, ρ) − (λ + ρ, λ + ρ). Moreover in such a case
λ ∈ D and

ξ = − Cas(λ) δ + λ. (3.30)

Proof. Let −k be the δ-component of ξ so that k ∈ N and Z ⊂ (∧u−)k.
Now if Z ⊂ Har(∧u−) then Z ⊂ (Har(∧u−))k and hence Cas |Z is the
scalar operator for the scalar k, by Theorem 3.7. But if also z is a highest
weight vector of Z, then λ ∈ D and

k = (λ + ρ, λ + ρ) − (ρ, ρ). (3.31)

Conversely assume (3.31). If z is not a highest weight vector of Z there
obviously exists an irreducible gd-submodule Z ′ ⊂ Z, necessarily having ξ
as a weight, and such that if ξ ′ = −k δ + λ′ is the highest weight of Z ′
then λ 	= λ′. But λ′ ∈ D and Cas(λ′) = (λ′ + ρ, λ′ + ρ) − (ρ, ρ). But then
Cas(λ′) > k by (3.31) and the Freudenthal result (5.9.2) in [Ko-1]. This
contradicts (3.29). Thus z is a highest weight vector of Z and λ ∈ D. But
then the right hand side of (3.31) equals Cas(λ). Hence Z ⊂ Har(u−) by
Theorem 3.7. ��
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3.5.

Theorem 3.2 in [G] gives the decomposition of Har(∧u−)(and hence equiv-
alently H∗(∧u−)) as a gd-module. This result (see Theorem 3.10 below)
is also the application of Theorem 8.5 in [G-L] to the case of the standard
maximum parabolic subalgebra of the affine Kac–Moody Lie algebra where
the module is trivial. See also Theorem 3.2.7 in [Ku-2] for this case. The
statement is made stronger (implicit in [G-L]) by including Lemma 3.2.6 in
[Ku-2]. One notes that the strengthened statement is a Kac–Moody analogue
of Lemma 5.12 and Theorem 5.14 in [Ko-1]. By (3.18) one has

σ(ρ̂) − ρ̂ = −〈Φσ 〉 (3.32)

for any σ ∈ W f .

Theorem 3.10 (Garland). Let σ ∈ W+
f . Then −〈Φσ 〉 occurs as an ĥ-

weight of multiplicity one in the gd-module ∧u−. In particular there exists
a unique r ∈ R (see Sect. 3.3), henceforth denoted by rσ , such that zrσ is
a weight vector with weight −〈Φσ 〉. In the notation of Lemma 3.5

−〈Φσ 〉 = −|p(rσ )| δ + µ(rσ ). (3.33)

In addition −〈Φσ 〉 is dominant. That is, µ(rσ ) ∈ D.
Let Zσ be the gd-module generated by zrσ . Then Zσ is gd-irreducible

and zrσ is a highest weight vector of Zσ . Moreover Zσ ⊂ Har(∧u−) and
indeed one has the multiplicity free decomposition

Har(∧u−) =
∑

σ∈W+
f

Zσ . (3.34)

With respect to the two compatible gradations Harn(∧u−) and (Har(∧u−))k
one has

(Har(∧u−))k =
∑

σ∈W+
f , |p(rσ )|=k

Zσ (3.35)

and

Harn(∧u−) =
∑

σ∈W+
f , �(σ)=n

Zσ . (3.36)

Remark 3.11. Note that the existence of rσ with the cited properties is
a consequence of Proposition 3.6 and the multiplicity one property of
−〈Φσ 〉. Note also that (Har(∧u−))k is finite dimensional since (∧u−)k
is finite dimensional (see Sect. 3.3). On the other hand Harn(∧u−) is also
finite dimensional (even though ∧nu is infinite dimensional) since the set
{σ ∈ W f | �(σ) = n} is obviously finite.
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3.6.

Remark 3.12. Since the set E = {t−i x j | (i, j) ∈ N × J} is clearly a ba-
sis of u− note that the elements zSk, k ∈ In, are linearly independent in
∧u− where Sk, k ∈ In, are finite mutually distinct subsets of E and for
any such subset S, zS is the decomposable element obtained by exterior
multiplication, in some order, of the elements in S.

Recalling the notation of (3.23) let J+ = { j ∈ J | µ j ∈ ∆+}. We may
choose the ordering of the basis {x j} of g so that J+ = {1, . . . , m} where
here m = card ∆+. For j ∈ J+ we now write ϕ j for µ j and choose x j = eϕ j .

For n ∈ Z+ let R+
n be the set of all r ∈ Rn such that the image of (3.23)

is contained in N × J+. Now let σ ∈ W+
f and let n = �(σ). For j ∈ J+

let nϕ j (σ) be defined as in Sect. 1.3 and let zσ, j ∈ ∧nϕ j (σ)
u− be defined by

putting zσ, j = 1 if nϕ j (σ) = 0 and otherwise

zσ, j = t−1 x j ∧ · · · ∧ t−nϕ j (σ) x j . (3.37)

Next let zσ ∈ ∧nu− (see (1.6)) be defined by putting

zσ = zσ,1 ∧ · · · ∧ zσ,m. (3.38)

We now use the results of Sect. 3.2 and relate Theorem 3.10 with Dalcove.
See Sect. 2.2 and the cautionary Remark 3.4.

Theorem 3.13. Let σ ∈ W+
f and let λσ ∈ Dalcove be defined as in (2.5).

Then in the notation of (3.33) one has µ(rσ ) = λσ and in fact (3.33) can be
written

−〈Φσ 〉 = − Cas(λσ) δ + λσ . (3.39)

In particular not only is Cas(λσ) an integer but in fact

Cas(λσ) =
∑
ϕ∈∆+

nϕ(σ)(nϕ(σ) + 1)/2. (3.40)

Moreover (recalling (3.38) and Theorem 3.10) one has rσ ∈ R+
n and

zrσ = ±zσ . (3.41)

Finally Zσ ≡ Vλσ as a g-module and, as a g-module, Har(∧u−) is multipli-
city free and one has the equivalence

Har(∧u−) ≡
∑

σ∈W+
f

Vλσ . (3.42)

Of course the same statement is true when H∗(∧u−) replaces Har(∧u−).
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Proof. The statement that µ(rσ ) = λσ is immediate from (3.19), (3.20),
(3.32) and (3.33). Since zrσ and Zσ of Theorem 3.10 satisfies the condition
of z and Z of Theorem 3.9 it follows from (3.30) that the δ component of
−〈Φσ 〉 equals − Cas(λσ). This proves (3.39). But then (3.40) follows from
(3.19). But now the ĥ weight of the weight vector zσ is clearly

(−
m∑

j=1

nϕ j (σ)(nϕ j (σ) + 1)/2) δ +
m∑

j=1

nϕ j (σ)ϕ j.

