
DOI: 10.1007/s00222-003-0343-2
Invent. math. 156, 301–403 (2004)

On the metric properties of multimodal interval
maps and C2 density of Axiom A

Weixiao Shen

University of Warwick, Mathematics Institute, Coventry, CV4 7AL, UK
(e-mail: wxshen@maths.warwick.ac.uk)

Oblatum 6-III-2002 & 15-IX-2003
Published online: 25 November 2003 –  Springer-Verlag 2003

Abstract. In this paper, we shall prove that Axiom A maps are dense in
the space of C2 interval maps (endowed with the C2 topology). As a step of
the proof, we shall prove real and complex a priori bounds for (first return
maps to certain small neighborhoods of the critical points of) real analytic
multimodal interval maps with non-degenerate critical points. We shall also
discuss rigidity for interval maps without large bounds.
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1. Introduction

It is a basic problem in the theory of dynamical systems to describe typical
systems. In the one-dimensional case, it is conjectured that generic systems
are structurally stable, and even more, they are Axiom A systems.

For any r ∈ N, let Cr([0, 1], [0, 1]) be the space of all Cr maps from
[0, 1] into itself, endowed with the Cr topology. A map f in this space is
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called Cr-structurally stable if there is a Cr neighborhood U of f such that
every g ∈ U is topologically conjugate to f . A C1 map f satisfies Axiom A
if the following hold:

(A1) all periodic points are hyperbolic;
(A2) letting B( f ) denote the union of basins of attracting periodic points

of f and letting Ω = [0, 1]− B( f ), then Ω is a hyperbolic set, that is, there
are constants C > 0 and λ > 1, such that

∣
∣( f k)′(x)

∣
∣ ≥ Cλk

holds for all x ∈ Ω and k ∈ N.

Conjecture 1. For any r ∈ N, any f ∈ Cr([0, 1], [0, 1]) can be approxi-
mated in the Cr topology by maps g ∈ Cr([0, 1], [0, 1]) satisfying Axiom A.

An Axiom A map has very simple dynamics. In fact, it is easy to
see that the set Ω as in (A2) is a nowhere dense compact set with zero
Lebesgue measure. It is also rather easy to show that for any r ≥ 1, Cr

Axiom A maps form an open subset of Cr([0, 1], [0, 1]). Moreover, it is
well known that if r ≥ 2, then Axiom A, together with a few other mild
conditions, implies Cr-structurally stability. So an affirmative answer to the
above conjecture implies the following: for any r ≥ 1, Cr-structurally stable
maps are Axiom A. See [35] for more details.

Conjecture 1 has been studied by many authors. For r = 1, it was proved
by Jakobson [18] using a purely real method. His approach was based on
a closing lemma, and thus seemed irremediably tied to the C1 topology.
In [5], Blokh and Misiurewicz noticed that one can do a better C2 closing
perturbation under a geometric assumption: arbitrarily big space for certain
first return maps (large bounds, see Definition 2.5). From this observation
they derived that C2([0, 1], [0, 1]) contains a dense subset consisting of
maps for which each critical point has a minimal ω-limit set. (For an Ax-
iom A map f , the ω-limit set of each critical point is a periodic orbit, and
hence obviously minimal.) The gain from C1 to C2 comes from the critical
point, and does not seem possible to improve using these methods.

There was, however, much progress in the unimodal case in 1990s,
due to successful application of “complex” tools. First, through a rigidity
approach, Lyubich [27] and Graczyk and Świa̧tek [11] proved that Ax-
iom A maps are dense in the family of real quadratic polynomials. Using
Sullivan’s deformation trick [46], one observes that it is enough to prove
that for any two topologically conjugate real quadratic maps (without at-
tracting cycles) are quasisymmetrically conjugate on their postcritical sets.
Later, Kozlovski [20,21] solved the conjecture for general smooth unimodal
maps. He first developed some real tools to address the problem of lack of
negative Schwarzian derivative. This allows him to extend earlier work by
Lyubich [25] and Levin and van Strien [22] to obtain suitable complex
extensions for certain first return maps in the real analytic case. Then he
introduced a new deformation trick, which essentially shows that a good
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complex extension, rigidity and absence of invariant line fields, imply dens-
ity of Axiom A in any Cr topology. See also [24,2].

The goal of this paper is to prove the following

Main Theorem. Axiom A is open and dense in the space C2([0, 1], [0, 1]).
Main Corollary. C2-structurally stable maps satisfy Axiom A, and form
an open and dense subset of C2([0, 1], [0, 1]).

The strategy of this paper is as follows. We shall first study the real
geometry of a smooth interval map f with non-degenerate critical points,
and show that at any non-periodic recurrent critical point, f either has large
bounds or essentially bounded geometry (Theorem 1). Based on a careful
analysis of the macrostructure of the postcritical set, we shall show that the
geometry of this (Cantor) set is quasisymmetrically rigid for maps without
large bounds (Theorem 2). Furthermore, modifying the method of [31],
we shall show that if f is real analytic, then for any non-periodic recur-
rent critical point c with a minimal ω-limit set, there exists a generalized-
renormalization with respect to c which can be extended to a generalized
polynomial-like mapping (Theorem 3). For precise statements of these theo-
rems, see Sect. 2.

The main theorem will then be derived from these results. Essentially
it suffices to show that a smooth interval map f cannot be C2-structurally
stable if it has a non-periodic recurrent critical point, c. In the case that f has
large bounds at c, this follows from the argument in [5]. In the remaining
case, we shall apply Kozlovski’s deformation trick.

It should be noted that in [26,27], Lyubich already noticed that lack of
large bounds gives severe restrictions on the geometry of unimodal interval
maps. It turns out that a unimodal interval map with a non-degenerate
critical point has large bounds unless it is infinitely renormalizable (in
the classical sense) of “essentially bounded type”. The situation is quite
different when we consider more general interval maps. In particular, the
so-called Fibonacci unimodal map, while non-renormalizable, has bounded
geometry, provided that the critical order is greater than 2, see [19,6].
A concrete example of a non-renormalizable bimodal cubic polynomial
with bounded geometry has also been constructed in [48].

The proof of Theorem 1 will be given in Sect. 4, where we shall prove
a slightly stronger result (Theorem 1’), which asserts that in the case of
lack of large bounds, a smaller nice interval can not be geometrically deep
inside a bigger one unless it is combinatorially deep inside as well. A proof
of this result for unimodal maps can be found in [26], but the combinatorial
arguments (return graph, ranks, essential periods, and so on) extensively
used therein seem difficult to generalize to the multimodal case. We shall
prove this result by an induction on a certain object. This argument provides
an example showing how we deal with the combinatorial complexity of
multimodal maps, and very similar ideas will also be used in the proof of
Theorems 2 and 3.
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Theorem 3 essentially reduces problems on the dynamics of real analytic
interval maps to the polynomial-like case. Polynomial-like maps have many
good properties which general interval maps themselves do not share. In
particular, the good external structure of a polynomial-like mapping is of
importance in this paper (to apply Kozlovski’s deformation trick). There
have been a lot of papers written in the literature on the polynomial-like
extension property for interval maps. For all unimodal maps f in the so-
called Epstein class, Levin and van Strien [22] obtained this property, by
improving earlier work of Sullivan [46] and Lyubich [26]. See also Graczyk
and Świa̧tek [12], and Lyubich and Yampolsky [26,31] for alternative proofs
in this case. In the real analytic unimodal case, this property was obtained
by Kozlovski [21]. However, for multimodal maps, only a very special case
has been treated before: infinitely renormalizable maps of bounded type,
see [15,45]. Our approach to Theorem 3 is based on a careful analysis of
the real geometry and motivated by Lyubich and Yampolsky’s argument,
and also borrows an idea from [24] (see Sect. 8.1). We shall deal with
all possible combinatorics, except when ω(c) is non-minimal, in which
case the argument has to be slightly different since there are infinitely many
branches in a generalized renormalization. This case will be done elsewhere.
We should note that as in all the papers cited above, our approach also gives
the “complex bounds” property, which asserts that for certain extensions,
each domain is universally well inside the range. This property, which will
be proved in the appendix, should be useful for further development on the
dynamics of multimodal interval maps, although we shall not make use of
it here.

The rigidity conjecture asserts that the quasisymmetric and topological
conjugacy classes of an interval map (without periodic attractors) are equal.
An affirmative answer to this conjecture would imply Conjecture 1 together
with our Theorem 3. Theorem 2 can be considered as a weaker version of
this conjecture. Currently, the rigidity conjecture was only proved for real
quadratic polynomials, in the papers [11,27] cited above. See also [44] for
an alternative proof by considering iteration on the universal Teichmüller
space. All these proofs use complex analysis, quasiconformal mapping
theory, and complex a priori bounds. Unfortunately, all of them rely heavily
on the fact that the map has a unique non-degenerate critical point, and do
not admit trivial generalization to the multimodal case. In fact we do not
even know if the large bounds property is topological.

Let us outline the structure of this paper. In Sect. 2, we shall review
basic concepts in real one-dimensional dynamics which will be used in our
arguments, and give precise statements of Theorems 1, 2 and 3. In Sect. 3,
we shall prove several lemmas concerning the real dynamics. The next two
sections, Sect. 4 and Sect. 5 are due to the analysis of the geometry of the
postcritical set. In Sect. 4, we shall prove Theorem 1, where the main step
is to prove a more technical result Proposition 4.1, through an induction
argument. In Sect. 5 we shall give a more detailed analysis for the case of
essentially bounded geometry. We shall see that in this case, the geometry
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is close to being bounded, and the only exception is caused by the presence
of a long central cascade of saddle node type. In Sect. 6, we shall prove
Theorem 2. In Sect. 7, we collect a few known facts in complex analysis
and complex dynamics, which will be used in Sect. 8, where we prove
Theorem 3. The proof of the main theorem will be completed in Sect. 9. In
the appendix, we shall show how to obtain “complex bounds”.

General notation. We use N to denote the set of positive integers.
We use dom( f ) to denote the domain of a map f .
For any topological space A and a connected subset A0, we use

CompA0
(A) to denote the connected component of A which contains A0.

Moreover, for x ∈ A, Compx(A) := Comp{x}(A).
For any subset X ⊂ C, we use Cl(X) to denote the closure of X in C.
For any bounded open interval I and any λ > 0, we use λI to denote

the open interval which has the same middle point as I and length λ|I |. The
interval (1 + 2δ)I is often referred to as the δ-neighborhood of I .

A map f from an open set U ⊂ C into C is called real symmetric if for
any z ∈ U , we have z̄ ∈ U , and f(z) = f(z̄).

A � B means that A is compactly contained in B.
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2. Some definitions and statements of results

The central part of this work is to gain control on the geometry of a multi-
modal interval map. Our analysis is inspired by recent research on unimodal
interval maps, and exploits the powerful renormalization idea.

2.1. Nice open sets and first return maps. Unless otherwise stated, f
stands for a smooth map f : [0, 1] → [0, 1] such that f({0, 1}) ⊂ {0, 1},
and such that all the critical points of f are contained in (0, 1) and non-
degenerate. Let N denote the collection of all such maps f , and let Crit( f )
denote the set of critical points of f . (In fact, many of the following argu-
ments also work for C3 interval maps with C3 non-flat critical points which
are all of turning type.)

We say an interval I is symmetric if it contains exactly one critical point
of f and f(∂I ) consists of a single point.

By a chain we mean a sequence of open intervals {Gi}n
i=0 contained in

(0, 1) such that Gi is a component of f −1(Gi+1) for every 0 ≤ i ≤ n − 1.
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Note that f(∂Gi) ⊂ ∂Gi+1. The order of the chain is the number of the
integers i with 0 ≤ i < n, such that Gi contains a critical point, and
the intersection multiplicity is the maximal number of the intervals Gi ,
0 ≤ i ≤ n, which have a non-empty intersection. We shall also say that G0
is a pull back of Gn.

Definition 2.1. Let f ∈ N . An open set T ⊂ [0, 1] is called nice if for any
x ∈ ∂T , and any n ∈ N we have f n(x) �∈ T .

This concept was introduced by Martens [34]. We shall use DT to denote
the set of points which enter T under forward iterates of f , that is,

DT = {x ∈ dom( f ) : for some k ∈ N, f k(x) ∈ T
}

.

For any x ∈ DT , the minimal positive integer k = k(x) such that f k(x) ∈ T
will be called the entry time of x to T . The map

RT : DT → T

defined by RT (x) = f k(x)(x) is the first entry map to T . The first return map
to T is the restriction of RT to DT ∩ T . A component of DT is called an
entry domain to T , and also a return domain if it is contained in T .

We shall repeatedly use the following (well-known) properties of a nice
open set T :

• any two pull backs of components of T are disjoint or nested, i.e., one
is contained in the other;

• the entry time k(x) is constant in any entry domain J , and the first entry
map RT is proper: RT (∂J) ⊂ ∂T ;

• a finite union of components of DT is again a nice open set.

Note. For any x ∈ DT , we shall use Lx(T ) to denote the component of DT
which contains x, and define inductively, Li+1

x (T ) = Lx(L
i
x(T )) for any i.

Given a nice open interval T ⊂ (0, 1), and x ∈ DT , if k ∈ N is the (first)
entry time of x to T , then there is a unique chain {Ti}k

i=0 with Tk = T and
T0 	 x, which will be referred to as the chain corresponding to the first
entry of x to T . As the intervals Ti , 0 ≤ i < k, are pairwise disjoint, the
intersection multiplicity of this chain is at most 2, and the order is bounded
by the number of critical points of f .

2.2. Generalized renormalization and real box mappings. Let c be
a non-periodic recurrent critical point of f . Note that there exist arbitrarily
small nice intervals which contain this point. Indeed, it is well-known that
c is accumulated by periodic points of f . Given a periodic point p close
to c, let I be the maximal symmetric open interval which contains c and is
disjoint from the orbit of p. Then I is a nice interval.

For a symmetric nice interval I 	 c, we denote by DI the union of
all components of DI which intersect ω(c) ∩ I , and define the generalized
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renormalization RI to be the first return map to I restricted to DI . Here ω(c)
denotes the ω-limit set of c.

By a (principal) nest (around c), we mean a sequence of nice intervals

I = {I 0 ⊃ I 1 ⊃ I 2 ⊃ · · · },(1)

where I 0 	 c is a symmetric nice interval, and I n+1 = Lc(I n) for all n ≥ 0.
Given such a nest I, consider the generalized renormalizations,

RIn : DIn → I n.

The configuration (I n, DIn ) provides a parameter to describe the geometric
property of ω(c). As every branch of RIn+1 is an iterate of RIn , the general-
ized renormalizations also contain fruitful combinatorial information.

Note. Once a symmetric nice interval I is given, we define the correspond-
ing nest as I 0 = I and I i = Lc(I i−1) for all i ≥ 1, where c is the critical
point in I .

Definition 2.2. An interval I is called properly periodic if there is a positive
integer s such that the interiors of I, f(I ), . . . , f s−1(I ) are pairwise disjoint,
f s(I ) ⊂ I , and f s(∂I ) ⊂ ∂I . The integer s is called the period of I . We
say that f is infinitely renormalizable at a critical point c, if there is an
arbitrarily small properly periodic interval I 	 c. Otherwise, we say that f
is only finitely renormalizable at c.

If f is only finitely renormalizable at c, then for each small symmetric
nice interval I containing c, I n → {c} as n → ∞. However, if f is infinitely
renormalizable at c, then for any such an interval I ,

⋂

n I n is a properly
periodic interval.

In the unimodal case, a generalized renormalization defined as above
has a unique critical point, but in the multimodal case, it may have a large
number of critical branches, and each branch may have many critical points.
In the following we shall introduce the notion real box mapping, which can
be considered as a different type of generalized renormalization. Compared
to the generalized renormalization introduced above, a real box mapping has
less critical points and simpler branches, and so serves as a more convenient
notion for us to apply Kozlovski’s “deformation trick”.

Definition 2.3. Let c be a non-periodic recurrent critical point of f . Let
[c] = {d ∈ Crit( f ) : ω(d) = ω(c) 	 c, d}, and b = #[c]. Let I 	 c be
a symmetric nice interval. For any c′ ∈ [c], let I(c′) = Compc′(DI ∪ I ).
Denote by I = I0, I1, I2, . . . , Ib−1 these intervals I(c′), c′ ∈ [c]. Notice that
⋃b−1

i=0 Ii is a nice open set. The real box mapping associated to I , denoted
by BI , is defined to be the first return map to this nice open set, restricted to
those return domains which intersect ω(c).

We shall only use real box mappings in the case that ω(c) is minimal,
and I is a small strictly nice or properly periodic interval, where a strictly
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nice interval is, by definition, a nice interval for which the endpoints stay
away from its closure under forward iterates of f . In this case, the real box
mapping BI falls into the class Fb defined below, see Lemma 3.2.

Definition 2.4. For any b ∈ N, let Eb be the collection of smooth maps

f :
( m⋃

j=0

Jj

)

∪
( b−1⋃

i=1

Ii

)

→
b−1⋃

i=0

Ii(2)

with the following properties:

• Ii’s are open intervals with pairwise disjoint closures;
• m is a non-negative integer;
• Jj ’s are open intervals contained in I0, and the closures of Jj’s are

pairwise disjoint and contained in I0 unless m = 0 in which case we
also allow J0 = I0;

• f is a proper map;
• f extends to a smooth map defined on the closure of its domain such

that f ′ does not vanish at the boundary;
• for each 1 ≤ j ≤ m, f |Jj is a diffeomorphism;
• for any U ∈ {J0, I1, I2, . . . , Ib−1}, f |U has a unique critical point cU ,

which is non-degenerate, i.e., f ′′(cU ) �= 0.

Moreover, let Fb be the subspace of Eb consisting of maps f for which the
following hold:

• all the critical points do not escape under forward iterates of f ,
• all the critical points are non-periodic and recurrent, and they have the

same ω-limit set which is a minimal set.

A map f ∈ Eb extends naturally to a smooth map defined on the closure
of dom( f ). Let Gb denote the collection of maps in Fb whose natural
extensions have only hyperbolic repelling periodic points.

The set
⋃b−1

i=0 Ii is called the range of f .

Remark 2.1. For a map f in the class Eb, the concepts of nice open sets,
properly periodic intervals, renormalizations, etc, can be formulated sim-
ilarly as in the case that f is an interval endomorphism. For example, an
open set T contained in the range of f is called nice, if for any x ∈ ∂T
and for any n ∈ N, we have f n(x) �∈ T as long as x, f(x), . . . , f n−1(x) are
defined.

Note. We use N ′ to denote the family N ∪ (
⋃∞

b=1 Eb).

2.3. Scaling factors and large bounds. In what follows, f is a map in
the class N ′. Let c be a non-periodic recurrent critical point of f , and let
I 0 ⊃ I 1 ⊃ · · · be a nest around c. Among many geometric parameters, the
scaling factors λIn = |I n|/|I n+1| are of particular interest. In general, they
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can be arbitrarily close to 1 or arbitrarily large. But a remarkable fact in
one-dimensional dynamics (real bounds) is that they can only be close to
1 in special situations. To be more precise we need a few definitions. Let
us say that RIn displays a central return, if RIn (c) ∈ I n+1. By a central
cascade, we mean a subnest

I n ⊃ I n+1 ⊃ · · · ⊃ I n+N ,(3)

such that RIn+i display central returns for all 0 ≤ i ≤ N − 2. In other
words, the return times of c to these intervals I n, I n+1, . . . , I n+N−1 are all
the same. The following theorem of van Strien and Vargas says that the
scaling factor λIn is uniformly bounded away from 1 unless I n is contained
in a long central cascade.

Theorem 2.1 ([47], see also [49,42]).

1. There exists λ = λ(#Crit( f )) > 1 with the following property. Let us
consider a nest I 0 ⊃ I 1 ⊃ I 2 ⊃ · · · with |I 0| sufficiently small. If RIn

does not display a central return, then

λIn+1 = |I n+1|
|I n+2| ≥ λ.

2. For any ξ > 0, there exists ξ ′ = ξ ′(ξ, #Crit( f )) > 0 with the following
property. If (1 + 2ξ)I n+1 ⊂ I n, then for each return domain J to In+1,
we have

(1 + 2ξ ′)J ⊂ I n+1.

Real bounds were proved for S-unimodal maps earlier by Martens [34].
These bounds will play an important role in our consideration. But clearly
they do not yet give a satisfactory description of the geometry of ω(c).
Most of our analysis will be done under the assumption that the scaling
factors are uniformly bounded from above. It turns out that this assumption
gives severe restrictions on the geometric properties, in a similar way to that
noticed by Lyubich [26,27] in the unimodal case.

Remark 2.2. In the unimodal case, the scaling factors give distortion control
of the generalized renormalizations: if λIn is bounded away from 1, then each
branch of RIn+1 can be expressed as L◦ f , where L is a diffeomorphism with
uniformly bounded distortion. This can be seen as follows: if J is a return
domain to I n+1 with return time s, and if {G j}s

j=0 is the chain with Gs = I n

and G0 ⊃ J , then for every 0 ≤ j ≤ s − 1, G j is disjoint from I n+1,
and thus does not contain the critical point, which implies that f s−1| f(J)
has bounded distortion, by the real Koebe principle (Lemma 3.5). However,
this argument fails in the multimodal case, because there are critical points
outside I n+1 which may enter the intervals G j arbitrarily many times.

Our first theorem says that if the scaling factors are not uniformly
bounded, then f will have large bounds, defined as follows.
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Definition 2.5. Let c be a non-periodic recurrent critical point of f . A sym-
metric nice interval I 	 c is called C-nice if for any x ∈ ω(c) ∩ I , we have

(1 + 2C)Lx(I ) ⊂ I.

We say that f has large bounds at c if for any C > 0, there is an arbitrarily
small symmetric C-nice interval which contains c. We say that f has essen-
tially bounded geometry at c if there is a constant C > 1 such that for any
symmetric nice interval I 	 c, we have

|I | ≤ C|Lc(I )|.
Theorem 1. Let f be a map in N ′ and let c be a non-periodic recurrent
critical point of f . If f does not have large bounds at c, then it has essentially
bounded geometry at c.

Note that the large bounds property is exactly the geometric condition
needed in Blokh and Misiurewicz’s C2 closing lemma.

Theorem 1 follows immediately from the usual Koebe principle in the
unimodal case, but the situation is much more complicated in the multimodal
case. In fact, we shall prove the following more general result, from which
Theorem 1 follows immediately.

Theorem 1’. Let f and c be as above. For any d ∈ N and any ξ > 0,
there exists ξ ′ = ξ ′(ξ, d, #Crit( f )) > 0 such that the following holds.
Let I be a sufficiently small symmetric nice interval which contains c. Let
x ∈ ω(c) ∩ I and J = Ld

x(I ). If I ⊃ (1 + 2ξ)J, then for any y ∈ orb(c),
we have

Ly(I ) ⊃ (1 + 2ξ ′)Ly(J),

Moreover, for fixed d and #Crit( f ), we have

ξ ′ → ∞ as ξ → ∞.(4)

The first part of this theorem is a special case of Theorem B.1 in [47],
which asserts that this part holds even without the assumption that J =
Ld

x(I ). To us, the second part, the dependence (4) is very important. Note
that without the combinatorial hypothesis, it is impossible to obtain this
dependence. A typical example where (4) does not hold is when J is deep
inside a saddle node central cascade.

Remark 2.3. It is easy to see that if f has large bounds at a non-periodic
recurrent critical point c, then it also has large bounds at any other recurrent
critical point d with the same ω-limit set. Thus for a map f in the class Fb,
it makes sense to say whether f has large bounds or not, without referring
to a specified critical point.
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Essentially bounded geometry. The definition of “essentially bounded
geometry” does not tell us much, but in Sect. 5, we shall justify the name
by showing that the geometry of a smooth interval map with “essentially
bounded geometry” is close to being bounded, and the only exception is
caused by the presence of a long central cascade of saddle node type.

To be more precisely, let us consider a nest I 0 ⊃ I 1 ⊃ · · · . As a conse-
quence of Theorem 1’, we shall prove that a return domain to I n+1 which
intersects ω(c) cannot be deep inside I n, see Corollary 5.3. So if the scal-
ing factors λIn = |I n|/|I n+1| are bounded away from 1, then for any n,
any return domain to I n+1 must be commensurable to I n+1 (for otherwise it
would be deep inside I n). Together with Theorem 2.1, it follows that if there
are no long central cascades in the nest, then the whole nest has bounded
geometry.

If a long central cascade does exist, then the geometry is no longer
bounded: the scaling factors can be close to 1. We shall show, however, that
a long maximal central cascade can only be essentially of saddle node type,
and thus the geometry is still under satisfactory control, see Proposition 5.1
and Theorem 5.4. Here we say that a central cascade as in (3) is maximal if
RIn+N−1 displays a non-central return.

In Sect. 5.5, we consider the case that f is infinitely renormalizable
at c, and show that the geometry of an appropriate initial partition at each
renormalization level is also uniformly bounded. See Theorem 5.6.

2.4. Rigidity.

Definition 2.6. Two maps f : (
⋃m

j=0 Jj) ∪ (
⋃b−1

i=1 Ii) → ⋃b−1
i=0 Ii and f̃ :

(
⋃m

j=0 J̃ j) ∪ (
⋃b−1

i=1 Ĩi) → ⋃b−1
i=0 Ĩi in the class Fb are combinatorially

equivalent if there is a homeomorphism h : R → R such that for each
0 ≤ i ≤ b − 1 and 0 ≤ j ≤ m, we have

• h(Jj) = J̃ j , h(Ii) = Ĩi ;
• if ci is the critical point of f in Ii , then c̃i = h(ci) is a critical point of f̃ ;
• for any k ∈ N, h( f k(ci)) = f̃ k(c̃i);
• for each z ∈ ∂(dom( f )), h( f(z)) = f̃ (h(z)).

Such a map h will be called a combinatorial equivalence between f and f̃ .

Definition 2.7. A homeomorphism h : R → R is called quasisymmetric
(qs in short) if there exists M > 1, such that for any x, y, z ∈ R with
y − x = z − y �= 0, we have

1

M
≤ h(z) − h(y)

h(y) − h(x)
≤ M.

Theorem 2. Let f, f̃ ∈ Gb be two combinatorially equivalent maps which
have essentially bounded geometry. Then they are quasisymmetrically con-
jugate on the postcritical sets, i.e., the combinatorial equivalence can be
realized by a quasisymmetric map.
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We should remark that in case that both of the maps f and f̃ have
good complex extensions (polynomial-like box mappings, see the next sub-
section), then by a well-known pull-back argument due to Thurston, the
qs partial conjugacy between the postcritical sets can be promoted to a qs
global conjugacy. See [9] and also Sect. 9.

As we have noted before, it is conjectured that this theorem is true even
without the assumption that f and f̃ have essentially bounded geometry (the
rigidity conjecture). This conjecture has been verified in the unimodal case
in [11,27] using complex tools, but the multimodal case is still essentially
open. A main property, “the linear growth of the principal moduli”, which
holds for a unimodal map (with a non-degenerate critical point) fails in the
multimodal case. Theorem 2 is a weaker version of this conjecture, and will
be proved using a purely real argument, motivated by Sullivan’s proof in
[46] for the quadratic Feigenbaum polynomials.

2.5. Polynomial-like extension.

Definition 2.8. Let Vi , 0 ≤ i ≤ b − 1 be pairwise disjoint topological
disks. Let U j , 0 ≤ j ≤ m be topological disks with pairwise disjoint
closures which are contained in V0. A map

F :
( m
⋃

j=0

U j

)

∪
( b−1
⋃

i=1

Vi

)

→
b−1
⋃

i=0

Vi(5)

is called a polynomial-like mapping if for each component U of dom(F),
F|U is a holomorphic proper map onto a component of

⋃b−1
i=0 Vi . The filled

Julia set of F is defined to be the set of non-escaping points. The boundary
of this set is called the Julia set of F.

Polynomial-like mappings first appeared in Douady and Hubbard’s work
[8] on quadratic polynomials, and the notion has been generalized several
times since then. Douady and Hubbard’s original definition requires b = 1
and m = 0, in which case, we say that F is a DH-polynomial-like mapping.

Definition 2.9. A polynomial-like map F is called a (holomorphic) polyno-
mial-like box mapping if the following hold:

• for each 1 ≤ j ≤ m, F|U j is a conformal map onto some Vi and
• for any U ∈ {U0, V1, V2, . . . , Vb−1}, F|U has a unique critical point of

order 2.

Theorem 3. Let f be a real analytic map in the class Fb and let c be
a critical point of f . If f has essentially bounded geometry at c, then there
exists an arbitrarily small nice interval I containing c such that the real box
mapping associated to I extends to a polynomial-like box mapping.
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In fact, if f has large bounds at c, the same result holds as well, and
the proof is even much simpler, although it is unnecessary for our main
theorem. Our approach is motivated by previous works in the unimodal
case, specially [31]. As is expected, the proof gives complex bounds for
appropriate extensions, see Theorem 3’ in the appendix.

3. Background in real dynamics

In this section, we recall some known results and prove a few lemmas
in real one-dimensional dynamics which will be used later. Recall that
N ′ = N ∪ (

⋃∞
b=1 Eb).

3.1. No wandering interval theorem. For an interval map f , a wandering
interval is an interval J such that f s|J is well-defined for all s ∈ N, and
such that the intervals J, f(J), f 2(J), . . . are pairwise disjoint, and such
that J is not contained in the basin of a periodic attractor.

Theorem 3.1. A map f ∈ N ′ has no wandering interval. Equivalently, if
J is an interval such that f s|J is well defined for all s ∈ N and such that
lim infs→∞ | f s(J)| = 0, then there is a periodic point p such that

lim
s→∞ sup

x∈J
d
(

f s(x), f s(p)
) = 0.

This theorem follows from the work by Guckenheimer, de Melo and van
Strien, Lyubich, Blokh and Lyubich, and Martens, de Melo and van Strien.
See [14,35,25,3,37]. In particular, this implies

Lemma 3.1. Let f ∈ N ′ and let c be a non-periodic critical point of f .
Then for any δ > 0, there is a δ′ > 0 such that the following hold.

(1) For any interval J and any non-negative integer s, if f s|J is well-defined
and f s(J) ⊂ (c − δ′, c + δ′), then |J| < δ;

(2) Assume that c is recurrent and that ω(c) is minimal. For any interval J
and any non-negative integer s, if f s|J is well-defined, and if there is
a point x ∈ ω(c) such that f s(J) ⊂ (x − δ′, x + δ′), then |J| < δ.

Proof. We shall only prove the first statement. The second one can be done
in a similar way. Arguing by contradiction, assume that this statement is
false. Then for any k = 1, 2, . . . , there exist an interval Jk and a non-
negative integer sk , such that f sk |Jk is well-defined, limk |Jk| > 0 and
limk supx∈Jk

d(c, f sk(x)) = 0. By passing to a subsequence, we may assume
that

⋂

k Jk contains a non-degenerate interval J . Then

lim
k→∞

sup
x∈J

d
(

c, f sk(x)
) = 0.
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It follows immediately that sk → ∞ as k tends to ∞. So f s|J is well-define
for all s ∈ N. By Theorem 3.1, there is a periodic point p such that

lim
s→∞ sup

x∈J
d
(

f s(p), f s(x)
) = 0.

But this implies that c is contained in the orbit of p, and hence periodic,
a contradiction. ��
Lemma 3.2. Let f be a map in N ′, and let c be a non-periodic recurrent
critical point with a minimal ω-limit set. There exists δ > 0, such that for
any symmetric interval I 	 c with |I | < δ, if it is strictly nice or properly
periodic, then the real box mapping BI belongs to the class Fb, where b is
the number of critical points contained in ω(c).

Proof. Let BI : (
⋃m

j=0 Jj) ∪ (
⋃b−1

i=1 Ii) → ⋃b
i=0 Ii be the real box mapping

associated to I .
Since ω(c) is a compact set contained in DI , there are only finitely many

entry domains to I which intersect ω(c). Since each Jj is an entry domain
to I , m < ∞.

If I is a properly periodic interval, then we have J0 = I0. If I is strictly
nice, then for each 0 ≤ j ≤ m, Jj is compactly contained in I , and the
closures of the Jj’s are pairwise disjoint.

Let [c] denote the set of critical points which are contained in ω(c). Let
δ1 = d(ω(c), Crit( f ) − ω(c)) > 0. By Lemma 3.1, if |I | is sufficiently
small, then each pull back of I has length less than δ1. For any component
M of dom(BI ), let s be the entry time of M to

⋃

i Ii , and let 0 ≤ i ′ ≤ b − 1
be such that f s(M) ⊂ Ii′ . Let us consider the chain {Gk}s

k=0 with Gs = Ii′
and G0 ⊃ M. For each 0 ≤ k ≤ s, |Gk| < δ1. Since Gk ∩ ω(c) �= ∅,
Gk ∩ (Crit( f ) − [c]) = ∅. Since s is the entry time of M to

⋃

i Ii ,
Gk ∩ ⋃i Ii = ∅ for each 1 ≤ k ≤ s − 1, and in particular, Gk ∩ [c]
= ∅. Consequently, f s−1|G1 is a diffeomorphism. Therefore, BI has ex-
actly b critical branches J0, I1, . . . , Ib−1 each of which has a unique critical
point. The orbits of these critical points under iterates of BI are contained
in ω(c) ∩ (

⋃

i Ii), and hence compactly contained in
⋃

i Ii . ��
We shall also use the following theorem of [37].

Theorem 3.2. For any map f ∈ N ′, there exist ρ > 1 and N ∈ N, such
that if p is a periodic point of period n ≥ N, then we have

∣
∣( f n)′(p)

∣
∣ ≥ ρ.

3.2. The real Koebe principle. Let J � I be two intervals, and let L and
R be the components of I − J . The cross ratios A(I, J), B(I, J) are defined
to be

A(I, J) = |I ||J|
|L ∪ J||R ∪ J| , B(I, J) = |I ||J|

|L||R| .
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For any C3 maps h : I → R with h ′ �= 0, the Schwarzian derivative is
defined as

Sh = h ′′′

h ′ − 3

2

(
h ′′

h ′

)2

.

As is well known, a diffeomorphism with negative Schwarzian derivative
expands the cross ratios ([35]). For a general smooth map, the distortion of
cross ratios is described in the following lemma.

Lemma 3.3. (de Melo, van Strien, [36]). Let h : [0, 1] → [0, 1] be
a C3 diffeomorphism. There exists a constant C > 0 such that for any
J � I ⊂ [0, 1], we have

exp
(

C|L||R|) ≥ A
(

h(I ), h(J)
)

A(I, J)
≥ exp

(− C|L||R|),(6)

and

exp
(

C|I |2) ≥ B
(

h(I ), h(J)
)

B(I, J)
≥ exp

(− C|I |2),(7)

where L, R are the components of I − J.

Lemma 3.4. Let δ > 0 and C ∈ (0, 1] be constants. Let h : T → (−δ,
1 + δ) be a C1 diffeomorphism. Assume that for any intervals J � I ⊂ T ,
we have

B
(

h(I ), h(J)
)

B(I, J)
≥ C.

Then for any x, y ∈ T with h(x), h(y) ∈ [0, 1], we have

C6

(
1 + δ

δ

)2

≤ h ′(x)
h ′(y)

≤ 1

C6

(
1 + δ

δ

)2

.

Proof. This is a well-known lemma. For a proof, see [35] Theorem IV.1.2.
��

Lemma 3.5. For any map f ∈ N ′, and for any δ > 0 and N ∈ N, there
are constants ε = ε(δ, N, f ) > 0, δ1 = δ1(δ) > 0 and K = K(δ) > 1 with
the following property. Let n ∈ N, and let I � J be intervals contained in
dom( f n) such that f n|I is a diffeomorphism and f n(I ) ⊃ (1 + 2δ) f n(J).
Assume that

#
{

0 ≤ i ≤ n − 1 : f i(I ) � f n(J)
} ≤ N(8)
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and that max0≤i≤n−1 | f i(I )| ≤ ε. Then

(1) I ⊃ (1 + 2δ1)J;
(2) for any x, y ∈ J,

( f n)′(x)
( f n)′(y)

≤ K.

Moreover, δ1 → ∞ as δ → ∞.

Proof. See [20] or Lemma 2.3 in [42]. ��
Lemma 3.6. Let f be a map in N ′. For any p, q ∈ N and any δ > 0, there
exist constants ε = ε( f, δ, p, q) > 0 and δ1 = δ1(δ, p) > 0 such that the
following holds. Let G = {G j}s

j=0 and G′ = {G′
j}s

j=0 be chains such that
max0≤ j≤s |G′

j | ≤ ε and G j ⊂ G′
j for any 0 ≤ j ≤ s. Assume that the order

of the chain G′ is at most p and that

#
{

0 ≤ j ≤ s : G′
j � Gs

} ≤ q.(9)

If (1 + 2δ)Gs ⊂ G′
s, then (1 + 2δ1)G0 ⊂ G′

0. Moreover, for a fixed p,
δ1(δ, p) → ∞ as δ → ∞.

Proof. See Proposition 2.2 in [42]. ��
Remark 3.1. Before the work [20], to apply the real Koebe principle for
smooth interval maps, one usually had to estimate the intersection multipli-
city of the chains involved, which in practice is not always straightforward.
As we shall see, the conditions (8) and (9) in the above lemmas are much
easier to check in many cases. For instance, let {G′

j}s
j=0 be a chain such that

G′
s is a nice interval, and let Gs be a subinterval of G′

s. Assume that for
some x ∈ Gs, we have Gs ⊃ Lr

x(G
′
s). Then

#
{

0 ≤ j ≤ s − 1 : G′
j � Gs

} ≤ r.

