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Abstract. Our main aim in this paper is to give a foundation of the theory
of p-adic multiple zeta values. We introduce (one variable) p-adic multiple
polylogarithms by Coleman’s p-adic iterated integration theory. We define
p-adic multiple zeta values to be special values of p-adic multiple poly-
logarithms. We consider the (formal) p-adic KZ equation and introduce the
p-adic Drinfel’d associator by using certain two fundamental solutions of
the p-adic KZ equation. We show that our p-adic multiple polylogarithms
appear as coefficients of a certain fundamental solution of the p-adic KZ
equation and our p-adic multiple zeta values appear as coefficients of the
p-adic Drinfel’d associator. We show various properties of p-adic multiple
zeta values, which are sometimes analogous to the complex case and are
sometimes peculiar to the p-adic case, via the p-adic KZ equation.
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0. Introduction

The aim of the present paper and the upcoming papers [F2] and [F3] is
to enlighten crystalline aspects of the fundamental group of the projective
line minus three points and add crystalline part to [F1]. In this paper, we
will introduce the notions of (one-variable) p-adic multiple polylogarithms,
p-adic multiple zeta values, p-adic KZ equation and p-adic Drinfel’d asso-
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ciator, which will be our basic foundations of [F2] and [F3], and show their
various properties and their relationships.

Let k1, · · · , km ∈ N. The (usual) multiple zeta value is the real number
defined by the following series

ζ(k1, · · · , km) =
∑

0<n1<···<nm

ni∈N

1

nk1
1 · · · nkm

m

. (0.1)

Especially in the case when m = 1, the multiple zeta value coincides with
the Riemann zeta value ζ(k). We can check easily that this series converges in
the topology of R if and only if km > 1, however, this series never converges
in the topology of Qp! Thus it is not so easy and not so straightforward to
give a definition of p-adic version of multiple zeta value. To give a nice
definition, we need another interpretation of multiple zeta values.

Suppose z ∈ C. The (one variable) multiple polylogarithm is a function
defined by the following series

Lik1,··· ,km (z) =
∑

0<n1<···<nm

ni∈N

znm

nk1
1 · · · nkm

m

.

Especially in the case when m = 1, the multiple polylogarithm coincides
with the classical polylogarithm Lik(z). Easily we see that this series con-
verges for |z| < 1. In Sect. 2.2, we will define the p-adic multiple polylog-
arithm to be the function defined by the above series just replacing z ∈ C
by z ∈ Cp. We remark that especially in the case when m = 1, the p-adic
multiple polylogarithm is equal to the p-adic polylogarithm �k(z) which
was studied by Coleman [C]. What is interesting is that this p-adic multiple
polylogarithm converges for |z|p < 1 similarly to the above complex case.
Here | · |p means the standard multiplicative valuation of Cp.

An important relationship between the multiple polylogarithm and the
multiple zeta value is the following formula:

ζ(k1, · · · , km) = lim
z→1
|z|<1

Lik1,··· ,km (z). (0.2)

In this paper, we will define the p-adic multiple zeta value à la formula (0.2)
instead of à la (0.1). But we note that here happens a serious problem because
the open unit disk centered at 0 on Cp and the one centered at 1 on Cp are
disjoint! Thus we cannot consider lim

z→1
of p-adic multiple polylogarithms

which are functions defined on |z|p < 1, i.e. on the open unit disk centered
at 0. To give a meaning of this limit, we will make an analytic continuation
of p-adic multiple polylogarithms by Coleman’s p-adic iterated integration
theory [C] and then define p-adic multiple zeta values to be a limit value at
1 of analytically continued p-adic multiple polylogarithms.
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The organization of this paper is as follows. Sect. 1 is devoted to a short
review of well-known results on (usual) multiple polylogarithms and multi-
ple zeta values and definitions of the (formal) KZ equation and the Drinfel’d
associator, which will play a role of prototype in the p-adic case in the fol-
lowing two sections.

In Sect. 2, we will introduce p-adic multiple zeta values and show
their many nice properties. At first, we will review Coleman’s p-adic iter-
ated integration theory [C] in Sect. 2.1 and then in Sect. 2.2 we will give
an analytic continuation of p-adic multiple polylogarithms (which is just
a multiple analogue of that of his p-adic polylogarithms �k(z) in [C]) to
the whole plane minus 1, i.e. Cp − {1}, by his integration theory. But we
will see that there happens a terrible problem that the analytically contin-
ued p-adic multiple polylogarithm admits too many (uncountably infinite)
branches Lia

k1,··· ,km
(z) (k1, · · · , km ∈ N, z ∈ Cp − {1}) which correspond

to each branch parameter a ∈ Cp, coming from branch loga(z) of p-adic
logarithms (see Sect. 2.2). However the following theorem in Sect. 2.3 will
remove our anxiety.

Theorem 2.13. If lim
z→1

′

z∈Cp−{1}
Lia

k1,··· ,km
(z) converges on Cp, its limit does not

depend on any choice of branch parameter a ∈ Cp. For lim′, see Nota-
tion 2.12.

By this theorem, we can give a definition of the p-adic multiple zeta value
ζp(k1, · · · , km) to be the above limit on Cp as follows.

Definition 2.17. ζp(k1, · · · , km) := lim
z→1

′

z∈Cp−{1}
Lia

k1,··· ,km
(z) ∈ Cp if it con-

verges.

This definition of p-adic multiple zeta value is actually independent of any
choice of branch parameter a ∈ Cp by Theorem 2.13. Especially, in the case
when m = 1, we shall see in Example 2.19 (due to Coleman [C]) that the p-
adic multiple zeta value is equal to the p-adic L-value up to a certain constant
multiple. The following three theorems in Sect. 2.3 are p-adic analogues
of basic properties, Lemma 1.6, Lemma 1.9 and Proposition 1.11, in the
complex case.

Theorem 2.18. lim
z→1

′

z∈Cp−{1}
Lia

k1,··· ,km
(z) converges on Cp if km > 1.

Theorem 2.25. ζp(k1, · · · , km) ∈ Qp.

Theorem 2.28. The product of two p-adic multiple zeta values can be
written as a Q-linear combination of p-adic multiple zeta values.

In Sect. 3, we will consider the (formal) p-adic KZ equation and intro-
duce the p-adic Drinfel’d associator which will play a role of main tools
to prove Theorem 2.18, Theorem 2.22 and Theorem 2.28. In Sect. 3.1, we
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will introduce the (formal) p-adic KZ equation in Definition 3.2 and prove
the following.

Theorem 3.3. Let a ∈ Cp. Then there exists a unique solution Ga
0(A, B)(z)

(z ∈ P1(Cp)\{0, 1,∞}) of the p-adic KZ equation which is a formal power
series whose coefficients are Coleman functions with respect to a ∈ Cp and
are locally analytic on P1(Cp)\{0, 1,∞} and satisfies a certain asymptotic

behavior Ga
0(z) ≈ zA (z → 0), where zA := 1+ loga(z)

1! A+ (loga(z))2

2! A2 +· · · .

Then we will introduce a definition of p-adic Drinfel’d associator Φ
p
K Z(A, B)

from two fundamental solutions, Ga
0(u) and Ga

1(u), of the p-adic KZ equa-
tion in Definition 3.12 and show its branch independency in Theorem 3.10.
In Sect. 3.2, we will state precisely and prove the following.

Theorem 3.15. Let a ∈ Cp. The fundamental solution Ga
0(z) (z ∈ P1(Cp)\

{0, 1,∞}) of the p-adic KZ equation can be expressed in terms of (analyti-
cally continued) p-adic multiple polylogarithms Lia

k1,··· ,km
(z) and the p-adic

logarithm loga(z) explicitly.

In Sect. 3.3, we will state precisely and prove the following.

Theorem 3.30. The p-adic Drinfel’d associator Φ
p
K Z(A, B) can be ex-

pressed explicitly in terms of p-adic multiple zeta values.

In Sect. 3.4, we will show functional equations of p-adic multiple polyloga-
rithms at first.

Theorem 3.40.

Lia
k1,··· ,km

(1 − z) = (−1)m
∑

W ′,W ′′:words
W=W ′W ′′

Ip(W
′′) · Ja

p

(
τ(W ′)

)
(z)

where W = Akm −1 BAkm−1−1 B · · · Ak1−1 B. Here each Ip(W ′′) is a certain
Q-linear combination of p-adic multiple zeta values (see Theorem 3.30)
and each Ja

p

(
τ(W ′)

)
(z) is a certain combination of p-adic multiple poly-

logarithms (see Theorem 3.15).

Next we will see that especially Coleman-Sinnott’s functional equation of
the p-adic dilogarithm will be re-proved in Example 3.41 by Theorem 3.40
and then will prove Theorem 2.22 and Theorem 2.28.

In the upcoming paper [F2], we will relate the p-adic Drinfel’d associator
with the crystalline Frobenius action on the rigid (unipotent) fundamental
group of the projective line minus three points and compare the p-adic
Drinfel’d associator with other corresponding objects in various realizations
of motivic fundamental groups of the projective line minus three points.
In [F3], certain algebraic relations among p-adic multiple zeta values are
shown. We will show there that the p-adic Drinfel’d associator determines
a point of the Grothendieck-Teichmüller group and discuss the elements of
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Ihara’s stable derivation algebra arising from this point and finally we will
add crystalline part to [F1].

Acknowledgements. The author wish to thank his advisor Professor Akio Tamagawa for his
encouragement. The author is grateful to Hiroshi Fujiwara who helped the author to type
this manuscript. The author is supported in part by JSPS Research Fellowships for Young
Scientists.

1. Review of the complex case

We shall review definitions of multiple polylogarithms and multiple zeta
values in Sect. 1.1 and shall recall notions of the (formal) KZ equation and
the Drinfel’d associator briefly in Sect. 1.2, which may help to understand
its p-adic version developed in the following two sections.

1.1. Multiple polylogarithms and multiple zeta values

We review briefly definitions and properties of multiple polylogarithms and
multiple zeta values. For more details, consult [F0] and [Gon] for example.

Let k1, · · · , km ∈ N and z ∈ C.

Definition 1.1. The (one variable) multiple polylogarithm (MPL for short) is
defined to be the following series:

Lik1,··· ,km (z) =
∑

0<n1<···<nm

ni∈N

znm

nk1
1 · · · nkm

m

.

Remark 1.2. This MPL is the special case of the multiple polylogarithm

Lik1,··· ,km (z1, · · · , zm) =
∑

0<n1<···<nm

ni∈N

zn1
1 · · · znm

m

nk1
1 · · · nkm

m

introduced in [Gon] where z1 = · · · = zm−1 = 1 and zm = z

Easily we can check the following.

