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Abstract. In this article we study the tangent cones at first time singularity
of a Lagrangian mean curvature flow. If the initial compact submanifold X
is Lagrangian and almost calibrated by Re €2 in a Calabi-Yau n-fold (M, 2),
and 7 > 0 is the first blow-up time of the mean curvature flow, then the
tangent cone of the mean curvature flow at a singular point (X, T) is
a stationary Lagrangian integer multiplicity current in R*" with volume
density greater than one at Xo. When n = 2, the tangent cone is a finite
union of at least two 2-planes in R* which are complex in a complex
structure on R*.

1. Introduction

Let M be a compact Calabi-Yau manifold of complex dimension n with
a Kéhler form w, a complex structure J, a Kdhler metric g and a parallel
holomorphic (n, 0)-form €2 of unit length. An immersed submanifold X in
M is Lagrangian if |y = 0. The induced volume form duuy, on a Lagrangian
submanifold X from the Ricci-flat metric g is related to 2 by

Qly = eiedug = cosBduys, + i sinBduy, (1

where the phase function 6 is multi-valued and is well-defined up to an
additive constant 2k, k € Z. Nevertheless, cos 6 and sin 6 are single valued
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functions on X. For any tangent vector X to M a straightforward calculation
shows

X0 = —g(H, JX) (2)

where H is the mean curvature vector of ¥ in M (cf. [HL], [TY])).
Equivalently, H = JV6. The Lagrangian submanifold X is special, i.e. it
is a minimal submanifold, if and only if 6 is constant. When 0 is constant
on a Lagrangian submanifold X, the real part of e~ Q is a calibration of M
with comass one and X is a volume minimizer in its homology class [HL].
Let Re2 be the real part of 2. A Lagrangian submanifold is called almost
calibrated by Re2 if cos 6 > 0.

Constructing minimal Lagrangian submanifolds is an important but very
challenging task. In a compact Kéhler-Einstein surface, Schoen and Wolfson
[ScW] have shown the existence of a branched surface which minimizes
area among Lagrangian competitors in each Lagrangian homology class,
by variational method.

For a one-parameter family of immersions F;, = F(-,t) : ¥ — M, we
denote the image submanifolds by X, = F;(X). If ¥, evolves along the
gradient flow of the volume functional, the first variation of the volume
functional asserts that X, satisfy a mean curvature flow equation:

%F(x, ) = H(x, 1)
F(x,0) = Fy(x).

3)

When X is compact the mean curvature flow (3) has a smooth solution
for short time [0, T') by the standard parabolic theory. If ¥ is Lagrangian
in a Kéhler-Einstein ambient space M, Smoczyk has shown that X, remains
Lagrangian for t < T and the phase function 6 evolves by

o _ AO 4)
dr
where A is the Laplacian of the induced metric on %, ([Sm1-3], also see

[TY] for a derivation of (4)). It then follows that

dcosb
ot

If the initial Lagrangian submanifold X is almost calibrated, X, is almost
calibrated, i.e. cosf > 0, along a smooth mean curvature flow by the
parabolic maximum principle.

It is well-known that if |A|?, where A is the second fundamental form
on ¥, is bounded uniformly as ¢ — 7 > 0 then (3) admits a smooth solution
over [0, T + €) for some € > 0. When maxsy, |A|?> becomes unbounded as
t — T, we say that the mean curvature flow develops a singularity at 7.
A lot of work has been devoted to understand these singularities (cf. [CL1-2],
[E1-2], [H1-3], [HS1-2], [11], [Wa], [Wh1-3].)

= Acos 6 + [H|* cos 6. (5)
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In this paper, we shall study the tangent cones at singularities of the
mean curvature flow of a compact Lagrangian submanifold in a compact
Calabi-Yau manifold. Especially, we shall focus on the structure of tangent
cones of the mean curvature flow where a singularity occurs at the first
singular time 7" < o0.

To describe the tangent cones, suppose that (X, T') is a singular point
of the flow (3), i.e. |[A(x, )| becomes unbounded when (x, t) — (X, T).
For an arbitrary sequence of numbers A — oo and any ¢ < 0,if T+1 7%t > 0
we set

F(x,0) = M(F(x, T + A7) — Xo).

We denote the scaled submanifold by (X7, du}). If the initial submani-
fold is Lagrangian and almost calibrated by Re €2, it is proved in Propo-
sition 2.3 that there is a subsequence A, — oo such that for any r < 0,
(Z,k", a’u,k" ) converges to (X, du) in the sense of measures; the limit
3 is called a tangent cone arising from the rescaling A\, or simply a A
tangent cone at (X, T'). This tangent cone is independent of ¢ as shown in
Proposition 2.3.

There is also a time dependent scaling which we would like to consider

F(.5) = F(-, 1), (6)

1
N2(T —1)
where s = —% log(T —1),co < s < oo.Here we have chosen the coordinates
so that Xy = 0. Rescaling of this type arises naturally in classification of sin-
gularities of mean curvature flows [H2]: assume lim,_, - maxy, |A]? = oo,

if there exists a positive constant C such thatlim sup,_, ;- ((T ) maxsy, |A| )
< C, the mean curvature flow F has a Type I singularity at T’; otherwise it

has a Type Il singularity at 7'. Denote 3, the rescaled submanifold by F G-, $).

If a subsequence of >, converges in measures to a limit Yoo, then the limit

is called a tangent cone arising from the time dependent scaling at (Xy, T),

or simply a t tangent cone. In this paper, a tangent cone of the mean curvature

flow at (X, T) means either a A tangent cone or a ¢ tangent cone at (Xg, 7).
The main result of this paper is

Theorem 1.1. Let (M, 2) be a compact Calabi-Yau manifold of complex
dimension n. If the initial compact submanifold % is Lagrangian and al-
most calibrated by Re 2, and T > 0 is the first blow-up time of the mean
curvature flow (3), and (X, T) is a singular point, then the tangent cone
of the mean curvature flow at (X, T') is a stationary Lagrangian integer
multiplicity current in R*" with volume density greater than one at X,
When n = 2, the tangent cone is a finite union of at least two 2-planes in
R* which are complex in a complex structure on R*.