Indeed, if 0 ≤ j1 < j2 < · · · < jn ≤ s − 1 be all the integers such that
G′

ji
� Gs, then Gs � G′

j1
⊂ Lx(G′

j2
) ⊂ · · · ⊂ Ln

x(G
′
s) and hence n ≤ r.

Remark 3.2. Keep the notation in the previous lemma. Let s1 < s2 <
· · · < sn be all the integers between 1 and s − 1 such that G′

si
contains

a critical point, and let s0 = 0, sn+1 = s. Then for any 0 ≤ i ≤ n, the map
f si+1−si−1 : Gsi+1 → Gsi+1 is a diffeomorphism with uniformly bounded
distortion (which depends only on δ and p). Thus f s|G0 can be written as
the composition of at most p functions of the form L ◦ f , with L being
a diffeomorphism with uniformly bounded distortion. In this sense, we
shall say that the map f n|G0 has (p, δ)-uniformly good distortion, or just
uniformly good distortion when we do not specify the constants p and δ.
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In [20], Kozlovski proved that for a smooth unimodal map with a non-flat
critical point, the first entry map to a small neighborhood of the critical value
has negative Schwarzian. This result has been extended to the multimodal
case in [47].

Lemma 3.7. Let f be an interval map in N ′. There exist neighborhoods
Ui of the critical points so that whenever f n(x) ∈ Ui for some x ∈ [0, 1]
and some n ∈ N, then the Schwarzian derivative of f n+1 at x is negative:

S f n+1(x) < 0.

Proof. See Theorem B.3 in [47]. ��
As we shall work on neighborhoods of critical points rather than the

critical values, it is often more convenient for us to use Lemmas 3.5 and
3.6 rather than the previous one. Actually, in Sect. 5.6, we shall show that
if f has essentially bounded geometry at a critical point c, then the real box
mapping associated to a small nice interval I 	 c has negative Schwarzian
derivative.

Lemma 3.8. Let f ∈ Fb and let c ∈ Crit( f ). Let I be a nice interval,
and let I ′ ⊃ I be an open interval with (I ′ − I ) ∩ ω(c) = ∅. Let J be
a component of DI with J ∩ ω(c) �= ∅, and let s be the entry time of J to I .
Then the chain G′ = {G′

j}s
j=0 with G′

s = I ′ and G′
0 ⊃ J has order ≤ b, and

intersection multiplicity ≤ 4.

Proof. LetG = {G j}s
j=0 be the chain with Gs = I and G0 = J . Then these

intervals G j , 0 ≤ j ≤ s − 1, are pairwise disjoint, and thus the chain G has
order at most b. Since I ′ − I is disjoint from ω(c), so is G′

j − G j for any
0 ≤ j ≤ s. As ω(c) ⊃ Crit( f ), it follows that the chain G′ has the same
order as G.

Assume that the intersection multiplicity ofG′ is ≥ 5. Then we can find
0 ≤ j1 < j2 < j3 ≤ s−1 such that there is a point x ∈⋂3

i=1 G′
ji
−⋃3

i=1 G ji .
Choose 1 ≤ k < m ≤ 3 such that G jk and G jm are on the same side of x.
Then G′

jk
⊃ G jm or G′

jm
⊃ G jk . Since G0 = J intersects ω(c), it follows

that (G′
ji

− G ji) ∩ ω(c) �= ∅ for i = k or m, a contradiction. ��

3.3. An improved macroscopic Koebe principle. In [47], the following
result was derived from the real bounds:

Theorem 3.3 (Improved macroscopic Koebe principle). Let f be a map
in N ′. For each ξ > 0, there exists ξ ′ > 0 with the following property. Let
I be a nice interval and J a subinterval of I such that (1 + 2ξ)J ⊂ I . Then
for any x ∈ [0, 1] and any k ∈ N with f k(x) ∈ J,

(1 + 2ξ ′)Compx

(

f −k(J)
) ⊂ Lx(I ).



318 W. Shen

Proof. This is exactly Theorem B.1 in [47] if x ∈ I . In the case that
x �∈ I , let k′ ∈ N be the entry time of x to I . Then by that theorem,
Comp f k′ (x)( f −(k−k′)(J)) is well inside I . Applying Lemma 3.6 to the chain
corresponding to the first entry of x to I , we complete the proof. ��

We should remark that the constant ξ ′ depends only on ξ and the number
of critical points of f , provided that each interval in DI is sufficiently small.

We shall need the following result in Sect. 9, which was proved in [42]
by a Yoccoz type τ-function argument. Using the previous theorem, we can
now give it a very short proof.

Theorem 3.4. Let f be a map in N ′ and let c be a non-periodic recurrent
critical point. If ω(c) is non-minimal, then f has large bounds at c.

Proof. It is not difficult to see that f is not infinitely renormalizable at c,
using the no wandering interval theorem (Theorem 3.1). Let I := I 0 	 c be
a small symmetric nice interval such that I does not contain any properly
periodic interval of f , and let I n+1 = Lc(I n) for all n ≥ 0. Then |I n| → 0
as n → ∞.

Moreover, by replacing I with a smaller symmetric nice interval if
necessary, we may assume that DI have infinitely many components J0 	 c,
J1, J2, . . . intersecting orb(c) ∩ I . For any i ≥ 1, let ri ∈ N be the entry
time of Ji to I , let ni ∈ N be the entry time of c to Ji , and let Ai = Lc(Ji).
Then |Ai | → 0 as i → ∞.

For any x ∈ orb(c) ∩ Ai , f j(x) �∈ Ai for all 1 ≤ j ≤ ni . Thus
f ni (Lx(Ai)) ⊂ L f ni (x)(Ai). By Lemma 3.6, if L f ni (x)(Ai) is deep inside Ji ,
then so is Lx(Ai) in Ai .

Let m(1) < m(2) < · · · be all the positive integers such that RIm(k)−1 (c) �∈
Im(k). By Theorem 2.1, for any k, |Im(k)+1|/|Im(k)| is uniformly bounded
away from 1. Take a large i ∈ N. Then there are many n’s such that
I n+1 ⊃ Ai and |I n|/|I n+1| is uniformly bounded away from 1. Applying
Theorem 3.3, we see that L f ni (x)(Ai) is deep inside L f ni (x)(I ) = Ji . So Ai
is a C-nice interval for a large C. The proof is completed. ��

3.4. Measure of the postcritical set. Later on we shall need to estimate
the total length of a sequence of intervals, where the following result will
be convenient to us.

Proposition 3.5. Let f ∈ Fb and c ∈ Crit( f ). Then ω(c) has (one-
dimensional) Lebesgue measure zero.

For a proof of this proposition, see [47]. The infinitely renormalizable
case was proved earlier in [4]. The finitely renormalizable case was also
claimed in [49], but the proof seems incomplete. The proposition will be
used in the following form:



C2 density of Axiom A 319

Corollary 3.6. Let f ∈ Fb and c ∈ Crit( f ). For any ε > 0, there is a
δ > 0 with the following property. Let {Gi}s

i=0 be a chain with intersection
multiplicity N. If G0 ∩ ω(c) �= ∅ and if |Gs| ≤ δ, then

s∑

i=0

|Gi | < Nε.

Proof. Since Gs is contained in a small neighborhood of a point in ω(c), any
pull back of this interval has a small length, by Lemma 3.1. Thus, max j |G j |
is small, and so

⋃

j G j is contained in a small neighborhood of ω(c). Since
ω(c) has measure zero, a small neighborhood of ω(c) has a small measure.
The corollary follows. ��

4. Essentially bounded geometry and large bounds

In this section, we begin to analyze the geometry of the postcritical set of
a smooth interval map f . The goal is to prove Theorems 1 and 1’. As we have
mentioned before, Theorem 1’ will also play a crucial role in our further
geometrical analysis for maps without large bounds in the next section.

For a nice open set K , let M(K ) be the collection of all intervals which
are pull backs of components of K . Then any two intervals in M(K ) are
either disjoint, or nested, i.e., one is contained in the other.

Definition 4.1. Let J ⊂ I be intervals in M(K ). The (combinatorial) depth
of J in I , denoted by Dep(I, J), is the minimal non-negative integer d such
that there exists a point x ∈ J with J ⊃ Ld

x(I ).

For instance, Dep(I, I ) = 0, and if J is a return domain to I then
Dep(I, J) = 1 as long as J �= I . Note that if Dep(I, J) = d, then for any
y ∈ J , we have Ld

y(I ) ⊂ J. By Theorem 3.3, Theorem 1’ follows from the
following:

Proposition 4.1. Let d ∈ N and let C > 0. For any f ∈ N ′, there exist
constants ξ = ξ(#Crit( f ), C, d) > 0 and ε = ε( f, C, d) > 0 such that the
following holds. Let K be a nice open set such that every interval in M(K )
has length less than ε. Let I ⊃ J be intervals belonging to M(K ) such that
Dep(I, J) ≤ d and I ⊃ (1 + 2ξ)J. Then for any x ∈ DJ, we have

Lx(I ) ⊃ (1 + 2C)Lx(J).(10)

If the entry time s of x to J coincides with that to I , then the chain {Ii}s
i=0

with Is = I and I0 	 x has bounded order, and thus the proposition follows
immediately from the real Koebe principle (Lemma 3.6). In general, the
entry times can be different, and we shall consider all the entries of x to I
before the first one to J . If the pull backs of I corresponding to these earlier
entries are monotone, then we are again able to use the real Koebe principle
directly to conclude the proof. To deal with the critical return branches, we
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shall show that we can pull back a big space along an arbitrarily long central
cascade without too much loss, while at each time passing a central cascade
we get a definite amount of bound by results on real bounds. The formal
proof of this proposition will be organized by induction on the cardinality
of the critical points involved in the pull backs of I corresponding to the
earlier entries. It is rather complicated, and will occupy most of the rest of
this section. Let us first show how Theorem 1 follows.

Proof of Theorem 1. Assume that f does not have essentially bounded
geometry at a non-periodic recurrent critical point c. Then by definition,
there is a sequence {Ti}∞

i=1 of symmetric nice intervals which contain c,
such that |Ti |/|T 1

i | → ∞ as i → ∞, where T 1
i = Lc(Ti). Note that

|Ti| → 0 as i → ∞. By Proposition 4.1, for any C > 0, T 1
i is a C-nice

interval for i sufficiently large. This proves that f has large bounds. ��

4.1. Preparatory lemmas.

Lemma 4.1. Let d ∈ N and let K be an arbitrary nice open set. Let I, J, H
be intervals in M(K ) such that J ⊂ I and H ⊂ DI . Let x ∈ H ∩ DJ , and
let s be the entry time of x to J. Assume that f i(x) �∈ H for all 1 ≤ i ≤ s−1,
and that J ⊃ Ld

f s(x)(I ). Then

Lx(J) ⊃ Ld
x(H).

Proof. We first prove the lemma for d = 1. Let {Ji}s
i=0 be the chain with

Js = J and J0 	 x. Then Ji ∩ H = ∅ for all 1 ≤ i ≤ s − 1. Indeed, for
1 ≤ i ≤ s−1, Ji ⊂ H implies f i(x) ∈ H , and if H ⊂ Ji then f s−i(H) ⊂ J ,
which implies f s−i(x) ∈ J . Both cases contradict the hypothesis. Now
assume Lx(H) �⊂ Lx(J), and consider z ∈ (∂Lx(J)) ∩ Lx(H). Since
f i(z) �∈ H for all 1 ≤ i ≤ s − 1, f s(z) is contained in H ∪ DH ⊂ DI . But
f s(z) ∈ ∂J , contradicting the hypothesis J ⊃ L f s(x)(I ).

Now let us consider the general case. Let Ii = Li
f s(x)(I ) for each i ≥ 0.

Let H0 = H and Hi = Lx(Ii) for each i ≥ 1. Let 0 ≤ d′ ≤ d − 1 be an
integer such that

I ⊃ I1 ⊃ I2 ⊃ · · · ⊃ Id′ ⊃ J ⊃ Id′+1.

Then we have Hi+1 ⊃ Lx(Hi) for all i ≥ 0 and also Lx(J) ⊃ Hd′+1 ⊃
Lx(Hd′). Therefore,

Lx(J) ⊃ Ld′+1
x (H) ⊃ Ld

x(H). ��

Lemma 4.2. There exist δ1 > 0 and N which depend only on #Crit( f ) with
the following property. Let I be a small symmetric nice interval containing
c ∈ Crit( f ) and let s be the return time of c to I . Then one of the following
holds:
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(1) I contains the δ1-neighborhood of I 1;
(2) the intersection multiplicity of the chain {Ti}s

i=0 with Ts = (1 + 2δ1)I
and T0 ⊃ I 1 is at most N.

Proof. This follows from Lemmas 2 and 3 of [47]. ��
Lemma 4.3. There exist constants δ2 > 0 and C > 1 depending only
on #Crit( f ) with the following property. Let I be a small symmetric nice
interval containing c ∈ Crit( f ). If |I |/|I 1| < 1 + 2δ2, then we have

∣
∣( f s)′(x)

∣
∣ ≤ C(11)

for all x ∈ I 1, where s is the return time of c to I .

Proof. Let δ2 = δ1/2, where δ1 > 0 is as in the previous lemma. Then we
are in the latter case of that lemma, and thus f s|I 1 can be written as the
composition of a bounded number of functions of the form L ◦ f , where L
has uniformly bounded distortion. Since

∣
∣ f s(I 1)

∣
∣

|I 1| ≤ |I |
|I 1| < 1 + 2δ2,

the lemma follows. ��

4.2. Proof of Proposition 4.1. The proof will be done by induction on the
cardinality of the critical set Crit(I, J, x) defined as follows.

Let s ∈ N be the entry time of x to J , let n0 = 0 and let 0 < n1 < · · · <
nk = s be all the positive integers such that f ni (x) ∈ I , 1 ≤ i ≤ k. For
any 0 ≤ i ≤ k − 1, consider the chain {Gi

j}ni+1−ni
j=0 with Gi

ni+1−ni
= I and

Gi
0 	 f ni (x). Let

Crit(I, J, x) = Crit( f ) ∩
( k−1⋃

i=0

ni+1−ni−1
⋃

j=0

Gi
j

)

.

We are going to prove the following two inductive statements.

Statement N. For any C > 0 and d ∈ N, there exist ξN = ξN(C, d) > 0
and ε = ε( f, N, C, d) with the following property. Let K be a nice open
set, let I, J be intervals in M(K ) with I ⊃ J and Dep(I, J) ≤ d, and let
x ∈ DJ. Assume that the following hold:

• every interval in M(K ) has length less than ε;
• (1 + 2ξN )J ⊂ I , and #Crit(I, J, x) ≤ N.

Then (10) holds.

Statement N ′. For any C > 0 and d ∈ N, there exist ξ ′
N = ξ ′

N(C, d) > 0
and ε′ = ε′(N, f, C, d) > 0 with the following property. Let K, I, J, x be
as above. Assume that the following hold:
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• every interval in M(K ) has length less than ε′;
• (1 + 2ξ ′

N)J ⊂ I , and #Crit(I, J, x) = N;
• there exists c ∈ Crit(I, J, x) such that I is symmetric and I 	 c.

Then (10) holds.

Obviously, Statement N ′ follows from Statement N. We shall prove
Statement 0, and (Statement N ′+ Statement N − 1 �⇒ Statement N) in
this subsection, and prove (Statement (N − 1) �⇒ Statement N ′) in the
next subsection.

Proof of Statement 0. Since Crit(I, J, x) = ∅, the chain {G j}s
j=0 with

Gs = I and G0 	 x is monotone. Since #{0 ≤ j < s : G j � J} ≤ d (c.f.
Remark 3.1), by Lemma 3.5, Lx(J) is deep inside G0 ⊂ Lx(I ), provided
that J is deep inside I . ��
Proof of (Statement N ′+ Statement (N − 1) �⇒ Statement N). Let I, J, x
be as in Statement N. Let n0 = 0, n1, . . . , nk = s be as above. Then there
exist 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ ni+1 − ni − 1 such that Gi

j contains
a critical point of f , say c′. Let us choose i, j with this property and such
that (i, j) is maximal in the lexicographical order. Let I ′ = Gi

j and J ′ =
L f ni+ j (x)(J). Since {Gm}s

m=ni+ j+1 with Gs = I and Gni+ j+1 	 f ni+ j+1(x) is
a monotone chain, by Lemma 3.5, J ′ is deep inside G0 ⊂ I ′, provided that J
is sufficiently deep inside I . If ni + j = 0, then this proves what we want. So
assume that ni + j �= 0. To prove that Lx(J) is deep inside Lx(I ), it suffices
to prove that Lx(J ′) is deep inside Lx(I ′). By Lemma 4.1, Dep(I ′, J ′) ≤
Dep(I, J) = d. Clearly we have Crit(I ′, J ′, x) ⊂ Crit(I, J, x). If these two
sets do not coincide, then #Crit(I ′, J ′, x) ≤ N −1, and so Statement (N −1)
applies. Otherwise, Crit(I ′, J ′, x) 	 c′, and Statement N ′ applies. ��
4.3. Induction step. In this subsection, we shall prove

Statement N − 1 �⇒ Statement N ′.

So let us assume that I is a symmetric nice interval, #Crit(I, J, x) = N, and
Crit(I, J, x) 	 c, where c is the critical point in I .

By definition, the height χI of I is the number of positive integers m
such that RIm−1 displays a non-central return, i.e., RIm−1(c) �∈ Im . Note that
if χI = 0, then the first return of c to I 0 enters I j for all j ≥ 0, which
implies that ω(c) ∩ (I 0 − I j) = ∅, and that

⋂

j I j is a periodic interval.
If J 	 c, we define e(I, J) = ∞. Otherwise, we define e(I, J) to be the

non-negative integer such that J ⊂ I e(I,J ) − I e(I,J )+1. Note that in the latter
case,

e(I, J) ≤ Dep(I, J) − 1.

Furthermore, define m(1) to be the minimal positive integer such that
RIm(1)−1(c) �∈ Im(1) if χI ≥ 1, and define m(1) = ∞ otherwise.

We shall fix a constant C > 0 throughout this subsection.
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Lemma 4.4. There exists C1 = C1(C) > 0, and for any Σ > 0 there exists
ϕ1(Σ) > Σ with the following property. Assume that (1 + 2ϕ1(Σ))J ⊂ I ,
and that (10) fails. Then the following hold:

• |I 0| ≤ C1|I 1|;
• there exists 1 ≤ s1 < s such that f s1(x) ∈ I 1, and such that

Dep
(

I 1,L f s1 (x)(J)
) ≤ d, Crit

(

I 1,L f s1 (x)(J), x
) = Crit(I, J, x);

• (1 + 2Σ)L f s1 (x)(J) ⊂ I 1.

Proof. Let 0 ≤ s1 < s be maximal such that f s1(x) ∈ I 1. (Such an in-
teger exists because Crit(I, J, x) 	 c.) Then Crit(I, J, f s1+1(x)) ⊂ Crit(I,
J, x)−{c}. Assume that I contains a large neighborhood of J . Then it follows
from Statement N − 1 that L f s1+1(x)(I ) contains a large neighborhood of
L f s1+1(x)(J), and thus, I 1 = L f k1 (x)(I ) contains a large neighborhood of
J1 := L f s1 (x)(J). If s1 = 0, then we have (10). So assume that s1 > 0.

Note that Crit(I, I 1, x) ⊂ Crit(I, J, x) − {c}. If I 0 ⊃ (1 + 2ξN−1)I 1,
where ξN−1 is as in Statement N − 1, then by that statement, (1+
2C)Lx(I 1) ⊂ Lx(I ). Since Lx(J) ⊂ Lx(I 1), (10) follows, which con-
tradicts the hypothesis. Thus, |I 0|/|I 1| is bounded from above.

By Lemma 4.1, Dep(I 1, J1) ≤ Dep(I, J) ≤ d. Clearly, Crit(I 1,
J1, x) ⊂ Crit(I, J, x). If these two sets do not coincide, then
#Crit(I 1, J1, x) < N, and so by Statement N − 1, Lx(I ) ⊃ Lx(I 1) con-
tains a large neighborhood of Lx(J1) = Lx(J), which is ruled out by the
assumption. So Crit(I 1, J1, x) = Crit(I, J, x). ��
Lemma 4.5. For any Σ > 0, there exists ϕ2(Σ) > Σ such that if (1 +
2ϕ2(Σ))J ⊂ I and if (10) fails, then for any 1 ≤ i ≤ d + 1, the following
hold:

(1) |I i−1| ≤ C1|I i |, where C1 = C1(C) is as in Lemma 4.4;
(2) there exists 1 ≤ si < s such that f si (x) ∈ I i , and such that

Dep
(

I i,L f si (x)(J)
) ≤ d, Crit

(

I i,L f si (x)(J), x
) = Crit(I, J, x);

(3) (1 + 2Σ)L f si (x)(J) ⊂ I i .

Proof. Define ϕ2(Σ) = ϕd+1
1 (Σ). Then by Lemma 4.4, we can prove in-

ductively that for any 1 ≤ i ≤ d + 1, there exists 0 < si < s such that

(1) |I i−1| ≤ C1|I i |,
(2) f si(x) ∈ I i , Dep(I i,L f si (x)(J)) ≤ d and Crit(I i,L f si (x)(J), x) =

Crit(I, J, x);
(3) (1 + 2ϕd+1−i

1 (Σ))L f si (x)(J) ⊂ I i.

This proves the lemma. ��
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Lemma 4.6. There exist C2, C3 > 0 depending on C such that the following
holds. Assume that (1 + 2C3)J ⊂ I and that (10) is false. If m(1) > d, then
for any 0 ≤ i ≤ d,

|I i − I i+1| ≥ |I 0 − I i|/C2.

Proof. If |I 0|/|I 1| < 1 + 2δ2, then by Lemma 4.3, |( f t)′(y)| is bounded
from above on I 1, where t is the return time of c to I . Since f jt(I i − I i+1)
contains a component of I i− j − I i− j+1 for any j ≤ i ≤ m(1) − 1, this
lemma follows.

Now assume that |I 0|/|I 1| ≥ 1 + 2δ2. Then by Theorem 2.1, I i contains
a definite neighborhood of I i+1 for all i ≤ d. In particular, |I i − I i+1| is
comparable to |I i |. Taking C3 = ϕ2(1) and applying Lemma 4.5, we see
that all these |Ii| are comparable to |I 0|. The lemma follows. ��
Lemma 4.7. For any Σ > 0, there exists ϕ3(Σ) > Σ with the following
property. Assume that (1 + 2ϕ3(Σ))J ⊂ I and that (10) is false. Then there
exists p1 < s such that one of the following holds.

(1) m(1) < ∞, (1 + 2Σ)L f p1 (x)(J) ⊂ Im(1), and Dep
(

Im(1),

L f p1(x)(J)
) ≤ d;

(2) e(I, J) < ∞, and there exists k′ ≥ 1 such that f p1(x) ∈ I k′ − I k′+e(I,J ),
and

(1 + 2Σ)L f p1 (x)(J) ⊂ I k′
, and Dep

(

I k′
,L f p1(x)(J)

) ≤ d.

Proof. Let M > Cd
2 be a large constant, and assume that I ⊃ (1 + 2M)J .

First let us show that J �	 c. Otherwise, from Dep(I, J) ≤ d we obtain
that J ⊃ I d . But Lemma 4.6 asserts that |I |/|I d| ≤ Cd

2 ; a contradiction. It
follows that e := e(I, J) ≤ d − 1 and J ⊂ I e − I e+1.

If m(1) ≤ d, then taking p1 to be sm(1) as in Lemma 4.5, we see that the
first alternative of this lemma holds. So let us assume that m(1) > d. Let
k ≥ k0 ≥ max{1, k − m(1) + e} be the minimal integer such that

f nk−1(x) ∈ I e+1, · · · , f nk0 (x) ∈ I k−k0+e.

Let J0 = J and let Ji = L f nk−i (x)(J) for each 0 < i ≤ k. Note that for
0 ≤ i ≤ k − k0 − 1, we have

Ji ⊂ I i+e − I i+e+1.

Let T be the component of I − I e+2 which contains J . Then provided
that we have chosen the constant M sufficiently large, T contains a large
neighborhood of J because by Lemma 4.6, I e+1 − I e+2 is not much smaller
than I 0 − I e+1. Consider the chain {Ti}s−nk0

i=0 with Ts−nk0
= T and T0 ⊃

Jk−k0 . Obviously, the chain has intersection multiplicity e + 2, and hence
its order is at most (e + 2)#Crit( f ) ≤ (d + 1)#Crit( f ). By Lemma 3.6, T0
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contains a large neighborhood of Jk−k0 . In particular, I k−k0 contains a large
neighborhood of Jk−k0 . Note that Dep(I k−k0 , Jk−k0 ) ≤ d by Lemma 4.1.

By the definition of k0, we have the following three possibilities:

1) k0 = 1. Let us show that this case cannot happen if M has been chosen
sufficiently large. In fact, in this case, the first entry of x to I k−k0 coincides
with that to Jk−k0 , and so by Lemma 3.6, Lx(I ) ⊃ Lx(I k−k0 ) contains the
C-neighborhood of Lx(J) = Lx(Js−s0), a contradiction.

2) k0 = k − m(1) + e. Then k − k0 = m(1) − e and m(1) < ∞. As e < d,
applying Lemma 4.5 to the triple (Im(1)−e, Jm(1)−e, x), we conclude that the
first alternative of this lemma holds.

3) k0 > max(1, k−m(1)+e) and f nk0−1(x) �∈ I k−k0+e+1. Let k1 ≤ k−k0 +e
be such that

f nk0−1(x) ∈ I k1 − I k1+1.

Let us first deal with the case

k1 ≤ k − k0.(12)

In this case, I ′ := L f
nk0−1 (x)(I k−k0) ⊂ I k1−I k1+1. Let J ′ = L f

nk0−1 (x)(Jk−k0 ).
Then by Lemma 3.6, I ′ contains a large neighborhood of J ′. If Crit(I ′,
J ′, x) �	 c, then #Crit(I ′, J ′, x) < N, and hence by Statement N − 1,
Lx(I ) ⊃ Lx(I ′) contains a large neighborhood of Lx(J) = Lx(J ′), a con-
tradiction. Thus Crit(I ′, J ′, x) 	 c. Note that this implies that c ∈ DI ′ .
Since Ri

I (c) �∈ I k1 − I k1+1 for any i < m(1) − k1, we have m(1) < ∞ and
Lc(I ′) ⊂ Im(1). By the definition of Crit(I ′, J ′, x), there exists a maximal in-
teger p1 with 0 ≤ p1 < nk0−1 and such that f p1(x) ∈ Im(1). Applying State-
ment N − 1 to the triple (I ′, J ′, f p1+1(x)), we see that L f p1+1(x)(J ′) is deep
inside L f p1+1(x)(I ′), from which it follows that L f p1(x)(J) = L f p1(x)(J ′) is
deep inside L f p1(x)(I ′). As L f p1(x)(I ′) ⊂ Im(1), the first alternative of this
lemma holds. This proves the lemma under the assumption (12).

If (12) is false, then k − k0 + e ≥ k1 ≥ k − k0 + 1, and thus

f nk0−1(x) ∈ I k−k0+1 − I k−k0+e(I,J )+1.

Setting p1 = nk0−1 and k′ = k−k0 +1, the second alternative of this lemma
holds. ��
Lemma 4.8. For any Σ > 0, there exists ϕ4(Σ) > Σ with the following
property. Assume that (1 + 2ϕ4(Σ))J ⊂ I and that (10) is false. Then
m(1) < ∞ and there exists q1 < s such that

(1 + 2Σ)L f q1 (x)(J) ⊂ Im(1), and Dep
(

Im(1),L f q1 (x)(J)
) ≤ d.
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Proof. This statement follows from Lemma 4.7 by induction on e(I, J).
Note that if e(I, J) = 0, then certainly the second case of that lemma cannot
happen. This proves the starting step. For the induction step, we observe that
in the second case of that lemma, Crit(I k′

,L f p1(x)(J), x) ⊂ Crit(I, J, x),
and e(I k′

,L f p1(x)(J)) is either ∞ or < e(I, J). ��
Proof of (Statement N − 1 �⇒ Statement N ′). Let l be a large positive
integer (to be determined below). Let us assume that I contains the ϕl

4(C)-
neighborhood of J , and prove that (10) holds. Arguing by contradiction,
assume that (10) fails. Then by Lemma 4.8, we can find positive integers
m(1) and q1 < s such that

• RIm(1)−1(c) �∈ Im(1),
• (1 + 2ϕl−1

4 (C))L f q1(x)(J) ⊂ Im(1),
• Dep(Im(1),L f q1(x)(J)) ≤ d.

Clearly, Crit(Im(1),L f q1 (x)(J), x) ⊂ Crit(I, J, x). We may assume that these
two sets coincide, for otherwise, #Crit(Im(1),L f q1(x)(J), x) < N and State-
ment N − 1 implies that the C-neighborhood of Lx(J) = Lx(L f q1 (x)(J))

is contained in Lx(Im(1)) ⊂ Lx(I ); a contradiction. So we can apply
Lemma 4.8 to the triple (Im(1),L f q1 (x)(J), x), and obtain positive integers
m(2) > m(1) and q2 < q1 such that

• RIm(2)−1(c) �∈ Im(2);
• (1 + 2ϕl−2

4 (Σ))L f q2 (x)(J) ⊂ Im(2);
• Dep(Im(2),L f q2(x)(J)) ≤ d.

Applying the argument to the triple (Im(2),L f q2 (x)(J), x), and so on, we
find m(l) > m(l − 1) > · · · > m(1) > 0 and q1 > q2 > · · · ql > 0 such
that for all 1 ≤ i ≤ l,

RIm(i)−1(c) �∈ Im(i), and L f qi (x)(J) ⊂ Im(i).

By Theorem 2.1, for each 1 ≤ i ≤ l − 1, |Im(i)|/|Im(i)+1| is uniformly
bounded away from 1, and thus by the Theorem 3.3, Lx(Im(i)) contains
a definite neighborhood of Lx(Im(i)+1). In particular, if l has been chosen
large enough, then

(1 + 2C)Lx(J) ⊂ (1 + 2C)Lx(Im(l)) ⊂ Lx(I ),

a contradiction. The proof is completed. ��

5. Essentially bounded geometry

The goal of this section is to give a more detailed analysis of the geometry
of a map f ∈ Fb which does not have large bounds, and justify the name of
“essentially bounded geometry”.
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We first study the properties of a long central cascade. Recall that a cen-
tral cascade is a finite sequence of symmetric nice intervals

I 0 ⊃ I 1 ⊃ · · · ⊃ Im,(13)

such that I i+1 = Lc(I i) for each 0 ≤ i ≤ m −1, where c is the critical point
contained in I 0, and such that RIi (c) ∈ I i+1 for each 0 ≤ i ≤ m − 2. Such
a central cascade is called maximal if RIm−1 displays a non-central return,
i.e., RIm−1(c) �∈ Im . We say that the central cascade is of saddle node type
if RI0 |I 1 has all the critical points in Im , and does not have a fixed point.

Definition 5.1. For a symmetric nice interval I containing c ∈ Crit( f ), we
define the scaling factor to be

λI = λ
f
I = |I |

∣
∣L f

c (I )
∣
∣
.

For a nice open set K with K ∩ω(c) �= ∅, we define the limit scaling factor
to be

ΛK = sup
I

λ
f
I ,

where the supremum is taken over all symmetric nice intervals in M(K ).
The limit scaling factor may be infinity.

For a map without large bounds, it turns out that a maximal long central
cascade must be essentially of saddle node type. More precisely,

Proposition 5.1. For any b ∈ N, δ > 0 and ρ > 1, there exists l =
l(δ, ρ, b) ∈ N with the following property. For any f ∈ Fb, there exists
ε = ε( f, δ, ρ) > 0 such that the following holds. Consider a maximal
central cascade I0 ⊃ I 1 ⊃ · · · ⊃ Im. Assume that |I 0| < ε, ΛI0 ≤ ρ,
I 0 ⊃ (1 + 2δ)I 1, and m > 3l. Then

(1) the central cascade I l ⊃ I l+1 ⊃ · · · ⊃ Im−l is of saddle node type;
(2) for any x ∈ Im−l , we have

∣
∣RI0(x) − x

∣
∣ ≥ 1

l(δ, ρ, n)
|I 0|.(14)

The proof is based on an idea of Sullivan: the first return map RI1 |I 2

is C1 close to a map in the Epstein class, considered up to rescaling. The
conclusion is drawn by a limit argument: if it takes a long time for a critical
point to escape the central cascade, then the orbit of the first escaping critical
point will create a fixed point in the limit, which is forced to be parabolic
by the upper bounds on the scaling factors. In Sect. 5.1, we shall review this
principle of Sullivan in more details, and the proof of this proposition will
be done in Sect. 5.2.

Another important ingredient of our analysis is the following
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Proposition 5.2. Let f ∈ Fb and let c ∈ Crit( f ). Then for any ρ > 1 and
any d ∈ N, there exist ε = ε( f, ρ, d) > 0 and C = C(b, ρ, d) > 0 with the
following property. Let K ⊂ (c − ε, c + ε) be a nice open set with ΛK < ρ.
Let J ⊂ I be intervals in M(K ) intersecting ω(c) such that Dep(I, J) ≤ d.
(See Definition 4.1.) Then

∣
∣Lc(I )

∣
∣ ≤ C

∣
∣Lc(J)

∣
∣.

This proposition will be proved in Sect. 5.3. Together with Proposi-
tion 4.1, it implies that a nice interval can not be geometrically deep inside
another one unless it is combinatorially deep inside as well.

Corollary 5.3. Under the circumstances of Proposition 5.2, (1+2C′)J �⊂ I ,
where C ′ > 0 is a constant depending only on ρ, d and b.

Proof. By Proposition 4.1, if I contains a large neighborhood of J , then
Lc(J) is deep inside Lc(I ). ��

With these results in hand, we then proceed to describe the geometric
properties of f . We shall need one more definition.

Definition 5.2. Let c ∈ Crit( f ). For each nice interval I , let DI denote the
union of all components of DI which intersect I ∩ ω(c). We say that I has
C-bounded geometry if the following hold:

(i)
(

(1 + 1/C)I − (1 + 1/C)−1 I
) ∩ ω(c) = ∅;

(ii) for each component J of I − ∂DI , we have |J| ≥ |I |/C.

Note that by Lemma 3.8 and Lemma 3.6, the condition (i) implies that
the first return map RI |DI has uniformly good distortion when I is small.
(See also Proposition 5.8 for a more detailed description of the distortion.)
The following two theorems, which will be proved in Sect. 5.4, describe
the properties of “essentially bounded geometry” in a nest: the second one
shows that the geometry is bounded unless we are deep in a long central
cascade; while the first one, complementary to Proposition 5.1, gives more
detailed control of the geometry of a long maximal central cascade.

Theorem 5.4. For any δ > 0, ρ > 1 and b ∈ N, there exist C > 0 and
q ∈ N with the following property. Let f ∈ Fb and let c ∈ Crit( f ). Let
us consider a maximal central cascade I0 ⊃ I 1 ⊃ · · · ⊃ Im with m > 3l,
where l = l(δ, ρ, b) is as in Proposition 5.1. Assume that ΛI0 ≤ ρ and
I 0 ⊃ (1 + 2δ)I 1. If |I 0| is sufficiently small, then the following hold:

(1) for each 0 ≤ i ≤ m − 1, we have

1

C

1

(k + 1)2
≤ |I i − I i+1|

|I 0| ≤ C
1

(k + 1)2
,

where k = min(i, m − i);
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(2) for any 0 ≤ i ≤ l, and any x ∈ (I i − I i+1) ∩ ω(c), we have

RIi (x) �∈ I q − Im−q.

Theorem 5.5. Let f ∈ Fb and let c ∈ Crit( f ). For any δ > 0, ρ > 0 and
p ∈ N, there are ε = ε(δ, ρ, f ) > 0 and C = η(δ, b, ρ, p) > 0 with the
following property. Let us consider a nest I := I 0 ⊃ I 1 ⊃ · · · . Assume that

|I | < ε, ΛI < ρ, and I ⊃ (1 + 2δ)I 1.

