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1. Introduction and main results

1.1. Introduction. The origins of cluster algebras, first introduced in [9],
lie in the desire to understand, in concrete algebraic and combinatorial terms,
the structure of “dual canonical bases” in (homogeneous) coordinate rings of
various algebraic varieties related to semisimple groups. Several classes of
such varieties—among them Grassmann and Schubert varieties, base affine
spaces, and double Bruhat cells—are expected (and in many cases proved)
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to carry a cluster algebra structure. This structure includes the description
of the ring in question as a commutative ring generated inside its ambient
field by a distinguished family of generators called cluster variables. Even
though most of the rings of interest to us are finitely generated, their set of
cluster variables may well be infinite. A cluster algebra has finite type if it
has a finite number of cluster variables.

The main result of this paper (Theorem 1.4) provides a complete clas-
sification of the cluster algebras of finite type. This classification turns out
to be identical to the Cartan-Killing classification of semisimple Lie alge-
bras and finite root systems. This result is particularly intriguing since in
most cases, the symmetry exhibited by the Cartan-Killing type of a cluster
algebra is not apparent at all from its geometric realization. For instance,
the coordinate ring of the base affine space of the group SL5 turns out to be
a cluster algebra of the Cartan-Killing type D6 . Other examples of similar
nature can be found in Sect. 12, in which we show how cluster algebras of
types ABCD arise as coordinate rings of some classical algebraic varieties.

In order to understand a cluster algebra of finite type, one needs to
study the combinatorial structure behind it, which is captured by its cluster
complex. Roughly speaking, it is defined as follows. The cluster variables for
a given cluster algebra are not given from the outset but are obtained from
some initial “seed” by an explicit process of “mutations”; each mutation
exchanges a cluster variable in the current seed by a new cluster variable
according to a particular set of rules. In a cluster algebra of finite type, this
process “folds” to produce a finite set of seeds, each containing the same
number n of cluster variables (along with some extra information needed to
perform mutations). These n-element collections of cluster variables, called
clusters, are the maximal faces of the (simplicial) cluster complex.

In Theorem 1.13, we identify this complex as the dual simplicial com-
plex of a generalized associahedron associated with the corresponding root
system. These complexes (indeed, convex polytopes [7]) were introduced
in [11] in relation to our proof of Zamolodchikov’s periodicity conjecture
for algebraic Y -systems. A generalized associahedron of type A is the usual
associahedron, or the Stasheff polytope [25]; in types B and C, it is the
cyclohedron, or the Bott-Taubes polytope [5,24].

One of the crucial steps in our proof of the classification theorem is
a new combinatorial characterization of Dynkin diagrams. In Sect. 8, we
introduce an equivalence relation, called mutation equivalence, on finite
directed graphs with weighted edges. We then prove that a connected graph
Γ is mutation equivalent to an orientation of a Dynkin diagram if and only
if every graph that is mutation equivalent to Γ has all edge weights ≤ 3. We
do not see a direct way to relate this description to any previously known
characterization of the Dynkin diagrams.

We already mentioned that the initial motivation for the study of clus-
ter algebras came from representation theory; see [27] for a more detailed
discussion of the representation-theoretic context. Another source of inspi-
ration was Lusztig’s theory of total positivity in semisimple Lie groups,
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which was further developed in a series of papers of the present authors and
their collaborators (see, e.g., [19,8] and references therein). The mutation
mechanism used for creating new cluster variables from the initial “seed”
was designed to ensure that in concrete geometric realizations, these vari-
ables become regular functions taking positive values on all totally positive
elements of a variety in question, a property that the elements of the dual
canonical basis are known to possess [18].

Following the foundational paper [9], several unexpected connections
and appearances of cluster algebras have been discovered and explored.
They included: Laurent phenomena in number theory and combina-
torics [10], Y -systems and thermodynamic Bethe ansatz [11], quiver repre-
sentations [21], and Poisson geometry [12].

While this text belongs to an ongoing series of papers devoted to cluster
algebras and related topics, it is designed to be read independently of any
other publications on the subject. Thus, all definitions and results from
[9,11,7] that we need are presented “from scratch”, in the form most suitable
for our current purposes. In particular, the core concept of a normalized
cluster algebra [9] is defined anew in Sect. 1.2, while Sect. 3 provides the
relevant background on generalized associahedra [11,7].

The main new results (Theorems 1.4–1.13) are stated in Sects. 1.3–1.5.
The organization of the rest of the paper is outlined in Sect. 1.6.

1.2. Basic definitions. We start with the definition of a (normalized) cluster
algebra A (cf. [9, Sects. 2 and 5]). This is a commutative ring embedded in
an ambient field F defined as follows. Let (P,⊕, ·) be a semifield, i.e., an
abelian multiplicative group supplied with an auxiliary addition ⊕ which is
commutative, associative, and distributive with respect to the multiplication
in P. The following example (see [9, Example 5.6]) will be of particular
importance to us: let P be a free abelian group, written multiplicatively, with
a finite set of generators pj ( j ∈ J), and with auxiliary addition ⊕ given by

∏

j

p
a j

j ⊕
∏

j

p
b j

j =
∏

j

p
min(a j,b j )

j .(1.1)

We denote this semifield by Trop(pj : j ∈ J). The multiplicative group
of any semifield P is torsion-free [9, Sect. 5], hence its group ring ZP is
a domain. As an ambient field for A, we take a field F isomorphic to the
field of rational functions in n independent variables (here n is the rank
of A), with coefficients in ZP.

