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Abstract. In this article we study the tangent cones at first time singularity
of a Lagrangian mean curvature flow. If the initial compact submanifold Σ0
is Lagrangian and almost calibrated by Re Ω in a Calabi-Yau n-fold (M,Ω),
and T > 0 is the first blow-up time of the mean curvature flow, then the
tangent cone of the mean curvature flow at a singular point (X0, T ) is
a stationary Lagrangian integer multiplicity current in R2n with volume
density greater than one at X0. When n = 2, the tangent cone is a finite
union of at least two 2-planes in R4 which are complex in a complex
structure on R4.

1. Introduction

Let M be a compact Calabi-Yau manifold of complex dimension n with
a Kähler form ω, a complex structure J , a Kähler metric g and a parallel
holomorphic (n, 0)-form Ω of unit length. An immersed submanifold Σ in
M is Lagrangian if ω|Σ = 0. The induced volume form dµΣ on a Lagrangian
submanifold Σ from the Ricci-flat metric g is related to Ω by

Ω|Σ = eiθdµΣ = cos θdµΣ + i sin θdµΣ, (1)

where the phase function θ is multi-valued and is well-defined up to an
additive constant 2kπ, k ∈ Z. Nevertheless, cos θ and sin θ are single valued
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functions on Σ. For any tangent vector X to M a straightforward calculation
shows

Xθ = −g(H, JX) (2)

where H is the mean curvature vector of Σ in M (cf. [HL], [TY]).
Equivalently, H = J∇θ. The Lagrangian submanifold Σ is special, i.e. it
is a minimal submanifold, if and only if θ is constant. When θ is constant
on a Lagrangian submanifold Σ, the real part of e−iθΩ is a calibration of M
with comass one and Σ is a volume minimizer in its homology class [HL].
Let ReΩ be the real part of Ω. A Lagrangian submanifold is called almost
calibrated by ReΩ if cos θ > 0.

Constructing minimal Lagrangian submanifolds is an important but very
challenging task. In a compact Kähler-Einstein surface, Schoen and Wolfson
[ScW] have shown the existence of a branched surface which minimizes
area among Lagrangian competitors in each Lagrangian homology class,
by variational method.

For a one-parameter family of immersions Ft = F(·, t) : Σ → M, we
denote the image submanifolds by Σt = Ft(Σ). If Σt evolves along the
gradient flow of the volume functional, the first variation of the volume
functional asserts that Σt satisfy a mean curvature flow equation:






d

dt
F(x, t) = H(x, t)

F(x, 0) = F0(x).
(3)

When Σ is compact the mean curvature flow (3) has a smooth solution
for short time [0, T ) by the standard parabolic theory. If Σ0 is Lagrangian
in a Kähler-Einstein ambient space M, Smoczyk has shown that Σt remains
Lagrangian for t < T and the phase function θ evolves by

dθ

dt
= ∆θ (4)

where ∆ is the Laplacian of the induced metric on Σt ([Sm1-3], also see
[TY] for a derivation of (4)). It then follows that

∂ cos θ

∂t
= ∆ cos θ + |H|2 cos θ. (5)

If the initial Lagrangian submanifold Σ0 is almost calibrated, Σt is almost
calibrated, i.e. cos θ > 0, along a smooth mean curvature flow by the
parabolic maximum principle.

It is well-known that if |A|2, where A is the second fundamental form
on Σt , is bounded uniformly as t → T > 0 then (3) admits a smooth solution
over [0, T + ε) for some ε > 0. When maxΣt |A|2 becomes unbounded as
t → T , we say that the mean curvature flow develops a singularity at T .
A lot of work has been devoted to understand these singularities (cf. [CL1-2],
[E1-2], [H1-3], [HS1-2], [I1], [Wa], [Wh1-3].)
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In this paper, we shall study the tangent cones at singularities of the
mean curvature flow of a compact Lagrangian submanifold in a compact
Calabi-Yau manifold. Especially, we shall focus on the structure of tangent
cones of the mean curvature flow where a singularity occurs at the first
singular time T < ∞.

To describe the tangent cones, suppose that (X0, T ) is a singular point
of the flow (3), i.e. |A(x, t)| becomes unbounded when (x, t) → (X0, T ).
For an arbitrary sequence of numbers λ → ∞ and any t < 0, if T +λ−2t > 0
we set

Fλ(x, t) = λ
(
F(x, T + λ−2t) − X0

)
.

We denote the scaled submanifold by
(
Σλ

t , dµλ
t

)
. If the initial submani-

fold is Lagrangian and almost calibrated by Re Ω, it is proved in Propo-
sition 2.3 that there is a subsequence λi → ∞ such that for any t < 0,(
Σ

λi
t , dµ

λi
t

)
converges to (Σ∞, dµ∞) in the sense of measures; the limit

Σ∞ is called a tangent cone arising from the rescaling λ, or simply a λ
tangent cone at (X0, T ). This tangent cone is independent of t as shown in
Proposition 2.3.

There is also a time dependent scaling which we would like to consider

F̃(·, s) = 1√
2(T − t)

F(·, t), (6)

where s = − 1
2 log(T −t), c0 ≤ s < ∞. Here we have chosen the coordinates

so that X0 = 0. Rescaling of this type arises naturally in classification of sin-
gularities of mean curvature flows [H2]: assume limt→T− maxΣt |A|2 = ∞,
if there exists a positive constant C such that lim supt→T−

(
(T− t) maxΣt |A|2)

≤ C, the mean curvature flow F has a Type I singularity at T ; otherwise it
has a Type II singularity at T . Denote Σ̃s the rescaled submanifold by F̃ (·, s).
If a subsequence of Σ̃s converges in measures to a limit Σ̃∞, then the limit
is called a tangent cone arising from the time dependent scaling at (X0, T ),
or simply a t tangent cone. In this paper, a tangent cone of the mean curvature
flow at (X0, T ) means either a λ tangent cone or a t tangent cone at (X0, T ).

The main result of this paper is

Theorem 1.1. Let (M,Ω) be a compact Calabi-Yau manifold of complex
dimension n. If the initial compact submanifold Σ0 is Lagrangian and al-
most calibrated by Re Ω, and T > 0 is the first blow-up time of the mean
curvature flow (3), and (X0, T ) is a singular point, then the tangent cone
of the mean curvature flow at (X0, T ) is a stationary Lagrangian integer
multiplicity current in R2n with volume density greater than one at X0.
When n = 2, the tangent cone is a finite union of at least two 2-planes in
R4 which are complex in a complex structure on R4.

For symplectic mean curvature flow in Kähler-Einstein surfaces, results
similar to Theorem 1.1 were obtained in [CL1]. The authors are grateful
to Professor Gang Tian for stimulating conversation. The authors thank the
referee for useful comments.
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2. Existence of λ tangent cones

This section contains basic formulas and estimates which are essential for
this article. First, we will derive a monotonicity formula which has a weight
function introduced by the n-form Re Ω. Second, we use the monotonicity
formula to derive three integral estimates, which roughly say that when aver-
aged over any time interval the mean curvature vector Hλ and the derivative
of the phase function cos θλ both tend to 0 in the L2 norm over a fixed
ball near the singularity, as λ → ∞. Another direct consequence of the
monotonicity formula is that there is an upper bound of the volume density
of the rescaled submanifolds Σλ

t , which allows us to extract converging
subsequence in measure.