Let m(0) = 0 and let m(1) < m(2) < · · · be all the non-central return
moments. Then for any n ≥ 2 with infk≥0 |n −m(k)| ≤ p, I n has C-bounded
geometry.

In Sect. 5.5, we shall consider the case that f is infinitely renormalizable,
and show that the initial geometry of a sufficiently deep renormalization is
uniformly bounded. To be more precise, we need to introduce some notation.
Let c be a critical point of f , and let T be the component of the domain
of f containing c. Let τ : T → T be the involution with the property that
f ◦ τ = f holds on T . Let

B1 ⊃ B2 ⊃ · · ·(15)

be all the symmetric open properly periodic intervals which contain c, and
let 1 ≤ s1 < s2 < · · · be the corresponding periods. For any n ∈ N, f sn has
a fixed point in ∂Bn which we denote by βn . (So Bn = (βn, τ(βn)).) Let αn
be the innermost fixed point of f sn |Bn, i.e., αn is the fixed point of f sn |Bn
such that f sn does not have a fixed point in An := (αn, τ(αn)). Note that f sn

reverses the orientation at αn . Let xn be the point in ( f sn |Bn)
−1(αn) which

is closest to βn , and let En = Bn − {xn, τ(xn)} ∪ {αn, τ(αn)}.
Theorem 5.6. Let f ∈ Fb be an infinitely renormalizable map with essen-
tially bounded geometry. Then there exists C > 1 such that for any n ∈ N,
and for any component J of En, the following hold.

• |J| ≥ |Bn|/C;
• J has C-bounded geometry.

5.1. Extension to a quasi-regular function. Sullivan [46] observed that
the first return map to a small interval extends to a quasi-regular map with
a small dilatation, from which various geometric estimates are deduced by
limit arguments. In this subsection, we review this subtle observation of
Sullivan, which we shall also use several times.

Lemma 5.1. Let h : [0, 1] → [0, 1] be a C1 diffeomorphism. Then h
extends to a real symmetric K-qc map H : C→ C, where

K = exp

{

sup
t∈[0,1]

∣
∣
∣
∣

h ′′(t)
h ′(t)

∣
∣
∣
∣

}

.
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Proof. Without loss of generality, let us assume that h is orientation-
preserving. Let us first extend h to a homeomorphism of the real line by
defining h(x) = x for all x �∈ [0, 1], and then define a homeomorphism H
of the complex plane by H(x, y) = (h(x), y). Direct computation shows
that H is a K -qc map with

K = sup
x∈[0,1]

{

h ′(x), h ′(x)−1
}

.

Take x0 ∈ [0, 1] such that h ′(x0) = 1. Then we have

∣
∣log h ′(x) − log h ′(x0)

∣
∣ =

∣
∣
∣
∣

∫ x

x0

h ′′(t)
h ′(t)

∣
∣
∣
∣
≤ |x − x0| sup

∣
∣
∣
∣

h ′′

h ′

∣
∣
∣
∣
≤ sup

∣
∣
∣
∣

h ′′

h ′

∣
∣
∣
∣
,

and thus the lemma holds. ��
Proposition 5.7. Let f ∈ Fb. Let J ⊂ dom( f ) be an open interval which
does not contain a critical point of f . Then f −1 : f(J) → J extends to
a real symmetric O(|J|)-qc map from C f(J ) to an open set of CJ .

Proof. Let A = CompJ(dom( f )) and let B = Comp f(J )(range( f )).
Assume first that A does not contain a critical point. Let γ0 and γ1

be the orientation-preserving affine homeomorphisms of the real line such
that γ0(J) = γ1( f(J)) = (0, 1). Consider the map F = γ0 ◦ f −1 ◦ γ−1

1 :
[0, 1] → [0, 1]. It follows from the previous lemma that F extends to a real
symmetric K -qc map from C onto itself with

K = exp

{

sup
t∈[0,1]

∣
∣
∣
∣

F ′′(t)
F ′(t)

∣
∣
∣
∣

}

.

Direct computation shows that

F ′′(t)
F ′(t)

= 1

γ ′
1

( f −1)′′(γ−1
1 (t)

)

( f −1)′(γ−1
1 (t)

) = O
(|J|),

and thus the proposition holds.
Now assume that A contains a critical point c of f . Then f |A = Q ◦ φ,

where Q is a quadratic map, and φ is a smooth diffeomorphism defined on A.
Similarly as above, we show that φ−1|φ(J) extends to a real symmetric
O(|J|)-qc map from C onto itself. As the square root function extends
naturally to a conformal map from C f(J ) onto an open set of Cφ(J ), this
proposition follows. ��

For any C1, C2 ≥ 1, we say that a diffeomorphism φ : [−1, 1] →
[−1, 1] is in the class K(C1, C2) if the C1+1/2 norm of φ is at most C1, and
φ−1|(−1, 1) extends to a real symmetric C2-qc map from C(−1,1) into itself.
For any u ∈ [−1/2, 1/2], let Qu(z) = u(z2 − 1) + z. For any v ∈ (0, 2],
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let Pv(z) = v(z2 − 1) + 1. Let SE(C1, C2, k) denote the set of all functions
Φ : [−1, 1] → [−1, 1] which can be written as

Φ = ψm ◦ φm ◦ · · · ◦ ψ2 ◦ φ2 ◦ ψ1 ◦ φ1,

for some m ≤ k, where for each 1 ≤ i ≤ m, φi ∈ K(C1, C2); and ψi = Qui

for some ui ∈ [−1/2, 1/2], or ψi = Pvi for some vi ∈ [1/C1, 2].

Proposition 5.8. For any δ > 0 and b, N ∈ N, there is a constant C > 1
with the following property. For any f ∈ Fb, and any η > 0, there is an
ε > 0 such that the following holds. Let c ∈ Crit( f ). Let G′ = {G′

i}s
i=0 and

G = {Gi}s
i=0 be chains such that Gi ⊂ G′

i , G0 ∩ω(c) �= ∅. Assume that the
intersection multiplicity of G′ is at most N, and that |G′

s| < ε. Moreover,
assume that

(1 + 2δ)Gs ⊂ G′
s, and

∣
∣ f s(G0)

∣
∣ ≥ δ|Gs|.

For any 0 ≤ i ≤ s, let γi be the orientation-preserving homeomorphism of
R such that γi(Gi) = (−1, 1). Then the map

Φ = γs ◦ f s ◦ γ−1
0 : [−1, 1] → [−1, 1]

belongs to the class SE(C, 1 + η, 2Nb).

Proof. Let us fix a constant η > 0 and assume that |G′
s| is small. By

Corollary 3.6,
∑s

i=0 |G′
s| is small. We first consider the case that G′ is

a monotone chain, and prove that Φ ∈ K(C, 1 + η) for some constant
C = C(δ) > 1. By Proposition 5.7, Φ−1 extends to a real symmetric
K -qc map from C(−1,1) into itself with K = 1 + O(

∑s−1
i=0 |Gi |) which is

close to 1. It remains to estimate the C1+1/2-norm of Φ. To this end, take
x, y ∈ G0, and let T ⊂ G′

s be the δ
√|Gs|/(4| f s(x) − f s(y)|)-neighborhood

of ( f s(x), f s(y)). Let {Ti}s
i=0 be the chain with Ts = T and T0 	 x, y. Since

G′
s contains a definite neighborhood of Ts, the map f s|T0 has uniformly

bounded distortion by Lemma 3.5. Thus for all 0 ≤ i ≤ s − 1, we have
that

|Ti|/|Gi | � |T |/|Gs|.

Therefore

s−1∑

i=0

|Ti | �
(

s−1∑

i=0

|Gi |
)

|T |
|Gs| = O





√∣
∣ f s(x) − f s(y)

∣
∣

|Gs|



 .
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So for any intervals U � V ⊂ T0,

B
(

f s(V ), f s(U)
)

B(U, V )
− 1 ≥ −O

(
s−1∑

i=0

| f i(V )|
)

= −O

(
s−1∑

i=0

|Ti |
)

= −O





√∣
∣ f s(x) − f s(y)

∣
∣

|Gs|



 .

Applying Lemma 3.4, we obtain

( f s)′(x)
( f s)′(y)

≤ 1 + C

√∣
∣ f s(x) − f s(y)

∣
∣

|Gs| ,

where C > 1 is a constant depending only on δ > 0. It follows that the
1/2-Hölder norm of Φ′ is uniformly bounded.

Now assume that the chain G′ is not monotone. Let s1 < s be maximal
such that G′

s1
contains a critical point, say c. Then by what we have proved,

the map γs◦ f s−s1−1◦γ−1
s1+1 belongs to the class K(C, 1+η). By Lemma 3.6,

f s−s1−1|Gs1+1 has bounded distortion. Since | f s(G0)|/|Gs| ≥ δ, it follows
that | f s1+1(G0)|/|Gs1+1| can not be too small. Since f(Gs1) ⊃ f s1+1(G0),
this implies that | f(Gs1)|/|Gs1+1| is bounded away from zero, and so
γs1+1 ◦ f ◦ γ−1

s1
∈ SE(C, 1 + η, 1). Moreover, | f s1(G0)|/|Gs1 | is bounded

away from zero, and so the proof of the proposition is completed by induc-
tion on the order of G′. ��

A map Φ : [−1, 1] → [−1, 1] is in the Epstein class if Φ ∈ SE(C, 1, N)
for some C > 1 and N ∈ N. For such a map Φ and for any affine homeo-
morphisms γ , γ̂ of the real axis, we shall also say that the map γ̂ ◦ Φ ◦ γ is
in the Epstein class.

Remark that for any C ≥ 1 and N ∈ N, the family SE(C,∞, N) =
⋃∞

n=1 SE(C, n, N) is compact in the C1 topology. Moreover, for any δ > 0,
the family SE(C, 1 + δ, N) is also compact in the C1 topology, and any
possible limit of a sequence fn ∈ SE(C, 1 + 1/n, N) is contained in the
Epstein class. We shall use the following two lemmas frequently.

Lemma 5.2. For any C > 1, N ∈ N, there is a constant δ > 0 with
the following property. Let Φ : [−1, 1] → [−1, 1] be a map in the class
SE(C,∞, N) and let F = tΦ for some t ∈ [1, C]. Assume that F does
not have a hyperbolic attracting fixed point in (−1, 1). Let c ∈ (−1, 1) be
a critical point of F, i.e., F ′(c) = 0. Then d(F(c), c) ≥ δ. Moreover, if
x ∈ [−1, 1] is a fixed point of F, then d(x, c) ≥ δ.
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Proof. The latter statement follows from the former one since F has
bounded C1+1/2 norm. So it suffices to prove the former one. Arguing by
contradiction, assume that the statement fails. Then for any n ∈ N, we can
find Φn ∈ SE(C,∞, N), tn ∈ [1, C], and cn ∈ (−1, 1) with F ′

n(cn) = 0,
and d(Fn(cn), cn) ≤ 1/n, where Fn = tnΦn . As SE(C,∞, N) is a compact
family in the C1 topology, by passing to a subsequence we may assume
that Φn converges to a map Φ ∈ SE(C,∞, N) in the C1 topology. We may
also assume that tn → t and cn → c. Then Fn → F = tΦ and F(c) = c.
So c is a hyperbolic attracting fixed point of F. Note that d(cn, {−1, 1}) is
bounded away from zero and thus c ∈ (−1, 1). It follows that for n suffi-
ciently large, Fn has a hyperbolic attracting fixed point, which contradicts
our assumption. ��
Lemma 5.3. Let J ⊂ I be intervals and let P : J → I be a map in the
Epstein class with P �= id. If u, v ∈ J are distinct fixed points of P such
that P|(u, v) is monotone, then either 0 ≤ P′(u) < 1 or 0 ≤ P′(v) < 1.

Proof. By an observation of Sullivan ([46]), P has non-positive Schwarzian
derivative. Thus the map P′|[u, v] takes its minimum at either u or v. The
lemma follows easily. ��
5.2. All central cascades are essentially of saddle node type.

Proof of Proposition 5.1. Let 0 < m1 ≤ m be the minimal integer such that
RI0 |I 1 has a critical value which is not contained in Im1 . Below we shall
prove:

(∗) if m1 is sufficiently large, then for some l(δ, ρ, b), (14) holds for all
x ∈ Im1 .

Let us first show how (∗) implies the proposition. Assume first that m1
is large. Note that (∗) implies that RI0 does not have a fixed point in Im1 . By
definition of m1, RI1 does not have a fixed point in I 0 − Im1 either. So I 0 ⊃
I 1 ⊃ · · · ⊃ Im1 is a saddle node central cascade. Now take an arbitrarily
point x ∈ Im . Note that x, RI0(x), R2

I0(x), . . . , Rm−m1
I0 (x) ∈ Im1 lie in order,

and hence |x − Rm−m1
I0 (x)| ≥ (m − m1)l(δ, ρ, b)−1|I 0|. Consequently,

m − m1 ≤ l(δ, ρ, b)

∣
∣x − Rm−m1

I0 (x)
∣
∣

|I 0| ≤ l(δ, ρ, b).

This proves the proposition in the case that m1 is sufficiently large. If m1 is
not large, then by Theorem 2.1, |Im1 |/|Im1+1| is bounded away from 1, and
so we may apply (∗) to the central cascade Im1 ⊃ Im1+1 ⊃ · · · ⊃ Im . As
RI0 |I 1 has at most b critical values, the proposition is proved by repeating
this argument at most b times.

The statement (∗) will be shown by contradiction. Assume that (∗) fails.
Then for each n = 1, 2, . . . , there exists a map fn ∈ Fb such that for any
εn > 0, there exists a maximal central cascade {I j(n)}m(n)

j=0 with respect to
fn around cn ∈ Crit( fn) with the following properties:
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(i) |I 0(n)| < εn;
(ii) I 0(n) ⊃ (1 + 2δ)I 1(n), Λ

fn

I0(n)
≤ ρ;

(iii) m1(n) → ∞ as n → ∞; and
(iv) there exists xn ∈ Im1(n)(n) such that

∣
∣R fn

I0(n)
(xn) − xn

∣
∣

|I 0(n)| → 0, as n → ∞,

where m1(n) is the minimal positive integer such that R fn

I0(n)
has a critical

value not contained in Im1(n)(n).
Let ϕn : I 2(n) → I 1(n) denote the first return map (under fn) of I 2(n)

to I 1(n). Let hn be the orientation-preserving affine homeomorphism of R
such that Ĩ2(n) := hn(I2(n)) = (−1, 1), and let Φn = hn ◦ ϕn ◦ h−1

n . By
assuming εn sufficiently small, it follows from Proposition 5.8 that

∣
∣I 2(n)

∣
∣

∣
∣I 1(n)

∣
∣
Φn ∈ SE

(

C, 1 + 1

n
, b

)

,

where C = C(b, δ) is a constant. Thus after passing to a subsequence,
we may assume that Φn converges in the C1 topology to a map Φ :
Ĩ 1 → Ĩ 0, which is in the Epstein class. The map Φ is even: Φ(z) = Φ(−z),
and it does not have a hyperbolic attracting cycle in (−1, 1) because Φn
does not. Since Φ′(0) = 0, Φ(0) �= 0. Therefore |Im1(n)−1(n)|/|I 1(n)|
and hence |Im1(n)(n)|/|I 1(n)| is bounded away from 0. It follows that
|ϕn(Im1(n)(n))|/|I 1(n)| is bounded away from zero as well.

Claim 1. There is a constant σ > 0, such that for any n ∈ N, we have
∣
∣Im1(n)−1(n)

∣
∣ ≥ (1 + 2σ)

∣
∣Im1(n)(n)

∣
∣.

We may assume that m1(n) > 1. Let un be a critical point of ϕn with
ϕn(un) ∈ Im1(n)−1(n)− Im1(n)(n). Let s be the return time of I 1(n) to I 0(n),
and let 0 ≤ k ≤ s − 1 be the minimal integer such that f k

n (un) = p ∈
Crit( fn). Let J = L fn

p (Im1(n)−1(n)). Then

f s−k
n

(

L fn
p (J)

) ⊂ Im1(n)−1(n) − Im1(n)(n).

Assume that |Im1(n)−1(n)|/|Im1(n)(n)| is close to 1. Then Im1(n)−1(n) −
Im1(n)(n) is tiny compared to I 1(n). Since f s−k

n (J) ⊃ ϕn(Im1(n)(n)), its
length is comparable to that of I 1(n). Since the map f s−k

n |J has uniformly
good distortion, it follows that L fn

p (J) is deep inside J , which contradicts
the hypothesis that ΛI0(n) ≤ ρ. The proof of the claim is completed.

Let us continue the proof of (∗). To fix the notation, let us assume that
ϕn maps ∂I 2(n) to the left endpoint of I 1(n) for all n. Let K−(n) and K+(n)

denote the left and right component of Ĩ 1(n) − Ĩ m1(n)(n) respectively. Let
un ∈ I 2(n) be a critical point of ϕn such that ϕn(un) �∈ Im1(n)(n) and let
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vn ∈ I 2(n) be the critical point of ϕn which is closest to the left endpoint
of I 2(n). Let ũn and ṽn be the corresponding critical points of Φn . We may
assume that ũn → u and ṽn → v as n → ∞. Note that Φ′(u) = Φ′(v) = 0.

Claim 2. For n sufficiently large, we have

Φn(ũn) ∈ K−(n).

Arguing by contradiction, assume that the claim fails. By passing to a sub-
sequence, we may assume that Φn(ũn) ∈ K+(n) for all n. Notice that
Φn(ṽn) ≥ Φn(x) for all x ∈ I 1. So Φn(ṽn) ∈ K+(n). By a straightforward
combinatorial argument, we obtain

· · · ≤ Φ j+1(v) ≤ Φ j(v) ≤ · · · ≤ Φ2(v) ≤ −Φ(v) ≤ v ≤ −v ≤ Φ(v).

Let y = lim j→∞ Φ j(v). Then Φ(y) = y. Since Φ does not have a hyperbolic
attracting fixed point, Φ(v) > v. Let us show that y = −Φ(v). Arguing
by contradiction, assume that y < −Φ(v). Then Φ(−Φ(v)) = Φ(Φ(v)) =
Φ2(v) < −Φ(v). Since Φ(v) > v, it follows that Φ has a fixed point
y′ in the open interval (−Φ(v), v). Notice that Φ is monotone on (y, y′).
Since Φ is in the Epstein class, by Lemma 5.3 we know that either y or
y′ is a hyperbolic attracting fixed point of Φ, which is absurd. This proves
that y = −Φ(v). Therefore −Φ(v) = Φ2(v) = Φ3(v) is a fixed point
of Φ. Since (−Φn(vn),Φ

3
n(vn)) contains a component of Ĩ m1(n)−2(n) −

Ĩ m1(n)−1(n), it follows that | Ĩ m1(n)−2(n)|/| Ĩ m1(n)−1(n)| is close to 1 for all
large n. Consequently, | Ĩ m1(n)−1(n)|/| Ĩ m1(n)(n)| is close to 1 for all large n,
which, however, is ruled out by Claim 1. The proof of Claim 2 is completed.

Therefore, Φn(ũn) ∈ K−(n) for all large n. From this it follows that

u ≥ Φ(u) ≥ Φ2(u) ≥ · · · .

Let y = lim j→∞ Φ j(u). Then Φ(y) = y.
Let us define a point x̃ ′

n for each n ∈ N, such that this point is contained
in the left component of Ĩ m1(n)(n) − {ṽn} and such that Φn(x̃ ′

n) − x̃ ′
n → 0

as n → ∞. This can be done as follows. If Φn has a fixed point in the left
component of Ĩ m1(n)(n)−{ṽn}, then we take x̃ ′

n to be any of such fixed points.
Otherwise, Φn(ṽn) < ṽn . If ṽn −Φn(ṽn) ≥ |x̃n −Φn(x̃n)| (x̃n = hn(xn) and
xn is as in (iv)), then x̃n belongs to the left component of Ĩ m1(n)(n) − {ṽn}
and we take x̃ ′

n = x̃n . If ṽn −Φn(ṽn) < |x̃n −Φn(x̃n)|, then we take x̃ ′
n = ṽn .

It is easy to check that such defined points x̃ ′
n satisfy the requirements stated

at the beginning of this paragraph.
Passing to a subsequence, let us assume that limn→∞ x̃ ′

n exists, and
denote it by x. Then Φ(x) = x ≥ Φ(u). Assume that Φ2(u) < Φ(u).
Then we obtain a non-degenerate interval [y, x] which is mapped by Φ
onto itself monotonically, which is ruled out by Lemma 5.3 again. So
Φ(u) = Φ2(u) = y. As in the proof of Claim 2, this implies that as
n → ∞, |Im1(n)−1(n)|/|Im1(n)| → 1, contradicting Claim 1. The proof of
(∗) is completed. ��
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5.3. “Geometrically deep” implies “combinatorially deep”. Let us prove
Proposition 5.2. We need the following lemma.

Lemma 5.4. Let f ∈ Fb and let c ∈ Crit( f ). Let I 0 ⊃ I 1 ⊃ · · · ⊃ Im be
a central cascade such that I 0 	 c is a small nice interval with ΛI0 ≤ ρ.
Then

|I 0| ≤ ρ′|Im|,
where ρ′ is constant depending only on ρ and b.

Proof. Let δ1 > 0 be the constant as in Lemma 4.2. If I 0 ⊃ (1+δ1/2)I 1, then
the statement follows from Proposition 5.1. So let us assume I 0 ⊂ (1+δ1)I 1.
Let s be the return time of c to I 1. By Lemma 4.2, the chain {G′

j}s
j=0

with G′
s = (1 + 2δ1)I 0 and G′

0 ⊃ I 1 has uniformly bounded intersection
multiplicity. Since f s(c) ∈ Im−1 and since |Im−1| ≤ ρ|Im|, it suffices to
show that d( f s(c), c)/|I 0| is bounded away from zero. So we may assume
that d( f s(c), c)/|I 0| ≤ 1/4. Then | f s(I 1)|/|I 0| is bounded away from zero
because f s(I 1) contains a component of I 0 − { f s(c)}. Let γ0 and γs be
affine homeomorphisms of R such that γ0(I 1) = γs(I 0) = (−1, 1). By
Proposition 5.8, γs ◦ f s ◦ γ−1

0 : [−1, 1] → [−1, 1] belongs to SE(C, 2, N),
where C > 1 and N ∈ N depend only on b (and δ1). As |I 0| ≤ ρ|I 1|,
applying Lemma 5.2, we obtain that d( f s(c), c)/|I 0| is bounded away from
zero. ��
Proof of Proposition 5.2. Let Î = Lc(I ) and Ĵ = Lc(J). Let us first
prove that if | Î |/| Ĵ| is sufficiently large, then for any x ∈ ω(c), Lx( Î)
contains a large neighborhood of Lx( Ĵ). As before, let us write Î 0 = Î , and
Î n+1 = Lc( Î n) for all n ≥ 0. Let m(0) = 0, and let m(1) < m(2) < · · · be
all the positive integers such that RÎm(i)−1(c) �∈ Î m(i). By the previous lemma,
| Î m(i)|/| Î m(i+1)| is uniformly bounded from above. Let k be the maximal non-
negative integer such that Î m(k)

� Ĵ . Then k is large provided that | Î |/| Ĵ| is
sufficiently large. By Theorem 2.1, Î m(i) contains a definite neighborhood
of Î m(i)+1. By Theorem 3.3, Lx( Î m(i)+1) is well inside Lx( Î m(i)) for all i.
Thus Lx( Ĵ) ⊂ Lx( Î m(k)) is deep inside Lx( Î).

Let us now prove the proposition in the case d = 1. Of course, we may
assume that J does not contain c. Let y be an arbitrary point in ω(c)∩ Ĵ, and
s the entry time of Ĵ to J . Then f s(Ly( Ĵ)) ⊂ L f s(y)( Ĵ) since f i(y) �∈ Ĵ
for all 1 ≤ i ≤ s. Arguing by contradiction, assume that | Î |/| Ĵ| is large.
Then L f s(y)( Ĵ) is deep inside L f s(y)( Î). As

L f s(y)( Î) ⊂ L f s(y)(I ) ⊂ J,

it follows that L f s(y)( Ĵ) is deep inside J . By Lemma 3.6, Ly( Ĵ) is deep
inside Ĵ . In particular, λ Ĵ is large, which contradicts the hypothesis that
ΛK < ρ.
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To deal with the case d > 1, let y0 be a point in ω(c) ∩ J , and define
Ti = Li

y0
(I ) for all i ≥ 0. Let d′ < d be maximal such that J ⊂ Td′ . Then

by what we have proved above, |Lc(Ti)|/|Lc(Ti+1)| is uniformly bounded
from above for any i, and so is |Lc(Td′)|/|Lc(J)| as well. Thus | Î |/| Ĵ| is
bounded from above. ��

5.4. Geometry of a nest. In this subsection, we prove Theorems 5.4 and
5.5.

Proof of Theorem 5.4. By Proposition 5.1, I l ⊃ I l+1 ⊃ · · · ⊃ Im−l is
a saddle node central cascade. Without loss of generality, assume that
RIl |I l+1 contains the left component of I l − I l+1. For each i, let ai be
the left endpoint of I i and let a′

i = f(ai). Consider the diffeomorphism
f s : (a′

m−l, a′
l+1) → (a′

m−l−1, a′
l). By Lemma 3.7, this map has negative

Schwarzian. By Proposition 5.1, |am−l − am−l−1|/|I 0| is bounded away
from zero, and thus so is |a′

m−l − a′
m−l−1|/|a′

m−l − a′
l|. By Theorem 2.1

and by the assumption ΛI ≤ ρ, |al − al+1|/|I 0| is bounded away from
zero, and thus so is |a′

l − a′
l+1|/|a′

l − a′
m−l|. By Yoccoz’s lemma (see [10]

Sect. 4.1 and Appendix B), it follows that |a′
i − a′

i+1|/|a′
l − a′

m−l|, and thus
|ai − ai+1|/|al − am−l| is comparable to (min(i − l, m − l − i) + 1)−2, for
all l ≤ i ≤ m − l − 1. This proves the first statement.

Now let us prove the second statement. Take a point x ∈ (I i − I i+1) ∩
ω(c) for some 0 ≤ i ≤ l, and let P be the component of I i − Cl(I i+1)
containing x. Then P is a nice interval. Arguing by contradiction, assume
that RIi (x) ∈ I q − Im−q for a large q. Since (∂I q ∪ ∂Im−q) ∩ DP = ∅,
we have RIi (Lx(P)) ⊂ LRIi (x)(P) ⊂ I q − Im−q . By the first statement of
this theorem, this implies that LRIi (x)(P) is deep inside I i . By Lemma 3.6,
it follows that Lx(P) is deep inside Lx(I i) ⊂ P, which is ruled out by
Corollary 5.3. ��
Proposition 5.9. Let f ∈ Fb and let c ∈ Crit( f ). For any δ > 0 and ρ > 1,
there are ε = ε(δ, ρ, f ) > 0 and C = η(δ, ρ, b) > 0 with the following
property. Let I 	 c be a symmetric nice interval such that |I | < ε, ΛI < ρ,
and I ⊃ (1 + 2δ)I 1. Then

(1) each component of DI1 is C-commensurable to |I 1|;
(2) I 2 has C-bounded geometry.

Proof. (1) Let J be a component of DI1 . If |J|/|I 1| were small, then J
would be deep inside in I 0 := I , which is ruled out by Corollary 5.3.

(2) Since
⋃∞

n=0 f n(∂I 1) ∩ I 0 = ∅, each component of DI1 is compactly
contained in I 1. Let us first prove that each component J of I 1 − DI1 with
∂J ∩ ∂I 1 �= ∅ is commensurable to I 1. To see this, let J1 be the component
of DI1 which has a common endpoint with J . By the first statement of this
proposition, |J1|/|I 1| is bounded away from zero. By Theorem 2.1, so is
|J|/|J1|. Therefore |J|/|I 1| is bounded away from zero.
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It follows that there exists a constant σ = σ(δ, ρ, b) > 0 such that
(

I 1 − (1 − 2σ)I 1) ∩ ω(c) = ∅.

By choosing σ smaller, Lemma 3.6 implies that for any component J of DI1 ,
(

J − (1 − 2σ)J
) ∩ ω(c) = ∅.

In particular, this holds for J = I 2. Moreover, this implies that a definite
neighborhood of I 2 is disjoint from ω(c) − I 2.

Now let J be a component of I 2 − ∂DI2 . We need to prove that |J|/|I 2|
is bounded away from zero. If J ⊂ DI2 , then this follows from the first
statement of this proposition since |I 1|/|I 2| is also bounded away from 1
by Theorem 2.1. If J is a component of I 2 − DI2 with ∂J ∩ ∂I 2 �= ∅, then
this follows from a similar argument as above.

So let us assume that ∂J ∩ ∂I 2 = ∅. Let J1 and J2 be the components
of DI2 which have common boundary points with J . Let si be the return
times of Ji to I 2. Without loss of generality, assume s1 ≤ s2. Let K ⊂ I 1

be a definite neighborhood of I 2 such that K − I 2 is disjoint from ω(c).
Let {K j}s2

j=0 be the chain with Ks2 = K and K0 ⊃ J2. Then by Lemma 3.8,
the order and the intersection multiplicity of this chain are both bounded
from above. Thus, by Lemma 3.6, K0 contains a definite neighborhood of
J2. It suffices to show that K0 is disjoint from J1. Arguing by contradiction,
assume that there exists x ∈ K0 ∩ J1. Notice that for any 0 ≤ j ≤ s2 − 1,
K j ⊂ DI1 , and hence K j ∩ I 2 = ∅ since f j(J2) ∩ I 2 = ∅. It follows that
s1 = s2 and f s2(x) ∈ I 2. But this is absurd because f s2|K0 has all its critical
points in J2. ��
Proof of Theorem 5.5. By Theorems 2.1 and 5.4, |I n−2|/|I n−1| is bounded
away from 1, which implies that I n has uniformly bounded geometry by
Proposition 5.9. ��

5.5. Initial geometry of infinitely renormalizable maps. Let us now con-
sider a map f ∈ Fb which is infinitely renormalizable. Let c be a critical
point of f , and let Bn, An , En , etc. be defined as before (above Sect. 5.1).

The goal of this subsection is to prove Theorem 5.6. Together with the
control of the geometry of the nests A0

n ⊃ A1
n ⊃ · · · which connect two con-

secutive renormalization levels, this will give us a satisfactory description
of the geometric properties of f .

If Lc(An) = An , then An = Bn+1, and sn+1 = 2sn . In this case, we say
that the n-th renormalization of f is immediately renormalizable, and define
χn = −1. In all other cases, let χn be the height of An , that is, the number
of positive integers m such that RAm−1

n
(c) �∈ Am

n . Moreover, let mn(0) = 0
and let mn(1) < mn(2) < · · · < mn(χn) be all the positive integers such
that

RAmn (i)−1
n

(c) �∈ Amn (i)
n .
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The integer χn will be referred to as the height of the n-th renormalization
of f .

Lemma 5.5. There is a constant δ = δ(b) > 0 such that for all n sufficiently
large, the δ-neighborhood of Bn does not contain f i(Bn) for any 1 ≤ i ≤
sn − 1. Moreover, if G = {G j}sn

j=0 is the chain with Gsk = (1 + 2δ)Bn and
G0 ⊃ Bn, then

• G has intersection multiplicity at most 4; and
• f sn does not have a critical point in G0 − Bn.

Proof. (cf. Proposition 3.2 in [42]) The first statement follows from the
“shortest interval argument”. Let 1 ≤ k ≤ sn be such that | f k(Bn)| =
minsn

i=1 | f i(Bn)|. Let M be the 1/2-neighborhood of f k(Bn). Then for any
1 ≤ i ≤ sn with i �= k, f i(Bn) �⊂ M. LetM = {M j}k

j=0 be the chain with
Mk = M and M0 ⊃ Bn. Let us prove that the order of this chain is uniformly
bounded from above. Let M′ = {M′

j}k
j=0 be the chain with M′

k = f k(Bn)

and M′
0 ⊃ B0. As the intervals M′

j , 1 ≤ j ≤ k are pairwise disjoint, the
order of M′ is uniformly bounded from above. If there is a critical point
c′ ∈ M j − M′

j for some 0 ≤ j ≤ k −1, then M j − M′
j contains a component

of Lc′(Bn)−{c′}, and thus Mk − M′
k contains f k− j(Lc′(Bn)) which is of the

form f i(Bn), contradicting the choice of Mk. This proves that the oder of
M coincides with that ofM′, and thus it is uniformly bounded from above.
By Lemma 3.6, M0 ⊃ (1 + 2δ)Bn for some δ = δ(b) > 0. Obviously, for
any 1 ≤ i ≤ sn − 1, f i(Bn) �⊂ M0.

Let us consider the chainG. Using a similar argument as above, we prove
that f sn does not have a critical point in G0 − Bn. To show the intersection
multiplicity is at most 4, first note that for any 1 ≤ i, j ≤ sn with i �= j,
G j �⊃ f i(Bn). Assume that there are 1 ≤ j0 < j1 < j2 < j3 ≤ sn such that
G j0 ∩G j1 ∩G j2 ∩G j3 contains a point, say x. Then there are 0 ≤ l < m ≤ 3
such that x �∈ f jl(Bn) ∪ f jm(Bn) and such that f jl(Bn) and f jm(Bn) are
on the same side of x. It follows that G jl ⊃ f jm(Bn) or G jm ⊃ f jl(Bn);
a contradiction. ��
Lemma 5.6. For any k ∈ N, there exists a constant C = C(k, b) > 1 such
that for all n sufficiently large, if u is a critical point of f ksn |Cl(Bn) and x
is a fixed point of f ksn |Cl(Bn), then

∣
∣ f ksn (u) − u

∣
∣ ≥ |Bn|/C, and |u − x| ≥ |Bn|/C.

Proof. Let us fix a large positive integer n. Let δ > 0 is as in the previous
lemma, and let Tn = (1+2δ)Bn , Sn = CompBn

( f −sn(Tn)). Then f sn |Sn does
not have a critical point in Sn−Bn. It follows that Sn ⊂ Tn because otherwise
f sn would have an attracting fixed point in Sn − Bn, which contradicts
Theorem 3.2.

Let G′ = {G′
j}ksn

j=0 and G = {G j}ksn
j=0 be the chains with G′

ksn
= Tn ,

Gksn = Bn and G′
0 ⊃ G0 = Bn. Then G′

ksn
⊃ G′

(k−1)sn
⊃ · · · G′

sn
⊃ G′

0.
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By the previous lemma, for each 1 ≤ i ≤ k, the subchain {G′
j}isn

j=(i−1)sn
has

intersection multiplicity ≤ 4. Thus the intersection multiplicity of G′ is at
most 4k.

Let h : R→ R be an affine homeomorphism so that h(Bn) = (−1, 1),
and let Φ = h ◦ f sn ◦ h−1|[−1, 1]. By Proposition 5.8, there exist C′ > 1
and N0 ∈ N such that Φ ∈ SE(C ′, 2, N0). Applying Lemma 5.2 completes
the proof. ��
Lemma 5.7. There exists a constant δ = δ(b) ∈ (0, 1), such that for all n
sufficiently large, if χn ≥ 0, then each component of An − A1

n has length at
least δ|Bn|. Moreover, (1 + 2δ)Bn+1 − Bn+1 is disjoint from ω(c).

Proof. Let U be the component of An − A1
n which contains αn in its closure.

To prove the former statement, it suffices to show that |U|/|Bn| is bounded
away from zero. Note that the return time of U to An is 2sn . If f 2sn |U is
not monotone, then Cl(U) contains a critical point of f 2sn |Bn, as well as
a fixed point, αn, of this map, so the statement follows from Lemma 5.6.
If f 2sn |U is monotone, then f 2sn(U) = An . By Lemma 5.6, |An |/|Bn| is
bounded away from zero. By Lemma 4.3, f sn |Bn has uniformly bounded
derivative. The statement follows.

Now let us show that a definite neighborhood of Bn+1 is disjoint from
ω(c)− Bn+1. Since Amn (χn)

n − Bn+1 is disjoint from ω(c), it suffices to show
that Amn (χn)

n contains a definite neighborhood of Amn (χn)+1
n . If χn = 0, this

is just the former statement which we have proved. If χn > 0, then this
follows from Theorem 2.1. ��
Lemma 5.8. For any ρ > 1 and any non-negative integer k, there exists
a constant C = C(ρ, k, b) > 0 such that if n is a sufficiently large positive
integer and if ΛEn < ρ, then each component of Bn − f −ksn(αn) has length
at least |Bn|/C.

Proof. Note that inbetween αn and βn, f sn has a critical point, and thus by
Lemma 5.6, |βn −αn|/|Bn| is bounded from zero. Since f sn((αn, τ(βn))) ⊃
(αn, βn), and since f sn |Bn has uniformly bounded derivative,
|αn − τ(βn)|/|Bn| is also bounded away from zero.