For symplectic mean curvature flow in Kihler-Einstein surfaces, results
similar to Theorem 1.1 were obtained in [CL1]. The authors are grateful
to Professor Gang Tian for stimulating conversation. The authors thank the
referee for useful comments.
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2. Existence of A\ tangent cones

This section contains basic formulas and estimates which are essential for
this article. First, we will derive a monotonicity formula which has a weight
function introduced by the n-form Re €2. Second, we use the monotonicity
formula to derive three integral estimates, which roughly say that when aver-
aged over any time interval the mean curvature vector H; and the derivative
of the phase function cos 6 both tend to 0 in the L? norm over a fixed
ball near the singularity, as A — o0. Another direct consequence of the
monotonicity formula is that there is an upper bound of the volume density
of the rescaled submanifolds 7, which allows us to extract converging
subsequence in measure.

2.1. A weighted monotonicity formula

Let H(X, X, ty, ) be the backward heat kernel on R¥. Let N, be a smooth
family of submanifolds of dimension n in R¥ defined by F, : N — R¥.
Define

p(X, 1) = (dr(ty — 1) "2 H(X, Xo, t9, 1)
1 X — X,/
Xp (——) (7)

=— ¢
(47 (to — 1)"/? 4(to — 1)
for ¢t < 1.
A straightforward calculation (cf. [CL1], [H1], [Wa]) shows
J n H- X-Xp) [X-—X
" T\ 2w -0 20—  41-1?

and along N,

Ap— (X — X, VX)2 (X — Xjp, AX) |VX|2
P= ( 4o —1)? 201 2t — t))

where A, V are on N, in the induced metric. Let N; = X, be a smooth
I-parameter family of compact Lagrangian submanifolds in a compact
Calabi-Yau manifold (M, 2) of complex dimension n. Note that in the
induced metric on %,

IVF|>? =n and AF = H.

9 ~ (F =X "

Therefore
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On X%; we set
v = cos 6.

Denote the injectivity radius of (M, g) by iy. For Xy € M, take a normal
coordinate neighborhood U and let ¢ € Ci°(B,,(Xp)) be a cut-off function
with ¢ = 1 in B,(Xp), 0 < 2r < iy. Using the local coordinates in U we
may regard F(x, 1) as a point in R** whenever F(x, 1) lies in U. We define

1

\II(XO’ Io, t) = ;d)(F)IO(Fa XO? f, fO)th
D

where p is defined by (7) by taking k = 2n.

Proposition 2.1. Let F, : ¥ — M be a smooth mean curvature flow of
a compact Lagrangian submanifold % in a compact Calabi-Yau manifold
M of complex dimension n. Suppose that % is almost calibrated by Ref2.
Then there are positive constants ¢y and c, depending only on M, Fy and r
which is the constant in the definition of ¢, such that

0
_ Cl1/10— d
o ( f —¢p m)

ﬁ/ (2|w|2 +‘H+ (F — Xp)*
U

2ty — 1)

> HP
+ | due 9)

+ cre!

Proof. Notice that )
AF =H+ g'Tj v,

where vy, @ = 1, ..., n is a basis of T+%,, g¥ is the induced metric on X,
and F‘l?]‘. is the Christoffel symbol on M. Equation (8) reads as

9 . (F = Xo)* [
<5+A)p__OH+ 2(ty — 1)

From (5) we have

gy ST PR
fo—t '

(10)

91 1 [H? 2|Vu?
A N L - .
ot v v v v3

Using the equation above and the generalized monotonicity formula in [EH],
we can derive our weighted monotonicity formula (9). For completeness we
give a detailed proof here, due to higher codimension and non-Euclidean
ambient space.

Recall that
dd-—|mw
d e = 129
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and s F
¢F) _ gy
ot
Now we have
d 1¢
dt 5, U p

1 H> 2 5 1
= | ¢pA-— —+ = IVul")¢p+ | —Vé-Hp
PN v P v v P v
1 F—Xo) §'T%v, - (F — Xo)
—/ L (ap+(ms T2 gy S p
5, U 2(tg — 1)

. fo—t
1
—/ —¢p[H|?
5, U

2 .1 =P
<= [ oo SIveP+- +
o v v v
8T vy - (F —Xo)

1 1 1
+ [ (o0ay—10a0) = [ Lov
poM v v x U fo—t

1 (s 1 IVeP
+/2,Up<e PHP + 15— ) (1D

where we used Cauchy-Schwartz inequality for V¢ - H. By Stokes formula

1 1 1 1
/ (q’)pA— - —qup) - 2/ —V(/)Vp—i-/ ZpAg.
PN v v PN v PN v

Since ¢ € Ci° (B2, (Xo), R™), we have (cf. [B] and Lemma 6.6 in [11])
IVo|?

(F —Xo)*

H
MR

<2 V2|
< r}glgl o]

Notethat V¢p = 0in B, (Xy), so |[pA¢|and |V¢-V p| are bounded in By, (Xp).