Thus zσ is an ĥ weight vector of weight −〈Φσ 〉 by (3.19). Thus one has
(3.41) by the multiplicity one condition (Theorem 3.10) of this weight
in ∧u−. It follows in particular, (see Remark 3.12) that rσ ∈ R+

n . The
remaining statements are then obvious noting that the h component of
−〈Φσ 〉 determines the δ-component (or using the injectivity of the map
(2.8)). ��

3.7.

Let Q = (Z+)m where m = card ∆+. If q ∈ Q let qi ∈ Z+, i ∈ Im , be
defined so that q = (q1, . . . , qm). Let X ⊂ h be the semigroup generated
by ∆+ and let η : Q → X be defined by putting

η(q) =
∑
i∈Im

qi ϕi . (3.43)

If η(q) = µ we will refer to q as a positive root partition of µ. For any
µ ∈ X let

Qµ = η−1(µ) (3.44)

so that Qµ is the set of all positive root partitions of µ.
Now if q ∈ Q let

c(q) =
∑
i∈Im

qi(qi + 1)/2 (3.45)

and let z(q) ∈ ∧u− be defined by putting

z(q) = z(q),1 ∧ · · · ∧ z(q),m (3.46)

where z(q),i = 1 if qi = 0 and otherwise

z(q),i = t−1xi ∧ · · · ∧ t−qi xi .

One notes that z(q) is an ĥ-weight vector and the ĥ

weight of z(q) = −c(q) δ + η(q). (3.47)
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Let σ ∈ W+
f . Then by (3.20) one has λσ ∈ X, i.e., Dalcove ⊂ X, and

in addition (3.20) defines a distinguished positive root partition of λσ . We
denote this partition by qσ and refer to this partition as the σ positive root
partition of λσ . Thus qσ ∈ Qλσ is given by qσ

i = nϕi (σ) for all i ∈ Im , using
the notation of Sect. 1.3. The following result characterizes the elements in
the subset Dalcove ⊂ X and for, each σ ∈ W+

f , the result characterizes the σ
positive root partition among all the positive root partitions in Qλσ .

Theorem 3.14. Let q ∈ Q. Then

c(q) ≥ (µ + ρ,µ + ρ) − (ρ, ρ) (3.48)

where µ = η(q). Furthermore one has equality in (3.48) if and only if
µ = λσ for some (necessarily unique, see (2.8)) σ ∈ W+

f and q = qσ .

Proof. Let k = c(q) so that Z ⊂ (∧u−)k where Z isgd-submodule generated
by z(q). But then, using the notation of (3.29), one readily has, using e.g.,
the Freudenthal result (5.9.2) in [Ko-1], (µ + ρ,µ + ρ) − (ρ, ρ) ≤ mk . But
mk ≤ k by (3.29). This establishes the inequality (3.48).

Now if µ = λσ and q = qσ one has equality in (3.48) by (3.40).
Conversely if one has equality in (3.48) then, by Theorem 3.9, Z is a gd-
irreducible component of Har(∧u−) and z(q) is a highest weight vector.
Then by Theorems 3.10 and 3.13 there exists σ ∈ W+

f such that the highest
weight of Z is − Cas(λσ) δ + λσ and this weight occurs with multiplicity 1
in ∧u−. But then z(q) = zσ (up to scalar multiplication). But then q = qσ

by Remark 3.12. ��

3.8.

Using, in the present context, notation introduced in Sect. 5.1 of [Ko-1],
one defines an operation

.+, referred to as root addition, on the set of all
subsets of the set of affine roots. If Ψi ⊂ ∆̂′, i = 1, 2, then Ψ = Ψ1

.+ Ψ2

if Ψ = {β ∈ ∆̂′ | β = β1 + β2, for some βi ∈ Ψi}. Let Ψ ⊂ ∆̂′. We will
say that Ψ is closed under root addition if Ψ

.+ Ψ = Ψ and Ψ is abelian
or commutative if Ψ

.+ Ψ = ∅. A subset Φ ⊂ ∆+ is called ideal in ∆+ if
∆+

.+ Φ ⊂ Φ. If Φi, i = 1, 2, are two such ideals then obviously Φ1
.+ Φ2

is again such an ideal.
Let σ ∈ W+

f and let L(σ) = maxϕ∈∆+nϕ(σ) using the notation of
Sect. 1.3. Since ψ is the highest weight of the adjoint representation, clearly
(see Remark 1.2)

nψ(σ) ≥ nϕ(σ) (3.49)

for any ϕ ∈ ∆+. Thus

L(σ) = nψ(σ) (3.50)
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which, in the notation of Sect. 1.4 implies that

Aσ ⊂ h(L(σ)+1) but Aσ 	⊂ h(L(σ)). (3.51)

In Theorem 3.16 below we observe that σ defines a chain of L(σ)+1 ideals
(not necessarily distinct) of ∆+. For any i ∈ Z+ let

∆i(σ) = {ϕ ∈ ∆+ | i ≤ nϕ(σ)}

so that ∆i(σ) = ∅ if i > L(σ). Clearly

∆L(σ)(σ) ⊂ · · · ⊂ ∆0(σ) = ∆+. (3.52)

Remark 3.15. Observe that if i ∈ N, ϕ ∈ ∆+ and σ ∈ W+
f then, by

Proposition 3.1,

ϕ ∈ ∆i(σ) ⇐⇒ i δ − ϕ ∈ Φσ . (3.53)

(Note the exclusion of i = 0).

If ϕ1, ϕ2 ∈ ∆+ and ϕ1 + ϕ2 is a root then note that by Remark 1.2 one
has

nϕ1+ϕ2(σ) ∈ {nϕ1(σ) + nϕ2(σ), nϕ1(σ) + nϕ2(σ) + 1} (3.54)

for any σ ∈ W+
f .

Theorem 3.16. Let σ ∈ W+
f . Then ∆i(σ) is an ideal in ∆+ for any i ∈ Z+.