2.1. A weighted monotonicity formula

Let H(X, X0, t0, t) be the backward heat kernel on Rk. Let Nt be a smooth
family of submanifolds of dimension n in Rk defined by Ft : N → Rk.
Define

ρ(X, t) = (4π(t0 − t))(k−n)/2 H(X, X0, t0, t)

= 1

(4π(t0 − t))n/2
exp

(

−|X − X0|2
4(t0 − t)

)

(7)

for t < t0.
A straightforward calculation (cf. [CL1], [H1], [Wa]) shows

∂

∂t
ρ =

(
n

2(t0 − t)
− H · (X − X0)

2(t0 − t)
− |X − X0|2

4(t0 − t)2

)

ρ

and along Nt

∆ρ =
( 〈X − X0,∇X〉2

4(t0 − t)2
−〈X − X0,∆X〉

2(t0 − t)
− |∇X|2

2(t0 − t)

)

ρ

where ∆,∇ are on Nt in the induced metric. Let Nt = Σt be a smooth
1-parameter family of compact Lagrangian submanifolds in a compact
Calabi-Yau manifold (M,Ω) of complex dimension n. Note that in the
induced metric on Σt

|∇F|2 = n and ∆F = H.

Therefore

(
∂

∂t
+ ∆

)

ρ = −
(∣

∣
∣
∣H + (F − X0)

⊥

2(t0 − t)

∣
∣
∣
∣

2

− |H|2
)

ρ. (8)
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On Σt we set
v = cos θ.

Denote the injectivity radius of (M, g) by iM . For X0 ∈ M, take a normal
coordinate neighborhood U and let φ ∈ C∞

0 (B2r(X0)) be a cut-off function
with φ ≡ 1 in Br(X0), 0 < 2r < iM . Using the local coordinates in U we
may regard F(x, t) as a point in R2n whenever F(x, t) lies in U . We define

Ψ(X0, t0, t) =
∫

Σt

1

v
φ(F)ρ(F, X0, t, t0)dµt

where ρ is defined by (7) by taking k = 2n.

Proposition 2.1. Let Ft : Σ → M be a smooth mean curvature flow of
a compact Lagrangian submanifold Σ0 in a compact Calabi-Yau manifold
M of complex dimension n. Suppose that Σ0 is almost calibrated by ReΩ.
Then there are positive constants c1 and c2 depending only on M, F0 and r
which is the constant in the definition of φ, such that

∂

∂t

(

ec1
√

t0−t
∫

Σt

1

v
φρdµt

)

≤ − ec1
√

t0−t
∫

Σt

1

v
φρ

(
2|∇v|2

v2
+

∣
∣
∣
∣H + (F − X0)

⊥

2(t0 − t)

∣
∣
∣
∣

2

+ |H|2
2

)

dµt (9)

+ c2ec1
√

t0−t .

Proof. Notice that
∆F = H + gijΓα

ijvα

where vα, α = 1, ..., n is a basis of T ⊥Σt , gij is the induced metric on Σt
and Γα

ij is the Christoffel symbol on M. Equation (8) reads as

(
∂

∂t
+ ∆

)

ρ = −
(∣

∣
∣
∣H + (F − X0)

⊥

2(t0 − t)

∣
∣
∣
∣

2

− |H|2 + gijΓα
ijvα · (F − X0)

t0 − t

)

ρ.

(10)

From (5) we have

∂

∂t

1

v
= ∆

1

v
− |H|2

v
− 2|∇v|2

v3
.

Using the equation above and the generalized monotonicity formula in [EH],
we can derive our weighted monotonicity formula (9). For completeness we
give a detailed proof here, due to higher codimension and non-Euclidean
ambient space.

Recall that
d

dt
dµt = −|H|2dµt
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and
∂φ(F)

∂t
= ∇φ · H.

Now we have
d

dt

∫

Σt

1

v
φρ

=
∫

Σt

φρ∆
1

v
−

∫

Σt

( |H|2
v

+ 2

v3
|∇v|2

)

φρ +
∫

Σt

1

v
∇φ · Hρ

−
∫

Σt

1

v
φ

(

∆ρ+
(∣

∣
∣
∣H+ (F − X0)

⊥

2(t0 − t)

∣
∣
∣
∣

2

−|H|2 + gijΓα
ijvα · (F − X0)

t0 − t

)

ρ

)

−
∫

Σt

1

v
φρ|H|2

≤ −
∫

Σt

φρ

(
2

v3
|∇v|2 + 1

v

∣
∣
∣
∣H + (F − X0)

⊥

2(t0 − t)

∣
∣
∣
∣

2

+ |H|2
v

)

+
∫

Σt

(

φρ∆
1

v
− 1

v
φ∆ρ

)

−
∫

Σt

1

v
φρ

gijΓα
ijvα · (F − X0)

t0 − t

+
∫

Σt

1

v
ρ

(

ε2φ|H|2 + 1

4ε2

|∇φ|2
φ

)

(11)

where we used Cauchy-Schwartz inequality for ∇φ · H. By Stokes formula
∫

Σt

(

φρ∆
1

v
− 1

v
φ∆ρ

)

= 2
∫

Σt

1

v
∇φ∇ρ +

∫

Σt

1

v
ρ∆φ.

Since φ ∈ C∞
0 (B2r(X0), R+), we have (cf. [B] and Lemma 6.6 in [Il])

|∇φ|2
φ

≤ 2 max
φ>0

|∇2φ|.
Note that ∇φ ≡ 0 in Br(X0), so |ρ∆φ| and |∇φ·∇ρ| are bounded in B2r (X0).
Hence

∫

Σt

∣
∣
∣
∣
1

v
ρ∆φ

∣
∣
∣
∣ +

∫

Σt

∣
∣
∣
∣
1

v
∇φ · ∇ρ

∣
∣
∣
∣ ≤ C

∫

Σt

1

v
dµt ≤ C

minΣ0 v
vol(Σ0) (12)

where C depends only on r and max(|∇2φ| + |∇φ|).
Since Γα

ij (X0) = 0, we may choose r sufficiently small such that
∣
∣gijΓα

ij (F)
∣
∣ ≤ C|F − X0|

in B2r(X0) for some constant C depending on M. We claim
∣
∣gijΓα

ijvα · (F − X0)
∣
∣

t0 − t
ρ(F, t) ≤ c1

ρ(F, t)√
t0 − t

+ C. (13)
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In fact it suffices to show for any x and s > 0

x2

s

e−x2/s

sn/2
≤ C

(

1 + 1

s1/2

e−x2/s

sn/2

)

.

To see this, let y = x2/s and then it is easy to verify that

y ≤ C

(

sn/2ey + 1

s1/2

)

holds trivially if y ≤ 1/s1/2 and follows from yn+1 ≤ Cey if y > 1/s1/2 for
some C. So (13) is established.

Letting ε2 = 1/2 in (11) and applying (12), (13) to (11) we have

∂

∂t
Ψ≤−

∫

Σt

1

v
φρ

(
2|∇v|2

v2
+

∣
∣
∣
∣H + (F − X0)

⊥

2(t0 − t)

∣
∣
∣
∣

2

+ |H|2
2

)

+ c1√
t0 − t

Ψ+c2.

The proposition follows. ��
Suppose that (X0, T ) is a singular point of the mean curvature flow (3).

We now describe the rescaling process around (X0, T ). For any t < 0, we set

Fλ(x, t) = λ
(
F(x, T + λ−2t) − X0

)
(14)

where λ are positive constants which go to infinity. The scaled submanifold
is denoted by Σλ

t = Fλ(Σ, t) on which dµλ
t is the area element obtained

from dµt . If gλ is the metric on Σλ
t , it is clear that

gλ
ij = λ2gij , (gλ)ij = λ−2gij .