Let (x, y) be a component of Bn − f −ksn(αn). If f ksn |(x, y) is monotone,
then f ksn ((x, y)) is a component of Bn −{αn}, which has length comparable
to |Bn|. Again because f sn |Bn has uniformly bounded derivative, |x −
y|/|Bn| is not very small. Now assume that f ksn |(x, y) is not monotone. Let
0 ≤ i ≤ ksn − 1 be minimal such that f i([x, y]) contains a critical point c′
of f .

If i = 0, then c′ = c. Let I = Compc(Bn − {αn}). Notice that both
I and (x, y) belong to M(Bn − {αn}), and that Dep(I, (x, y)) ≤ k. By
Corollary 5.3, (x, y) cannot be deep inside I . As both components of I −{c}
have length comparable to |Bn|, it follows that |y−x|/|Bn| is bounded away
from zero. If i > 0, let B′

n = Lc′(Bn) and α′
n = f i(αn). Let x ′ = f i(x),

y′ = f i(y), and let I ′ = Compc′(B′
n − α′

n). Then the same argument as
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above shows that |y′ − x ′|/|B′
n| is bounded away from zero, which implies

that so is |y − x|/|Bn|. ��
Proposition 5.10. Let f ∈ Fb and c ∈ Crit( f ) be as above. For any ρ > 0,
there exist δ = δ(ρ, b) > 0 and N = N(ρ, b) ∈ N such that for any
sufficiently large n ∈ N with ΛEn < ρ, the following hold.

(i) For any x ∈ ω(c) ∩ (Bn − (xn, τ(xn))), there is m ≤ N with f m(x) ∈
(xn, τ(xn)).

(ii) ((1 + 2δ)Bn − (1 − 2δ)Bn) ∩ ω(c) = ∅.
(iii) If moreover χn ≥ 0 or ΛEn+1 < ρ, then ((1 + 2δ)An − (1 − 2δ)An) ∩

ω(c) = ∅.

Proof. (i) Notice that f sn maps (βn, xn) diffeomorphically onto the interval
(βn, αn). Define y0 = αn, y1 = xn , and yi ∈ (βn, xn) to be such that
f sn(yi) = yi−1 for all i ≥ 2. Let us first prove the following

Claim. There exists µ = µ(b) ∈ (0, 1) such that

|yi − yi−1| ≤ µi |Bn|,
provided that n is large enough.

Let T +
n be the component of (1 + 2δ)Bn − Bn which contains βn , where

δ is as in Lemma 5.5. Let H0 = T +
n ∪ [βn, αn) ⊂ (1 + 2δ)Bn. Let Hi

be the component of f −isn (H0) which contains βn . Consider the chain
{G j}sn

j=0 with Gsn = H0 and G0 = H1. This is a monotone chain with
intersection multiplicity bounded by 4. By Lemma 5.6, H0 contains a definite
neighborhood of [βn, y1], and so by Lemma 3.5, H1 contains a definite
neighborhood of [βn, y2]. For i ≥ 1, consider the map f isn : f(Hi+1) →
f(H1), which is a diffeomorphism with negative Schwarzian by Lemma 3.7.
Since f isn ( f([βn, yi+2])) ⊂ [βn, f(y2)] is well inside f(H1), it follows that
f(Hi+1) contains a definite neighborhood of f(βn, yi+2), and thus |βn −
yi+1|/|βn − yi| is bounded away from 1. The claim follows.

Let m be the maximal positive integer (if it exists) such that (ym, ym+1)∪
(τ(ym), τ(ym+1)) intersects ω(c). (If such an integer does not exist, then
we have nothing to show.) It suffices to show that m is not very large.
Arguing by contradiction, assume that m is large. Let us show that this
contradicts the assumption ΛEn ≤ ρ. To this end, let k ∈ N be such that
f ksn(c) ∈ (ym, ym+1) ∪ (τ(ym), τ(ym+1)). Then by the maximality of m,
z := f (k−1)sn(c) ∈ (xn, τ(xn)). Let K = Compz(En). Notice that

f sn
(

Lz(K )
) ⊂ (ym, ym+1) ∪ (τ(ym), τ(ym+1)

)

.

It follows that |Lz(K )|/|Bn| is small. On the other hand, for each component
L of K − {z}, f sn(L) ⊃ ( f sn(z), αn) is commensurable to Bn, and thus
|L|/|Bn| is bounded away from zero. Therefore Lz(K ) is deep inside K ,
which is a contradiction by Corollary 5.3.



342 W. Shen

(ii) The statement (Bn−(1−2δ)Bn)∩ω(c) = ∅ follows from (i). Let us prove
that ω(c) cannot be too close to Bn from outside either. If χn−1 ≥ 0, then this
follows from Lemma 5.7. Assume that χn−1 = −1, then Bn = An−1. Let
B′

n = L f sn−1 (c)(Bn). Then ω(c) ∩ Bn−1 ⊂ Bn ∪ B′
n. Since |Bn| � |B′

n| and
since the convex hull of B′

n ∩ ω(c) is well inside B′
n, the statement follows.

(iii) If χn = −1, then An = Bn+1, so the statement follows from (ii). Now
let us turn to the case that χn ≥ 0.

Let U0 = An , and for j ≥ 0, let U j+1 be the return domain to U j which
has αn in its closure. Then the return time of U j+1 to U j is always 2sn .
Notice that U1 �	 c since χn ≥ 0. We claim that f 2sn |U2 is monotone. To
see this, assume that f 2sn |U1 is not monotone and let u be the critical point
of f 2sn |U1 which is closest to αn . Then we have f 2sn(U1) = [ f 2sn(u), αn).
Since ω(u) 	 c, f 2sn(u) �∈ U1, and thus U2 ⊂ (αn, u), which implies the
claim.

To complete the proof, we shall prove that there exists a positive integer
N = N(ρ, b) such that UN ∩ω(c) = ∅. This is enough because |UN |/|Bn| is
bounded from below by a positive constant (depending on N) and because
f sn reverses the orientation at αn.

First let us show that there exists µ = µ(b) ∈ (0, 1) such that |U j |/|Bn| ≤
µ j holds for all j ≥ 0. To see this, we observe that f 2sn |Bn has a a critical
point on the opposite side of αn to c. Let a be such a critical point which
is closest to αn . By Lemma 5.6, |a − αn|/|Bn| is uniformly bounded away
from zero. Note that ( f 2sn(a), αn) 	 a for otherwise f sn |Bn would have
a periodic attractor. Let H0 = (a, αn] ∪ U0 and for i ≥ 1, let Hi denote the
component of f −2isn (H0) which contains αn. Clearly, H0 contains a definite
neighborhood of U2. Arguing as in the proof of the claim in (i), we obtain
that |U j |/|Bn| decreases exponentially fast.

Let m be the maximal non-negative integer such that Um ∩ ω(c) �= ∅.
Arguing by contradiction, assume that m is very large. Then Um is contained
in a tiny neighborhood of αn . Let

P =
∞⋃

i=0

f isn (∂U2), and X = Bn − P.

Then P 	 αn is an f sn -invariant finite set and X is a nice open set. Let
X0 = U2 ∪ f sn(U2) which is a union of components of X. Let r ≥ 2 be
a positive integer such that f rsn(c) ∈ Um . If both f (r−1)sn(c) and f (r−2)sn(c)
are contained in X0, then we have f (r−2)sn(c) ∈ Um+1, which is ruled out by
the maximality of m. So there is a maximal integer r ′ such that r−2 ≤ r ′ < r
and such that y = f r′sn(c) is contained in a component X1 of X − X0. Note
that f sn(Ly(X1)) is contained in Um or f sn(Um+1) according to r − r ′ = 1
or not. This implies that Ly(X1) is contained in a small neighborhood of
a point in ( f sn |Bn)

−1(αn). Finally, let X ′
1 = CompX1

(Bn − X0). Noting
∂X ′

1 ∩ ( f sn |Bn)
−1(αn) = ∅, and L5

x(X ′
1) ⊂ Lx(X1), we obtain that L5

x(X ′
1)

is deep inside X ′
1; a contradiction. ��
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Proof of Theorem 5.6. Let I be a component of En . Since ΛEn and ΛEn+1

are both uniformly bounded, it follows from Lemma 5.7 and the previous
proposition that there exists δ > 0 such that

|I | ≥ δ|Bn|, and
(

(1 + 2δ)I − (1 − 2δ)I
) ∩ ω(c) = ∅.

By choosing δ smaller, we may assume that I ′ := (1 + 2δ)I satisfies the
following property: ∂En ∩ I ′ ⊂ ∂I .

Let J be a component of I − ∂DI . We need to show that |J|/|I | is
bounded away from 0. If J ⊂ DI , then this is true for otherwise J would be
deep inside I , which is ruled out by Corollary 5.3. Now let us assume that
J is a component of I − DI .

Case 1. ∂J ∩ ∂I �= ∅. Let z be the common endpoint of I and J . Assume
first that z ∈ {αn, βn}. Then DI has a component J0 with ∂J0 	 z. Moreover,
the return time of J0 to I is either sn or 2sn . Note that |RI (J0)|/|I | is not
small, because if RI |J0 is monotone, then RI (J0) = I , and otherwise, RI (J)
contains a point of ω(c). Since f sn |Bn has uniformly bounded derivative,
it follows that |J0|/|I | is bounded away from zero. Since J ⊃ J0, |J|/|I |
is bounded away from zero. Now we assume that z �∈ {αn, βn}. Let J1 be
the component of DI which has a common endpoint with J . Let r be the
return time of J1 to I . Consider the chain {I ′

i }r
i=0 with I ′

r = I ′ as above
and I ′

0 ⊃ J1. By Lemma 3.8, this chain has intersection multiplicity at
most 4, and thus by Lemma 3.6, I ′

0 contains a definite neighborhood of J1.
If I ′

0 �⊃ Cl(J), then |J|/|J1| is bounded away from zero, and thus we are
done. Assume I ′

0 ⊃ Cl(J). Then z ∈ I ′
0, and hence f r(z) ∈ I ′ = I ′

r . Let
ζ := f sn(z) ∈ {αn, βn}. Note that r is a multiple of sn , and hence f r(z) = ζ ,
which implies that ζ ∈ I ′. By our choice of I ′, ζ ∈ ∂I . As βn and τ(βn)
belong to different components of En , we have ζ = αn and I = (αn, z).
Therefore DI has a component J0 with ∂J0 ∩ ∂I = {z}, and the return time
of J0 to I is either sn or 2sn . As above, we show that |J|/|I | ≥ |J0|/|I | is
bounded away from zero.

Case 2. ∂J ∩ ∂I = ∅. Then there are two components J1 and J2 of DI such
that ∂J ∩ ∂Ji �= ∅, i = 1, 2. Let ri be the return time of Ji to I . Without
loss of generality, assume that r1 ≤ r2. Let I ′ be as above, and consider
the chain {I ′

i }r2
i=0 with I ′

r2
= I ′ and I ′

0 ⊃ J2. Then as before, I ′
0 contains

a definite neighborhood of J2. It suffices to show that J1 ∩ I ′
0 = ∅. Arguing

by contradiction, assume that there is a point y ∈ ∂J1 ∩ I ′
0. Let y′ �= y be the

other endpoint of J . Since f r2 does not have a critical point in I ′
0 − J2, we

must have r1 < r2. Note that r2 − r1 is a multiple of sn . Since f r1(y) ∈ ∂I ,
f r2(y) = αn or βn . Since f r2(y) ∈ I ′, by the choice of I ′, it is contained in
the boundary of I . But f r2(y′) ∈ ∂I , and f r2(J2) ⊂ I , so f r2(y) �∈ Cl(I ),
a contradiction. ��

For later use, let us include the following lemma to conclude this sub-
section.

Lemma 5.9. Assume χn ≥ 0. Then f 3sn has a critical point in An − A1
n .
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Proof. Let k ∈ N be such that RAn |A1
n = f ksn |A1

n . If k = 1, then f sn

has a critical point in An − A1
n , because f sn(∂A1

n) ⊂ ∂An and because
f sn reverses the orientation at αn . Now assume that k ≥ 2. Let U be the
component of DAn such that U ⊂ An , and ∂U 	 αn. The return time of U
to An under f is 2sn . Since χn ≥ 0, U ∩ A1

n = ∅. If f 2sn |U is monotone,
then f 2sn(U) = An 	 c, and thus f 3sn |U has a critical point. ��

5.6. Negative Schwarzian derivative property of real box mappings.

Proposition 5.11. Let f ∈ Fb. If f has essentially bounded geometry, or
if f is infinitely renormalizable, then the real box mapping BI associated
to a sufficiently small symmetric nice interval I has negative Schwarzian
derivative.

Proof. Let c ∈ Crit( f ). Let us first show that there exist C > 1 and δ > 0
such that we can find an arbitrarily small symmetric nice interval I 	 c with
the following properties:

• each component of dom(BI ) ∩ I has length at least |I |/C;
• ((1 + 2δ)I − I ) ∩ ω(c) = ∅.

If f is finitely renormalizable, then for a sufficiently small symmetric
nice interval K , there are infinitely many positive integers n such that
RKn display non-central returns. By Theorem 2.1, Kn+1 contains a definite
neighborhood of Kn+2, and so by Proposition 5.9, the statement holds. Let
us now consider the case that f is infinitely renormalizable. In this case, it
suffices to show that there are infinitely many properly periodic intervals
Bn+1 which have definite neighborhoods disjoint from ω(c)− Bn+1. If there
are infinitely many n such that χn ≥ 0, then this follows from Lemma 5.7. If
χn = −1 for all large n, then ΛEn = 1 for all large En , and so the assertion
follows from Proposition 5.10 (ii).

Now fix a small symmetric nice interval I with these properties. Let J
be a component of dom(BI ) and let V be the component of DI ∪ I which
contains BI (J). Write BI |J = f k|J . Then for any x ∈ J , we have

S f k−1( f(x)
) =

k−2
∑

i=0

S f
(

f i+1(x)
)(

( f i)′( f(x)
))2

.

Let {Ji}k
i=0 be the chain with Jk = V and J0 = J . Provided that I is

sufficiently small, f i : J1 → Ji+1 has distortion bounded by a constant
C1 = C1(δ) > 1 for each 0 ≤ i ≤ k − 1. Therefore,

S f k−1
(

f(x)
) ≤ C2

1|J1|−2 sup
y∈dom( f )

S f(y)
k∑

i=1

|Ji|2.
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Since the Ji’s are pairwise disjoint,
∑k

i=1 |Ji |2 is small (provided that |I | is
small). As S f is uniformly bounded from above, this implies that

S f k−1
(

f(x)
) ≤ o(1)

1

|J1|2 .

Let a ∈ Crit( f ) be the critical point closest to J . Then d(a, J) ≤ C|J|,
and so S f(x) � − 1

(x−a)2 for all x ∈ J . Thus

S f k(x) = S f k−1( f(x)
)

f ′(x)2 + S f(x) < 0.

So far we have proved that f has a small symmetric nice interval I 	 c
such that the associated real box mapping BI has negative Schwarzian
derivative. For any symmetric nice interval I ′ ⊂ I , each branch of BI ′ is
a restriction of iterates of BI , and hence has negative Schwarzian derivative
as well. ��

6. A rigidity theorem

In this section, we shall prove the following rigidity theorem:

Theorem 2. If f : (
⋃m

j=0 Jj)∪ (
⋃b−1

i=1 Ii) →⋃b−1
i=0 Ii and f̃ : (

⋃m
j=0 J̃ j)∪

(
⋃b−1

i=1 Ĩi) →⋃b−1
i=0 Ĩi are two combinatorially equivalent maps in Gb which

have essentially bounded geometry, then they are qs conjugate between
the postcritical sets, that is, there is a qs map h : R → R such that for
any 0 ≤ i ≤ b − 1 and any n ∈ N ∪ {0}, we have h( f n(ci)) = f̃ n(c̃i),
where ci (c̃i , respectively) is the critical point of f ( f̃ , respectively) in Ii (Ĩi ,
respectively).

The proof of the theorem uses a purely real argument. The idea goes back
to Sullivan’s proof of rigidity for real quadratic Feigenbaum maps, where the
maps automatically have bounded geometry, [46]. Roughly speaking, the
postcritical set of f can be written as the intersection of a nested sequence
E1 ⊃ E2 ⊃ · · · of combinatorially defined open sets. The essentially
bounded geometry condition will enable us to find a C-qs map ϕ : J → J̃
for each k and each component J of Ek , which maps J ∩ Ek+1 to Ẽk+1 ∩ J̃ ,
where C is a constant independent of J . These maps can in fact be chosen
appropriately to satisfy additional conditions, and can then be “glued” to
provide a qs conjugacy between the postcritical sets. However, the presence
of long central cascades makes the argument somewhat complicated.

By Proposition 5.11, we may assume that both of f and f̃ have negative
Schwarzian derivative. Let Λ be an upper bound for the scaling factors of
all symmetric nice intervals with respect to either f or f̃ .

We shall first show that these two maps are topologically conjugate, by
a well-known pull back argument. See Sect. 6.1.
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Lemma 6.1. Let f and f̃ be two maps in Gb which are combinatorially
equivalent. Then they are topologically equivalent.

Then we fix a topological conjugacy between f and f̃ , and denote it
by h. For any X ⊂ ⋃b−1

i=0 Ii , set X̃ = h(X). Similarly, for any x ∈ ⋃b−1
i=0 Ii ,

set x̃ = h(x).
For any interval I ⊂ range( f ) and any U ⊂ I , define

∆0(I, U) = max

{ |I |
|J| : J is a component of I − ∂U, and ∂J ∩ ∂I �= ∅

}

,

and let Q(I, U) be the set of all qs maps φ : I → Ĩ , such that φ = h on
∂I ∪ ∂U . For any φ ∈ Q(I, U), let αφ(I, U) be the minimal number Q ≥ 1
such that

• for any u, v,w ∈ I with u < v < w and v − u = w − v,

1

Q
≤ φ(w) − φ(v)

φ(v) − φ(u)
≤ Q;(16)

• for any a ∈ ∂I , and any x ∈ I ,

1

Q

∣
∣φ(I )

∣
∣

|I | ≤ φ(x) − φ(a)

x − a
≤ Q

∣
∣φ(I )

∣
∣

|I | ;(17)

• if J is a component of U consisting of more than one point (i.e., J is
a non-degenerate interval), then for any a ∈ ∂J , and any x ∈ int(J),

1

Q

∣
∣φ(J)

∣
∣

|J| ≤ φ(x) − φ(a)

x − a
≤ Q

∣
∣φ(J)

∣
∣

|J| .(18)

Moreover, let

∆1(I, U) = inf
φ∈Q(I,U )

αφ(I, U),

and

∆(I, U) = max
(

∆0(I, U),∆1(I, U)
)

.

Given a nice interval I with respect to f , define

Q(I ) =
∞⋂

n=1

⋃

x∈ω(c)∩I

Ln
x(I ).

Note that if I does not contain a properly periodic interval, then QI =
ω(c) ∩ I ; otherwise, QI is the union of maximal properly periodic intervals
which are contained in I . The main step is to prove the following proposition,
see Sect. 6.4.
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Proposition 6.1. For any C > 1, there exists C′ = C(C, f, f̃ ) > 1, such
that if both I and Ĩ have C-bounded geometry with respect to f and f̃
respectively (see Definition 5.2), then ∆(I, QI ) ≤ C ′.

This will complete the proof of Theorem 2 in the case that f is finitely
renormalizable. In the infinitely renormalizable case, together with the con-
trol of the initial geometry for renormalizations, as proved in Sect. 5.5, this
implies the following corollary.

Corollary 6.2. Assume that f (and so f̃ ) is infinitely renormalizable. Then
there exists C > 1 such that for any n,

∆(Bn, EBn+1) ≤ C,

where Bn is a symmetric properly periodic interval as in Sect. 5.5, and EBn+1

is the union of all components of DBn+1 which intersect the critical orbits
of f .

Then the proof of Theorem 2 is completed by the following gluing
lemma, which will be proved in Sect. 6.2.

Lemma 6.2. (“Gluing” lemma). Let C > 1 be a constant. Let I be an
open interval in the range of f . Let I = T0 ⊃ T1 ⊃ · · · Tn be a sequence
of subsets of I such that each Ti is a finite union of disjoint open intervals.
Assume that for any 0 ≤ i < n, and any component P of Ti , the following
hold: (i) ∆(P, Ti+1 ∩ P) ≤ C; (ii) if J is a component of P − ∂Ti+1 with
∂J ∩ ∂P �= ∅, then either J ∩ Ti+1 = ∅ or J ⊂ Tn. Then

∆(I, Tn) ≤ C ′,

where C′ is a constant depending only on C (independent of n).

To show Proposition 6.1, we introduce an object, called an admissible
triple, defined as follows:

Definition 6.1. Let f ∈ Gb and let c ∈ Crit( f ). A triple I = (I, U, V ) of
open sets is called admissible (with respect to f ) if the following hold:

(1) I is a nice interval;
(2) U � I is a nice open set with U ∩ ω(c) �= ∅ and ∂U ∩ DI = ∅;
(3) V is the union of all components of DI ∩ I which intersect ω(c) − U .

The critical set Crit(I) of the admissible triple I is defined as follows.
For each component J of V , let {G J

j }s(J )
j=0 denote the f -chain with G J

s(J ) = I
and G J

0 = J , where s(J) is the return time of J to I (under f ). Then

Crit(I) = Crit( f ) ∩
(⋃

J

s(J )−1
⋃

j=0

G J
j

)

,(19)

where J runs over all components of V .
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For any C > 1, we say that the triple I has C-bounded geometry if
((1 + 1/C)I − (1 + 1/C)−1 I ) ∩ ω(c) = ∅, and if each component of
I − ∂U ∪ ∂V has length at least |I |/C.

Furthermore, for any admissible triple I = (I, U, V ), we defineW(I) to
be the union of all components of DU which intersect ω(c) ∩ V .

In Sect. 6.4, we shall prove the following proposition by induction on
#Crit(I), which is the key step to Proposition 6.1. Some preparation for the
proof is done in Sect. 6.3.

Proposition 6.3. Let f and f̃ be as in Theorem 2. For any C > 1, there
exists C1 = C1(C, f, f̃ ) > 1 such that the following holds. Let I = (I, U, V )

be an admissible triple with respect to f . Assume that I and Ĩ have C-
bounded geometry with respect to f and f̃ respectively. Then ∆(I, U ∪
W(I)) ≤ C1.

6.1. Topological conjugacy.

Proof of Lemma 6.1. Let A = R− dom( f ), C = ⋃

c∈Crit( f )

⋃∞
n=0{ f n(c)},

and let Ã, C̃ be the corresponding objects for f̃ . Let h0 : R→ R be a combi-
natorial equivalence between f and f̃ . Then there exists a homeomorphism
h1 : R→ R such that h1 = h0 on A and such that f̃ ◦ h1 = h0 ◦ f holds
on dom( f ). Moreover, h1 = h0 on C, and so it is again a combinatorial
equivalence between f and f̃ . Repeating the argument by replacing h0 with
h1, and so on, we obtain a sequence of homeomorphisms hk : R→ R such
that for any k ≥ 0, the following hold:

• f̃ ◦ hk+1 = hk ◦ f holds on dom( f );
• hk+1 = hk on

⋃k
i=0 f −i(A ∪ C).

Since f does not have no periodic attractor, the set X = ⋃b−1
i=0 Ii −

⋃∞
k=1 f −k(A ∪ C) does not contain an interval. Similarly, X̃ = ⋃b−1

i=1 Ĩi −
⋃∞

k=1 f̃ −k( Ã ∪ C̃) does not contain an interval either. Thus there exists
a homeomorphism h : R→ R which coincides with hk on f −k(A ∪ C) for
all k ∈ N, which gives a topological conjugacy between f and f̃ . ��

6.2. Gluing lemma.

Proof of Lemma 6.2. For each 0 ≤ i ≤ n and each component P of Ti , let
h P be a map inQ(P, P ∩Ti+1) with αh P (P, Ti+1 ∩ P) ≤ C, where Tn+1 = ∅;
moreover, in the case that P ⊂ Ti+1 or i = n, we take h P to be affine. Let
φ : I → Ĩ be the homeomorphism such that for any 0 ≤ i ≤ n and any
x ∈ Ti − Ti+1, φ(x) = h P(x), where P = Compx(Ti). Let us prove that
αφ(I, Tn) is bounded from above. Notice that (17) and (18) obviously hold
for an appropriate choice of the constant Q. So it suffices to prove that φ is
a qs map with a bound on the dilatation.
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Claim. There exists a constant C1 = C1(C) > 1 with the following prop-
erty. For any 0 ≤ i ≤ n − 1 and any component P of Ti , if u, v ∈ P and
[u, v] �⊂ Ti+1, then

1

C1
≤

∣
∣φ(v) − φ(u)

∣
∣

∣
∣h P(v) − h P(u)

∣
∣

≤ C1.(20)

To prove this claim, we only need to consider the case that either u or v is
contained in the boundary of Ti+1 and (u, v) ⊂ P − ∂Ti+1, since the general
case can be reduced to this one. Let K be the component of P − ∂Ti+1
which contains (u, v). If K �⊂ Ti+1, then φ(u) = h P(u) and φ(v) = h P(v),
and thus the inequality (20) holds. So we may assume K ⊂ Ti+1. By the
property of the map h P, we have

∣
∣h P(v) − h P(u)

∣
∣

|v − u| �
∣
∣h(K )

∣
∣

|K | .

So it suffices to show that
∣
∣φ(v) − φ(u)

∣
∣

|v − u| �
∣
∣h(K )

∣
∣

|K | .(21)

To see this, let us distinguish two cases.

Case 1. |v − u| ≤ |K |/C. Then (u, v) ⊂ K − ∂Ti+2 by the hypothesis (i).
Let L be the component of K −∂Ti+2 which contains u, v. If L �⊂ Ti+2, then
φ = hK on L , and hence (21) follows from the property of hK . If L ⊂ Ti+2,
then by condition (ii), either i + 2 = n or L ⊂ Ti+3. By construction,
φ|L = hL is affine, and so

|φ(v) − φ(u)| = |v − u||h(L)|/|L|.
Since |L| � |K | and |h(L)| � |h(K )|, (21) follows.

Case 2. |v − u|/|K | ≥ C−1. For definiteness, assume that u ∈ ∂K and
u < v. Let v′ = u + C−1|K |. Then by what we have proved in Case 1,

|φ(v′) − φ(u)| � |v′ − u||h(K )|/|K | = |h(K )|/C.

Since |φ(v′) − φ(u)| ≤ |φ(v) − φ(u)| ≤ |h(K )|, (21) follows again. The
proof of Claim 1 is completed.

Now let u < v < w be three points in I with w − v = v − u. Let us
show that

A := φ(w) − φ(v)

φ(v) − φ(u)

is bounded from above by a constant.
To this end, let 0 ≤ i ≤ n be maximal such that u, v,w are contained

in a component of Ti . Without loss of generality, let us assume i = 0. Let
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h0 = hT0 . By Claim 1, we may assume that one of the intervals [u, v]
and [v,w] is contained in T1. To fix the notation, let us assume that [u, v] is
contained in a component P of T1. Then w �∈ P. By Claim 1, |φ(w)−φ(v)| �
|h0(w) − h0(v)|. So it suffices to show that

∣
∣φ(v) − φ(u)

∣
∣ � ∣∣h0(v) − h0(u)

∣
∣.(22)

Let v′ > v be an endpoint of P. We first assume that (v′ −v)/|P| is very
small. If |v′ −v|/|v−u| is also small, then |h0(v

′)−h0(v)|/|h0(v
′)−h0(u)|

is very small. By Claim 1, |φ(v′) − φ(u)| � |h0(v
′) − h0(u)|, and |φ(v′) −

φ(v)| � |h0(v
′) − h0(v)|. The inequality (22) follows. If |v′ − v|/|v − u|

is not small, then we have |v′ − u| ≤ |P|/C. Let P2 be the component of
P − ∂T2 which contains (u, v′). If P2 �⊂ T2, then

∣
∣φ(u) − φ(v)

∣
∣ = ∣∣hP(u) − hP(v)

∣
∣ � ∣∣hP(v) − hP(v′)

∣
∣

� ∣∣h0(v) − h0(v
′)
∣
∣

� ∣∣h0(u) − h0(v)
∣
∣.

In the case P2 ⊂ T2, we have |φ(u) − φ(v)| = |h P2(u) − h P2(v)|, and so
(22) can be proved in a similar way.

Now let us assume that |v′−v| � |P|. Since |v−u| = |w−v| ≥ |v′−v|,
it follows that |v − u| � |P|. Let 1 ≤ k ≤ n be the minimal integer such
that [u, v] �⊂ Tk+1 and denote by Pi the component of Ti which contains
[u, v] for all 0 ≤ i ≤ k. Let 1 ≤ m ≤ k be minimal such that Pk = Pm .
By the assumption (i), |Pi |/|Pi+1| ≥ 1 + C−1 for all 1 ≤ i < m. Since
Pm = Pk ⊃ [u, v] which is commensurable to P = P1, m is uniformly
bounded from above. If m = k, then [u, v] �⊂ Tm+1, and thus by the claim
above,

∣
∣φ(v) − φ(u)

∣
∣ � ∣∣h Pm (v) − h Pm (u)

∣
∣.(23)

If m < k, then by the assumption (ii), Pm = Pm+1, which implies that
φ|Pm = h Pm , and hence (23) holds as well. Since |P1| � |P2| � · · · �
|Pm | � |v − u|, since all the maps h Pi are C-qs, (22) follows easily. ��

6.3. Creating new triples. In this subsection, let f ∈ Gb and let c ∈
Crit( f ).

Let I = (I, U, V ) be an admissible triple. For any component I ′ of
DI with I ′ ∩ ω(c) �= ∅, I ′ ∩ U = ∅, there exists a new triple P (I, I ′) =
(I ′, U ′, V ′), where U ′ is the union of components J of DU∪I ′ which inter-
sect I ′ ∩ ω(c) and satisfy RU∪I ′(J) ⊂ U and V ′ is the union of all other
components of DU∪I ′ intersecting I ′ ∩ ω(c). (Notice that U ∪ I ′ is a nice
open set.) It is clear that P (I, I ′) is again an admissible triple.

Lemma 6.3. For any C > 1, there is C′ > 1 such that if the triple
I = (I, U, V ) is admissible and has C-bounded geometry, and if I ′ is
a component of DI with I ′ ∩ ω(c) �= ∅, I ′ ∩ U = ∅, then I′ = P (I, I ′) has
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C ′-bounded geometry. Moreover, if r is the entry time of I ′ to I under f ,
and {Gi}r

i=0 is the f -chain with Gr = I and G0 = I ′, then

Crit(I′) ⊂ Crit(I) ∪
( r−1⋃

i=0

Gi

)

.(24)

Remark 6.1. If I ′ appears as one of the intervals G J
j , 0 ≤ j ≤ sJ −1 in (19),

then
⋃r−1

i=0 Gi ⊂⋃sJ−1
j=0 G J

j , and hence Crit(I′) ⊂ Crit(I). In particular, it is
the case if I ′ = Lc′(I ) for some c′ ∈ Crit(I).

Proof of Lemma 6.3. Let us write I′ = (I ′, U ′, V ′). Let T be the union of
components of V which are components of DI ′ ∪ I ′. For any x ∈ ω(c) ∩
I ′, let k = k(x) be the minimal positive integer such that Rk

I (x) belongs
to a component A of U ∪ T . Then the pull back of A along the orbit
{x, f(x), . . . , Rk

I (x)} is exactly Compx(U
′ ∪ V ′). It follows easily from this

observation that (24) holds.
By assumption, (1 + 1/C)I − (1 + 1/C)−1 I is disjoint from ω(c). By

Lemmas 3.8 and 3.6, there exists δ = δ(C) > 0, such that for any entry
domain M to I , we have

(

(1 + 2δ)M − (1 − 2δ)M
) ∩ ω(c) = ∅.(25)

It follows that for any x ∈ M ∩ω(c), we have |Lx(M)| � |M|, because oth-
erwise Lx(M) would be deep inside M, which contradicts the assumption
that f has essentially bounded geometry by Corollary 5.3. In particular, the
length of each component of U ′ ∪ V ′ is comparable to |I ′| since it contains
an interval of the form Lx(I ′) with x ∈ I ′ ∩ ω(c). To complete the proof of
this lemma, it remains to show that for any non-degenerate component J of
I ′ − U ′ ∪ V ′, |J|/|I ′| is not so small. To this end, we first prove

Claim. For any component M of DI , and any x ∈ ω(c) ∩ M, if L is
a component of M − Lx(U ∪ T ), then |L|/|M| is uniformly bounded away
from zero.

As above, let k = k(x) be the minimal positive integer such that Rk
I (x) ∈

U ∪ T . Let Hk denote the component of U ∪ T which contains Rk
I (x), and

let Hi = LRi(x)(U ∪ T ) = LRi (x)(Hk) for any 1 ≤ i ≤ k − 1.
Let us prove that for any ξ > 0 there exists ξ ′ > 0 such that if (1 +

2ξ)Hi ⊂ I holds for some 1 ≤ i ≤ k, then each component of M −
Lx(U∪ T ) has length ≥ ξ ′|M|. In fact, by Theorem 3.3, there exists ξ ′′ > 0
such that M ⊃ (1 + 2ξ ′′)Lx(U ∪ T ). Together with (25), this implies the
statement.

If ∂Hk ∩ ∂I = ∅, then it follows from the bounded geometry property of
I that I contains a definite neighborhood of Hk, and thus the claim holds.
Assume ∂Hk ∩ ∂I �= ∅. Let Yk−1 = LRk−1

I (x)(I ). Let us prove that each
component P of Yk−1 − Hk−1 is commensurable to Yk−1. In fact, since the
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first entry map RI |Yk−1 has uniformly good distortion, it suffices to show
that |RI (P)|/|I | is bounded away from zero. But RI (P) is either equal to
I or it is bounded by an endpoint of I and a point in ω(c) ∩ I , and so this
follows from the bounded geometry property of I.

In particular, the claim holds if k = 1. Assume k ≥ 2. In this case, by
what we have proved above, either ∂Hk−1 ∩ ∂I �= ∅ or I contains a definite
neighborhood of Hk−1. As we have already proved, the claim holds in the
latter case. Let us consider the former case. Let Yk−2 = LRk−2

I (x)(I ). Then by
a similar argument as above, we prove that each component of Yk−2 − Hk−2
is commensurable to Yk−2, and in particular, the claim holds if k = 2. If
k ≥ 3 and Hk−i ∩ ∂I �= ∅ for i = 0, 1, then Hk−2 is well inside I since it is
disjoint from Hk ∪ Hk−1, and thus the claim follows again. The proof of the
claim is completed.

Let us continue the proof of this lemma. Let J be a non-degenerate
component of I ′ − U ′ ∪ V ′ with ∂J ∩ ∂I ′ �= ∅. Let J1 be the component of
U ′ ∪ V ′ with ∂J1 ∩ ∂J �= ∅. Then J is a component of I ′ − J1, and so by
the claim above, |J|/|J1| is bounded away from zero. Since |J1|/|I ′| is also
bounded away from zero, so is |J|/|I ′|.

Now let J be a non-degenerate component of I ′ − U ′ ∪ V ′ with
∂J ∩∂I ′ = ∅. Then there are two distinct components J1, J2 of U ′ ∪ V ′ such
that ∂J ∩ ∂Ji �= ∅, i = 1, 2. Let ni ∈ N be the entry time of Ji to U ∪ I ′
under f , i = 1, 2. Let us assume n1 ≤ n2. To show that |J|/|I ′| is bounded
away from zero, it suffices to show that |J|/|J2| is not small.

Let m ∈ N be the minimal positive integer such that Rm
I (J2) ⊂ U ∪ T .

Let Pi be the component of U ∪V which contains Ri
I (J2) for any 1 ≤ i ≤ m.

Then for all 1 ≤ i ≤ m − 1, we have Pi ⊂ V − T . Let 1 ≤ m1 ≤ m be
minimal such that

J1 �⊂ CompJ2

(

(Rm1
I )−1(Pm1)

)

.(26)

Such an integer m1 exists since J2 = CompJ2
((Rm

I )−1(Pm)) is disjoint from
J1. Let q be the positive integer such that Rm1

I |J2 = f q|J2. By the minimality
of m1, we have

f q(J1) = Rm1
I (J1) ⊂ I.

Let Qm1 = Comp f q(J1)
(U ∪V ). Let P = Pm1 if m1 = m and L f q(J2)(U ∪T )

otherwise. Let Q = Qm1 if Qm1 ⊂ U ∪ T , and L f q(J1)(U ∪ T ) otherwise.
From the bounded geometry property of I, it follows that there is a def-

inite neighborhood P′ of P which is disjoint from ω(c) − P. Consider the
chain {G′

j}q
j=0 with G′

q = P′ and G′
0 ⊃ J2. Then by Lemmas 3.8 and 3.6, G′

0

contains a definite neighborhood of J2. So we may assume that G′
0 ∩ J1 �= ∅.