Lemma 1.3. The MPL Lik1,··· ,km (z) converges for |z| < 1.

Lemma 1.4. Suppose that |z| < 1. Then

d

dz
Lik1,··· ,km (z) =

{
1
z Lik1,··· ,km−1(z) km �= 1,

1
1−z Lik1,··· ,km−1(z) km = 1,

d

dz
Li1(z) = 1

1 − z
.
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By Lemma 1.4, for |z| < 1, we get Li1(z) = −log(1 − z) and the
following,

Lik1,··· ,km (z) =
{∫ z

0
1
t Lik1,··· ,km−1(t)dt km �= 1,

∫ z
0

1
1−t Lik1,··· ,km−1(t)dt km = 1,

from which we get an expression of the MPL by iterated integral of dt
t

and dt
1−t . Since dt

t and dt
1−t admit poles at t = 0, 1 and ∞, we cannot give

an analytic continuation of the MPL to the whole complex plane due to
monodromies around 0, 1 and ∞. However we can say that

Lemma 1.5. The MPL Lik1,··· ,km (z) can be analytically continued to the

universal unramified covering ˜P1(C)\{0, 1,∞} of P1(C)\{0, 1,∞}.

Since the simply-connected Riemann surface ˜P1(C)\{0, 1,∞} is an
infinite covering of P1(C)\{0, 1,∞}, each MPL admits (countably) infinite
branches. The following are well-known ( for example, see [Gon]).

Lemma 1.6. lim
z→1
|z|<1

Lik1,··· ,km (z) converges if km > 1.

Lemma 1.7. lim
z→1
|z|<1

Lik1,··· ,km (z) diverges if km = 1.

Definition 1.8. For k1, · · · , km ∈ N, km > 1, the multiple zeta value (MZV
for short) is defined to be

ζ(k1, · · · , km) = lim
z→1
|z|<1

Lik1,··· ,km (z)

(
=

∑

0<n1<···<nm

1

nk1
1 · · · nkm

m

)
.

Since MPL’s are C-valued functions, MZV’s lie in C. However we can
say more.

Lemma 1.9. For k1, · · · , km ∈ N, km > 1, ζ(k1, · · · , km) ∈ R.

Notation 1.10. For each natural number w, let Zw be the Q-vector subspace
of R generated by all MZV’s ζ(k1, · · · , km) with k1 + · · · + km = w, i.e.
Zw := 〈ζ(k1, · · · , km) | k1 +· · ·+km = w〉Q ⊆ R, and put Z0 = Q. Denote
Z� to be the formal direct sum of Zw for all w � 0: Z� := ⊕

w�0
Zw.

The following is one of the fundamental properties of MZV’s.

Proposition 1.11. The graded Q-vector space Z� forms a graded Q-algebra,
i.e. Za · Zb ⊆ Za+b for a, b � 0.
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Proof. At least we have two proofs [Gon]. The first one is given by the
harmonic product formulae, from which it follows, for example,

ζ(m) · ζ(n) = ζ(m, n) + ζ(n, m) + ζ(m + n).

The other one is given by the shuffle product formulae, from which it follows,
for example,

ζ(m) · ζ(n) =
m−1∑

i=0

(
n − 1 + i

i

)
ζ(m − i, n + i)

+
n−1∑

j=0

(
m − 1 + j

j

)
ζ(n − j, m + j).

��

1.2. The KZ equation and the Drinfel’d associator

In this subsection, we will briefly review the definition of the (formal) KZ
equation and the Drinfel’d associator. For more detailed information on the
KZ equation and the Drinfel’d associator, see [Dr], [F0] and [Kas].

Let A∧
C = C〈〈A, B〉〉 be the non-commutative formal power series ring

generated by two elements A and B with complex number coefficients.

Definition 1.12. The (formal) Knizhnik-Zamolodchikov equation1 (KZ equa-
tion for short) is the differential equation

∂G

∂u
(u) =

(
A

u
+ B

u − 1

)
· G(u), (KZ)

where G(u) is an analytic function in complex variable u with values in A∧
C

where ‘analytic’ means each of whose coefficient is analytic.

The equation (KZ) has singularities only at 0, 1 and ∞. Let C′ be the
complement of the union of the real half-lines (−∞, 0] and [1,+∞) in the
complex plane. This is a simply-connected domain. The equation (KZ) has
a unique analytic solution on C′ having a specified value at any given points
on C′. Moreover, for the singular points 0 and 1, there exist unique solutions
G0(u) and G1(u) of (KZ) such that

G0(u) ≈ u A (u → 0), G1(u) ≈ (1 − u)B (u → 1),

where ≈ means that G0(u) · u−A (resp. G1(u) · (1 − u)−B) has an analytic
continuation in a neighborhood of 0 (resp. 1) with value 1 at 0 (resp. 1).
Here, u A := ex p(A logu) := 1 + A logu

1! + (A logu)2

2! + (A logu)3

3! + · · · and
logu := ∫ u

1
dt
t in C′. In the same way, (1 − u)B is well-defined on C′.

Since G0(u) and G1(u) are both non-zero unique solutions of (KZ) with
the specified asymptotic behaviors, they must coincide with each other up
to multiplication from the right by an invertible element of A∧

C.

1 This is a special case of the KZ equation for P1(C)\{0, 1, ∞} in [Kas].
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Definition 1.13. The Drinfel’d associator2 is the element ΦK Z(A, B) of A∧
C

which is defined by

G0(u) = G1(u) · ΦK Z(A, B).

By considering on (A∧
C)ab, the abelianization of A∧

C, we easily find that
ΦK Z(A, B) ≡ 1 on (A∧

C)ab. We note that MZV’s appear at each coefficient
of the Drinfel’d associator ΦK Z(A, B). For its explicit formulae, see [F0]
Proposition 3.2.3.

2. p-adic multiple polylogarithms and p-adic multiple zeta values

In this section, we shall give the definition of p-adic multiple polylogarithms
(Sect. 2.2) and p-adic multiple zeta values (Sect. 2.3) and state main results
in Sect. 2.3, which will be proved in Sect. 3. The reader will find interesting
analogies between Sect. 1.1 and Sect. 2.3.

2.1. Review of Coleman’s p-adic iterated integration theory

We will review the p-adic iterated integration theory by R. Coleman [C],
following A. Besser’s reformulation in [Bes1]. This theory will be employed
in the analytic continuation of p-adic multiple polylogarithms in Sect. 2.3.
For other nice expositions of his theory, see [Bes2] Sect. 5, [Br] Sect. 2.2.1
and [CdS] Sect. 2.

Assumption 2.1. Suppose that X/OCp is a smooth projective and surjective
scheme over the ring OCp of integers of Cp, of relative dimension 1 with
its generic fiber XCp and its special fiber XFp

. Let Y = X − D where D is
a closed subscheme of X which is relatively etale over OCp .

We denote j : YFp
↪→ XFp

to be the associated open embedding, where

YFp
is the special fiber of Y and denote the finite set X(Fp) − Y(Fp) by

{e1, · · · , es}. For 0 � r < 1, Ur stands for the rigid analytic space3 obtained
by removing all closed discs of radius r around ei from X(Cp) (1 � i � s)
(see [Bes1]). For a subset S ⊂ X(Fp), we denote its tubular neighborhood
(see [Ber]) in X(Cp) by ]S[. For any rigid analytic space W , we mean by
A(W ) the ring of global sections of the sheaf O

rig
W of rigid analytic functions

on W .

2 To be precise, Drinfel’d defined ϕK Z (A, B) instead of ΦK Z (A, B) in [Dr], where
ϕK Z (A, B) = ΦK Z ( 1

2πi A, 1
2πi B).

3 As is explained in [Bes1] Sect. 2, while the definition of Ur depends on the choice of
‘local lifts’, the definitions of Aa

log(Ux) and Ωa
log(Ux) (see below) do not.
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Fix a ∈ Cp. It determines a branch of p-adic logarithm loga : C×
p → Cp

([Bes1] Definition 2.6) which is characterized by loga(p) = a. We call this
a ∈ Cp the branch parameter of p-adic logarithm. Define

Aa
loc :=

∏

x∈X(Fp)

Aa
log(Ux), Ωa

loc :=
∏

x∈X(Fp)

Ωa
log(Ux)

where

Aa
log(Ux) :=

{
A(]x[) x ∈ Y(Fp),

ind-lim
r→1

A
(
]x[ ∩Ur

)[
loga(zx)

]
x ∈ {e1, · · · , es},

Ωa
log(Ux) := Aa

log(Ux)dzx .

Here zx means a local parameter

zx : ]x[ ∩Y(Cp)
∼→ {z ∈ Cp | 0 < |z|p < 1}.

We note that loga(zx) is a locally analytic function defined on ]x[ ∩Y(Cp)

whose derivation is 1
zx

and it is transcendental over ind-lim
r→1

A
(
]x[ ∩Ur

)
and

ind-lim
r→1

A
(
]x[ ∩Ur

) ∼=
{

f(z) =
n=∞∑

n=−∞
anzn (an ∈ Cp) converging for r <

|z|p < 1 for some 0 � r < 1
}

(see [Bes1]). We remark that these defi-

nitions of Aa
log(Ux) and Ωa

log(Ux) are independent of any choice of local
parameters zx . By taking a component-wise derivative, we obtain a Cp-
linear map d : Aa

loc → Ωa
loc. Regard A† := Γ(]XFp

[, j†O]XFp
[) and

Ω† := Γ(]XFp
[, j†Ω1

]XFp
[) to be a subspace of Aa

loc and Ωa
loc respectively

(for j†, see [Ber]).
In [C], Coleman constructed an A†-subalgebra Aa

Col of Aa
loc, which

we call the ring of Coleman functions attached to a branch parameter
a ∈ Cp, and a Cp-linear map

∫
(a)

: Aa
Col ⊗

A†
Ω† → Aa

Col

/
Cp · 1 satisfying

d
∣∣

Aa
Col

◦ ∫
(a)

= idAa
Col⊗Ω† , which we call the p-adic (Coleman) integration

attached to a branch parameter a ∈ Cp. We often drop the subscript (a).
Actually Coleman’s p-adic integration theory is essentially independent

of any choice of branches, which may not be well-known, and we will try
to explain this fact below:

Suppose that a, b ∈ Cp. Consider the isomorphisms ιa,b : Aa
loc

∼→ Ab
loc

and τa,b : Ωa
loc

∼→ Ωb
loc obtained by replacing each loga(zei ) by logb(zei ) for

1 � i � s.