A seed in F is a triple Σ = (x, p, B), where

• x is an n-element subset of F which is a transcendence basis over the
field of fractions of ZP.

• p = (p±
x )x∈x is a 2n-tuple of elements of P satisfying the normalization

condition p+
x ⊕ p−

x = 1 for all x ∈ x.
• B = (bxy)x,y∈x is an n×n integer matrix with rows and columns indexed

by x, which is sign-skew-symmetric [9, Definition 4.1]; that is,



66 S. Fomin, A. Zelevinsky

for every x, y ∈ x, either bxy = byx = 0, or bxybyx < 0.(1.2)

We will need to recall the notion of matrix mutation [9, Definition 4.2].
Let B = (bij) and B′ = (b′

ij ) be real square matrices of the same size. We
say that B′ is obtained from B by a matrix mutation in direction k if

b′
ij =






−bij if i = k or j = k;

bij + |bik |bk j + bik |bk j |
2

otherwise.
(1.3)

Definition 1.1. (Seed mutations) Let Σ = (x, p, B) be a seed in F , as
above, and let z ∈ x. Define the triple Σ = (x, p, B) as follows:

• x = x − {z} ∪ {z}, where z ∈ F is determined by the exchange relation

z z = p+
z

∏

x∈x
bxz>0

xbxz + p−
z

∏

x∈x
bxz<0

x−bxz(1.4)

• the 2n-tuple p = (p±
x )x∈x is uniquely determined by the normalization

conditions p+
x ⊕ p−

x = 1 together with

p+
x /p−

x =






p−
z /p+

z if x = z;
(

p+
z

)bzx p+
x /p−

x if bzx ≥ 0;
(

p−
z

)bzx p+
x /p−

x if bzx ≤ 0.

(1.5)

• the matrix B is obtained from B by applying the matrix mutation in
direction z and then relabeling one row and one column by replacing z
by z.

If the triple Σ is again a seed in F (i.e., if the matrix B is sign-skew-
symmetric), then we say that Σ admits a mutation in the direction z that
results in Σ.

We note that the exchange relation (1.4) is a reformulation of
[9, (2.2),(4.2)], while the rule (1.5) is a rewrite of [9, (5.4), (5.5)]. The
elements p±

x are determined by (1.5) uniquely since p⊕q = 1 and p/q = u
imply p = u/(1⊕u) and q = 1/(1⊕u). In particular, the first case in (1.5)
yields p±

z = p∓
z .

It is easy to check that the mutation of Σ in direction z recovers Σ.

Definition 1.2. (Normalized cluster algebra) Let S be a set of seeds in F
with the following properties:

• every seed Σ ∈ S admits mutations in all n conceivable directions, and
the results of all these mutations belong to S;
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• any two seeds in S are obtained from each other by a sequence of
mutations.

The sets x, for Σ = (x, p, B) ∈ S, are called clusters; their elements are
the cluster variables; the set of all cluster variables is denoted by X. The set
of all elements p±

x ∈p, for all seeds Σ = (x, p, B)∈S, is denoted by P . The
ground ring Z[P ] is the subring of F generated by P . The (normalized)
cluster algebra A = A(S) is the Z[P ]-subalgebra of F generated by X.
The exchange graph of A(S) is the n-regular graph whose vertices are
labeled by the seeds in S, and whose edges correspond to mutations. (This
is easily seen to be equivalent to [9, Definition 7.4].)

Definition 1.2 is a bit more restrictive than the one given in [9], where we
allowed to use any subring with unit in ZP containing P as a ground ring.
Some concrete examples of cluster algebras will be given in Sect. 12.2
below.

Remark 1.3. There is an involution Σ �→ Σ∨ on the set of seeds in F act-
ing by (x, p, B) �→ (x, p∨,−B), where (p∨

x )± = p∓
x . An easy check show

that this involution commutes with seed mutations. Therefore, if a col-
lection of seeds S satisfies the conditions in Definition 1.2, then so does
the collection S∨. The corresponding cluster algebras A(S) and A(S∨) are
canonically identified with each other. (This is a reformulation of [9, (2.8)].)

Two cluster algebras A(S) ⊂ F and A(S′) ⊂ F ′ over the same semi-
field P are called strongly isomorphic if there exists a ZP-algebra iso-
morphism F → F ′ that transports some (equivalently, any) seed in S into
a seed in S′, thus inducing a bijection S → S′ and an algebra isomorphism
A(S) → A(S′).

The set of seeds S for a cluster algebra A = A(S) (hence the algebra
itself) is uniquely determined by any single seed Σ = (x, p, B) ∈ S. Thus,
A is determined by B and p up to a strong isomorphism, justifying the
notation A = A(B, p). In general, an n × n matrix B and a 2n-tuple p
satisfying the normalization conditions define a cluster algebra A(B, p)
if and only if any matrix obtained from B by a sequence of mutations is
sign-skew-symmetric. This condition is in particular satisfied whenever B
is skew-symmetrizable [9, Definition 4.4], i.e., there exists a diagonal matrix
D with positive diagonal entries such that DB is skew-symmetric. Indeed,
matrix mutations preserve skew-symmetrizability [9, Proposition 4.5], and
any skew-symmetrizable matrix is sign-skew-symmetric.