Furthermore

∆i(σ)
.+ ∆ j(σ) ⊂ ∆i+ j (σ) (3.55)

for any i, j ∈ Z+ so that in particular ∆L(σ)(σ) is an abelian ideal in ∆+.
Finally using the notation of Sect. 3.2 one has

λσ =
∑

i∈IL(σ)

〈∆i(σ)〉. (3.56)

Proof. The first statement and (3.55) are immediate consequences of (3.54).
On the other hand (3.56) clearly follows from (3.20) and (3.53). ��
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4. The main results

4.1.

We recall results in the 1965 paper [Ko-2]. Let u ⊂ g be any (complex)
subspace. Let k = dim u so that ∧ku is a 1-dimensional subspace of ∧kg.
Let M be the maximal dimension of an abelian subalgebra of g. For any
k ∈ Z+ let Ck ⊂ ∧k g be the span of all 1-dimensional subspaces of the
form ∧kawhere a ⊂ g is a k-dimensional abelian subalgebra of g. Obviously
Ck = 0 if k > M. Clearly Ck is a g-submodule of ∧kg under the adjoint
action of g. Of course the same is true of

C =
M∑
k=0

Ck.

If a (complex) subspace u ⊂ g is stable under h let ∆(u) = {ϕ ∈ ∆ |
eϕ ∈ u}. Let b be the Borel subalgebra of g containing h such that
∆(b) = ∆+ and let n = [b, b] be the nilradical of b. Let Ξ be an in-
dex set parameterizing the set of all abelian ideals in b and for any ξ ∈ Ξ
let aξ be the corresponding abelian ideal. For any ξ ∈ Ξ it is immediate that
aξ ⊂ n so that Ξ is finite and

aξ =
∑

ϕ∈∆(aξ )

Ceϕ (4.1)

and hence

∧kaξ = C eϕ1 ∧ · · · ∧ eϕk (4.2)

where k = dim aξ and

∆(aξ ) = {ϕ1, . . . , ϕk}. (4.3)

The subsets of ∆+ of the form (4.3) are characterized by Theorem (8)
in [Ko-2]. For k ∈ Z+ where k ≤ card ∆+ let Ξk = {ξ ∈ Ξ | dim aξ
= k}. Of course Ξk is empty if k > M. If µ ∈ h let |µ| = (µ,µ)

1
2 . The

characterization is as follows:

Theorem 4.1. Let Φ ⊂ ∆+ and let k = card Φ. Then if Φ = {ϕ1, . . . , ϕk}
one has

|ρ + ϕ1 + · · · + ϕk|2 − |ρ|2 ≤ k (4.4)

and one has equality in (4.4) if and only if there exists ξ ∈ Ξk (necessarily
unique) such that Φ = ∆(aξ ).
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The adjoint action of g on itself induces the structure of a g-module (and
hence U(g)-module) on ∧g. Let ξ ∈ Ξ. Since [b, aξ] ⊂ aξ it is immediate
from (4.2) that, if ξ ∈ Ξk, then ∧kaξ ⊂ ∧k g is a highest weight space and
hence, under the action of g, generates an irreducible g-submodule, denoted
here by Vξ , of ∧kg. Furthermore if we put

λξ =
∑

ϕ∈∆(aξ)

ϕ (4.5)

then λξ is the highest weight of Vξ . Theorem (7) in [Ko-2] implies that, for
ξ, ξ ′ ∈ Ξ,

λξ = λξ ′ ⇐⇒ ξ = ξ ′. (4.6)

This accounts for the multiplicity-free statement in the following result
(Theorem 4.2). Like Theorem 4.1, Theorem 4.2 is also part of Theorem (8)
in [Ko-2].

Theorem 4.2. For any k ∈ Z+ where 0 ≤ k ≤ M one has the direct sums

Ck =
∑
ξ∈ Ξk

Vξ (4.7)

and
C =

∑
ξ∈ Ξ

Vξ .

Furthermore C and, a fortiori, Ck, are multiplicity-free g-modules.

4.2.

It is a beautiful result of Dale Peterson that card Ξ = 2�. Although Peter-
son’s proof has not been published a sketch of his proof appears in Sect. 2
of [Ko-5]. A key (and, for me, surprising) point of the proof was the con-
nection established between Ξ and a subset of W+

f . Expanding on this
connection P. Cellini and P. Papi published a simpler proof of Peterson’s
theorem in [C-P]. See Theorem 2.9 in that reference. Recalling the notation
of Sect. 1.4 in our present paper here let W (k)

f = {σ ∈ W+
f | Aσ ⊂ h(k)}. By

Proposition 1.4 one has card W (2)
f = 2�. Peterson’s theorem follows from

a bijection

Ξ → W (2)
f (4.8)

established in [C-P].

Remark 4.3. Note that if σ ∈ W+
f then

σ ∈ W (2)
f ⇐⇒ nϕ(σ) ∈ {0, 1}, ∀ϕ ∈ ∆+. (4.9)

Indeed by definition σ ∈ W (2)
f if and only if nψ(σ) ∈ {0, 1}. But then (4.9)

follows from (3.49).
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Recently Ruedi Suter in [Su] showed (again a surprise for me) that
Peterson’s theorem, in fact, follows from a result in [Ko-2]. In more detail,
Theorem 4.4, below, was known to me before [Su]. In fact it is an immediate
consequence of Peterson’s Proposition 2.5 in [Ko-5] and the result (4.8) in
[C-P]. The equation (4.10) below was discovered independently by Suter
in [Su]. But the main novelty is that the proof of (4.10), (4.11) and hence
(4.13) in [Su] depends only on a 1965 result in [Ko-2], stated in the present
paper as Theorem 4.1. With the benefit of this knowledge we will prove
Theorem 4.4 using only [Ko-2] and results established in the present paper.

Theorem 4.4. For any ξ ∈ Ξ there exists an (necessarily unique) element
σξ ∈ W+

f such that

λξ = λσξ . (4.10)

Moreover σξ ∈ W (2)
f and the map

Ξ → W (2)
f , ξ 
→ σξ (4.11)

is a bijection. In particular one has the inclusion

{λξ | ξ ∈ Ξ} ⊂ Dalcove (4.12)

and the count (Peterson’s theorem)

card Ξ = 2�. (4.13)

Proof. Let ξ ∈ Ξ. Then, in the notation of Sect. 3.7, (4.5) is a root partition
q of λξ (see (3.43)) and qi ∈ {0, 1} for any i ∈ Im . But then if ξ ∈ Ξk one
has c(q) = k (see (3.45)). But then c(q) = |λξ +ρ|2 −|ρ|2 by Theorem 4.1.
Thus there exists an element σξ ∈ W+

f satisfying (4.10) and q = qσξ by
Theorem 3.14. Obviously if ϕ ∈ ∆+ then

nϕ(σξ) = 1 if ϕ ∈ ∆(aξ) and nϕ(σξ) = 0 if ϕ /∈ ∆(aξ ). (4.14)

But then σξ ∈ W (2)
f by (4.9). The map (4.11) is injective by (4.6).