We therefore have

∂Fλ

∂t
= λ−1 ∂F

∂t
Hλ = λ−1H

|Aλ|2 = λ−2|A|2.
It follows that the scaled submanifold also evolves by a mean curvature flow

∂Fλ

∂t
= Hλ. (15)

Moreover, since

dµλ
t (Fλ(x, t)) = λndµt(F(x, T + λ−2t))

Ω|Σλ
t
(Fλ(x, t)) = λnΩ|Σt (F(x, T + λ−2t))

we have
cos θλ(Fλ(x, t)) = cos θ(F(x, T + λ−2t)).
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2.2. Integral estimates

Proposition 2.2. Let (M,Ω) be a Calabi-Yau manifold of complex dimen-
sion n. If the initial compact submanifold is Lagrangian and is almost cal-
ibrated by ReΩ, then for any R > 0 and any −∞ < s1 < s2 < 0, we have

∫ s2

s1

∫

Σλ
t ∩BR(0)

|∇ cos θλ|2dµλ
t dt → 0 as λ → ∞, (16)

∫ s2

s1

∫

Σλ
t ∩BR(0)

|Hλ|2dµλ
t dt → 0 as λ → ∞, (17)

and
∫ s2

s1

∫

Σλ
t ∩BR(0)

∣
∣F⊥

λ

∣
∣2

dµλ
t dt → 0 as λ → ∞. (18)

Proof. For any R > 0, we choose a cut-off function φR ∈ C∞
0 (B2R(0)) with

φR ≡ 1 in BR(0), where Br(0) is the metric ball centered at 0 with radius
r in R2n. For any fixed t < 0, the mean curvature flow (3) has a smooth
solution near T + λ−2t < T for sufficiently large λ, since T > 0 is the first
blow-up time of the flow. Let vλ = cos θλ. It is clear

∫

Σλ
t

1

vλ

1

(0 − t)n/2
φR(Fλ) exp

(

− |Fλ|2
4(0 − t)

)

dµλ
t

=
∫

ΣT+λ−2t

1

vλ

φ(Fλ)
1

(T−(T+λ−2t))n/2
exp

(

−|F(x, T+λ−2t)− X0|2
4(T − (T + λ−2t))

)

dµt,

where φ is the function defined in the definition of Φ. Note that T+λ−2t → T
for any fixed t as λ → ∞. By the weighted monotonicity formula (9),

∂

∂t

(
ec1

√
t0−tΨ

) ≤ c2ec1
√

t0−t,

and it then follows that limt→t0 ec1
√

t0−tΨ exists. This implies, by taking
t0 = T and t = T + λ−2s, that for any fixed s1 and s2 with −∞ < s1 <
s2 < 0,

ec1

√
T−(T+λ−2s2)

∫

Σλ
s2

1

vλ

φR
1

(0 − s2)
n/2

exp

(

− |Fλ|2
4(0 − s2)

)

dµλ
s2

−ec1

√
T−(T+λ−2s1)

∫

Σλ
s1

1

vλ

φR
1

(0 − s1)
n/2

exp

(

− |Fλ|2
4(0 − s1)

)

dµλ
s1

→ 0 as λ → ∞. (19)
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Integrating (9) from T +λ−2s1 to T +λ−2s2, and letting T +λ−2s = t, we get

−ec1

√
−λ−2s2

∫

Σλ
s2

1

vλ

φR
1

(0 − s2)n/2
exp

(

− |Fλ|2
4(0 − s2)

)

dµλ
s2

+ ec1

√
−λ−2s1

∫

Σλ
s1

1

vλ

φR
1

(0 − s1)n/2
exp

(

− |Fλ|2
4(0 − s1)

)

dµλ
s1

≥
∫ T+λ−2s2

T+λ−2s1

ec1
√

T−t
∫

Σt

1

v
φρ

(
2|∇v|2

v2
+

∣
∣
∣
∣H + (F − X0)

⊥

2(T − t)

∣
∣
∣
∣

2

+ |H|2
2

)

dµt

− c2λ
−2(s2 − s1)

≥
∫ s2

s1

ec1

√
−λ−2s

∫

Σλ
s

1

vλ

φRρ(Fλ, s)

∣
∣
∣
∣Hλ + (Fλ)

⊥

2(−s)

∣
∣
∣
∣

2

dµλ
s

+
∫ s2

s1

ec1

√
−λ−2s

∫

Σλ
s

1

vλ

φRρ(Fλ, s)
|Hλ|2

2
dµλ

s

+
∫ s2

s1

ec1

√
−λ−2s

∫

Σλ
s

2

v3
λ

|∇vλ|2φRρ(Fλ, s)dµλ
s − c2λ

−2(s2 − s1). (20)

From (19) and (20) the proposition follows. ��

2.3. Upper bound on volume density

Now we show the existence of the λ tangent cones by deriving an finite
upper bound for the volume density. These cones are independent of t, but
may depend on the blowing up sequence λ. Some of the arguments below
were used in [I1] and [E1], and an analogue of the area estimate (21) for
hypersurfaces was obtained in [E1].

Proposition 2.3. Suppose that Σt evolves along mean curvature flow and
Σ0 is a compact Lagrangian submanifold in (M,Ω) and is almost calibrated
by Re Ω. For any λ, R > 0 and any t < 0,

µλ
t

(
Σλ

t ∩ BR(0)
) ≤ CRn, (21)

where BR(0) is a metric ball in R2n and C > 0 is independent of λ.
For any sequence λi → ∞, there is a subsequence λk → ∞ such that(
Σ

λk
t , µ

λk
t

) → (Σ∞, µ∞) in the sense of measures, for any fixed t < 0,
where (Σ∞, µ∞) is independent of t. The multiplicity of Σ∞ is finite.

Proof. We shall first prove the inequality (21). We shall use C below for uni-
form positive constants which are independent of R and λ. Straightforward
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computation shows

µλ
t

(
Σλ

t ∩ BR(0)
) = λn

∫

ΣT+λ−2t∩B
λ−1 R(X0)

dµt

= Rn(λ−1 R)−n
∫

ΣT+λ−2t∩B
λ−1 R(X0)

dµt

≤ CRn
∫

ΣT+λ−2t∩B
λ−1 R(X0)

1

vλ

1

(4π)n/2(λ−1 R)n
e
− |X−X0|2

4(λ−1 R)2 dµt

= CRnΨ
(
X0, T + (λ−1 R)2 + λ−2t, T + λ−2t

)
.

By the weighted monotonicity inequality (9), we have

µλ
t

(
Σλ

t ∩ BR(0)
) ≤ CRnΨ

(
X0, T + (λ−1 R)2 + λ−2t, T/2

) + CRn

≤ µT/2(ΣT/2)

T n/2 minΣ0 v
CRn + CRn.

Since volume is non-increasing along mean curvature flow:

∂

∂t
µt(Σt) = −

∫

Σt

|H|2dµt,

we have therefore established (21):

µλ
t

(
Σλ

t ∩ BR(0)
) ≤ CRn.

By (21), the compactness theorem for the measures (c.f. [Si1], 4.4) and
a diagonal subsequence argument, we conclude that there is a subsequence
λk → ∞ such that

(
Σ

λk
t0 , µ

λk
t0

) → (
Σ∞

t0 , µ∞
t0

)
in the sense of measures for

a fixed t0 < 0.
We now show that, for any t < 0, the subsequence λk which we have

chosen above satisfies
(
Σ

λk
t , µ

λk
t

) → (
Σ∞

t0 , µ∞
t0

)
in the sense of measures.