Every cluster algebra over a fixed semifieldP belongs to a series A(B,−)
consisting of all cluster algebras of the form A(B, p), where B is fixed,
and p is allowed to vary. Two series A(B,−) and A(B′,−) are strongly
isomorphic if there is a bijection sending each cluster algebra A(B, p) to
a strongly isomorphic cluster algebra A(B′, p′). (This amounts to requiring
that B and B′ can be obtained from each other by a sequence of matrix
mutations, modulo simultaneous relabeling of rows and columns.)
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1.3. Finite type classification. A cluster algebra A(S) is said to be of finite
type if the set of seeds S is finite.

Let B = (bij ) be an integer square matrix. Its Cartan counterpart is
a generalized Cartan matrix A = A(B) = (aij ) of the same size defined by

aij =
{

2 if i = j;
−|bij | if i �= j.

(1.6)

The following classification theorem is our main result.

Theorem 1.4. All cluster algebras in any series A(B,−) are simultan-
eously of finite or infinite type. There is a canonical bijection between the
Cartan matrices of finite type and the strong isomorphism classes of series
of cluster algebras of finite type. Under this bijection, a Cartan matrix A
of finite type corresponds to the series A(B,−), where B is an arbitrary
sign-skew-symmetric matrix with A(B) = A.

We note that in the last claim of Theorem 1.4, the series A(B,−) is
well defined since A is symmetrizable and therefore B must be skew-
symmetrizable.

By Theorem 1.4, each cluster algebra of finite type has a well-defined
type (e.g., An, Bn, . . . ), mirroring the Cartan-Killing classification.

We prove Theorem 1.4 by splitting it into the following three statements
(Theorems 1.5–1.7 below).

Theorem 1.5. Suppose that

A is a Cartan matrix of finite type;(1.7)
B◦ = (bij) is a sign-skew-symmetric matrix such that(1.8)
A = A(B◦) and bij bik ≥ 0 for all i, j, k;
p◦ is a 2n-tuple of elements in P satisfying the normalization(1.9)
conditions.

Then A(B◦, p◦) is a cluster algebra of finite type.

It is easy to see that for any Cartan matrix A of finite type, there is
a matrix B◦ satisfying (1.8). Indeed, the sign-skew-symmetric matrices B
with A(B) = A are in a bijection with orientations of the Coxeter graph of
A (recall that this graph has I as the set of vertices, with i and j joined by an
edge whenever aij �= 0): under this bijection, bij > 0 if and only if the edge
{i, j} is oriented from i to j. Condition (1.8) means that B◦ corresponds to
an orientation such that every vertex is a source or a sink; since the Coxeter
graph is a tree, hence a bipartite graph, such an orientation exists.

Theorem 1.6. Any cluster algebra A of finite type is strongly isomorphic
to a cluster algebra A(B◦, p◦) for some data of the form (1.7)–(1.9).
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Theorem 1.7. Let B and B′ be sign-skew-symmetric matrices such that
A(B) and A(B′) are Cartan matrices of finite type. Then the series A(B,−)
and A(B′,−) are strongly isomorphic if and only if A(B) and A(B′) are of
the same Cartan-Killing type.

In the process of proving these theorems, we obtain the following char-
acterizations of the cluster algebras of finite type.

Theorem 1.8. For a cluster algebra A, the following are equivalent:

(i) A is of finite type;
(ii) the set X of all cluster variables is finite;

(iii) for every seed (x, p, B) in A, the entries of the matrix B = (bxy) satisfy
the inequalities |bxybyx | ≤ 3, for all x, y ∈ x.

(iv) A = A(B◦, p◦) for some data of the form (1.7)–(1.9).

The equivalence (i) ⇐⇒ (iv) in Theorem 1.8 is tantamount to Theo-
rems 1.5–1.6.

1.4. Cluster variables in the finite type. The techniques in our proof of
Theorem 1.5 allow us to enunciate the basic properties of cluster algebras
of finite type. We begin by providing an explicit description of the set of
cluster variables in terms of the corresponding root system.

For the remainder of Sect. 1, A = (aij )i, j∈I is a Cartan matrix of finite
type and A = A(B◦, p◦) a cluster algebra (of finite type) related to A
as in Theorem 1.5. Let Φ be the root system associated with A, with the
set of simple roots Π = {αi : i ∈ I} and the set of positive roots Φ>0 .
(Our convention on the correspondence between A and Φ is that the simple
reflections si act on simple roots by si(α j) = α j −aijαi .) Let x◦ ={xi : i ∈ I}
be the cluster for the initial seed (x◦, p◦, B◦). (By an abuse of notation, we
label the rows and columns of B◦ by the elements of I rather than by the
variables xi , for i ∈ I .) We will use the shorthand xα = ∏

i∈I xai
i for any

vector α = ∑
i∈I aiαi in the root lattice.

The following result shows that the cluster variables of A are naturally
parameterized by the set Φ≥−1 = Φ>0 ∪ (−Π) of almost positive roots.