Hence
1
—-pAp| +
v PN

J.

where C depends only on r and max(|V2¢| + |V¢)).
Since F;?j‘. (Xp) = 0, we may choose r sufficiently small such that

1
“Vé-Vp
v

1 C
=< C/ —dp, < ———vol(%o)  (12)
5 U miny, v

|§'T5(F)| < CIF = X
in B;,(Xy) for some constant C depending on M. We claim

|gijI ?Jl'va : (1 1(0)| p(F, l)
1Y F,t < p— +C 13
( ) < r— (13)

Io—1 0—
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In fact it suffices to show for any x and s > 0

X2 e—xz/s 1 e—x2/s

—_ < -

s /2~ cli+ 12 gni2 |-
To see this, let y = x?/s and then it is easy to verify that

1
v=e(vte s )

holds trivially if y < 1/s'/? and follows from y"*! < Ce” if y > 1/s!/? for
some C. So (13) is established.
Letting €2 = 1/2 in (11) and applying (12), (13) to (11) we have

)y - / Ly (2508 [, F=X0 MY e
—v<—| - .
o~ S0P\ T 2010 — 1) AN

The proposition follows. m|

2

Suppose that (X, T) is a singular point of the mean curvature flow (3).
We now describe the rescaling process around (X, 7). Forany ¢ < 0, we set

Fi(x,0) = AMF(x, T + A7%1) — Xo) (14)

where A are positive constants which go to infinity. The scaled submanifold
is denoted by =* = F, (X, 7) on which du} is the area element obtained
from dp,. If g* is the metric on X%, it is clear that

8;} =1gj, (M7 =177

We therefore have

aﬂ — A—la_F
ot ot
H, =+ 'H
A7 =272 AP
It follows that the scaled submanifold also evolves by a mean curvature flow
aF;
— =H;. 15
o A (15)

Moreover, since
dpit (Fy.(x, 1)) = A"dp, (F(x, T + 271))
Qlpr(F(x,0) = A"Qls, (F(x, T + )

we have
cos 0, (F (x, 1)) = cos O(F(x, T + A7%1)).
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2.2. Integral estimates

Proposition 2.2. Let (M, Q) be a Calabi-Yau manifold of complex dimen-
sion n. If the initial compact submanifold is Lagrangian and is almost cal-
ibrated by Re€2, then for any R > 0 and any —o0 < 51 < §, < 0, we have

52
/ / |V cos HAlsz;\dt — 0 as A — o0, (16)
S*NBR(0)
52
/ / IH,|*duldt — 0 as A — oo, (17)
= NBR(0)
and
/ / Fl‘ du’\dt — 0 as A — oo. (18)
SHNBR(0)

Proof. Forany R > 0, we choose a cut-off function ¢z € C;°(B,x(0)) with
¢r = 11in B(0), where B,(0) is the metric ball centered at O with radius
r in R?". For any fixed t < 0, the mean curvature flow (3) has a smooth
solution near T + A2t < T for sufficiently large A, since T > 0 is the first
blow-up time of the flow. Let v; = cos 6,. It is clear

/ ! dr(F3) ex ﬂ du’
5 02 (0— r)n/zR WP\ "0 = )M

_ 1 |F(x, T+A"20) — Xo |
_/2 v—¢( A)(T (T+ 220y ex p<— AT — (T + 17%1)) ) H

T+5."21

where ¢ is the function defined in the definition of ®. Note that T4+A %t — T
for any fixed # as A — oo. By the weighted monotonicity formula (9),

%(ecl*/"]__t\ll) < cze“"*/“’__t,

and it then follows that lim,_,,, e v~"W exists. This implies, by taking
to = T and t = T + A~ 2s, that for any fixed s; and s, with —00 < §; <
sy < 0,

2
cia/ T—(T+1"2s7) / 1 p(_ |F)‘| )d:u)y;

(0 )2 © 4(0 — s,)

Tt 1 1 | F |2
cia/ T—(T+1"2s1) - N A du?
¢ f T eXp( 4(0—s1>> Hon

— 0 as A — oo. (19)
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Integrating (9) from T+ A ~2s; to T +A"2s,, and letting T +A"2s = t, we get

Y e 1 1 F,|?
—eIV T 232/ —@r—————€Xp (——l A )dﬂﬁz
w, v (0= s2)"/ 40 — s52)
Ve 1 1 F,|?
+ec1 —A 2S1/ _d)R exp (_ | )»| )dﬂgl
=) Ua

(0 — sp)"/? 40 —s1)
T+1"2s5, 1 2|VU|2 (F - X )L 2 |H|2
> ciT—t _ H 0 d
B /T+x—2s1 ‘ % Ud)p( v " ‘ " 2T —1) i H
— )2 (s2 = 1)
1
f AV f —pro(Fy, 5) [H; + ((“) /

/ /7)» 23\/‘)\ —¢Rp(FA,S)| | d )»
>
+/ oIV A2 /A E|Vvk|2q§R,o(Fk, $)dpl — cah 2 (sy —s1).  (20)
s1 z¢ U

From (19) and (20) the proposition follows. O

2.3. Upper bound on volume density

Now we show the existence of the A tangent cones by deriving an finite
upper bound for the volume density. These cones are independent of ¢, but
may depend on the blowing up sequence A. Some of the arguments below
were used in [I1] and [E1], and an analogue of the area estimate (21) for
hypersurfaces was obtained in [E1].

Proposition 2.3. Suppose that 3, evolves along mean curvature flow and
Yo is a compact Lagrangian submanifold in (M, 2) and is almost calibrated
by Re Q2. For any ., R > 0 and any t < 0,

uy (ZF N Br(0)) < CR", (21)

where Br(0) is a metric ball in R* and C > 0 is independent of A.
For any sequence A; — 00, there is a subsequence A, — 00 such that
(2?"‘, Mf"‘) — (X%, u) in the sense of measures, for any fixed t < 0,
where (X%, 1) is independent of t. The multiplicity of X*° is finite.

Proof. We shall first prove the inequality (21). We shall use C below for uni-
form positive constants which are independent of R and A. Straightforward
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computation shows

uy (S5 N Br(0)) = 1" / du,
oy i5-2,NB; 1, (Xo0)
= R"(FIR)_"/ dpty
ZT+A*2rmB)flR(X0)
1 1 _ x-xol?
= CRnf —_— ¢ 4072 th
Zr-2,NB, -1z (X0) Ui A4m)"2(A"'R)"

=CR'¥(Xo, T+ W '"R*+ 1720, T +17%).
By the weighted monotonicity inequality (9), we have
uy (SN Br(0)) < CR"¥(Xo, T+ (A'R)* + 171, T/2) + CR"
wr2(X12)
~ T"?miny v

IA

CR" + CR".
Since volume is non-increasing along mean curvature flow:

0
—u (X)) = — |H|2dﬂt’
ot 5,

we have therefore established (21):
uy (= N Bgr(0)) < CR".