And consequently the limit
(
Σ∞

t0 , µ∞
t0

)
is independent of t0, here Σ∞

t0 is the
support of the limiting Radon measure. Recall that the following standard
formula for mean curvature flow

d

dt

∫

Σλ
t

φdµλ
t = −

∫

Σλ
t

(
φ|Hλ|2 + ∇φ · Hλ

)
dµλ

t (22)

is valid for any test function φ ∈ C∞
0 (M) (cf. (1) in Sect. 6 in [I2] and [B]

in the varifold setting).
Then for any given t < 0 integrating (22) yields
∫

Σ
λk
t

φdµ
λk
t −

∫

Σ
λk
t0

φdµ
λk
t0 =

∫ t0

t

∫

Σ
λk
t

(
φ|Hλk |2 + ∇φ · Hλk

)
dµ

λk
t dt

→ 0 as k → ∞ by (17).
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So, for any fixed t < 0,
(
Σ

λk
t , µ

λk
t

) → (
Σ∞

t0 , µ∞
t0

)
in the sense of measures

as k → ∞. We denote
(
Σ∞

t0 , µ∞
t0

)
by (Σ∞, µ∞), which is independent of t0.

The inequality (21) yields a uniform upper bound on R−nµ
λk
t (Σ

λk
t ∩

BR(0)), which yields finiteness of the multiplicity of Σ∞. ��
Definition 2.4. Let (X0, T ) be a first time singular point of the mean curva-
ture flow of a compact Lagrangian submanifold Σ0 in a compact Calabi-Yau
manifold M. We call (Σ∞, dµ∞) obtained in Proposition 2.3 a λ tangent
cone of the mean curvature flow Σt at (X0, T ).

3. Rectifiability of λ tangent cones

In this section we shall show that the λ tangent cone Σ∞ is Hn-rectifiable,
where Hn is the n-dimensional Hausdorff measure.

Proposition 3.1. Let M be a compact Calabi-Yau manifold of complex
dimension n. If the initial compact submanifold Σ0 is Lagrangian and al-
most calibrated by Re Ω, then the λ tangent cone (Σ∞, dµ∞) of the mean
curvature flow at (X0, T ) is Hn-rectifiable.

Proof. Let
(
Σk

t , dµk
t

) = (
Σ

λk
t , dµ

λk
t

)
. We set

AR =
{

t ∈ (−∞, 0)

∣
∣
∣
∣ lim

k→∞

∫

Σk
t ∩BR(0)

|Hk|2dµk
t �= 0

}

,

and
A =

⋃

R>0

AR.

Denote the measures of AR and A by |AR| and |A| respectively. It is
clear from (17) that |AR| = 0 for any R > 0. So |A| = 0.

For any ξ ∈ Σ∞, choose ξk ∈ Σk
t with ξk → ξ as k → ∞. By the

monotonicity identity (17.4) in [Si1], we have

σ−nµk
t (Bσ(ξk)) = ρ−nµk

t (Bρ(ξk)) −
∫

Bρ(ξk)\Bσ(ξk)

|D⊥r|2
rn

dµk
t

−1

n

∫

Bρ(ξk)

(x − ξk) · Hk

(
1

rn
σ

− 1

ρn

)

dµk
t , (23)

for all 0 < σ ≤ ρ, where µk
t (Bσ(ξk)) is the measure of Σk

t ∩ Bσ((ξk)),
r = r(x) is the distance from ξk to x, rσ = max{r, σ}, and D⊥r denotes the
orthogonal projection of Dr (which is a vector of length 1) onto

(
TξkΣ

k
t

)⊥
.

Choosing t �∈ A, we have

lim
k→∞

∫

Bρ(ξk)

|Hk|2dµk
t = 0.
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Hölder’s inequality and (21) then lead to

lim
k→∞

∣
∣
∣
∣
∣

∫

Bρ(ξk)

(x − ξk) · Hk

(
1

rn
σ

− 1

ρn

)

dµk
t

∣
∣
∣
∣
∣

≤ Cρ

(
1

σn
− 1

ρn

)

lim
k→∞

(
√

µk
t (Bρ(ξk))

√∫

Bρ(ξk)

|Hk|2dµk
t

)

≤ Cρ1+n/2

(
1

σn
− 1

ρn

)

lim
k→∞

√∫

Bρ(ξk)

|Hk|2dµk
t

= 0. (24)

Letting k → ∞ in (23) and using (24), we obtain

σ−nµ∞(Bσ(ξ)) ≤ ρ−nµ∞(Bρ(ξ)),

for all 0 < σ ≤ ρ. By (21) we know that

lim
ρ→0

ρ−nµ∞(Bρ(ξ)) < C < ∞.

Therefore, limρ→0 ρ−nµ∞(Bρ(ξ)) exists.
We shall show that the following density estimate holds

lim
ρ→0

ρ−nµ∞(Bρ(ξ)) ≥ 1

4c(n) + 4
> 0 (25)

for some positive constant c(n) which will be determined below. Assume
(25) fails to hold. Then there is ρ0 > 0 such that

(2ρ0)
−nµ∞(B2ρ0(ξ)) <

1

4c(n) + 4
.

By the monotonicity formula (23) and that µk
t converges to µ∞ as measures,

there exists k0 > 0 such that, for all 0 < ρ < 2ρ0 and k > k0, we have

ρ−nµk
t (Bρ(ξ)) <

1

2c(n) + 2
. (26)

Take a cut-off function φρ ∈ C∞
0 (Bρ(ξ)) on the 2n-dimensional ball Bρ(ξk)

so that

φρ ≡ 1 in B ρ
2
(ξ)

0 ≤ φρ ≤ 1, and |∇φρ| ≤ C

ρ
, in Bρ(ξ).
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From (22), we have

ρ−n
∫

Bρ(ξ)

φρdµk
t−r2 − ρ−n

∫

Bρ(ξ)

φρdµk
t

≤ Cρ−n
∫ t

t−r2

∫

Bρ(ξ)

|Hk|2dµk
s ds + Cρ−n−1

∫ t

t−r2

∫

Bρ(ξ)

|Hk|dµk
s ds

≤ Cρ−n
∫ t

t−r2

∫

Bρ(ξ)

|Hk|2dµk
s ds

+ Cρ−n−1
∫ t

t−r2

(∫

Bρ(ξ)

|Hk|2dµk
s

)1/2

µk
s(Bρ(ξ))

1/2ds

≤ Cρ−n
∫ t

t−r2

∫

Bρ(ξ)

|Hk|2dµk
s ds

+ Cρ−n/2−1
∫ t

t−r2

(∫

Bρ(ξ)

|Hk|2dµk
s

)1/2

ds by (21)

→ 0, as k → ∞ by (17).

Here we have used C for uniform positive constants which are independent
of k and ρ. Therefore, there are constants δ1 > 0 and k1 > 0 such that for
all ρ and k with 0 < ρ < δ1, 0 < r < 1, and k > k1 the estimate

ρ−nµk
t−r2(Bρ(ξ)) <

1

c(n) + 1
< 1 (27)

holds. Let dσ k
t−r2 be the area element of ∂Bρ(ξ) ∩Σk

t−r2 . By the co-area for-
mula, for 0 < r � 1, for a smooth cut-off function φ with support in the 2n-
dimensional ball Bδ1(0) in R2n with 0 ≤ φ ≤ 1, φ ≡ 1 in Bδ1/2(0), we have

Φk(ξ, t, t − r2) = 1

(4πr2)n/2

∫

Σk
t−r2

φ e− |Fk−ξ|2
4r2 dµk

t−r2

≤ 1

(4π)n/2rn

∫ δ1

0

∫

∂Bρ(ξ)∩Σk
t−r2

e− ρ2

4r2 dσ k
t−r2dρ

≤ 1

(4π)n/2rn

∫ δ1

0
e− ρ2

4r2
d

dρ
Vol

(
Bρ(ξ) ∩ Σk

t−r2

)
dρ

≤ 1

πn/2(2r)n
Vol

(
Bδ1(ξ) ∩ Σk

t−r2

)
e− δ2

1
4r2

+ 1

(c(n) + 1)πn/2

∫ δ1

0
e− ρ2

4r2
ρn

2nrn
d

ρ2

4r2
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by integration by parts and (27). By (21),

1

πn/2(2r)n
Vol

(
Bδ1(ξ) ∩ Σk

t−r2

)
e− δ2

1
4r2 ≤ C

(
δ1

2r

)n

e− δ2
1

4r2 = o(r).