Theorem 1.9. There is a unique bijection α �→ x[α] between the almost
positive roots in Φ and the cluster variables in A such that, for any
α ∈ Φ≥−1 , the cluster variable x[α] is expressed in terms of the initial
cluster x◦ = {xi : i ∈ I} as

x[α] = Pα(x◦)
xα

,(1.10)

where Pα is a polynomial over ZP with nonzero constant term. Under this
bijection, x[−αi] = xi .
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Formula (1.10) is an example of the Laurent phenomenon established
in [9] for arbitrary cluster algebras: every cluster variable can be written
as a Laurent polynomial in the variables of an arbitrary fixed cluster and
the elements of P. In [9], we conjectured that the coefficients of these
Laurent polynomials are always nonnegative. Our next result establishes this
conjecture (indeed, strengthens it) in the special case of the distinguished
cluster x◦ in a cluster algebra of finite type.

Theorem 1.10. Every coefficient of each polynomial Pα (see (1.10)) can
be written as a polynomial in the elements of P (see Definition 1.2) with
positive integer coefficients.

1.5. Cluster complexes. We next focus on the combinatorics of clusters.
As before, A is a cluster algebra of finite type associated with a root
system Φ.

Theorem 1.11. The exact form of each exchange relation (1.4) in A (that
is, the cluster variables, exponents, and coefficients appearing in the right-
hand side) depends only on the ordered pair (z, z) of cluster variables, and
not on the particular choice of clusters (or seeds) containing them.

In fact, we do more: we describe in concrete root-theoretic terms all pairs
(β, β′) of almost positive roots such that the product x[β]x[β′] appears as
a left-hand side of an exchange relation, and for every such pair, we describe
the exponents appearing on the right. See Definition 4.2 and formula (5.1).

Theorem 1.12. Every seed (x, p, B) in A is uniquely determined by its
cluster x. For any cluster x and any x ∈ x, there is a unique cluster x′ with
x ∩ x′ = x − {x}.

We conjecture that the requirement of finite type in Theorems 1.11
and 1.12 can be dropped; that is, any cluster algebra conjecturally has these
properties.

We define the cluster complex ∆(A) as the simplicial complex whose
ground set is X (the set of all cluster variables) and whose maximal sim-
plices are the clusters. By Theorem 1.12, the cluster complex encodes the
combinatorics of seed mutations. Thus, the dual graph of ∆(A) is precisely
the exchange graph of A.

Our next result identifies the cluster complex ∆(A) with the dual com-
plex ∆(Φ) of the generalized associahedron of the corresponding type. The
simplicial complexes ∆(Φ) were introduced and studied in [11]; see also
[7] and Sect. 3 below.

Theorem 1.13. Under the bijection Φ≥−1 → X of Theorem 1.9, the cluster
complex ∆(A) is identified with the simplicial complex ∆(Φ). In particular,
the cluster complex does not depend on the coefficient semifield P, or on the
choice of the coefficients p◦ in the initial seed.
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1.6. Organization of the paper. The bulk of the paper is devoted to
the proofs of Theorems 1.4–1.8. We already noted that Theorem 1.4 fol-
lows from Theorems 1.5–1.7, and that the implications (iv) �⇒ (i) and
(i) �⇒ (iv) in Theorem 1.8 are essentially Theorems 1.5 and 1.6, respec-
tively. Furthermore, (i) �⇒ (ii) is trivial, while (ii) �⇒ (iii) follows from
[9, Theorem 6.1]. Thus, we need to prove the following:

• Theorem 1.5;
• Theorem 1.6 via the implication (iii)�⇒(iv) in Theorem 1.8;
• Theorem 1.7.

Figure 1 shows the logical dependences between these proofs, and the
sections containing them. Theorems 1.9–1.13, which only rely on Theo-
rem 1.5, are proved in Sects. 5– 6, following the completion of the proof of
Theorem 1.5.

Theorem 1.6

Theorem 1.5

Sects. 7–9

Sects. 2–4

�

�
�
�
�
���

Theorem 1.7

Theorems 1.9–1.13

Sect. 10

Sects. 5–6

�

Fig. 1. Logical dependences among the proofs of Theorems 1.5–1.13

The concluding Sect. 12 provides explicit geometric realizations for
some special cluster algebras of the classical types ABCD. These examples
are based on a general criterion given in Sect. 11 for a cluster algebra to
be isomorphic to a Z-form of the coordinate ring of some algebraic variety.
In particular, we show that a Z-form of the homogeneous coordinate ring
of the Grassmannian Gr2,m (m ≥ 5) in its Plücker embedding carries two
different cluster algebra structures of types Am−3 and Bm−2 , respectively.

2. Cluster algebras via pseudomanifolds

2.1. Pseudomanifolds and geodesic loops. This section begins our proof
of Theorem 1.5. Its main result (Proposition 2.3) provides sufficient condi-
tions ensuring that a cluster algebra that arises from a particular combina-
torial construction is of finite type.

The first ingredient of this construction is an (n − 1)-dimensional pure
simplicial complex ∆ (finite or infinite) on the ground set Ψ. Thus, every
maximal simplex in ∆ is an n-element subset of Ψ (a “cluster”). A simplex
of codimension 1 (i.e., an (n − 1)-element subset of Ψ) is called a wall. The
vertices of the dual graph Γ are the clusters in ∆; two clusters are connected
by an edge in Γ if they share a wall.
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We assume that ∆ is a pseudomanifold, i.e.,

every wall is contained in precisely two maximal simplices(2.1)
(clusters);
the dual graph Γ is connected.(2.2)

In view of (2.1), the graph Γ is n-regular, i.e., there are precisely n edges
incident to every vertex C ∈ Γ.