By (21), the compactness theorem for the measures (c.f. [Sil], 4.4) and
a diagonal subsequence argument, we conclude that there is a subsequence

Ax — 00 such that (Efo", ,ufo") — (Ep°, 1f°) in the sense of measures for
a fixed 1y < 0.
We now show that, for any ¢+ < 0, the subsequence A; which we have

. A A .
chosen above satisfies (E[k, M[k) — (E;’O", ,ufoo) in the sense of measures.

And consequently the limit (E7°, 122°) is independent of 7o, here E7° is the
support of the limiting Radon measure. Recall that the following standard
formula for mean curvature flow

d
d—/ ¢du?=—/ (oI H,|* + Vo - Hy) du} (22)
tJs =

is valid for any test function ¢ € C5°(M) (cf. (1) in Sect. 6 in [I2] and [B]
in the varifold setting).
Then for any given ¢ < 0 integrating (22) yields

fo
/)\k d)d'u?k B //\k d)d'u?;k - / //\k (¢|Hkk|2 +Vo- H)»k) dM?kdt
b4 = t Js
— 0 as k— oo by (17).
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So, for any fixed t < 0, (E?k, M;\k) — (2%", M%O) in the sense of measures
as k — co. We denote (25°, ) by (2%, u>), which is independent of #.

The inequality (21) yields a uniform upper bound on R™"u*(ZM N
Br(0)), which yields finiteness of the multiplicity of X*°. O

Definition 2.4. Let (X, T') be a first time singular point of the mean curva-
ture flow of a compact Lagrangian submanifold X in a compact Calabi-Yau
manifold M. We call (£°°, du) obtained in Proposition 2.3 a A tangent
cone of the mean curvature flow X, at (X, T).

3. Rectifiability of \ tangent cones

In this section we shall show that the A tangent cone X* is J¢"-rectifiable,
where F" is the n-dimensional Hausdorff measure.

Proposition 3.1. Let M be a compact Calabi-Yau manifold of complex
dimension n. If the initial compact submanifold % is Lagrangian and al-
most calibrated by Re Q, then the )\ tangent cone (X°°, du°) of the mean
curvature flow at (X, T) is H"-rectifiable.

Proof. Let (2F, duk) = (E?k, du,”). We set

im [Pl 7&0},
k=00 J 5k BR(0)

A:UAR.

R>0

Ag = {l € (—00,0)

and

Denote the measures of Agx and A by |Ag| and |A| respectively. It is
clear from (17) that |Ag| = 0 for any R > 0. So |A| = 0.

For any & € X*, choose & € Ef with & — & as k — oo. By the
monotonicity identity (17.4) in [Sil], we have

|D4rP?

du*

t

o B ) = o b By~ [

By&)\Bo (&) 1"

1 11 .
—= (x— &) -He| — — — ) duy,  (23)
nJB, (&) re P

for all 0 < o0 < p, where ,uf(BU(Sk)) is the measure of Ef N B, (&),
r = r(x) is the distance from & to x, r, = max{r, o}, and D'r denotes the

orthogonal projection of Dr (which is a vector of length 1) onto (T, %)™
Choosing t ¢ A, we have

lim [H;|2dut = 0.
k=00 J B, (&)
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Holder’s inequality and (21) then lead to

1 1
/ (x—&)-Hk(—n— —n>duf
B, (&) r'e P
1 1 .
<Cp (; — E) klgllo (\/ Mf(Bp(Sk)) f |Hk|2dﬂiC

By (&)

1 1
< Cp""? [ = — =) lim |Hi|2dpy
o" ") k=00 \[ B,

=0. (24)

lim
k— 00

Letting k — oo in (23) and using (24), we obtain
o "u(Bs(§) = p " T (B, (&),
for all 0 < o < p. By (21) we know that
ll)ig})p*”u“(Bp(S)) < C < 0.

Therefore, lim,_.o p™" 1> (B, (§)) exists.
We shall show that the following density estimate holds

. —n, 00 1
})1_13(1)0 u>(By(&) = W >0 (25)

for some positive constant c(n) which will be determined below. Assume
(25) fails to hold. Then there is pg > 0 such that

(2p0) " (Bayy (£)) < m .

By the monotonicity formula (23) and that ¥ converges to u* as measures,
there exists ky > 0 such that, for all 0 < p < 2py and k > ky, we have

p~" 141 (B,(§)) < (26)

2c(n) +2°

Take a cut-off function ¢, € C;°(B,(§)) on the 2n-dimensional ball B, (&x)
so that

$,=1 in Bg({-’)
C

0 S ¢p S 17 and |v¢p| S AR in B,O(E)
0



Singularity of mean curvature flow of Lagrangian submanifolds 37

From (22), we have

p" bpdut o —p" f Ppdiit
B,(§) B, (%)

t t
sco [ [ mpadaseco [ mgaudas
t—r2? By () t—r? By (&)
t
sco [ [ mddas
t—r? By ()
. 12
we [ mpa) ks, as
t—r2 B, (&)
=<

t
o [ [ muPdtas
t—r? By ()

. 12
vt [ mpat) as vy e
-2 \JB,®

— 0, as k— oo by (17).

Here we have used C for uniform positive constants which are independent
of k and p. Therefore, there are constants 6; > 0 and k; > 0 such that for
all pand k with0 < p < 61,0 <r < 1, and k > k; the estimate

p "k L(By(&) < 1 27)

cm+1

holds. Let cz?cft’ir2 be the area element of 0B,(§) N Ei‘irz. By the co-area for-

mula, for 0 < r < 1, for a smooth cut-off function ¢ with support in the 2n-
dimensional ball Bs, (0) in R” with0 <¢p <1,¢=1in Bs, /2(0), we have

IR

1
2y _ - k
Pt =) = /E pe w2 duy
1—r2

1 3 o2
< —f / e W do* Ldp
)2 Jo 0B, N o

2

- 1 81 _,0_22 d Vol(B Y

e AL XS
PR

= oy OB O N E e

1 o2 opr p?
- o 472 -
* (c(n) + )m"/? fo ¢
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by integration by parts and (27). By (21),

52 (S n 52
Vol (B, (9) N T ,)e a < C (—1) e = o(r).