Letting y = ρ/2r we have
∫ δ1

0
e− ρ2

4r2

( ρ

2r

)n
d

( ρ

2r

)2 ≤ 2
∫ ∞

0
e−y2

yn+1dy = c(n) < ∞,

and there is an explicit formula for c(n) depends on whether n is odd or
even. Thus we conclude

Φk(ξ, t, t − r2) ≤ 1 + o(r).

For any classical mean curvature flow Γt in a compact Riemannian mani-
fold which is isometrically embedded in RN , White proves a local regular-
ity theorem (Theorem 3.1 and Theorem 4.1 in [Wh1]): When dimΓt = n,
there is a constant ε > 0 such that if the Gaussian density satisfies

lim
r→0

∫

Γt−r2

1

(4πr2)n/2
exp

(

−|y − x|2
4r2

)

dµ(y) < 1 + ε,

then the mean curvature flow is smooth in a neighborhood of x. Combining
this regularity result with (28), we are led to choose r > 0 sufficiently small
and then conclude that

sup
Br(ξ)∩Σk

t

|Ak| ≤ C

and consequently Σk
t converges strongly in Br(ξ) ∩ Σk

t to Σ∞
t ∩ Br(ξ),

as k → ∞. So Σ∞ ∩ Br(ξ) is smooth. Smoothness of Σ∞ ∩ Br(ξ) immedi-
ately implies

lim
ρ→0

ρ−nµ∞(Bρ(ξ)) = 1.

This contradicts (26). Hence we have established (25).
In summary, we have shown that limρ→0 ρ−nµ∞(Bρ(ξ)) exists and for

Hn almost all ξ ∈ Σ∞,

1

4c(n) + 4
≤ lim

ρ→0
ρ−nµ∞(Bρ(ξ)) < ∞. (28)

Finally, we recall a fundamental theorem of Priess in [P]: if 0 ≤ m ≤ p
are integers and Ω is a Borel measure on Rp such that

0 < lim
r→0

Ω(Br(x))

rm
< ∞,

for almost all x ∈ Ω, then Ω is m-rectifiable. Now we conclude from (28)
that (Σ∞, µ∞) is Hn-rectifiable. ��
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Remark 3.2. For the λ tangent cones, one can show limρ→0 ρ−nµ∞(Bρ(ξ))
> 0 by using Brakke’s clearing out lemma. The argument in the proof
of Proposition 3.1 works for the t tangent cones in Sect. 6 (44) as well,
and it provides a uniform lower volume density bound. One may generalize
the clearing out lemma to equation (36) to prove (44) for the time dependent
scaling.

4. Minimality of the λ tangent cones

In this section, we will show that the λ tangent cone Σ∞ is a stationary
integer multiplicity rectifiable current in R2n.

Theorem 4.1. Let M be a compact Calabi-Yau manifold. If the initial com-
pact submanifold is Lagrangian and is almost calibrated by Re Ω, then the
λ tangent cone Σ∞ is a stationary rectifiable Lagrangian current in R2n

with volume density greater than one at X0.

Proof. Let V k
t be the varifold defined by Σk

t . By the definition of varifolds,
we have

V k
t (ψ) =

∫

Σk
t

ψ
(
x, TΣk

t

)
dµk

t

for any ψ ∈ C0
0(G

2(R2n), R), where G2(R2n) is the Grassmanian bundle
of all n-dimensional planes tangent to Σ∞

t in R2n. For each smooth sub-
manifold Σk

t , the first variation δV k
t of V k

t (cf. [A], (39.4) in [Si1] and (1.7)
in [I2]) is

δV k
t = −µk

t �Hk.

By Proposition 2.2, we have that δV k
t → 0 at t �∈ A as k → ∞, where A is

defined in the proof of Proposition 3.1.
Recall that a k-varifold is a Radon measure on Gk(M), where Gk(M)

is the Grassmann bundle of all k-planes tangent to M. Allard’s compact-
ness theorem for rectifiable varifolds (6.4 in [A], also see 1.9 in [I2] and
Theorem 42.7 in [Si1]) asserts the following: let (Vi, µi) be a sequence of
rectifiable k-varifolds in M with

sup
i≥1

(µi(U) + |δVi|(U)) < ∞ for each U ⊂⊂ M.

Then there is a varifold (V, µ) of locally bounded first variation and a sub-
sequence, which we also denote by (Vi, µi), such that (i) Convergence of
measures: µi → µ as Radon measures on M, (ii) Convergence of tangent
planes: Vi → V as Radon measures on Gk(M), (iii) Convergence of first
variations: δVi → δV as TM-valued Radon measures, (iv) Lower semicon-
tinuity of total first variations: |δV | ≤ lim inf i→∞ |δVi| as Radon measures.

By (iii) in Allard’s compactness theorem, we have

−µ∞�H∞ = δV ∞ = lim
k→∞

δV k
t = 0.
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Therefore Σ∞ is stationary. The rescaling process in a neighborhood of X0
in M implies that the metrics gλ tends to the flat metric on R2n and the
Kähler 2-form ωλ tends to a constant closed 2-form ω0 which is determined
by ω0(0) = ω(X0). The tangent spaces to Σk

t converge to that of Σ∞ as mea-
sures by (ii) in Allard’s compactness theorem. Hence ωλk |Σk

t
→ ω0|Σ∞ . But

Σk
t is Lagrangian, it follows ωλk |Σk

t
= 0 therefore ω0|Σ∞ = 0. Therefore,

Σ∞ is a Lagrangian.
On the other hand, as λ → ∞ in the blow-up precess, the holomorphic

(n, 0)-form Ω converges to a constant holomorphic (n, 0)-form Ω0 on R2n

determined by Ω0(0) = Ω(X0). We write

Re Ω0|Σ∞ = θ0dµ∞,

Re Ωλk |Σk
t
= cos θλk dµk

t

and from Allard’s compactness theorem

Re Ωλk |Σk
t
→ Re Ω0|Σ∞,

and the tangent cone Σ∞ is of integer multiplicity by the integral compact-
ness theorem of Allard ([A] and [Si1] 42.8). It follows that Re Ω0|Σ∞ > 0,
which implies that the tangent cone Σ∞ is orientable. Since Σ∞ is of in-
teger multiplicity, we have that dµ∞ = η(x)H n where η(x) is a locally
Hn-integrable positive integer-valued function. So the cone is an integral
current (see Definition 27.1 in [Si1]).

We now show that the volume density of Σ∞ at X0 is greater than 1.
Otherwise, we would have

lim
ρ→0

1

ωnρ
n
µ∞(Bρ(0)) ≤ 1

where ωn is the volume of the unit n-ball in Rn:

ωn = πn/2

Γ
(

n
2 + 1

) .