Lemma 2.2. These maps, ιa,b and τa,b, are independent of any choice of
a local parameter zei .



262 H. Furusho

Proof. Suppose that z′
ei

is another local parameter. Then we check easily
that ιa,b(z′

ei
) = z′

ei
, ιa,b(loga(z′

ei
)) = logb(z′

ei
) and τa,b(dz′

ei
) = dz′

ei
because

loga(
z′

ei
zei

) is analytic at ei , from which it follows the lemma. ��
The following branch independency principle, which was not stated

explicitly in [C], should be one of the important properties of Coleman’s
p-adic integration theory, but this principle just follows directly from his
construction of Aa

Col.

Proposition 2.3 (Branch Independency Principle). Suppose that a, b
∈ Cp. Then ιa,b(Aa

Col) = Ab
Col, τa,b(Aa

Col ⊗Ω†) = Ab
Col ⊗Ω† and ιa,b ◦∫

(a)
=∫

(b)
◦τa,b mod Cp · 1. Namely the following diagram is commutative.

Aa
Col ⊗

A†
Ω†

τa,b−−−→ Ab
Col ⊗

A†
Ω†

∫
(a)

�
�
∫
(b)

Aa
Col

/
Cp · 1

ιa,b−−−→ Ab
Col

/
Cp · 1

Proof. It follows directly because both (Ab
Col,

∫
(b)

) and (ιa,b(Ab
Col), ιa,b ◦∫

(a)
◦τ−1

a,b) satisfies the same axioms (A)–(F) of logarithmic F-crystals on [C]
(see also [CdS]), which is a characterization of (Ab

Col,
∫
(b)

). ��
Other important properties of Coleman’s functions are the uniqueness

principle and the functorial property below.

Proposition 2.4 (Uniqueness Principle; [C] Ch IV). Let a ∈ Cp. Let
f ∈ Aa

Col be a Coleman function which is defined on an admissible open
subset U of X(Cp). Suppose that f |U ≡ 0. Then f ≡ 0 on X(Cp).

Especially this proposition yields the fact that a locally constant Coleman
function is globally constant.

Proposition 2.5 (Functorial Property; [C] Theorem 5.11 and [Bes2]
Definition 4.7). Let a ∈ Cp. Let (X ′, Y ′) be another pair satisfying As-
sumption 2.1. Suppose that f : X ′ → X is a morphism defined over OCp

such that f(Y ′) ⊂ Y. Then the pull-back morphism f � : Aa
loc → A′a

loc in-
duces the morphism f ∗ : Aa

Col → A′a
Col of rings of Coleman functions, where

A′a
loc (resp. A′a

Col) stands for Aa
loc (resp. Aa

Col) for (X ′, Y ′).

Precisely speaking, Coleman showed this theorem in more general situ-
ation in [C] Theorem 5.1.

Notation 2.6. Let a ∈ Cp and ω ∈ Aa
Col ⊗

A†
Ω†. Then by Coleman’s integra-

tion theory, there exists (uniquely modulo constant) a Coleman function Fω
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such that
∫

ω ≡ Fω (modulo constant). For x, y ∈]Y(Fp)[, we define
∫ y

x ω

to be Fω(y) − Fω(x). It is clear that
∫ y

x ω does not depend on any choice of
Fω (although it may depend on a ∈ Cp). If Fω(x) and Fω(y) make sense for
some x, y ∈ X(Cp), we also denote Fω(y) − Fω(x) by

∫ y
x ω. When we let

y vary, we regard
∫ y

x ω as the Coleman function which is characterized by
dFω = ω and Fω(x) = 0.

2.2. Analytic continuation of p-adic multiple polylogarithms

We will define p-adic multiple polylogarithms to be Coleman functions
which admits an expansion around 0 similar to the complex case.

Let k1, · · · , km ∈ N and z ∈ Cp. Consider the following series

Lik1,··· ,km (z) =
∑

0<n1<···<nm

ni∈N

znm

nk1
1 · · · nkm

m

. (2.1)

Lemma 2.7. This series Lik1,··· ,km (z) converges on the open unit disk
D(0 : 1) = {z ∈ Cp | |z|p < 1} around 0 with radius 1.

Proof. Easy. ��
Lemma 2.8. Let z ∈ Cp such that |z|p < 1. Then

d

dz
Lik1,··· ,km (z) =

{
1
z Lik1,··· ,km−1(z) km �= 1,

1
1−z Lik1,··· ,km−1(z) km = 1,

d

dz
Li1(z) = 1

1 − z
.

Proof. It follows from a direct calculation. ��
Lemma 2.7 and Lemma 2.8 are p-adic analogue of Lemma 1.3 and

Lemma 1.4 respectively.
From now on, we fix a branch parameter a ∈ Cp and employ Coleman’s

p-adic integration theory attached to this branch parameter a ∈ Cp for
X = P1

OCp
and Y = Spec OCp[t, 1

t ,
1

1−t ].
Definition 2.9. We define recursively the (one variable) p-adic multiple
polylogarithm (p-adic MPL for short) Lia

k1,··· ,km
(z) ∈ Aa

Col attached to a ∈ Cp
which is the Coleman function characterized below:

Lia
k1,··· ,km

(z) :=
{∫ z

0
1
t Lia

k1,··· ,km−1(t)dt km �= 1,
∫ z

0
1

1−t Lia
k1,··· ,km−1

(t)dt km = 1,

Lia
1(z) = −loga(1 − z) :=

∫ z

0

dt

1 − t
.
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Remark 2.10. (1) It is easy to see that Lia
k1,··· ,km

(z) = ∑
0<n1<···<nm

znm

n
k1
1 ···nkm

m
if

|z|p < 1.
(2) Because we get dt

t , dt
1−t ∈ Aa

Col and we know that Lia
k1,··· ,km

(z) is analytic
on |z|p < 1 and takes value 0 at z = 0, it is easy to see that each p-adic
MPL is well defined in Aa

Col.
(3) Our construction of p-adic MPL is just a multiple analogue of Cole-

man’s construction [C] of p-adic polylogarithm �k(z). His p-adic poly-
logarithm �k(z) can be written as Lia

k (z) in our notation.

The following is a p-adic version of Lemma 1.5.

Proposition 2.11. The p-adic MPL Lia
k1,··· ,km

(t) is locally analytic on
P1(Cp)\{1,∞}. More precisely, Lia

k1,··· ,km
(t)

∣∣]0[∈ A(]0[), Lia
k1,··· ,km

(t)
∣∣]1[∈

A(]1[)[loga(t − 1)] and Lia
k1,··· ,km

(t)
∣∣]∞[∈ A(]∞[)[loga( 1

t )].
Proof. By construction, we can prove the claim inductively. ��

This proposition means that the series (2.1) can be analytically contin-
ued to P1(Cp)\{1,∞}, although the complex MPL cannot be analytically
continued to P1(C)\{0, 1,∞} but only to its universal unramified cover-

ing ˜P1(C)\{0, 1,∞} instead by Lemma 1.5. We note that the p-adic MPL
admits uncountably infinite branches which correspond to branches of p-
adic logarithms loga(z) although complex MPL admits countably infinite
branches. We call Lia

k1,··· ,km
(z) the branch of p-adic MPL corresponding to

a ∈ Cp.

2.3. p-adic multiple zeta values and main results

We will state main results of this paper, whose proof will be given in
Sect. 3.3 and Sect. 3.4 and will introduce p-adic multiple zeta values,
whose definitions themselves are highly non-trivial.

Notation 2.12. Let α ∈ Cp and let f(z) be a function defined on Cp. We de-
note lim′

z→α
f(z) to be lim

n→∞ f(zn) if this limit converges to the same value for any

sequence {zn}∞
n=1 which satisfies zn → α in Cp and e(Qp(z1, z2, · · · )/Qp)

< ∞ (which means that the field generated by z1 , z2, · · · over Qp is a finitely
ramified (possibly infinite) extension field over Qp). If the latter limit con-
verges (resp. does not converge) to the same value, we call lim′

z→α
f(z) con-

verges (resp. diverges).

Theorem 2.13. Fix k1, · · · , km ∈ N and a prime p. Then the statement
whether lim

z→1

′

z∈Cp−{1}
Lia

k1,··· ,km
(z) converges or diverges4 on Cp is independent

4 This makes sense because p-adic MPL’s are locally analytic on P1(Cp)\{1,∞} by
Proposition 2.11.
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of any choice of branch parameter a ∈ Cp. Moreover if it converges on Cp,
this limit value is independent of any choice of branch parameter a ∈ Cp.

Proof. Since Lia
k1,··· ,km

(z) is locally analytic on P1(Cp)\{1,∞} by Propo-
sition 2.11, its Aa

log(]1[)-component can be written as follows.

Lia
k1,··· ,km

(z) = f0(z − 1) + f1(z − 1)loga(z − 1)

+ f2(z − 1)(loga(z − 1))2

+ · · · · · · + fm(z − 1)(loga(z − 1))m,

where fi(z) ∈ A(D(0 : 1)) for i = 0, · · · , m. By Proposition 2.3, we
see that these fi(z)’s are independent of any choice of branch parameter
a ∈ Cp. Saying lim

z→1

′Lia
k1,··· ,km

(z) converges is equivalent to saying fi(0) = 0

for all i = 1, · · · , m by Lemma 2.14 and Lemma 2.15, which is a statement
independent of any choice of branch parameter a ∈ Cp. Thus we get the first
half of this theorem. If lim

z→1

′Lia
k1,··· ,km

(z) converges, then lim
z→1

′Lia
k1,··· ,km

(z) =
f0(0). Since f0(z) was independent of any choice of branches, the second
half of this theorem follows. ��
Lemma 2.14. For n � 0, lim

ε→0

′

ε∈Cp

ε(logaε)n = 0.

Proof. If n = 0, it is clear.
If n = 1, suppose that εn ∈ L (n � 1) and εn → 0 as n → ∞, where L

is a finitely ramified (possibly infinite) extension of Qp with ramification
index eL(< ∞) and a uniformizer πL . Take cL ∈ N such that pcL > eL .
Decompose εn = un · π

rn
L where un ∈ O×

L and rn ∈ Z. Take sn ∈ N such
that (sn, p) = 1 and usn

n ≡ 1 mod πLOL . Put αn := usn
n − 1 ∈ πLOL .

Then (usn
n )pcL = (1 + αn)

pcL ≡ 1 + α
pcL
n ≡ 1 mod pOCp . Therefore

loga un = 1
sn ·pcL loga(usn ·pcL

n ) ∈ 1
pcL OCp . So we get

lim
n→∞ εnlogaεn = lim

n→∞{εnloga un + εnrnlogaπL} = lim
n→∞ εnloga un = 0.

