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Abstract. In this paper we establish dispersive estimates for solutions to
the linear Schrödinger equation in three dimensions

1

i
∂tψ − �ψ + Vψ = 0, ψ(s) = f(0.1)

where V(t, x) is a time-dependent potential that satisfies the conditions

sup
t

‖V(t, ·)‖
L

3
2 (R3)

+ sup
x∈R3

∫
R3

∫ ∞

−∞
|V(τ̂, x)|
|x − y| dτ dy < c0.

Here c0 is some small constant and V(τ̂, x) denotes the Fourier transform
with respect to the first variable. We show that under these conditions (0.1)
admits solutions ψ(·) ∈ L∞

t (L2
x(R

3)) ∩ L2
t (L6

x(R
3)) for any f ∈ L2(R3)

satisfying the dispersive inequality

‖ψ(t)‖∞ ≤ C|t − s|− 3
2 ‖ f ‖1 for all times t, s.(0.2)

For the case of time independent potentials V(x), (0.2) remains true if
∫
R6

|V(x)| |V(y)|
|x − y|2 dxdy < (4π)2 and ‖V‖K := sup

x∈R3

∫
R3

|V(y)|
|x − y| dy < 4π.

We also establish the dispersive estimate with an ε-loss for large energies
provided ‖V‖K + ‖V‖2 < ∞.

Finally, we prove Strichartz estimates for the Schrödinger equations with
potentials that decay like |x|−2−ε in dimensions n ≥ 3, thus solving an open
problem posed by Journé, Soffer, and Sogge.
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1. Introduction

It follows from the explicit expression for the kernel of e−it� that the free
Schrödinger evolution in Rn, n ≥ 1, satisfies the dispersive inequality

‖e−it� f ‖L∞
x

≤ Ct−
n
2 ‖ f ‖L1

x
.(1.1)

Closely related are the classical Strichartz estimate [Str]

‖e−it� f ‖
L2+ 4

n (Rn+1)
≤ C‖ f ‖L2(Rn)

or more generally

‖e−it� f ‖L p
t Lq

x(R
n) ≤ C‖ f ‖L2(Rn)(1.2)

for any n
q + 2

p = n
2 , 2 ≤ p ≤ ∞. The case p = ∞, q = 2 is the energy

estimate (in fact ‖e−itH f ‖2 = ‖ f ‖2), whereas the range 2 < p < ∞ can be
obtained from the case p = 2 and (1.1) by means of a well-known argument
(see for example [KT]). The endpoint p = 2, q = 2n

n−2 result, which in fact
fails in dimension n = 2, is more difficult and was recently settled for n ≥ 3
by Keel and Tao [KT].

The question whether these bounds also hold for more general Schrö-
dinger equations has been considered by various authors. From a physical
perspective it is of course natural to consider the case of eitH with H =
−� + V . For the purposes of the present discussion we assume that the
potential V is real and has enough regularity to ensure that H is a self-
adjoint operator on L2(Rn), see Simon’s review [Si2] for explicit conditions
on V . One obstacle to having decay in time for eitH are eigenvalues of the
operator H = −� + V and a result as in (1.1) and (1.2) therefore requires
that f be orthogonal to any eigenfunction of H . In fact, Journé, Soffer,
and Sogge [JSS] have shown that, with Pc being the projection onto the
continuous subspace of L2(Rn) with respect to H ,

‖eit(−�+V ) Pc f ‖∞ ≤ C t−
n
2 ‖ f ‖L1(Rn)(1.3)

for all dimensions n ≥ 3 provided that zero is neither an eigenvalue nor
a resonance of H . In addition, they need to assume that, roughly speaking,
|V(x)| � (1 + |x|)−n−4 and V̂ ∈ L1(Rn). Recall that a resonance is a dis-
tributional solution of Hψ = 0 so that ψ �∈ L2 but (1 + |x|2)− σ

2 ψ(x) ∈ L2

for any σ > 1
2 , see [JK]. It is well-known that under the assumptions on V

used in [JSS] the spectrum σ(H) satisfies

σ(H) = [0,∞) ∪ {λ j | j = 1, . . . , N}
where [0,∞) = σa.c.(H) and λN < λN−1 < . . . < λ1 ≤ 0 are a discrete and
finite set of eigenvalues of finite multiplicity. Indeed, since V is bounded
and decays at infinity Weyl’s criterion (Theorem XIII.14 in [RS]) implies
that σess(H) = σess(−�) = [0,∞), whereas the finiteness follows from
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the Cwikel-Lieb-Rosebljum bound. Furthermore, since V is bounded and
decays faster than |x|−1 at infinity it follows from Kato’s theorem (Theo-
rem XIII.58 in [RS]) that there are no positive eigenvalues of H . Finally,
since any V as in [JSS] is an Agmon potential, σsing(H) = ∅ by the Agmon-
Kato-Kuroda theorem (Theorem XIII.33 in [RS]).

The work by Journé, Soffer, and Sogge was preceded by related results of
Rauch [R], Jensen, Kato [JK], and Jensen [J1], [J2]. The fact that one cannot
have t− 3

2 decay in the presence of a resonance at zero energy was observed
by these authors. Moreover, the small energy asymptotic expansions of the
resolvent developed in [JK], [J1], [J2] are used in [JSS]. However, the actual
time decay estimates obtained by Rauch, Jensen, and Kato are formulated
in terms of weighted L2-spaces rather than in the much stronger L1 → L∞
sense of Journé, Soffer, and Sogge. The appearance of weighted L2 spaces
is natural in view of the so called limiting absorption principle. This refers to
boundedness of the resolvents (−�−λ±i0)−1 for λ > 0 on certain weighted
L2 spaces as proved by Agmon [Ag] and Kuroda [Ku2], [Ku1]. It is also
with respect to these weighted norms that the asymptotic expansions of the
resolvents (H − z)−1 as z → 0 with �(z) ≥ 0, (z) > 0 in [JK], [J1], [J2]
hold. Jensen and Kato need to assume that |V(x)| � (1 + |x|)−β for certain
β > 1 (most of their results require β > 3). For a more detailed discussion
of the limiting absorption principle see our Strichartz estimates in Sect. 4.

Another approach to decay estimates for eit(−�+V ) was taken by Ya-
jima [Y2], [Y3], and Artbazar and Yajima [AY], who relied on scattering
theory. Recall that if the so called wave-operator

W = s − lim
t→∞ e−it(−�+V )e−it�

exists, where the limit is understood in the strong L2 sense, then it is an
isometry that intertwines the evolutions, i.e.,

We−it� = eit(−�+V )W for all times t.

In [Y2] Yajima proved that the wave operators W are bounded from
L p(Rn) → L p(Rn) with n ≥ 3 for 1 ≤ p ≤ ∞ provided V has a cer-
tain explicit amount of decay, and provided zero is neither an eigenvalue
nor a resonance. Since WW∗ = Pa.c., he concludes from the free dispersive
estimate (1.1) that

‖eit(−�+V ) Pa.c.‖L1→L∞ = ‖We−it�W∗‖L1→L∞ ≤ C t−
n
2

under the usual assumption on the zero energy but imposing weaker condi-
tions on V than [JSS]. Moreover, [Y3] contains the first results on dispersive
and Strichartz estimates for eit(−�+V ) in two dimensions. The dispersive es-
timates in dimension n = 1 have been established in the work of Weder [W]
using methods of inverse scattering.

The relatively strong decay and regularity assumptions that appear in
all aforementioned works are by far sufficient to ensure scattering, i.e,



454 I. Rodnianski, W. Schlag

the existence of wave operators on L2, even though Yajima was the first
to exploit this link explicitly in the context of dispersive estimates. The
connection with scattering is of course natural, as the decay of V (and
possibly that of derivatives of V ) at infinity allows one to reduce matters to
the free equation by methods that are to a large extent perturbative.

On the other hand, the existence of scattering (in the traditional L2 sense)
is known for potentials that are small in some global sense, but without any
explicit rate of decay. Indeed, it is a classical result of Kato [Ka] that under
the sole assumption that the real potential V satisfies

∫
R6

|V(x)| |V(y)|
|x − y|2 dxdy < (4π)2(1.4)

the operator H = −� + V on R3 is self-adjoint and unitarily equivalent
to −� via the wave operators. The left–hand side of (1.4) is usually referred
to as the Rollnik norm, see [Si1]. Observe that (1.4) roughly corresponds to
the potential decaying at infinity as |x|−2−ε.

The appearance of the Rollnik norm in the context of small potentials
is natural from several perspectives, one of which is scaling. The Rollnik
norm is invariant under the scaling R2V(Rx) forced by the Schrödinger
operator H onto the potential V . It is well–known that the Rollnik norm
defines a class of potentials that is slightly wider than L

3
2 (R3), which is also

scaling invariant. Another natural occurrence of a scaling invariant condition
arises in connection with bounds on the number of negative eigenstates.
Indeed, in dimension n it is precisely the scaling invariant L

n
2 norm of the

negative part of the potential that governs the number of negative eigenvalues
of −∆ + V via the Cwikel-Lieb-Rosebljum bound.

We show in this work that dispersive estimates lead naturally to what
we call the “global Kato norm” of the potential. Recall that the Kato norm
of V is defined to be

sup
x∈R3

∫
|x−y|≤1

|V(y)|
|x − y| dy,

whereas the scaling invariant analogue is given by (1.5) below. The Kato
norm, or more precisely the closely related Kato class, arise in the study of
self-adjoint extensions of H , as well as in the study of the properties of the
heat semigroup e−tH , see [AS], [Si2], and Sect. 3 below.

One of the goals of our paper is to bridge the gap between the “classical”
perturbation results of spectral theory that involve Rollnik and Kato classes
of potentials (or other scaling invariant classes) and the results concernning
the dispersive properties of the time-dependent Schrödinger equation.

In our first result, see Theorem 2.6 below, we show that the dispersive
estimates are stable under perturbations by small potentials that belong to
the intersection of the Rollnik and the global Kato classes.
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Theorem 1.1. Suppose V is real and satisfies (1.4). Suppose in addition
that

sup
x∈R3

∫
R3

|V(y)|
|x − y| dy < 4π.(1.5)

Then one has the estimate

‖eit(−�+V )‖L1→L∞ � t−
3
2

for all t > 0.

The proof relies on a Born series expansion for the resolvent with a sub-
sequent estimate of an arising oscillatory integral. The convergence of
the resulting geometric series is guaranteed by (1.5). See Sect. 2 for de-
tails.

The main focus of this paper is on the dispersive properties of solu-
tions of the Schrödinger equation (0.1) with time dependent potentials, see
Sects. 5–7. It appears that not much is known on the long time behavior
of solutions to Schrödinger equations with time dependent potentials. See,
however, Bourgain [Bo2], on the issue of slow growth of higher Sobolev
norms in the space-periodic setting. In this paper we establish dispersive
and Strichartz estimates for a class of scaling invariant small potentials
on R3.

Theorem 1.2. Let V(t, x) be a real-valued measurable function on R4 such
that

sup
t

‖V(t, ·)‖
L

3
2 (R3)

+ sup
y∈R3

∫
R3

∫ |V(τ̂, x)|
|x − y| dτ dx < c0(1.6)

for some small constant c0 > 0. Here V(τ̂, x) denotes the Fourier transform
in the first variable, and if V(τ̂, x) happens to be a measure then the L1–
norm in τ gets replaced with the norm in the sense of measures. Then for
every initial time s and every ψs ∈ L2(R3) the equation

1

i
∂tψ − ∆ψ + V(t, x)ψ = 0,(1.7)

ψ|t=s(x) = ψs(x)

admits a (weak) solution ψ(t, ·) = U(t, s)ψs (via the Duhamel formula). The
propagator U(·, s) satisfies U(·, s) : L2(R3) → L∞

t (L2
x(R

3))∩L2
t (L6

x(R
3)),

t �→ ψ(t, ·) is weakly continuous as a map into L2(R3), and ‖U(t, s)ψs‖2 ≤
‖ψs‖2. Finally, U(t, s) satisfies the dispersive inequality

‖U(t, s)ψs‖L∞ ≤ C|t − s|− 3
2 ‖ψs‖L1 for all times t, s and any ψs ∈ L1.

(1.8)
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Examples of potentials to which the theorem applies are V(t, x)=cos(t)V0(x)
where ‖V0‖

L
3
2 (R3)

< c0, and for which (1.5) holds. More generally, one can

take potentials that are quasi-periodic in time, such as V(t, x) = φ(t)V0(x)
with

φ(t) =
∑
ν∈Zd

cνe2πitω·ν

and
∑

ν∈Zd |cν| < ∞, ω ∈ [0, 1) arbitrary.
Note that Theorem 1.2 also applies to time independent potentials V0(x)

via V(t, x) := V0(x). Clearly, in that case the conditions become

‖V0‖
L

3
2 (R3)

+ sup
x∈R3

∫
R3

|V(y)|
|x − y| dy < c0.

Since by fractional integration
∫
R6

|V(x)| |V(y)|
|x − y|2 dxdy ≤ C‖V‖2

L
3
2 (R3)

,

it follows that these conditions are strictly stronger than those in Theo-
rem 1.1.

Whereas our main emphasis is of course on the decay estimate (1.8),
it appears that even the easier question of solvability of equation (1.7) for
rough potentials that do not decay in time had not been addressed before,
at least under the conditions of Theorem 1.2. Yajima [Y1] considered the
problem of existence of solutions to the Schrödinger equation with time-
dependent potentials. In his paper he proves the existence of the strongly
continuous semigroup U(t, s) on L2(Rn) provided that the potential satisfies
V ∈ Lq

t L p
x for 0 ≤ 1

q < 1 − n
2p . Notice that in our case q = ∞, p = n

2 ,
which corresponds to the endpoint of this condition not covered in [Y1].
We use the endpoint Strichartz estimate [KT] for the free problem for that
purpose, which automatically yields the endpoint Strichartz estimate in the
context of Theorem 1.2.

For time-dependent potentials the analogue of Kato’s scattering re-
sult [Ka] was proved by Howland [H1]. More precisely, under the condition
that for a sufficiently large time t0 > 0, V(t, x) ≤ V0(x) for some time in-
dependent potential V0(x) obeying the small Rollnik condition (1.4), there
exist a unitary wave operator W intertwining U(t, s) and eit(−∆). In case
V(t, x) does decay in time (in the sense of a small amount of integrability),
wave operators were constructed by Howland [H2] and Davies [D]. In con-
trast to Theorem 1.2 they do not require smallness (the latter being replaced
by time decay of the potential) and they also obtain strong continuity of the
evolution.

One of the difficulties in this case is the absence of the connection
between the semigroup generated by the Schrödinger equation and the
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spectral properties of the operator −∆+V . Recall that for time independent
potentials V ,

eitH f =
∫

eitλdE(λ) f

where dE(λ) is the spectral measure of the operator −∆ + V . This is no
longer available for time-dependent potentials.

The proof of (1.8) is similar to that of Theorem 1.1 but much more
involved. Since we can no longer rely on the spectral theorem, resolvents,
and Born series to construct the evolution of (1.7), we use the Duhamel
formula instead (we note in passing that the Fourier transform in the spectral
parameter establishes an equivalence between the representation of the
evolution in terms of a Born series and an infinite expansion of the solution
by means of Duhamel’s principle). One of the novelties in our paper is
the formula representing the time evolution of the Schrödinger equation
with a time-dependent potential as an infinite series of oscillatory integrals
involving the resolvents of the free problem. Most of the work in the proof
of Theorem 1.2 is devoted to estimating these oscillatory integrals, whose
phases typically have a critical point with degeneracies of the third order.
See Sects. 5–7 for details.

Two sections of this paper are devoted to time independent potentials
without any restrictions on their sizes. In Sect. 3 we prove the following
result. As before, H = −� + V and Pa.c. refers to the projection onto the
absolutely continuous subspace of L2 relative to H .

Proposition 1.3. Let

|||V ||| := ‖V‖2 + sup
x∈R3

∫
R3

|V(y)|
|x − y| dy < ∞.

Then for every ε > 0 there exists some positive λ0 = λ0(|||V |||, ε) so that

‖eitHχ(H/λ0)Pa.c.‖L1→L∞ ≤ Ct−
3
2 +ε(1.9)

for all t > 0.

The proof is again perturbative. For the case of large energies, and for those
only, the required smallness is provided by the following estimate on the
resolvents, which can be viewed as some instance of the limited absorption
principle:

‖(−� − λ + i0)−1 f ‖L4(R3) ≤ Cλ− 1
4 ‖ f ‖

L
4
3 (R3)

.(1.10)

The proof of (1.10) is an immediate consequence of the Stein-Tomas theo-
rem [St]. The appearance of the Stein-Tomas theorem in this context is most
natural, as the resolvent (−� − λ + i0)−1 of the free problem is closely
related to the restriction of the Fourier transform to the sphere |x| = √

λ
for λ > 0. In contrast to (1.10), which heavily relies on the nonvanishing
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Gaussian curvature of the sphere, the classical limiting absorption principle
of Agmon and Kuroda [Ag], [Ku1], and [Ku2] only uses the most elemen-
tary restriction property of the Fourier transform to arbitrary surfaces which
leads to a loss of 1

2 + ε derivatives in L2 (on the physical side this translates
into the weights |x| 1

2 +ε in L2 that appear in [Ag], [JK] etc.). For further
details of the proof of Proposition 1.3 we refer the reader to Sect. 3.

It is common knowledge that the case of large energies should be the
most accessible one. From the perspective of scattering the intuition is
that particles with high energies will escape the scatterer and thus lead to
extended states (absolutely continuous spectrum) whereas particles with
smaller energies can be trapped and create bound states (pure point spec-
trum). It is of course a most interesting problem to extend Proposition 1.3
to small energies under similar conditions. Recall that [JSS] and particu-
larly [Y2] have accomplished exactly that, but under conditions on V that
are by far stronger than those in Proposition 1.3.