Example 2.1. Let n = 1. Then (2.1) is saying that the empty simplex is
contained in precisely two 0-dimensional simplices (points in Ψ). Thus
a 0-dimensional pseudomanifold must be a disjoint union of two points
(a 0-dimensional sphere). The dual graph Γ has these points as vertices,
with an edge connecting them.

For n = 2, a 1-dimensional pseudomanifold is nothing but a 2-regular
connected graph—thus, either an infinite chain or a cycle. Ditto for its dual
graph.

For a non-maximal simplex D ∈ ∆, we denote by ∆D the link of D.
This is the simplicial complex on the ground set ΨD = {α ∈ Ψ − D :
D ∪ {α} ∈ ∆} such that D′ is a simplex in ∆D if and only if D ∪ D′ is
a simplex in ∆. The link ∆D is a pure simplicial complex of dimension
n − |D| − 1 satisfying property (2.1) of a pseudomanifold.

We will assume that ∆ satisfies the following additional condition:

the link of every non-maximal simplex D in ∆ is a pseudo-(2.3)
manifold.

Equivalently, the dual graph ΓD of ∆D is connected.
Conditions (2.1)–(2.3) can be restated as saying that ∆ is a (possibly

infinite, simplicial) abstract polytope in the sense of [1] or [23]; another
terminology is that ∆ is a thin, residually connected complex (see, e.g., [2]).

We identify the graph ΓD with an induced subgraph in Γ whose vertices
are the maximal simplices in ∆ that contain D. In particular, for |D| = n−2,
the pseudomanifold ∆D is 1-dimensional, so ΓD is either an infinite chain
or a finite cycle in Γ. In the latter case, we call ΓD a geodesic loop. (This is
a geodesic in Γ with respect to the canonical connection on Γ, in the sense
of [4,14].)

We assume that

the fundamental group of Γ is generated by the geodesic loops(2.4)
pinned down to a fixed basepoint.

More precisely, by (2.4) we mean that the fundamental group of Γ is gen-
erated by all the loops of the form PL P̄, where L is a geodesic loop, P is
a path originating at the basepoint, and P̄ is the inverse path to P.

Lemma 2.2. Let ∆ be the boundary complex of an n-dimensional simplicial
convex polytope. Then conditions (2.1)–(2.4) are satisfied.
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Equivalently, conditions (2.1)–(2.4) hold if ∆ is (the simplicial com-
plex of) the normal fan of a simple n-dimensional convex polytope ∆∗.

Proof. Statements (2.1)–(2.2) are trivial. The link ∆D of each non-maximal
face D in ∆ is again a simplicial polytope, implying (2.3). Specifically,
∆D is canonically identified (see, e.g., [3, Problem VI.1.4.4]) with the dual
polytope for the dual face D∗ in the dual simple polytope ∆∗. Thus, the
graph ΓD is the 1-skeleton of D∗.

It remains to check (2.4). The case n = 2 is trivial, so let us assume
that n ≥ 3. Each geodesic loop ΓD (for an (n − 2)-dimensional face D) is
identified with the 1-skeleton (i.e, the boundary) of the dual 2-dimensional
face D∗ in ∆∗. The boundary cell complex of ∆∗ is spherical, hence simply
connected. On the other hand, the fundamental group of this complex can
be obtained as a quotient of the fundamental group of its 1-skeleton Γ by
the normal subgroup generated by the boundaries of its 2-dimensional cells
pinned down to a basepoint (see, e.g., [22, Theorems VII.2.1, VII.4.1]), or,
equivalently, by the subgroup generated by all pinned-down geodesic loops.
This proves (2.4). ��
2.2. Sufficient conditions for finite type. We next describe the second
ingredient of our construction. Suppose that we have a family of integer
matrices B(C) = (bαβ(C))α,β∈C, for all vertices C in Γ, satisfying the
following conditions:

all the matrices B(C) are sign-skew-symmetric.(2.5)

for every edge (C, C) in Γ, with C = C − {γ } ∪ {γ }, the matrix(2.6)
B(C) is obtained from B(C) by a matrix mutation in direction γ

followed by relabeling one row and one column by replacing γ

by γ .

We need one more assumption concerning the matrices B(C), which
will require a little preparation. Fix a geodesic ΓD and associate to its every
vertex C = D∪{α, β} the integer bαβ(C)bβα(C). It is trivial to check, using
(2.6), that this integer depends only on D, not on the particular choice of α
and β. We say that ΓD is of finite type if bαβ(C)bβα(C) ∈ {0,−1,−2,−3}
for some (equivalently, any) vertex C = D ∪ {α, β} on ΓD . If this is the
case, then we associate to ΓD the Coxeter number h ∈ Z>0 defined by

2 cos(π/h) = √|bαβ(C)bβα(C)| ,
or, equivalently, by the table

|bαβ(C)bβα(C)| 0 1 2 3

h(C, x, y) 2 3 4 6
.