Since f q|G′
0 has all its critical points in J2 and since ∂J1 ∩ ∂J2 = ∅, it fol-

lows that ∂P∩∂Q = ∅. By the claim above, this implies that dist(P, Q)/|P|
is bounded from zero. Thus there is a definite neighborhood P′′ of P which
is contained in P′ and disjoint from Q. Applying Lemmas 3.8 and 3.6 to
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the chain {G′′
j }q

j=0 with Gq = P′′ and G′′
0 ⊃ J2, we see that G′′

0 contains
a definite neighborhood of J2. As G′′

0 ∩ J1 = ∅, it follows that |J|/|J2| is
not small. ��
Corollary 6.4. If I is a nice interval which has C-bounded geometry, and
if I ′ is a component of DI which intersects ω(c), then I ′ has C′-bounded
geometry.

Proof. Let U be a component of DI which is also contained in DI ′ . Such
a component exists since ω(c) ∩ I ′ �= ∅. Let V be all other components of
DI ∩I intersecting ω(c). Applying the previous proposition to the admissible
triple (I, U, V ), we see that P (I, I ′) = (I ′, U ′, V ′) has bounded geometry.
Noticing that U ′ ∪ V ′ is exactly DI ′ , the corollary follows. ��

6.4. The main step. Throughout this subsection, let f and f̃ be as in
Theorem 2. Our goal is to prove Proposition 6.3. We are going to use the
following lemma frequently.

For any C > 1, let UC denote the collection of open intervals I contained
in the range of f with the property that (1+1/C)I −(1+1/C)−1 I is disjoint
from the critical orbits of f . Similarly we define ŨC .

Lemma 6.4. For each C > 1 and p ∈ N, there exists a constant C′ =
C ′(C, p) > 1 with the following property. Let I be an open interval, and
let U ⊂ I be an open set. Let {Ii}s

i=0 be a chain with Is = I , and let
U0 = f −s(U) ∩ I0. Assume that I and each component of U belong to UC,
and that Ĩ and each component of Ũ belong to ŨC. If the order of the chain
{Ii}s

i=0 is not greater than p, and if ∆(I, U) ≤ C, then

(i) I0 and each component of U0 belong to UC′;
(ii) Ĩ0 and each component of Ũ0 belong to ŨC′;

(iii) ∆(I0, U0) ≤ C ′.

Proof. The first and second statements follow from Lemma 3.6. An upper
bound on ∆0(I0, U0) also follows from that lemma.

To check that ∆1(I0, U0) is bounded, let φ : (I, U) → ( Ĩ , Ũ) be a map in
Q(I, U), with αφ(I, U) = ∆1(I, U). We only need to treat the case where
the chain {Ii}s

i=0 is monotone and the case where s = 1 and I0 contains
a critical point, since the general case then follows by induction. If the chain
{Ii} is monotone, then φ0 = ( f̃ s| Ĩ0)

−1 ◦ φ ◦ f s|I0 ∈ Q(I0, U0). Since the
diffeomorphisms f s|I0 and f̃ s| Ĩ0 have bounded distortion, αφ0(I0, U0) is of
order αφ(I, U). Thus ∆1(I0, U0) is bounded from above. Now assume that
s = 1 and I0 contains a critical point, say c. Let J be the component of
U which contains f(c). By assumption, f(c) ( f̃ (c̃), respectively) divides J
( J̃ , respectively) into two commensurable parts. Since φ is a C-qs map,
φ( f(c)) divides J̃ into commensurable parts as well. Thus there is a diffeo-
morphism ψ of Ĩ , with bounded distortion, such that ψ(φ( f(c))) = f̃ (c̃),
and such that ψ = id outside J̃ . The map ψ ◦ φ belongs to Q(I, U),
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and αψ◦φ is again bounded. By pulling back this map, we define a map
φ0 ∈ Q(I0, U0). It is not difficult to check that αφ0(I0, U0) is bounded, and
thus so is ∆1(I0, U0). ��
Proof of Proposition 6.3. We shall prove this proposition by induction on
#Crit(I).

Starting step. Assume that #Crit(I) = 0. Then for each component J of V ,
RI : J → I is a diffeomorphism, where RI is the first return map under f
to I . For any n ∈ N, let

Sn = {x ∈ I : Rk
I (x) ∈ V for all 0 ≤ k ≤ n

}

,

and

S′
n = {x ∈ I : Rk

I (x) ∈ V for all 0 ≤ k ≤ n − 1, and Rn
I (x) ∈ U

}

.

For each component J of Sn, Rn+1
I |J : J → I is a diffeomorphism, with

bounded distortion (since it extends to a diffeomorphism onto (1 + 1/C)I
with negative Schwarzian). By the bounded geometry of the configuration
(I, U ∪ V ), there exist constants 0 < µ1 < µ2 < 1 depending only on C,
such that for any component J ′ of Sn ∪ S′

n,

µn+1
1 ≤ |J ′|/|I | ≤ µn+1

2 .

Thus, for each n, ∆(I, Sn ∪ (
⋃n

i=0 S′
n)) is bounded by a constant depending

on C and n. So it suffices to show that there exists p = p(C, f ) ∈ N such
that Sp ∩ ω(c) = ∅.

To this end, let n be the maximal non-negative integer such that Sn has
a component J which intersects ω(c). Arguing by contradiction, assume
that n is large. Then |J|/|I | is small and thus J is deep inside I , since
I − (1 + 1/C)−1 I is disjoint from ω(c).

Let us show that this contradicts the hypothesis that f has essentially
bounded geometry. Let x be an arbitrary point in U ∩ ω(c). Let 0 = s0 <
s1 < s2 < · · · be all the nonnegative integers such that Rsk

I (x) ∈ U . Let s be
the minimal positive integer such that Rs

I (x) ∈ J . Such an s exists because
ω(x) = ω(c) 	 x. Let k be maximal such that sk < s, and write z = Rsk

I (x),
w = Rsk+1

I (x). Note that RI (Lz(U)) ⊂ Lw(U), and Rs−sk−1
I (Lw(U)) ⊂ J .

Since the pull back of I along the orbit {w, f(w), . . . , Rs
I (x)} is monotone,

Lw(U) is deep inside I . The chain corresponding to RI |Lz(I ) has bounded
order, and thus Lz(U) is deep inside Lz(I ) ⊂ U , which is ruled out by
Corollary 5.3.

Induction step. Let N be a positive integer and assume that the proposition
holds in the case #Crit(I) < N. We shall prove it in the case #Crit(I) = N.
For that purpose, we shall first prove the following proposition.
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Proposition 6.5. For any C > 1, there exists C′ > 1 with the following
property. Let I = (I, U, V ) be an admissible triple such that I is a sym-
metric nice interval which contains a critical point c, #Crit(I) = N, and
Crit(I) 	 c. Assume that I and I have C-bounded geometry with respect to
f and f̃ respectively. Then ∆(I, U ∪W(I)) ≤ C′.

Proof. Let L = Lc(U). Since U contains a component of DI , L contains an
interval from M(I ). Therefore, there exists a maximal non-negative integer
n ≥ 0 such that I n

� L . Note that L ⊂ I 1, so if n = 0, then I 1 = L . In this
case, the proposition follows from the induction hypothesis, applying to the
triple (I, U ∪ I 1, V − I 1). So let us assume that n ≥ 1. Let m(0) = 0 and
let m(1) < m(2) < · · · < m(k) be all the positive integers which are not
greater than n and satisfy RIm(i)−1(c) �∈ Im(i), 1 ≤ i ≤ k. Note that m(k) = n,
and let m(k + 1) = n + 1.

Lemma 6.5. There exists N = N( f ) such that k ≤ N( f ).

Proof. By Theorems 2.1 and 3.3, Lc(Im( j)+1) is uniformly well inside
Lc(Im( j)) for each 1 ≤ j ≤ k − 1. Let J be an arbitrary component of U .
By Proposition 5.2, Lc(J) ⊂ L is commensurable to Lc(I ) = I 1, and so k
is bounded. ��

Let Li = I i for each 0 ≤ i ≤ n, and let Ln+1 = L . For each 1 ≤ i ≤
n + 1, let Ri denote the first entry map to U ∪ Li under f , and let Si denote
the union of all the components of U ∪ Li ∪ DU∪Li which intersect ω(c)∩ I .
Let U0 := U , V0 := V and I0 := I. For each 0 ≤ i ≤ n − 1, inductively
define

Ii+1 := P (Ii, I i+1) = (I i+1, Ui+1, Vi+1).

By maximality of n, Li+1 ⊂ Vi for all 0 ≤ i ≤ n − 1 and L ⊂ Un. For each
0 ≤ i ≤ n, let U ′

i = Ui ∪ Li+1 and V ′
i = Vi − Li+1, let I′i = (I i, U ′

i , V ′
i )

and let Wi = W(I′i). Then U ′
i ∪ Wi = Si+1 ∩ I i . By Lemma 6.3 (see also

Remark 6.1), for each 0 ≤ i ≤ n−1, we have Crit(Ii+1) ⊂ Crit(Ii). Thus for
each 0 ≤ i ≤ n, Crit(I′i) ⊂ Crit(Ii) − {c} ⊂ Crit(I) − {c}, and in particular,

#Crit(I′i) ≤ N − 1.

Lemma 6.6. For any q ∈ N, there exists Cq > 1 such that for any 0 ≤ i ≤
min{q, n}, the following hold:

(1) ∆(I, Si+1) ≤ Cq;
(2) the triple Ii has Cq-bounded geometry.

Proof. The second statement follows from Lemma 6.3 by induction on i.
Moreover by induction hypothesis applying to the triples I′i , it follows that
for each 0 ≤ i ≤ min(q, n), ∆(I i, Si+1 ∩ I i) = ∆(I i, U ′

i ∪ Wi) is bounded
from above by a constant depending only on C and q.
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To prove that ∆(I, Si+1) is bounded from above we shall apply
Lemma 6.2. Set T0 = I , and Ti = Si for 1 ≤ i ≤ min(q, n) + 1. To
check the conditions in that lemma, fix an i ≤ min(q, n), and let P be
a component of Si. Let us first show that ∆(P, Si+1) is bounded from above.
This is true for P = I i as checked above, and also true if Ri(P) ⊂ U since
in this case, P ⊂ Si+1. The only remaining case is that P is an entry domain
to I i , when the claim follows from Lemma 6.4. Now let us check the second
condition. To this end, let J be an outermost component of P − ∂Si+1, and
assume that it is a component of Si+1. Note that Li+1 is compactly contained
in Li , and hence Ri+1(J) ⊂ U . It follows that J ⊂ Sj for all j ≥ i + 1.
So both of the conditions in Lemma 6.2 are satisfied, and the proof of this
lemma is completed. ��
Lemma 6.7. There exists C ′ > 1 such that

(1) ∆(I, Sm(1)) ≤ C ′;
(2) the triple Im(1) has C′-bounded geometry.

Proof. Let l = l(C−1,Λ, b) be as in Proposition 5.1. By Lemma 6.6, we
may assume that m(1) is large. In particular, we may assume that m(1) > 3l
and that I is so small that Proposition 5.1 applies. Then we have a saddle
node central cascade

I l ⊃ I l+1 ⊃ · · · Im(1)−l.

It suffices to show that

(i) ∆(I l, Sm(1)−l ∩ I l) is uniformly bounded;
(ii) the triple Im(1)−l has uniformly bounded geometry.

In fact, assume that these two statements are true, then by the previous
lemma, we see that both of Im(1) and ∆(I l, Sm(1) ∩ I l) are bounded. Set
T0 = I , T1 = Sl, and T 2 = Sm(1). Arguing similarly as in the proof of
the previous lemma, we see that these open sets satisfy the conditions in
Lemma 6.2, and thus ∆(I, Sm(1)) is uniformly bounded.

To prove (i) and (ii), let P be the interior of the component of I l − I l+1

which is contained in RI0(I l+1). Note that P ∪ Im(1)−l is a nice open set.
Let U ′ = P ∩ Ul, and V ′ = P ∩ Vl. Let X0 be the union of the components
J of DP∪Im(1)−l which intersect V ′ ∩ ω(c) such that R(J) ⊂ Im(1)−l, where
R denotes the first entry map (under f ) to Im(1)−l ∪ P and DP∪Im(1)−l is the
domain of R. Let X = X0 ∪ U ′, and let Y be the union of components J of
DP∪Im(1)−l which intersect V ′ ∩ ω(c) such that R(J) ⊂ P.

Notice that for each x ∈ ω(c) ∩ V ′, if RIl (x) ∈ I i − I i+1 for some
l ≤ i ≤ m(1) − l − 1, then Compx(X0 ∪ Y ) ⊂ Y , and it is a component of
(RIl )−1(I i − I i+1); if RIl (x) ∈ Im(1)−l, then Compx(X0 ∪ Y ) ⊂ X0, and it
is a component of (RIl )−1(Im(1)−l). Moreover, if RIl (x) ∈ I i − I i+1, then
max(l − i, m(1) − l − i) can not be too large by Theorem 5.4. It follows
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easily from these observations that (P, X, Y ) is an admissible triple with
uniformly bounded geometry and

Crit(P, X, Y ) ⊂ Crit(I′l).

Similarly, we show that (P̃, X̃, Ỹ ) is an admissible triple with uniformly
bounded geometry for f̃ . Let Z = W((P, X, Y )). Then by the induction
hypothesis, ∆(P, X ∪ Z) = ∆(P, Sm(1)−l) is uniformly bounded.

Let J be a component of I i−1 − I i for any l + 1 ≤ i ≤ m(1) − l. Let
us show that ∆(J, J ∩ Sm(1)−l) is uniformly bounded. For J = P this has
been verified above. If J is the other component of I l − I l+1, then this
follows from symmetry. In all other cases, this follows from the fact that
Ri−l−1

0 : J → P and R̃i−l−1
0 : J̃ → P̃ are diffeomorphisms with uniformly

bounded distortion.
Let T0 = I l, T1 = T0−⋃m−l

i=l ∂I i , and T2 = Sm(1)−l∩ I l. By Theorem 5.4,
∆(T0, T1) is uniformly bounded. By Lemma 6.2, it follows that ∆(I l, I l ∩
Sm(1)−l) is bounded. This completes the proof of (i).

Finally, let us prove (ii). Let A be the union of components K of
DIm(1)−l∪P such that K ∩ Im(1)−l ∩ ω(c) �= ∅ and RIm(1)−l∪P(K ) ⊂ Im(1)−l,
and let B be the union of all other components of DIm(1)−l∪P which in-
tersect Im(1)−l ∩ ω(c). Notice that each component of A is a component
of (RI )

−1(Im(1)−l), and each component of B is a component of
(RI )

−1(Im(1)−l−1− Im(1)−l). Thus (Im(1)−l, B, A) is an admissible triple with
uniformly bounded geometry. By Lemma 6.3, for any component K of B,
P ((P, X, Y ), K ) has uniformly bounded geometry. By construction, neither
component of Y can be an entry domain to K , and so P ((P, X, Y ), K ) =
(K, (Um(1)−l ∪ Vm(1)−l) ∩ K,∅). The statement (ii) follows. ��

Applying Lemma 6.7 to the triple Im(1), and so on, we prove that
∆(Im(i)−1, Sm(i)) is uniformly bounded for all 0 ≤ i ≤ k + 1. Here we
use the fact that k is uniformly bounded. Applying Lemma 6.2 once again,
we conclude that ∆(I, U ∪W(I)) = ∆(I, Sn+1) is bounded. The proof of
Proposition 6.5 is completed. ��
Completion of the induction step. Let us consider a triple I = (I, U, V ) with
Crit(I) = N. Let c be a critical point of f which is contained in Crit(I), let
I ′ = Lc(I ), and let I′ := P (I, I ′) = (I ′, U ′, V ′). By Remark 6.1, Crit(I′) ⊂
Crit(I). Note that for any x ∈ ω(c) ∩ I ′, Compx(U

′ ∪W(I′)) = Lx(U).
Let EU denote the union of components of DU which intersect ω(c). By
Proposition 6.5, ∆(I ′, EU ∩ I ′) is bounded.

For each component J of V , there is a minimal non-negative integer j
such that f j(J) is a component of DI which contains a critical point in
Crit(I). Moreover, the diffeomorphisms f j|J and f̃ j | J̃ have uniformly
bounded distortion. Since f j maps each component of EU ∩ J onto a com-
ponent of EU ∩ f j(J), it follows that ∆(J, EU ∩ J) is bounded. Finally,
setting T0 = I , T1 = U ∪ V , and T2 =W(I)∪U , and applying Lemma 6.2,
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we conclude that ∆(I, U ∪W(I) is uniformly bounded. The proof of the
induction step, and thus the proof of Proposition 6.3 is completed. ��
Proof of Proposition 6.1. Let us first consider the case that I is a symmetric
nice interval. Let m(0) = 0, and m(1) < m(2) < · · · be all the positive
integers such that RIm(i)−1 displays a non-central return. Let χ = χI be the
height of I , i.e., the number of all the positive integers m(i). The height χ
is finite if and only if T(I ) := ⋂

n I n is a properly periodic interval. For
n = 0, 1, . . . , let Sn denote the union of all the components of I n ∪ DIn

which intersect ω(c) ∩ I . Then D0 ⊃ D1 ⊃ · · · .
By Theorem 5.5, the intervals Im(i), 0 ≤ i ≤ χ, have uniformly bounded

geometry. Using the same argument as in the proof of Lemma 6.7, but
replacing the induction hypothesis with Proposition 6.3, we prove that there
exists a constant C ′ such that for any 0 ≤ i ≤ χ − 1, ∆(Im(i), Sm(i+1) ∩
Im(i)) ≤ C ′. By Lemma 6.4, there exists a constant C′′ such that for any
other component P of Sm(i), ∆(P, Sm(i+1) ∩ P) ≤ C ′′. By Lemma 6.2, there
exists a C-qs map φ : I → Ĩ , which coincides with h on

⋃

n ∂Sn.
If T(I ) = {c}, then for any x ∈ ω(c)∩I , we have

⋂∞
n=0 Compx(Sn) ={x}.

So φ is a map in the class Q(I, QI ) and αψ(I, QI ) is bounded.
Assume now that T(I ) is a properly periodic interval of f . Note that each

component of QI is well inside a component of Dm(χ). So by redefining the
map φ in the open set Sm(χ) appropriately, we can obtain a map ψ ∈ Q(I, QI )
with a bound on αψ(I, QI ).

Now let us consider the general case. Let U be the union of components
of DI on which the first return map RI is not monotone, and let V be the
other components of DI . Note that U �= ∅. Applying Proposition 6.3 to the
triple (I, U, V ), we see that ∆(I, W ) is uniformly bounded, where W is the
union of components of U∪DU intersecting ω(c)∩ I . For each component J
of U , there exists a minimal integer j ≥ 0 such that J ′ = f j(J) is a critical
return domain to I . Then J ′ is a symmetric nice interval, so by what we
have proved above, ∆(J ′, QJ ′) is uniformly bounded. As f j |J and f̃ j | J̃
are diffeomorphisms with bounded distortion, this implies that ∆(J, QJ )
is uniformly bounded. Note that QJ = QI ∩ J , and so ∆(J, QI ∩ J) is
uniformly bounded. For each component of W − U , the corresponding
statement remains true by Lemma 6.4. By Lemma 6.2, the proposition
follows. ��
6.5. Completion of the proof of Theorem 2.

Proof of Theorem 2 in the finitely renormalizable case. Let c be a critical
point of f , and let I 	 c be a sufficiently small symmetric nice interval such
that T(I ) = ⋂∞

i=0 I i = {c}. By Proposition 6.1, for each component U of
DI ∪ I which intersects ω(c), there exists a qs map φU : U → Ũ such that
for each n ∈ N with f n(c) ∈ U , we have φU( f n(c)) = f̃ n(c̃). As there are
only finitely many such components U , there exists a qs homeomorphism
φ of the real line which coincides with φU on U for each U . This map φ is
the partial conjugacy as desired. ��
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Now we turn to the proof of Theorem 2 in the case that f is infinitely
renormalizable. Let c be a critical point of f , and let sn, αn, Bn, An, En be
as defined in Sect. 5.5.

Proposition 6.6. Assume that f is infinitely renormalizable. Then there is
a C > 1 such that for any n, ∆(Bn, EBn+1 ∩ Bn) ≤ C.

Proof. We distinguish two cases.

Case 1. An is a properly periodic interval of f . That is, the n-th renormaliza-
tion f sn : Bn → Bn is immediately renormalizable. In this case, EBn+1 ∩ Bn
consists of two adjacent intervals. Each of them is commensurable to, and
well inside in I . The same holds for the objects with tilde. So the proposition
holds.

Case 2. An is not properly periodic. Then by Theorem 5.6, each component
J of En has uniformly bounded geometry. By Proposition 6.1, it follows that
∆(J, EBn+1 ∩ J) is uniformly bounded. Thus ∆(Bn, EBn+1 ∩ Bn) is uniformly
bounded. ��
Proof of Theorem 2 in the infinitely renormalizable case. By Lemma 6.2,
it suffices to prove that for any n and any component P of EBn , ∆(P, P ∩
EBn+1) is uniformly bounded. If P = Bn, then this has been proved by
Proposition 6.6. For any other component, this follows from Theorem 5.6
and Lemma 6.4. ��

7. Background in complex analysis

7.1. Poincaré disks and the Schwarz lemma. For an open interval I , we
defineCI = C− (R− I ). This is a simply connected Riemann surface con-
formally equivalent to the upper half plane H, and thus carries a hyperbolic
metric. For any θ ∈ (0, π), we define the Poincaré disk Dθ(I ) by

Dθ(I ) = {z ∈ CI : d(z, I ) < log tan(π/2 − θ/4)
}

,

where d denote the hyperbolic distance inCI . As noticed in [46], if θ ≤ π/2,
then Dθ(I ) is the union of two Euclidean disks which are symmetric with
respect to R and intersect R on I with external angle θ at each intersection
point. We shall also use the notation D∗(I ) := Dπ/2(I ).

For any a ∈ R and any ε ∈ (0, π), define

S+(a, ε) = {z = a + reiθ : r ≥ 0, |θ| ≤ ε
}

,

S−(a, ε) = {z = a + reiθ : r ≥ 0, π − ε ≤ θ ≤ π + ε
}

.

Moreover, for any bounded interval I = (a, b) with a < b and any ε ∈
(0, π), let

S(I, ε) = S−(a, ε) ∪ S+(b, ε).
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Lemma 7.1. (Schwarz). Let 0 ≤ ε < θ < π and let h be a univalent
function defined on Dε((0, 1)) which maps (0, 1) onto itself. Then

h
(

Dθ

(

(0, 1)
)) ⊂ D π

π−ε (θ−ε)

(

(0, 1)
)

.

Proof. Choosing an appropriate branch, we define a conformal map φ :
Dε(0, 1) → H by the following formula

φ(z) = i

(√
z

1 − z

) π
π−ε

.

Notice that φ(Dθ((0, 1))) is a domain bounded by two radial lines through
the origin which have angle

α = π − θ

2

π

π − ε

with the imaginary axis I. Thus

φ
(

Dθ

(

(0, 1)
)) =

{

z ∈ H : d(z, I) < log tan
(π

4
+ α

2

)}

,

where d is the hyperbolic distance in H. Considering the holomorphic map
h ◦ φ−1 : H→ C(0,1) and applying the Schwarz lemma, we see that for any
z ∈ Dθ((0, 1)),

d′(h(z), (0, 1)
) = d′

(

h ◦ φ−1
(

φ(z)
)

, (0, 1)
)

≤ d
(

φ(z), I
)

< log tan
(π

4
+ α

2

)

,

where d′ is the hyperbolic distance in C(0,1). The lemma follows. ��
Lemma 7.2. For any ε ∈ (0, π) and δ > 0, there exist θ0 = θ0(ε) ∈
(0, π/2) and C = C(ε, δ) > 1 such that the following holds. Let θ ∈ (0, θ0)
and let h be a univalent function defined on Dθ((−δ, 1 + δ)) which maps
(0, 1) onto itself. Then for any z ∈ D2θ((0, 1)) − S((0, 1), ε), we have

d
(

φ(z), (0, 1)
) ≤ Cd

(

z, (0, 1)
)

,(27)

where d denotes the Euclidean distance.

Proof. Let A = {z ∈ C − S((0, 1), ε) : d(z, (0, 1)) ≤ 1}. Choose θ0
sufficiently small so that A ⊂ Cl(Dθ0((0, 1))). Then for z ∈ A, (27) follows
from the Koebe distortion theorem. For z ∈ D2θ((0, 1))−(S((0, 1), ε)∪ A),
let t ≥ 2θ be the maximal positive number such that z ∈ Cl(Dt((0, 1))).
Then there exists C′ = C ′(ε) > 1 such that

1

C ′t
≤ d
(

z, (0, 1)
) ≤ C′

t
.

By Lemma 7.1, φ(z) ∈ Dα((0, 1)) for α = π
π−θ

(t − θ) ≥ t/2. So
d(φ(z), (0, 1)) is of order 1/t, and (27) follows. ��
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Lemma 7.3. Let θ ∈ (0, π/2) and δ > 0. Let ψ : Dθ/2((−δ, 1 + δ)) → C

be a real symmetric univalent map whose restriction to the real line is
monotone increasing. Let 0 < a < b < 1. Then for any ε ∈ (0, π), there
are constants ε′ = ε′

δ,θ (ε) ∈ (0, π) and ε′′ = ε′′
δ,θ(ε) ∈ (0, π) such that

• for any z ∈ Dθ((0, 1)) ∩ S+
ε (a), we have

ψ(z) ∈ S+
ε′
(

ψ(a)
);

• for any z ∈ Dθ((0, 1)) − Sε((a, b)), we have

ψ(z) �∈ Sε′′
(

ψ(a), ψ(b)
)

.

Moreover, for fixed θ and δ, ε′ → 0 as ε → 0.

Proof. We may assume that ψ fixes 0, 1. Then the maps ψ with these
properties form a compact family in the topology of uniform convergence
on compact sets. The lemma follows easily from compactness arguments.

��

7.2. The quadratic map.

Lemma 7.4. Let K > 1 be a constant and P(z) = z2. Then there exists
a constant C = C(K ) > 1 such that for any θ ∈ (0, π), we have

P−1
(

Dθ

(

(−K, 1)
)) ⊂ DC−1θ

(

(−1, 1)
)

.

Proof. Arguing by contradiction, assume that the lemma fails. Then for
every n ∈ N, there exist θn ∈ (0, π) and zn ∈ C such that

zn �∈ Dθn/n
(

(−1, 1)
)

and wn := z2
n ∈ Dθn

(

(−K, 1)
)

.

After passing to a subsequence, we may assume that θn converges as
n → ∞. Obviously, the limit is zero. We may assume that zn and wn are
contained in the upper half plane H since Dθn/n((−1, 1)) is symmetric with
respect to both the real axis and the origin. Write zn = rneitn , with rn > 0
and tn ∈ (0, π/2).

Let us prove that {rn} are uniformly bounded from above. First notice
that, if rn is big, then

Re

(
wn − 1

wn + K

)

= r4
n − K + r2

n(K − 1) cos 2tn > 0.

From zn �∈ Dθn/n((−1, 1)), we obtain

tan arg
zn − 1

zn + 1
≤ tan θn/n;(28)
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and from wn ∈ Dθn((−K, 1)), we obtain

tan arg
wn − 1

wn + K
≥ tan θn.(29)

Substituting zn = rneitn in (28) and wn = r2
nei2tn in (29), we obtain

2rn sin tn
r2

n − 1
≤ tan

θn

n
,(30)

and

r2
n(K + 1) sin 2tn

r4
n − K + r2

n(K − 1) cos 2tn
≥ tan θn.(31)

Dividing (31) by (30), we obtain

rn
(

r2
n − 1

)

r4
n − K + r2

n(K − 1) cos 2tn

sin 2tn
sin tn

→ ∞, as n → ∞.(32)

Thus,

rn
(

r2
n − 1

)

r4
n − K + r2

n(K − 1) cos 2tn
→ ∞, as n → ∞.(33)

It follows that rn are uniformly bounded. Consequently, for large n,
arg zn = tn is close to 0, and so arg(wn − 1)/(wn + K ) � arg(wn − 1) and
arg(zn−1)/(zn+1) � arg(zn−1), which implies that arg(wn−1)/arg(zn−1)
is very large. On the other hand,

arg(wn − 1) = arg
(

z2
n − 1

) = arg(zn − 1) + arg(zn + 1) ≤ 2arg(zn − 1),

a contradiction. ��
Lemma 7.5. Let P(z) = z2, a ≥ 0 and ε ∈ (0, π/2). Then

S+
ε
2
(a) ⊂ P−1(S+

ε (a2)
) ∩ {z : Rez ≥ 0} ⊂ S+

ε (a);
S−

ε (a) ∩ {z : Rez ≥ 0} ⊂ P−1
(

S−
ε (a2)

) ∩ {z : Rez ≥ 0} ⊂ S−
π−ε

2
(a).

Proof. Let z be a point in the first quadrant. Then arg(z−a) ≥ arg(z+a) ≥ 0.
Together with arg(z2 − a2) = arg(z + a) + arg(z − a), this implies the first
formula. The proof of the second one is similar. ��
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7.3. Proper maps. We shall also use the following lemma.

Lemma 7.6. Let U ⊂ V be topological disks, and let F : U → V be
a holomorphic proper map of degree N. Assume that

K = {z ∈ U : Fk(z) ∈ U for all k ∈ N}

is a connected compact set. Then there exist U ′ ⊂ U and V ′ ⊂ V, such
that F : U ′ → V ′ is a DH-polynomial-like map of degree N. Moreover,
if mod(V − K ) ≥ δ, then we can choose U ′ and V ′ appropriately so that
mod(V ′ − U ′) ≥ δ′, where δ′ > 0 is a constant depending only on δ > 0
and N.

For a proof, see Lemma 2.4 in [31].

8. Polynomial-like extension properties of the first return maps

In this section we shall prove Theorem 3. The proof is based on the analysis
on the real geometry of f which we have done in Sects. 4 and 5, and uses
many ideas coming from Lyubich and Yampolsky [31].

Theorem 3. Let f be a real analytic map in the class Fb which has es-
sentially bounded geometry, and let c be a critical point of f . Then for any
ε > 0, there is a symmetric nice interval I 	 c with |I | < ε, such that the real
box mapping associated to I extends to a real symmetric polynomial-like
box mapping.

As usual let us say that f is non-renormalizable if it does not have
any properly periodic interval. Since the finitely renormalizable case can
be reduced to the non-renormalizable case (by considering the real box
mapping associated to a small symmetric nice interval), we shall assume
throughout this section that the map f is either non-renormalizable or
infinitely renormalizable. Moreover, by Proposition 5.11, we may assume
that f has negative Schwarzian.

Recall that the height of a symmetric nice interval I is the number of
positive integers m such that RIm−1 displays a non-central return.

In Sect. 8.1, we follow an idea of Levin & van Strien [24] to extend f
to a smooth polynomial-like mapping F which is holomorphic near the real
line. This extension is proper, but not necessarily holomorphic on the whole
domain. We shall explain there how to get a polynomial-like extension from
a quasi-polynomial-like one.

Most of our effort is put into looking for a small symmetric nice inter-
val I for which the associated real box mapping has a quasi-polynomial-
like extension. To this end, following an idea of [31], we shall prove that
there exists a constant C > 1 which depends only on f with the follow-
ing property. For any ∆ > 0, there exists a small symmetric nice inter-
val I such that each branch of the generalized renormalization RI |J =
f s|J extends to a holomorphic branched covering Fs : U → V with
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V = D∗((1 + 2∆)I ) ∩ CI , and such that for all z ∈ U , the following
Lyubich-Yampolsky type inequality holds:

(
d(z, J)

|J|
)2

≤ C max

{

1,
d
(

Fs(z), I
)

|I |

}

.(34)

In Sect. 8.2, we shall prove several geometric estimates on complex
extensions of first return maps to nice intervals, by applying the well-known
Schwarz lemma and Koebe distortion theorem in complex analysis, coupled
with the essentially bounded nest geometry. In particular, we shall study the
complex pull back of a truncated Poincaré disk of the form Dθ(K ) ∩ CI
corresponding to the first return map to I , where K ⊃ I are symmetric nice
intervals, and I is a real pull back of K ; and obtain a priori control on this
complex pull back. See Propositions 8.2 and 8.3.

In Sect. 8.3, we shall prove Theorem 3 under the assumption that f
has an arbitrarily small symmetric nice interval with a sufficiently large
height. This assumption is satisfied by all non-renormalizable maps as well
as some infinitely renormalizable maps. More precisely, let I be a small
symmetric nice interval which contains a critical point c, let m(0) = 0, and
let m(1) < m(2) < · · · be all the positive integers such that RIm(i)−1(c) �∈
Im(i). Combining Propositions 8.2 and 8.3, with a jump argument introduced
in [31], we shall prove that for any k ≥ 3, each branch of the first return
map RIm(k) |J = f s|J extends to a holomorphic map Fs : U → V with
V = D∗(Im(3)) ∩ CIm(k) , and that the extension satisfies the inequality (34)
for some C which depends only on f . If Im(k) is well defined for a large k,
then it follows that the real box mapping BIm(k) has a quasi-polynomial-like
extension.

In Sect. 8.4, we shall deal with the remaining situation. In this case, for
any symmetric nice interval I , and a large constant ∆, (1 + 2∆)I contains
properly periodic intervals larger than I , and so we have to investigate the
property of complex extensions corresponding to the renormalization levels.
By adopting another jump argument introduced in [31] (Lemma 8.10), we
shall prove another a priori estimate, Lemma 8.13. Using this lemma instead
of Propositions 8.2 and 8.3, and arguing in the same way as in Sect. 8.3,
we show that the real box mapping associated to a small properly periodic
interval has a quasi-polynomial-like extension.

8.1. Extension to a smooth polynomial-like box mapping. Let us con-
sider a real analytic map

f :
( m⋃

j=0

J j

)

∪
( b−1⋃

i=1

�i

)

→
b−1⋃

i=0

�i

in the class Fb which is either non-renormalizable or infinitely renormaliz-
able.
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Following Levin and van Strien [24], let us first extend f to a real sym-
metric smooth polynomial-like box mapping F : (

⋃m
j=0 U j)∪(

⋃b−1
i=1 Vi) →

⋃b−1
i=0 Vi such that F is holomorphic in a neighborhood of dom( f ). Here,

by a smooth polynomial-like box mapping, we mean that
• Vi’s, 0 ≤ i ≤ b − 1 are topological disks with disjoint closures;
• U j ’s, 0 ≤ j ≤ m are topological disks with disjoint closures which are

compactly contained in V0;
• for each U ∈ {U0,Vi : 1 ≤ i ≤ b − 1}, there exists 0 ≤ i ′ ≤ b − 1 such

that F|U : U → Vi′ is a C1 double branched covering;
• for each 1 ≤ j ≤ m, F|U j is a C1 diffeomorphism onto some Vi .

This kind of extension obviously exists and is certainly not unique. By
choosing the extension appropriately, we may assume that the U j’s and Vi’s
are Jordan domains with C1 boundary. We may also assume that for any
component U of dom(F), F|U extends to a C1 map defined on Cl(U) such
that the derivative DF is non-degenerate on ∂U. In the following, we shall
fix such an extension F. Note that F and f have the same critical points.

Given a topological disk V contained in the range of F, and an F-orbit
{Fi(z)}n

i=0 with Fn(z) ∈ V , by considering the complex pull back of V along
this orbit, we obtain a sequence of topological disks U0 	 z, U1 	 F(z),
· · · , Un = V 	 Fn(z), with the property that for each 0 ≤ i ≤ n − 1,
Ui is a component of F−1(Ui+1). We say that this complex pull back is
holomorphic if F|Ui is holomorphic for each 0 ≤ i ≤ n − 1. We shall
reserve the notion “chain” for a sequence of intervals obtained by (real)
pull back of the (real) map f . To avoid confusion, we shall only talk of
a complex pull back of a topological disk and a real pull back of an interval.

Given a symmetric nice interval I and a real symmetric topological
disk V with I ⊂ V ⊂ CI ∩ (

⋃b−1
i=0 Vi), the associated real box mapping

BI : (
⋃r

j=0 Jj) ∪ (
⋃b−1

i=1 Ii) → ⋃b−1
i=0 Ii admits the following extension to

the complex plane. For any 1 ≤ i ≤ b − 1, let si be the entry time of Ii
to I , and let Vi = CompIi

(F−si (V )). For any 0 ≤ j ≤ r, let pj be the
return time of Jj to I , and let U j = CompJ j

(F−p j (V )). Then it is easy to
check that for each 0 ≤ j ≤ r (1 ≤ i ≤ b − 1, respectively), the map BI |Jj
(B|Ii , respectively) extends to a proper map from U j (Vi , respectively) onto
some Vi′ without increasing the number of critical points. Remark that if V
is a Jordan domain with C1 boundary, then so are the topological disks U j
are Vi .