/2 (2r)" 2r

Letting y = p/2r we have

81 2 n 2 oo
/ e (5)a(5) =2 / ey ldy = c(n) < o0,
0 2r 2r 0

and there is an explicit formula for ¢(n) depends on whether n is odd or
even. Thus we conclude

O 1t —1%) < 14 0(r).

For any classical mean curvature flow I'; in a compact Riemannian mani-
fold which is isometrically embedded in R", White proves a local regular-
ity theorem (Theorem 3.1 and Theorem 4.1 in [Wh1]): When dimI", = =,
there is a constant € > 0 such that if the Gaussian density satisfies

I : =2 e <1+
im ——exp | ——— < €,
0 Jr, Garzy2 P\ T )Y

then the mean curvature flow is smooth in a neighborhood of x. Combining
this regularity result with (28), we are led to choose r > 0 sufficiently small
and then conclude that
sup |Al < C
B/ (§)NZf

and consequently XX converges strongly in B,(§) N =X to ¥® N B,(&),
as k — 00. So X*° N B,(§) is smooth. Smoothness of X°° N B, (§) immedi-
ately implies

/1133) p "uT(By(§) = 1.

This contradicts (26). Hence we have established (25).
In summary, we have shown that lim,_,o p™"u*>(B,(§)) exists and for
H" almost all £ € X,

— <1 Tu>*(B . 28
4C(n)+4_p1£%/0 1> (By(§) < o0 (28)
Finally, we recall a fundamental theorem of Priess in [P]: if 0 <m < p
are integers and €2 is a Borel measure on R?” such that
. Q(B(x))
0<lim———= <

r—0 rm

’

for almost all x € €2, then €2 is m-rectifiable. Now we conclude from (28)
that (X°°, u°) is H"-rectifiable. O
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Remark 3.2. For the A tangent cones, one can show lim,_,o p™"u>(B,(§))
> 0 by using Brakke’s clearing out lemma. The argument in the proof
of Proposition 3.1 works for the ¢ tangent cones in Sect. 6 (44) as well,
and it provides a uniform lower volume density bound. One may generalize
the clearing out lemma to equation (36) to prove (44) for the time dependent
scaling.

4. Minimality of the A tangent cones

In this section, we will show that the A tangent cone X* is a stationary
integer multiplicity rectifiable current in R*".

Theorem 4.1. Let M be a compact Calabi-Yau manifold. If the initial com-
pact submanifold is Lagrangian and is almost calibrated by Re 2, then the
A tangent cone ¥°° is a stationary rectifiable Lagrangian current in R*"
with volume density greater than one at X.

Proof. Let V} be the varifold defined by X¥. By the definition of varifolds,
we have
Vi) = f U TE)dpg
ZT
for any ¥ € CJ(G*(R®), R), where G*(R®") is the Grassmanian bundle
of all n-dimensional planes tangent to = in R?*". For each smooth sub-
manifold ¥, the first variation §V} of V¥ (cf. [A], (39.4) in [Sil] and (1.7)
in [12]) is
SVE = — k| Hy.

By Proposition 2.2, we have that V) — O att ¢ A as k — oo, where A is
defined in the proof of Proposition 3.1.

Recall that a k-varifold is a Radon measure on G*(M), where G*(M)
is the Grassmann bundle of all k-planes tangent to M. Allard’s compact-
ness theorem for rectifiable varifolds (6.4 in [A], also see 1.9 in [I2] and
Theorem 42.7 in [Sil]) asserts the following: let (V;, u;) be a sequence of
rectifiable k-varifolds in M with

sup(u; (U) + 18V;|(U)) < oo foreach U CC M.

i>1

Then there is a varifold (V, ) of locally bounded first variation and a sub-

sequence, which we also denote by (V;, u;), such that (i) Convergence of

measures: i; — [ as Radon measures on M, (ii) Convergence of tangent

planes: V; — V as Radon measures on G¥(M), (iii) Convergence of first

variations: §V; — 8V as TM-valued Radon measures, (iv) Lower semicon-

tinuity of total first variations: |§V| < liminf;_, o, |6V;| as Radon measures.
By (iii) in Allard’s compactness theorem, we have

—u®|Hy = V™ = Jlim sVEk=o0.
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Therefore X is stationary. The rescaling process in a neighborhood of X
in M implies that the metrics g* tends to the flat metric on R?*" and the
Kihler 2-form »* tends to a constant closed 2-form w, which is determined
by wo(0) = w(Xo). The tangent spaces to T¥ converge to that of £°° as mea-
sures by (ii) in Allard’s compactness theorem. Hence w** |Etk — wp|x~. But

¥¥ is Lagrangian, it follows a)’\k|ztk = 0 therefore wy|g~ = 0. Therefore,
X% is a Lagrangian.

On the other hand, as . — oo in the blow-up precess, the holomorphic
(n, 0)-form  converges to a constant holomorphic (n, 0)-form €, on R*"
determined by 2¢(0) = 2(Xy). We write

Re Qs = Opdu™,

Re Qkklzf = cos 0, dut

and from Allard’s compactness theorem
Re szmzf — Re Q| e,

and the tangent cone X*° is of integer multiplicity by the integral compact-
ness theorem of Allard ([A] and [Sil] 42.8). It follows that Re Q¢|s~ > 0,
which implies that the tangent cone X*° is orientable. Since X*° is of in-
teger multiplicity, we have that du®™ = n(x)F#" where n(x) is a locally
F¢"-integrable positive integer-valued function. So the cone is an integral
current (see Definition 27.1 in [Sil]).