In a similar way, we can prove the case for n > 1. ��

Lemma 2.15. Let a ∈ Cp, l � 0 and g(z) =
l∑

k=0
ak
(
loga(z)

)k
(ak ∈ Cp).

Then lim
z→1

′g(z) converges if and only if ak = 0 for 1 � k � l.

Proof. Take zn = αn such that |α|p < 1 and loga(α) �= 0. Then we get the
claim by an easy calculation. ��
Remark 2.16. (1) As for another proof of the last statement of Theo-

rem 2.13 for km > 1, see Remark 3.29.
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(2) It is striking that lim
ε→0

′Lia
k1,··· ,km

(1 − ε) does not depend on any choice of

branch parameter a ∈ Cp although Lia
k1,··· ,km

(1 − ε) takes whole vales
on Cp if we fix ε (0 < |ε|p < 1) and let a vary on Cp.

Definition 2.17. For any index (k1, · · · , km) whose lim
z→1

′Lia
k1,··· ,km

(z) con-

verges, we define the corresponding p-adic multiple zeta vale (p-adic MZV
for short) ζp(k1, · · · , km) to be its limit in Cp, i.e.

ζp(k1, · · · , km) := lim
z→1

′

z∈Cp−{1}
Lia

k1,··· ,km
(z) ∈ Cp if it converges.

If this limit diverges for (k1, · · · , km), we do not give a definition of the
corresponding p-adic MZV ζp(k1, · · · , km).

We note that this definition of p-adic MZV is independent of any choice
of branches by Theorem 2.13.

Theorem 2.18. If km > 1, lim
z→1

′

z∈Cp−{1}
Lia

k1,··· ,km
(z) always converges on Cp.

Thus we get a definition of p-adic MZV ζp(k1, · · · , km) for km > 1.
This theorem is a p-adic analogue of Lemma 1.6 and it will be proved in
Sect. 3.3.

Examples 2.19. Coleman made the following calculation in [C] (stated in
Ch I (4) and proved in Ch VII):

lim
z→1

′Lia
n(z) = pn

pn − 1
L p(n, ω1−n) for n > 1. (2.2)

Here L p is the Kubota-Leopoldt p-adic L-function and ω is the Teichmüller
character. In particular this formula (2.2) shows that this limit value is
actually independent of any choice of branch parameter a ∈ Cp although
this fact is a special case of Theorem 2.13. We remark that, in the case
of p-adic polylogarithms, this branch independency also follows from the
so-called distribution relation ([C] Proposition 6.1). By (2.2), we get

ζp(n) = pn

pn − 1
L p(n, ω1−n) for n > 1. (2.3)

(a) When n is even (i.e. n = 2k for some k � 1), by (2.3) we get the
equality

ζp(2k) = 0.

We will see that this equality proved arithmetically here will be also
deduced from geometric identities, 2-cycle relation and 3-cycle relation,
among p-adic MZV’s, proved in [F3].
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(b) On the other hand, when n is odd (i.e. n = 2k + 1 for some k � 0), it
does not look so easy to show ζp(2k + 1) �= 0:
Suppose that p is an odd prime. Then by [KNQ] Theorem 3.1, we see
that saying L p(2k + 1, ω−2k) �= 0 is equivalent to saying

H2
et(Z, Qp/Zp(−k)) = 0, (L2k+1)

which is one of standard conjectures5 in Iwasawa theory and a higher
version of Leopoldt conjecture (cf. [KNQ] Remark 3.2.(ii)).

Remark 2.20. (i) We know that ζp(2k + 1) �= 0 in the case where p is
regular or (p − 1)|2k by [Sou] Sect. 3.3.

(ii) Suppose that p is an odd prime. Let G denote the standard Iwasawa
module for Q(µp∞)/Q (µp∞ : the group of roots of unity whose order is

a power of p), i.e. G = π1
(
Z[µp∞, 1

p ])p,ab
. Let I denote the inertia sub-

group of the unique prime p in Q(µp∞) which is above p. Soulé [Sou]
constructed a specific non-zero element χSoulé

p,m ∈ Hom(G, Zp(m))
for m � 1: odd. Let G denote the standard Iwasawa module for
Qp(µp∞)/Qp, i.e. G = π1(Qp(µp∞))p,ab. Let � denote the inertia
subgroup of G. For m � 1, the Coates-Wiles homomorphism gives
a specific non-zero element χCW

p,m ∈ Hom(� , Zp(m)). Coleman—using
his reciprocity law—showed the following formula for all odd m > 1
(see [KNQ]):

χSoulé
p,m ◦ r = (pm−1 − 1) · L p(m, ω1−m) · χCW

p,m . (2.4)

Here r is the natural (surjective) map r : � → I . By (2.4), we get the
following statement in algebraic number theory which is equivalent to
saying ζp(2k + 1) �= 0 (or, equivalently, (L2k+1) ):

the prime ideal p ramify in the kernel field of χSoulé
p,m . (P2k+1)

The author guesses more generally that problems on p-adic MZV’s
related to p-adic transcendental number theory (such as the problem
of proving the p-adic version ζp(3) �∈ Q of Apéry’s result) could be
translated into problems in algebraic number theory.

As for a p-adic analogue of Lemma 1.7, at present, we have nothing to
say except the following.

Note 2.21. The limit lim
z→1

′

z∈Cp−{1}
Lia

k1,··· ,km
(z) sometimes converges and some-

times diverges on Cp for km = 1.

For example, see Example 2.23.(a) and (b) below.

5 In [KNQ], (L2k+1) was denoted by (Ck).
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Theorem 2.22. Suppose that lim
z→1

′

z∈Cp−{1}
Lia

k1,··· ,km
(z) converges on Cp for

km = 1. Then it converges to a p-adic version of the regularized MZV,
i.e.

ζp(k1, · · · , km−1, 1) = (−1)m Ip(W ) where W = BAkm−1−1 B · · · Ak1−1 B.

See Sect. 3.2 for Ip(W ) and Remark 3.31(2) for the regularized p-adic
MZV. This theorem will be proved in Sect. 3.4. Therefore p-adic MZV
ζp(k1, · · · , km) for km = 1 can be written as a Q-linear combination of
p-adic MZV’s corresponding to the same weight indexes with km > 1.

Examples 2.23. (a) lim
z→1

′Lia
2,1(z) converges to −2ζp(1, 2), i.e. ζp(2, 1) =

−2ζp(1, 2). This follows from the functional equation in Ex-
ample 3.41.(a), ζp(2) = 0 by Example 2.19.(a) and Lemma 2.14.

(b) lim
z→1

′Lia
3,1(z) diverges if and only if ζp(3) �= 0 (equivalently if and only

if p satisfies the 3rd Leopoldt conjecture (L3) above).
Suppose that 3rd Leopoldt conjecture (L3) fails at a prime p. Then we get
ζp(3, 1) = −2ζp(1, 3)−ζp(2, 2) for this prime p. This follows from the
functional equation in Example 3.41.(b) combined with Lemma 2.14.

(c) We will show many identities between p-adic MZV’s in [F3], from
which we will deduce, for example, ζp(3) = ζp(1, 2) and ζp(1, 3) =
ζp(2, 2) = ζp(1, 1, 2) = 0.

Remark 2.24. The author guesses that to know whether lim
z→1

′

z∈Cp−{1}
Lia

k1,··· ,km
(z)

converges or diverges might be to tell something deep in number theory,
such as Example 2.23.(b).

Those p-adic MZV’s were defined to be elements of Cp, but actually we
can say more.

Theorem 2.25. All p-adic MZV’s are p-adic numbers, i.e. ζp(k1, · · · , km)
∈ Qp.

Proof. Suppose that lim
z→1

′

z∈Cp−{1}
Lia

k1,··· ,km
(z) converges. Recall that p-adic MPL

Lia
k1,··· ,km

(z) (a ∈ Cp) is an iterated integral of dt
t and dt

1−t which is a rational
1-form defined over Qp and notice that Lia

k1,··· ,km
(z) ∈ Qp for all z ∈

pZp. Then from the Galois equivariancy stated in [BdJ] Remark 2.3, it
follows that Lia

k1,··· ,km
(z) is Gal(Qp/Qp)-invariant for z ∈ P1(Qp)\{1,∞}

if we take a ∈ Qp. Therefore in this case, we get Lia
k1,··· ,km

(z) ∈ Qp for
z ∈ P1(Qp)\{1,∞}. Thus we get lim

z→1
z∈Qp−{1}

Lia
k1,··· ,km

(z) ∈ Qp, which yields

the theorem (Recall that this limit is independent of any choice of branch
parameter a ∈ Cp by Theorem 2.13). ��
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It may be better to say that this theorem is a p-adic version of Lemma 1.9.
The author poses the following question, which he wants to study in the
future.

Question 2.26. Are all p-adic MZV’s p-adic integers? Namely ζp(k1,
· · · , km) ∈ Zp for all primes p?

Definition 2.27. For each natural number w, let Z(p)
w be the finite dimen-

sional Q-linear subspace of Qp generated by all p-adic MZV’s of indices
with weight w, and put Z(p)

0 = Q. Define Z(p)
� to be the formal direct sum

of Z(p)
w for all w � 0: Z(p)

� := ⊕
w�0

Z(p)
w .

By Theorem 2.22, we see that Z(p)
w = 〈ζp(k1, · · · , km) | k1 + · · · + km

= w, km > 1, m ∈ N〉Q ⊂ Qp

Theorem 2.28. The graded Q-vector space has a structure of Q-algebra,
i.e. Z(p)

a · Z(p)

b ⊆ Z(p)

a+b for a, b � 0.

This is a p-adic analogue of Proposition 1.11, whose proof will be
given in Sect. 3.4. Unfortunately we do not have such a simple proof as
Proposition 1.11. Our proof is based on showing the shuffle product formulae
(Corollary 3.46) coming from the shuffle-like multiplication of iterated
integrals, from which it follows, for example,

ζp(m) · ζp(n) =
m−1∑

i=0

(
n − 1 + i

i

)
ζp(m − i, n + i)

+
n−1∑

j=0

(
m − 1 + j

j

)
ζp(n − j, m + j).

In [BF], we shall discuss the harmonic product formulae [H] coming from
the shuffle-like multiplication of series in Definition 1.1, from which it
should follow, for example,

ζp(m) · ζp(n) = ζp(m, n) + ζp(n, m) + ζp(m + n).