We also address the question of Strichartz estimates for eit(−�+V ) in di-
mensions greater or equal than three. Traditionally the mixed norm Strichartz
estimates (1.2) are shown to be a consequence of the dispersive estimates. In
fact, in [JSS], Journé, Soffer, and Sogge establish the L1 → L∞ dispersive
bound and therefore also Strichartz estimates under strong decay and regu-
larity assumptions on V , see (1.3). However, they conjecture that Strichartz
estimates hold for potentials that decay only faster than (1 + |x|)−2. In this
paper we prove this conjecture assuming only this rate of decay. In particu-
lar, we do not require any regularity. More precisely, the following theorem
holds.

Theorem 1.4. Suppose that for some ε > 0 one has |V(x)| � (1 +|x|)−2−ε

for all x ∈ Rn with n ≥ 3. Then

‖eitH Pc f ‖Lq
t Lr

x(R
n) � ‖ f ‖L2

x (Rn) ∀(q, r, n),
2

q
= n

(
1

2
− 1

r

)
, q > 2

provided the zero energy is neither an eigenvalue nor a resonance of the
operator H = −∆ + V. Here Pc denotes the spectral projection onto the
continuous states.

The decay condition |V(x)| � (1 + |x|)−2−ε is very natural from the per-
spective of Kato’s smoothing theory [Ka]. In contrast to [JSS] we prove the
Strichartz estimates directly, i.e., without relying on dispersive estimates. In
fact, we do not know if the L1 → L∞ estimates hold under the conditions
of Theorem 1.4. It is known that (local in time) Strichartz estimates can
hold even if the L1 → L∞ dispersive property fails, see Bourgain [Bo3]
for the case of the torus, Staffilani, Tataru [ST] for variable coefficients, and
Burq, Gerard, Tzvetkov [BGT] for the case of equations on Riemannian
manifolds. We should also mention the recent work of Planchon, Stalker,
and Tahvildar-Zadeh [PST] concerning the dispersive estimates for radial
data and for the potential 1

r2 .
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This paper is organized as follows: Sects. 2 to 4 deal with time indepen-
dent potentials. Section 2 establishes dispersive estimates for small Rollnik
potentials in R3. Section 3 considers the high energy case for low regular-
ity potentials, and in Sect. 4 we establish mixed norm Strichartz estimates
for potentials that decay like (1 + |x|)−2−ε. The remaining Sects. 5–7 are
devoted to small time-dependent potentials. In Sect. 5 we show that solu-
tions exist for potentials that do not necessarily decay in time by means of
the Keel-Tao [KT] endpoint. We then proceed to represent the solution by
means of an infinite Duhamel expansion and we derive a formula for each
term in the Duhamel series. The most technical part are Sects. 6 that provide
the necessary bounds on the oscillatory integrals that arise in this context.
We combine all the pieces in the final Sect. 7.

Acknowledgements: The authors thank Alexander Pushnitski for valuable discussions on
the Agmon-Kato-Kuroda theory, Thomas Spencer for his interest in the problem of time
dependent potentials, as well as Elias Stein for a discussion on Sect. 6. The first author
was supported by an NSF grant. The second author was supported by an NSF grant and
a Sloan fellowship. Part of this work was done while he was a member at the Institute
for Advanced Study, Princeton. The authors are indebted to an anonymous referee whose
insightful comments lead to significant simplifications of Sect. 6.

2. Small time independent potentials in R3

The purpose of this section is to prove the L1(R3) → L∞(R3) dispersive
inequality for eitH where H = −� + V in R3. The following definition
states the properties of the real potential V that we will need.

Definition 2.1. We require that both

‖V‖2
R :=

∫
R3×R3

|V(x)| |V(y)|
|x − y|2 dx dy <(4π)2 and(2.1)

‖V‖K := sup
x∈R3

∫
R3

|V(y)|
|x − y| dy <4π.(2.2)

The norm ‖ · ‖R on the left-hand side of (2.1) is usually referred to as
the Rollnik norm. Kato [Ka] showed that under the condition (2.1) the
operator H admits a self-adjoint extension which is unitarily equivalent to
H0 = −�. In particular, the spectrum of H is purely absolutely continuous.
Many properties of the Rollnik norm, which can be seen to be majorized
by the norm of L

3
2 (R3) via fractional integration, can be found in Simon’s

monograph [Si1]. The norm ‖ · ‖K in (2.2) is closely related to the well-
known Kato norm, see Aizenman and Simon [AS], [Si2] and we refer to it
as the global Kato norm.

The main result in this section is Theorem 2.6. The proof splits into
several lemmas, the first of which presents some well-known properties of
the resolvents RV (z) = (−�+V −z)−1 under the condition (2.1). We begin
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by recalling that a potential with finite (but not necessarily small) Rollnik
norm is Kato smoothing, i.e.,

sup
ε>0

‖ |V | 1
2 R0(λ ± iε) f ‖L2

λL2
x
≤ C‖ f ‖L2,(2.3)

sup
ε>0

‖R0(λ ± iε) |V | 1
2 f ‖L2

λL2
x
≤ C‖ f ‖L2

for any f ∈ L2(R3) and with R0(z) = (−� − z)−1. This implies, in
particular, that D(|V | 1

2 ) ⊃ H2. The Rollnik norm arises in this context as
a majorant for the Hilbert-Schmidt norm ‖ · ‖HS of the operators

K(λ ± iε) := |V | 1
2 R0(λ ± iε)|V | 1

2 .(2.4)

Indeed, it is well-known that the resolvent R0(z) for �z ≥ 0 has the kernel

R0(z)(x, y) = exp(i
√

z|x − y|)
4π|x − y|(2.5)

where �(
√

z) ≥ 0. Thus

‖K(z)‖L2→L2 ≤ ‖K(z)‖HS ≤ (4π)−1‖V‖R,(2.6)

for every z ∈ C with �z ≥ 0. This allows one to check immediately that
Sz := |V | 1

2 R0(z) : L2 → L2 for every z ∈ C \ R. Indeed, by the resolvent
identity,

Sz S∗
z = 1

−2i�z

[|V | 1
2 R0(z)|V | 1

2 − |V | 1
2 R0(z̄)|V | 1

2
]
.

In view of (2.6) therefore

‖Sz‖2 = ‖Sz S∗
z ‖ �

1

|�z|‖K(z)‖ � 1

|�z|‖V‖R,(2.7)

as desired. One of the main observations of Kato [Ka] was the relation
between this pointwise condition in z = λ ± iε and the L2

λ boundedness
that appears in (2.3). We present a short proof of this fact for the sake of
completeness. Although it is standard, the following argument is somewhat
different from the usual one which can be found in basic references like
Kato [Ka] and Reed, Simon [RS]. Denote Tε := |V | 1

2 R0(λ + iε) for ε > 0.
Truncating the large values of V and then passing to the limit we may
assume that V is bounded. Then Tε : L2 → L2

λL2
x for every ε > 0 and one

checks that

T ∗F =
∫

R0(λ − iε)|V | 1
2 F(λ) dλ
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for every F ∈ L2
λ(L2

x). Thus

TεT ∗
ε F =

∫
|V | 1

2 R0(λ + iε)R0(µ − iε)|V | 1
2 F(µ) dµ

= −
∫

|V | 1
2

R0(λ + iε) − R0(µ − iε)

λ − µ + 2iε
|V | 1

2 F(µ) dµ(2.8)

= −
∫

K(λ + iε)F(µ)

λ − µ + 2iε
dµ +

∫
K(µ − iε)F(µ)

λ − µ + 2iε
dµ,(2.9)

where we used the resolvent identity to pass to (2.8). By the L2 boundedness
of the (vector valued) Hilbert transform,

sup
ε>0

∥∥∥
∫

F(µ)

λ + iε − µ
dµ

∥∥∥
L2

λL2
x

� ‖F‖L2
λ(L2

x)
.

Using this bound and (2.6) in (2.9) yields

sup
ε>0

‖TεT ∗
ε F‖L2

x
� ‖F‖L2

λ L2
x
‖V‖R

which implies (2.3) with a constant of the form C‖V‖ 1
2
R.

Lemma 2.2. Let ‖V‖R < 4π as in Definition 2.1. Then for all f, g ∈ L2(R3)

〈RV (λ ± iε) f, g〉 − 〈R0(λ ± iε) f, g〉(2.10)

=
∞∑

=1

(−1)〈R0(λ ± iε)(VR0(λ ± iε)) f, g〉

where the right-hand side of (2.10) is an absolutely convergent series in the
norm of L1(dλ) uniformly in ε > 0. Furthermore, if ‖V − Vm‖R → 0 as
m → ∞, then

sup
ε>0

∫ ∣∣〈RVm (λ ± iε) f, g〉 − 〈RV (λ ± iε) f, g〉∣∣ dλ → 0(2.11)

as m → ∞.

Proof. We start from the resolvent identity

RV (z) − R0(z) = −R0(z)VRV (z) = −RV (z)VR0(z)(2.12)

which holds in the sense of bounded operators on L2 for any �z �= 0,
see (2.7). It is a standard fact, see [Ka], that the Kato smoothing prop-
erty (2.3) remains valid with RV instead of R0 provided that ‖V‖R < 4π.
Indeed, multiplying (2.12) by |V | 1

2 leads to

(1 + Q(z))ARV (z) = AR0(z)(2.13)
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where Q(z) := AR0(z)B, A = |V | 1
2 , and B = |V | 1

2 signV . In view of (2.6)
one has

sup
�z �=0

‖Q(z)‖L2→L2 =: ρ < 1 so that(2.14)

sup
�z �=0

‖(1 + Q(z))−1‖L2→L2 ≤ (1 − ρ)−1.

In conjunction with (2.13) and (2.3) this implies that

sup
ε>0

‖ ARV (λ ± iε) f ‖L2
λL2

x
≤ C‖ f ‖L2,(2.15)

sup
ε>0

‖ RV (λ ± iε) B f ‖L2
λL2

x
≤ C‖ f ‖L2

for any f ∈ L2. Fix f, g ∈ L2. Iterating (2.12) leads to

〈RV (λ ± iε) f, g〉(2.16)

=
N∑

=0

(−1)〈R0(λ ± iε)(VR0(λ ± iε)) f, g〉

+ (−1)N+1〈RV (λ ± iε)(VR0(λ ± iε))N+1 f, g〉
for any positive integer N. By (2.15) the error term is

〈RV (λ ± iε)B(AR0(λ ± iε)B)N AR0(λ ± iε) f, g〉
= 〈RV (λ ± iε)BQ(λ ± iε)N AR0(λ ± iε) f, g〉

and thus has L1(dλ) norm bounded by C ρN , see (2.15) and (2.14). Similarly,
each of the terms in the sum for 1 ≤  ≤ N has L1(dλ) norm at most C ρ−1.
Thus (2.10) holds for any V which satisfies (2.1). If m is sufficiently large,
then the series expansion (2.10) holds for both V and Vm . Subtracting these
series termwise and invoking the previous bounds yields that the left-hand
side of (2.11) is bounded by

∞∑
=1

Cρ−1 ‖V − Vm‖R ≤ C(1 − ρ)−2 ‖V − Vm‖R,

and the lemma follows. ��
The following technical corollary deals with the case ε = 0 in Lemma 2.2.
We state it in the form in which it is used later on. In particular, we did
not strive for the greatest generality. Below C0

b(R) refers to the bounded
continuous functions on R with the supremum norm.
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Corollary 2.3. Let V ∈ C∞
0 (R3) satisfy ‖V‖R < 4π. Then for all f, g ∈

C∞
0 (R3) the limit

〈RV (λ + i0) f, g〉 = lim
ε→0

〈RV (λ + iε) f, g〉

exists for every λ ∈ R and is a continuous function in λ. Moreover, for
each λ one can pass to the limit ε → 0 in all other terms in (2.10) and

〈RV (λ + i0) f, g〉 − 〈R0(λ + i0) f, g〉(2.17)

=
∞∑

=1

(−1)〈R0(λ + i0)(VR0(λ + i0)) f, g〉

holds for every λ and the series converges absolutely in the norm of C0
b(R)∩

L1(dλ).

Proof. Fix f, g ∈ C∞
0 (R3). By our assumptions on V and the explicit rep-

resentation (2.5), VR0(z) f ∈ C∞
0 , and thus also R0(z)(VR0(z)) f for every

z ∈ C with �z ≥ 0. Moreover, z �→ 〈R0(z)(VR0(z)) f, g〉 is a continuous
function in �z ≥ 0 for every  ≥ 0. As in the previous proof one obtains
the Kato smoothing bound

sup
ε≥0

∫ ∣∣〈R0(λ + iε)(VR0(λ + iε)) f, g〉∣∣ dλ ≤ C(‖V‖R/4π)−1‖ f ‖L2
x
‖g‖L2

x

(2.18)

for each  ≥ 1 (note that the case ε = 0 is included here). Moreover,
see (2.4) and (2.6),

sup
�z≥0

∣∣〈R0(z)(VR0(z))
 f, g〉∣∣

≤ sup
�z≥0

‖ |V | 1
2 R0(z)g‖2 ‖K(z)‖−1 ‖ |V | 1

2 R0(z) f ‖2

≤ C( f, g, V ) (‖V‖R/4π)−1.

This implies that

S f,g(λ) :=
∞∑

=0

〈R0(λ + i0)(VR0(λ + i0)) f, g〉,(2.19)

converges uniformly and thus defines a continuous function. Furthermore,
one concludes that the series in (2.10) converges uniformly in the closed
upper half-plane (i.e., for all λ ∈ R and ε ≥ 0) and therefore defines the
limit 〈RV (λ + i0) f, g〉 pointwise in λ ∈ R. Also note that, by (2.18), the
series for S f,g(λ) − 〈R0(λ + i0) f, g〉 converges absolutely in L1(dλ), and
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similarly for every z ∈ C with �z ≥ 0. In view of (2.10), (2.18), and with
an arbitrary N ≥ 1,∫

lim inf
ε→0

|〈RV (λ + iε) f, g〉 − S f,g(λ)| dλ

≤
∫

lim inf
ε→0

|〈S f,g(λ + iε) f, g〉 − S f,g(λ)| dλ

≤
∫ N∑

=1

lim sup
ε→0

∣∣〈R0(λ + iε)(VR0(λ + iε)) f, g〉

− 〈R0(λ + i0)(VR0(λ + i0)) f, g〉∣∣ dλ

+ C
∞∑

=N+1

(‖V‖R/4π)−1‖ f ‖2‖g‖2

≤ C(1 − ‖V‖R/4π)−1 (‖V‖R/4π)N‖ f ‖2‖g‖2,

and we are done. ��
Next we turn to a simple lemma that is basically an instance of stationary

phase.

Lemma 2.4. Let ψ be a smooth, even bump function with ψ(λ) = 1 for
−1 ≤ λ ≤ 1 and supp(ψ) ⊂ [−2, 2]. Then for all t ≥ 1 and any real a,

sup
L≥1

∣∣∣
∫ ∞

0
eitλ sin(a

√
λ)ψ

(√
λ

L

)
dλ

∣∣∣ ≤ C t−
3
2 |a|(2.20)

where C only depends on ψ.

Proof. Denote the integral in (2.20) by IL(a, t). Clearly, IL(a, t) is a smooth
function of a, t for any L > 0 and IL(0, t) = 0. The change of variables
λ → λ2 leads to the expression

IL(a, t) = 2
∫ ∞

0
λ eitλ2

sin(aλ)ψ(λ/L) dλ

Integrating by parts we obtain

IL(a, t) = i

t

∫ ∞

0
eitλ2

(
a cos(aλ)ψ(λ/L) + 1

L
sin(aλ)ψ′(λ/L)

)
dλ.

Since ψ is assumed to be even, ψ′ is odd. Hence,

IL(a, t) = i

2t

∫ ∞

−∞
eitλ2

(
a cos(aλ)ψ(λ/L) + 1

L
sin(aλ)ψ′(λ/L)

)
dλ

= a

4t
i
∫ ∞

−∞
eitλ2(

eiaλ + e−iaλ
)
ψ(λ/L) dλ

+
∫ a

0

i

4t

∫ ∞

−∞
eitλ2(

eibλ + e−ibλ
) λ

L
ψ′(λ/L) dλ db.
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Thus it suffices to show that

JL(a, t) =
∫ ∞

−∞
ei(tλ2+aλ) φ(λ/L) dλ

obeys the estimate |JL(a t)| ≤ Ct− 1
2 for any smooth bump function φ

satisfying the same properties as ψ. The change of variables λ → λ/L
further reduces the problem to the estimate |J(a, t)| ≤ Ct− 1

2 with

J(a, t) =
∫ ∞

−∞
ei(tλ2+aλ) φ(λ) dλ

for all t �= 0 and all real a. Observe that J(a, t) is a smooth solution of the
1-dimensional Schrödinger equation

i
∂

∂t
J(a, t) − ∂2

∂a2
J(a, t) = 0,

J(a, 0) =
∫ ∞

−∞
e−iaλφ(λ) dλ.

By the explicit representation of the kernel of the fundamental solution

J(a, t) = (−4πit)− 1
2

∫ ∞

−∞
e−i |a−b|2

4t J(b, 0) db

which implies that J(a, t) obeys the standard one-dimensional decay esti-
mate

|J(a, t)| ≤ Ct−
1
2 ‖J(·, 0)‖L1 .

Since the function J(a, 0) is the Fourier transform of the smooth bump
function φ, the desired estimate on J(a, t) follows. ��

The following lemma explains to some extent why condition (2.2) is
needed. Iterated integrals as in (2.21) will appear in a series expansion of
the spectral resolution of H = −� + V .

Lemma 2.5. For any positive integer k and V as in Definition 2.1

sup
x0,xk+1∈R3

∫
R3k

∏k
j=1 |V(x j)|∏k

j=0 |x j − x j+1|
k∑

=0

|x − x+1| dx1 . . . dxk(2.21)

≤ (k + 1)‖V‖k
K .

Proof. Define the operator A by the formula

A f(x) =
∫
R3

|V(y)|
|x − y| f(y) dy.