We now show that the volume density of x> at X is greater than 1.
Otherwise, we would have

lim

*®(B,(0)) <1
o onp w>(B,(0) <

n

where w,, is the volume of the unit n-ball in R":

7.[11/2
w,; = w

It then follows from (23) that for any € > 0, there are § > 0 and ky > 0
such that for any 0 < p < 2§ and k > ko,

p " b2 (By(8) < wu(1+€) (29)

for any fixed r > 0. The choice of r will be based on the following obser-
vation. Set

[F=Xg[?

4(tg—1) th

O Xo. 10,0 = | $F) e
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where ¢ is supported in Bs(0) and 0 < ¢ < 1, ¢ = 1 in Bs;»(0). Then we
have

1 8 2
(D(Fk’ 07 O’O_rz) S / f e_mdﬂk7 dp
@mrr3)n/2 ), 9B,(0)N=k 0-r2

0—r2
e
< — e 4 Ho_,2ap
(4JTr2)n/2 0 33,,(0)(72"42 0—r2
1 & _ 2
<——— | e (B,(0)NZf_5)dp
~ @ar)ynm? J, 2r

T2 k
e V(B0 0T )
1+4+€ wy, 8 2 n+1
= W/ € pzp 5-dp + o(r) by (29) and (21)
52
1 w47 .
= %/4 efxxjdx_i_o(r)
" 0
<l+e+o()

because I'(2 + 1) = ;e *x2dx. Choosing r > 0 sufficiently small,
we therefore have

O(F, Xo, T.T — A °r%) = ®(F,0,0,0 —r?) < 1 +e.

Now by White’s local regularity theorem ([Wh1] Theorem 3.1 and Theo-
rem 4.1, also see [E2]), (X, T') could not be a singular point of the mean
curvature flow. This is a contradiction. a

5. Flatness of A-cone in dimension 2

Regularity of the A tangent cone can be greatly improved in the 2-dimen-
sional case: dim¢c M = 2.

Theorem 5.1. Let (M, 2) be a compact Calabi-Yau surface and let % be
a compact Lagrangian surface in M which is almost calibrated by Re{2. If
0 < T < o0 is the first blow-up time of a mean curvature flow of Xy in M,
then the A tangent cone at (X, T) consists of a finite union (but more than
one) of 2-planes in R* which are complex in a complex structure on R*.

Proof. We use the same notation as that in the proof of Theorem 4.1, we
shall show that 6, is constant #2 a.e. on £°°. To do so, we claim that for
any r > 0, &, & € ¥ N Bg/»(0) where t ¢ A the following holds
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1
Vol(B,(§) N =)

1
cos Opdu* — / cos Ordur
/ T Nol(B,(6) N =E) Kt

By (e)NZF B (&)NEF

S TG N ;)
= Vol(B,(E) N =) Vol(B,(&) N xF)

where B,(§;), i = 1,2, are the 4-dimensional balls in M. To prove (30),
let us first recall the isoperimetric inequality on Ef (c.f. [HSp] and [MS]):
let B’; (p) be the geodesic ball in Ef, with radius p and center p, then

Vol(BS(p))

<C (length(a(Bﬁ(p))) —I—/B

/B (Omkwcosekmuf, (30)
R t

2
|H, |dpt
K(p)
2

1/2

|Hk|2duf> Vol'2(By(p)) |
k(p)

o

< C | length(3(By(p))) + (/B

for any p € ¥, and almost every p > 0, where C does not depend on k, p,
and p. By Proposition 2.2, since t ¢ A we have

/ [Hi|2dp* — 0as k — oo.
BX(p)

So, for k sufficiently large, we obtain:

2
Vol(B(p)) < C (length(3(B%(p))))”
In particular, for k sufficiently large, the isoperimetric inequality implies
Vol(By(p)) = Cp?, (31)

where C is a positive constant independent of &, p and p.
Suppose that the diameter of B,(£) N Ef is di(&€). Then

cr > / dut by 1)
B, (®)NZf
dx(§)/2
= / / dodp for some p € Ef
0 dBX(p)
dk(§)/2
> c/ Vol'?(Bk(p))dp
0

d(8)/2
> / Cpdp by (31)
0

> cdi(8)”.
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We therefore have, for any &,
di(§) < Cr (32)

where the constant C is independent of & and k.

For any fixed n € B,(£§) N =¥ and any & € B,(&§) N =¥, we choose
a geodesic /¢ connecting n and &, call it a ray from 7 to §. Take an open
tubular neighborhood U(l,¢) of 1,¢ in £¥. Within this neighborhood U(l,¢),
we call the line in the normal direction of the ray /¢ the normal line which
we denote by n(/,¢). It is clear that

cos O (§) — cos Oy (n) = f 0; cos O dl (33)
Ing

where dl is the arc-length element of /.. Choose r small enough so that
B.(&) N Ef is contained in U(/,¢ ). Keeping 7 fixed and integrating (33)
with respect to the variable &, first along the normal direction n (/) and
then on the ray direction /¢, we have

1
Vol(B, (&) N %f)

_ 1
= Vol(B.(5) N =)

1 /dk(él)/ k
< |V cos 0| du;dp
Vol(B,&) N =f) Jo BR(0) t

Cr / k
< |V cos 6| dut, (34)
Vol(B,(&) N'=F) Jae0) ’

f cos Oy (.g“-)duﬁC — cos 6, (1)
By (5NES

di(§1)
/ / |V cos 0| dldn(&)dp
0 nlyey) Jlne

here in the last step we have used (32). From (34), integrating with respect
tonin B.(&) N Ef and dividing by Vol(B,(Sz) N Ef), we get the desired
inequality (30).