We note that the validity of the harmonic product formulae for p-adic MZV’s
is non-trivial because we do not have a series expansion of p-adic MZV
such as Sect. 0 (0.1).

Remark 2.29. Here is another direction of further possible developments of
our theory of p-adic MZV’s. Since the p-adic L-function is related to the
Bernoulli numbers, the author expects that the multiple Bernoulli number
(MBN for short) B(k1,··· ,km )

n ∈ Q (k1, · · · , km ∈ Z, n ∈ N) given by the
following generating series

Lik1··· ,km (1 − e−x)

(1 − e−x)m
=:

∞∑

n=0

B(k1,··· ,km )
n

xn

n! ,
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where Lik1··· ,km (z) and ez means the following formal power series

∑

0<n1<···<nm

ni∈N

znm

nk1
1 · · · nkm

m

∈ Q[[z]] and
∞∑

n=0

zn

n! ∈ Q[[z]]

respectively, would help to describe a p-adic behavior of p-adic MZV’s and
constructions of p-adic multiple zeta (or L-)functions. We remark that this
definition of MBN is just a multiple version of that of the poly-Bernoulli
number in [AK] and [Kan] (especially B1

n is the usual Bernoulli number).
We stress that the definition of MBN is independent of any prime p.

3. The p-adic KZ equation

In this section, we will introduce and consider the (formal) p-adic KZ
equation. We will give the definition of the p-adic Drinfel’d associator
Φ

p
K Z(A, B) in Sect. 3.1. In Sect. 3.2 (resp. Sect. 3.3), we will give an

explicit formula of a certain fundamental solution G p
0 (z) of the p-adic KZ

equation (resp. an explicit formula of Φ
p
K Z(A, B)). In Sect. 3.4, we will

show the functional equation among p-adic MPL’s and will give proofs of
Theorem 2.22 and Theorem 2.28.

3.1. The p-adic Drinfel’d associator

Notation 3.1. Let A∧
Cp

= Cp〈〈A, B〉〉 be the non-commutative formal power
series ring with Cp-coefficients generated by two elements A and B.

Definition 3.2. The (formal) p-adic Knizhnik-Zamolodchikov equation
(p-adic KZ equation for short) is the differential equation

∂G

∂u
(u) =

(
A

u
+ B

u − 1

)
· G(u), (KZp)

where G(u) is an analytic function in variable u ∈ P1(Cp) \ {0, 1,∞} with
values in A∧

Cp
where ‘analytic’ means each of whose coefficient is locally

p-adic analytic.

Unfortunately, because P1(Cp)\{0, 1,∞} is topologically totally dis-
connected, the equation (KZp) does not have a unique solution on P1(Cp) \
{0, 1,∞} even locally as in the complex analytic function case. But fortu-
nately we get the following nice property on Coleman functions.

Theorem 3.3. Fix a ∈ Cp. Then there exists a unique (invertible) solution
Ga

0(u) ∈ Aa
Col⊗̂A∧

Cp
of (KZp) which is defined and locally analytic on

P1(Cp)\{0, 1,∞} and satisfies Ga
0(u) ≈ u A (u → 0).
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Here u A := 1 + loga(u)

1! A + (loga(u))2

2! A2 + · · · and Ga
0(u) ≈ u A (u → 0)

means that the Aa
log(]0[)⊗̂A∧

Cp
-component of Pa(u) := Ga

0(u) · u−A =
Ga

0(u)·
{

1− loga(u)

1! A+ (loga(u))2

2! A2− (loga(u))3

3! A3+· · ·
}

lies in 1+A(]0[)⊗̂A∧
Cp

·
A + A(]0[)⊗̂A∧

Cp
· B and takes value 1 ∈ A∧

Cp
at u = 0.

Lemma 3.4. Fix a ∈ Cp. Let G(u) and H(u) be solutions of (KZp) in
Aa

Col⊗̂A∧
Cp

. Suppose that H(u) is invertible. Then H(u)−1G(u) is a constant
function, i.e. an element of A∧

Cp
.

Proof.

d

du
H(u)−1G(u) = −H(u)−1 · d

du
H(u) · H(u)−1G(u) + H(u)−1 d

du
G(u)

= −H(u)−1

(
A

u
+ B

u − 1

)
H(u) · H(u)−1G(u)

+ H(u)−1

(
A

u
+ B

u − 1

)
G(u)

= −H(u)−1

(
A

u
+ B

u − 1

)
G(u) + H(u)−1

(
A

u
+ B

u − 1

)
G(u) = 0 .

Therefore H(u)−1G(u) ∈ Aa
Col⊗̂A∧

Cp
is constant by Proposition 2.4. ��

Proof of Theorem 3.3.
Uniqueness: Suppose that Ha

0 (u) is another solution satisfying above prop-
erties. Then Ha

0 (u) is invertible (i.e. Ha
0 (u) ∈ (Aa

Col⊗̂A∧
Cp

)×) because it
follows easily that its constant term is 1 ∈ Aa

Col. By Lemma 3.4, there exists
a unique ’constant’ series c ∈ A∧

Cp
such that Ga

0(u) = Ha
0 (u) · c. By the

assumption, we get u A · c · u−A → 1 as u → 0, from which we can deduce
c = 1.
Existence: By substituting G(u) = P(u) · u A into (KZp), we get

dP

du
(u) =

[
A

u
, P(u)

]
+ B

u − 1
P(u). (3.1)

By expanding P(u) = 1 + ∑
W :words

PW (u)W , we obtain the following

differential equation from (3.1):

dPW

du
(u) = 1

u
PW ′ A(u) − 1

u
PAW ′(u) if W = AW ′ A (W ′ ∈ A∧

C),

dPW

du
(u) = 1

u
PW ′ B(u) if W = AW ′ B (W ′ ∈ A∧

C),

dPW

du
(u) = −1

u
PBW ′(u) + 1

u − 1
PW ′ A(u) if W = BW ′ A (W ′ ∈ A∧

C),
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dPW

du
(u) = 1

u − 1
PW ′ B(u) if W = BW ′B (W ′ ∈ A∧

C),

dPW

du
(u) = 0 if W = A,

dPW

du
(u) = 1

u − 1
if W = B.

Since du
u and du

1−u lie in Aa
Col ⊗ Ω† and are defined and locally ana-

lytic on P1(Cp)\{0, 1,∞}, we can construct inductively a unique solution
Pa

0 (u) = 1 + ∑
W :words

Pa
0,W(u)W of (3.1) such that each Pa

0,W (u) satisfy the

above differential equation, lies in Aa
Col, is defined and locally analytic on

P1(Cp)\{0, 1,∞} and Pa
W(0) = 0. By putting Ga

0(u) = Pa
0 (u) · u A, we get

a required solution in Theorem 3.3. ��
Proposition 3.5. Let a, b ∈ Cp. Then ιa,b(Ga

0) = Gb
0.

Proof. This follows from the unique characterization of Gb
0 in Theorem 3.3.

��
Proposition 3.6. Fix a ∈ Cp, z0 ∈ P1(Cp)\{0, 1,∞} and g0 ∈ A∧

Cp
. Then

there exists a unique solution Ha(u) ∈ Aa
Col⊗̂A∧

Cp
of (KZp) which satisfies

Ha(z0) = g0. Here Aa
Col⊗̂A∧

Cp
means the non-commutative two variable for-

mal power series ring with Aa
Col -coefficients, i.e. Aa

Col⊗̂A∧
Cp

= Aa
Col〈〈A, B〉〉.

Proof. This immediately follows from Lemma 3.4 by taking Ha(u) =
Ga

0(u) · Ga
0(z0)

−1 · g0. ��
Proposition 3.7. Fix a ∈ Cp. Then there exists a unique solution Ga

1(u) ∈
Aa

Col⊗̂A∧
Cp

of (KZp) which is locally analytic on P1(Cp)\{0, 1,∞} and

satisfies Ga
1(u) ≈ (1 − u)B (u → 1).

Here the meanings of notations (1−u)B and Ga
1(u) ≈ (1−u)B (u → 1)

are similar to those of u A and Ga
0(u) ≈ u A (u → 0) in Theorem 3.3.

Proof. By a similar argument to Theorem 3.3, we get the claim. ��
Proposition 3.8. Ga

1(u) = Ga
0(B, A)(1 − u).

Here for any g ∈ A∧
Cp

, g(B, A) stands for the image of g by the automor-
phism A∧

Cp
induced from A �→ B, B �→ A and, for f(u) ∈ Aa

loc, f(1 − u)

means its image by the algebra homomorphism τ� : Aa
loc → Aa

loc induced
from the automorphism τ : t �→ 1 − t of P1(Cp)\{0, 1,∞}.
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Proof. By the functorial property of Coleman functions (Proposition 2.5),
τ�(Aa

Col) ⊆ Aa
Col. Therefore the proposition follows immediately from the

uniqueness of Ga
1(u) because Ga

0(B, A)(1 − u) lies in Aa
Col⊗̂A∧

Cp
, satisfies

(KZp) and admits the same asymptotic behavior to that of G1(u) at u = 1.
��

Remark 3.9. As in the same way as the above proof of the uniqueness on
Theorem 3.3, we see that Ga

0(u) and Ga
1(u) are both invertible and they

must coincide with each other up to a multiplication from the right by an
invertible element Φ(a),p

K Z (A, B) ∈ A∧
Cp

= Cp〈〈A, B〉〉 (which is independent

of u ∈ P1(Cp)\{0, 1,∞}). Namely

Ga
0(u) = Ga

1(u) · Φ
(a),p
K Z (A, B).

Theorem 3.10. Actually Φ
(a),p
K Z (A, B) is independent of any choice of

branch parameter a ∈ Cp.

Proof. Put z0 ∈ ]
P1

Fp
\{0, 1,∞}[. Since

]
P1

Fp
\{0, 1,∞}[ is a branch in-

dependent region, the special value of Ga
0(u) at u = z0 actually does not

depend on any choice of branch parameter a ∈ Cp. Similarly we see that the
value of Ga

1(u) at u = z0 does not depend on any choice of branch parame-
ter. Therefore Φ

(a),p
K Z (A, B) = Ga

1(z0)
−1 · Ga

0(z0) is actually independent of
any choice of branch parameter a ∈ Cp. ��
Remark 3.11. We have another proof of Theorem 3.10. Put a, b ∈ Cp. Then
we get ιa,b(Ga

0(u)) = Gb
0(u) and ιa,b(Ga

1(u)) = Gb
1(u) by Proposition 3.5.

Therefore we get ιa,b(Φ
(a),p
K Z ) = Φ

(b),p
K Z , which implies Φ

(a),p
K Z = Φ

(b),p
K Z

because Φ
(a),p
K Z and Φ

(b),p
K Z ∈ A∧

Cp
.