Our last condition is:

every geodesic loop in Γ is of finite type, and has length h + 2,(2.7)
where h is the corresponding Coxeter number.
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Proposition 2.3. Assume that a simplicial complex ∆ and a family of ma-
trices (B(C)) satisfy the assumptions (2.1)–(2.7) above. Let B = B(C) for
some vertex C, and let A = A(B, p) be the cluster algebra associated with
B and some coefficient tuple p. There exists a surjection from the set of
vertices of Γ onto the set of all seeds for A. In particular, if ∆ is finite, then
A is of finite type.

We will prove this proposition by showing that, whether ∆ is finite or
infinite, its dual graph Γ is always a covering graph for the exchange graph
of A(B, p). To formulate this more precisely, we need some preparation.

Let C be a vertex of Γ. A seed attachment at C consists of a choice
of a seed Σ = (x, p, B) and a bijection α �→ x[C, α] between C and
x identifying the matrices B(C) and B, so that bαβ(C) = bx[C,α],x[C,β].
The transport of a seed attachment along an edge (C, C) with C = C −
{γ } ∪ {γ } is defined as follows: the seed Σ = (x, p, B) attached to C is
obtained from Σ by the mutation in direction x[C, γ ], and the corresponding
bijection C → x is uniquely determined by x[C, α] = x[C, α] for all
α ∈ C∩ C. (The remaining cluster variable x[C, γ ] is obtained from x[C, γ ]
by the corresponding exchange relation (1.4).) We note that transporting the
resulting seed attachment backwards from C to C recovers the original seed
attachment.

Proposition 2.3 is an immediate consequence of the following lemma.

Lemma 2.4. Let ∆ and (B(C)) satisfy (2.1)–(2.7). Suppose we are given
a vertex C◦ in Γ together with a seed attachment involving a seed Σ◦ for
a cluster algebra A.

1. The given seed attachment at C◦ extends uniquely to a family of seed
attachments at all vertices in Γ such that, for every edge (C, C), the seed
attachment at C is obtained from that at C by transport along (C, C).

2. Let Σ(C) denote the seed attached to a vertex C. The map C �→ Σ(C)
is a surjection onto the set of all seeds for A.

3. For every vertex C and every α ∈ C, the cluster variable x[C, α] attached
to α at C depends only on α (so can be denoted by x[α]).

4. The map α �→ x[α] is a surjection from the ground set Ψ onto the set of
all cluster variables for A.

Proof. 1. Since Γ is connected, we can transport the initial seed attachment
at C◦ to an arbitrary vertex C along a path from C◦ to C. We need to show
that the resulting seed attachment at C is independent of the choice of a path.
For that, it suffices to prove that transporting a seed attachment along a loop
in Γ brings it back unchanged. By (2.4), it is enough to show this for the
geodesic loops. Then the claim follows from (2.7) and [9, Theorem 7.7].

2. Take an arbitrary seed Σ for A. By Definition 1.2, Σ can be obtained
from the initial seed Σ◦ by a sequence of mutations. This sequence is
uniquely lifted to a path (C◦, . . . , C) in Γ such that transporting the initial



Cluster algebras II 75

seed attachment at C◦ along the edges of this path produces the chosen
sequence of mutations. Hence Σ(C) = Σ, as desired.

3. Let α ∈ Ψ, and let C and C′ be two vertices of Γ such that α ∈ C ∩C ′.
By (2.3), C and C ′ can be joined by a path (C1 = C, C2, . . . , C� = C ′)
such that α ∈ Ci for all i. Hence x[C1, α] = x[C2, α] = · · · = x[C�, α], as
needed.

4. Follows from Part 2. ��
Remark 2.5. Parts 1 and 2 in Lemma 2.4 imply that the map C �→ Σ(C)
induces a covering of the exchange graph of A by the graph Γ. If, in addition,
the map α �→ x[α] in Lemma 2.4 is a bijection, then the map C �→ Σ(C) is
also a bijection. Thus, the latter map establishes an isomorphism between Γ
and the exchange graph of A, and between ∆ and the cluster complex of A.

3. Generalized associahedra

This section contains an exposition of the results in [11] and [7] that will be
used later in our proof of Theorem 1.5.

Let A = (aij )i, j∈I be an indecomposable Cartan matrix of finite type,
and Φ the corresponding irreducible root system of rank n = |I |. We retain
the notation introduced in Sect. 1.4. In particular, Φ≥−1 = Φ>0 ∪ (−Π)
denotes the set of almost positive roots.

The Coxeter graph associated to Φ is a tree; recall that this graph has the
index set I as the set of vertices, with i and j joined by an edge whenever
aij �= 0. In particular, the Coxeter graph is bipartite; the two parts I+, I− ⊂ I
are determined uniquely up to renaming. The sign function ε : I → {+,−}
is defined by

ε(i) =
{+ if i ∈ I+ ;
− if i ∈ I− .

(3.1)

Let Q = ZΠ denote the root lattice, and QR the ambient real vector
space. For γ ∈ QR, we denote by [γ : αi] the coefficient of αi in the
expansion of γ in the basis Π. Let τ+ and τ− denote the piecewise-linear
automorphisms of QR given by

[τεγ : αi] =
{−[γ : αi] −∑

j �=i aij max([γ : α j], 0) if i ∈ Iε;
[γ : αi] otherwise.