Fori = 1, 2 Holder’s inequality and (21) lead to

1/2
f |V cos O] dut < Cr (f |Vcos0k|2d,uf> .
By (&)NZK By (5)NZF

The triangle inequality implies B*(§;) C B, (&) N ¥ fori = 1, 2; therefore
by (31)

Vol(B,(&) N Xf) > Vol(BL(&)) = Cr.
Now first letting & — o0 in (30) and using that the right hand side of (30)

tends to 0 by Proposition 2.2, and then letting r — 0, we conclude that
cos 6 is constant H> a.e. on X°°.
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The (2, 0)-form 2 is fixed by 2(X() hence it has unit length. In the
complex structure Jx, on R*, Qo = dz; A dz,. We define a new complex
structure J* on R*:

J*(9/0x1) = 6p(3/9y1), J*(98/dy1) = —1/6p(3/0x1),

J*(9/9x2) = 1/600(3/0y2), J*(3/0y2) = —00(9/x2).

In J*, the complex coordinates are: z = x| + \/—_190_1y1, 5= 90_1)62 +
V/—T1y,. Then Qf = dz} A dz} satisfies that Re Qf |z~ = du™.

We can further choose a new complex structure J' on R* such that
is of type (1, 1) in J'. In fact, if we express J* in the local coordinates
x1, 6y 'y1, 65 ' x2, y2 by

« (10 . (0 1
J—(O I)’ W1th1_<_1 O)’
then we can take
(1 0O
I —<0 —1)'

Therefore X*° is a stationary rectifiable current of type (1, 1) with respect
to the complex structure J'. By Harvey-Shiffman’s Theorem 2.1 in [HS],
3% is a J’'-holomorphic subvariety of complex dimension one. It then fol-
lows that the singular locus 4 of X°° consists of isolated points.

Without loss of any generality, we may assume 0 € X° where 0 is the
origin of R*. In fact, if not, > would move to infinity, then we would have

®(F, X0, T.T — A °r*) = ®(F, 0,0,0 — %) — 0 as k — oo.

But White’s regularity theorem then implies that (X, T') is a regular point.
This is impossible.

There is a sequence of points X; € =¥ satisfying X; — 0 as k — oo.
By Proposition 2.2, for any s; and s, with —oo < 57 < 5, < 0 and any
R > 0, we have

52
2

/ / |FH|"dufdt — 0 as k — oo.

51 JZFNBR(0)

Thus, by (21)

52
lim / / ((F — X0 dukdr
k=00 Jo1 JsknBR(0)

52
<2 lim / / |F-|P dpbdr + C(sy — s1)R? Tim X,
s JSKNBR(0) k=00

k— 00

=0.
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Let us denote the tangent spaces of ¥ at the point Fy(x, ) and of £
at the point F*(x, f) by T XX and T X% respectively. It is clear that

(F — Xt = dist (Xy, TZ),

and
(Fx)t = dist (0, TZ™).

By Allard’s compactness theorem, we have

52
[ dua
51 JE%NBR(0)

52
_ / / |dist (0, TE%)|* dpu>dr
S Y>®NBR(0)

= lim f ; / \dist (X, T=¥)|” dukdr
51 JZFNBR(0)

k— 00

52
— limf / |(Fk—xk)l|2dufdr
k=00 Js1 JsknBR(0)

=0.

Therefore Fjo = (. Differentiating (F.., v,) = 0, inner product is taken
in R*, leads to

0= (0; Foo» Vo) + (Foo, 0iVa) = (Foo, 0iV4)-
Because 0; F, is tangential to X°°, by Weingarten’s equation we observe
(hoo)?l‘.(Foo,ej) =0 for all «, i =1, 2.

Since either (Fyo, e1) # 0 or (Fy, e2) # 0, we conclude det (hf]‘) = 0.
Recall hf, + h5, = 0. It then follows h;’l‘. =0, fori, j,a = 1,2. Now we
conclude that X*° consists of flat 2-planes. m|

6. Tangent cones from a time dependent scaling

In this section, we consider the tangent cones which arise from the rescaled
submanifold X; defined by

~ 1
F(,8) = ———F(, 1), 35
(9) = 5P (35)
where s = —% log(T — 1), cp < s < oo. Here we choose the coordinates

so that Xy = 0. Rescaling of this type was used by Huisken [H2] to distin-
guish Type I and Type Il singularities for mean curvature flows. Denote the
rescaled submanifold by X;. From the evolution equation of F we derive
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the flow equation for F
0 ~ ~ ~
a—F(x, s) = H(x, s) + F(x, s). (36)
s

It is clear that

cos 5(x, s) = cosB(x, 1),

IH(x, s) = 2(T — 0 [H[*(x, 1),

AP (x, 5) = 2T — 0)|A*(x, 0).
We set T(x, 1) = cos 0(x, 5).

Lemma 6.1. Assume that (M, Q2) is a compact Calabi-Yau manifold and
Y, evolves by a mean curvature flow in M with the initial submanifold %
being Lagrangian and almost calibrated by Re 2. Then

(3 — K) T(x, s) = [HV(x, s). (37)
as

Proof. One can check directly that

d ~ ~ d
<£ — A) cosa(x,s) =2(T —1) (E — A) cosa(x,1).

It follows that

~\~ a
(5 — A) v(x,s) =2(T — 1) (5 — A) v(x, 1)
= 2(T — 1) [HP v(x, )
= [H?3(x, s).
This proves the lemma. m|

Next, we shall derive the corresponding weighted monotonicity formula
for the scaled flow. By (37), we have

<a ~) 1 H? 2|V7)?
A = ——= — .

as v v 3

Let
- L,
p(X) = exp —EIXI .

I o~
lI/(S)=/~ ,5¢p(F)d/Ls-
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Lemma 6.2. There are positive constants ¢y and ¢, which depend on M,
Fy and r which is the constant in the definition of ¢, so that the following
monotonicity formula holds

0 B B 1 _ ~ ~ ~ 12
Sexp(cre™)W(s) = —exp(cre™) ( f ~¢p(F) [H+ F [ i,
hop

1,\,~|Iﬂ-i|2~ 2 2
+ | =¢p(F)——dis + | = |VO| ¢p(F)dL,
S v 2 S v
+ coexp(cie™). (38)
Proof. Note that
~ F(x, t
F(x,s) = )

V2T =1
H(x, s) = /2(T — HH(x, 1),

IV (x, s) = 2(T — )| V|]2(x, 1).