Definition 3.12. The p-adic Drinfel’d associator Φ
p
K Z(A, B) is the element

of Cp〈〈A, B〉〉×, which is defined by Ga
0(u) = Ga

1(u) · Φ
p
K Z(A, B).

Remark 3.13. (1) This definition of the p-adic Drinfel’d associator
Φ

p
K Z(A, B) is independent of u ∈ P1(Cp)\{0, 1,∞} by Remark 3.9

and any choice of branch parameter a ∈ Cp by Theorem 3.10.
(2) In Sect. 3.3, we will see that each coefficient of Φ

p
K Z(A, B) can be

expressed in terms of p-adic MZV’s, from which we know that actually
Φ

p
K Z(A, B) belongs to Qp〈〈A, B〉〉 by Theorem 2.25.

(3) We shall prove many identities, such as 2-, 3- and 5-cycle relation of
the p-adic Drinfel’d associator Φ

p
K Z(A, B) in [F3].

3.2. Explicit formulae of the fundamental solution of the p-adic KZ
equation

In this subsection, we will give a calculation to express each coefficient of
the fundamental solution Ga

0(z) of the p-adic KZ equation (KZp).
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Notation 3.14. (1) Let A� = ⊕
w�0

Aw = Q〈A, B〉(⊂ A∧
Cp

) be the non-

commutative graded polynomial ring over Q with two variables A and
B with degA = degB = 1. Here Aw is the homogeneous degree w
part of A�. We call an element of A� which is a monomial with coef-
ficient 1 by a word. But exceptionally we shall not call 1 a word. For
each word W , the weight and depth of W are as follows.
wt(W ) := ‘the sum of exponents of A and B in W’
dp(W ) := ‘the sum of exponent of B in W’

(2) Put M′ = A� · B = {F · B|F ∈ A�} which is the Q-linear subspace
of A�. Note that there is a natural surjection from A� to A�

/
A�A. By

identifying the latter space with Q·1+M′(= Q·1+A� ·B) we obtain the
Q-linear map f ′ : A� � A�

/
A�A ∼→ Q · 1 + M′ ↪→ A�. Abusively we

denote by f ′ the Cp-linear map A∧
Cp

→ A∧
Cp

induced by f ′ : A�→ A�.
(3) For each word W = Bq0 Ap1 Bq1 Ap2 Bq2 · · · Apk Bqk (k � 0, q0 � 0,

pi , qi � 1 for i � 1) in M′, we define

Lia
W(z) := Lia

1, . . . 1︸ ︷︷ ︸
qk−1

,pk+1,1, . . . 1︸ ︷︷ ︸
qk−1−1

,pk−1+1,...... ,1,p1+1 1, . . . 1︸ ︷︷ ︸
q0

(z) ∈ Aa
Col .

By extending linearly, we get the Q-linear map Lia(z) : M′ → Aa
Col

which sends each word W in M′ to Lia
W(z).

Theorem 3.15 (Explicit Formulae). Put a ∈ Cp. Let Ga
0(z) be the funda-

mental solution of the p-adic KZ equation (KZp) in Theorem 3.3. Expand
Ga

0(z) = 1 + ∑
W :words

Ja
p(W )(z) W. Then each coefficient Ja

p(W )(z) can be

expressed as follows.

(a) When W is in M′, Ja
p(W )(z) = (−1)dp(W )Lia

W (z).
(b) When W is written as VAr(r � 0, V ∈ M′),

Ja
p(W )(z) =

∑

s+t=r
0�s,0�t

(−1)dp(W )+sLia
f ′(V◦As)(z)

{loga(z)}t

t! .

(c) When W is written as Ar(r � 0), Ja
p(W )(z) = {loga(z)}r

r! .

For the definition of the shuffle product ‘◦’, see [F0] Definition 3.2.2.
The proof of this theorem will be given in the end of this subsection.

Lemma 3.16. f ′(Ga
0(z)) = 1 + ∑

W∈M′:words
Ja

p(W )(z) W.

Proof. Apply f ′ term by term. ��
Lemma 3.17. f ′(Ga

0(z)) = 1 + ∑
W∈M′:words

(−1)dp(W )Lia
W(z) W.
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Proof. By the p-adic KZ equation, we get the following:

d

du
Ja

p(W )(u) = 1

u
Ja

p(W
′)(u) if W = AW ′ (W ′ ∈ M′),

d

du
Ja

p(W )(u) = 1

u − 1
Ja

p(W
′)(u) if W = BW ′ (W ′ ∈ M′),

d

du
Ja

p(W )(u) = 1

u − 1
if W = B ∈ M′.

By Lemma 2.8, we see that the family
{
(−1)dp(W )Lia

W (z) ∈ Aa
Col

}
W∈M′:words

satisfies the above differential equation. The definition of Ga
0(u) ≈ u A

in Theorem 3.3 especially implies that each Ja
p(W )(z) ∈ Aa

Col for W ∈
M′ is analytic at z = 0 and Ja

p(W )(0) = 0 because f ′ (Ga
0(u) · u−A

) =
f ′ (Ga

0(u)
) = 1 + ∑

W∈M′:words
Ja

p(W )(u) W . Therefore by using Ja
p(W )(0) =

(−1)dp(W )Lia
W (0) = 0, we obtain inductively the equality Ja

p(W )(u) =
(−1)dp(W )Lia

W (u). ��
By combining Lemma 3.16 with Lemma 3.17, we get Theorem 3.15.(a).

Notation 3.18. Let A∧
Cp

[[α]] := A∧
Cp

⊗̂Cp[[α]] be the one variable formal
power series ring with coefficients in the non-commutative algebra A∧

Cp
.

Let g′
1 : A∧

Cp
→ A∧

Cp
[[α]] be the algebra homorphism which sends A, B

to A − α, B respectively and let g′
2 : A∧

Cp
[[α]] → A∧

Cp
be the well-defined

Cp-linear map which sends W ⊗ αq to WAq for each word W and q � 0.

Consider the Cp-linear map g′
2 ◦ g′

1 : A∧
Cp

→ A∧
Cp

.

Lemma 3.19. g′
2 ◦ g′

1 ◦ f ′ = g′
2 ◦ g′

1.

Proof. By definition, we get easily g′
2 ◦ g′

1(VA) = 0 for V ∈ A∧
Cp

. ��

Lemma 3.20. Ga
0(z) = g′

2 ◦ g′
1

(
f ′(Ga

0(z)
)) · zA.

Proof. By Lemma 3.19, we get

g′
2 ◦ g′

1

(
f ′(Ga

0(z)
)) = g′

2 ◦ g′
1

(
Ga

0(z)
)
. (3.2)

Both Ga
0(A − α, B)(u) and u−αGa

0(A, B)(u) are solutions of the p-adic
differential equation dG

du (u) = ( A−α
u + B

u−1)G(u) in Aa
Col⊗̂A∧

Cp
[[α]] and

satisfies the same asymptotic behavior G(u) ≈ u A−α as u → 0. Therefore
the uniqueness of solution of the above p-adic differential equation (which
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can be shown in a way similar to Proposition 3.6), we get Ga
0(A−α, B)(u) =

Ga
0(A, B)(u) · u−α, from which it follows that

g′
2 ◦ g′

1

(
Ga

0(z)
) = Ga

0(z) · z−A. (3.3)

By (3.2) and (3.3), we get Ga
0(z) = g′

2 ◦ g′
1

(
f ′(Ga

0(z)
)) · zA. ��

Therefore we see that Pa(z) = g′
2 ◦ g′

1

(
f ′(Ga

0(z)
))

(for Pa(z), see the
proof of Theorem 3.3).

Notation 3.21. (i) We define the Q-bilinear inner product < ·, ·>: A�×A�
→ A� by < W, W ′ >:= δW,W ′ for each word (or 1) W and W ′, where

δW,W ′ :=
{

1, if W = W ′,
0, if W �= W ′,

(ii) We define F ′ : A�→ A� to be the graded Q-linear map which sends each
word (or 1) W = W ′ Ar (r � 0, W ′ ∈ M′ or W ′ = 1) to (−1)r f ′(W ′ ◦
Ar ). We note that ImF ′ ⊆ M′.

Lemma 3.22. The linear map F ′ is the transpose of g′
2 ◦ g′

1, i.e.

< (g′
2 ◦ g′

1)(W1), W2 >=< W1, F ′(W2) > for any words W and W ′.

Proof. In the case when W1 �∈ M′, it is clear. So we may assume that
W1 ∈ M′. Denote W2 = W ′

2 Ar (r � 0, W ′
2 = 1 or W ′

2 ∈ M′). Then, by
a direct computation, we deduce elementarily the following

< (g′
2 ◦ g′

1)(W1), W2 > = < (g′
2 ◦ g′

1)(W1), W ′
2 Ar >

= < W1, (−1)r f ′(W ′
2 ◦ Ar) > . ��

Proof of Theorem 3.15. By Lemma 3.17 and Lemma 3.22, we get

g′
2 ◦ g′

1

(
f ′(Ga

0(z)
)) = 1 +

∑

W :words

J ′(W )(z) W

where

J ′(W )(z) = (−1)dp(W )Lia
W(z) if W ∈ M′,

J ′(W )(z) = J ′(W ′ Ar)(z) = J ′ (F ′(W ′ Ar)
)
(z)

= (−1)r J ′ ( f ′(W ′ ◦ Ar)
)
(z)

= (−1)dp(W )+r Lia
f ′(W ′◦Ar )(z) if W = W ′ Ar (r � 0, W ′ ∈ M′),

J ′(W )(z) = 0 if W = Ar(r � 1).
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By Lemma 3.20, we obtain

Ga
0(z) = 1 +

∑

W :words

Ja
p(W )(z) W

=
(

1 +
∑

W :words

J ′(W )(z) W

)
·
( ∞∑

n=0

{loga(z)}n

n! An

)
.

Then, by a direct calculation, we can show the explicit formula in Theo-
rem 3.15. ��
Notation 3.23. We denote the involution of A∧

Cp
which exchanges A and B

by τ : A∧
Cp

→ A∧
Cp

.

By Proposition 3.8, we get

Lemma 3.24.

Ga
1(z) = 1 +

∑

W :words

Ja
p

(
τ(W )

)
(1 − z) · W.

Examples 3.25. The following is a low degree part of Ga
0(A, B)(z).