Conversely let σ ∈ W (2)
f . Without loss we may assume that σ 	= 1. Then

by (4.9) and Theorem 3.16 the set

Φ = {ϕ ∈ ∆+ | nϕ(σ) = 1} (4.15)

is an abelian ideal in ∆+. Thus there exists ξ ∈ Ξ such that λξ = 〈Φ〉. On
the other hand λσ = 〈Φ〉 by (3.20). Hence σ = σξ . Consequently (4.11) is
surjective. ��

As a consequence of Remark 4.3 and Theorem 4.4 one establishes the
following property of W (2)

f .
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Theorem 4.5. Let σ ∈ W+
f . Then

Cas(λσ) ≥ �(σ) (4.16)

and equality occurs in (4.16) if and only if σ ∈ W (2)
f . Furthermore in that

case writing σ = σξ for ξ ∈ Ξ (Theorem 4.4) one has

Cas(λσ) = �(σ)

= dim aξ .
(4.17)

Proof. The inequality (4.16) follows from (1.6) and (3.40). But then equality
occurs if and only if nϕ(σ) ∈ {0, 1} for all ϕ ∈ ∆+. But this is the case if
and only if σ ∈ W (2)

f by Remark 4.3. The final statement then follows from
Theorem 4.4 and (4.14). ��

4.3.

Recall Sect. 3.3. Define a pairing of u− and u = t g[t] so that for p, q ∈ N
and x, y ∈ g then (t−p x, tq y) = 0 if p 	= q and (t−p x, t p y) = (x, y). Let
yk, k ∈ J be the basis of g, dual to the x j , so that yk is a weight vector
of weight −µk. It follows then that {tq yk | (q, k) ∈ N × J} is an ĥ basis
of u, dual to the basis {t−p x j | (p, j) ∈ N× J} of u−. We may identify u−
here with the subspace of all linear functionals f on u which vanish on tNg

(where N depends on f ) for sufficiently large N.
If r is defined as in (3.23) let wr ∈ ∧nu be defined so that

wr = tr1 yr[1] ∧ · · · ∧ trn yr[n] . (4.18)

The obvious analogue of Proposition 3.5 and 3.6 is

Proposition 4.6. Let r ∈ Rn. Then wr is an ĥ-weight vector of weight

|p(r)|δ − µ(r)

and the set {wr | r ∈ Rn} is a basis of ∧nu.

The pairing of u− and u extends, as usual (determinantally), to a nonsin-
gular pairing of ∧u− and ∧u. The subspaces ∧mu− and ∧nu are orthogonal
if m 	= n and if n = m one notes that {wr | r ∈ Rn} and {zr | r ∈ Rn} are
dual bases. The pairing of ∧u− and ∧u is clearly invariant under the action
of gd. If y ∈ u let θ(y) ∈ End ∧ u be the operator of the adjoint action of y
on ∧u and if x ∈ u− let ι(x) ∈ End ∧ u be the interior product by x. Let ∂+
be the boundary operator on ∧u whose derived homology is H∗(u). Using
a standard expression for ∂+ one has that if u ∈ ∧u then

∂+ u = 1/2
∑

(p, j)∈N×J

θ(t p y j) ι(t−p x j) u (4.19)
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noting that ι(t−p x j) u is nonzero for only a finite subset of N × J . Let
θ∗(t p y j) ∈ End (∧u)∗ be the negative transpose of θ(t p y j). It is immediate
that ∧u− is stable under θ∗(t p y j) and that, using the notation of (3.26),

θ∗(t p y j) : (∧u−)k → (∧u−)k−p (4.20)

noting (∧u−) j = 0 if j is negative. For any x ∈ u− let ε(x) ∈ End ∧ u− be
the operator of exterior multiplication by x. One sees that if d+ ∈ End (∧u)∗
is the negative transpose of ∂+ then ∧u− is stable under d+ and, in fact for
any v ∈ ∧u− one has

d+ v = 1/2
∑

(p, j)∈N×J

ε(t−p x j)θ
∗(t p y j) v (4.21)

noting that, by (4.20), θ∗(t p y j) v 	= 0 for only a finite subset of N× J .
Of course the pair ((∧u)∗, d+) is the cochain complex whose derived co-
homology is H∗(u). The pair (∧u−, d+) is a subcomplex and we denote
the derived cohomology by H∗(u). Since d+ is antiderivation in either case
both H∗(u) and H∗(u) are algebras and one has an algebra homomorphism

H∗(u) → H∗(u).

On the other hand (see Sect. 3.4) ∧u− has a bigrading (∧nu−)k and one
notes from (4.21) that

d+ : (∧nu−)k → (∧n+1u−)k. (4.22)

In particular ((∧u−)k, d+) (see Sect. 3.4) is a finite dimensional gd-com-
pletely reducible subcomplex of (∧u−, d+), for k ∈ Z+. The derived co-
homology is denoted by H(u)k. Since the ri in (3.25) are positive one notes
that (∧nu−)k = 0 for n > k. Also note that (see (3.25)) for n, n′, k, k′ ∈ Z+,

(∧nu−)k ∧ (∧n′
u−)k′ ⊂ (∧n+n′

u−)k+k′ . (4.23)

Of course ∧ induces cup product (∨) in H(u). This establishes

Proposition 4.7. One has the direct sum

H(u) =
∑
k∈Z+

(H(u))k (4.24)

where (H(u))k is a finite dimensional gd-completely reducible gd-module.
Furthermore with regard to cohomological degree

(H(u))k =
k∑

n=0

(Hn(u))k (4.25)

and one has the cup product relation

(Hn(u))k ∨ (Hn′
(u))k′ ⊂ (Hn+n′

(u))k+k′ . (4.26)
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4.4.