By the chain rule

0 0

— =2 e—2s e

as ot
and the monotonicity inequality (9) for the unscaled submanifold, we obtain
the desired inequality. m|

Lemma 6.3. Let (M, 2) be a compact Calabi-Yau manifold. If the initial
compact submanifold % is Lagrangian and almost calibrated by Re 2, then
there is a sequence s, — 00 such that, for any R > 0,

/ ﬁ cosf§|2dﬁsk — 0 as k — oo, (39)
S5, NBR(0)
/ |H|*dfi;, — 0 as k — oo, (40)
£,,NBR(0)
and
/ |FY2dfi, — 0 as k — oo. 41)
2, NBR(0)

Proof. Integrating (38), we have
* I oo~ 5 =2 o~
00 > =¢p(F) |H+ F*|" dids
so JE U

o 1 ~ |H? _ 2 oy
+ | =op(F)——dus + | = |Vul"¢p(F)dpu, | ds.
50 s v 2 s v
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Hence there is a sequence s; — 00, such that as k — oo

1~ [HP? _
| =¢P(F)——di,, — 0,
Zsk v 2

2 o~y o~
ﬁ ngﬁqsp(mdusﬁo,
Zy,

and
1 ~, N SN2 g~
5 §¢p(F) H+ F*|"di,, — 0.
S,
Since v has a positive lower bound, the proposition now follows. m|

The proof of the following lemma is essentially the same as the one for
Proposition 3.1, except there are two parameters A, ¢ for the A tangent cones
but only one parameter ¢ for the time dependent tangent cones. Note that
the alternative proof given in [CL1] using the isoperimetric inequality only
works in dimension 2.

Lemma 6.4. There is a subsequence of s, which we also denote by sy, such
that (Esk, dﬁsk) — (EOO, dﬁoo) in the sense of measures. And (EOO, dﬁoo)
is H"-rectifiable.

Proof. To show the subconvergence, it suffices to show that, for any R > 0,
7 (5 N Br(0) < CR, (42)

where Bg(0) is a metric ball in R**, C > 0 is independent of k. Direct
calculation leads to

Ty (5, N Br(0))

= (T —1)™"? / i
ET,EZSkmBmR(O)
= R"(v2e *R)™" / dits
2, 20 NB 5,5 g (0)

1 1 _ X=Xl
= CRnf v e W2TkRdp,
%, 2y NB e U (4)"2(V/2e % R)"

< CR"W(0, T + (V2 R)* — &, T — ™).

By the monotonicity inequality (9), we have

Tig (Z N Br(0)) < CR'®(0, T 4 (v2e™R)? — &, T/2) + CR"

- Curp(Xr2)

- R" + CR".
~ T"2ming, v
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Since volume is non-increasing along mean curvature flow, we see
/-’Lsk(ESk N BR(O)) = CR".

We now prove that (f]oo, dﬁoo) is J¢"-rectifiable. For any & € f]oo,

choose &; € isk with & — & as k — oo. By the monotonicity identity
(17.4) in [Si1], we have

e e |DLr?
o Msk(Ba(Ek)) =p Msk(Bp(Ek))_/ dﬂsk

ByE\Bo&) "
1

1 —~ 1 -
——/ (x — &) - Hy <—n - —n) diig, (43)
nJB,&) 's P

for all 0 < o < p, where i, (B,(&)) is the area of isk N By (&), rs =
max{r, o} and D*r denotes the orthogonal projection of Dr (which is a vec-

tor of length 1) onto (7x, &,) . Letting k — 00, by Lemma 6.3, we have

0 "o (Bs(8)) < p™"Hoo(B,(8)),

for all 0 < o < p. Therefore, lim, . p " oo (B,(§)) exists and is finite
by (42).

By converting s to ¢, the argument for the positive lower bound of the
volume density in the proof of Proposition 3.1 carries over to the present
situation.

We conclude that lim,_.¢ p~" oo (B, (£)) exists and for #" almost all

E E iC)Oa
0<Cx< liII(l) P "o (B,(§)) < o0. (44)
p—>

Priess’s theorem in [P] then asserts the " -rectifiability of (ioo, dﬁoo). O

Definition 6.5. We call (ioo, dJis) obtained in Lemma 6.4 a tangent cone
of the mean curvature flow X, at (Xo, T) in the time dependent scaling.

With the lemmas established in this section, by using arguments com-
pletely similar to those for the A tangent cones in the previous sections,
we can prove

Theorem 6.6. Let (M, 2) be a compact Calabi-Yau manifold. If the initial
compact submanifold ¥ is Lagrangian and almost calibrated by Re 2 and
T > O is the first blow-up time of the mean curvature flow, then the tangent
cone X of the mean curvature flow at (X, T) coming from time dependent
scaling is a rectifiable stationary Lagrangian current with integer multipli-
city in R*". Moreover, if M is of complex 2-dimensional, then S o consists of
a finitely many (at least two) 2-planes in R* which are complex in a complex
structure on R*,

The result below can also be found in [Wal].
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Corollary 6.7. If the initial compact submanifold % is Lagrangian and
is almost calibrated in a compact Calabi-Yau manifold (M, 2), then mean
curvature flow does not develop Type I singularity.

Proof. Let X, be a Type I singularity at T < oo and set A = maxy, |A[*.
The A tangent cone X, is smooth if 7 is a Type I singularity. Therefore
Y 18 a smooth minimal Lagrangian submanifold in C* by Theorem 6.6.
Because X, is smooth, (18) implies Fjo = ( everywhere. The monotonic-
ity identity (23) then implies 0" (X~ N B, (0)) is a constant independent
of o, and the volume density ratio at O is one due to the smoothness of
Yoo, SO X 1S a flat linear subspace of R?". But the second fundamental
form of X, has length one at 0 according to the blow-up process, and the
contradiction rules out any Type I singularities. m|
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