Ga
0(A, B)(z) = 1 + (loga z)A + loga(1 − z)B + (loga z)2

2
A2 − Lia

2(z)AB

+ {
Lia

2(z) + (loga z)loga(1 − z)
}

BA + {loga(1 − z)}2

2
B2 + (loga z)3

6
A3

− Lia
3(z)A2 B + {

2Lia
3(z) + (loga z)Lia

2(z)
}

ABA + Lia
1,2(z)AB2

−
[

Lia
3(z) − (loga z)Lia

2(z) − (loga z)2loga(1 − z)

2

]
BA2 + Lia

2,1(z)BAB

−
[

Lia
1,2(z) + Lia

2,1(z) − loga z{loga(1 − z)}2

2

]
B2 A

+ {loga(1 − z)}3

6
B3 + · · · .

3.3. Explicit formulae of the p-adic Drinfel’d associator

In this subsection, first we give a proof of Theorem 2.18 and then give an
explicit formula to express each coefficient of the p-adic Drinfel’d associator
Φ

p
K Z(A, B). The technique employed here is essentially a p-adic analogue

of that employed in [LM] Appendix A.

Lemma 3.26.

lim
ε→0

′

ε∈Cp

ε−AGa
0(ε) = 1 .
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Proof. Since Pa(u) = Ga
0(u) · u−A lies in A(]0[)⊗̂A∧

Cp
and takes value 1

at u = 0 by Theorem 3.3, we get an expression Pa(u) = 1 + uk(u) where
k(u) ∈ A(]0[)⊗̂A∧

Cp
. Thus

lim
ε→0

′

ε∈Cp

ε−AGa
0(ε) =lim

ε→0

′

ε∈Cp

ε−A Pa(ε)εA

=lim
ε→0

′

ε∈Cp

1 + ε · exp{−loga(ε)A} · k(ε) · exp{loga(ε)A}.

By taking its word expansion and applying Lemma 2.14 in each term, we
get the lemma. ��

Although lim
ε→0
ε∈Cp

Ga
0(ε)ε

−A = 1 by definition and lim
ε→0

′

ε∈Cp

ε−AGa
0(ε) = 1 by

Lemma 3.26, lim
ε→0
ε∈Cp

ε−AGa
0(ε) = 1 does not hold.

Lemma 3.27.

lim
ε→0

′

ε∈Cp

ε−BGa
0(1 − ε) = Φ

p
K Z(A, B) .

Proof. By Proposition 3.8 and Lemma 3.26, we get

lim
ε→0

′

ε∈Cp

ε−BGa
1(1 − ε) = lim

ε→0

′

ε∈Cp

ε−BGa
0(B, A)(ε) = 1 .

Thus

lim
ε→0

′

ε∈Cp

ε−BGa
0(1 − ε) = lim

ε→0

′

ε∈Cp

ε−BGa
1(1 − ε)Φ

p
K Z(A, B) = Φ

p
K Z(A, B).

��
It is interesting to compare lim

ε→0

′

ε∈Cp

ε−BGa
0(1 − ε) = Φ

p
K Z(A, B) in Lem-

ma 3.27 with lim
ε→0

′

ε∈Cp

ε−AGa
0(ε) = 1 in Lemma 3.26.

Proof of Theorem 2.18. By Lemma 3.27, we obtain

lim
ε→0

′

ε∈Cp

( ∞∑

n=0

{−loga(ε)}n

n! Bn

)
·
(

1 +
∑

W :words

Ja
p(W )(1 − ε) W

)
= Φ

p
K Z(A, B).

Therefore especially for a word W ∈ A · A�, we see that lim
ε→0

′

ε∈Cp

Ja
p(W )(1 − ε)

converges to the coefficient of W on Φ
p
K Z(A, B). Thus for each word W =
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Akm−1 B · · · Ak1−1 B (ki � 1) where km > 1, we can say that lim
ε→0

′

ε∈Cp

Ja
p(W )(1−ε)

= (−1)m lim
ε→0

′

ε∈Cp

Lia
k1,··· ,km

(1 − ε) (cf. Theorem 3.15.(a)) converges. ��

Notation 3.28. (1) Put M = A · A� · B = {A · F · B|F ∈ A�}, which
is a Q-linear subspace of A�. Note that there is a natural surjection
from A� to A�

/
(B · A� + A� · A). By identifying the latter space with

Q · 1 + M(= Q · 1 + A · A� · B), we obtain the Q-linear map f : A� �
A�
/
(B · A�+ A� · A)

∼→ Q · 1 + M ↪→ A�. Abusively we denote by f
the Cp-linear map A∧

Cp
→ A∧

Cp
induced by f : A�→ A�.

(2) For each word Ap1 Bq1 Ap2 Bq2 · · · Apk Bqk (pi , qi � 1) in M, we define

Z p(W ) : = lim
ε→0

′

ε∈Cp

Lia
W(1 − ε)

= ζp(1, . . . 1︸ ︷︷ ︸
qk−1

, pk + 1, 1, . . . 1︸ ︷︷ ︸
qk−1−1

, pk−1 + 1, . . . . . . , 1, p1 + 1) .

By extending linearly, we get the Q-linear map Z p : M → Cp which
sends each word W in M to Z p(W ) ∈ Cp.

We already know that Z p(W ) is independent of any choice of branch
parameter a ∈ Cp by Theorem 2.13 and lies in Qp by Theorem 2.25.

Remark 3.29. By combining Lemma 3.27 with Theorem 3.10, we get an-
other proof of branch independency (Theorem 2.13) of the value

lim
z→1

′

z∈Cp−{1}
Lia

k1,··· ,km
(z) for km > 1.

Theorem 3.30 (Explicit Formulae). Expand the p-adic Drinfel’d associ-
ator: Φ

p
K Z(A, B) = 1 + ∑

W :words
Ip(W )W. Then each coefficient Ip(W ) can

be expressed as follows.

(a) When W is in M, Ip(W ) = (−1)dp(W )Z p(W ).
(b) When W is written as BrVAs(r, s � 0, V ∈ M),

Ip(W ) = (−1)dp(W )
∑

0�a�r,0�b�s

(−1)a+b Z p

(
f(Ba ◦ Br−aVAs−b ◦ Ab)

)
.

(c) When W is written as Br As(r, s � 0),

Ip(W ) = (−1)dp(W )
∑

0�a�r,0�b�s

(−1)a+b Z p

(
f(Ba ◦ Br−a As−b ◦ Ab)

)
.

The proof of this theorem will be given in the end of this subsection.
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Remark 3.31. (1) These explicit formulae are the p-adic version of those
given in [F1] Proposition 3.2.3.

(2) Suppose that ki � 1 and km = 1. In the complex case, (−1)m I(Akm −1 B
· · · Ak1−1 B) (for I(·), see [F1] Proposition 3.2.3) is called the regu-
larized MZV corresponding to Akm −1 B · · · Ak1−1 B (just something like
a modification of the divergent series ζ(k1, · · · , km−1, 1)), see for ex-
ample [IKZ]. Therefore we may call (−1)m Ip(Akm −1 B · · · Ak1−1 B) by
the regularized p-adic MZV corresponding to Akm −1 B · · · Ak1−1 B.

Lemma 3.32.

f
(
Φ

p
K Z(A, B)

) = 1 +
∑

W∈M:words

Ip(W )W.

Proof. Apply f term by term. ��
Lemma 3.33.

f
(
Φ

p
K Z(A, B)

) = 1 +
∑

W∈M:words

(−1)dp(W )Z p(W ) · W.

Proof. It follows from Theorem 3.15.(a) and Lemma 3.27. ��
By combining Lemma 3.32 and Lemma 3.33, we get Theorem 3.30.(a).

Notation 3.34. Let A∧
Cp

[[α, β]] := A∧
Cp

⊗̂Cp[[α, β]] be the two variable
formal power series ring with coefficients in the non-commutative algebra
A∧

Cp
. Let g1 : A∧

Cp
→ A∧

Cp
[[α, β]] be the algebra homomorphism which

sends A, B to A − α, B − β respectively and let g2 : A∧
Cp

[[α, β]] → A∧
Cp

be the well-defined Cp-linear map which sends W ⊗ αpβq to BqWAp for
each word W and p, q � 0.

Consider the Cp-linear map g2 ◦ g1 : A∧
Cp

→ A∧
Cp

.

Lemma 3.35. g2 ◦ g1 ◦ f = g2 ◦ g1.

Proof. By definition, we get easily g2 ◦ g1(VA) = 0 and g2 ◦ g1(BV ) = 0
for V ∈ A∧

Cp
. ��

Lemma 3.36. Φ
p
K Z(A, B) = g2 ◦ g1

(
f
(
Φ

p
K Z(A, B)

))
.

Proof. By Lemma 3.35, we get

g2 ◦ g1
(

f
(
Φ

p
K Z(A, B)

)) = g2 ◦ g1
(
Φ

p
K Z(A, B)

)
. (3.4)

Both Ga
0(A−α, B−β)(u) and u−α(1−u)−βG0(A, B)(u) are solutions of the

p-adic differential equation dG
du (u) = ( A−α

u + B−β

u−1 )G(u) in Aa
Col⊗̂A∧

Cp
[[α, β]]

and satisfy the same asymptotic behavior G(u) ≈ u A−α as u → 0. By the
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uniqueness of solutions of the above p-adic differential equation (which can
be shown in a way similar to Proposition 3.6), we get

Ga
0(A − α, B − β)(u) = u−α(1 − u)−βG0(A, B)(u).

Similarly we get

Ga
1(A − α, B − β)(u) = u−α(1 − u)−βG1(A, B)(u).

Therefore

Ga
1(A − α, B − β)(u)−1Ga

0(A − α, B − β)(u)

= Ga
1(A, B)(u)−1Ga

0(A, B)(u),

from which it follows that

Φ
p
K Z(A − α, B − β) = Φ

p
K Z(A, B).

Thus we get,

g2 ◦ g1
(
Φ

p
K Z(A, B)

) = Φ
p
K Z(A, B). (3.5)

From (3.4) and (3.5), it follows that Φ
p
K Z(A, B) = g2 ◦ g1

(
f
(
Φ

p
K Z(A, B)

))
.

��
Notation 3.37. We denote F : A� → A� to be the graded Q-linear map
which sends each word (or 1) W = BrW ′ As (r, s � 0, W ′ ∈ M or W ′ = 1)
to

∑
0�a�r,0�b�s

(−1)a+b f ′(Ba ◦ Br−aW ′ As−b ◦ Ab). We note that ImF ⊆ M.

Lemma 3.38. The linear map F is the transpose of g2 ◦ g1.