Observe that the assumption (2.2) on the potential V implies that A : L∞ →
L∞ and ‖A‖L∞→L∞ ≤ c0 where we have set c0 := ‖V‖K for convenience.
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Denote by <,> the standard L2 pairing. In this notation the estimate (2.21)
is equivalent to proving that the operators Bk defined as

Bk f =
k∑

m=0

< f,Ak−m1 > Am1

are bounded as operators from L1 → L∞ with the bound

‖Bk‖L1→L∞ ≤ (k + 1)ck
0.

For arbitrary f ∈ L1 one has

‖Bk f ‖L∞ ≤
k∑

m=0

| < f,Ak−m1 > | ‖Am1‖L∞

≤
k∑

m=0

‖Ak−m‖L∞→L∞‖Am‖L∞→L∞‖ f ‖L1

≤
k∑

m=0

ck
0‖ f ‖L1 ≤ (k + 1)ck

0‖ f ‖L1,

as claimed. ��
We are now in a position to prove the main result of this section.

Theorem 2.6. With H = −� + V and V satisfying the conditions in
Definition 2.1 one has the bound

∥∥eitH
∥∥

L1→L∞ ≤ C t−
3
2

in three dimensions.

Proof. Let ψ be a smooth cut-off function as in Lemma 2.4. We will show
that there is an absolute constant C such that

sup
L≥1

∣∣〈eitHψ(
√

H/L) f, g
〉∣∣ ≤ Ct−

3
2 ‖ f ‖1‖g‖1(2.22)

for any f, g ∈ C∞
0 (R3), which proves the theorem. It will be convenient

to assume that the potential V belongs to C∞
0 (R3), in addition to satisfy-

ing (2.1) and (2.2). In case of a general potential V as in Definition 2.1, one
approximates V by Vj ∈ C∞

0 via the usual cut-off and mollifying process.
Clearly, ‖V − Vj‖R → 0 as j → ∞ and ‖Vj‖K ≤ ‖V‖K < 4π. Since the
spectral resolution EV of H satisfies (recall that the spectrum of H is purely
absolutely continuous)

E ′
V (λ) := d

dλ
EV (λ) = �RV (λ + i0),(2.23)
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one concludes from Lemma 2.2 that∫ ∣∣〈E ′
V (λ) f, g〉 − 〈E ′

Vj
(λ) f, g〉∣∣ dλ → 0

as j → ∞. In particular, with Hj := −� + Vj ,〈
eitHj ψ(Hj/L) f, g

〉 → 〈
eitHψ(H/L) f, g

〉
as j → ∞ for any f, g ∈ C∞

0 (R3). It therefore suffices to prove (2.22) under
the additional assumption that V ∈ C∞

0 (R3). Fix such a potential V , as well
as any L ≥ 1, and real f, g ∈ C∞

0 (R3). Then applying (2.23), Corollary 2.3,
(2.5), Lemma 2.4, and Lemma 2.5 in this order,

sup
L≥1

∣∣〈eitHψ(
√

H/L) f, g
〉∣∣∣

≤ sup
L≥1

∣∣∣
∫ ∞

0
eitλ ψ(

√
λ/L)〈E ′(λ) f, g〉 dλ

∣∣∣

= sup
L≥1

∣∣∣
∫ ∞

0
eitλ ψ(

√
λ/L)�〈RV (λ + i0) f, g〉 dλ

∣∣∣

= sup
L≥1

∣∣∣
∫ ∞

0
eitλ ψ(

√
λ/L)

∞∑
k=0

�〈R0(λ + i0)(VR0(λ + i0))k f, g〉 dλ

∣∣∣

≤
∞∑

k=0

∫
R6

| f(x0)||g(xk+1)|
∫
R3k

∏k
j=1 |V(x j)|∏k

j=0 4π|x j − x j+1|
·

(2.24) · sup
L≥1

∣∣∣
∫ ∞

0
eitλ ψ(

√
λ/L) sin

(√
λ

k∑
=0

|x − x+1|
)

dλ

∣∣∣
d(x1, . . . , xk) dx0 dxk+1

≤Ct−
3
2

∞∑
k=0

∫
R6

| f(x0)||g(xk+1)|
∫
R3k

∏k
j=1 |V(x j)|

(4π)k+1
∏k

j=0 |x j − x j+1|
·

·
k∑

=0

|x − x+1| d(x1, . . . , xk) dx0 dxk+1

≤Ct−
3
2

∞∑
k=0

∫
R6

| f(x0)||g(xk+1)| (k + 1)(‖V‖K/4π)k dx0 dxk+1

≤Ct−
3
2 ‖ f ‖1‖g‖1,

since ‖V‖K < 4π. In order to pass to (2.24) one uses the explicit represen-
tation of the kernel of R0(λ+ i0), see (2.5), which leads to a k-fold integral.
Next, one interchanges the order of integration in this iterated integral.
This is legitimate, since the corresponding L1-integral (i.e., with absolute
values on everything) is finite (V is bounded and compactly supported). The
theorem follows. ��
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3. The high energy case in R3 with an ε loss

The purpose of this section is to prove a dispersive inequality for eitHχ(H)Pa.c
where χ is a cut-off to large energies and Pa.c is the projection onto the ab-
solutely continuous part of L2(R3) with respect to H = −� + V . We will
assume that V satisfies the following properties:

|||V ||| := ‖V‖2 + sup
x∈R3

∫
R3

|V(y)|
|x − y| dy < ∞.(3.1)

Under these conditions we will prove the following result. As usual, we let
χ ∈ C∞ with χ(λ) = 0 if λ ≤ 1 and χ(λ) = 1 for λ ≥ 2.

Proposition 3.1. Let |||V ||| < ∞ as in (3.1). Then for every ε > 0 there
exists some positive λ0 = λ0(|||V |||, ε) so that

‖eitHχ(H/λ0)Pa.c.‖L1
x→L∞

x
≤ Ct−

3
2 +ε(3.2)

for all t > 0.

Previously, convergence of the Born series was guaranteed by a smallness
assumption on the potential V . The following lemma will allow us to sum
the Born series for large potentials in L2(R3), but only for large energies.
This lemma is an immediate consequence of the Stein-Tomas theorem in
the formulation due to Stein [St].

Lemma 3.2. Let R0(z) = (−� − z)−1 for �(z) > 0 be the resolvent of the
free Laplacean. Then there is an absolute constant C so that for any λ > 0

‖R0(λ + i0) f ‖L4(R3) ≤ Cλ− 1
4 ‖ f ‖

L
4
3 (R3)

(3.3)

for all f ∈ S.

Proof. It is well-known that the resolvent R0(z) = (−�−z)−1 for �(z) > 0
has the kernel

K0(z)(x, y) = exp(i
√

z|x − y|)
4π|x − y|(3.4)

where �(
√

z) > 0. By the Stein-Tomas theorem in Stein’s version [St] one
has

∥∥∥
∫
R3

exp(i|x − y|)
4π|x − y| f(y) dy

∥∥∥
L4(R3)

≤ C‖ f ‖
L

4
3 (R3)

.(3.5)

Passing to (3.3) only requires changing variables x �→ √
λx and y �→ √

λy,
which we skip. ��
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It is well-known, see Simon [Si2] Theorem A.2.9, that for any V ∈
L2

loc(R
3) that satisfies the so called Kato condition

lim
r→0

sup
x∈R3

∫
|x−y|<r

|V(y)|
|x − y| dy = 0,(3.6)

the operator −� + V with domain C∞
0 (R3) is essentially self-adjoint with

sp(H) ⊂ [−M,∞) for some 0 < M < ∞, and that H is the generator of
a semi group e−tH that is bounded from L p to Lq for any choice of 1 ≤ p ≤
q ≤ ∞, see Theorem B.1.1 in [Si2]. Moreover, explicit bounds for these
norms are of the form

‖e−tH‖L p
x →Lq

x
≤ C t−γ eAt

with γ = 3
2(p−1 − q−1) and any A > M with M as before, see (B11)

in [Si2]. These bounds imply the Sobolev inequalities

‖(H + 2M)−β‖L p
x →Lq

x
< ∞ for any 1 ≤ p, q ≤ ∞

and with β >
3

2
(p−1 − q−1),

(3.7)

as can be seen from writing (H+2M)−β as the Laplace transform of the heat-
semigroup, see Theorem B.2.1. in [Si2]. Since we are assuming that V ∈ L2,
Cauchy-Schwarz implies that (3.6) holds, and thus so do all aforementioned
properties. In addition, we will use the following result of Jensen and
Nakamura, see [JN] Theorem 2.1: Suppose that V ∈ L2

loc satisfies (3.6). Let
g ∈ C∞

0 (R) and 1 ≤ p ≤ ∞. Then there exists a constant C such that

‖g(θH)‖L p
x →L p

x
≤ C uniformly in 0 < θ ≤ 1.(3.8)

Moreover, the constant C is uniform for g ranging over bounded sets
of C∞

0 (R). As an immediate corollary of (3.7) and (3.8) one obtains that
forany g ∈ C∞

0 (R), any 1 ≤ p ≤ q ≤ ∞, β > 3
2 (p−1 − q−1), there is

a constant C depending on g, V , and β, such that

‖g(H/λ0)‖L p
x →Lq

x
≤ Cλ

β

0 uniformly in λ0 ≥ 1.(3.9)

This bound is needed for the following lemma. Recall that R0(z) denotes
the resolvent of the free Laplacean.

Lemma 3.3. Let η ∈ C∞
0 (R) be fixed. Then for any λ, λ0 ≥ 1 and any

nonnegative integer k one has the estimate

‖η(H/λ0)R0(λ + i0)(VR0(λ + i0))kη(H/λ0)‖L1
x→L∞

x

≤Cλ
3
4 +
0 λ− 1

4
(‖V‖2λ

− 1
4
)k

where the constant C only depends on g and V .
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Proof. By Lemma 3.2 and Hölder’s inequality,

‖VR0(λ + i0) f ‖
L

4
3
x

≤ ‖R0(λ + i0) f ‖L4
x
‖V‖L2

x
≤ C ‖V‖L2

x
λ− 1

4 ‖ f ‖
L

4
3
x

(3.10)

for any f ∈ S. Hence

‖η(H/λ0)R0(λ + i0)(VR0(λ + i0))k η(H/λ0)‖L1
x→L∞

x

≤ ‖η(H/λ0)R0(λ + i0)‖
L

4
3
x →L∞

x

·
· ‖(VR0(λ + i0))k‖

L
4
3
x →L

4
3
x

‖η(H/λ0)‖
L1

x→L
4
3
x

≤ ‖η(H/λ0)‖L4
x→L∞

x
‖R0(λ + i0)‖

L
4
3
x →L4

x

·
· ‖VR0(λ + i0)‖k

L
4
3
x →L

4
3
x

‖η(H/λ0)‖
L1

x→L
4
3
x

≤ Cλ
3
8 +
0 λ− 1

4 (‖V‖2λ
− 1

4 )k λ
3
8 +
0 ,

as claimed. ��
Proof of Proposition 3.1. We start with a justification of the Born series

expansion for high energies. Let λ0 > 0 be chosen so that ‖V‖L2
x
λ

− 1
4

0 < 1.

By (3.10), the operator 1 + VR0(λ + i0) is invertible in L
4
3 (R3) provided

λ > λ0 and the Neumann series

(1 + VR0(λ + i0))−1 =
∞∑

k=0

(−1)k(VR0(λ + i0))k(3.11)

converges in L
4
3 (R3). Therefore, the resolvent RV (z) := (−� + V − z)−1

satisfies

RV (λ + i0) = R0(λ + i0)(1 + VR0(λ + i0))−1

=
∞∑

k=0

(−1)k R0(λ + i0)(VR0(λ + i0))k

for all λ > λ0 and is thus a bounded operator from L
4
3 (R3) → L4(R3).

Furthermore, since the spectral resolution E(·) of H = −� + V satisfies
Pa.c. E(dλ) = �RV (λ + i0) dλ, one has

〈Pa.c.E(dλ) f, g〉 =
∞∑

k=0

(−1)k
〈�[

R0(λ + i0)(VR0(λ + i0))k
]

f, g
〉
dλ
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for any f, g ∈ L
4
3 (R3). Now define η(λ) := χ(λ) − χ(λ/2). Clearly, η ∈

C∞
0 (R), and also

∞∑
j=0

η(λ2− j) = χ(λ) for all λ.

Observe that at most three terms in this sum can be nonzero for any given λ.
Now let η̃ ∈ C∞

0 (0,∞) have the property that ηη̃ = 1. Then for any
f, g ∈ S, one has the expansion

|〈eitHχ(H/λ0) f, χ(H/λ0)g〉|

=
∣∣∣∣
∫ ∞

0
eitλ〈E(dλ)η(H/(2 jλ0)) f, η(H/(2λ0))g〉 dλ

∣∣∣∣

≤
∣∣∣∣

∞∑
j,=0

| j−|≤1

∫ ∞

0
eitλ〈E(dλ)η(H/(2 jλ0)) f, η(H/(2λ0))g〉 η̃(λ/(2 jλ0)) dλ

∣∣∣∣

≤
∞∑

k=0

∣∣∣∣
∞∑

j,=0
| j−|≤1

∫ ∞

0
eitλ〈R0(λ + i0) (VR0(λ + i0))kη(H/(2 jλ0)) f,

(3.12) η(H/(2λ0))g〉η̃(λ/(2 jλ0)) dλ

∣∣∣∣

=
∞∑

k=0

∣∣∣∣
∫ ∞

0
eitλ〈R0(λ + i0) (VR0(λ + i0))kχ(H/λ0) f, χ(H/λ0)g〉 dλ

∣∣∣∣ .
(3.13)

From the previous section one has the dispersive bounds

(3.14)
∣∣∣∣
∫ ∞

0
eitλ〈R0(λ + i0) (VR0(λ + i0))kχ(H/λ0) f, χ(H/λ0)g〉 dλ

∣∣∣∣
≤ C t−

3
2 |||V |||k ‖ f ‖L1

x
‖g‖L1

x
,

∣∣∣∣
∫ ∞

0
eitλ〈R0(λ + i0) (VR0(λ + i0))kη(H/(2 jλ0)) f,

η(H/(2λ0))g〉 η̃(λ/(2 jλ0)) dλ

∣∣∣∣
≤ C t−

3
2 |||V |||k ‖ f ‖L1

x
‖g‖L1

x
,(3.15)

where we have also used (3.9) to remove the χ and η cutoffs. On the other
hand, Lemma 3.3 shows that
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∣∣∣∣
∫ ∞

0
eitλ〈R0(λ + i0) (VR0(λ + i0))kη(H/(2 jλ0)) f,

η(H/(2λ0))g〉 η̃(λ/(2 jλ0)) dλ

∣∣∣∣
≤ C (2 jλ0)

3
2 +(‖V‖L2

x
(2 jλ0)

− 1
4
)k‖ f ‖L1

x
‖g‖L1

x
.(3.16)

Combining (3.15) and (3.16) yields that for any 0 < θ < 1

∞∑
k=7

∞∑
j,=0

| j−|≤1

∣∣∣∣
∫ ∞

0
eitλ〈R0(λ + i0) (VR0(λ + i0))kη(H/(2 jλ0)) f,

η(H/(2λ0))g〉 η̃(λ/(2 jλ0)) dλ

∣∣∣∣
≤ C

∞∑
j=0

∞∑
k=7

t−
3
2 (1−θ) |||V |||k(1−θ) (2 jλ0)

θ 3
2 +(‖V‖L2

x
(2 jλ0)

− 1
4
)θk‖ f ‖1 ‖g‖1

≤ C
∞∑

k=7

t−
3
2 (1−θ) |||V |||k(1−θ) λ

θ 3
2 +

0

(‖V‖2λ
− 1

4
0

)θk‖ f ‖L1
x
‖g‖L1

x

≤ C t−
3
2 (1−θ)λ

θ 3
2 +

0

∞∑
k=0

|||V |||kλ− k
4 θ

0 ‖ f ‖1 ‖g‖1 ≤ C t−
3
2 (1−θ) λ

θ 3
2 +

0 ‖ f ‖L1
x
‖g‖L1

x

(3.17)

provided |||V |||λ− θ
4

0 < 1. The choice of k ≥ 7 was made to ensure summa-
bility over j. The bound (3.17) yields the desired bounds for the terms
with k ≥ 7 in (3.12). For the remaining cases of k, one simply invokes the
estimate (3.14), and the proposition follows. ��
Remark 3.4. It seems clear that the condition ‖V‖L2

x
< ∞ can be weakened

to a condition closer to L
3
2 (R3). The reason for this is the “slack” in the

Stein-Tomas bound that yields λ− 1
4 , whereas the high energies argument

only requires λ−γ for some γ > 0. It appears that a complex interpolation
argument allows one to exploit this slack, but we do not pursue this here.

4. Strichartz estimates for (1 + |x|2)−1−ε potentials

In this section we settle a problem posed by Journé, Soffer, Sogge [JSS]
concerning Strichartz estimates for the solutions of the Schrödinger equation
with potentials decaying at the rate of |x|−2−ε at infinity. To obtain the
result we prove a more general statement relating an Lq

t L p
x estimate for the

semigroup eitH0 to the corresponding estimate for eitH with H = H0 + V .
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The conditions of the result involve the notion of Kato’s smoothing for the
multiplication operator |V | 1

2 relative to H0 and H . Applying the abstract
result to H0 = −∆, H = −∆ + V with V obeying the estimate |V(x)| ≤
C(1 + |x|2)−1−ε requires appealing to the Agmon-Kato-Kuroda theory on
the absence of positive singular continuous spectrum for H and a separate
argument that deals with the point 0 in the spectrum of H . In fact, we shall
invoke the result of Ben-Artzi and Klainerman [BK] which readily contains
the desired conclusion.

We start with the preliminaries. Consider a self-adjoint operator H0 on
L2(Rn) with domain D(H0). Let eitH0 be the associated unitary semigroup,
which is a solution operator for the Schrödinger equation

1

i
∂tψ − H0ψ = 0, ψ|t=0 = ψ0.