It then follows from (23) that for any ε > 0, there are δ > 0 and k0 > 0
such that for any 0 < ρ < 2δ and k > k0,

ρ−nµk
0−r2(Bρ(ξ)) < ωn(1 + ε) (29)

for any fixed r > 0. The choice of r will be based on the following obser-
vation. Set

Φ(F, X0, t0, t) =
∫

Σt

φ(F)
1

(4π(t0 − t))n/2
e− |F−X0 |2

4(t0−t) dµt
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where φ is supported in Bδ(0) and 0 ≤ φ ≤ 1, φ ≡ 1 in Bδ/2(0). Then we
have

Φ(Fk, 0, 0, 0 − r2) ≤ 1

(4πr2)n/2

∫ δ

0

∫

∂Bρ(0)∩Σk
0−r2

e− ρ2

4r2 dµk
0−r2 dρ

≤ 1

(4πr2)n/2

∫ δ

0
e− ρ2

4r2

∫

∂Bρ(0)∩Σk
0−r2

dµk
0−r2 dρ

≤ 1

(4πr2)n/2

∫ δ

0
e− ρ2

4r2
ρ

2r2
Vol

(
Bρ(0) ∩ Σk

0−r2

)
dρ

+ 1

(4πr2)n/2
e− δ2

4r2 Vol
(
Bρ(0) ∩ Σk

0−r2

)

≤ (1 + ε)ωn

(4πr2)n/2

∫ δ

0
e− ρ2

4r2
ρn+1

2r2
dρ + o(r) by (29) and (21)

= (1 + ε)ωn

πn/2

∫ δ2

4r2

0
e−x x

n
2 dx + o(r)

≤ 1 + ε + o(r)

because Γ
(

n
2 + 1

) = ∫ ∞
0 e−x x

n
2 dx. Choosing r > 0 sufficiently small,

we therefore have

Φ
(
F, X0, T, T − λ−2

k r2
) = Φ(Fk, 0, 0, 0 − r2) ≤ 1 + ε.

Now by White’s local regularity theorem ([Wh1] Theorem 3.1 and Theo-
rem 4.1, also see [E2]), (X0, T ) could not be a singular point of the mean
curvature flow. This is a contradiction. ��

5. Flatness of λ-cone in dimension 2

Regularity of the λ tangent cone can be greatly improved in the 2-dimen-
sional case: dimC M = 2.

Theorem 5.1. Let (M,Ω) be a compact Calabi-Yau surface and let Σ0 be
a compact Lagrangian surface in M which is almost calibrated by ReΩ. If
0 < T < ∞ is the first blow-up time of a mean curvature flow of Σ0 in M,
then the λ tangent cone at (X0, T ) consists of a finite union (but more than
one) of 2-planes in R4 which are complex in a complex structure on R4.

Proof. We use the same notation as that in the proof of Theorem 4.1, we
shall show that θ0 is constant H2 a.e. on Σ∞. To do so, we claim that for
any r > 0, ξ1, ξ2 ∈ Σk

t ∩ BR/2(0) where t �∈ A the following holds
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∣
∣
∣
∣
∣
∣
∣

1

Vol
(
Br(ξ1) ∩ Σk

t

)

∫

Br(ξ1)∩Σk
t

cos θkdµk
t − 1

Vol
(
Br(ξ2) ∩ Σk

t

)

∫

Br(ξ2)∩Σk
t

cos θkdµk
t

∣
∣
∣
∣
∣
∣
∣

≤ C1(r)

Vol
(
Br(ξ1) ∩ Σk

t

) · C2(r)

Vol
(
Br(ξ2) ∩ Σk

t

)

∫

BR(0)∩Σk
t

|∇ cos θk| dµk
t , (30)

where Br(ξi), i = 1, 2, are the 4-dimensional balls in M. To prove (30),
let us first recall the isoperimetric inequality on Σk

t (c.f. [HSp] and [MS]):
let Bk

ρ(p) be the geodesic ball in Σk
t , with radius ρ and center p, then

Vol
(
Bk

ρ(p)
)

≤ C

(

length
(
∂
(
Bk

ρ(p)
)) +

∫

Bk
ρ(p)

|Hk|dµk
t

)2

≤ C



length
(
∂
(
Bk

ρ(p)
)) +

(∫

Bk
ρ(p)

|Hk|2dµk
t

)1/2

Vol1/2(Bk
ρ(p)

)





2

,

for any p ∈ Σk
t , and almost every ρ > 0, where C does not depend on k, ρ,

and p. By Proposition 2.2, since t �∈ A we have
∫

Bk
ρ(p)

|Hk|2dµk
t → 0 as k → ∞.

So, for k sufficiently large, we obtain:

Vol
(
Bk

ρ(p)
) ≤ C

(
length

(
∂
(
Bk

ρ(p)
)))2

.

In particular, for k sufficiently large, the isoperimetric inequality implies

Vol
(
Bk

ρ(p)
) ≥ Cρ2, (31)

where C is a positive constant independent of k, ρ and p.
Suppose that the diameter of Br(ξ) ∩ Σk

t is dk(ξ). Then

Cr2 ≥
∫

Br(ξ)∩Σk
t

dµk
t by (21)

=
∫ dk(ξ)/2

0

∫

∂Bk
ρ(p)

dσdρ for some p ∈ Σk
t

≥ c
∫ dk(ξ)/2

0
Vol1/2

(
Bk

ρ(p)
)
dρ

≥ c
∫ dk(ξ)/2

0
Cρdρ by (31)

≥ cdk(ξ)
2.
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We therefore have, for any ξ ,

dk(ξ) ≤ Cr (32)

where the constant C is independent of ξ and k.
For any fixed η ∈ Br(ξ2) ∩ Σk

t and any ξ ∈ Br(ξ1) ∩ Σk
t , we choose

a geodesic lηξ connecting η and ξ , call it a ray from η to ξ . Take an open
tubular neighborhood U(lηξ) of lηξ in Σk

t . Within this neighborhood U(lηξ),
we call the line in the normal direction of the ray lηξ the normal line which
we denote by n(lηξ). It is clear that

cos θk(ξ) − cos θk(η) =
∫

lηξ

∂l cos θkdl (33)

where dl is the arc-length element of lηξ . Choose r small enough so that
Br(ξ1) ∩ Σk

t is contained in U(lηξ1). Keeping η fixed and integrating (33)
with respect to the variable ξ , first along the normal direction n(lηξ1) and
then on the ray direction lηξ1 , we have

∣
∣
∣
∣
∣

1

Vol
(
Br(ξ1) ∩ Σk

t

)

∫

Br(ξ1)∩Σk
t

cos θk(ξ)dµk
t − cos θk(η)

∣
∣
∣
∣
∣

≤ 1

Vol
(
Br(ξ1) ∩ Σk

t

)

∫ dk(ξ1)

0

∫

n(lηξ1 )

∫

lηξ

|∇ cos θk| dldn(ξ)dρ

≤ 1

Vol
(
Br(ξ1) ∩ Σk

t

)

∫ dk(ξ1)

0

∫

BR(0)

|∇ cos θk| dµk
t dρ

≤ Cr

Vol
(
Br(ξ1) ∩ Σk

t

)

∫

BR(0)

|∇ cos θk| dµk
t , (34)

here in the last step we have used (32). From (34), integrating with respect
to η in Br(ξ2) ∩ Σk

t and dividing by Vol
(
Br(ξ2) ∩ Σk

t

)
, we get the desired

inequality (30).
For i = 1, 2 Hölder’s inequality and (21) lead to

∫

Br(ξi)∩Σk
t

|∇ cos θk| dµk
t ≤ Cr

(∫

Br(ξi)∩Σk
t

|∇ cos θk|2 dµk
t

)1/2

.

The triangle inequality implies Bk
r (ξi) ⊂ Br(ξi)∩Σk

t for i = 1, 2; therefore
by (31)

Vol
(
Br(ξi) ∩ Σk

t

) ≥ Vol
(
Bk

r (ξi)
) ≥ Cr2.