To show that BI extends to a polynomial-like box mapping, it suffices to
find an appropriate topological disk V such that the objects defined above
satisfy the following:

(E1) the closures of U j’s are pairwise disjoint;
(E2) U j � V ;
(E3) the extended maps Fsi |Vi , F p j |U j are holomorphic.

Note that (E3) implies that the corresponding extension of BI is holo-
morphic.
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If the objects defined above satisfy the conditions (E1) and (E2) (but
maybe not (E3)), then we shall say that BI has a smooth polynomial-like
extension determined by V . If they satisfy (E3) (but maybe not (E1) or (E2))
and

(E2’) U j ⊂ V , and Cl(U j) − V ⊂ R,

then we say that BI has a quasi-polynomial-like extension determined by V .
The following is a useful observation in [24]:

Lemma 8.1. Let I be a symmetric nice interval, and let V and V ′ be two
real symmetric topological disks in

⋃b−1
i=0 Vi which contain I . Assume that

V ′ is a Jordan domain with Cl(V ′) ∩ R = Cl(I ). If BI has a smooth
polynomial-like extension determined by V ′ and a quasi-polynomial-like
extension determined by V , then BI has a polynomial-like extension deter-
mined by V ′′ = CompI (V ∩ V ′).

Proof. Let Jj, Ii and si, pj be as above. Let U j, Vi , and U ′
j, V ′

i be defined
as above for V and V ′ respectively. Let U ′′

j = CompJ j
(U j ∩ U ′

j) and
V ′′

i = CompIi
(Vi ∩ V ′

i ). Then these topological disks are the corresponding
objects as defined above for V ′′. It is obvious that these objects satisfy (E1)
and (E3). To complete the proof, we need to check that U ′′

j � V ′′ for each
0 ≤ j ≤ r.

Take a point z ∈ Cl(U ′′
j ), and let us show that z ∈ V ′′. Note that z ∈

Cl(U ′
j) ⊂ V ′. So it suffices to prove that z ∈ V . Arguing by contradiction,

assume that z �∈ V . Then z ∈ Cl(U j) − V ⊂ R. But this implies that
z ∈ Cl(U ′

j) ∩ R = Cl(Jj) ⊂ V , a contradiction. ��
Recall that M(�0) is the collection of all (nice) intervals which are

(real) pull backs of �0. For any I ∈ M(�0), there is a natural way as
described in the following, to construct a smooth polynomial-like exten-
sion of BI . Let {Gi}k

i=0 be the chain with Gk = �0 and G0 = I , and let
P = CompI (F−k(V0)). Then BI has a smooth polynomial-like extension
determined by P. To see this, we observe that for any non-negative integer n,
any component U of F−n(V0) is a Jordan domain. Moreover, if n1 < n2,
and U1 and U2 are components of F−n1(V0) and F−n2(V0) respectively,
then either U1 ∩ U2 = ∅ or U2 � U1. Note also that P has C1 boundary,
and hence Cl(P)∩R = Cl(P ∩R) = Cl(I ). Together with Lemma 8.1, this
implies

Lemma 8.2. For any symmetric nice interval I ∈ M(�0), if the real box
mapping BI has a quasi-polynomial-like extension determined by a real
symmetric topological disk V , then it has a polynomial-like extension de-
termined by a real symmetric topological disk V ′ ⊂ V.

The lemma will only be used in the non-renormalizable case. If f is
infinitely renormalizable, then we shall use a more geometric method to
construct a polynomial-like extension from a quasi-polynomial-like one.
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Lemma 8.3. Assume that f is infinitely renormalizable. Let B be a sym-
metric properly periodic interval and let s be its period. Assume that BB
has a quasi-polynomial-like extension determined by a real symmetric topo-
logical disk V , and that there exists ν ∈ N such that

CompB

(

F−νs(V )
)

� V.

Then there exists a real symmetric topological disk V ′ ⊂ V, which deter-
mines a polynomial-like extension of BB.

Proof. Let U = CompB(F−s(V )), and let

K = {z ∈ U : Fks(z) ∈ U for all k ∈ N}.
Note that K is the filled Julia set of the DH-polynomial-like map

Fνs : CompB

(

F−νs(V )
)→ V,

and thus it is compact. This DH-polynomial-like mapping, as an extension
of f νs : B → B, has all critical points contained in its filled Julia set K , and
thus K is connected. By Lemma 7.6, there exist topological disks V ′ ⊂ V
and U ′ ⊂ U , such that Fs : U ′ → V ′ is a DH-polynomial-like mapping.
Clearly, V ′ determines a polynomial-like extension of BB. ��
8.2. Control of complex pull backs by real geometry. Given a (real)
chain {G j}s

j=0 and a topological disk V ⊃ Gs, information on the complex
pull back of V along {G j} can often be read from the real axis. In this
subsection, we collect lemmas on this kind of control. We begin with a few
little lemmas.

Lemma 8.4. For any θ0 ∈ (0, π), there is an η > 0 with the following
property. Let I be an open interval in

⋃b−1
i=0 �i , and let J be a component

of f −1(I ). If J ∩ ω(c) �= ∅, |I | < η, and f |J is monotone, then for any
θ ∈ (θ0, π), we have

U := CompJ

(

F−1
(

Dθ(I )
)) ⊂ Dθ−M|J |(J),

where M > 0 is a constant depending only on F. In particular, F : U →
Dθ(I ) is a conformal map.

Proof. This follows from Lemma 7.1 (the Schwarz lemma). To be more
precise, let K = CompJ(dom( f )) and L = CompI (range( f )). We first
consider the case that f |K is a diffeomorphism. Then the corresponding
branch of F−1 is holomorphic and univalent on a neighborhood of L , which
contains Dε(I ) for ε = M|J|, where M > 0 is a constant depending only
on F. Thus by Lemma 7.1, U ⊂ Dα(J), where

α = π

π − ε
(θ − ε) ≥ θ − ε ≥ θ − M|J|.
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So the lemma holds in this case. Now assume that f |K has a critical
point. Then F can be written in the form Q ◦ φ, where Q is a quadratic
map. Note that Q−1 extends to a univalent map from CI into Cφ(J ), thus
φ(U) ⊂ Dθ(φ(J)). As φ−1 is holomorphic and univalent on a neighborhood
of φ(K ), arguing as above gives us the desired estimate. ��
Lemma 8.5. For any δ > 0, N ∈ N and any θ ∈ (0, π), there is an η > 0
such that the following holds. Let {G j}s

j=0 be a chain of order ≤ N, such
that G0 ∩ ω(c) �= ∅. Let {G′

j}s
j=0 be another chain with G′

s = (1 + 2δ)Gs

and G′
0 ⊃ G0. Assume that

(i) for any 0 ≤ j < s, we have (G′
j − G j) ∩ Crit( f ) = ∅;

(ii) | f s(G0)| ≥ δ|Gs|;
(iii)

∑s
j=0 |G′

j | < η.

Let V = Dθ(Gs) and U = CompG0
(F−s(V )). Then for each 0 ≤ j ≤ s −1,

we have

F j(U) ⊂ Dθ/C(G j),

where C = C(N, δ) > 1 is a constant (independent of θ). In particular,
Fs : U → V is holomorphic.

Proof. If {G j}s
j=0 is a monotone chain, then by the previous lemma, we

have F j(U) ⊂ Dθ−M
∑s−1

i= j |Gi |(G j), for any 0 ≤ j ≤ s − 1, where M > 0 is

a constant depending only on F. Provided that η < θ/2M, it follows that
F j(U) ⊂ Dθ/2(G j) for any 0 ≤ j ≤ s − 1.

Assume now that {G j}s
j=0 is not monotone. Let s1 < s be maxi-

mal such that Gs1 contains a critical point. Then by the above argument,
Fs1+1(U) ⊂ Dθ/2(Gs1+1). Since f s−s1−1|Gs1+1 has bounded distortion,
and since f s−s1−1( f(Gs1)) ⊃ f s(G0) is not so small compared to Gs,
| f(Gs1)|/|Gs1+1| is bounded away from zero. Therefore by Lemma 7.1 and
Lemma 7.4, Fs1(U) ⊂ Dθ/C1(Gs1) for some constant C1 = C1(δ) > 1.

Note that the assumptions (i)–(iii) are true for the shorter chains {G j}s1
j=0

and {G′
j}s1

j=0 if we replace δ > 0 with a smaller constant δ′ > 0, and that
{G j}s1

j=0 has order ≤ N − 1. Thus, the lemma follows by induction. ��
Remark 8.1. The assumptions (i) and (ii) are true provided that (1+2δ)Gs −
(1 − 2δ)Gs is disjoint from ω(c). This lemma will often be used in the case
that Gs is a small nice interval which intersects ω(c), and {G j}s

j=0 is a chain
corresponding to the first entry of some x ∈ ω(c) to Gs. We remind the
reader that in this case, the order of this chain is bounded from above by the
number of critical points of f .

Proposition 8.1. For any ε ∈ (0, π), δ > 0 and θ ∈ (0, π), there are
η = η(ε, δ, θ) > 0 and C = C(ε, δ) > 1 with the following property.
Let I be a nice interval intersecting ω(c) with |I | < η and ((1 + 2δ)I−
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(1 − 2δ)I ) ∩ ω(c) = ∅. Let J be a component of DI intersecting ω(c) and
s the entry time of J to I . Let V = Dθ(I ) and U = CompJ(F−s(V )). Then
for any w ∈ V − S(I, ε), and any z ∈ U with Fs(z) = w, we have

d(z, J)

|J| ≤ C max

{

1,
d(w, I )

|I |
}

.

Moreover, if there exists a critical point c′ of f such that d(J, c′) ≤ |J|/δ,
then

d(z, J)

|J| ≤ C max

{

1,

√

d(w, I )

|I |

}

.

(In particular, this holds in the case J 	 c′.)

Proof. Let V ′ = Dθ/2((1 + δ)I ), and let U ′ = CompJ(F−s V ′). Let us first
prove that Fs : U ′ → V ′ is holomorphic provided that η is small enough.
To this end, let {G′

j}s
j=0 and {G j}s

j=0 be the chains with G′
s = (1 + 2δ)I ,

Gs = (1+δ)I , and G′
0 ⊃ G0 ⊃ J . By Lemma 3.8, {G′

j}s
j=0 has intersection

multiplicity bounded by 4, and thus by Corollary 3.6,
∑

j |G′
j | is small

provided that η is sufficiently small. Applying Lemma 8.5, we obtain that
Fs|U ′ is holomorphic. Similarly, for any K > 1, there exists η > 0 such
that if |I | ≤ η, then for any 0 ≤ s1 < s2 ≤ s, the pull back of Dθ/K(Gs2)
along the chain {G j}s2

j=s1
is holomorphic.

Let us now prove the first inequality. If the chain {G j}s
j=0 is monotone,

then this inequality follows from Lemma 7.2. So let us assume that the
chain {G j}s

j=0 is not monotone. Let 0 ≤ n1 < n2 < · · · < nk < s be
all the integers such that Gni contains a critical point. Let A = {w ∈ C :
d(w, I ) = 1}. If w ∈ A − S(I, ε), then d(z, J)/|J| is bounded from above
by a constant and so the inequality holds. Assume w ∈ V − (A ∪ S(I, ε)).
Let {I j}s

j=0 be the chain with Is = I and I0 = J . Let t = ts ∈ (θ, π) be
the positive number such that w ∈ ∂Dt(I ) and for each 0 ≤ j ≤ s − 1,
let t j ∈ (0, π) be such that F j(z) ∈ ∂Dt j(I j). Arguing as in the proof of
Lemma 7.2, we obtain tnk+1/t ≥ 1/2. By Lemma 7.4, tnk/tnk+1 is bounded
away from zero. As k ≤ #Crit( f ), by repeating this argument a few times,
we conclude that t0/t is bounded away from zero. Since d(w, I )/|I | � 1/t,
the first inequality follows.

To prove the second inequality, just notice that f |J is of the form Q ◦φ,
where Q is a quadratic map and φ is a real symmetric conformal map
from a neighborhood of c′ to a neighborhood of 0. By the argument above,
d(Fs−1(z), f(J))/| f(J)| is of order d(w, I )/|I |. Considering the behavior
of the quadratic polynomial z �→ z2 near 0, the second inequality follows
easily. ��

Let us now state a lemma concerning pull back along a long central
cascade. This lemma can be shown in the same way as Lemma 6.2 in [31],
but we shall give a more elementary proof here.
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Lemma 8.6. For any δ > 0 and θ ∈ (0, π), there exists θ1 ∈ (0, π) with
the following property. Let

I 0 ⊃ I 1 ⊃ I 2 ⊃ · · · ⊃ Im

be a central cascade such that RI0 does not have a critical point in I 1 − Im,
and let r be the return time of I 1 to I 0. Let J ⊂ I 1 − Im be an interval such
that Jir = f ir(J) ⊂ I 1 for each i = 0, 1, . . . , p−1. Let V = Dθ(I 0)∩CJpr ,
and U = CompJ(F−pr(V )). Assume that

I 0 ⊃ (1 + 2δ)I 1,
(

(1 + 2δ)I 0 − (1 − 2δ)I 0) ∩ ω(c) = ∅,

and |I 0| is sufficiently small. Then

U ⊂ Dθ1(I 0).

Remark 8.2. Applying this lemma to the interval f ir(J) instead of J ,
0 ≤ i ≤ p, we obtain that Fir (U) ⊂ Dθ1(I 0). By choosing θ1 smaller
if necessary, we have F j(U) ⊂ Dθ1(LJ j(I 0)) for all 0 ≤ j ≤ pr − 1, by
Lemma 8.5.

Proof. By Lemma 8.5, there is a θ ′ > 0 such that

W := CompI1

(

F−r
(

Dθ(I 0)
)) ⊂ Dθ ′(I 1).

Take a point z ∈ U , and let us prove that z ∈ Dθ1(I 0) for an appropriate
choice of θ1. For each 0 ≤ i ≤ p, write ζi = Fir(z). We may assume that
there is 0 < q < p such that ζq �∈ Dθ(I 0), for otherwise z ∈ Dθ ′(I 1) ∪
Dθ(I 0). Let q be maximal with this property. Then

ζq ∈ W − Dθ(I 0).

Note that J ⊂ I q − Im . Let Tq be the component of I q − Im which contains
J and for each 0 ≤ i < q, let Ti = f (q−i)r(Tq), which is the component of
I i − Im−q+i containing f (q−i)r(J). Moreover, for each 0 ≤ i ≤ q, let Pi be
the component of I i − Cl(I i+1) which is contained in Ti .

Since I 0 ⊃ (1 + 2δ)I 1, there exists a constant θ ′′ ∈ (0, π) such
that W − V ⊂ Dθ ′′(P0) ⊂ Dθ ′′(T0). Let Y0 = Dθ ′′(T0), and let Yi =
CompJ(q−i)r

(F−ir (Y0)) for each 0 ≤ i ≤ q. Then Fqr : Yq → Y0 is a diffeo-
morphism, and ζi ∈ Yq−i for each 0 ≤ i ≤ q. Moreover, since ζq ∈ Dθ ′′(P0),
we have z = ζ0 ∈ Yq ∩ (F−qr(Dθ ′′(P0))). Note that P0 is a nice interval and
f qr : Pq → P0 is a first entry to P0. By Corollary 3.6,

∑qr
j=0 | f j(Pq)| is

small. Applying Lemma 8.4, we obtain that

z ∈ Dθ1(Pq) ⊂ Dθ1(I 0),

where θ1 is a constant. ��
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We are going to prove two propositions in a more complicated situation.
For any nice interval I which intersects ω(c), as in Sect. 6, define

Q(I ) =
∞⋂

k=1

⋃

x∈ω(c)∩I

Lk
x(I ).

Recall that if that I does not contain a properly periodic interval of f , then
Q(I ) is just the Cantor set ω(c) ∩ I , and otherwise, it is the union of all
maximal properly periodic intervals contained in I .

Proposition 8.2. For any θ ∈ (0, π), δ > 0, ρ > 1, C > 1 and q ∈ N, there
exist η = η(θ, δ, ρ, C, q, F) > 0 and θ1 = θ1(θ, δ, ρ, C, q, b) ∈ (0, π) with
the following property. Let I be a nice interval intersecting ω(c) such that
|I | < η, ΛI < ρ, and

(

(1 + 2δ)I − (1 − 2δ)I
) ∩ ω(c) = ∅.

Let x ∈ ω(c) ∩ I , and let x, f n1(x), . . . , f nk(x) be successive returns to I .
Let I = {I j}nk

j=0 be the chain with Ink = I and I0 	 x, and let J = {Jj}nk
j=0

be a chain with J = Jnk ⊂ I , and J0 	 x. Assume that the following hold:

(i) the maximal number of elements of {x, f n1(x), . . . , f nk(x)} contained
in the same component of Q(I ) is at most q;

(ii) the chain J has intersection multiplicity at most q; and
(iii) |I0| > |I |/C.

Let V = Dθ(I ) ∩ CJ and U = Compx(F−nk (V )). Then for any 0 ≤ j ≤
nk − 1, we have

F j(U) ⊂ Dθ1

(

L f j (x)(I )
) ∩ CJ j .

Remark 8.3. We shall often apply this proposition in the following situation:
J is a pull back of I , and f nk(x) is the first entry of x to J . In this case, both
of the conditions (i) and (ii) are clearly satisfied for q = 2. Condition (iii)
is usually very easy to check. For instance, if the orbit { f j(x)}nk

j=1 does not
enter Lr

x(I ) at all, then I0 contains Lr+1
x (I ), and thus is commensurable to

I by Corollary 5.3. Similarly, for any nice interval K which has bounded
geometry, if x ∈ K ⊂ I and if the sequence { f j(x)}nk

j=1 does not enter
Lr

x(K ), then I0 is commensurable to K .

Proof of Proposition 8.2. Let {Gi
j}ni+1−ni

j=0 be the chain with Gi
ni+1−ni

= I
and Gi

0 	 f ni (x) for all 0 ≤ i ≤ k − 1, where n0 = 0. Let

Crit = Crit
(

I,
{

x, f n1(x), . . . , f nk(x)
})

:=
k−1⋃

i=0

ni+1−ni−1
⋃

j=0

Gi
j ∩ Crit( f ).

(35)

We shall use induction on #Crit. Let U j = F j(U) for each 0 ≤ j ≤ nk.
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Starting step. Assume #Crit = 0. Then {Gi
j}ni+1−ni

j=0 is a monotone chain for
each 0 ≤ i ≤ k − 1. Let us prove that k is uniformly bounded from above
by a constant depending only on C, δ and ρ, from which the proposition
follows by Lemma 8.4.

To this end we first observe that DI has a component intersecting ω(c)∩ I
on which RI has a critical point, since ω(c) contains all critical points of f .
Thus, DI has at least two components intersecting ω(c) ∩ I . Each of these
components is commensurable to I for otherwise it would be deep inside
I since (I − (1 − 2δ)I ) ∩ ω(c) = ∅, which is ruled out by the assumption
ΛI ≤ ρ (Corollary 5.3). For any 0 ≤ i ≤ k, let Ti 	 x be a subinterval
of I such that Ri

I (Ti) = I . Then Ri
I : (Ti, Ti+1) → (I,L f ni (x)(I )) is

a diffeomorphism, which extends to a diffeomorphism onto (1 + 2δ)I .
Since f has negative Schwarzian derivative, it follows that the maps Ri

I |Ti ,
0 ≤ i ≤ k − 1, have uniformly bounded distortion. Thus, |Ti+1|/|Ti| is
uniformly bounded from 1. Since Ts = I0, and since |I0|/|I | is bounded
away from zero, we conclude that s is uniformly bounded.

Induction step. Assuming that the proposition holds when #Crit < N, let
us consider the case #Crit = N.

For the same reason as stated in the proof of Proposition 4.1, we may
assume that I is a symmetric nice interval and that Crit = Crit(I, {x,
f n1(x), . . . , f nk(x)}) contains the critical point in I , say c. If χI = 0, then
for any i ≥ 0, RIi (c) ∈ I i+1. So T(I ) := ⋂

I i is a periodic interval, and
I − T(I ) is disjoint from ω(c). Thus all these points f ni (x) are contained in
T(I ) = Q(I ). By assumption (i), this implies that k ≤ q. So the proposition
follows easily from Lemma 8.5. Now let us assume that χI ≥ 1. Let m =
m(1) be the minimal positive integer with RIm−1(c) �∈ Im . Let 0 ≤ k1 < k
be the maximal integer with f nk1 (x) ∈ I 1. We first prove

Claim 1. For any nk1 ≤ j ≤ nk − 1, we have

F j(U) ⊂ Dσ1(L f j (x)(I )),

where σ1 > 0 is a constant.

To prove this claim, we first notice that

Crit
(

I,
{

f nk1+1(x), f nk1+2(x), . . . , f nk(x)
})

⊂ Crit
(

I,
{

x, f n1(x), . . . , f nk(x)
})− {c}.

Next let us show that |Ink1+1 |/|I | is uniformly bounded away from zero.
Arguing by contradiction, assume that |Ink1+1 |/|I | is very small. Then
|Ink1

|/|I 1| is also very small. Since Ink1
⊃ L f

nk1 (x)(I 1), |L f
nk1 (x)(I 1)|/|I |

is small, and so L f
nk1 (x)(I 1) is deep inside I , which is absurd by Corol-

lary 5.3. Applying the induction hypothesis gives us the desired estimate



C2 density of Axiom A 373

for all nk1+1 ≤ j < nk. Finally applying Lemma 8.5, we obtain the desired
estimate for nk1 ≤ j < nk1+1.

Claim 2. There exists a constant θ ′ ∈ (0, π), such that one of the following
holds:

• for all 0 ≤ j < nk, we have

F j(U) ⊂ Dθ ′
(

L f j (x)(I )
) ∩ CJ j ;(36)

• there exists an integer k′ with 1 ≤ k′ < k, such that Ink′ ⊂ Im , Fnk′ (U) ⊂
Dθ ′(Im), and such that (36) holds for all nk′ ≤ j < nk.

Of course we may assume k1 > 0. Let 0 ≤ k′
1 ≤ k1 be minimal with

f
nk′1 (x) ∈ I 1. Remark that if (36) holds for nk′

1
≤ j < nk, then it holds for

all 0 ≤ j < nk′
1

as well (with a smaller θ ′). Indeed, if k′
1 > 0, then nk′

1
is the

first entry time of x to I 1, and so this follows from Lemma 8.5.
Note that Ink1

⊂ I 1. For a similar reason as in the proof of Claim 1, the

pull back of I 1 along the orbit { f i(x)}nk1
i=nk′1

is commensurable to I 1. Since

Crit
(

I 1,
{

f ni (x) : k′
1 ≤ i ≤ k1, f ni (x) ∈ I 1

})

⊂ Crit
(

I,
{

f ni(x) : 0 ≤ i ≤ k
})

,

we may assume that these two sets coincide, for otherwise the induction
hypothesis applies. In particular, there is a maximal integer k2 < k1, with
f nk2 (x) ∈ I 2. Similarly as in Claim 1, we find a constant σ2 > 0 such that
for all nk2 ≤ j < nk1 , F j(U) ⊂ Dσ2(L f j (x)(I 1)) ∩ CJ j .

Since χI ≥ 1, (I − I 1)∩ω(c) �= ∅, and thus I ⊃ (1+2δ)I 1 provided that
|I | is sufficiently small. Here we use 1/(1 − 2δ) > 1 + 2δ. Let l = l(δ, ρ, b)
be as in Proposition 5.1. Repeating the above argument, we conclude that for
an appropriately chosen constant θ ′ > 0, either (36) holds for all 0 ≤ j < nk,
or there is a sequence of integers

k0 := k > k1 > k2 > · · · > kmin(m,3l) > 0

such that Inki
⊂ I i , and such that F j(U) ⊂ Dθ ′(L f j(x)(I i−1)) holds for

nki ≤ j < nki−1 . In particular, it follows that Claim 2 holds if m ≤ 3l.
So assume that m > 3l and that we are in the latter case. Then I l ⊂

I l+1 ⊂ · · · Im−l is a saddle node central cascade. Let k′
l ≤ kl be minimal

with f
nk′l (x) ∈ I l. Similarly as above, it suffices to prove that (36) holds for

all j ≥ nk′
l

(with an appropriately chosen positive constant θ ′). Let k′′ ≥ k′
l

be minimal such that

f nk′′+i (x) �∈ I 0 − I l+1



374 W. Shen

for all 1 ≤ i < kl − k′′. Then either f nk′′ (x) ∈ I 0 − I l+1 or k′′ = k′
l. Let us

show that there exists a constant θ ′′ > 0 such that

F j(U) ⊂ Dθ ′′
(

L f j (x)(I l)
)

(37)

holds for all nk′′ ≤ j < nkl . To this end, we distinguish two cases:

Case 1. f nkl (x) ∈ Im−l. Then for each k′′ < t ≤ kl, we have f nt (x) ∈ Im−l

since

RI0(I l+1 − Im−l) ⊂ I l − Im−l−1

is disjoint from Im−l . By Proposition 5.1, kl − k′′ ≤ l and so (37) follows
from Lemma 8.5.

Case 2. f nkl (x) ∈ I t − I t+1 for some l ≤ t ≤ m−l−1. Let 0 ≤ r ≤ m−l−t
be maximal such that

f nkl−1(x) ∈ I t+1, f nkl−2(x) ∈ I t+2, · · · , f nkl−r (x) ∈ I t+r.

Since the chain {Jj}nk
j=0 has intersection multiplicity ≤ q, we have Jnkl− j ⊂

I l − Im−l for all q ≤ j ≤ r − q. Thus by Lemma 8.6, and Lemma 8.5 we
conclude that (37) holds for all j ≥ nkl−r (for some θ ′′ > 0). Moreover, by
Lemma 8.5 again, to prove that (37) holds for nk′′ ≤ j < nkl−r , it suffices to
show that kl − r − k′′ is uniformly bounded from above. If f nkl−r (x) ∈ Im−l,
then as in the proof of Case 1, we know that kl −r−k′′ ≤ l. If f nkl −r (x) �∈ Im−l

and k′′ < kl −r, then by the combinatorics of a saddle node central cascade,
we have k′′ = kl − r − 1. This proves that (37) holds for all nk′′ ≤ j < nkl .

Now let us complete the proof of Claim 2. We may assume that k′′ > k′
l.

Then f nk′′ (x) ∈ I l1 − I l1+1 for some 0 ≤ l1 ≤ l, and so

K := L f nk′′ (x)(I l) ⊂ I l1 − I l1+1,

which implies Lc(K ) ⊂ Im . Note that Ink′′ ⊂ K .
Let k′′′ ≤ k′′ be the minimal non-negative integer such that f nk′′′ (x) ∈ K .

Let us consider

K =
(

K,
{

f n j (x) : k′′′ ≤ j ≤ k′′, f n j (x) ∈ K
})

.

Obviously, Crit(K) ⊂ Crit(I, {x, f n1(x), . . . , f nk(x)}).
Let {G j}nk′′

j=nk′′′ be the chain with Gnk′′ = K , and Gnk′′′ 	 f nk′′′ (x). By
Theorem 5.5, there exists a constant δ′ > 0 such that (1+2δ′)K −(1−2δ′)K
is disjoint from ω(c). Let us show that |Gnk′′′ |/|K | is uniformly bounded
away from zero. Assume not. Then Gnk′′′ is deep inside K . Since nk′′′ is
the entry time of x to K , it follows that I0 ⊂ Lx(Gnk′′′ ) is deep inside
Lx(K ) ⊂ I , which contradicts the assumption (iii).

Assume Crit(K) �	 c. Then it follows from the induction hypothesis that
F j(U) ⊂ Dθ ′′′(L f j (x)(K )) for some θ ′′′ ∈ (0, π) and for all nk′′′ ≤ j < nk′′ .
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Since nk′′′ is the entry time of x to K , it follows from Lemma 8.5 that (36)
holds for all 0 ≤ j < nk′′′ , and thus Claim 2 holds in this case.

Let us assume Crit(K) 	 c. Then there exists a maximal positive in-
teger k′ with k′′′ < k′ < k′′ and f nk′ (x) ∈ Im . From Lc(K ) ⊂ Im and
Ink′′ ⊂ K , we obtain Ink′ ⊂ Im . Moreover, it follows from the induction
hypothesis and Lemma 8.5 in the same way as in the proof of Claim 1, that
F j(U) ⊂ Dθ ′(L f j (x)(K )) for some θ ′ > 0, and for all nk′ ≤ j < nk′′ . In
particular, Fnk′ (U) ⊂ Dθ ′(Im). So Claim 2 holds in this case as well. We
have completed the proof of Claim 2.

In other words, we have found a constant ν1 ∈ (0, π), such that either of
the following holds:

• for any 0 ≤ j < nk, we have

F j(U) ⊂ Dν1

(

L f j (x)(I )
);(38)

• χI ≥ 1, and there exists p1 < p0 := k such that (38) holds for all
n p1 ≤ j < nk, and

In p1
⊂ Im(1), Fn p1 (U) ⊂ Dν1(Im(1)).

Let 0 ≤ p′
1 < p1 be minimal such that f

n p′
1 (x) ∈ Im(1). Note that the pull

back of Im(1) along the orbit { f j(x)}n p1
j=n p′

1

is commensurable to Im(1). Then

by the same argument as above, we have a constant ν2 ∈ (0, π), such that
either of the following holds:

• for any n p′
1
≤ j < n p1, we have

F j(U) ⊂ Dν2

(

L f j(x)(Im(1))
);(39)

• χI ≥ 2, and there is p2 < p1 such that (39) holds for all n p2 ≤ j < n p1 ,
and

In p2
⊂ Im(2), Fn p2 (U) ⊂ Dν2(Im(2)).

If the former case happens, then by Lemma 8.5, there exists ν′
2 ∈ (0, ν2)

such that F j(U) ⊂ Dν′
2
(L f j(x)(Im(1))) holds for all 0 ≤ j < n p′

1
. So the

proposition holds for θ1 = ν′
2 in this case. Similarly, for any t ∈ N there exist

constants νt, ν
′
t ∈ (0, π) such that either the proposition holds for θ1 = ν′

t ,
or χI ≥ t and there is a pt < k such that Ipt ⊂ Im(t). The latter case cannot
happen for a large t, for otherwise I0 ⊂ Lx(Ipt ) ⊂ Lx(Im(t)) is deep inside
I by Theorems 2.1 and 3.3, which contradicts the assumption (iii). This
completes the proof of the induction step. ��

We shall also need the following estimate:
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Proposition 8.3. In the situation of the previous proposition, if I is a small
symmetric nice interval with χI ≥ 1, and if the orbit {x, . . . , f nk(x)} enters
Im(1) at least 3l(δ, ρ, b) times, where m(1) ∈ N is minimal such that RIm(1)−1

displays a non-central return, and l(δ, ρ, b) is the positive integer as in
Proposition 5.1, then there exists k′ < k such that

• #{k′ ≤ i ≤ k : f ni (x) ∈ Im(1)} ≤ 3l(δ, ρ, b);
• for any z ∈ Compx(F−nk(Dθ(I ) ∩ CJ )), we have f nk′ (z) ∈ Dθ2(Im(1)),

where θ2 ∈ (0, π) is a constant depending on δ, ρ, q, C and b.

Proof. Let l = l(δ, ρ, b). If m(1) ≤ 3l, then let k0 = k, and for each
0 ≤ i ≤ m(1) − 1, define inductively ki+1 to be the maximal integer such
that ki+1 < ki and such that f nki+1 (x) ∈ I i+1. By assumption, these integers
are well defined. Applying the previous proposition, we prove inductively
that for each 0 ≤ i ≤ m(1), Fnki (z) ∈ Dσi(I i) for some σi ∈ (0, π). Setting
k′ = km(1) and θ2 = minm(1)

i=0 σi , we conclude the proof.
Now assume that m(1) > 3l. Then define inductively k = k0 > k1 >

· · · > kl to be such that ki+1 is the maximal integer less than ki with the
property that f nki+1 (x) ∈ I i+1. Then as above, we obtain Fnkl (z) ∈ Dσ (I l)
for some σ ∈ (0, π). Note that {x, . . . , f nkl (x)} enters Im(1) at least 2l times.
Let k′′ < kl be minimal such that f nk′′+i (x) /∈ I 0 − I l+1 for all 1 ≤ i <
kl − k′′. Proceeding as in the induction step of the previous proposition, by
distinguishing two cases according to whether f nkl (x) ∈ Im(1)−l or not, we
find that k′′ is positive, and that #{k′′ ≤ i ≤ kl : f ni (x) ∈ Im(1)} ≥ l. Let
k′ < k′′ be maximal such that f nk′ (x) ∈ Im(1). Then using the same argument
as in the proof of the previous proposition, we obtain Fnk′ (z) ∈ Dθ2(Im(1)).
The proof is completed. ��

8.3. Large height case. In this subsection, we shall prove Theorem 3
for maps satisfying a further assumption that there is an arbitrarily small
symmetric interval with an arbitrarily large height. More precisely, we shall
show

Proposition 8.4. For each ρ > 1, there exists N0 = N0(ρ, b) ∈ N such
that if there is an arbitrarily small symmetric nice interval I with ΛI ≤ ρ
and χI > N0, then Theorem 3 holds.

Throughout this subsection, we shall use the following notation:

• I is a symmetric nice interval with ΛI ≤ ρ, and χ = χI is the height
of I ;

• m(0) = 0, and m(1) < m(2) < · · · are all the positive integers such
that RIm(i)−1(c) �∈ Im(i);

• 3 ≤ k1 < k ≤ χ are positive integers;
• J is a component of DIm(k) which intersects ω(c) ∩ Im(k), s is the return

time of J to Im(k), and {Jj}s
j=0 is the chain with Js = Im(k) and J0 = J;

• V = D∗(Im(k1)) ∩CIm(k) , and U = CompJ(F−s(V )).
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By Theorems 2.1 and 5.5, there exists δ = δ(b, ρ) > 0 such that for all
i ≥ 3, ((1 + 2δ)Im(i) − (1 − 2δ)Im(i)) ∩ ω(c) = ∅, and |Im(i)|/|Im(i)+1| >
1 + 2δ. Let l = l(δ, ρ, b) be as in Proposition 5.1.

The main step is to prove the following proposition.

Proposition 8.5. For any N ∈ N, ρ > 1, there exist constants C =
C(b, ρ) > 1 and θ = θ(b, ρ, N) ∈ (0, π) such that if k − k1 ≤ N, and
if |I | is sufficiently small, then for each 0 ≤ j < s, we have

F j(U) ⊂ Dθ

(

LJ j(Im(k1))
)

.(40)

Moreover, for any z ∈ U, we have
(

d(z, J)

|J|
)2

≤ C max

{

1,
d
(

Fs(z), Im(k)
)

|Im(k)|
}

.(41)

Proof. Note that the pull back of Im(k1) along the orbit {J, f(J), . . . , f s(J)}
contains J , and thus is not so small compared to Im(k1). Applying Proposi-
tion 8.2 we obtain (40). (The constant θ does, however, depend on N.) Let
us now turn to the proof of (41).

Take a point z ∈ U , and let w = Fs(z). If w ∈ D∗(Im(k−3l−10)), then
as above, Proposition 8.2 implies z ∈ Dθ(Im(k−3l−10)) for some constant
θ ∈ (0, π). In particular, (41) holds for an appropriately chosen constant C.
So let us assume that w �∈ D∗(Im(k−3l−10)). Let k1 ≤ k′ ≤ k − 3l − 11 be
the maximal positive integer such that w ∈ D∗(Im(k′)). Let z j = F j(z) for
all 0 ≤ j ≤ s.

Definition. Let ε > 0 be a small quantifier. We say that z j ε-jumps if
z j �∈ S(Jj, ε), and that j is an ε-good time if |Jj |/|Js| ≥ ε.

Statement 1. For any q ∈ N, there is a constant νq = ν(δ, ρ, q) > 0 such
that for any k1 ≤ p ≤ k and any i < s, if Ji ⊂ Im(p), and if

#
{

i ≤ j < s : Jj ⊂ Im(p)
} ≤ q,

then i is a νq-good time, i.e., |Ji |/|Im(k)| ≥ νq.

We first observe that the generalized renormalization RIm(p) , i.e., the first
return map restricted to the return domains intersecting Im(p) ∩ ω(c), has
uniformly bounded derivative. As f s−i : Ji → Im(k) is a restriction of Rq′

Im(p)

for some q′ ≤ q, its derivative is also uniformly bounded. Since f s−i(Ji)
contains a point in ω(c) as well as an endpoint of Im(k), it is commensurable
to Im(k). Thus |Ji|/|Im(k)| is bounded away from zero.