We denote by R0(z) the resolvent of H0. For complex z with �z > 0 we
have that

R0(z) =
∞∫

0

eizteitH0 dt(4.1)

as well as the inverse: for any β > 0 and t ≥ 0,

e−βteitH0 =
∞∫

−∞
e−itλ R0(λ + iβ) dλ.

Let A and B be a pair of bounded operators1 on L2(Rn) and consider
a self-adjoint operator H = H0 + B∗ A with domain D(H0), corresponding
semigroup eitH , and the resolvent R(z). The resolvent R(z) and R0(z) for
�z �= 0 are connected via the second resolvent identity

R(z) = R0(z) − R0(z)B∗ AR(z).(4.2)

On the other hand, the semigroups eitH and eitH0 are related via the Duhamel
formula

eitHψ0 = eitH0ψ0 − i

t∫

0

ei(t−s)H0 B∗ AeisHψ0 ds.(4.3)

which holds for any ψ0 ∈ L2
x . We recall that for a self-adjoint operator H̄ ,

an operator Γ is called H̄-smooth in Kato’s sense if for any f ∈ D(H0)

‖Γeit H̄ f ‖L2
t L2

x
≤ CΓ(H̄)‖ f ‖L2

x
(4.4)

1 The assumption of boundedness is a convenience that is sufficient for our main appli-
cation below.
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or equivalently, for any f ∈ L2
x

sup
β>0

‖ΓRH̄ (λ ± iβ) f ‖L2
λL2

x
≤ CΓ(H̄)‖ f ‖L2

x
.(4.5)

We shall call CΓ(H̄) the smoothing bound of Γ relative to H̄ . Let Ω ⊂ R
and let PΩ be a spectral projection of H̄ associated with a set Ω. We say
that Γ is H̄-smooth on Ω if ΓPΩ is H̄-smooth. We denote the corresponding
smoothing bound by CΓ(H̄,Ω). It is not difficult to show (see e.g. [RS])
that, equivalently, Γ is H̄-smooth on Ω if

sup
β>0,λ∈Ω

‖ΓRH̄ (λ ± iβ) f ‖L2
λL2

x
≤ CΓ(H̄,Ω)‖ f ‖L2

x
.(4.6)

We now are ready to state the main result of this section.

Theorem 4.1. Let H0 and H = H0 + B∗ A be as above. We assume that that
B is H0 smooth with a smoothing bound CB(H0) and that for some Ω ⊂ R
the operator A is H-smooth on Ω with the smoothing bound CA(H,Ω).
Assume also that the unitary semigroup eitH0 satisfies the estimate

‖eitH0ψ0‖Lq
t Lr

x
≤ CH0‖ψ0‖L2

x
(4.7)

for some q ∈ (2,∞] and r ∈ [1,∞]. Then the semigroup eitH associated
with H = H0 + B∗ A, restricted to the spectral set Ω, also verifies the
estimate (4.7), i.e.,

‖eitH PΩψ0‖Lq
t Lr

x
≤ CH0CB(H0)CA(H,Ω)‖ψ0‖L2

x
.(4.8)

Proof. We start with the Duhamel formula (4.3)

eitHψ0 = eitH0ψ0 − i

t∫

0

ei(t−s)H0 B∗ AeisHψ0 ds.

We have the following estimate with the exponents q, r described in (4.7):

‖eitH PΩψ0‖Lq
t Lr

x
≤ ‖eitH0 PΩψ0‖Lq

t Lr
x
+ ‖

t∫

0

ei(t−s)H0 B∗ AeisH PΩψ0 ds‖Lq
t Lr

x

≤ CH0‖ψ0‖L2
x
+ ‖

t∫

0

ei(t−s)H0 B∗ AeisH PΩψ0 ds‖Lq
t Lr

x
.

(4.9)

To handle the Duhamel term we recall the Christ-Kiselev lemma. The
following version is from Sogge, Smith [SoSm]
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Lemma 4.2 (CK). Let X, Y be Banach spaces and let K(t, s) be the kernel
of the operator K : L p([0, T ]; X) → Lq([0, T ]; Y ). Denote by ‖K‖ the op-
erator norm of K. Define the lower diagonal operator K̃ : L p([0, T ]; X) →
Lq([0, T ]; Y )

K̃ f(t) =
t∫

0

K(t, s) f(s) ds.

Then the operator K̃ is bounded from L p([0, T ]; X) to Lq([0, T ]; Y ) and
its norm ‖K̃‖ ≤ c‖K‖, provided that p < q.

We shall apply this lemma to the operator with kernel K(t, s)=ei(t−s)H0 B∗
acting between the spaces L2([0,∞); L2

x) and Lq([0,∞); Lr
x). Observe that

by the assumptions of Theorem 4.1, q > 2 and thus the condition q > p in
Lemma [CK] is verified.

We can rewrite the Duhamel term

D =
t∫

0

ei(t−s)H0 B∗ AeisH PΩψ0 ds

in the form D = K̃
(

Aei·H PΩψ0
)
. Therefore,

‖D‖Lq
t Lr

x
� ‖K‖L2([0,∞);L2

x)→Lq([0,∞);Lr
x)

‖AeisH ψ0‖L2
t L2

x
(4.10)

We now need to estimate the norm of the operator K .

‖KF‖Lq
t Lr

x
= ‖

∞∫

0

ei(t−s)H0 B∗F(s) ds‖Lq
t Lr

x
= ‖eitH0

∞∫

0

e−isH0 B∗F(s) ds‖Lq
t Lr

x

≤ CH0‖
∞∫

0

e−isH0 B∗F(s) ds‖L2
x
.

The last inequality is the estimate (4.7) for eitH0 . By duality

‖
∞∫

0

e−isH0 B∗F(s) ds‖L2
x
= sup

‖φ‖
L2

x
=1

<

∞∫

0

e−isH0 B∗F(s) ds, φ >

= sup
‖φ‖

L2
x
=1

∞∫

0

ds < F(s), BeisH0φ >

≤ ‖F‖L2
t L2

x
sup

‖φ‖
L2

x
=1

‖BeisH0φ‖L2
t L2

x

≤ CB(H0)‖F‖L2
t L2

x
‖φ‖L2

x
,
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where the last inequality follows from H0-smoothness of the operator B.
Thus the operator K(t, s) = ei(t−s)H0 A is bounded from L2([0,∞); L2

x) to
Lq([0,∞); Lr

x). Therefore, back to (4.10)

‖D‖Lq
t Lr

x
≤ CH0CB(H0)‖ AeisH PΩψ0‖L2

t L2
x
.(4.11)

It remains to observe that since the operator A is H-smooth on Ω, we have

‖ AeisH PΩψ0‖L2
t L2

x
≤ CA(H,Ω)‖ψ0‖L2

x
.(4.12)

Thus, combining (4.9), (4.11), and (4.12) we finally obtain

‖eitHψ0‖Lq
t Lr

x
≤ CH0CB(H0)CA(H,Ω)‖ψ0‖L2

x
,

as claimed. ��
We apply Theorem 4.1 in the situation where H0 = −∆ and H =

H0 + V(x). We have the following family of Strichartz estimates for the
semigroup e−it∆ associated with H0 = −∆:

‖e−it∆ψ0‖Lq
t Lr

x
≤ C‖ψ0‖L2

x
, ∀(q, r, n) �=

(
2,

2n

n − 2
, n

)
,

2

q
= n

(
1

2
− 1

r

)
,(4.13)

which hold for any ψ0 ∈ L2(Rn). We introduce the factorization

V = B∗ A, B = |V | 1
2 , A = |V | 1

2 sgnV,

and restrict our attention to the class of potentials satisfying the assumption
that for all x ∈ Rn

|V(x)| ≤ CV (1 + |x|2)−1−ε(4.14)

with some constants CV , ε > 0. This assumption, in particular, places us
in the framework of the Agmon-Kato-Kuroda and the Agmon-Kato-Simon
theorems guaranteeing the absence of the positive singular continuous spec-
trum and positive eigenvalues. In fact, one only needs the |x|−1−ε decay for
their results to apply. We should note that for potentials satisfying (4.14) the
absence of the singular continuous spectrum was established by Ikebe [Ik].

In addition, the Weyl criterion implies that the essential spectrum of H
is the half-axis [0,∞). However, without an appropriate smallness or sign
assumption on V , the operator H = −∆+V can have negative eigenvalues,
thus destroying any hope to have Strichartz estimates for eitHψ0 for all initial
data ψ0 ∈ L2. Therefore, we shall assume that the initial data are orthogonal
to the eigenfunctions corresponding to the possible negative eigenvalues. We
achieve this in the following simple manner. Let P be a spectral projection of
H corresponding to the interval Ω = [0,∞). Our goal is to prove Strichartz
inequalities for eitH restricted to the absolutely continuous spectrum of H .
We now state the result.
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Theorem 4.3. Let V be a potential verifying (4.14). In addition, we impose
the condition that the point λ = 0 in the spectrum of the operator H =
−∆ + V is neither an eigenvalue nor a resonance (see the discussion
below, in particular Definition 4.4). Then if P is the spectral projection of
H corresponding to the interval [0,∞) (on which H is purely absolutely
continuous),

‖eitH Pψ0‖Lq
t Lr

x
≤ C‖ψ0‖L2

x
, ∀(q, r, n), n ≥ 3,

2

q
= n

(
1

2
− 1

r

)
, q > 2.(4.15)

To apply Theorem (4.1) we need to verify that B is an H0-smooth
operator and that A is an H-smooth operator on [0,∞). The first condition
is easy to verify since by a result of Kato [Ka] any function f ∈ L p1 ∩ L p2

with 1 ≤ p1 < n < p2 ≤ ∞ and n ≥ 3 is a −∆-smooth multiplication
operator. Since B = |V | 1

2 is an L∞ function decaying at infinity as |x|−1−ε,
it falls precisely under these conditions.

The condition that A is an H-smooth operator on [0,∞) is much more
subtle. First, one can show that A is H-smooth on the interval [δ,∞) for
any δ > 0. This is a consequence of the results of Agmon-Kato-Kuroda
on the absence of the positive singular continuous spectrum, (see [Ag],
also Theorem XIII.33 and Lemma 2 XIII.8 in [RS]). In fact, even half
of the assumed decay would be sufficient to prove this. To deal with the
remaining spectral interval [0, δ), according to (4.6), one needs to understand
the behavior of the resolvent R(λ ± iβ) of the operator H near the point
λ = 0, β = 0. We introduce the following

Definition 4.4. We say that 0 is a regular point of the spectrum of H if it
is neither an eigenvalue nor a resonance of H, i.e., the equation −∆u +
V(x)u = 0 has no solutions u ∈ ∩α> 1

2
L2,−α.

Here, L2,α is the weighted L2 space of functions f such that (1 +
|x|2) α

2 f ∈ L2. The 0 eigenvalue, of course, would correspond to an L2

solution u.

The presence of a 0 eigenvalue and most likely that of a resonance
would violate the validity of the Strichartz estimates (4.15) for eitH . Their
appearance cannot be ruled out by merely strengthening the regularity and
decay assumptions on the potential V . We therefore impose an additional
condition that 0 is a regular point. There are several situations where this
condition, or at least part of it, is automatically satisfied. In particular,
for any non-negative potential 0 is a regular point. In addition, it is well-
know (see e.g. [JK]) that 0 is not a resonance in dimensions n ≥ 5. The
behavior of the resolvent near 0 in the spectrum and even its asymptotic
expansions was extensively studied in [JK], [J1], [J2], but their assumptions
are too strong for our purposes. However, uniform treatment of the whole
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spectral interval [0,∞) has been carried out in the work of Ben-Artzi and
Klainerman [BK], where they obtain the following result (phrased in the
language of the H-smooth operators).

Proposition 4.5. Suppose V satisfies the assumption (4.14) and assume, in
addition, that 0 is a regular point of the spectrum of H = −∆ + V. Then
the operator of multiplication by (1 + |x|2)− 1+ε

2 is H-smooth on [0,∞).

The desired conclusion about the operator A = |V | 1
2 sgn (V ) now easily

follows from the assumption (4.14).

5. Time dependent potentials: Reduction to oscillatory integrals

Definition 5.1. Let Y be the normed space of measurable functions V(t, x)
on R3 that satisfy the following properties: t �→ ‖V(t, ·)‖

L
3
2 (R3)

∈ L∞(R)

and for a.e. x ∈ R3 the function t �→ V(t, x) is in S′(R), the space of
tempered distributions. Moreover, the Fourier transform of this distribution,
which we denote by V(τ̂, x), is a (complex) measure whose norm satisfies

sup
y∈R3

∫
R3

‖V(τ̂, x)‖M

|x − y| dx < ∞.(5.1)

The norm in Y is the sum of the expression on the left-hand side of (5.1)

and the norm in L∞
t (L

3
2
x ).

In what follows we study the Schrödinger equation

i∂tψ − ∆ψ + V(t, x)ψ = 0,(5.2)
ψ|t=s(x) = ψs(x)

for potentials V ∈ Y and with initial data ψs ∈ L2(R3). An interesting case
is V(t, x) = cos(t) V(x) where V ∈ L

3
2 satisfies supy

∫
R3

|V(x)|
|x−y| dx < ∞. Be-

cause of the limited regularity of potentials in Y , we define (weak) solutions
U(t, s)ψs of (5.2) via Duhamel’s formula:

U(t, s)ψs = ei(t−s)H0ψs + i
∫ t

s
ei(t−s1)H0 V(s1, ·)U(s1, s)ψs ds1.(5.3)

In the following lemma we show by means of Keel’s and Tao’s endpoint
Strichartz estimate [KT] that such weak solutions exist and are unique
provided the potential is small in an appropriate sense. The proof is presented
only in R3, but it carries over to any dimension n ≥ 3. We set

X = L∞
t

(
L2

x(R
3)

) ∩ L2
t

(
L6

x(R
3)

)
(5.4)

and define H0 = −∆ to be the unperturbed Schrödinger operator with
evolution eitH0 .
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Lemma 5.2. Assume that the potential V(t, x) satisfies the smallness as-
sumption

‖V‖
L∞

t L
3
2
x

= sup
t∈R

(∫
R3

|V(t, x)| 3
2

) 2
3

< c0(5.5)

for some sufficiently small constant c0 > 0. Then for any s ∈ R and any
ψs ∈ L2

x there exists a unique weak solution U(t, s)ψs of (5.3) with the
property that U(·, s)ψs ∈ X and so that t �→ 〈U(t, s)ψs, g〉 is continuous
for any g ∈ L2(R3). Moreover, for any such g and any t > s,

〈U(t, s)ψs, g〉 =
∞∑

m=0

im
∫

· · ·
∫

s≤sm≤..≤s1≤t

〈ei(t−s1)H0 V(s1, ·)ei(s1−s2)H0 V(s2, ·) . . .

(5.6) V(sm, ·)ei(sm−s)H0 ψs, g〉 ds1 . . . dsm

where the series converges absolutely. In the strong sense, i.e., without the
pairing against g, this representation holds in the sense of norm convergence
in the space X (and thus can only be assumed for a.e. t).

Proof. For the purposes of this proof, we let F = F(t, x) be a function
of (t, x) ∈ R1+3

t,x . For simplicity, we often write F(t) for the function
x �→ F(t, x). Recall the following end-point Strichartz estimates for the
operator H0 proved by Keel-Tao in any dimension n ≥ 3, see [KT]: There
exists some dimensional constant C1 = C1(n) so that for all f ∈ L2

x and

F ∈ L2
t L

2n
n+2
x

‖eitH0 f ‖
L2

t L
2n

n−2
x

≤ C1‖ f ‖L2
x
,(5.7)

‖
∫ t

s
ei(t−s1)H0 F(s1) ds1‖

L2
t L

2n
n−2
x

≤ C1‖F‖
L2

t L
2n

n+2
x

.(5.8)

Consider the operator Ks defined by

(Ks F)(t, ·) = i
∫ t

s
ei(t−s1)H0 V(s1, ·)F(s1, ·) ds1.

Then definition (5.3) takes the form
[
(1 − Ks)U(·, s)ψs

]
(t) = ei(t−s)H0ψs.(5.9)

Inequality (5.8) and the smallness assumption (5.5) imply that the norm of
the operator Ks : L2

t L6
x → L2

t L6
x satisfies

‖Ks F‖L2
t L6

x
≤ C1 ‖V F‖

L2
t L

6
5
x

≤ C1 ‖V‖
L∞

t L
3
2
x

‖F‖L2
t L6

x
≤ C1 c0‖F‖L2

t L6
x
.

(5.10)
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Moreover, for any g ∈ L2(R3),

|〈(Ks F)(t), g〉| =
∣∣∣∣
∫ t

s
〈V(s1, ·)F(s1, ·), e−i(t−s1)H0 g〉 ds1

∣∣∣∣
≤

∫ t

s
‖V(s1, ·)F(s1, ·)‖ 6

5
‖e−i(t−s1)H0 g‖6 ds1

≤
(∫ t

s
‖V(s1, ·)F(s1, ·)‖2

6
5

ds1

) 1
2

(∫ t

s
‖e−i(t−s1)H0 g‖2

6 ds1

) 1
2

≤ C1

(∫ t

s
‖V‖2

L∞
t (L

3
2
x )

‖F(s1, ·)‖2
6 ds1

) 1
2 ‖g‖2(5.11)

= C1 ‖V‖
L∞

t (L
3
2
x )

‖F‖L2
t (L6

x)
‖g‖2

where we used (5.7) to pass to (5.11). This shows that

ess supt‖(Ks F)(t)‖2 ≤ C1 c0‖F‖L2
t (L6

x)

which in conjunction with (5.10) yields that

‖Ks‖X→X ≤ C1 c0 <
1

2
,(5.12)

provided c0 is small (see (5.4) for the definition of X). Therefore, the
operator I − Ks is invertible on the space X and U(t, s) can be expressed
via the Neumann series

U(t, s) = [
(I − Ks)

−1ei(·−s)H0
]
(t) =

∞∑
m=0

[
Km

s ei(·−s)H0
]
(t)

which converges in the norm of X. Writing out 〈U(t, s)ψs, g〉 explicitly leads
to (5.6). Next we check that for any F ∈ L2

t (L6
x) the function t �→ 〈Ks F, g〉

is continuous for any choice of g ∈ L2. In fact, if t1 < t2, then

|〈(Ks F)(t2), g〉 − 〈(Ks F)(t1), g〉|
≤

∫ t2

s
|〈V(s1)F(s1), (e

−i(t1−s1)H0 − e−i(t2−s1)H0)g〉| ds1

+
∫ t2

t1

|〈V(s1)F(s1), e−i(t1−s1)H0 g〉| ds1

≤ ‖V‖
L∞

t (L
3
2
x )

‖F‖L2
t (L6

x)
‖g − e−i(t2−t1)H0 g‖2

+ ‖V‖
L∞

t (L
3
2
x )

(∫ t2

t1

‖F(s1)‖2
L6

x
ds1

) 1
2 ‖g‖2.