Now first letting k → ∞ in (30) and using that the right hand side of (30)
tends to 0 by Proposition 2.2, and then letting r → 0, we conclude that
cos θ is constant H2 a.e. on Σ∞.
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The (2, 0)-form Ω0 is fixed by Ω(X0) hence it has unit length. In the
complex structure JX0 on R4, Ω0 = dz1 ∧ dz2. We define a new complex
structure J∗ on R4:

J∗(∂/∂x1) = θ0(∂/∂y1), J∗(∂/∂y1) = −1/θ0(∂/∂x1),

J∗(∂/∂x2) = 1/θ0(∂/∂y2), J∗(∂/∂y2) = −θ0(∂/∂x2).

In J∗, the complex coordinates are: z∗
1 = x1 + √−1θ−1

0 y1, z∗
2 = θ−1

0 x2 +√−1y2. Then Ω∗
0 = dz∗

1 ∧ dz∗
2 satisfies that Re Ω∗

0|Σ∞ = dµ∞.
We can further choose a new complex structure J ′ on R4 such that Ω∗

0
is of type (1, 1) in J ′. In fact, if we express J∗ in the local coordinates
x1, θ

−1
0 y1, θ

−1
0 x2, y2 by

J∗ =
(

I 0
0 I

)

, with I =
(

0 1
−1 0

)

,

then we can take

J ′ =
(

I 0
0 −I

)

.

Therefore Σ∞ is a stationary rectifiable current of type (1, 1) with respect
to the complex structure J ′. By Harvey-Shiffman’s Theorem 2.1 in [HS],
Σ∞ is a J ′-holomorphic subvariety of complex dimension one. It then fol-
lows that the singular locus S of Σ∞ consists of isolated points.

Without loss of any generality, we may assume 0 ∈ Σ∞ where 0 is the
origin of R4. In fact, if not, Σ∞ would move to infinity, then we would have

Φ
(
F, X0, T, T − λ−2

k r2) = Φ
(
Fk, 0, 0, 0 − r2) → 0 as k → ∞.

But White’s regularity theorem then implies that (X0, T ) is a regular point.
This is impossible.

There is a sequence of points Xk ∈ Σk
t satisfying Xk → 0 as k → ∞.

By Proposition 2.2, for any s1 and s2 with −∞ < s1 < s2 < 0 and any
R > 0, we have

∫ s2

s1

∫

Σk
t ∩BR(0)

∣
∣F⊥

k

∣
∣2

dµk
t dt → 0 as k → ∞.

Thus, by (21)

lim
k→∞

∫ s2

s1

∫

Σk
t ∩BR(0)

∣
∣(Fk − Xk)

⊥∣
∣2

dµk
t dt

≤ 2 lim
k→∞

∫ s2

s1

∫

Σk
t ∩BR(0)

∣
∣F⊥

k

∣
∣2

dµk
t dt + C(s2 − s1)R2 lim

k→∞
|Xk|2

= 0.
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Let us denote the tangent spaces of Σk
t at the point Fk(x, t) and of Σ∞

at the point F∞(x, t) by TΣk
t and TΣ∞ respectively. It is clear that

(Fk − Xk)
⊥ = dist

(
Xk, TΣk

t

)
,

and
(F∞)⊥ = dist (0, TΣ∞).

By Allard’s compactness theorem, we have
∫ s2

s1

∫

Σ∞∩BR(0)

∣
∣(F∞)⊥∣

∣2
dµ∞dt

=
∫ s2

s1

∫

Σ∞∩BR(0)

∣
∣dist (0, TΣ∞)

∣
∣2

dµ∞dt

= lim
k→∞

∫ s2

s1

∫

Σk
t ∩BR(0)

∣
∣dist

(
Xk, TΣk

t

)∣
∣2

dµk
t dt

= lim
k→∞

∫ s2

s1

∫

Σk
t ∩BR(0)

∣
∣(Fk − Xk)

⊥∣
∣2

dµk
t dt

= 0.

Therefore F⊥∞ ≡ 0. Differentiating 〈F∞, vα〉 = 0, inner product is taken
in R4, leads to

0 = 〈∂i F∞, vα〉 + 〈F∞, ∂ivα〉 = 〈F∞, ∂ivα〉.
Because ∂i F∞ is tangential to Σ∞, by Weingarten’s equation we observe

(h∞)α
ij 〈F∞, e j〉 = 0 for all α, i = 1, 2.

Since either 〈F∞, e1〉 �= 0 or 〈F∞, e2〉 �= 0, we conclude det
(
hα

ij

) = 0.
Recall hα

11 + hα
22 = 0. It then follows hα

ij = 0, for i, j, α = 1, 2. Now we
conclude that Σ∞ consists of flat 2-planes. ��

6. Tangent cones from a time dependent scaling

In this section, we consider the tangent cones which arise from the rescaled
submanifold Σ̃s defined by

F̃(·, s) = 1√
2(T − t)

F(·, t), (35)

where s = − 1
2 log(T − t), c0 ≤ s < ∞. Here we choose the coordinates

so that X0 = 0. Rescaling of this type was used by Huisken [H2] to distin-
guish Type I and Type II singularities for mean curvature flows. Denote the
rescaled submanifold by Σ̃s. From the evolution equation of F we derive
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the flow equation for F̃

∂

∂s
F̃(x, s) = H̃(x, s) + F̃(x, s). (36)

It is clear that

cos θ̃(x, s) = cos θ(x, t),
|H̃|2(x, s) = 2(T − t)|H|2(x, t),
|Ã|2(x, s) = 2(T − t)|A|2(x, t).

We set ṽ(x, t) = cos θ̃(x, s).

Lemma 6.1. Assume that (M,Ω) is a compact Calabi-Yau manifold and
Σt evolves by a mean curvature flow in M with the initial submanifold Σ0
being Lagrangian and almost calibrated by Re Ω. Then

(
∂

∂s
− ∆̃

)

ṽ(x, s) = |H̃|2 ṽ(x, s). (37)

Proof. One can check directly that
(

∂

∂s
− ∆̃

)

cos α̃(x, s) = 2(T − t)

(
∂

∂t
− ∆

)

cos α(x, t).

It follows that
(

∂

∂s
− ∆̃

)

ṽ(x, s) = 2(T − t)

(
∂

∂t
− ∆

)

v(x, t)

≥ 2(T − t) |H|2 v(x, t)

= |H̃|2 ṽ(x, s).

This proves the lemma. ��
Next, we shall derive the corresponding weighted monotonicity formula

for the scaled flow. By (37), we have

(
∂

∂s
− ∆̃

)
1

ṽ
= −|H̃|2

ṽ
− 2|∇̃ ṽ|2

ṽ3
.

Let

ρ̃(X) = exp

(

−1

2
|X|2

)

,

Ψ(s) =
∫

Σ̃s

1

ṽ
φρ̃(F̃)dµ̃s.
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Lemma 6.2. There are positive constants c1 and c2 which depend on M,
F0 and r which is the constant in the definition of φ, so that the following
monotonicity formula holds

∂

∂s
exp(c1e−s)Ψ(s) ≤ −exp(c1e−s)

(∫

Σ̃s

1

ṽ
φρ̃(F̃)

∣
∣H̃ + F̃⊥∣

∣2
dµ̃s

+
∫

Σ̃s

1

ṽ
φρ̃(F̃)

|H̃|2
2

dµ̃s +
∫

Σ̃s

2

ṽ 3

∣
∣∇̃ṽ

∣
∣2

φρ̃(F̃)dµ̃s

)

+c2exp(c1e−s). (38)

Proof. Note that

F̃(x, s) = F(x, t)√
2(T − t)

,

H̃(x, s) = √
2(T − t)H(x, t),

|∇̃ ṽ|2(x, s) = 2(T − t)|∇v|2(x, t).