In Sect. 3.4 we introduced Garland’s harmonic subspace Har(∧u−) of ∧u−.
The subspace Har(∧u−) is a space of cycles for the boundary operator on
∧u− and the quotient map Har(∧u−) → H∗(u−) is an isomorphism (see
(3.28)). We will now see that Har(u−) also represents the cohomology H(u).
We will first clarify the structure of Har(∧u−). For any σ ∈ W+

f we have
defined a gd-irreducible submodule Zσ of ∧u− in (Garland) Theorem 3.10.
Combining Theorem 3.10 and Theorem 3.13 one has

Theorem 4.8. The highest weight of Zσ is − Cas(λσ)δ + λσ . Furthermore
this weight occurs with multiplicity 1 in ∧u− so that, a fortiori, the repre-
sentation of gd afforded by Zσ occurs with multiplicity 1 in ∧u−. Next

Zσ ⊂ (∧�(σ)(u−))Cas λσ . (4.27)

In fact

(Harn(∧u−))k =
∑

σ∈W+
f , �(σ)=n,Cas(λσ )=k

Zσ . (4.28)

If λ ∈ D then, as one knows, the dual (Vλ)
∗, as a g-module, is char-

acterized by the property that −λ is the lowest weight of (Vλ)
∗. A similar

statement is clearly true for the reductive Lie algebra gd. As a consequence
of Theorem 4.8 one can then make the following

Remark 4.9. If σ ∈ W+
f then the dual (Zσ )∗, as a gd-module, is character-

ized by the property that Cas(λσ)δ − λσ is the lowest weight of (Zσ )∗.

Now one knows that there exists an automorphism θ on g which stabi-
lizes h and is such that θ|h is minus the identity. In particular θ(∆+) = −∆
so that if κ ∈ W is the long element then κθ stabilizes ∆+ and also stabi-
lizes D. If λ ∈ D let λ′ = κθ(λ). Since the −λ is the lowest weight of Vλ′
we may identify Vλ′ with the dual g-module V ∗

λ .

Remark 4.10. As an application of Theorem 2.4 note that Dalcove is stable
under κθ. Indeed since χλ(aP) ∈ {−1, 1} clearly (by the reality of the
character value) χλ′(aP) = χλ(aP) so that χλ′(aP) ∈ {−1, 1}. Thus there
exists an involutory bijection W+

f → W+
f , σ 
→ σ ′ such that

(λσ)′ = λσ ′
. (4.29)

Examples exist where σ ′ 	= σ .

The automorphism θ clearly extends to an automorphism of ĝ which
stabilizes ĥ and is minus the identity on ĥ. But then θ interchanges u and
u− since θ(δ) = −δ. As noted in Remark 4.9, for σ ∈ W∗

f , the irreducible
gd-module with lowest weight Cas(λσ)δ − λσ readily identifies with (Zσ )∗,
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the dual gd-module to Zσ . But now Theorem 3.10 and Theorem 3.13 deter-
mine the gd-module structure of H∗(u). Recalling the notation at the end of
Sect. 3.3 one has the direct sum

H∗(u) =
∑
k∈Z+

(H∗(u))−k. (4.30)

Furthermore (H∗(u))−k is a finite dimensional completely reducible
gd-module and as such

(H∗(u))−k ≡
∑

σ∈W+
f ,Cas(λσ )=k

(Zσ )∗. (4.31)

We can now prove that Har(∧u−) ⊂ ∧ u− represents the cohomology
H(u) as well as the homology (see (3.28)) H∗(u−).

Theorem 4.11. Any element in Har(∧u−) is a d+-cocycle and the induced
linear map

Har(∧u−) → H∗(u) (4.32)

is agd-module isomorphism. In particular (4.32) restricts to an isomorphism

(Har(∧u−))k → (H∗(u))k (4.33)

of finite dimensional completely reducible gd-modules, for any k ∈ Z+.

Proof. It clearly suffices to prove (4.33). But the nonsingular pairing of ∧u−
and ∧u induces a nonsingular pairing of the finite dimensional completely
reducible gd-modules (∧u−)k and (∧u)−k. But d+|(∧u−)k is the negative
transpose of ∂+|(∧u)−k. Thus, as gd-modules one has

(H∗(u))k ≡
∑

σ∈W+
f ,Cas(λσ )=k

Zσ

by (4.31). But by complete reducibility and the multiplicity 1 statement in
Theorem 4.8 one must have Harn(∧u−))k ⊂ Ker d+ (see (4.28)) and the
gd-isomorphism (4.33). ��

4.5.

We now introduce a new grading H [ j](u) on H∗(u). In doing so we are
following a suggestion of Pavel Etingof who pointed out to us that our
subsequent results can be neatly formulated using this grading. As noted in
Sect. 4.3 one has (∧nu−)k = 0 for n > k. In particular (Hn(u))k = 0 for
n > k (see (4.25)). For j ∈ Z let
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∧[ j]u− =
∑

n,k∈Z+, k−n= j

(∧nu−)k (4.34)

and let

H [ j](u) =
∑

n,k∈Z+, k−n= j

(Hn(u))k (4.35)

so that one has the direct sums

∧u− =
∑
j∈Z+

∧[ j]u−

H∗(u) =
∑
j∈Z+

H [ j](u).
(4.36)

Proposition 4.12. The subspaces ∧[ j]u− and, a fortiori, H [ j](u) are finite
dimensional. Moreover, with respect to wedge and cup product

(∧[ j]u−) ∧ (∧[ j ′]u−) ⊂ (∧[ j+ j ′]u−)

H [ j](u) ∨ H [ j ′](u) ⊂ H [ j+ j ′](u).
(4.37)

In particular ∧[0]u− is a finite dimensional subalgebra of ∧u− and H (0)(u)
is a finite dimensional subalgebra of H∗(u).

Proof. Clearly (4.37) follows from (4.23). It suffices only to show that
(∧[ j]u−) is finite dimensional for any j ∈ Z+. Recalling the notation of
Sect. 3.3 note that, for any r ∈ Rn ,

zr ∈ ∧[|p(r)|−n]u−. (4.38)

But, by (3.24), the number of i ∈ In such that ri = 1 is at most dim k for
any n. This implies that |p(r)| − n ≥ n − dim k. But this readily implies
that ∧[ j]u− is finite dimensional, for any j ∈ Z+. ��
Remark 4.13. Note that as a gd-module one has

H [ j](u) ≡
∑

σ∈W+
f ,Cas(λσ )−�(σ)= j

Zσ . (4.39)

Indeed (4.39) follows from (3.33), (3.35), (3.36) and (3.39).