Since the last expression tends to zero as t2 → t1, continuity follows. Hence
(Km

s F)(t) is also weakly continuous in t, and thus Km
s ei(·−s)H0ψs is, too.

Since 〈U(t, s)ψs, g〉 is a uniformly convergent series of these continuous
functions, it follows that it is continuous. ��
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Remark 5.3. The proof of Lemma 5.2 shows that the operator Ks : L2
t L6

x →
w− C0

t (L2
x) maps L2

t L6
x into the space of weakly continuous functions with

values in L2(R3).

For technical reasons connected with the functional calculus in the fol-
lowing section it will be convenient to work with smooth potentials in Y
rather than general ones. To approximate a general potential V by means
of smooth ones, choose nonnegative cut-off functions χ ∈ S(R3) and
η ∈ S(R) so that χ and η̂ have compact support and satisfy

∫
R3 χ(x) dx = 1,∫

R
η(t) dt = 1. In addition, let χ = 1 on a neighborhood of 0. For any

V ∈ Y and R > 1 define

V (1)
R (t, ·) := V(t, ·)χ

( .

R

)
∗ R3χ(R·)

where the convolution is in the x-variable only. Note that V (1)
R is well-

defined, smooth and compactly supported in x, and satisfies ‖V (1)
R ‖L∞

t,x
< ∞

since ‖V‖
L∞

t (L
3
2
x )

< ∞. Moreover, it is standard to check that

sup
R>0

∥∥V (1)
R

∥∥
Y

≤ ‖χ‖∞ ‖V‖Y .

Indeed,∥∥V (1)
R (t, ·)∥∥

L
3
2

≤ ‖χ‖∞‖ |V(t, ·)| ∗ R3χ(R·)‖
L

3
2

≤ ‖χ‖∞ ‖V(t, ·)‖
L

3
2
,

whereas with Γ(x) := |x|−1 and M denoting measures in the τ-variable,(∥∥V (1)

R (τ̂, ·)∥∥
M

∗ Γ
)
(x) ≤ sup

y

(
χ

( .

R

)
‖V(τ̂, ·)‖M ∗ Γ

)
(y)

≤ ‖χ‖∞ sup
y

(
‖V(τ̂, ·)‖M ∗ Γ

)
(y),

as claimed. To regularize in t, define

VR(·, x) := [
V (1)

R (·, x) ∗ Rη(R·)]η( .

R

)

where the convolution is in the t-variable only. Again one checks that

‖VR‖Y ≤ (‖η‖∞ + ‖η̂‖1)
∥∥V (1)

R

∥∥
Y

≤ (‖η‖∞ + ‖η̂‖1) ‖χ‖∞ ‖V‖Y

for any R > 0. We will use that VR → V as R → ∞ in the following sense:
For a.e. t one has

‖VR(t, ·) − V(t, ·)‖
L

3
2 (R3)

→ 0 as R → ∞.(5.13)

Firstly, it follows from standard measure theory that for a.e. t∥∥V (1)
R (t, ·) − V(t, ·)∥∥

L
3
2 (R3)

→ 0 as R → ∞.(5.14)
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Secondly, with ηR(t) := Rη(Rt),∥∥VR(t, ·) − V (1)
R (t, ·)∥∥ 3

2

≤ ∥∥(
V (1)

R ∗ ηR
)
(t, ·) − V (1)

R (t, ·)∥∥ 3
2
+ ∥∥V (1)

R (t, ·)∥∥ 3
2
|1 − η(t/R)|

≤
∫ ∞

−∞
ηR(s)

∥∥V (1)
R (t − s, ·) − V (1)

R (t, ·)∥∥ 3
2

ds

+ |1 − η(t/R)| ‖η‖∞‖V‖
L∞

t (L
3
2
x )

≤ ‖χ‖∞
∫ ∞

−∞
ηR(s) ‖V(t − s, ·) − V(t, ·)‖ 3

2
ds + o(1)(5.15)

→ 0

for a.e. t as R → ∞. The conclusion (5.15) follows from the vector-
valued analogue of the Lebesgue differentiation theorem (in this case
“vector-valued” means with values in L

3
2 ). In combination with (5.14) this

yields (5.13).
We shall now prove the convergence of the approximate solutions

ψR(t, x) satisfying the equation

i ∂tψR − ∆ψR + VR(t, x)ψR = 0,(5.16)
ψR|t=s = ψs

to the solution ψ(t, x) of the original problem corresponding to the po-
tential V(t, x). Note that due to the smoothness and boundedness of the
potentials VR the L∞

t L2
x function ψR can be interpreted as a distributional

solution of equation (5.16). In fact, the left hand-side of (5.16) belongs to
the space L∞

t H−2. In addition, ψR is also a Duhamel solution as in (5.3).

Lemma 5.4. Let UR(t, s) be the propagator (5.16), i.e., UR(t, s)ψs =
ψR(t, s). Then for any s, t ∈ R such that t ≥ s, and arbitrary functions
ψs, g ∈ L2(R3), ‖ψs‖L2

x
= ‖g‖L2

x
= 1 we have

< UR(t, s)ψs, g > → < U(t, s)ψs, g > as R → ∞(5.17)

Proof. First observe that since the potential V satisfies the smallness as-
sumption (5.5), VR also obeys (5.5) for all R > 0. According to Lemma 5.2,

〈UR(t, s)ψs, g〉 =
∞∑

m=0

im
∫

· · ·
∫

s≤sm≤..≤s1≤t

〈ei(t−s1)H0 VR(s1, ·)ei(s1−s2)H0 VR(s2, ·)....

(5.18) VR(sm, ·)ei(sm −s)H0 ψs, g〉 ds1...dsm

for any ψs, g ∈ L2(R3). Equivalently, UR(t, s) can be represented by the
Neumann series

UR(t, s) = [
(I − KRs)

−1ei(·−s)H0
]
(t) =

∞∑
m=0

[
KR

m
s ei(·−s)H0

]
(t)
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which converges in the norm of the space X defined above. The operators
KRs : X → X are defined as

(KRs F)(t, ·) = i
∫ t

s
ei(t−s1)H0 VR(s1, ·)F(s1, ·) ds1.

To verify the conclusion of Lemma 5.4 it suffices to show that for an arbitrary
positive ε > 0, all positive integers m ≤ m0(ε), and all sufficiently large
R = R0(ε, m0)∣∣〈(Km

s − KR
m
s

)
ei(·−s)H0ψs, g

〉
(t)

∣∣ < ε(C1c0)
m−1m.(5.19)

The positive integer m0(ε) is chosen so that 2(C1c0)
m ≤ ε which ensures

the smallness of the “tails” of the series for U(s, t) and UR(s, t).
For the bounded operators Ks ,KRs on the space X we have the following

identity:

KR
m
s − Km

s =
m−1∑
=0

KR

s(Ks − KRs)K

m−−1
s .(5.20)

We shall prove that for  ∈ [0, m − 1]
∣∣〈KR


s(Ks − KRs)K

m−−1
s ei(·−s)H0ψs, g

〉
(t)

∣∣ < ε(C1c0)
m−1(5.21)

which immediately implies (5.19).
In view of Remark 5.3 the operator Ks , and thus also KR s, maps L2

t L6
x →

w−C0
t (L2

x). Therefore, for an arbitrary fixed t ≥ s we can define the operator
KRs,t : L2

t L6
x → L2

x via the formula

KRs,t F = (Ks F)(t).

In addition to the L2
x pairing 〈, 〉 we define the space-time pairing 〈, 〉t,x as

usual: for any pair of functions F ∈ Lq
t L p

x and G ∈ Lq′
t L p′

x with q, p ∈
[1,∞] let

〈F, G〉t,x =
∫
R

∫
R3

F(t, x)G(t, x) dx dt.

We now introduce the dual operator KR
∗
s,t : L2

x → L2
t L

6
5
x . In addition, since

KRs : L2
t L6

x → L2
t L6

x we also define the dual of KRs, KR
∗
s : L2

t L
6
5
x →

L2
t L

6
5
x . Therefore for  ≥ 1 the left hand-side of (5.21) can be written as

IR,s,t := 〈
KRs,tKR

−1
s (Ks − KRs)K

m−−1
s ei(·−s)H0ψs, g

〉
= 〈

(Ks − KRs)K
m−−1
s ei(·−s)H0ψs,KR

∗
s
−1KR

∗
s,tg

〉
t,x

.
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We assume that ε and m0(ε) are now fixed and invoke Egorov’s theorem.
According to (5.13)

‖VR(s1, ·) − V(s1, ·)‖
L

3
2
x

→ 0, as R → ∞

for a.e. s1 ∈ [s, t]. Therefore, for any δ > 0 there exists a set B ⊂ [s, t]
such that |B| ≤ δ and

‖VR(s1, ·) − V(s1, ·)‖
L

3
2
x

< ε, ∀s1 ∈ [s, t] \ B

and all sufficiently large R ≥ R0(ε, δ). Let χB be the characteristic function
of the set B. We define operators

Ys = (Ks − KRs)χB,

Zs = (Ks − KRs)(1 − χB).

It is easy to see that Ys,Zs : L2
t L6

x → L2
t L6

x . Moreover, ‖Zs‖L2
t L6

x→L2
t L6

x
≤

Cε for all R ≥ R0(ε, δ) and ‖Ys‖L2
t L6

x→L2
t L6

x
≤ C1c0 < 1

2 , see (5.12).
Therefore,

IR,s,t = 〈
Km−−1

s ei(·−s)H0ψs,Z
∗
s KR

∗
s
−1KR

∗
s,tg

〉
t,x

+ 〈
χBKm−−1

s ei(·−s)H0ψs,Y
∗
s KR

∗
s
−1KR

∗
s,tg

〉
t,x

.

We can easily estimate the first term by

‖Ks‖m−−1
L2

t L6
x→L2

t L6
x
‖Z∗

s ‖
L2

t L
6
5
x →L2

t L
6
5
x

‖K∗
s ‖−1

L2
t L

6
5
x →L2

t L
6
5
x

·

· ‖K∗
s,t‖

L2
x→L2

t L
6
5
x

‖ψs‖L2
x
‖g‖L2

x
≤ ε2−(m−1).

For the second term we have the bound∥∥χBKm−−1
s ei(·−s)H0ψs

∥∥
L2

t L6
x
‖Y∗

s ‖
L2

t L
6
5
x →L2

t L
6
5
x

·
· ‖K∗

s ‖−1

L2
t L

6
5
x →L2

t L
6
5
x

∥∥K∗
s,t

∥∥
L2

x→L2
t L

6
5
x

‖ψs‖L2
x
‖g‖L2

x

≤∥∥χBKm−−1
s ei(·−s)H0ψs

∥∥
L2

t L6
x
(C1c0)

+1.

Observe that∥∥Km−−1
s ei(·−s)H0ψs

∥∥
L2

t L6
x
≤ (C1c0)

m−−1‖ψs‖L2
x
< ∞.

Therefore, we can chose δ = δ(m0) in Egorov’s theorem in such a way that

m0(ε)∑
m=1

m−1∑
=1

∥∥χBKm−−1
s ei(·−s)H0ψs

∥∥
L2

t L6
x
≤ ε(C1c0)

m0−−1.
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Hence we have the desired bound

|IR,s,t| ≤ ε(C1c0)
m−1

for all 1 ≤  ≤ m − 1 and m ≤ m0. To settle the remaining case of  = 0
we observe that for  = 0

IR,s,t = 〈
(Ks − KRs)K

m−1
s ei(·−s)H0ψs, g

〉
(t)

= 〈
YsK

m−1
s ei(·−s)H0ψs, g

〉
(t) + 〈

ZsK
m−1
s ei(·−s)H0ψs, g

〉
(t).

Similarly to the operator KRs,t we can define the operators Ys,t,Zs,t :
L2

t L6
x → L2

x . Moreover,

‖Zs,t‖L2
t L6

x→L2
x
≤ Cε, ‖Ys,t‖L2

t L6
x→L2

x
≤ C1c0.

Thus

|IR,s,t| ≤ C1c0 ‖χBKm−1
s ei(·−s)H0‖L2

t L6
x
+ ε(C1c0)

m−1 ≤ 2ε(C1c0)
m−1

by the choice of the constant δ in Egorov’s theorem. ��
Since the potentials VR(t, x) are smooth in both variables, the solution

operators UR(t, s) are unitary on L2
x . Together with Lemma 5.4 we have the

following

Corollary 5.5. The L2 norm of the solution ψ(t, ·) of the Schrödinger equa-
tion (5.2) is a non-increasing function of time, i.e,

‖U(t, s)ψs‖L2
x
≤ ‖ψs‖L2

x

for all t ≥ s and arbitrary functions ψs ∈ L2
x.

Lemma 5.4 also implies that we can assume henceforth that V(t, x) is
a smooth potential with compact support in the x-variable and the vari-
able τ̂ of the Fourier transform relative to t. We can also assume that V
satisfies the smallness assumption (5.5). We shall show that the following
estimates depend only on the norm of the potential in the space Y defined
in Definition 5.1 and the smallness constant c0.

5.1. Functional calculus

The goal of this section is to obtain the explicit representation of the integral
kernels of the operators involved in the Neumann series expansion (5.6) for
U(t, s), as some special oscillatory integrals.

We introduce the notation

V(τ̂, ·) :=
∫

eitτ V(t, ·) dt.
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The m-th term of the series (5.6), which we denote by �m , can then be
written in the following form2:

〈�m(t, s)ψs, g〉 =
∫
Rm

dτ1..dτm

∫
· · ·

∫

s≤sm≤..≤s1≤t

ds1...dsm
〈
ei(t−s1)H0eis1τ1 V(τ̂1, ·) . . .

(5.22) · eismτm V(τ̂m, ·)ei(sm−s)H0ψs, g
〉
.

The identity above is verified on arbitrary functions ψs, g ∈ L2
x .

We shall also make use of the spectral representation of the operator eitH0 ,

eitH0 =
∫
R

eitλdE(λ).

Here, dE(λ) is the spectral measure associated with the operator H0 = −∆.
In dimension n = 3, dE(λ) has an explicit representation as an integral
operator with the kernel

dE(λ)(x, y) =
{

sin
√

λ|x−y|
4π|x−y| dλ λ > 0,

0 λ ≤ 0.

Recall also that the resolvent R(z) = (H0 − z)−1 is an analytic function
with values in the space of bounded operators in z ∈ C \ R+. In the above
domain,

R(z) =
∫
R

dE(µ)

µ − z
.(5.23)

We shall use the following simplified version of the limiting absorption
principle stating that R(z) = R(λ + ib) has well-defined operator limits
R+(λ) and R−(λ), for λ > 0, as b → 0+ and b → 0− respectively. The
operators R±(λ) map the space of Schwartz functions S into the space
C∞ ∩ L4(R3).

On the real axis, the resolvent R(λ) can be then described explicitly as
the integral operators with the kernels

(5.24) R+(λ)(x, y) = lim
ε→0+ R(λ + iε)(x, y) = ei

√
λ|x−y|

4π|x − y| , λ ≥ 0,

R−(λ)(x, y) = lim
ε→0+ R(λ − iε)(x, y) = R+(λ)(x, y)

= e−i
√

λ|x−y|

4π|x − y|, λ ≥ 0,

R(λ)(x, y) = R(λ)(x, y) = e−√−λ|x−y|

4π|x − y| , λ < 0.

2 Here we use the fact that V(τ̂, ·) has compact support in τ̂ to interchange the integrals.
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In particular, we can write

dE(λ) = �R(λ).(5.25)

We shall make repeated use of the following regularization:
∫ b

a
eiαqdq = ei(α+i0)b − ei(α+i0)a

α + i0
= lim

ε→0+
ei(α+iε)b − ei(α+iε)a

α + iε
.

which holds true for any finite a, b ∈ R and arbitrary α ∈ R.

Proposition 5.6. The function 〈�m(t, s)ψs, g〉 defined in (5.22), the m-th
term of the Born series (5.6), admits the following representation:

�m(t, s) = im
∫
Rm

dτ1..dτmeit(τ1+..+τm ) ·

·
∫

λ

ei(t−s)λ
m+1∑
k=0

〈( k−1∏
r=1

R+(λ + τr + .. + τm)V(τ̂r, ·)
)

(5.26)

dE(λ + τk + .. + τm)

( m+1∏
r=k+1

V(τ̂r−1, ·)R−(λ + τr + .. + τm+1)

)
ψs, g

〉
,

where we formally set τm+1 = 0. The representation holds true with arbi-
trary Schwartz functions ψs, g ∈ S.