By the chain rule
∂

∂s
= 2e−2s ∂

∂t
and the monotonicity inequality (9) for the unscaled submanifold, we obtain
the desired inequality. ��
Lemma 6.3. Let (M,Ω) be a compact Calabi-Yau manifold. If the initial
compact submanifold Σ0 is Lagrangian and almost calibrated by Re Ω, then
there is a sequence sk → ∞ such that, for any R > 0,

∫

Σ̃sk ∩BR(0)

|∇̃ cos θ̃|2dµ̃sk → 0 as k → ∞, (39)

∫

Σ̃sk ∩BR(0)

|H̃|2dµ̃sk → 0 as k → ∞, (40)

and
∫

Σ̃sk ∩BR(0)

|F̃⊥|2dµ̃sk → 0 as k → ∞. (41)

Proof. Integrating (38), we have

∞ >

∫ ∞

s0

∫

Σ̃s

1

ṽ
φρ̃(F̃)

∣
∣H̃ + F̃⊥∣

∣2
dµ̃sds

+
∫ ∞

s0

(∫

Σ̃s

1

ṽ
φρ̃(F̃)

|H̃|2
2

dµ̃s +
∫

µ̃s

2

ṽ3
|∇̃ṽ|2φρ̃(F̃)dµ̃s

)

ds.
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Hence there is a sequence sk → ∞, such that as k → ∞
∫

Σ̃sk

1

ṽ
φρ̃(F̃)

|H̃|2
2

dµ̃sk → 0,

∫

Σ̃sk

2

ṽ 3
|∇̃ ṽ|2φρ̃(F̃)dµ̃sk → 0,

and ∫

Σ̃sk

1

ṽ
φρ̃(F̃)

∣
∣H̃ + F̃⊥∣

∣2
dµ̃sk → 0.

Since ṽ has a positive lower bound, the proposition now follows. ��
The proof of the following lemma is essentially the same as the one for

Proposition 3.1, except there are two parameters λ, t for the λ tangent cones
but only one parameter t for the time dependent tangent cones. Note that
the alternative proof given in [CL1] using the isoperimetric inequality only
works in dimension 2.

Lemma 6.4. There is a subsequence of sk, which we also denote by sk, such
that

(
Σ̃sk , dµ̃sk

) → (
Σ̃∞, dµ̃∞

)
in the sense of measures. And

(
Σ̃∞, dµ̃∞

)

is Hn-rectifiable.

Proof. To show the subconvergence, it suffices to show that, for any R > 0,

µ̃sk

(
Σ̃sk ∩ BR(0)

) ≤ CRn, (42)

where BR(0) is a metric ball in R2n, C > 0 is independent of k. Direct
calculation leads to

µ̃sk

(
Σ̃sk ∩ BR(0)

)

= (2(T − t))−n/2
∫

Σ
T−e2sk ∩B√

2(T−t)R(0)

dµt

= Rn
(√

2e−sk R
)−n

∫

Σ
T−e2sk ∩B√

2e−sk R
(0)

dµt

≤ CRn
∫

Σ
T−e2sk ∩B√

2(T−t)R(0)

1

v

1

(4π)n/2(
√

2e−sk R)n
e
− |X−X0|2

4
√

2e−sk R dµt

≤ CRnΨ
(
0, T + (

√
2e−sk R)2 − e2sk, T − e2sk

)
.

By the monotonicity inequality (9), we have

µ̃sk

(
Σ̃sk ∩ BR(0)

) ≤ CRnΦ
(
0, T + (

√
2e−sk R)2 − e2sk, T/2

) + CRn

≤ CµT/2(ΣT/2)

T n/2 minΣ0 v
Rn + CRn.
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Since volume is non-increasing along mean curvature flow, we see

µ̃sk

(
Σ̃sk ∩ BR(0)

) ≤ CRn.

We now prove that
(
Σ̃∞, dµ̃∞

)
is Hn-rectifiable. For any ξ ∈ Σ̃∞,

choose ξk ∈ Σ̃sk with ξk → ξ as k → ∞. By the monotonicity identity
(17.4) in [Si1], we have

σ−nµ̃sk(Bσ(ξk)) = ρ−nµ̃sk(Bρ(ξk)) −
∫

Bρ(ξk)\Bσ(ξk)

|D⊥r|2
rn

dµ̃sk

−1

n

∫

Bρ(ξk)

(x − ξk) · H̃k

(
1

rn
σ

− 1

ρn

)

dµ̃sk , (43)

for all 0 < σ ≤ ρ, where µ̃sk(Bσ(ξk)) is the area of Σ̃sk ∩ Bσ(ξk), rσ =
max{r, σ} and D⊥r denotes the orthogonal projection of Dr (which is a vec-
tor of length 1) onto

(
TξkΣ̃sk

)⊥
. Letting k → ∞, by Lemma 6.3, we have

σ−nµ̃∞(Bσ(ξ)) ≤ ρ−nµ̃∞(Bρ(ξ)),

for all 0 < σ ≤ ρ. Therefore, limρ→0 ρ−nµ̃∞(Bρ(ξ)) exists and is finite
by (42).

By converting s to t, the argument for the positive lower bound of the
volume density in the proof of Proposition 3.1 carries over to the present
situation.

We conclude that limρ→0 ρ−nµ̃∞(Bρ(ξ)) exists and for Hn almost all
ξ ∈ Σ̃∞,

0 < C ≤ lim
ρ→0

ρ−nµ̃∞(Bρ(ξ)) < ∞. (44)

Priess’s theorem in [P] then asserts the Hn-rectifiability of
(
Σ̃∞, dµ̃∞

)
. ��

Definition 6.5. We call
(
Σ̃∞, dµ̃∞

)
obtained in Lemma 6.4 a tangent cone

of the mean curvature flow Σt at (X0, T ) in the time dependent scaling.

With the lemmas established in this section, by using arguments com-
pletely similar to those for the λ tangent cones in the previous sections,
we can prove

Theorem 6.6. Let (M,Ω) be a compact Calabi-Yau manifold. If the initial
compact submanifold Σ0 is Lagrangian and almost calibrated by Re Ω and
T > 0 is the first blow-up time of the mean curvature flow, then the tangent
cone Σ̃∞ of the mean curvature flow at (X0, T ) coming from time dependent
scaling is a rectifiable stationary Lagrangian current with integer multipli-
city in R2n. Moreover, if M is of complex 2-dimensional, then Σ̃∞ consists of
a finitely many (at least two) 2-planes in R4 which are complex in a complex
structure on R4.

The result below can also be found in [Wa].
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Corollary 6.7. If the initial compact submanifold Σ0 is Lagrangian and
is almost calibrated in a compact Calabi-Yau manifold (M,Ω), then mean
curvature flow does not develop Type I singularity.

Proof. Let X0 be a Type I singularity at T < ∞ and set λ = maxΣt |A|2.
The λ tangent cone Σ∞ is smooth if T is a Type I singularity. Therefore
Σ∞ is a smooth minimal Lagrangian submanifold in Cn by Theorem 6.6.
Because Σ∞ is smooth, (18) implies F⊥∞ ≡ 0 everywhere. The monotonic-
ity identity (23) then implies σ−nµ(Σ∞ ∩ Bσ(0)) is a constant independent
of σ , and the volume density ratio at 0 is one due to the smoothness of
Σ∞, so Σ∞ is a flat linear subspace of R2n. But the second fundamental
form of Σ∞ has length one at 0 according to the blow-up process, and the
contradiction rules out any Type I singularities. ��
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