Proof. By an argument similar to Lemma 3.22, we can prove this lemma. ��
Proof of Theorem 3.30. By combining Lemma 3.33 with Lemma 3.36 and
Lemma 3.38, we can show the explicit formulae in Theorem 3.30 by an
argument similar to the proof of Theorem 3.15. ��
Examples 3.39. The following is a low degree part of the p-adic Drinfel’d
associator Φ

p
K Z(A, B).

Φ
p
K Z(A, B) = 1 − ζp(2)AB + ζp(2)BA − ζp(3)A2 B + 2ζp(3)ABA

+ ζp(1, 2)AB2 − ζp(3)BA2 − 2ζp(1, 2)BAB + ζp(1, 2)B2 A

− ζp(4)A3 B + 3ζp(4)A2 BA + ζp(1, 3)A2 B2 − 3ζp(4)ABA2

+ ζp(2, 2)ABAB − (2ζp(1, 3) + ζp(2, 2))AB2 A − ζp(1, 1, 2)AB3

+ ζp(4)BA3 − (2ζp(1, 3) + ζp(2, 2))BA2 B + (4ζp(1, 3)

+ ζp(2, 2))BABA + 3ζp(1, 1, 2)BAB2 − ζp(1, 3)B2 A2

− 3ζp(1, 1, 2)B2 AB + ζp(1, 1, 2)B3 A + · · · .
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3.4. Proofs of main results and functional equations among p-adic
multiple polylogarithms

Here we show functional equations among p-adic MPL’s in Theorem 3.40
and give proofs of Theorem 2.22 and Theorem 2.28.

Theorem 3.40 (Functional Equation among p-adic MPL’s). Let W be
a word and z ∈ P1(Cp)\{0, 1,∞}, then

Ja
p(W )(1 − z) =

∑

W ′,W ′′:words
W=W ′W ′′

Ja
p

(
τ(W ′)

)
(z) · Ip(W

′′) .

For Ja
p , Ip, τ , see Theorem 3.15, Theorem 3.30 and Notation 3.23 re-

spectively. This formulae may be regarded as a functional equation among
p-adic MPL’s because Ja

p(τ(W
′))(z) (resp. Ip(W ′′)) is expressed in terms

of p-adic MPL’s (resp. p-adic MZV’s).

Proof. It follows from Ga
0(A, B)(z) = Ga

1(A, B)(z) · Φ p
K Z(A, B) and Lem-

ma 3.24. ��
Examples 3.41. Put a ∈ Cp.

(a) Take W = BAB. Then we get

Lia
2,1(1 − z) = 2Lia

3(z) − loga(z)Lia
2(z) − ζp(2)loga(z) − 2ζp(3).

(b) Take W = BA2 B. Then we get

Lia
3,1(1 − z) = − 2Lia

1,3(z) − Lia
2,2(z) + loga(z)Lia

1,2(z)

+ ζp(2)Lia
2(z) − ζp(3)loga(z) − 2ζp(1, 3) − ζp(2, 2).

(c) Take W = AB. Then we get

Lia
2(1 − z) = −Lia

2(z) − loga(z)loga(1 − z) + ζp(2).

This formula is equal Coleman-Sinnott’s functional equation of the
p-adic dilogarithm ([C] Proposition 6.4.(iii)) because ζp(2) = 0 by
Example 2.19.(a).

Proof of Theorem 2.22. By the explicit formulae in Theorem 3.15 and
the functional equation of p-adic MPL’s in Theorem 3.40 combined with
Lemma 2.14, it is immediate to see that

lim
z→1

′

z∈Cp−{1}
Ja

p(W )(1 − z) = Ip(W ) if it converges.

Theorem 2.22 is a special case for W = BAkm−1−1 B · · · Ak1−1 B. ��
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Notation 3.42. (1) Denote the subset of A∧
Cp

consisting of formal Lie series
in A∧

Cp
byL∧

Cp
and its topological commutator by [L∧

Cp
,L∧

Cp
]. We denote

exp L∧
Cp

(resp. exp [L∧
Cp

,L∧
Cp

] ) to be the subset of A∧
Cp

consisting of
formal power series in A∧

Cp
which is an exponential of an element in

L∧
Cp

(resp. [L∧
Cp

,L∧
Cp

] ).
(2) We define the (non-commutative) Aa

Col-algebra homomorphism

∆ : Aa
Col⊗̂

Cp

A∧
Cp

→ Aa
Col⊗̂

Cp

(
A∧

Cp
⊗̂
Cp

A∧
Cp

)

to be the homomorphism which is deduced from ∆(A) = A⊗1+1⊗ A
and ∆(B) = B ⊗ 1 + 1 ⊗ B.

Proposition 3.43. ∆(Φ
p
K Z) = Φ

p
K Z⊗̂Φ

p
K Z .

Proof. Put a ∈ Cp. By the following calculations,

∆
(
Ga

0(A, B)(u)
) = Ga

0

(
∆(A),∆(B)

)
(u) ≈ u∆(A) as u → 0,

d∆
(
Ga

0(A, B)
)

du
(u) = dGa

0

(
∆(A),∆(B)

)

du
(u)

=
(

∆(A)

u
+ ∆(B)

u − 1

)
Ga

0

(
∆(A),∆(B)

)
(u)

=
(

∆(A)

u
+ ∆(B)

u − 1

)
∆
(
Ga

0(A, B)(u)
)
,

Ga
0(A, B)(u)⊗̂Ga

0(A, B)(u) = (
Ga

0(A, B)(u)⊗̂1
) · (1⊗̂Ga

0(A, B)(u)1
)

≈ u A⊗̂u A as u → 0,

d
(
Ga

0(A, B)(u)⊗̂Ga
0(A, B)(u)

)

du

= d

du

{(
Ga

0(A, B)(u)⊗̂1
) · (1⊗̂Ga

0(A, B)(u)
)}

=
{ d

du

(
Ga

0(A, B)(u)
)⊗̂1

}
·
{

1⊗̂Ga
0(A, B)(u)

}

+
{

Ga
0(A, B)(u)⊗̂1

}
·
{

1⊗̂ d

du

(
Ga

0(A, B)(u)
)}

=
{(

A

u
+ B

u − 1

)
· Ga

0(A, B)(u)⊗̂1

}
·
{

1⊗̂Ga
0(A, B)(u)

}

+
{

Ga
0(A, B)(u)⊗̂1

}
·
{

1⊗̂
(

A

u
+ B

u − 1

)
· Ga

0(A, B)(u)

}

=
(

A⊗̂1 + 1⊗̂A

u
+ B⊗̂1 + 1⊗̂1

u − 1

)
·
{

Ga
0(A, B)(u)⊗̂Ga

0(A, B)(u)
}
,



284 H. Furusho

we see that both ∆
(
Ga

0(A, B)(u)
)

and Ga
0(A, B)(u)⊗̂Ga

0(A, B)(u) are so-
lutions in Aa

Col⊗̂
Cp

(A∧
Cp

⊗̂
Cp

A∧
Cp

) of the p-adic differential equation

dH

dt
(t) =

(
∆(A)

t
+ ∆(B)

t − 1

)
· H(t)

which satisfies H(t) ≈ t A⊗̂t A as t → 0. Because of the uniqueness of
solution for above p-adic differential equation (which can be shown in
a similar way to Proposition 3.6), we get

∆
(
Ga

0(A, B)(u)
) = Ga

0(A, B)(u)⊗̂Ga
0(A, B)(u).

Similarly we get

∆
(
Ga

1(A, B)(u)
) = Ga

1(A, B)(u)⊗̂Ga
1(A, B)(u).

Therefore

∆
(
Φ

p
K Z

) = ∆
(
Ga

1(A, B)(u)−1 · Ga
0(A, B)(u)

)

= ∆
(
Ga

1(A, B)(u)
)−1 · ∆(Ga

0(A, B)(u)
)

= (
Ga

1(A, B)(u)⊗̂Ga
1(A, B)(u)

)−1 · (Ga
0(A, B)(u)⊗̂Ga

0(A, B)(u)
)

= (
Ga

1(A, B)(u)−1 · Ga
0(A, B)(u)

)⊗̂(Ga
1(A, B)(u)−1 · Ga

0(A, B)(u)
)

= Φ
p
K Z⊗̂Φ

p
K Z . ��

Lemma 3.44. Put a ∈ Cp. Denote ga
0(α, β)(z) and ga

1(α, β)(z) to be
the images of Ga

0(A, B)(z) and Ga
1(A, B)(z) by the natural projection

Aa
Col[[A, B]] � Aa

Col[[α, β]] sending A (resp. B) to α (resp. β), where
Aa

Col[[α, β]] is the two variable commutative formal power series ring with
Aa

Col-coefficients. Then

ga
0(α, β)(z) = ga

1(α, β)(z) = zα(1 − z)β in Aa
Col[[α, β]].

Proof. Both ga
0(α, β)(z) and zα(1 − z)β are solutions in Aa

Col[[α, β]] of the
p-adic differential equation

dH

dt
(t) =

(
α

t
+ β

t − 1

)
· H(t)

which satisfy H(t) ≈ tα as t → 0. By the uniqueness of solution of the
above p-adic differential equation (which can be shown in a similar way to
Proposition 3.6), we get

ga
0(α, β)(z) = zα(1 − z)β.
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Similarly we get

ga
1(α, β)(z) = zα(1 − z)β.

Therefore

ga
0(α, β)(z) = ga

1(α, β)(z) = zα(1 − z)β. ��

Theorem 3.45. Φ
p
K Z(A, B) ∈ exp

[
L∧

Cp
,L∧

Cp

]
.

Proof. By Proposition 3.43, we see that Φ
p
K Z is group-like, which means

that Φ
p
K Z(A, B) ∈ exp L∧

Cp
(see [Se] Part I Ch IV Sect. 7). It follows from

Lemma 3.44 that

Φ
p
K Z(A, B) = Ga

1(A, B)(z)−1Ga
0(A, B)(z) ∈ exp

[
L∧

Cp
,L∧

Cp

]
. ��

Corollary 3.46 (Shuffle product formulae). For each word W and
W ′ ∈ M,

Z p(W ) · Z p(W
′) = Z p(W ◦ W ′) .

Proof. Consider the graded Q-linear map Ip : A� → Z(p)
� which sends

each word W to Ip(W ) ∈ Z(p)
� (for Ip(W ), see Theorem 3.30). Then by

Proposition 3.43, we obtain the shuffle product formulae Ip(W ) · Ip(W ′) =
Ip(W ◦ W ′) on Qp for each word W ′ and W ′′. By Theorem 3.30, we get the
corollary. ��
Proof of Theorem 2.28. It follows immediately from Corollary 3.46. ��
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