Now note that by (4.22) one has

d+ : ∧[ j]
u

− → ∧[ j−1]
u

− (4.40)

for any j ∈ Z. This implies part of
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Lemma 4.14. One has

∧[0]
u

− ⊂ Ker d+. (4.41)

Moreover as an algebra and a gd module one has ∧[0]u− ≡ ∧g. In fact
there exists a gd-module algebra isomorphism

∧g→ ∧[0]
u

− (4.42)

where, if ui ∈ g, i = 1, . . . , k, then

u1 ∧ · · · ∧ uk 
→ t−1u1 ∧ · · · ∧ t−1uk. (4.43)

Proof. One has (4.41) by (4.40) since of course ∧[−1]u− = 0. Recalling
(3.25) the condition that zr ∈ ∧[0]u− is that ri = 1 for all i ∈ In. But
this clearly implies that there is a gd-module algebra isomorphism (4.42)
satisfying (4.43). ��

Now if u ∈ g then in the notation of (4.21)), clearly θ∗(t p y j)(t−2u) = 0
if p ≥ 2 (since ∧u− is stable, by definition, under θ∗(t p y j)) and

ε(t−1x j)θ
∗(t1 y j)(t

−2u) = t−1x j ∧ t−1[y j, u].
Hence

d+(t−2u) =
∑
j∈J

t−1x j ∧ t−1[y j, u]. (4.44)

We have identified g with its dual g∗ using the Killing form so that if d
is the Cartan–Eilenberg–Koszul coboundary operator on ∧g∗ it, with this
identification, is an antiderivation of degree 1 in ∧g. Using the standard
formula for d, one then has d u ∈ ∧2g for any u ∈ g and explicitly

d u = 1/2
∑
j∈J

x j ∧ [y j, u]. (4.45)

Let (d g) be the ideal in ∧g generated by d g. In Sect. 4.1 we introduced
the multiplicity-free g-submodule C ⊂ ∧ g defined by the set of all abelian
subalgebras of g. Theorem 4.2 asserts that the highest weight vectors in C
are given by the 2� abelian ideals in b. Theorem 4.3 in [Ko-6] contains the
following statement.

Theorem 4.15. One has the direct sum

C ⊕ (dg). (4.46)



Powers of the Euler product 219

The space C inherits an algebra structure, as a consequence of Theo-
rem 4.15, since (4.46) implies that

C ≡ ∧g/(d g). (4.47)

At the time [Ko-6] was written I had no idea about the meaning of this
algebra structure. This question is resolved in the following theorem (Theo-
rem 4.16). We could use Theorem 4.15 to prove much of Theorem 4.16.
However, we will, instead, prove Theorem 4.16 using results established in
the present paper.

The advantage in dealing with cohomology H∗(u) instead of homology
H∗(u−) is that H∗(u) has an algebra structure. The nature of this algebra
is, nevertheless, presently, quite mysterious to us. However for the finite
dimensional subalgebra H [0](u) one has the following result.

Theorem 4.16. As a g-module H [0](u) is multiplicity-free with 2� irredu-
cible components. In fact (recalling Sect. 4.1)

H [0](u) ≡
∑
ξ∈Ξ

Vξ . (4.48)

As an algebra (under cup product)

H [0](u) ≡ ∧g/(dg). (4.49)

Proof. The statement (4.48) follows from (4.39) and Theorem 4.5.
Now by (4.40) and (4.41) one has

H [0] = ∧[0]
u

−/d+(∧[1]
u

−). (4.50)

But zr ∈ ∧[1]u−, by (3.25), if and only if all but one ri = 1 and the
remaining ri equals 2. Thus

∧[1]
u

− = (∧[0]
u

−) ∧ t−2
g. (4.51)

But then d+(∧[1]u−) is the ideal in ∧[0]u− generated by d+(t−2 g), by (4.41).
The algebra isomorphism (4.49) then follows immediately from (4.42),
(4.43), (4.44) and (4.45). ��

Recall the notation of Sect. 4.1. If k ∈ Z+ then we have defined Ck ⊂∧kg

in terms of all the abelian subalgebras of g having dimension k. Theorem (5)
in [Ko-2] gives a different characterization of Ck. Note that, by (2.1.7) in
[Ko-2], the Laplacian L is Cas /2 operating in ∧g. For any k ∈ Z+ let m(k)

be the maximal eigenvalue of Cas in ∧kg. Theorem (5) in [Ko-2] then asserts

Theorem 4.17. For any k ∈ Z+ one has

m(k) ≤ k. (4.52)

Furthermore equality occurs in (4.52) if and only if k ≤ M in which
case Ck is the eigenspace for Cas (operating in ∧kg) corresponding to the
eigenvalue k.
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Remark 4.18. In the light of Lemma 4.14 and (4.48) it is not difficult to
show that the 1965 result, Theorem 4.17 above, is, in fact, implied by
Theorem 2.5 in Garland’s 1975 paper [G].

4.6.

Returning to (2.9) let bk ∈ Z, for k ∈ Z+, be defined so that

(

∞∏
n=1

(1 − xn))dim K =
∑
k∈Z+

bk xk. (4.53)

By (2.9) and (2.10) one has
∑
k∈Z+

bk xk =
∑

σ∈W+
f

(−1)�(σ) dim Vλσ xCas(λσ ) (4.54)

which immediately yields the finite sum (see (4.16))

bk =
∑

σ∈W+
f ,Cas(λσ )=k

(−1)�(σ) dim Vλσ

=
∑

σ∈W+
f ,Cas(λσ )=k

(−1)�(σ) dim Zσ .
(4.55)

Note that the second equality in (4.55) follows from the first line in Theo-
rem 4.8.

Let v ⊂ n be the span of {eϕ | (ψ, ϕ) > 0}. One knows that v is
a Heisenberg Lie algebra so that we can write dim v = 2m + 1 where
m ∈ Z+. One has C eψ = cent v. Here we are regarding the case where
m = 0 (i.e., when g ≡ Lie Sl(2,C) as a Heisenberg Lie algebra. From the
Heisenberg structure of v one knows that there exists a partition ∆(v) −
{ψ} = ∆1(v)∪∆2(v) where each of the two parts has m roots which can be
ordered so that if ∆1(v) = {β1, . . . , βm} and ∆2(v) = {γ1, . . . , γm} then
for i = 1, . . . , m,

βi + γi = ψ. (4.56)

If g is simply laced (A-D-E case) then we have known for some time
that m = h − 2 where h is the Coxeter number. See e.g., (1.10.1), p. 214 in
[Ko-4]. In the non-simply laced case we had checked that m ≥ �−1. But one
could do better. D. Peterson informed us that m = h∨ − 2 in general where
h∨ is the dual Coxeter number (see Sect. 1.5 and the notational change in
Proposition 1.8). Knowing this one readily supplies an easy proof.