Let t0 = s and t1 < s be maximal such that Jt1 ⊂ Im(k′+3l+1). For
1 ≤ i ≤ k − k′ − 3l − 11, let ti+1 < ti be the maximal non-negative integer
such that Jti+1 ⊂ Im(k′+3l+i+1), if it exists. Let

Ai = { j : s > j ≥ ti, Jj ⊂ Im(k′+3l+i)
}

, and qi = #Ai .
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Statement 2. For each 1 ≤ i ≤ k − k′ − 3l − 10, ti exists and

qi ≤ max{q1, q2, . . . , qi−1, 10}.(42)

We shall prove this statement by induction on i. For i = 1, we have
q1 = 1, and so (42) is obviously true. Now assuming that the statement
holds for some 1 ≤ i ≤ k − k′ − 3l − 11, let us prove it for i + 1. For the
existence of ti+1, it suffices to show that ti > 0. To this end, remark that for
any p ∈ N and any y ∈ ω(c) ∩ Im(p+2), we have RIm(p) (y) �∈ Im(p+2). Thus

#
{

0 ≤ j ≤ s : Jj ⊂ Im(k′+3l+i)
} ≥ 2[ k−k′−3l−i

2 ] ≥ 32 > 10,

and hence ti > 0.
It remains to prove that (42) holds for i + 1. Arguing by contradiction,

assume that this is false. Notice that each integer in Ai+1 can be written as
ti′ for some 1 ≤ i ′ ≤ i + 1. Let 1 ≤ i1 < i2 ≤ i + 1 be the smallest two
integers such that ti1 , ti2 ∈ Ai+1. Then qi+1 ≤ i − i2 + 3. On the other hand,
RIm(k′+3l+i+1) (Jti2

) ⊂ Jti1
. Let r ∈ N be such that

RIm(k′+3l+i+1) |Jti2
= Rr

Im(k′+3l+i2 ) |Jti2
.

Then

r ≥ 2[(i+1−i2)/2].

In particular, qi2 ≥ r ≥ 2[i+1−i2 ]/2. Since qi+1 > qi2 ,

2[i+1−i2 ]/2 ≤ i − i2 + 3,

and hence qi+1 ≤ i − i2 + 3 ≤ 10, which contradicts the assumption that
qi+1 > 10. This completes the proof of the induction step, and hence that
of Statement 2.

It follows that for each 1 ≤ i ≤ k − k′ − 3l − 10, qi ≤ 10, and thus ti is
a ν10-good time.

Statement 3. There is a constant θ1 = θ1(ρ) ∈ (0, π) (independent of N),
such that the following holds. For each 1 ≤ i ≤ k − k′ − 3l − 10, if
zti−1 ∈ D∗(Im(k′+i−1)), then

zti ∈ Dθ1(Im(k′+i)+1).

Notice that {Jj}ti−1
j=ti

enters Im(k′+i) more than 3l times. By Proposi-
tion 8.3, there is an integer ti < t′i ≤ ti−1 such that Jt ′i ⊂ Im(k′+i), and
zt ′i ∈ Dθ2(Im(k′+i)). Let ti < t′′i ≤ t′i be the minimal integer such that
Jt ′′i ⊂ Im(k′+i). It suffices to show that there exists a constant θ2 ∈ (0, π)

such that zt ′′i ∈ Dθ2(Im(k′+i)). If t′′i = t′i , then this is true. Assume t′′i < t′i .
Consider the pull back {G j}t ′i

j=t ′′i
with Gt ′i = Im(k′+i), and Gt ′′i ⊃ Jt ′′i . Then
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|Gt ′′i |/|Gt ′i | cannot too small. In fact, RIm(k′+i) maps CompJti
(DIm(k′+3l+i) ) into

Gt ′′i , and so if |Gt ′′i |/|Gt ′i | were very small, then CompJti
(DIm(k′+3l+i) ) would

be much smaller than Im(k′+i), and hence much smaller than Im(k′+3l+i),
which contradicts ΛI ≤ ρ by Corollary 5.3. Applying Proposition 8.2, we
obtain the desired estimate.

It follows that for some constant ε = ε(ρ) > 0, either zt1 ε-jumps, or
zt1 ∈ D∗(Im(k′+1)).

In the former case, by Proposition 8.1, we obtain

d(z, J)

|J| ≤ C max

{

1,

√

d(zt1, Jt1)

|Jt1 |

}

,

for some C = C(δ, ε) > 1. Since d(Ft1(z), Jt1)/|Im(k′+1)| is bounded from
above by a constant depending only on θ1, and since |Jt1|/|Im(k)| ≥ ν10, we
have

d
(

Ft1(z), Jt1

)

|Jt1 |
≤ C

d(w, Im(k))

|Im(k)| .

The inequality (41) follows.
In the latter case, by Statement 3 again, either zt2 ε-jumps, or zt2 ∈

D∗(Im(k′+2)). If zt2 ε-jumps, then we are done again. Repeating this argu-
ment, we reach at either (41), or ztk−k′−3l−10

∈ D∗(Im(k−3l−10)). In the latter
case, applying Proposition 8.2 once again gives us z ∈ Dθ(Im(k−3l−10)) for
some constant θ ∈ (0, π), and so the inequality (41) holds as well. The
proof of this proposition is completed. ��
Corollary 8.6. There exists N ′

0 = N ′
0(ρ, b) ∈ N such that in the situation of

the previous proposition, if k − k1 = N ′
0, then U ⊂ V and Cl(U)− V ⊂ R.

Proof. It follows easily from (41) that Cl(U) � Cl(V ). Noticing also that
U ∩ R = J ⊂ V , the corollary follows. ��
Proof of Proposition 8.4. Let ρ be a constant such that for any sufficiently
small symmetric nice interval I , we have λI = |I |/|I 1| ≤ ρ. We shall prove
the proposition for N0 = N ′

0+3, where N ′
0 = N ′

0(ρ, b) is as in Corollary 8.6.
First let us assume that f is non-renormalizable. Let I ∈ M(�0) be a small
symmetric nice interval. Let k1 = 3 and let k = N0. By Proposition 8.5,
V = D∗(Im(k1)) ∩ CIm(k) determines a quasi-polynomial-like extension of
the real box mapping B associated to Im(k). Thus by Lemma 8.2, B can be
extended to a real symmetric polynomial-like box mapping.

Now assume that f is infinitely renormalizable. Let I be a small sym-
metric nice interval so that N = χI ≥ N0. Let Y = Im(N), and let B be
the largest symmetric properly periodic interval contained in I . Let s be the
return time of c to B. Note that this is the return time of c to Y as well. Set
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V = D∗(Im(N−N′
0))∩CY , and U = CompY1(F−sV ). Then as in the previous

case, we have U ⊂ V . Let us show that

CompB

(

F−(3lN′
0+1)s(V )

)

� V,

which then implies the existence of a polynomial-like extension of BB by
Lemma 8.3.

To this end, let us consider the chain {Jj}3ls
j=0 with J3ls = Y and J0 	 c.

This chain enters Im(N−N′
0+1) at least 3l times, but enters Y only 3l+1 times.

Applying Propositions 8.3 and 8.2, we obtain that

(Fs|U)−3l(V ) ⊂ Dθ1

(

Im(N−N′
0+1)
)

,

for some θ1 ∈ (0, π). Similarly, for each 1 ≤ i ≤ N ′
0 − 1, we find some

θi > 0 such that

(Fs|U)−3l
(

Dθi(Im(N−N′
0+i)) ∩ CY

) ⊂ Dθi+1

(

Im(N−N′
0+i+1)

)

.

In particular, (Fs|U)−3lN′
0(V ) ⊂ Dθ(Y ) for some θ > 0, and thus

CompB

(

F−(3lN′
0+1)s(V )

) ⊂ Dθ ′(Y 1).

The closure of the former set is contained in Cl(U) ⊂ V ∪R, and thus it is
contained (V ∪ R) ∩ Cl(Dθ ′(Y 1)) ⊂ V . This completes the proof. ��

8.4. Bounded height case. In this subsection, we assume that f is infinitely
renormalizable. Let c be the critical point of f in �0. Let

B1 ⊃ B2 ⊃ B3 ⊃ · · ·
be all the properly periodic intervals containing c, and let 1 ≤ s1 < s2 <
s3 < · · · be the periods. We continue to use the notation introduced in
Sect. 5.5: βn is the endpoint of ∂Bn satisfying f sn(βn) = βn, αn is the
innermost fixed point of f sn |Bn, xn is the preimage of αn under f sn |Bn which
is closest to βn , An = (αn, τ(αn)), and En = Bn − {αn, xn, τ(αn), τ(xn)}.
(Here τ : �0 → �0 is the involution with f ◦ τ = f .) Moreover, for each
n, let mn(0) = 0, and let 0 < mn(1) < mn(2) < · · · < mn(χn) be all the
integers such that RAmn ( j)−1

n
(c) �∈ Amn ( j)

n . The goal of this subsection is to
prove the following proposition, which implies Theorem 3 together with
Proposition 8.4.

Proposition 8.7. Assume that lim sup χn < ∞ and that ΛEn < ρ for all
sufficiently large n. Then for n sufficiently large, the real box mapping
associated to Bn extends to a real symmetric polynomial-like box mapping.
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The proof of this proposition is very similar to that of Proposition 8.4
which we have done in the previous subsection, except that Propositions 8.2
and 8.3 will be replaced by Lemma 8.13 below. More precisely, we first
associate to each interval Bn (n ≥ 2) two definite neighborhoods Sn ⊂ Tn
with the property that Sn is well inside Tn , and set

Ωn = Dπ/4(Tn), and Ω′
n = Compc(F−snΩn).

For sufficiently large n′ < n, we shall prove that f sn : Bn → Bn extends
to a holomorphic branched covering onto Ωn′ ∩ CTn which satisfies the
Lyubich–Yampolsky type inequality with C independent of n′ and n. The
proof is again a combination of the a priori estimate given by Lemma 8.13
with the jump argument we have used before.

To prove Lemma 8.13, we shall modify another “jump” argument intro-
duced in [31], formulated in Lemma 8.10.

The intervals Tn and Sn are defined as follows. If χn−1 = −1, then Tn is
defined to be the largest open interval such that Tn ⊃ Bn = An−1 and such
that f sn |Tn has no critical point in Tn − Bn. Otherwise, Tn := Amn−1(χn−1)+1

n−1 .
In both cases, Sn := CompBn

( f −sn(Tn)).

Lemma 8.7. There is a constant σ > 0, such that for all sufficiently large n,
the following hold:

• (1 + 2σ)Tn does not contain f j(Bn) for any 1 ≤ j ≤ sn − 1;
• (1 + 2σ)2 Bn ⊂ (1 + 2σ)Sn ⊂ Tn.

Proof. Assume first that χn−1 ≥ 0. Then by Lemma 5.7, Tn = Am(χn−1)+1
n−1

is well inside Amn−1(χn−1)

n−1 , and thus by Theorem 3.3 the second statement

holds. Noting that Amn−1(χn−1)

n−1 − Tn is disjoint from ω(c), the first statement
follows.

Assume now that χn−1 = −1. Then, sn = 2sn−1 and αn−1 = βn . By
Lemma 5.6, for any critical point c′ of f sn |Bn−1, both of d(c′, f sn(c′)) and
d(c′, αn−1) are comparable to |Bn|. Noting also that Tn ⊃ Sn, the statements
follow. ��
Lemma 8.8. Let {G j}sn

j=0 be a chain such that Gsn is a symmetric open
interval with Bn ⊂ Gsn ⊂ (1 + σ)Tn and G0 ⊃ Bn. Let θ ∈ (0, π), and let
V = Dθ(Gsn), U = CompBn

(F−sn V ). Then provided that n is sufficiently
large, we have

F j(U) ⊂ Dθ/C(G j) for all 0 ≤ j ≤ sn,

where σ > 0 is as in the previous lemma, and C > 1 is a constant indepen-
dent of θ.

Proof. Let {G′
j}sn

j=0 be the chain with G′
sn

= (1 + 2σ)Tn, and G′
0 ⊃ Bn.

Since (1 + 2σ)Tn does not contain f i(Bn) for any 1 ≤ i ≤ sn − 1, we have



382 W. Shen

• G′
j − Comp f j (Bn) f −sn+ j(Bn) does not contain a critical point of f . In

particular, G′
j − G j is disjoint from the critical set of f ;

• the chain {G′
j}sn

i=0 has intersection multiplicity ≤ 4. (See the proof of
Lemma 5.5.) In particular,

∑ |G′
j | is small provided that n is large

(Corollary 3.6);
• | f sn(G0)|/|Gsn | is uniformly bounded from zero. Indeed, f sn(G0) con-

tains a component of Gsn − {c}.
By Lemma 8.5 the lemma follows. ��
Lemma 8.9. Let θ ∈ (0, π) be a constant. Assume that n is sufficiently
large and let {Jj}sn

j=0 be a chain such that Jsn ⊂ Bn and J0 ⊂ Bn. Let
z ∈ Compc(F−sn Dθ(Tn)) and z j = F j(z). Then the following hold.

(1) For any ε ∈ (0, π/2) there exists ξ = ξθ(ε) ∈ (0, π/2) such that if
z j0 �∈ S(Jj0, ε) for some 1 ≤ j0 ≤ sn, then for any 0 ≤ j ≤ j0, we
have

z j �∈ S(Jj, ξ).

(2) There is a constant ε0 = ε0(θ) ∈ (0, π/10), such that if z j ∈ Sε0(Jj)
for all 0 ≤ j ≤ sn, and if a j is the endpoint of Jj with the property
that z j is contained in the component of Sε0(Jj) which contains a j in
its boundary, then F(aj) = aj+1 for any 0 ≤ j ≤ sn − 1.

Proof. Let {G j}sn
j=0 be the chain with Gsn = Tn and G0 = Sn. Then by

Lemma 8.8, there is a constant C > 1 such that z j ∈ Dθ/C(G j) for any
0 ≤ j ≤ sn .

Let {G′
j}sn

j=0 be the chain with G′
sn

= (1 + σ)Tn, and G′
0 	 c. Then

similarly as in the proof of Lemma 8.8, we can show that for any γ ∈ (0, π),
provided that n is sufficiently large, the following holds: For any 1 ≤ j ≤ sn ,

F j : CompBn

(

F− j Dγ (G′
j)
)→ Dγ (G

′
j)

is a holomorphic proper map. Moreover, it can be written in the form
Qk ◦ φk ◦ · · · ◦ Q1 ◦ φ1, with k ≤ b, where each Qi is a real quadratic
map, and each φi is a real symmetric univalent map onto Dγ (Ki) for some
interval Ki 	 0.

By Lemmas 7.3 and 7.5, the lemma follows. ��
Lemma 8.10. For any θ ∈ (0, π) and r ∈ N, there exist ε1 = ε1(θ, r) > 0
and n0 = n0(θ, r, f ) ∈ N with the following property. Let n ≥ n0 and let
{Jj}rsn

j=0 be a chain such that Jisn ’s, 0 ≤ i ≤ r are open intervals compactly
contained in Bn. Let z be a point in CompJ0

(F−rsn (Dθ(Tn) ∩CJrsn
)) and let

z j = F j(z) for any 0 ≤ j ≤ rsn. Assume that f rsn has a critical point in each
component of Bn − J0, and let J ′

0 ⊃ J0 be the maximal open interval such
that f rsn |J ′

0 has no critical point in J ′
0 − J0. Assume that zisn ∈ S(Jisn , ε1)

for each 0 ≤ i ≤ r. Then

z0 ∈ D π
4
(J ′

0).
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Proof. If n is sufficiently large, then by Lemma 8.8, there exists a constant
θ ′ = θ ′(r, θ) ∈ (0, π) such that all these points zisn , 0 ≤ i ≤ r are contained
in Dθ ′(Tn). Let ε0 = ε0(θ

′) and ξ = ξθ ′(ε0) be constants as in Lemma 8.9,
and let ε1 = min(ε0, ξ). For constants chosen in this way, if zisn ∈ S(Jisn , ε1)
for all 0 ≤ i ≤ r, then for each 0 ≤ j ≤ rsn , we have z j ∈ S(Jj, ε0).
Moreover, if aj ∈ ∂Jj is such that z j belongs to the component of S(Jj, ε0)
whose closure contains aj , then F(aj) = aj+1 for each 0 ≤ j ≤ rsn − 1.
Let x0 be the endpoint of J ′

0 closer to a0, and x j = F j(x0). Then there exists
a maximal integer q with 0 ≤ q ≤ rsn − 1, such that xq is a critical point,
say c, of f .

In a neighborhood of c, F can be written as F(z) = Φ(z)2 + F(c), where
Φ is a real symmetric conformal map defined in a neighborhood of c. Note
that Φ(zq) is contained in the triangle bounded by the vertical line through
Φ(c)(= 0), and the radial lines through Φ(aq) which are in the boundary
of S(Φ(Jq), ε0). Thus Φ(zq) ∈ D2π/5((Φ(c),Φ(aq))), which implies that

zq ∈ Dπ/3
(

(c, aq)
)

,

provided that n is sufficiently large. Since
∑q

j=0 | f j(a0)− f j(x0)| is small,
Lemma 8.4 implies that z0 ∈ Dπ/4((a0, x0)) ⊂ Dπ/4(J ′

0). ��
Lemma 8.11. For any θ ∈ (0, π), there exists ε2 = ε2(θ) > 0, such that if
n is sufficiently large, then for any

w ∈ CompBn

(

F−sn
(

Dθ(Tn)
))− Dθ(Tn),

and any interval J ⊂ Bn, we have

w �∈ S(J, ε2).

Proof. By Lemma 8.8, there exists C = C(σ, b) > 1 such that if n is
sufficiently large, then CompBn

(F−sn(Dθ(Tn))) ⊂ Dθ/C(Sn). As Tn contains
a definite neighborhood of Sn, the lemma follows easily. ��
Lemma 8.12. For any θ ∈ (0, π), ρ > 1, q ∈ N, there exists θ ′ ∈ (0, π)
with the following property. Let n be a large positive integer such that
χn ≥ 0, ΛEn−1 ≤ ρ, and ΛEn ≤ ρ. Let J = {Jj}s

j=0 be a chain with
Js ⊂ En, J0 ⊂ A1

n , and J0 ∩ ω(c) �= ∅. Assume that the chain J has
intersection multiplicity at most q, and that

#{0 < j ≤ s : Jj ⊂ Bn} ≥ 3, #
{

0 ≤ j ≤ s : Jj ⊂ A1
n

} ≤ q.

Let V = Dθ(Tn) ∩ CJs , and U = CompJ0
(F−sV ). Then for any 0 ≤ j < s,

F j(U) ⊂ Dθ ′(LJ j(Bn−1)). Moreover, we have

U ⊂ Dθ ′(An).(43)
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Proof. Clearly a := s/sn ∈ N. Let z be a point in U , and let z j = F j(z) for
any 0 ≤ j ≤ s. By Lemma 8.8, it suffices to prove the following:

Claim. There exists a constant θ ′ ∈ (0, π) (independent of z), such that

z ∈ Dθ ′(An).(44)

Moreover, for each 0 ≤ i ≤ a, zisn ∈ Dθ ′(Tn).

Let ε1 = ε1(θ, 3) > 0 be as in Lemma 8.10, let ε2 = ε2(θ) be as in the
previous lemma, and let ε = min{ε1, ε2}. To prove the claim, we distinguish
two cases.

Case 1. zisn ∈ S(Jisn , ε) for all 0 ≤ i ≤ a. In particular, this implies
that zisn ∈ Dθ(Tn). To show (44), first recall that by Lemma 5.9, f 3sn has
a critical point in each component of A0

n − A1
n . Next, applying Lemma 8.10

to the chain {Jj}3sn
j=0, we obtain that z ∈ Dπ/4(An).

Case 2. zi0sn �∈ S(Ji0sn , ε) for some 0 ≤ i0 ≤ a. Let i0 ≤ a be maximal with
this property. Then for any i0 < i ≤ a, zisn ∈ Dθ(Tn). Thus, zi0 ∈ Dθ/C(Tn),
where C > 1 is a constant as in Lemma 8.8. Let K be the component of En
which contains Ji0sn . Note that zi0sn ∈ Dθ2(K ) for some θ2 > 0 depending
only on θ, ε and ρ. Here we use the fact that |K | is comparable to |Tn|:
from ΛEn−1 ≤ ρ and from the construction of Tn it follows that |Tn| is
comparable to |Bn|; while from ΛEn ≤ ρ, by Lemma 5.8, it follows that
|K | is comparable to |Bn|.

If K = An , then let i1 = i0. If K �= An , then i0 > 0 and let i1 < i0
be maximal such that Ji1sn ⊂ An . By Proposition 8.2, to prove the claim
it suffices to prove that there exists a constant θ3 ∈ (0, π) such that the
following hold.

(1) zisn ∈ Dθ3(Tn) for each i1 ≤ i < i0;
(2) zi1sn ∈ Dθ3(An).

To this end, of course we may assume that K �= An . Let i1 < i2 ≤ i0 be
minimal with Ji2sn ⊂ K . Consider the chain {G j}i0sn

j=i2sn
with Gi0sn = K and

Gi2sn ⊃ Ji2sn . Let us show that the ratio |Gi2sn |/|K | cannot be too small.
Arguing by contradiction, assume that |Gi2sn |/|K | is small. By Theorem 5.6,
there exists a constant δ = δ(ρ, b) > 0 such that

(

(1 + 2δ)K − (1 − 2δ)K
) ∩ ω(c) = ∅.(45)

So Gi2sn is deep inside K . By maximality of i1, f (i2−i1)sn(LJi1sn
(An)) ⊂

Gi2sn . It follows that LJi1sn
(An) is deep inside An , which contradicts the

hypothesis that ΛEn ≤ ρ by Corollary 5.3. This proves that |Gi2sn |/|K | is
bounded away from zero. Applying Proposition 8.2, we obtain

• Fisn (z) ∈ Dθ4(LJisn
(K )) for i2 ≤ sn < i0;

• zi2sn ∈ Dθ4(K ) for some θ4 > 0.
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Since (i2 − i1)sn is the entry time of Ji1sn to K , and since (45) holds,
Lemma 8.5 implies that

zisn ∈ Dθ3

(

LJisn
(K )

)

,

for each i1 ≤ i < i2. This proves (1) and (2), where we use LJi1sn
(K ) ⊂ An .

The proof of the lemma is completed. ��
Lemma 8.13. For any θ ∈ (0, π), ρ > 1, q ∈ N, χ ∈ N, there exist
θ ′ ∈ (0, π) and l0 = l0(ρ, χ) with the following property. Let n be a large
positive integer such that ΛEn−1 ≤ ρ, ΛEn ≤ ρ and χn ≤ χ. Let J = {Jj}s

j=0
be a chain such that Js ⊂ En ∩DBn+1 , J0 ⊂ Bn+1 and J0∩ω(c) �= ∅. Assume
that the intersection multiplicity of J is at most q. Let V = Dθ(Tn) ∩ CJs

and U = CompJ0
(F−s(V )). Then the following hold.

(1) If #{0 ≤ j ≤ s : Jj ⊂ Bn+1} ≤ q, then U ⊂ Dθ ′(Tn), and for any
1 ≤ j ≤ s − 1,

F j(U) ⊂ Dθ ′
(

LJ j(Bn−1)
)

.(46)

(2) If #{0 ≤ j ≤ s : Jj ⊂ Bn+1} = l0, then

U ⊂ Dθ ′(Sn+1).

Proof. Let a := s/sn ∈ N ∪ {0}. First notice that if a ≤ 2, then the first
statement follows easily from Lemma 8.5, and the second one is null if we
take l0 > 3. So let us assume a ≥ 3. We shall distinguish two cases.

Case 1. χn ≥ 0. Let 0 ≤ p < s be maximal such that Jp ⊂ A1
n and

(s − p)/sn ≥ 3. Such an integer p exists because we are assuming a ≥ 3
and because J0 ⊂ Bn+1 ⊂ A1

n . By Lemma 8.12, there exists a constant
θ ′ > 0, such that F j(U) ⊂ Dθ ′(LJ j(Bn−1)) for all p ≤ j < s, and such that
F p(U) ⊂ Dθ ′(An). Note that the pull back of An along the orbit {Jj}p

j=0
contains Bn+1, and hence is commensurable to An . By Proposition 8.2,
F j(U) ⊂ Dθ ′(LJ j(An)) ⊂ Dθ ′(LJ j(Bn−1)) for all 0 ≤ j < p as well (with
a smaller θ ′). This proves the first statement of the lemma.

Let us prove the second statement. By Theorem 5.6, there is a δ =
δ(ρ) > 0 such that Amn (i)

n ⊃ (1 + 2δ)Amn (i)+1
n . Let l = l(δ, ρ, b) be as in

Proposition 5.1, and let l0 = 10lχ. Then {Jj}p
j=0 enters Amn(χn)

n at least
l0 − 2 ≥ 3lχn times, and thus by Proposition 8.3, we can inductively define
p = j0 > j1 > · · · > jχn , such that for each 1 ≤ i ≤ χn , we have

• Jji ⊂ Amn (i)
n , and #{ ji ≤ j ≤ ji−1 : Jj ⊂ Amn (i)

n } ≤ 3l;
• F ji (U) ⊂ Dσi(Amn (i)

n ), where σi > 0 is a constant.

In particular, there exists an integer 0 < s′ < s such that Js′ ⊂ Tn+1 and
Fs′

(U) ⊂ Dσ (Tn+1). Since s′/sn+1 ≤ q, applying Lemma 8.8 gives us
U ⊂ Dθ ′′(Sn+1).
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Case 2. χn = −1. Then sn+1 = 2sn , and so s/sn ≤ 2#{0 ≤ j ≤ s : Jj ⊂
Bn+1} ≤ 2q. Applying Lemma 8.8 gives us the first statement of this lemma.
Next let us prove that the second statement holds if l0 ≥ 3. Let j0 ≤ s be
the maximal positive integer with Jj0 ⊂ Bn+1, and let j1 = j0 − sn+1.
Note that j0 = s or j0 = s − sn. By Lemma 8.8, it suffices to prove
F j1(U) ⊂ Dθ2(Tn+1) for some θ2 ∈ (0, π). To this end, take a point z ∈ U ,
and write z j = F j(z) for all 0 ≤ j ≤ s. As (s − j1)/sn ≤ 3, there exists
a constant σ ∈ (0, π), such that z j0, z j1 ∈ Dσ(Tn). Let ε = ε1(σ, 2) be
as in Lemma 8.10. If z j1+isn ∈ S(Jj1+isn , ε) for all 0 ≤ i ≤ 2, then that
lemma implies that z j1 ∈ Dπ/4(Tn+1), since ∂Tn+1 are critical points of f 2sn .
Otherwise, by Lemma 8.9, z j1 �∈ S(Jj1, ε

′) for some definite ε′ > 0, which
implies z j1 ∈ Dθ2(Tn+1) as well. Here we use the fact that |Tn| and |Tn+1|
are comparable to each other. The proof of the lemma is completed. ��
Lemma 8.14. For any m ∈ N ∪ {0}, θ ∈ (0, π), ρ > 1, and q, χ ∈ N,
there exists θ ′ ∈ (0, π) with the following property. Let n be a large positive
integer such that χn−i ≤ χ for all 0 ≤ i ≤ m and such that ΛEn−i ≤ ρ for
any 0 ≤ i ≤ m + 1. Let {Jj}s

j=0 be a chain such that Js ⊂ En−m ∩ DBn+1 ,
J0 ⊂ Bn+1, and J0 ∩ ω(c) �= ∅. Assume that the intersection multiplicity
of this chain is at most q, and that #{0 ≤ j ≤ s : Jj ⊂ Bn+1} ≤ q. Let
V = Dθ(Tn−m) ∩ CJs and U = CompJ0

(F−s(V )). Then

U ⊂ Dθ ′(Tn−m).

Moreover, for any 0 ≤ j < s, F j(U) ⊂ Dθ ′(LJ j(Bn−m−1)).

Proof. Let us prove this lemma by induction on m. For m = 0, it fol-
lows from Lemma 8.13 (1). Now let m0 be a positive integer. Assum-
ing that this lemma is true for m < m0, let us prove it for m = m0.
Let l0 = l0(ρ, χ) be as in Lemma 8.13 (2). If #{0 ≤ j ≤ s : Jj ⊂
Bn−m0+1} ≤ l0, then the lemma follows again from Lemma 8.13 (1). Oth-
erwise, let s1 < s be such that #{s1 ≤ j ≤ s : Jj ⊂ Bn−m0+1} = l0
and Js1 ⊂ Bn−m0+1. Then by Lemma 8.13 (2), there exists θ ′ ∈ (0, π),
such that F j(U) ⊂ Dθ ′(LJ j(Bn−m−1)) for all s1 ≤ j < s, and such that
Fs1(U) ⊂ Dθ ′(Tn−m0+1). Applying the induction hypothesis to the chain
{Jj}s1

j=0, we complete the proof. ��
Proposition 8.8. For any ρ > 1 and χ ∈ N, there is a constant C > 1
with the following property. Fix a positive integer N. Let n be a sufficiently
large positive integer such that χn−i ≤ χ for all 1 ≤ i ≤ N and such
that ΛEn−i ≤ ρ for all 1 ≤ i ≤ N + 1. Let V = Ωn−N ∩ CTn , and
U = CompBn

(F−sn(V )). Then for any 0 ≤ j ≤ sn − 1,

F j(U) ⊂ Dθ

(

L f j (c)(Bn−N−1)
)

,

where θ > 0 is a constant which may depend on N. Moreover, for any
z ∈ U,
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(
d(z, Bn)

|Bn|
)2

≤ C max

{

1,
d(Fsn (z), Bn)

|Bn|
}

.(47)

Proof. The first statement follows from Lemma 8.14, and so our task is
to show (47). Let V ′ = Ωn−N ∩ CBn and U ′ = CompBn

(F−sn (V ′)). If
z ∈ U − U ′ then (47) follows from Lemma 8.8. So let us assume that
z ∈ U ′. Write z j = F j(z) for all 0 ≤ j ≤ sn . Let {Jj}sn

j=0 be the chain with
Js = J0 = Bn. As before, for ε > 0 and 0 ≤ j ≤ sn , we say that z j ε-jumps
if z j �∈ S(Jj, ε), and that j is an ε-good time if |Jj |/|Jsn | ≥ ε. Let n′ ≤ n
be maximal with zsn ∈ Ωn′ . Let l0 = l0(ρ, χ) be as in Lemma 8.13.

Claim. There exist constants ε > 0 and C > 1 which depend only on ρ
and χ such that if n is sufficiently large, then either of the following holds:

• there is an ε-good ε-jump time j ≥ 1 with d(z j, Bn) ≤ C|Bn′ |;
• there is 0 ≤ j ≤ sn such that Jj ⊂ Bn−l0 and z j ∈ Ωn−l0 .

To prove this claim, we may assume that n′ < n − l0, since otherwise
the second alternation in this claim holds for j = sn . Let t0 = sn , and for
any 1 ≤ i ≤ n −n′ − l0, let ti < sn denote the maximal non-negative integer
with Jti ⊂ Bn′+l0+i . Then for i ≥ 1, ti = sn −sn′+l0+i and thus ti are pairwise
distinct.

For any 0 ≤ j1 ≤ j2 ≤ sn and any n′ ≤ i ≤ n, define

X(i; j1, j2) := { j1 ≤ j ≤ j2 : Jj ⊂ Bi}.
Then,

#X(n′ + 1; t1, t0) = (t0 − t1)/sn′+1 + 1 > sn′+l0+1/sn′+1 ≥ 2l0 > l0,

and for any 1 ≤ i ≤ n − n′ − l0 − 1,

#X(n′ + i + 1; ti+1, ti) = (ti − ti+1)/sn′+i+1 + 1 ≥ sn′+l0+i/sn′+i+1 > l0.

By a similar argument as in the proof of Statement 1 of Proposition 8.5,
we find a constant ν = ν(ρ, l0) > 0 such that all these ti’s are ν-good times.

Let ti < t′i < ti−1 be such that #X(n′ + i; t′i , ti−1) = l0 and Jt ′i ⊂ Bn′+i .

By Lemma 8.13 (2), we have Ft ′1(U) ⊂ Dθ1(Tn′+1) for a definite constant θ1.
Furthermore by Lemma 8.14, we get Ft1(U) ⊂ Dθ2(Sn′+1) for a definite
constant θ2. Thus, for an appropriately chosen small constant ε > 0, either
zt1 ε-jumps or zt1 ∈ Ωn′+1. In the former case, the first alternation of the
claim holds for j = t1. In the latter case, for the same reasoning as above,
we obtain zt2 ∈ Dθ2(Sn′+2), so either the first alternation of the claim holds
for j = t2 or zt2 ∈ Ωn′+2. Repeating this argument, we prove the claim.

If the former alternation in the claim holds, then the inequality (47)
follows from Proposition 8.1. If the latter holds, then it follows from
Lemma 8.14 that z0 ∈ Dθ(Tn−l0) for a universal θ > 0, and thus (47)
holds as well. ��
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Proof of Proposition 8.7. Choose N appropriately large and then fix it.
Let n be a large positive integer, and let V = Ωn−N ∩ CTn and U =
Compc(F−sn (V )) be as in the previous proposition. Then by the first
statement of the previous proposition, F|F j(U) is holomorphic for each
0 ≤ j ≤ sn − 1. Moreover, by (47), we have U ⊂ V and Cl(U) − V ⊂ R.
Thus V determines a quasi-polynomial-like extension of BBn . To show that
BBn has a polynomial-like extension, by Lemma 8.3, it suffices to show that
there exists q ∈ N such that

CompBn

(

F−qsn(V )
)

� V.

Let V ′ = Ωn−N ∩ CBn . Let l0 = l0(ρ, χ) be as in Lemma 8.13 (2), and
let q = Nl0. Let {Jj}qsn

j=0 be the chain with Jqsn = J0 = Bn. Since Jj’s enter
Bn−N+1 more than l0 times, there exists p1 ≤ sn such that Jp1 ⊂ Bn−N+1,
and such that

#{p1 ≤ j ≤ sn : Jj ⊂ Bn−N+1} = l0.

By Lemma 8.13 (2), CompJp1
(F−(qsn−p1)(V ′)) ⊂ Dθ1(Tn−N+1) for some

θ1 ∈ (0, π). Note that #{0 ≤ j ≤ p1 − 1 : Jj ⊃ Bn} > Nl0 − l0. Thus we
can inductively define positive integers pN < · · · < p2 < p1 such that for
each i ≤ N, there exists θi ∈ (0, π) such that

CompJpi

(

F−(qsn−pi )(V ′)
) ⊂ Dθi(Tn−N+i ), and Jpi ⊂ Tn−N+i .

Furthermore, applying Lemma 8.8 gives us CompBn
(F−qsn(V ′)) ⊂ Dθ ′(Sn),

where θ ′ ∈ (0, π) is a constant. Again by Lemma 8.8, F−qsn(Ωn) ⊂ Dθ ′′(Sn)
for some θ ′′ ∈ (0, π). Thus

CompBn

(

F−qsn(V )
) ⊂ CompBn

(

F−qsn(V ′)
) ∪ CompBn

(

F−qsn(Ωn)
)

is compactly contained in V . The proof is completed. ��

9. Proof of main theorem

In this section, we shall complete the proof of our main theorem and corol-
lary. Recall that C2([0, 1], [0, 1]) is the space of all C2 maps from [0, 1]
into itself, endowed with the C2 topology. This is a complete metric space.

Recall that N is the family of all smooth maps f : [0, 1] → [0, 1] such
that f({0, 1}) ⊂ {0, 1} and such that all critical points are non-degenerate
and contained in the open interval (0, 1). In the following we shall consider
N as a subspace of C2([0, 1], [0, 1]), so N is endowed with the C2 topology.

For any f ∈ N , let Crit( f ) denote the set of its critical points, and define

Crit1( f ) := {c ∈ Crit( f ) : c is attracted by a hyperbolic attracting cycle
}

,

Crit2( f ) := {c ∈ Crit( f ) : c ∈ Crit1( f ), or is precritical
}

,



C2 density of Axiom A 389

where a critical point c is called precritical if f k(c) ∈ Crit( f ) for some
positive integer k. Let Ni : N → N∪ {0}, i = 1, 2 be the functions defined
by Ni( f ) = #Criti( f ). We say that f is (C2-)locally best if N1 is locally
constant and N2 is locally maximal at f . Notice that N1 is lower semi-
continuous and N2 is locally bounded from above. So locally best maps
form a dense subset of N . The main step is to prove the following:

Theorem 9.1. If f ∈ N is locally best, then

N2( f ) = #Crit( f ).(48)

We shall prove this theorem by contradiction. Assume that f is a locally
best map with Crit( f ) �= Crit2( f ). First, it is well-known that any critical
point c not in Crit2( f ) is non-periodic and recurrent, which is a consequence
of the non-existence of wandering intervals. Next, applying the C2 closing
lemma of Blokh and Misiurewicz, we show that f cannot have large bounds
at c. So by Theorem 1, f must have essentially bounded geometry at c.
Finally we use Kozlovski’s deformation trick and apply Theorems 2 and 3
to show that this cannot happen either, and then complete the proof.