Proof. We start by verifying that the expression on the right hand-side
of (5.26) defines an absolutely convergent integral. Recall that the potential
V(τ̂, x) is smooth and has compact support in both variables. Therefore,
the variables τ1, .., τm are restricted to a finite interval of R. It also follows,
with the help of our version of the limiting absorption principle, that the
operators V(τ̂, ·)R±(λ) map S into S for all τ̂, λ ∈ R. In addition, we have
that

dE(λ) f = λ−N dE(λ)(∆)N f

for an arbitrary Schwartz function f . Hence,

∣∣∣∣
〈( k−1∏

r=1

R+(λ + τr + .. + τm)V(τ̂r, ·)
)

(5.27)

dE(λ + τk + .. + τm)

( m+1∏
r=k+1

V(τ̂r−1, ·)R−(λ + τr + .. + τm)

)
ψs, g

〉∣∣∣∣
≤ C(1 + |λ|)−N(5.28)

for arbitrary Schwartz functions ψs and g with a constant C depending on
ψs, g, and V (in particular, on the size of the support of V(τ̂, x) in τ̂). This
can be seen most easily by moving the operator in (5.27) onto g.
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In what follows we shall manipulate the operator valued expressions
with the tacit understanding that all equalities are to be interpreted in the
weak sense. However, for ease of notation we suppress the pairing with
the Schwartz functions ψs and g. The absolute convergence of all of inte-
grals involved (after silent pairing with ψs, g) will also allow us to freely
interchange the order of integrations.

We replace each of the ei(sk−sk−1)H0 in (5.22) with its spectral represen-
tation:

�m(t, s)

=
∫
Rm

dτ1..dτm

∫
· · ·

∫

λ1,..,λm+1

∫
· · ·

∫

s≤sm≤..≤s1≤t

ds1...dsm ei(t−s1)λ1eis1τ1dE(λ1)

V(τ̂1, ·)ei(s1−s2)λ2eis2τ2dE(λ2)V(τ̂2, ·)...ei(sm−1−sm)λm

eism τm dE(λm)V(τ̂m, ·)ei(sm−s)λm+1dE(λm+1)

=
∫
Rm

dτ1..dτm

∫
· · ·

∫

λ1,..,λm+1

∫
· · ·

∫

s≤sm≤..≤s1≤t

ds1...dsm eitλ1 dE(λ1)

V(τ̂1, ·)eis1(τ1−λ1+λ2)dE(λ2)V(τ̂2, ·)eis2(τ2−λ2+λ3)...

(5.29) dE(λm)V(τ̂m, ·)eism (τm−λm+λm+1)dE(λm+1) e−isλm+1 .

Consider the first term

�1 =
∫
R

dτ1

∫
λ1,λ2

∫ t

s
ds1 eitλ1 dE(λ1) V(τ̂1, ·)eis1(τ1−λ1+λ2)dE(λ2)e

−isλ2 .

Integrating explicitly relative to s1 we infer that

�1(t, s) = −i
∫
R

dτ1

∫
λ1,λ2

eitλ1 dE(λ1) V(τ̂1, ·)
eit(τ1−λ1+λ2+i0) − eis(τ1−λ1+λ2+i0)

τ1 − λ1 + λ2 + i0
dE(λ2)e

−isλ2

= −i
∫
R

dτ1eit(τ1+i0)

∫
λ1,λ2

dE(λ1) V(τ̂1, ·) ei(t−s)λ2

τ1 − λ1 + λ2 + i0
dE(λ2)

+ i
∫
R

dτ1eis(τ1+i0)

∫
λ1,λ2

dE(λ1) V(τ̂1, ·) ei(t−s)λ1

τ1 − λ1 + λ2 + i0
dE(λ2)

= i
∫
R

dτ1eitτ1

∫
λ2

ei(t−s)λ2 R+(λ2 + τ1) V(τ̂1, ·)dE(λ2)

+ i
∫
R

dτ1eisτ1

∫
λ1

ei(t−s)λ1dE(λ1) V(τ̂1, ·)R−(λ1 − τ1)

= i
∫
R

dτ1eitτ1

∫
λ

ei(t−s)λ
(
R+(λ + τ1) V(τ̂1, ·)dE(λ) +

dE(λ + τ1) V(τ̂1, ·)R−(λ)
)
.



Time decay for Schrödinger equations 489

In the above calculation we have used the spectral representation (5.23)
for the resolvent and (5.24). The proof now proceeds inductively. We shall
assume that

�m(t, s) = im
∫
Rm

dτ1 . . . dτm eit(τ1+..+τm )

∫
λ

ei(t−s)λdMm(λ; τ1, .., τm),

(5.30)

where dMm(λ; τ1, .., τm) is the operator valued measure3 defined by

dMm(λ; τ1, .., τm)

=
m∑

k=0

[
R+(λ + τ1 + .. + τm)V(τ̂1, ·)R+(λ + τ2 + .. + τm)

V(τ̂2, ·)...V(τ̂k−1, ·)dE(λ + τk + .. + τm)V(τ̂k, ·)
R−(λ + τk+1 + .. + τm)V(τ̂k+1, ·)...V(τ̂m, ·)R−(λ)

]
.

Formally setting τm+1 = 0, we can also write the above expression in the
following more concise form:

dMm(λ; τ1, .., τm)

=
m+1∑
k=0

( k−1∏
r=1

R+(λ + τr + .. + τm)V(τ̂r, ·)
)

dE(λ + τk + .. + τm)

( m+1∏
r=k+1

V(τ̂r−1, ·)R−(λ + τr + .. + τm+1)

)
.(5.31)

We have already verified (5.30) for m = 1. It remains to check that

�m+1(t, s) = im+1
∫
Rm+1

dτ1..dτm+1 eit(τ1+..+τm +τm+1)

∫
λ

ei(t−s)λdMm+1(λ; τ1, .., τm+1).

We can deduce from (5.29) the following recursive identity:

�m+1(t, s) =
∫

τ1

dτ1

∫
λ1

∫ t

s
ds1eitλ1 dE(λ1)V(τ̂1, ·) eis1(τ1−λ1)�m(s1, s).

Substituting the expression for �m from (5.30) we obtain

�m+1(t, s) = im
∫
Rm+1

dτ1...dτm+1

∫
λ,λ1

∫ t

s
ds1eitλ1 dE(λ1)V(τ̂1, ·)

eis1(τ1+..+τm+1−λ1) ei(s1−s)λdMm(λ; τ2, .., τm+1).

3 Once again we make sense of dMm (λ; τ1, .., τm) only after pairing it with the Schwartz
functions ψs and g. Then 〈dMm (λ; τ1, .., τm)ψs, g〉 is a finite measure relative to λ – in
fact, rapidly decaying in λ, see (5.28) – which depends smoothly on τ1, .., τm and vanishes
outside of a compact set in these variables.
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Integrating explicitly relative to s1 we infer that

�m+1(t, s)

= − im+1
∫
Rm+1

dτ1...dτm+1

∫
λ,λ1

eitλ1 e−isλdE(λ1)V(τ̂1, ·)

eit(τ1+..+τm+1−λ1+λ+i0) − eis(τ1+..+τm+1−λ1+λ+i0)

τ1 + .. + τm+1 − λ1 + λ + i0
dMm(λ; τ2, .., τm+1)

= − im+1
∫
Rm+1

dτ1...dτm+1 eit(τ1+..+τm+1+i0)

∫
λ,λ1

ei(t−s)λ

dE(λ1)

τ1 + .. + τm+1 − λ1 + λ + i0
V(τ̂1, ·)dMm(λ; τ2, .., τm+1)

+ im+1
∫
Rm+1

dτ1...dτm+1 eis(τ1+..+τm+1+i0)

∫
λ,λ1

ei(t−s)λ1dE(λ1)

V(τ̂1, ·) dMm(λ; τ2, .., τm+1)

τ1 + .. + τm+1 − λ1 + λ + i0
= J1 + J2.

According to (5.23) and (5.24)

∫
λ1

dE(λ1)

τ1 + .. + τm+1 − λ1 + λ + i0
= −R+(λ + τ1 + .. + τm+1).

Therefore,

J1 = im+1
∫
Rm+1

dτ1...dτm+1eit(τ1+..+τm+1)

(5.32)
∫

λ

ei(t−s)λR+(λ + τ1 + .. + τm+1)V(τ̂1, ·)dMm(λ; τ2, .., τm+1).

Observe that, with the convention that τm+2 = 0,

R+(λ + τ1 + .. + τm+1)V(τ̂1, ·)dMm(λ; τ2, .., τm+1)

=
m+2∑
k=2

[( k−1∏
r=1

R+(λ + τr + .. + τm+1)V(τ̂r, ·)
)

(5.33) dE(λ + τk + .. + τm+1)
( m+2∏

r=k+1

V(τ̂r−1, ·)R−(λ + τr + .. + τm+2)
)]

.
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It remains to consider the integral J2.

J2 = im+1
∫

Rm+1

dτ1...dτm+1eis(τ1+..+τm+1+i0)

∫
λ,λ1

ei(t−s)λ1dE(λ1)V(τ̂1, ·) dMm(λ; τ2, .., τm+1)

τ1 + .. + τm+1 − λ1 + λ + i0
(5.34)

= im+1
∫
Rm+1

dτ1...dτm+1eit(τ1+..+τm+1)+is(i0)

∫
λ1

ei(t−s)λ1dE(λ1 + τ1 + .. + τm+1)

V(τ̂1, ·)
∫

λ

dMm(λ; τ2, .., τm+1)

λ − λ1 + i0
.

Inspection of the desired expression for dMm+1(λ; τ1, .., τm+1) and equa-
tions (5.32)–(5.34) suffices to verify the following formula:

∫
λ

dMm(λ; τ2, .., τm+1)

λ − λ1 + i0
=

( m+1∏
r=2

R−(λ1 + τr + .. + τm+1)V(τ̂r, ·)
)

R−(λ1) .

This is accomplished in the following two lemmas, and we are done. ��
We recall definition (5.31) of the operator valued measure dMm and

prove the following more general result

Lemma 5.7. Let a1, .., am ∈ R be a sequence of arbitrary real numbers
and let A1, .., Am be arbitrary operators4 . Then

∫
λ

1

λ − µ + i0
m∑

k=1

( k−1∏
r=1

R+(λ + ar)Ar

)
dE(λ + ak)

( m∏
r=k+1

Ar−1 R−(λ + ar)

)

(5.35) =
( m−1∏

r=1

R−(µ + ar)Ar

)
R−(µ + am).

As before, the identity holds after pairing the above expressions with a pair
of Schwartz functions ψs, g.

4 It suffices to assume that that the operators Ak , k = 1, .., m map the space C∞(R3) ∩
L4(R3) into the the space S.
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Proof. We shall write each R±(λ+ar), for all values of r = 1, .., m different
from k using the spectral representation

R±(λ + ar) =
∫

λr

dE(λr + ar)

λr − λ ∓ i0
.

We shall also rename the variable of integration λ to λk in each term of the
sum in k. The left hand-side of (5.35) then takes the following form:

∫
· · ·

∫

λ1,..,λm

m∑
k=1

1

λk − µ + i0

k−1∏
r=1

1

λr − λk − i0

m∏
r=k+1

1

λr − λk + i0

( m−1∏
j=1

dE(λ j + aj)A j

)
dE(λm + am).

The proof of Lemma 5.7 is finished provided that we can show that the
following identity holds true:

m∑
k=1

1

λk − µ + i0

k−1∏
r=1

1

λr − λk − i0

m∏
r=k+1

1

λr − λk + i0
=

m∏
r=1

1

λr − µ + i0
.

In the distributional sense

lim
εk→0+ lim

ε1→0+ ... lim
εk−1→0+ lim

εk+1→0− ... lim
εm→0−

1

λk − µ + iεk

m∏
r=1,r �=k

1

λr − λk − iεr

= lim
ε→0+

1

λk − µ + ikε

m∏
r=1,r �=k

1

λr − λk + i(r − k)ε
.

Therefore, we can introduce the new variables zr = λr −µ+irε, r = 1, .., m
and prove instead the following statement. ��
Lemma 5.8. For any pairwise distinct complex numbers z1, .., zm ∈ C,

m∑
k=1

1

zk

m∏
r=1,r �=k

1

zr − zk
=

m∏
r=1

1

zr
.

Proof. The key identity is the statement of the lemma for m = 2

1

z1(z2 − z1)
+ 1

z2(z1 − z2)
= 1

z1z2

which follows immediately by inspection. The general case then can be
proved by induction. We shall assume that the identity holds true for m − 1
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and prove the result for m. We first note a simple equality

1

(zm − zk)
= 1

(zm − z1)
+ zk − z1

(zm − zk)(zm − z1)
.

Therefore,

m∑
k=1

1

zk

m∏
r=1,r �=k

1

zr − zk

= 1

zm − z1

m−1∑
k=1

1

zk

m−1∏
r=1,r �=k

1

zr − zk
− 1

zm − z1

m−1∑
k=2

1

zk

m∏
r=2,r �=k

1

zr − zk

+ 1

zm

m−1∏
r=1

1

zr − zm
.

According to the assumption m − 1 with z1, .., zm−1 the first term on the
right hand-side gives 1

(zm−z1)z1···zm−1
. We also have

1

zm − z1

m−1∑
k=2

1

zk

m∏
r=2,r �=k

1

zr − zk

= 1

zm − z1

m∑
k=2

1

zk

m∏
r=2,r �=k

1

zr − zk
− 1

zm − z1

1

zm

m−1∏
r=2

1

zr − zm

= 1

(zm − z1)z2 · · · zm
− 1

zm

m−1∏
r=1

1

zr − zm

by the m − 1 inductive assumption for z2, .., zm . Finally,

1

(zm − z1)z1 · · · zm−1
− 1

(zm − z1)z2 · · · zm
= 1

z1 · · · zm
,

as desired. ��
We shall now derive the explicit representation of the integral kernel of the
operator �m(t, s) acting on the Schwartz functions ψs. We start by noting the
following simple identity which holds for arbitrary real numbers a1, .., am+1
with m ≥ 1:

m+1∑
k=1

ei(a1+..+ak−1−ak+1−..−am+1) sin ak = sin(

m+1∑
k=1

ak).(5.36)



494 I. Rodnianski, W. Schlag

This identity can be easily proved by induction on m. Recall that

R±(µ)(x, y) = e±i
√

µ|x−y|

4π|x − y|, µ ∈ R

with
√

µ defined in such a way that Im
√

µ > 0 for Imµ > 0. We have
R+(µ) = R−(µ) for µ < 0. Also recall that the kernel of the spectral
measure

dE(µ)(x, y) =
{

sin
√

µ|x−y|
4π|x−y| dµ µ > 0,

0 µ ≤ 0
.

We return to the representation (5.26) for the �m . Let (with τm+1 = 0)

τ j + .. + τm+1 = min
r∈[1,m](τr + .. + τm+1).

To simplify the formulae we introduce a new operator Jm(t, s), implicitly
dependent on τ1, .., τm ,

�m(t, s) = im
∫
Rm

dτ1..dτm eit(τ1+..+τm )e−i(t−s)(τ j+..+τm+1)Jm(t, s)(τ1, .., τm),

(5.37)

Jm(t, s) :=
∫

λ

ei(t−s)(λ+τ j+..+τm+1)

m+1∑
k=1

( k−1∏
r=1

R+(λ + τr + .. + τm)V(τ̂r, ·)
)

dE(λ + τk + .. + τm)

( m+1∏
r=k+1

V(τ̂r−1, ·)R−(λ + τr + .. + τm+1)

)
.

Define non-negative numbers σr , r = 1, .., m + 1

σr = (τr + .. + τm+1) − (τ j + .. + τm+1).

After a change of variables we obtain the expression

Jm(t, s) =
∫

λ

ei(t−s)λ
m+1∑
k=1

( k−1∏
r=1

R+(λ + σr)V(τ̂r, ·)
)

dE(λ + σk)

( m+1∏
r=k+1

V(τ̂r−1, ·)R−(λ + σr)

)
.
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Observe that due to the presence of dE(λ + σk) the kth term in the sum
above vanishes for λ ≤ −σk ≤ 0. Therefore,

Jm(t, s) = Lm(t, s) + Mm(t, s)

Lm(t, s) :=
∫ ∞

0
ei(t−s)λ

m+1∑
k=1

( k−1∏
r=1

R+(λ + σr)V(τ̂r, ·)
)

dE(λ + σk)

(5.38)

( m+1∏
r=k+1

V(τ̂r−1, ·)R−(λ + σr)

)

Mm(t, s) :=
∫ 0

−∞
ei(t−s)λ

m+1∑
k=1

( k−1∏
r=1

R+(λ + σr)V(τ̂r, ·)
)

dE(λ + σk)

( m+1∏
r=k+1

V(τ̂r−1, ·)R−(λ + σr)

)
.

To obtain the explicit formula for the integral kernel of the operator Lm(t, s)
we make use of the following: the parameters σk ≥ 0, λ ≥ 0 on the interval
of integration, and the explicit representations for the kernels of R±(µ) and
dE(µ). We have

Lm(t, s)(x, y)

=
∫
Rm

dx1..dxm

∫ ∞

0
dλ ei(t−s)λ

m+1∑
k=1

[
ei(

√
λ+σ1|x−x1|+..+√

λ+σk−1|xk−2−xk−1|)

e−i(
√

λ+σk+1|xk−xk+1|−..−√
λ+σm |xm−1−y|) sin

(√
λ + σk|xk−1 − xk|

)
m∏

r=1

V(τ̂r, xr)

4π|xr−1 − xr |
1

4π|xm − y|
]
,

where we set x0 = x. We now recall the identity (5.36) to infer that

Lm(t, s)(x, y) =
∫
Rm

dx1..dxm

m∏
r=1

V(τ̂r, xr)

4π|xr−1 − xr |
1

4π|xm − y|
∫ ∞

0
dλ ei(t−s)λ sin

( m+1∑
k=1

√
λ + σk|xk−1 − xk|

)
.
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Changing variables in the λ-integral and integrating by parts yield (for-
mally)

∫ ∞

0
dλ ei(t−s)λ sin

( m∑
k=1

√
λ + σk|xk−1 − xk|

)

= 2
∫ ∞

0
dλ λ ei(t−s)λ2

sin

( m∑
k=1

√
λ2 + σk|xk−1 − xk|

)

= i

t − s

m∑
=1

∫ ∞

0
dλ ei(t−s)λ2

cos

( m∑
k=1

√
λ2 + σk|xk−1 − xk|

)
(5.39)

λ√
λ2 + σ

|x−1 − x| + boundary term at 0.