(3.2)

It is easy to see that each of τ+ and τ− is an involution that preserves the set
Φ≥−1. More specifically, the action of τ+ and τ− on Φ≥−1 can be described
as follows:

τε(α) =
{
α if α = −αi, i ∈ I−ε;(∏

i∈Iε
si
)
(α) otherwise.

(3.3)
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(The product of simple reflections
∏

i∈Iε
si is well-defined since its factors

commute). To illustrate, consider the type A2, with I+ = {1} and I− = {2}.
Then

−α1
τ+←−−→ α1

τ−←−−→ α1+α2
τ+←−−→ α2

τ−←−−→ −α2 .
� �
τ− τ+

(3.4)

We denote by 〈τ−, τ+〉 the group generated by τ− and τ+ .
The Weyl group of Φ is denoted by W , its longest element by w◦ , and

its Coxeter number by h.

Theorem 3.1. [11, Theorems 1.2, 2.6]

1. The order of τ−τ+ is equal to (h + 2)/2 if w◦ = −1, and to h + 2
otherwise. Accordingly, 〈τ−, τ+〉 is a dihedral group of order (h + 2) or
2(h + 2).

2. The correspondence Ω �→ Ω∩(−Π) is a bijection between the 〈τ−, τ+〉-
orbits in Φ≥−1 and the 〈−w◦〉-orbits in (−Π).

We note that Theorem 3.1 is stronger than [11, Theorem 2.6], since in
the latter, τ− and τ+ are treated as permutations of the set Φ≥−1 , rather than
as transformations of the entire space QR. This stronger version follows
from [11, Theorem 1.2] by “tropical specialization” (see [11, (1.8)]).

According to [11, Sect. 3.1], there exists a unique function (α, β) �→
(α‖β) on Φ≥−1 × Φ≥−1 with nonnegative integer values, called the com-
patibility degree, such that

(−αi‖α) = max ([α : αi], 0)(3.5)

for any i ∈ I and α ∈ Φ≥−1 , and

(τεα‖τεβ) = (α‖β)(3.6)

for any α, β ∈ Φ≥−1 and any sign ε. We say that α and β are compatible
if (α‖β) = 0. (This is equivalent to (β‖α) = 0 by [11, Proposition 3.3,
Part 2].)

Let ∆(Φ) be the simplicial complex on the ground set Φ≥−1 whose
simplices are the subsets of mutually compatible roots. As in Sect. 2 above,
the maximal simplices of ∆(Φ) are called clusters.

Theorem 3.2. [11, Theorems 1.8, 1.10] [7, Theorem 1.4]

1. Each cluster in ∆(Φ) is a Z-basis of the root lattice Q; in particular, all
clusters are of the same size n.

2. The cones spanned by the simplices in ∆(Φ) form a complete simplicial
fan in QR.

3. This simplicial fan is the normal fan of a simple n-dimensional convex
polytope, the generalized associahedron of the corresponding type.
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Fig. 2. The complex ∆(Φ) and the corresponding polytope in type A2

Generalized associahedra of types ABC are: in type A, the Stasheff
polytope, or ordinary associahedron (see, e.g., [25,17] or [13, Chap. 7]); in
types B and C, the Bott-Taubes polytope, or cyclohedron
(see [5,20,24]). Explicit combinatorial descriptions of generalized asso-
ciahedra of types ABCD in relation to the root system framework are
discussed in [11,7]; see also Sect. 12 below.

Proposition 3.3. [11, Theorem 3.11] Every vector γ ∈ Q has a unique
cluster expansion, that is, γ can be expressed uniquely as a nonnegative
linear combination of mutually compatible roots from Φ≥−1 (the cluster
components of γ ).

Proposition 3.4. [7, Proposition 1.13] Let [γ : α]clus denote the coefficient
of an almost positive root α in the cluster expansion of a vector γ ∈ Q.
Then we have [σ(γ) : σ(α)]clus = [γ : α]clus for σ ∈ 〈τ+, τ−〉.

We call two roots β, β′ ∈ Φ≥−1 exchangeable if (β‖β′) = (β′‖β) = 1.
The choice of terminology is motivated by the following proposition.

Proposition 3.5. [7, Lemma 2.2] Let C and C′ = C − {β} ∪ {β′} be two
adjacent clusters. Then the roots β and β′ are exchangeable.

The converse of Proposition 3.5 is also true: see Corollary 4.4 below.

Proposition 3.6. [7, Theorem 1.14] If n > 1 and β, β′ ∈ Φ≥−1 are ex-
changeable, then the set

{σ−1(σ(β) + σ(β′)) : σ ∈ 〈τ+, τ−〉}
consists of two elements of Q, one of which is β + β′, and the other will be
denoted by β �β′. In the special case where β′ = −α j , j ∈ I , we have

(−α j)�β = τ−ε( j)(−α j + τ−ε( j)(β))

= β − α j +∑
i �= j aijαi .

(3.7)
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A precise rule for deciding whether an element σ−1(σ(β) + σ(β′)) is
equal to β + β′ or β �β′ is given in Lemma 4.7 below.

Remark 3.7. If n = 1, i.e., Φ is of type A1 with a unique simple root α1,
then {β, β′} = {−α1, α1}, and the group 〈τ+, τ−〉 is just the Weyl group
W = 〈s1〉. Thus, in this case, the set in Proposition 3.6 consists of a single
element β + β′ = 0. It is then natural to set β �β′ = 0 as well.