Proposition 4.19. If m is defined as in (4.56) then m = h∨ − 2 where h∨
is the dual Coxeter number (see Sect. 1.5).
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Proof. If ϕ ∈ ∆+ then (ϕ,ψ) ≥ 0 since ψ is the highest root. But if
ϕ ∈ (∆(v) − {ψ}) then (ϕ,ψ) = (ψ,ψ)/2 since ψ is a long root. Thus
(2ρ,ψ) − (ψ,ψ) = m (ψ,ψ). Hence (2ρ,ψ) + (ψ,ψ) = (m + 2)(ψ,ψ).
But (2ρ,ψ) + (ψ,ψ) = 1 by (1.18). But then m = h∨ − 2 by (1.17). ��

We can now prove

Theorem 4.20. Let σ lie in the complement of W (2)
f in W+

f (see Sect. 4.2).
Then

�(σ) ≥ h∨ (4.57)

where h∨ is the dual Coxeter number (see Sect. 1.5)).

Proof. By assumption, if rσ ∈ Reg Aσ (see Sect. 1.2), one has ψ(rσ ) > 2.
But then, using (4.56) and Proposition 4.19, for any i = 1, . . . , h∨ −2, one
must have either βi(rσ ) > 1 or γi(rσ ) > 1 and possibly both inequalities.
In any case the number of ϕ-walls, where ϕ ∈ ∆(u) − {ψ}, separating rσ

and 2ρ is at least h∨ − 2. But since ψ(rσ ) > 2, the walls hψ,1 and hψ,2
also separate rσ and 2ρ. This accounts for h∨ separating walls. This proves
(4.57) (see (Sect. 1.6)). ��

As a corollary one has

Theorem 4.21. Let σ ∈ W+
f . If Cas(λσ) ≤ h∨, where h∨ is the dual

Coxeter number (see Sect. 1.5), then σ ∈ W (2)
f (see Sect. 4.2)) and

Cas(λσ) = �(σ). (4.58)

Proof. If Cas(λσ) < h∨ then �(σ) < h∨ by (4.16). Hence σ ∈ W (2)
f by

Theorem 4.20. If Cas(λσ) = h∨ then �(σ) ≤ h∨ by (4.16). But if �(σ) < h∨

one has σ ∈ W (2)
f by Theorem 4.20. On the other hand if �(σ) = h∨ then

one has the equality �(σ) = Cas(λσ). But this implies that σ ∈ W (2)
f by

Theorem 4.5. In any case σ ∈ W (2)
f . But then one has (4.58) by Theorem 4.5.

��
Let P(t) be the power series given by (1.15) and defined by Bott, so that

if P(t) = ∑∞
k=0 pktk then pk is the 2k Betti number of the loop group Ω(K ).

Another consequence of Theorem 4.20 is that we can count the number of
abelian ideals in b whose dimension is k when k < h∨. Recall the notation
of Sect. 4.1.

Theorem 4.22. If k < h∨ then

card Ξk = pk (4.59)

where pk is the 2k Betti number of the loop group Ω(K ) and is given
by (1.15).
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Proof. By (1.14) and (1.15) pk is the number of alcoves Aσ , σ ∈ W+
f ,

in h+ such that �(σ) = k. But if k < h∨ then, by Theorem 4.20, the set
{σ ∈ W+

f | �(σ) < h∨} is contained in W (2)
f . But then (4.59) follows from

Theorem 4.4 and (4.17). ��
Our main results concern bk (see (4.53)) when k ≤ h∨. One major

difficulty in using (4.55) to determine bk is the cancelation in the sums
of (4.55) due to the alternation in signs. When k ≤ h∨ this alternation
disappears. The grading in ∧g induces a grading in the quotient algebra
∧g/(dg).

∧g/(dg) =
M∑

k=0

∧k
g/(dg)k (4.60)

where (dg)k = (dg) ∩ ∧kg. The following theorem is one of our main
results.

Theorem 4.23. Assume k ≤ h∨. Then the following seven numbers are all
equal.

[1] (−1)kbk (see (4.53))
[2] dim Ck (see Sect. 4.1)
[3]

∑
ξ∈Ξk

dim Vξ (see Sect. 4.2)
[4] dim{v ∈ ∧kg | θ(Cas) v = k v} (see [Ko-2])
[5] dim ∧kg/(dg)k (see (4.47))
[6] dim H k(u) (see Sect. 4.3)
[7] dim Hk(u

−) (see Sect. 3.4)

Proof. By Theorem 4.21 one may replace the upper sum in (4.55) by

bk = (−1)k
∑

σ∈W (2)
f ,Cas(λσ )=k

dim Vλσ . (4.61)

But then recalling the definition of Ξk in Sect. 4.1 and Vξ in Sect. 4.2 it
follows from Theorem 4.4 and (4.17) that

bk = (−1)k
∑
ξ∈Ξk

dim Vξ . (4.62)

This implies the equality of [1] and [3]. But then [2] and [3] are equal by
(4.7). But [2] and [4] are equal by Theorem 4.17. One has the equality
of [2] and [5] by (4.47). But both H k(u) and Hk(u

−) are in bijective cor-
respondence with Hark(u−) by Theorem 4.11 and (3.28). In particular one
has a linear isomorphism H k(u) → Hk(u

−). Thus it suffices to prove the
equality of [6] and [5]. But

Hark(u
−) =

∑

σ∈W+
f ,�(σ)=k

Zσ (4.63)
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by (4.28). But if �(σ) = k then σ ∈ W (2)
f by Theorem 4.20 and hence

Cas(λσ) = k by Theorem 4.5. Thus

H k(u) = (H k(u))k

= H [0](u) ∩ H k(u).
(4.64)

But then one has the equality of [6] and [5] by (4.49). ��
Example. Consider the case when K = SU(5). Then dim k = 24 so that
bk = τ(k + 1) where, using the terminology and notation of Sect. 4.5,
Chap. 7, in [Se], n 
→ τ(n) is the Ramanujan tau function. In this case
h∨ = 5 and choosing, say [2] in Theorem 4.23, the first 5 nontrivial Ra-
manujan numbers (see p. 97 in [Se] and also [L]) yield the equality

dim C1 = 24
dim C2 = 252
dim C3 = 1472
dim C4 = 4830
dim C5 = 6048.