“Formally” here refers to the fact that the integration extends to ∞ and that
the boundary term vanishes at ∞. These statements can be made precise in
the usual way, i.e., by means of suitable cut-offs at points tending to infinity.
Therefore, finally

Lm(t, s)(x, y) = i

t − s

m∑
=1

L
m(t, s)(x, y) + boundary term at 0,

L
m(t, s)(x, y)

:=
∫
Rm

dx1 . . . dxm

m∏
r=1

V(τ̂r, xr)

4π|xr−1 − xr |
|x−1 − x|
4π|xm − y|(5.40)

∫ ∞

0
dλ ei(t−s)λ2

cos

( m∑
k=1

√
λ2 + σk|xk−1 − xk|

)
λ√

λ2 + σ

.

To describe the integral kernels of the operators Mk
m(t, s) we shall first

order and rename the parameters σk, k = 1, .., m + 1. In fact, define induc-
tively

ωd = max{σk}k∈[1,m+1] \ {ω}∈[1,d−1],

and set k = k(c) and c = c(k) iff σk = ωc. We shall split the interval of
integration in λ in (−∞, 0] into the subintervals

(−∞,−√
ω1 ], [−√

ωd−1,−√
ωd ] for

d ∈ [2, m + 1], and [−√
ωm+1, 0].
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For λ ∈ [−√
ωd−1,−

√
ωd], the spectral measures dE(λ + σk(c)) =

dE(λ + ωc) vanish for all c ≥ d. Therefore, with the convention that
ω0 = ∞ and ωm+2 = 0, we have

Mm(t, s) =
m+2∑
d=1

Md
m,

Md
m(t, s) :=

−√
ωd∫

−√
ωd−1

ei(t−s)λ
d∑

c=1

( k(c)−1∏
r=1

R+(λ + ωa(r))V(τ̂r, ·)
)

dE(λ + ωc)

(5.41)

( m+1∏
r=k(c)+1

V(τ̂r−1, ·)R−(λ + ωa(r))

)
.

Strictly speaking, M1
m(t, s) = 0 so that the sum over d starts at d = 2. The

integral kernels of R±(λ + ωa(r)) for a(r) ≤ d − 1 contribute oscillating
exponential phases while for a(r) ≥ d they produce exponentially decaying
factors. Hence,

Md
m(t, s)(x, y)

=
∫
Rm

dx1..dxm

m∏
r=1

V(τ̂r, xr)

4π|xr−1 − xr |
1

4π|xm − y|

−√
ωd∫

−√
ωd−1

dλei(t−s)λ

d−1∑
c=1

ei(
√

λ+ω1|xk(1)−1−xk(1)|+..+√
λ+ωc−1|xk(c)−2−xk(c)−1|)

e−i(
√

λ+ωc+1|xk(c+1)−1−xk(c+1)|+..+√
λ+ωd−1|xk(d−1)−1−xk(d−1)|)

sin
(√

λ + ωc|xk(c)−1 − xk(c)|
)

e− ∑m+1
a=d+1

√−ωa−λ|xk(a)−1−xk(a)|.

Once again we recall the identity (5.36) to infer that

d−1∑
c=1

ei
(∑c−1

a=1
√

λ+ωa|xk(a)−1−xk(a)|−
∑d−1

b=c+1
√

λ+ωb+1|xk(b+1)−1−xk(b+1)|
)

sin
(√

λ + ωc|xk(c)−1 − xk(c)|
) = sin

( d−1∑
c=1

√
λ + ωc|xk(c)−1 − xk(c)|

)
.
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Therefore,

Md
m(t, s)(x, y) =

∫
Rm

dx1..dxm

m∏
r=1

V(τ̂r, xr)

4π|xr−1 − xr |
1

4π|xm − y|
−√

ωd∫

−√
ωd−1

dλ ei(t−s)λ sin

( d−1∑
c=1

√
λ + ωc|xk(c)−1 − xk(c)|

)

e− ∑m+1
a=d

√−ωa−λ|xk(a)−1−xk(a)|.

We would like to change variables λ → λ2 and integrate by parts rela-
tive to λ, as we did for Lm . Denote the λ-integrand in each of the kernels
Md

m(t, s)(x, y) by Fd(λ). It is not difficult to see that Fd (−ωd) = Fd+1(−ωd)
for d = 1, .., m + 1. Therefore, the boundary terms will cancel each other
telescopically, at least all boundary terms that appear pairwise as both
upper and lower limits. Note that there are exactly two boundary terms
that are not of this nature, namely ω1 and ωm+2 = 0. The latter cancels
against the boundary term at zero in (5.39), whereas the former disap-
pears due to the fact that sin 0 = 0. This allows us, in what follows, to
ignore the boundary terms altogether. We now make a change of variables
λ → λ2 − ωd−1. We also re-introduce the notation σa in the new cap-
acity:

0 ≤ σa = ωa − ωd−1, a = 0, .., d − 1,

0 ≤ ρa = ωd−1 − ωa, a = d, .., m + 2.

Thus

Md
m(t, s)(x, y) =

∫
Rm

dx1..dxm

m∏
r=1

V(τ̂r, xr)

4π|xr−1 − xr |
1

4π|xm − y|
√

ρd∫

0

dλ λei(t−s)λ2
sin

( d−1∑
c=1

√
λ2 + σc|xk(c)−1 − xk(c)|

)

e− ∑m+1
a=d

√
ρa−λ2|xk(a)−1−xk(a)|.

Integrating by parts relative to λ and canceling the contribution from the
boundary terms as explained above, we finally obtain

Md
m(t, s)(x, y) = i

t − s

d−1∑
=1

Md,
m (t, s)(x, y) + i

t − s

m+1∑
=d

M̃d,
m (t, s)(x, y),
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Md,
m (t, s)(x, y) :=

∫
Rm

dx1..dxm

m∏
r=1

V(τ̂r, xr)

4π|xr−1 − xr |
|xk(l)−1 − xk(l)|

4π|xm − y|
√

ρd∫

0

dλ ei(t−s)λ2
cos

( d−1∑
c=1

√
λ2 + σc|xk(c)−1 − xk(c)|

)

(5.42) e− ∑m+1
a=d

√
ρa−λ2|xk(a)−1−xk(a)| λ√

λ2 + σ

M̃d,
m (t, s)(x, y) := −

∫
Rm

dx1..dxm

m∏
r=1

V(τ̂r, xr)

4π|xr−1 − xr |
|xk(l)−1 − xk(l)|

4π|xm − y|
√

ρd∫

0

dλ ei(t−s)λ2
sin

( d−1∑
c=1

√
λ2 + σc|xk(c)−1 − xk(c)|

)

(5.43) e− ∑m+1
a=d

√
ρa−λ2|xk(a)−1−xk(a)| λ√

ρ − λ2
.

Combining (5.37)–(5.43) we can state the following

Proposition 5.9. The integral kernel of �m(t, s), the m-th term of the Born
series (5.6), can be written in the following form:

�m(t, s)(x, y) = im+1

t − s

∫
Rm

dτ1..dτmei(τ1+..+τm )

( m∑
=1

L
m(t, s)(x, y)(σ1, .., σm)

+
m+2∑
d=0

d−1∑
=1

Md,
m (t, s)(x, y)(σ1, .., σd−1, ρd, .., ρm+1)

(5.44) +
m+2∑
d=0

d−1∑
=1

M̃d,
m (t, s)(x, y)(σ1, .., σd−1, ρd, .., ρm+1)

)
.

We interpret �m(t, s)(x, y) as follows: for any pair of Schwartz functions ψs
and g

〈�m(t, s)ψs, g〉 =
∫
R6

�m(t, s)(x, y) ψs(y) g(x) dx dy.
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The functions

L
m(t, s)(x, y), Md,

m (t, s)(x, y), M̃d,
m (t, s)(x, y)

are defined in (5.40), (5.42), and (5.43) correspondingly with implicit de-
pendence on the parameters σk, ρ. The latter are positive and depend
exclusively and in a linear fashion on τ1, .., τm.

6. Estimates for oscillatory integrals

The purpose of this section is to provide the estimates on the oscillatory
integrals relevant to the analysis of the integral kernels

L
m(t, s)(x, y), Md,

m (t, s)(x, y), M̃d,
m (t, s)(x, y)

of the previous section. Notice that below we partially “undo” the change
of variables λ → λ2 of Sect. 5. This is designed to simplify the behavior of
the phase functions of the oscillatory integrals.

Lemma 6.1. There exists a constant C0 which only depends on the constant
a0 so that for any positive integer m and any 1 ≤ k ≤ m,∣∣∣∣∣

∫ ∞

0
e

1
2 iλ2

e±i
∑m

j=1 b j

√
λ2+σ j

λ√
λ2 + σk

dλ

∣∣∣∣∣ ≤ C0 m2 b−1
k max


b(6.1)

for any choice of σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0 and bj > 0.

Proof. Changing variables u = λ2 reduces the integral in (6.1) to∫ ∞

0
e

1
2 iu e±i

∑m
j=1 b j

√
u+σ j

du√
u + σk

.(6.2)

Denote the phase by φ±(u) = 1
2 u±∑m

j=1 bj
√

u + σ j . Consider first φ(u) =
φ+(u). Then

φ′(u) = 1 +
m∑

j=1

bj√
u + σ j

, φ′′(u) = −
m∑

j=1

bj

(u + σ j)
3
2

.(6.3)

In particular, φ′(u) ≥ 1 and |φ′′(u)| ≤ u−1φ′(u). Let χ be a smooth non-
decreasing function with χ(u) = 0 for u ≤ 1 and χ(u) = 1 for u ≥ 2.
Then ∣∣∣∣

∫ ∞

0
eiφ(u) du√

u + σk

∣∣∣∣ ≤ C + lim sup
L→∞

∣∣∣∣
∫ ∞

0
eiφ(u) gL(u) du

∣∣∣∣(6.4)

where we have set

gL(u) := χ(u)(1 − χ(u/L))
1√

u + σk
.(6.5)
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Clearly, |g( j)
L (u)| ≤ C j u− j− 1

2 for j = 0, 1 uniformly in L . Integrating by
parts once inside the integral on the right-hand side of (6.4) yields an upper
bound of the form

∫ ∞

0

∣∣∣∣ d

du

[
1

φ′(u)
gL(u)

]∣∣∣∣ du ≤
∫ ∞

1

[ |φ′′(u)|
φ′(u)2

+ 1

uφ′(u)

]
du√

u

�
∫ ∞

1
u− 3

2 du ≤ C,

as claimed.
Next consider φ(u) := φ−(u). Then

φ′(u) = 1 −
m∑

j=1

bj√
u + σ j

, φ′′(u) =
m∑

j=1

bj

(u + σ j)
3
2

.

Therefore, φ′′(u) > 0 and φ has at most one non-degenerate critical
point u0 ≥ 0.

Fix some A > 0 and assume that u0 > 2A. Then integration by parts
yields

∣∣∣∣
∫ ∞

0
eiφ(u) du√

u + σk

∣∣∣∣
≤

∫ u0+A

u0−A

du√
u + σk

+
∑
±

1

|φ′(u0 ± A)|√u0 ± A + σk

+
∫ u0−A

0

∣∣∣∣ d

du

1

φ′(u)
√

u + σk

∣∣∣∣ du

+
∫ ∞

u0+A

∣∣∣∣ d

du

1

φ′(u)
√

u + σk

∣∣∣∣ du + 1

|φ′(0)|√σk
(6.6)

(6.7) ≤
∫ u0+A

u0−A

du√
u + σk

+
∑
±

2

|φ′(u0 ± A)|√u0 ± A + σk
.

To pass from (6.6) to (6.7) one uses that φ′(u)
√

u + σk is strictly increasing,
so that

∫ u0−A

0

∣∣∣∣ d

du

1

φ′(u)
√

u + σk

∣∣∣∣ du

= 1

φ′(0)
√

σk
− 1

φ′(u0 − A)
√

u0 − A + σk

= − 1

|φ′(0)|√σk
+ 1

|φ′(u0 − A)|√u0 − A + σk
,
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the final inequality following from the fact that φ′(0) < 0 since 0 < u0.
A similar argument applies to the other integral in (6.6). First, one has the
bound

∫ u0+A

u0−A

du√
u + σk

� min
[

A√
u0 + A + σk

,
√

u0 + A + σk

]
≤ A√

u0 + σk
.

(6.8)

Second,

|φ′(u0 − A)| =
∫ u0

u0−A
φ′′(u) du ≥ Aφ′′(u0).(6.9)

Set A = φ′′(u0)
− 1

2 . Then from the preceeding,

1

|φ′(u0 − A)|√u0 − A + σk
� 1

Aφ′′(u0)
√

u0 + σk
� A√

u0 + σk
,

which agrees with (6.8). It remains to control the φ′(u0 + A) term in (6.7).
First

φ′(u0 + A) =
∫ u0+A

u0

φ′′(s) ds =
m∑

j=1

∫ u0+A

u0

bj

(s + σ j)
3
2

ds

� A
m∑

j=1

bj

(u0 + σ j)
3
2

= Aφ′′(u0)

(6.10)

where we used that u0 ≥ 2A. Thus, as in the case of φ′(u0 − A),

1

|φ′(u0 + A)|√u0 + A + σk
� 1

Aφ′′(u0)
√

u0 + σk
� A√

u0 + σk
.

It remains to estimate A = [φ′′(u0)]− 1
2 . The critical point u0 is determined

from the equation

1 =
m∑

j=1

bj√
u0 + σ j

.(6.11)

Let p ∈ [1, m] be such that

bp√
u0 + σp

= max
j∈[1,m]

bj√
u0 + σ j

.

Clearly, from (6.11),

bp√
u0 + σp

≥ 1

m
.(6.12)
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We also have that

φ′′(u0) =
m∑

j=1

bj

(u0 + σ j)
3
2

≥ bp

(u0 + σp)
3
2

≥ 1

m

1

u0 + σp
.

Thus

A ≤ m
1
2
√

u0 + σp.(6.13)

By the maximality of bp√
u0+σp

bp√
u0 + σp

≥ bk√
u0 + σk

.

It now follows that

A√
u0 + σk

≤ m
1
2

√
u0 + σp√
u0 + σk

≤ m
1
2

bp

bk
.

It remains to consider the case u0 ≤ 2A. This includes the case where u0

does not exist, in which case we set u0 := 0. Define A′ = m
1
2
√

u0 + σp �
m

1
2 bp ≥ A. Note that also A′ � m

3
2 bp. As before, integration by parts

yields

∣∣∣∣
∫ ∞

0
eiφ(u) du√

u + σk

∣∣∣∣ ≤
∫ u0+A′

0

du√
u + σk

+ 2

|φ′(u0 + A′)|√u0 + A′ + σk

(6.14) � A′
√

A′ + σk
+ 1

|φ′(u0 + A′)|√A′ + u0 + σk
.

The condition u0 ≤ 2A together with (6.13) imply that u0 ≤ m
1
2
√

u0 + σp.
We first consider the case u0 + σp ≥ m. We have

φ′(u0 + A′) =
∫ u0+A′

u0

φ′′(s) ds =
m∑

j=1

∫ u0+A′

u0

bj

(s + σ j)
3
2

ds

≥ m A′ bp

(u0 + A′ + σp)
3
2

.

The condition that u0 + σp ≥ m and the definition of A′ imply that
u0 + σp ≥ A′. Thus

φ′(u0 + A′) ≥ m A′ bp

(u0 + σp)
3
2

≥ A′ 1

u0 + σp
= m

1
2√

u0 + σp
≥ m− 1

2 b−1
p ,
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where we used that bp ≥ m−1√u0 + σp and the definition of A′. Therefore,

1

|φ′(u0 + A′)|√A′ + u0 + σk
≤ m

1
2

bp√
A′ + u0 + σk

≤ m
1
2

bp√
u0 + σk

≤ m
1
2

bp

bk
,

where we used that
√

u0 + σk ≥ bk. Also

A′
√

A′ + σk
� A′

√
u0 + σk

= m
1
2

√
u0 + σp√
u0 + σk

≤ m
1
2

bp

bk
,(6.15)

as desired. It remains to consider the case u0 +σp < m. Here the integration
by parts is as follows. Fix B = m4.∣∣∣∣

∫ ∞

0
eiφ(u) du√

u + σk

∣∣∣∣ ≤
∫ B

0

du√
u + σk

+ 2

|φ′(B)|√B + σk

� B√
B + σk

+ 1

|φ′(B)|√B + σk
.(6.16)

Furthermore

φ′(B) =
∫ B

u0

φ′′(s) ds = 1

2

m∑
j=1

∫ B

u0

bj

(s + σ j)
3
2

ds
1

2

≥
∫ B

u0

bp

(s + σp)
3
2

ds

= bp√
u0 + σp

− bp√
B + σp

.

Since bp ≥ m−1√u0 + σp and bp ≤ √
u0 + σp ≤ √

m we obtain that

φ′(B) ≥ 1

m
−

√
m

m2
≥ 1

2m
.

Thus ∣∣∣∣
∫ ∞

0
eiφ(u) du√

u + σk

∣∣∣∣ ≤ m4√
m4 + σk

+ 2m√
m4 + σk

� m2.

This finishes the proof if u0 ≥ 0 exists. Finally, suppose the critical point u0

doesn’t exist. Then
∑m

j=1
b j√
σ j

≤ 1. If in fact
∑m

j=1
b j√
σ j

≤ 1
2 , then φ′(u) ≥ 1

2

for all u ≥ 0. This case is treated in the same way as the phase φ+. If, on
the other hand,

∑m
j=1

b j√
σ j

≥ 1
2 , then one can define the index p ∈ [1, m]

as before. In particular, on still has the crucial property bp√
σp
� m−1. The

reader will easily check that the previous analysis of the case u0 ≤ 2A
applies mutatis mutandis. ��
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Lemma 6.2. There exists a constant C0 so that for any choice of σ1 ≥ σ2 ≥
. . . ≥ σm ≥ 0, ρ1 ≥ ρ2 ≥ . . . ≥ ρ > 0, b j > 0, and ci > 0, one has

∣∣∣∣∣
∫ √

ρ

0
e

1
2 iλ2

e±i
∑m

j=1 b j

√
λ2+σ j exp

(
−

∑
i=1

ci

√
ρi − λ2

) λ√
λ2 + σk

dλ

∣∣∣∣∣
≤ C0 m2b−1

k max
1≤ j≤m

bj(6.17)

for any 1 ≤ k ≤ m.