Lemma 9.1. Assume that f is locally best. Then each critical point c ∈
Crit( f ) − Crit2( f ) is recurrent.

Proof. Assume not. Then we can perturb f in C2 topology (in fact in any Cr

topology as long as f is Cr) to get a map f1 ∈ U such that N1( f1) > N1( f )
or N2( f1) > N2( f ), which contradicts the locally best property of f . For
details of the proof, see for example Lemmas 3.10 and 3.12 in [5]. ��

Recall that f has large bounds at c if for any C > 0 and any ε > 0, there
is a C-nice symmetric interval I containing c with |I | < ε.

Lemma 9.2. Assume that f is locally best. If c ∈ Crit( f ) − Crit2( f ), then
f does not have large bounds at c. In particular, ω(c) is a minimal set.

Proof. Arguing by contradiction, assume that f has large bounds at c. Let
C > 0 be a large number, and ε > 0 a small one. Let I 	 c be a C-
nice interval with |I | < ε. Let s be the return time of c to I . Consider
the chain {Jj}s

j=0 with Js = I and J0 	 c. Let K = L f s(c)(I ), and let
K1 = Comp f(c)( f −(s−1)(K )). By Lemma 3.6, K1 is deep inside J1. In
particular, |K1|/| f(J0)| is small.

Let v be an endpoint of K1. Let φ : J0 → R be a smooth map defined
as follows. Let h : [0, 1] → R be a fixed smooth map such that h(0) = 1,
h(1) = 0 and h(i)(t) = 0 for t = 0, 1 and any i ∈ N. Write J0 = (c − η′,
c + η), and let

φ(x) =






(

v − f(c)
)

h
(

x−c
η

)

if x ∈ [c, c + η)

(

v − f(c)
)

h
(

c−x
η′
)

otherwise.
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Then φ(c) = v − f(c), φ′(c) = 0, and for any a ∈ ∂J0 and any i ∈ N∪ {0},
φ(i)(a) = 0. Moreover, φ has a small C2 norm because |v − f(c)|/|J0|2 is
small.

Define f1 = f outside J0, and f1 = f + φ in J0. Then f1 ∈ N and
it is close to f in C2 topology. Since f1 and f only differ on a small
neighborhood of c, Crit2( f ) ⊂ Crit2( f1). By the locally best property of f ,
these two sets must coincide, and f1 is also locally best. So c �∈ Crit2( f1).
But f s

1 (c) = f s−1 ◦ f1(c) = f s−1(v) ∈ ∂K , and so c is a non-recurrent
critical point of f1, which contradicts Lemma 9.1.

The latter statement of the lemma follows from the former one by Theo-
rem 3.4. ��
Remark 9.1. The argument which we used above comes from [5]. In order
to get a small C2 norm, the perturbation φ has to be supported on a neigh-
borhood of a critical point. If we want to keep the map f unchanged near
the critical points, then we can only get C1 closing. Similarly, for f and f1
constructed as above, if ϕ and ϕ1 are diffeomorphisms defined on J0 such
that f(x) = ϕ(x)2 + f(c) and f1(x) = ϕ1(x)2 + f1(c) hold for x ∈ J0, then
these maps ϕ1 and ϕ are only C1-close to each other (although f1 and f
are C2 close). This is nevertheless an improvement of Jakobson’s closing
lemma [18], which only gives C0 approximation in both cases.

So far we have shown that if a locally best map f has a critical point
c ∈ Crit( f ) − Crit2( f ), then c is non-periodic, recurrent and has a minimal
ω-limit set, and f does not have large bounds at c. In the following, we
are going to prove that this is absurd. First we shall prove that the real box
mappings associated to certain small symmetric nice intervals are stable in
an appropriate sense.

Recall that an open interval I is strictly nice if inf k∈N,x∈∂I d( f k(x), I ) > 0.
Remark that if f is only finitely renormalizable at c, then there exists an
arbitrarily small symmetric strictly nice interval containing c. In fact, for
any symmetric nice interval I 	 c with Lc(I ) �= I , Lc(I ) is strictly nice.

Let I 	 c be a small symmetric interval which is properly periodic
if f is infinitely renormalizable at c and strictly nice otherwise. Let BI :
(
⋃m

j=0 Jj) ∪ (
⋃b−1

i=1 Ii) → ⋃b−1
i=0 Ii be the real box mapping associated to I .

Let η = η(I ) > 0 be a small constant such that

• for any c′ ∈ Crit1( f ) and any k ≥ 0, we have d( f k(c′), dom(BI )) ≥ η;
• for any c′ ∈ Crit2( f ) − Crit1( f ), if k is the minimal positive integer

such that f k(c′) ∈ Crit( f ), then d( f i(c′), dom(BI )) ≥ η for any 1 ≤
i ≤ k − 1;

• the η-neighborhoods of any two distinct components of dom(BI ) are
disjoint.

Remark that for any c′ ∈ Crit(BI ) ∩ Crit2( f ), if k ∈ N is minimal with
f k(c′) ∈ Crit( f ), then BI (c′) = f k(c′) ∈ Crit(BI ).

Now let BI denote the space consisting of maps B in Eb such that
dom(B) = dom(BI ), range(B) = range(BI ), Crit(B) = Crit(BI ) and such
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that the following holds: for all x ∈ ∂(dom(BI ))∪ (Crit(BI )−{c}), B(x) =
BI (x). (For x ∈ ∂dom(BI ), B(x) and BI (x) are defined by continuation.)
For any B1, B2 ∈ BI , define

dI (B1, B2) = sup
x∈dom(BI )

max
0≤i≤2

{∣
∣B(i)

1 (x) − B(i)
2 (x)

∣
∣

}

.

For any B ∈ BI , we construct a piecewise smooth, continuous map fB :
[0, 1] → [0, 1] as follows. For each component J of dom(BI ), let s = s(J)
be the positive integer such that BI |J = f s|J and let 0 ≤ i = i(J) ≤ b − 1
be such that BI (J) ⊂ Ii . Let K be the component of f −s+1(Ii) which
contains f(J). As noted in the proof of Lemma 3.2, f s−1 : K → Ii is
a diffeomorphism. Define f B|J = ( f s−1|K )−1 ◦ B for every J and fB = f
on [0, 1] − dom(BI ).

Lemma 9.3. There exists a constant δ = δ(I ) > 0, such that for any
B ∈ BI with dI (B, BI ) ≤ δ, the following hold:

(1) for any c′ ∈ Crit(B) and k ∈ N, Bk(c′) ∈ dom(B);
(2) for any c′, c′′ ∈ Crit(B) and any non-negative integers k, m, Bk(c′) <

Bm(c′′) if and only if Bk
I (c

′) < Bm
I (c′′). Furthermore, Bk(c′) = Bm(c′′)

if and only if Bk
I (c

′) = Bm
I (c′′);

(3) B ∈ Fb and B has essentially bounded geometry.

Proof. Let Bt = (1 − t)BI + tB, t ∈ [0, 1] be a one-parameter family of
maps defined on dom(B). When δ is sufficiently small, all these maps Bt
are contained in Eb. In particular, Bt does not have a wandering interval for
any t ∈ [0, 1].
(1) In the case that I is a properly periodic interval, this is clear. So let us
assume that I is a strictly nice interval. Arguing by contradiction, assume
that the assertion fails. Then there exists a minimal k0 ∈ N such that

Bk0(ci0) �∈ dom(B)(49)

holds for some i0 ∈ {0, 1, . . . , b − 1}. By the minimality of k0, ci0 �∈
Crit2( f ).

By continuity, there exists t0 ∈ [0, 1] such that Bt0(ci0) ∈ ∂dom(Bt0).
Let us show that this contradicts the hypothesis that f is locally best. Let
ft0 = fBt0

be defined as above. Note that ft0 has ci0 as a non-recurrent
critical point, but may not be smooth. Since I is strictly nice, there exists
η1 = η1(I ) > 0, such that the following hold:

• if J is a component of DI intersecting ω(c) − dom(B), then
d(J, dom(B)) > η1;

• for any x ∈ ∂I and any k ≥ 1, d( f k(x), I ) ≥ η1.
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Provided that δ is sufficiently small, there exists a map gt0 ∈ N such that

• gt0(x) = ft0(x) for any x ∈ dom(B) and for any x with d(x, dom(B)) >
η1; and

• sup |g(i)
t0 − f (i)

t0 | is small for all 0 ≤ i ≤ 2, where the supremum is taken
over all points where ft0 is C2.

Then gt0 is close to f in the C2 topology and Crit2(gt0) ⊃ Crit2( f ).
By the locally best property of f , it follows that gt0 is also locally best
and Crit2(gt0) = Crit2( f ). In particular, ci0 ∈ Crit(gt0) − Crit2(gt0). But
gn

t0
(ci0) = f n

t0
(ci0) for all n ≥ 0 and so ci0 is a non-recurrent critical point of

gt0 , which contradicts Lemma 9.1.

(2) Let us first prove the following

Claim. For any 0 ≤ i0, i1 ≤ b − 1, any t ∈ [0, 1], and any k ∈ N,
Bk

t (ci0) − ci1 and Bk(ci0) − ci1 have the same sign.

In the case that I is strictly nice, this claim can be proved using the same
argument as above. Now let us assume that I is a properly periodic interval.
The argument above is not valid since DI may have a component U with
U ∩ (orb(c)− I ) �= ∅ and Cl(U)∩Cl(I ) �= ∅, but can be refined as follows.

Since f is infinitely renormalizable, there is a symmetric properly
periodic interval J = (a, a′) � I . Let s be the positive integer such
that Bs

I (J) ⊂ J . Then
⋃∞

i=0 Bi
I (J) = ⋃s−1

i=0 Bi
I (J) is compactly con-

tained in dom(BI ). When B is sufficiently close to BI , there is an interval
J = (a(B), a′(B)) = J(B) such that Bs(J) ⊂ J , and such that a(B) is close
to a and a′(B) is close to a′. In particular,

⋃∞
i=0 Bi(J(B)) is uniformly well

separated from ∂dom(B). Note that the critical orbits of B are contained in
⋃∞

i=0 Bi(J(B)). It follows that there is a constant η1 > 0, such that for any
B ∈ BI which is sufficiently close to BI , and for any c′ ∈ Crit(B), we have
inf∞

k=0 d(∂(dom(B)), Bk(c′)) > η1.
Arguing by contradiction, assume that the claim fails. Then there exists

a minimal k0 ∈ N such that for some 0 ≤ i0, i1 ≤ b−1, for some t ∈ [0, 1],
Bk0

t (ci0) − ci1 and Bk0(ci0) − ci1 have different signs. Obviously k0 > 1 if δ
is sufficiently small. By the minimality of k0, ci0 �∈ Crit2( f ). By continuity,
there exists t0 ∈ [0, 1] such that Bk0

t0 (ci0) = ci1 . Let ft0 = fBt0
be as defined

above the lemma. Then there exists a map g = gt0 ∈ N such that g(x) =
ft0(x) for any x �∈ dom(B) and for any x with d(x, ∂(dom(B))) ≥ η1, and
such that g is close to f in the C2 topology. But Crit2(g) ⊃ Crit2( f )∪{ci0},
which contradicts the assumption that f is locally best. The proof of the
claim is completed.

Thus, for any c′ ∈ Crit(B), t ∈ [0, 1] and k ∈ N, Bk(c′) and Bk
t (c

′) are
contained in the closure of the same component of dom(B) − Crit(B). (In
the language of [41], the maps Bt’s have the same kneading sequences.)

Assume that for some c′, c′′ ∈ Crit(B) and some non-negative integers
k, m, we have Bk

0(c
′) < Bm

0 (c′′) but Bk
1(c

′) ≥ Bm
1 (c′′). Then by continuity
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there exists t ∈ [0, 1] such that Bk
t (c

′) = Bm
t (c′′). For any i ≥ 0, since

Bk+i
t (c′) = Bm+i

t (c′′), Bk+i
0 (c′) and Bm+i

0 (c′′) are contained in the closure
of the same component of dom(B0) − Crit(B0). Thus Bi

0|[Bk
0(c

′), Bm
0 (c′′)]

is well-defined and monotone for all i ≥ 0. By Theorem 3.1, this implies
that ω f (c′) is a periodic orbit, which is absurd. Similarly, we can show that
Bk

0(c
′) = Bm

0 (c′′) implies that Bk
1(c

′) = Bm
1 (c′′), and that Bk

0(c
′) > Bm

0 (c′′)
implies that Bk

1(c
′) > Bm

1 (c′′). The proof of the second assertion of this
lemma is completed.

(3) We have shown that the closure of the critical orbits of B is compactly
contained in the range of B. In fact, if I is strictly nice, then dom(B)
is compactly contained in range(B), and thus this follows from the first
assertion of this lemma; if I is properly periodic, this has been shown in
the proof of the second assertion. If B has a non-recurrent critical point
c′ ∈ Crit( f ) − Crit2( f ), then as above we can construct a map g1 which
also has c′ as a non-recurrent critical point, which is absurd by Lemma 9.1.
Similarly, by Lemma 9.2, we conclude that B has essentially bounded
geometry at c′.

Finally, let us show that the critical points of B have the same ω-limit
set. Let c′ �= c′′ be critical points of B. By the construction of BI , there is
a sequence of positive integers {nk}∞

k=1, such that nk → ∞ and Bnk
I (c′) → c′′

as k → ∞. For any m ∈ N, provided that k is sufficiently large, the interval
[c′′, Bnk

I (c′)] is very small, and thus Bm
I is monotone on this interval. By

the second assertion of this lemma, Bm is monotone on [c′′, Bnk(c′)]. This
implies that Bnk(c′) → c′′ since B does not have a wandering interval. ��

It is easy to see that there exists a real analytic map B in BI which
is arbitrarily close to BI . So we can find a map g in N , arbitrarily close
to f , such that I is a nice interval with respect to g and such that the
corresponding real box mapping Bg

I is real analytic. Moreover, Crit(g) =
Crit( f ) and Crit2(g) ⊃ Crit2( f ). Since f is locally best, it follows that
Crit2(g) = Crit2( f ) and g is also locally best. Thus, we may assume that
BI is real analytic.

By Theorem 3, there is an arbitrarily small symmetric nice interval
K 	 c, such that the real box mapping BK associated to K can be extended
to a real symmetric polynomial-like box mapping. To simplify the notation,
let us assume that BI itself has such an extension

F :
( m
⋃

j=0

U j

)

∪
( b−1
⋃

i=1

Vi

)

→
b−1
⋃

i=0

Vi.

We may assume that the boundaries of U j’s and Vi’s are all real analytic
curves. Moreover, in the case that I is strictly nice, we may assume that
Vi ∩ R = Ii and U j ∩ R = Jj .

Let i0 ∈ {0, 1, . . . , b − 1} be such that F(c) = BI (c) ∈ Vi0 . For t ∈
Vi0 ∩R, let αt be the conformal automorphism of Vi0 such that α′

t(F(c)) > 0
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and αt(F(c)) = t, and define

Ft :
( m⋃

j=0

U j

)

∪
( b−1⋃

i=1

Vi

)

→
b−1⋃

i=0

Vi

by declaring that Ft |U0 = αt ◦F|U0 and Ft = F0 on (
⋃m

j=1 U j)∪(
⋃b−1

i=1 Vi).
In this way we obtain a real analytic family of polynomial-like box map-
pings. Let FRt denote the real trace of Ft , which is a map in Eb. Let Γ be
the subset of Vi0 ∩ R, consisting of those t such that FRt is in Fb, is com-
binatorially equivalent to the real trace of F and has essentially bounded
geometry (at c).

Lemma 9.4. F(c) is in the interior of Γ.

Proof. Assume first that I is strictly nice. When t is sufficiently close to
F(c), αt is close to the identity map, and thus the real trace of Ft is a map
in the class BI and close to BI in the dI distance. By Lemma 9.3 it follows
that t ∈ Γ. Thus F(c) is in the interior of Γ.

Now let I be a properly periodic interval. Let p be the fixed point of Fb in
∂I . Note that p is a repelling fixed point of Fb (provided that I was chosen to
be sufficiently small). Thus for all t sufficiently close to F(c), Fb

t has a fixed
point pt in V0 ∩ R which is close to p. Define I1(t) = (τc(pt), pt). Here τc
is the involution of U0 ∩ R such that f ◦ τc = f . For any 1 ≤ i ≤ b − 1,
let 0 ≤ i ′ ≤ b − 1 be such that F(Vi) ⊂ Vi′ , and define Ii(t) ⊂ Vi to be
the preimage of Ii′(t) under FRt . Rescaling Ft |⋃b−1

i=0 Ii(t), we obtain a map
Bt : ⋃b−1

i=0 Ii →⋃b−1
i=0 Ii . As above, Bt ∈ BI and dI (Bt, BI ) is small, which

implies that t ∈ Γ. The lemma follows. ��
We are now ready to apply the deformation trick from [21] to deduce

the necessary contradiction to complete the proof of Theorem 9.1. To this
end, we need the following.

Proposition 9.2. A real symmetric polynomial-like box mapping F carries
no invariant line field on its Julia set.

The proposition was proved in [43] for real rational functions (other
than Lattés examples), and the proof extends to the set-up of real symmetric
polynomial-like box mappings in a straightforward way. Here by an invari-
ant line field of F, we mean a measurable F-invariant Beltrami differential.
The proposition means that if φ : C→ C is a qc map such that φ ◦ F ◦ φ−1

is a holomorphic map on φ(dom(F)), then ∂̄φ = 0, a.e. on the Julia set
of F.

Completion of Theorem 9.1 Keep the notation as above. Let X =⋃b−1
i=0 Vi .

For any t ∈ Vi0 ∩ R, let φt : X → X be a real symmetric qc map such that

• φt |∂V0 = id∂V0 ;
• φt ◦ F = Ft ◦ φt on ∂(dom(F)).
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We choose the maps φt to satisfy the following conditions:

• For any z ∈ X, t �→ φt(z) is a real analytic function;
• The complex dilatation µt = ∂̄φt/∂φt depends real analytically on t.

Define a Beltrami differential νt on X such that νt(z) = (Fn)∗(µt)(z) for
a.e. z ∈ F−n(V0 −⋃m

j=0 U j), and νt(z) = 0 on the filled Julia set of F. Then
νt depends real analytically on t. By the Measurable Riemann Mapping
Theorem, there is a family {pt}t∈Vi0∩R of qc homeomorphisms of X with
the following properties:

• pt(Vi) = Vi for each 0 ≤ i ≤ b − 1;
• ∂̄ pt = νt∂pt , a.e.;
• pt fixes the critical points of F and the endpoints of each Vi ∩ R;
• for each z ∈ X, t �→ pt(z) is a real analytic function.

Now let t be a point in Γ. Note that the real trace of Ft has only repelling
periodic points. By Theorem 2, there is a qs map ht which is a conjugacy
between F|ωF(c) and Ft |ωFt(c). So we can construct a real symmetric qc
map φ0

t : X → X which coincides with φt on (V0 −⋃m
j=0 U j)∪ (

⋃b−1
i=1 ∂Vi)

and coincides with ht on ωF(c). The qc map φ0
t provides a Thurston equiva-

lence between F and Ft , from which a qc conjugacy φ∞
t can be constructed

as follows. For any j ≥ 0, define φ
j+1
t : X → X inductively to be the qc

map such that

• φ
j+1
t = φ

j
t on

(

V0 −⋃m
j=0 U j

) ∪ (⋃b−1
i=1 ∂Vi

)

;

• Ft ◦ φ
j+1
t = φ

j
t ◦ F on dom(F);

• φ
j+1
t is real symmetric.

Then φ
j
t converges to a qc map φ∞

t : X → X, which coincides with φt on
(V0 −⋃m

j=0 U j) ∪ (
⋃b−1

i=1 ∂Vi), and satisfies Ft ◦ φ∞
t = φ∞

t ◦ F. Here we
use the fact that the filled Julia set of F has no interior point. Moreover, by
Proposition 9.2, the complex dilatation of φ∞

t is equal to νt . It follows that
φ∞

t = pt for all t ∈ Γ.
For any z ∈ ∂(dom(F)), φt(z) = pt(z) for all t ∈ Γ. Since Γ contains

a neighborhood of F(c), by the real analytical dependence on t, we conclude
that φt(z) = pt(z) for all z ∈ ∂(dom(F)) and all t ∈ Vi0 ∩ R. This implies
that pt maps a component of dom(F) onto itself for all t ∈ Vi0 ∩ R.

Let F̂t = pt ◦ F ◦ p−1
t . Then F̂t is a real symmetric polynomial-like

box mapping which has the same domain and image as F. Since F̂t = Ft

for all t ∈ Γ, by analytic continuation, F̂t = Ft for all t ∈ Vi0 ∩ R. Thus
Γ = Vi0 ∩R, which is absurd since the combinatorics clearly change in the
family Ft , t ∈ Vi0 ∩ R. ��
Proof of main theorem. Given any f ∈ C2([0, 1], [0, 1]), we need to ap-
proximate it by maps satisfying Axiom A in the C2 topology.
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We first consider the case f ∈ N . Since locally best maps are dense
in N , we may assume that f is locally best. Then all the critical points of f
are contained in the basin of a hyperbolic attracting cycle. The last property
is also satisfied by maps in a neighborhood U of f in C2([0, 1], [0, 1]). It
is well known that there is a map g ∈ U which is arbitrarily close to f and
has no neutral cycles. By a theorem of Mañé [32], g is hyperbolic.

For an arbitrarily f ∈ C2([0, 1], [0, 1]), we can do as follows. First note
that we may assume that f([0, 1]) ⊂ (0, 1), since

fε = ε + f

1 + 2ε

satisfies this property for all ε > 0. We may also assume that f is smooth.
Then we extend f to be a smooth map f̃ : [−1, 2] → [−1, 2] such that
f̃ ({−1, 2}) ⊂ {−1, 2}. Let F be the map in C2([0, 1], [0, 1]) which is affine
conjugate to f̃ , then F can be approximated by maps in N in C2 topology.
It follows that F and hence f can be approximated in the C2 topology by
Axiom A maps. ��

It is well-known that the main corollary follows from the main theorem.
The proof uses the following.

Proposition 9.3. Let r ≥ 2 be a positive integer, and let f ∈ Cr([0, 1],
[0, 1]) be a map which satisfies Axiom A. Assume that

• for any c ∈ Crit( f ), we have c ∈ (0, 1) and f ′′(c) �= 0;
• both of 0 and 1 are attracted by periodic attractors of f ; and
• for any c, c′ ∈ Crit( f ) ∪ {0, 1}, and any non-negative integers m, n, if

f m(c) �= f n(c′), then c = c′ and m = n.

Then f is Cr-structurally stable.

For a proof of this proposition, see Theorem III.2.5 of [35]. (In that
book, the authors considered only maps which map {0, 1} into itself. But
the method extends easily to our setting.)

Appendix: Complex bounds for analytic interval maps

This appendix is an elaboration on Sect. 8. The goal is to to show that the
real box mappings associated to certain symmetric nice intervals extend to
polynomial-like box mappings with “complex bounds”.

Theorem 3’. For any b ∈ N, there exist µ ∈ (0, π) and p ∈ N with the
following property. Let f be a real analytic map in the class Fb, and let c
be a critical point of f . Then the following hold.
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(1) For any ε > 0, there is a symmetric nice interval I which contains c,
such that |I | < ε and ((1 + 2µ)I − I ) ∩ ω(c) = ∅, and such that the
real box mapping BI extends to a real symmetric polynomial-like box
mapping Φ. Moreover, for any x ∈ ω(c) ∩ I , we have

Compx

(

dom(Φp)
) ⊂ Dµ

(

(1 − 2µ)I ′),

where I ′ ⊃ I is the maximal symmetric open interval disjoint from
ω(c) − I .

(2) If f is infinitely renormalizable, and if I is a small properly periodic
interval with period s, then the first return map f s : I → I extends to
a DH-polynomial-like mapping ψ : U → V of degree 2b such that

mod
(

V − Cl(U)
) ≥ µ.

Both statements have been proved in the unimodal case before, see [22,
12,31]. In this case, there have also appeared many applications of these
bounds. For example, these bounds were used to prove the local connectivity
of Julia sets for real unicritical polynomials with connected Julia sets, and
to simplify the proof of the non-existence of invariant line fields for such
polynomials, see [16,22,38,23]. Moreover, the second statement was an
important ingredient in dealing with the rigidity problem [27,11], and in
the renormalization theory [46,38,29]. We believe that the complex bounds
claimed in our Theorem 3’ will be useful in further understanding the
dynamics of a multimodal real polynomial.

Remark that for a properly periodic interval I with period s, all DH-
polynomial-like extensions of f s : I → I of degree 2b have the same Julia
set. See Proposition 2.2 in [22].

We shall continue using the notation introduced in 8. In particular, we
have a smooth polynomial-like extension F. We shall first prove Theorem 3’
in case that f has large bounds. Then we shall point out how to refine the
arguments in Sect. 8 to get “complex bounds” in the non-renormalizable
case. Finally, combining these methods we prove “complex bounds” for
infinitely renormalizable maps.

A1. The case that f has large bounds.

Proposition A.1. There exists a constant κ = κ(b) > 0 with the following
property. Let c ∈ Crit( f ), and let I 	 c be a sufficiently small nice interval
such that

(

(1 + 2κ)2 I 1 − I 1
) ∩ ω(c) = ∅, and (1 + 2κ)2 I 1 ⊂ I,

where I 1 = Lc(I ). Let x ∈ ω(c) ∩ I 1, and let s be the return time of x
to I 1. Let V = D∗((1 + 2κ)I 1), and U = Compx(F−s(V )). Then for each
0 ≤ j < s, we have

F j(U) � D∗
(

L f j(x)(I )
)

.

In particular, U � D∗(I 1) ⊂ V.
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Proof. Let κ > 0 be a large constant. Let us consider the chains {G′
j}s

j=0

and {G j}s
j=0 with G′

s = (1 + 2κ)2 I 1, Gs = (1 + 2κ)I 1, and G′
0 ⊃ G0 	 x.

By Lemma 3.8 and Corollary 3.6,
∑s

j=0 |G′
j | is small provided that |I | is

sufficiently small. By Lemma 8.5, there is a universal constant θ, such that
for any 0 ≤ j < s, F j(U) ⊂ Dθ(G j). (In fact, θ → π/2 as κ → ∞.)
By Lemma 3.6, G j is deep inside G′

j . Since G′
j ⊂ DI , it follows that

F j(U) � D∗(L f j (x)(I )) for all 0 ≤ j ≤ s − 1. As Lx(I ) = I 1, we have
U � D∗(I 1). ��
Corollary A.2. There exists ρ = ρ(b) > 0 with the following property.
Let c ∈ Crit( f ) and let K ∈ M(�0) be a sufficiently small symmetric
nice interval such that the limit scaling factor ΛK is ≥ ρ. Then there is
a symmetric nice interval I with c ∈ I ∈ M(K ), such that

• ((1 + 2κ)2 I − I ) ∩ ω(c) = ∅;
• BI extends to a polynomial-like box mapping Φ;
• for any x ∈ ω(c) ∩ I , we have

Compx

(

dom(Φ)
) ⊂ D∗(I ),

where κ is as in the previous proposition.

Proof. By Proposition 4.1, there is a C-nice symmetric interval in M(K ),
where C = C(ρ, b) is a large constant provided that ρ is sufficiently large.
If C is sufficiently large, then by Corollary 4.6 in [42], there is a symmetric
nice interval M 	 c, which is again contained in M(K ) and satisfies (1 +
2κ)2 M1 ⊂ M and ((1 + 2κ)2M1 − M1) ∩ ω(c) = ∅. Set I = M1. It follows
from the previous proposition that BI has a quasi-polynomial-like extension
determined by V = D∗((1 + 2κ)I ). By Lemma 8.2, BI has a polynomial-
like extension Φ determined by a real symmetric topological disk V ′ ⊂ V .
Obviously, for any x ∈ ω(c) ∩ I , if s is the return time of x to I , then

Compx

(

dom(Φ)
) ⊂ Compx(F−s V ) � D∗(I ). ��

Corollary A.3. There exists ρ = ρ(b) > 0 with the following property.
Assume that f is infinitely renormalizable. Let K be a small symmetric
nice interval with ΛK ≥ ρ, and let B = ⋂∞

k=1 Kk be the maximal prop-
erly periodic interval contained in K. Then the real box mapping BB has
a polynomial-like extension.

Proof. Let c be the critical point in K , and let s be the period of B. As
in the proof of the previous corollary, we find a symmetric nice interval
I 	 c which is contained in M(K ), such that BI has a quasi-polynomial-
like extension determined by a real symmetric topological disk V =
D∗((1 + 2κ)I ). Moreover, for any x ∈ ω(c) ∩ I , if q is the return time
of x to I , then

Compx

(

F−q(V )
)

� D∗(I ) ⊂ V.
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Let m be a positive integer such that Im − B is disjoint from ω(c). Such
an integer exists because

⋂∞
k=0 I k = ⋂∞

k=0 Kk = B. Let n be such that
Im is a component of f −n(I ), let V ′ = Compc(F−n(V )), and let U ′ =
Compc(F−n−s(V )). Then Fs : U ′ → V ′ is holomorphic and U ′ � V ′. It
follows that BB has a polynomial-like extension (determined by V ′). ��

A2. Bounds for non-renormalizable maps.

Proposition A.4. Assume that f is non-renormalizable. If there is an ε > 0
such that for any symmetric nice interval I with |I | < ε, we have ΛI ≤ ρ,
then Theorem 3’ holds.

Proof. Let I be a symmetric nice interval in M(�0), with |I | < ε. Then
ΛI ≤ ρ. Let m(0) = 0, and let m(1) < m(2) < · · · be all the positive
integers such that RIm(i)−1(c) �∈ Im(i), where c is the critical point in I . Let
k1 < k be large positive integers with k−k1 = N ′

0, where N ′
0 = N ′

0(ρ, b) is as
in Corollary 8.6, and let V = D∗(Im(k1))∩CIm(k) . Then V determines a quasi-
polynomial-like extension of BIm(k) . By Lemma 8.2, BIm(k) has a polynomial-
like extension Φ determined by a topological disk V ′ ⊂ V .

Let δ = δ(ρ) > 0 and l = l(δ, ρ, b) ∈ N be determined as in Sect. 8.3
(after the statement of Proposition 8.4). Let p = 3lN ′

0 + 1. To complete
the proof we shall show that there exists θ ∈ (0, π) such that for any
x ∈ Im(k) ∩ ω(c), we have Compx(dom(Φp)) ⊂ Dθ(Im(k)).

To this end, let s ∈ N be such that Rp
Im(k) = f s near x. It suffices to show

that Compx(F−sV ) ⊂ Dθ(Im(k)). Let {Jj}s
j=0 be the chain with Js = Im(k)

and J0 	 x. Then by Propositions 8.2 and 8.3, (arguing similarly as in the
proof of Proposition 8.4 for the infinitely renormalizable case,) there exist
s′ < s and θ ′ ∈ (0, π) such that Js′ ⊂ Im(k) and CompJs′ (F−(s−s′)(V )) ⊂
Dθ ′(Im(k)). Finally, applying Lemma 8.5 we obtain the desired estimate. ��

A3. Bounds for infinitely renormalizable maps. Now let us assume that
f is infinitely renormalizable. Let c be the critical point of f in �0. We
shall continue to use the notation introduced in Sect. 8.4. Let ρ > 0 be the
constant as in Corollary A.3.

Proof of Theorem 3’ (2). Let us say that the n-th renormalization has
a complex bound µ if f sn : Bn → Bn extends to a DH-polynomial-like
map ψ : U → V of degree 2b such that mod(V − U) ≥ µ. By Theorem 3
and Corollary A.3, we may assume that f s1 : B1 → B1 has a polynomial-
like extension Fs1 : U1 → V1. Then for any n ≥ 2, the real box map-
ping associated to Bn has a quasi-polynomial-like extension determined by
Vn = V1 ∩ CTn . By Lemma 7.6, to prove that f sn : Bn → Bn has a definite
complex bound, it suffices to show that it has a DH-polynomial-like exten-
sion of degree 2b, and that the filled Julia set of this extension is contained
in Dθ(Sn) for some definite θ > 0. The proof is completed by the following
statements.
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Statement 1. If I ∈ M(En) is a symmetric nice interval with ΛI ≤ ρ and
χI ≥ N ′

0 + 3, where N ′
0 = N ′

0(ρ, b) is as in Corollary 8.6, then provided
that n is sufficiently large, the (n + 1)-th renormalization has a complex
bound µ1 = µ1(b) > 0.

In fact, we have proved in Proposition 8.4 that f sn+1 : Bn+1 → Bn+1
extends to a DH-polynomial like mapping ψ : U → V of degree 2b, and
that there exists a constant θ ′ ∈ (0, π) such that ψ−(3lN′

0+1)(V ) ⊂ Dθ ′(Tn+1),
which implies that the filled Julia set of ψ is contained in Dθ(Sn+1) for some
constant θ ∈ (0, π). By the remark above, the (n + 1)-th renormalization
has a definite complex bound.

Statement 2. There exists a constant C = C(b) > 1 such that if |Bn| >
C|Bn+1|, then provided that n is sufficiently large, the (n + 1)-th renormal-
ization has a complex bound µ2 = µ2(b) > 0.

First assume that ΛEn ≤ ρ. When C is large, this implies that χn ≥
N ′

0 + 3. Applying Statement 1 to I = An , we conclude the proof. Now
assume that ΛEn > ρ. Then there exists a symmetric nice interval K in
M(En) such that ΛK > ρ. By Corollary A.3, f sn+1 |Bn+1 has a polynomial-
like extension ψ. Denote by K the filled Julia set of ψ. In fact, it was
proved there that there is a pull back I ⊂ K1 of K which contains c, such
that (1+2κ)I−I is disjoint from ω(c), and such that K ⊂ D∗(I ). If ΛI > ρ,
then for the same reason, we can find a symmetric nice interval J 	 c, such
that J ⊂ I 1 ⊂ K2, ((1 + 2κ)J − J) ∩ ω(c) = ∅, and K ⊂ D∗(J). If
ΛJ > ρ, then we repeat the argument. Obviously, this argument must stop
within finitely many steps, so without loss of generality, let us assume that
ΛI ≤ ρ. If χI ≥ N ′

0+3, then the proof is again completed by Statement 1. So
assume χI ≤ N ′

0+3. By a similar argument as in the proof of Proposition 8.4,
there exist p ∈ N and θ ∈ (0, π), such that

Compc

(

F−psn+1
(

D∗(I ) ∩ CTn+1

)) ⊂ Dθ

(

Im(χI )+3
)

.

In particular, K ⊂ Dθ(Im(χI )+3). Note that Amn (χn)−1
n contains a point in

ω(c) − Bn+1, while Im(χI ) does not. Therefore Im(χI ) ⊂ Amn(χn)−1
n , and

hence Im(χI )+3 ⊂ Amn(χn)+2
n = Sn+1. So Kn+1 ⊂ Dθ(Sn+1). The statement

follows.

Statement 3. There is a positive integer N = N(b), such that if |Bn+i| <
C|Bn+i+1| for all i = 0, 1, . . . , N − 1, then provided that n is sufficiently
large, the (n+N)-th renormalization has a complex bound µ3 = µ3(b) > 0.

Notice that ΛEn+i < C for all 0 ≤ i ≤ N−1. Moreover, there is an upper
bound on χn+i’s. So this statement follows from the argument in Sect. 8.4.

Statement 4. For each k ∈ N, there exists µ = µ(k, b) > 0 such that if
|Bn−1| > C|Bn| and |Bn+i| ≤ C|Bn+i+1| for any 0 ≤ i ≤ k − 1, and if n
is sufficiently large, then for each 1 ≤ i ≤ k the (n + i)-th renormalization
has a complex bound µ.
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By Statement 2, f sn : Bn → Bn has a polynomial-like extension φ :
U → V of degree 2b. Moreover, the proof shows that there exists an interval
T̂n with c ∈ T̂n ⊂ Tn such that

• |T̂n|/|Bn| is uniformly bounded from above, and
• we can choose V so that it is contained in a Poincaré disk Dθ(T̂n),

Fix 1 ≤ i ≤ k, and let V ′ = V ∩CTn+i and U ′ = Compc(F−sn+i (V ′)). Then
Fsn+i : U ′ → V ′ is a holomorphic proper map of degree 2b . By Lemmas 8.13
and 8.14, arguing in the same away as in the proof of Proposition 8.7, we
show that there exist a positive integer p, and a constant θ ′ ∈ (0, π) such
that

Compc

(

F−psn+i (V ′)
) ⊂ Compc

(

F−psn+i
(

Dθ(T̂n) ∩ CTn+i

)) ⊂ Dθ ′(Sn+i),

which implies that the renormalization f sn+i |Bn+i has a complex bound. We
should remark that in Lemma 8.13, the assumption ΛEn−1 ≤ ρ was only
used to obtain an upper bound on |Tn−1|/|Bn|. ��
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