We thank P. Etingof for pointing out to us that Theorem 4.23 (and
its proof) yield the acyclity of the complex (4.65) in Theorem 4.24 when
k ≤ h∨. Let ∂− be the boundary operator in ∧u− whose derived homology
is H∗(u−). Then, as noted in Sect. 3.4, if k ∈ Z+, ((∧u−)k, ∂−) is a finite
dimensional subcomplex of (∧u−, ∂−). The subcomplex is described by the
∂−-maps

(∧ku−)k −→ (∧k−1u−)k −→ · · · −→ (∧0u−)k −→ 0. (4.65)

(Here we are using the fact that (∧nu−)k = 0 if n > k. The latter statement
is immediate from (3.25) and Proposition 3.6).

Theorem 4.24. If k ≤ h∨ then the complex (4.65) is acyclic. That is,
(Hn(u

−))k = 0 unless n = k so that (H∗(u−))k = (Hk(u
−))k. In fact

(H∗(u−))k = Hk(u
−) and hence

dim(H∗(u−))k = (−1)kbk. (4.66)

Proof. One has (Hn(u
−))k = 0 unless n = k by (4.28) and Theorem 4.21.

But (4.28) implies that (Hark(∧u−))k is, as a g-module, given by the direct
sum

∑
ξ∈Ξk

Vξ (using Theorems 4.5 and 4.28). The remaining statements
follow from Theorem 4.23. ��



224 B. Kostant

4.7.

For any complex number s one can define s power of Euler product∏∞
n=1(1 − xn) by taking the logarithm of the Euler product, multiplying

by s and then exponeniating. It follows easily that

(

∞∏
n=1

(1 − xn))s =
∞∑

k=0

fk(s) xk (4.67)

where fk(s) is a polynomial of degree k defined as follows: Let µ : N→ Q

be defined by putting µ(m) = ∑
d|m 1/d. For k, n ∈ N, n ≤ k, let

Qk,n = {
q ∈ Nn | q = (m1, . . . , mn),

n∑
i=1

mi = k
}

and using this notation let

qk,n =
∑

q∈Qk,n

µ(m1) · · · µ(mn).

Put f0 = 1. If k ∈ N let fk(s) be the polynomial of degree k (with 0 constant
term) defined by putting

fk(s) =
k∑

n=1

qk,n (−s)n/n!. (4.68)

Of course this is a very complicated expression for fk(s). In the notation of
Theorem 4.23 one has

bk = fk(dim k). (4.69)

Clearly the polynomial fk(s) would be known if we knew its roots.

Remark 4.25. According to Serre (see top of p. 98 in [Se]) it is a question
raised by D.H. Lehmer as to whether 24 is ever a root of fk(s) for any
k ∈ Z+.

It is easy to see that f1(s) = −s and that in fact 0 is a root of fk(s) for
any k ∈ N. We will determine f2(s), f3(s) and f4(s) in a uniform way using
Theorem 4.23. We first observe

Proposition 4.26. For the missing roots (to be determined in Theorem 4.27
below) r4, r3 and r2 one has

f4(s) = 1/4! s(s − 1)(s − 3)(s − r4)

− f3(s) = 1/3! s(s − 1)(s − r3)

f2(s) = 1/2! s(s − r2).
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Proof. Euler has determined the right side of (4.67) when s = 1. The only
nonzero coefficients on the right side of (4.67) are the coefficients of the
pentagonal powers x(3n2−n)/2 where n ∈ Z. Since 3 and 4 are not pentagonal
numbers it follows that 1 must be a root of f3(s) and f4(s). Now Jacobi
has determined the right side of (4.67) when s = 3. Here the only nonzero
coefficients on the right side of (4.67) are the coefficients of the triangular
powers xn(n+1)/2 for n ∈ Z+. Since 4 is not a triangular number, 3 must be
a root of f4(s). This proves the proposition. ��

Malcev has determined M (see Sect. 4.1) for all complex simple Lie
algebras (see Sect. 4.3 in [Ko-2]). There are only 3 cases where M < h∨,
namely the cases where g is of A1, A2 and G2. The relevant information is
in the following table.

g type M h∨ dim k
A1 1 2 3
A2 2 3 8
G2 3 4 14

But then, by Theorem 4.23, C4 = 0 and hence b4 = 0 if g is of type G2.
Next C3 = 0 and hence b3 = 0 if g is of type A2. Finally C2 = 0 and hence
b2 = 0 if g is of type A1. For these three cases fh∨(dim k) = 0 by (4.69).
Hence we have proved

Theorem 4.27. The missing roots r4, r3 and r2 in Proposition 4.26 are,
respectively, the complex dimensions of G2, A2 and A1, namely 14, 8 and 3
so that

f4(s) = 1/4! s(s − 1)(s − 3)(s − 14)

− f3(s) = 1/3! s(s − 1)(s − 8)

f2(s) = 1/2! s(s − 3).

Let k be any positive integer. If m ∈ Z+ and m ≥ 2 let Ck(m) equal Ck
for the case where K = SU(m). If m ≥ k then k ≤ h∨ = m and hence, by
Theorem 4.23,

fk(m
2 − 1) = (−1)k dim Ck(m). (4.70)

In particular note that fk(m2 − 1) 	= 0 since M ≥ k where M is defined
here for K = SU(m). But since fk(0) = 0 and since fk is a polynomial of
degree k it follows that fk(s) is determined by the values fk(m2 − 1) for k
different positive values of m. But then (4.70) establishes the following
theorem. The result implies that fk(s) is encoded in the k-dimensional
commutative subalgebra structure of Lie Sl(m,C) for k different values of
m where m ≥ k and m > 1.

Theorem 4.28. Let k be a positive integer. Then fk(s) is determined by the
numbers dim Ck(m) for k different values of m ∈ Z+ where m ≥ k and
m > 1. Furthermore under the assumption m ∈ Z+, m ≥ k and m > 1 one
has fk(m2 − 1) 	= 0.
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