Proof. As in the previous proof, we set φ±(u) = 1
2 u ± ∑m

j=1 bj
√

u + σ j .
The integral on the left-hand side of (6.17) is the same as

∫ ρ

0
eiφ±(u) exp

(
−

∑
i=1

ci
√

ρi − u
) du√

u + σk
.(6.18)

We first consider the easier case of φ(u) := φ+(u). In that case φ′(u) ≥ 1
2 ,

and |φ′′(u)| ≤ u−1φ′(u), see (6.3). Let w(u) = exp
(
−∑

i=1 ci
√

ρi − u
)

and g(u) = χ(u)χ(ρ−u)(u+σk)
− 1

2 , cf. (6.5). The cut-offs at the endpoints
0 and ρ, respectively, contribute only O(1) to the integral in (6.18) and can
therefore be ignored. Integrating by parts yields

∣∣∣∣
∫ ρ

0
eiφ(u)w(u) g(u) du

∣∣∣∣ ≤
∫ ρ

0

∣∣∣∣ d

du

g(u)w(u)

φ′(u)

∣∣∣∣ du

≤
∫ ρ

0

∣∣∣∣ d

du

g(u)

φ′(u)

∣∣∣∣ du +
∫ ρ

0

∣∣∣∣w′(u)
g(u)

φ′(u)

∣∣∣∣ du(6.19)

≤ 2
∫ ρ

0

∣∣∣∣ d

du

g(u)

φ′(u)

∣∣∣∣ du �
∫ ρ

0

[ |g′(u)|
φ′(u)

+ |φ′′(u)|
φ′(u)2

g(u)

]
du

� 1 +
∫ ∞

1

du

u3/2
� 1.

To deal with the second integral in (6.19) observe that w′(u) has the same
sign on the interval of integration. Therefore, removing the absolute values
and integrating by parts reduces it to the first integral.

Next consider φ(u) := φ−(u). The analysis is very similar to the cor-
responding case in the proof of Lemma 6.1 and we will use the notation as
well as some estimates from there. Thus let φ′(u0) = 0 for some critical
point u0 ≥ 0. Furthermore, let A = φ′′(u0)

− 1
2 and suppose u0 > 2A and
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u0 + A < ρ. Then as in (6.7),

∣∣∣∣
∫ ρ

0
eiφ(u) w(u)√

u + σk
du

∣∣∣∣
≤

∫ u0+A

u0−A

du√
u + σk

+
∑
±

1

|φ′(u0 ± A)|√u0 ± A + σk
(6.20)

+
∫ u0−A

0

∣∣∣∣ d

du

w(u)

φ′(u)
√

u + σk

∣∣∣∣ du

+
∫ ρ

u0+A

∣∣∣∣ d

du

w(u)

φ′(u)
√

u + σk

∣∣∣∣ du + 1

|φ′(0)|√σk
(6.21)

+ 1

|φ′(ρ)|√ρ + σk

≤
∫ u0+A

u0−A

du√
u + σk

+
∑
±

3

|φ′(u0 ± A)|√u0 ± A + σk
.(6.22)

To deal with the integrals involving w(u) in (6.21) one uses the monotonicity
of w (i.e., w′(u) > 0) as follows:

∫ u0−A

0

∣∣∣∣ d

du

w(u)

φ′(u)
√

u + σk

∣∣∣∣ du

≤
∫ u0−A

0

w′(u)

−φ′(u)
√

u + σk
du +

∫ u0−A

0

∣∣∣∣ d

du

1

φ′(u)
√

u + σk

∣∣∣∣ du

≤ 2
∫ u0−A

0

∣∣∣∣ d

du

1

φ′(u)
√

u + σk

∣∣∣∣ du + 1

|φ′(u0 − A)|√u0 − A + σk

≤ 3

|φ′(u0 − A)|√u0 − A + σk
− 2

|φ′(0)|√σk
.

To pass to the final line we use that

∫ u0−A

0

∣∣∣∣ d

du

1

φ′(u)
√

u + σk

∣∣∣∣ du = 1

φ′(0)
√

σk
− 1

φ′(u0 − A)
√

u0 − A + σk

= − 1

|φ′(0)|√σk
+ 1

|φ′(u0 − A)|√u0 − A + σk

by monotonicity of φ′(u)
√

u + σk. A similar analysis applies on the interval
[u0 + A, ρ], and one therefore obtains (6.22). This, however, is the same
as (6.7), and the desired bound is obtained by the same analysis. Recall
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that we assumed u0 > 2A and u0 + A ≤ ρ. If u0 + A > ρ, then (6.20)
needs to be changed only with respect to ρ, which becomes the upper limit
instead of u0 + A. The other case u0 < 2A can be treated in the exact same
way as the corresponding case in Lemma 6.1. The only difference being
that the integration by parts needs to be changed as in (6.22). We skip the
details. ��

To conclude this section, we turn to oscillatory integrals with singular
weights.

Lemma 6.3. There exists a constant C0 so that for any choice of σ1 ≥ σ2 ≥
. . . ≥ σm ≥ 0, ρ1 ≥ ρ2 ≥ . . . ≥ ρ > 0, b j > 0, and ci > 0, one has

∣∣∣∣∣
∫ √

ρ

0
e

1
2 iλ2

e±i
∑m

j=1 b j

√
λ2+σ j exp

(
−

∑
i=1

ci

√
ρi − λ2

) λ√
ρk − λ2

dλ

∣∣∣∣∣
≤ C0 m2c−1

k max
j,i

(bj + ci)(6.23)

for any 1 ≤ k ≤ m.

Proof. We start with the elementary comment that we can assume that

ρ � 1.(6.24)

Indeed, if (6.24) fails, then the oscillatory integral in (6.23) is

�
∫ √

ρ

0

λ√
ρk − λ2

dλ �
∫ √

ρ

0

λ√
ρ − λ2

dλ = √
ρ � 1.

Moreover, note that c−1
k is always an upper bound on the left-hand side

of (6.23). For future reference we also note that one can assume that

ck ≤ √
ρk.(6.25)

Indeed, if this condition fails, then ck >
√

ρk ≥ √
ρ ≥ 1. Thus, the left-

hand side of (6.23) is � 1, and we are done. We now change variables
u = λ2 so that the integral in (6.23) reduces to

∫ ρ

0
eiφ±(u) exp

(
−

∑
i=1

ci
√

ρi − u
) du√

ρk − u

where φ±(u) = 1
2 iλ2 e±i

∑m
j=1 b j

√
λ2+σ j . Recall that the phase φ(u) := φ+(u)

satisfies φ′(u) ≥ 1
2 and |φ′′(u)| ≤ u−1φ′(u). Therefore, with χ(u) the same
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cut-off function as before,
∣∣∣∣∣
∫ ρ

0
eiφ+(u) χ(u)χ(ρ − u) exp

(
−

∑
i=1

ci
√

ρi − u
) du√

ρk − u

∣∣∣∣∣

≤
∫ ρ

0

|φ′′(u)|
φ′(u)2

χ(u)χ(ρ − u) exp
(

−
∑

i=1

ci
√

ρi − u
) du√

ρk − u

+
∫ ρ

0

1

φ′(u)

∣∣∣∣∣
d

du
χ(u)χ(ρ − u) exp

(
−

∑
i=1

ci
√

ρi − u
) du√

ρk − u

∣∣∣∣∣
�

∫ ρ−1

1

du

u
√

ρ − u
+

∫ ρ

0

(|χ ′(u)| + |χ ′(ρ − u)|) du√
ρ − u

+
∫ ρ−1

0
(ρ − u)− 3

2 du

+
∑

j=1

∫ ρ−1

0
exp

(
−

∑
i=1

ci
√

ρi − u
) c j√

ρ j − u
√

ρ − u
du

� ρ
− 1

2


∫ 1− 1
ρ

1
ρ

du

u
√

1 − u
+ 1 +

∑
j=1

∫ ρ j−1

0
exp(−c j

√
ρ j − u)

c j√
ρ j − u

du

� log ρ√
ρ

+  � .

Next, we consider the phase φ(u) := φ−(u). As before, we need to consider
the (possible) critical point u0 of φ(u). First, suppose that u0 > 1

2ρ. Then
there exists some 1 ≤ p ≤ m so that m bp �

√
σp + ρ. By (6.24) this

implies that bp � m−1. One concludes from the preceding that there is an
upper bound of the form

� m
max1≤ j≤m bj

ck
,

and we are done. So we may assume that u0 ≤ 1
2ρ. As in the previous proofs,

we will need to integrate by parts on intervals of the form [0, u0 − A] and
[u0 + A, ρ]. Here A = φ′′(u0)

− 1
2 . If A + u0 > 3

4ρ, then it follows that
A � ρ. In conjunction with (6.13) and (6.24) this implies that u0 + σp �
m−1, and thus also bp ≥ m−1√u0 + σp � m− 3

2 , which yields the desired
bound as before. Hence we can assume that u0 < 1

2ρ and A + u0 < 3
4ρ.

We now consider the case u0 > 2A, and split the integration interval [0, ρ]
into the intervals [0, u0 − A], [u0 − A, u0 + A], [u0 + A, ρ]. Our goal is
to integrate by parts as in (6.7) and (6.22). For technical reasons having
to do with the monotoncity of various functions we change variables to
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v = ρ − u. Setting ψ(v) = φ(u) and v0 = ρ − u0, observe that ψ′′(v) > 0
so that ψ′ is increasing. In particular, ψ′(v) < 0 for v < v0 and ψ′(v) > 0

if v > v0. Thus, with ω(v) := exp
(
−∑

i=1 ci
√

ρi + ρ − v
)

, integration

by parts yields

∣∣∣∣∣
∫ ρ

0
eiφ(u) exp

(
−

∑
i=1

ci
√

ρi − u
) du√

ρk − u

∣∣∣∣∣

=
∣∣∣∣∣
∫ ρ

0
eiψ(v) exp

(
−

∑
i=1

ci
√

ρi + ρ − v
) dv√

ρk − ρ + v

∣∣∣∣∣
≤

∫ v0+A

v0−A

dv√
ρk − ρ + v

+
∫ v0−A

0

∣∣∣∣ d

dv

ω(v)

ψ′(v)
√

ρk − ρ + v

∣∣∣∣ dv

+
∫ ρ

v0+A

∣∣∣∣ d

dv

ω(v)

ψ′(v)
√

ρk − ρ + v

∣∣∣∣ dv

+
∑
±

ω(v0 ± A)

|ψ′(v0 ± A)|√ρk − ρ + v0 ± A

+ ω(0)

|ψ′(0)|√ρk − ρ

+ ω(ρ)

|ψ′(ρ)|√ρk
(6.26)

�
∫ u0+A

u0−A

du√
ρk − u

+
∣∣∣∣
∫ v0−A

0

ω′(v)
ψ′(v)

√
ρk − ρ + v

dv

∣∣∣∣
+

∣∣∣∣
∫ ρ

v0+A

ω′(v)
ψ′(v)

√
ρk − ρ + v

dv

∣∣∣∣(6.27)

+
∣∣∣∣
∫ v0−A

0

d

dv

1

ψ′(v)
√

ρk − ρ + v
dv

∣∣∣∣
+

∣∣∣∣
∫ ρ

v0+A

d

dv

1

ψ′(v)
√

ρk − ρ + v
dv

∣∣∣∣(6.28)

+
∑
±

ω(v0 ± A)

|ψ′(v0 ± A)|√ρk − ρ + v0 ± A

+ ω(0)

|ψ′(0)|√ρk − ρ

+ ω(ρ)

|ψ′(ρ)|√ρk
.(6.29)

To deal with the integrals in (6.26) involving absolute values one uses the
monotonicity of the numerator and denominator. This allows one to pull out
the absolute values from the integrals in (6.27) and (6.28). Recall that ψ′
is increasing. In particular, ψ′(v) < 0 if v < v0 and ψ′(v) > 0 if v > v0.
Therefore, using also that ω′ > 0 and ω ≤ 1, another integration by parts
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yields that

∣∣∣∣
∫ v0−A

0

ω′(v)
ψ′(v)

√
ρk − ρ + v

dv

∣∣∣∣ = −
∫ v0−A

0

ω′(v)
ψ′(v)

√
ρk − ρ + v

dv

≤
∣∣∣∣
∫ v0−A

0

d

dv

1

ψ′(v)
√

ρk − ρ + v
dv

∣∣∣∣ + ω(0)

ψ′(0)
√

ρk − ρ

− ω(v0 − A)

ψ′(v0 − A)
√

ρk − ρ + v0 − A

= 2ω(0)

ψ′(0)
√

ρk − ρ

− 2ω(v0 − A)

ψ′(v0 − A)
√

ρk − ρ + v0 − A
,

and similarly for the integral over [u0 + A, ρ]. Inserting all these estimates
back into (6.27) to (6.29) one obtains

∣∣∣∣∣
∫ ρ

0
eiφ(u) exp

(
−

∑
i=1

ci
√

ρi − u
) du√

ρk − u

∣∣∣∣∣
� A√

ρk
+

∑
±

ω(v0 ± A)

|ψ′(v0 ± A)|√ρk − ρ + v0 ± A

≤ A√
ρk

+
∑
±

1

|φ′(u0 ± A)|√ρk − u0 ± A

� A√
ρk

+
∑
±

1

|φ′(u0 ± A)|√ρk
,(6.30)

where we used that u0 + A < 3
4ρ ≤ 3

4ρk in the last step. Since φ′′ > 0 is
decreasing, one has |φ′(u0 − A)| ≥ Aφ′′(u0) = A−1. Since we are in the
case u0 < 2A, (6.10) shows that φ′(u0 + A) � Aφ′′(u0) = A−1. Hence
the entire bound from (6.30) is � A√

ρk
� √

m
√

u0+σp√
ρk
� m

3
2

bp

ck
. Here we

first used (6.13), then bp ≥ m−1√u0 + σp see (6.12), and finally
√

ρk ≤ ck,
see (6.25). The remaining case u0 < 2A can be dealt with in the same
manner as the corresponding part of the proof of Lemma 6.1. The only
difference is that we have

√
ρk in the denominator instead of

√
u0 + σk. For

example, the analysis leading up to (6.15) now produces
√

m bp√
ρk
� √

m bp

ck
,

as desired. We skip the details. ��

7. Putting it all together

By combining the results of the previous three sections we are now able to
prove our main result.
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Theorem 7.1. Let V(t, x) be a real-valued measurable function on R4 such
that

sup
t

‖V(t, ·)‖
L

3
2 (R3)

< c0 and sup
y∈R3

∫
R3

‖V(τ̂, x)‖M

|x − y| dx < 4π(7.1)

for some small constant c0 > 0, see Definition 5.1. Then

‖U(t, s)ψs‖∞ ≤ C|t − s|− 3
2 ‖ψs‖1 for all times t, s and any ψs ∈ L1,

where U(t, s) is the weak propagator constructed in Lemma 5.2.

Proof. Recall from Proposition 5.6 that

〈U(t, s)ψs, g〉 =
∞∑

m=0

〈�mψs, g〉

for any pair ψs, g ∈ S(R3). Furthermore, Proposition 5.9 provides a rep-
resentation of the kernel of �m(t, s) in terms of three kinds of oscillatory
integrals, which are defined in (5.40), (5.42), and (5.43). Suppose t > s.
Changing variables λ �→ λ√

t−s
in each of these integrals brings out one

factor of (t − s)− 1
2 , whereas (5.44) already contains the factor (t − s)−1.

This leads to the desired power (t − s)− 3
2 . More precisely, for the oscillatory

integrals from (5.40) this process leads to

∫ ∞

0
ei(t−s)λ2

cos
( m∑

k=1

√
λ2 + σk|xk−1 − xk|

)
λ√

λ2 + σ

dλ

= (t − s)− 1
2

∫ ∞

0
eiλ2

cos

( m∑
k=1

√
λ2 + σk(t − s)

|xk−1 − xk|
t − s

)

λ√
λ2 + σ(t − s)

dλ,(7.2)

and similarly for (5.42) and (5.43). Thus the parameters σ j and ρk and
|xi+1 − xi | in these expressions are rescaled to σ j (t − s), ρk (t − s), and
|xi+1−xi |

t−s , respectively. We now estimate (7.2) and the analogous integrals
from (5.42), and (5.43) by means of Lemma 6.1, 6.2, 6.3, respectively.
Using the second bound in each of these lemmas, which is invariant under
the aforementioned rescaling of the parameters, one arrives at the upper
bound (setting x = x0 and y = xm+1)

m2
max

0≤ j≤m+1
|x j+1 − x j |

|x − x−1|
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in case of L
m(t, s)(x, y), and

m2
max

0≤ j≤m+1
|x j+1 − x j |

|xk() − xk()−1|
in case of Md,

m (t, s)(x, y), M̃d,
m (t, s)(x, y). Inserting these bounds into the

(rescaled) definitions (5.40), (5.42), and (5.43) finally leads to the estimate

|〈�mψs, g〉|

≤ C m4 |t − s|− 3
2 ‖ψs‖1 ‖g‖1 sup

x0,y∈R3

∫
Rm

∫
Rm

m∏
r=1

|V(τ̂r, xr)|
4π|xr−1 − xr |

max
0≤ j≤m+1

|x j+1 − x j |
|xm − y| dx1 . . . dxm dτ1 . . . dτm .

In view of Lemma 2.5 this is no larger than

C m5 |t − s|− 3
2

(
sup
y∈R3

∫
R3

∫ |V(τ̂, x)|
4π|x − y| dτ dx

)m

‖ψs‖1 ‖g‖1,

and we are done. ��
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