Remark 3.8. All results in this section extend in an obvious way to the case
of an arbitrary Cartan matrix of finite type (not necessarily indecompos-
able). In that generality, Φ is a disjoint union of irreducible root systems
Φ(1), . . . ,Φ(m), and the clusters for Φ are the unions C1 ∪ · · · ∪ Cm , where
each Ck is a cluster for Φ(k).

4. Proof of Theorem 1.5

In this section, we complete the proof of Theorem 1.5. The plan is as fol-
lows. Without loss of generality, we can assume that the Cartan matrix A
is indecomposable, so the corresponding root system Φ is irreducible. By
Theorem 3.2 and Lemma 2.2, conditions (2.1)–(2.4) are satisfied. By Propo-
sition 2.3, to prove Theorem 1.5 it suffices to define a family of matrices
B(C), for each cluster C in ∆(Φ), such that (2.5)–(2.7) hold, together with

for some cluster C◦ , the matrix B◦ = B(C◦) is as in (1.8).(4.1)

Defining the matrices B(C) requires a little preparation. Throughout this
section, all roots are presumed to belong to the set Φ≥−1 .

Lemma 4.1. There exists a sign function (β, β′) �→ ε(β, β′) ∈ {±1} on
pairs of exchangeable roots, uniquely determined by the following proper-
ties:

ε(−α j, β
′) = −ε( j) ;(4.2)

ε(τβ, τβ′) = −ε(β, β′) for τ ∈ {τ+, τ−} and β,(4.3)

β′ /∈ {−α j : τ(−α j) = −α j}.
Moreover, this function is skew-symmetric:

ε(β′, β) = −ε(β, β′).(4.4)

Proof. The uniqueness of ε(β, β′) is an easy consequence of Theorem 3.1,
Part 2. Let us prove the existence. For a root β ∈ Φ≥−1 and a sign ε,
let kε(β) denote the smallest nonnegative integer k such that τ(k+1)

ε (β) =
τ(k)
ε (β) ∈ −Π, where we abbreviate

τ(k)
ε = τ± · · · τ−ετε︸ ︷︷ ︸

k factors
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(cf. Theorem 3.1). In view of [7, Theorem 3.1], we always have

k+(β) + k−(β) = h + 1;(4.5)

in particular, kε( j)(−α j) = h + 1 and k−ε( j)(−α j) = 0. It follows from
(4.5) that if β and β′ are incompatible (in particular, exchangeable), then
kε(β) < kε(β

′) for precisely one choice of a sign ε. Let us define ε(β, β′)
by the condition

kε(β,β′)(β) < kε(β,β′)(β
′) .(4.6)

The properties (4.2)–(4.4) are immediately checked from this definition. ��
We are now prepared to define the matrices B(C) = (bαβ(C)).

Definition 4.2. Let C be a cluster in ∆(Φ), that is, a Z-basis of the root
lattice Q consisting of n mutually compatible roots. Let C′ = C −{β}∪{β′}
be an adjacent cluster obtained from C by exchanging a root β ∈ C with
some other root β′. The entries bαβ(C), α ∈ C, of the matrix B(C) are
defined by

bαβ(C) = ε(β, β′) · [β + β′ − (β �β′) : α]C,(4.7)

where [γ : α]C denotes the coefficient of α in the expansion of a vector
γ ∈ Q in the basis C.

To complete the proof of Theorem 1.5, all we need to show is that the
matrices B(C) described in Definition 4.2 satisfy (4.1) and (2.5)–(2.7).

Proof of (4.1). Let C◦ = −Π be the cluster consisting of all the negative
simple roots. Applying (4.7) and using (4.2) and (3.7), we obtain

b−αi ,−α j (C◦) = −ε( j) ·
[

−
∑

k �= j

ak jαk : −αi

]

C◦
(4.8)

=
{

0 if i = j;
ε( j)aij if i �= j,

establishing (4.1). ��
Proof of (2.5). We start by summarizing the basic properties of cluster
expansions of β + β′ and β �β′ for an exchangeable pair of roots.

Lemma 4.3. Let β, β′ ∈ Φ≥−1 be exchangeable.

1. No negative simple root can be a cluster component of β + β′.
2. The vectors β + β′ and β �β′ have no common cluster components.

That is, no root in Φ≥−1 can contribute, with nonzero coefficient, to the
cluster expansions of both β + β′ and β �β′.

3. All cluster components of β + β′ and β �β′ are compatible with both β
and β′.
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4. A root α ∈ Φ≥−1 , α /∈ {β, β′}, is compatible with both β and β′ if and
only if it is compatible with all cluster components of β + β′ and β �β′.

5. If α ∈ −Π is compatible with all cluster components of β + β′, then it
is compatible with all cluster components of β �β′.

Proof. 1. Suppose [β + β′ : −αi]clus > 0 for some i ∈ I . (Here we use
the notation from Proposition 3.4.) Since all roots compatible with −αi
and different from −αi do not contain αi in their simple root expansion, it
follows that [β + β′ : αi] < 0. This can only happen if one of the roots β
and β′, say β, is equal to −αi ; but since β′ is incompatible with β, we will
still have [β + β′ : αi] ≥ 0, a contradiction.

2. Suppose α is a common cluster component of β + β′ and β �β′.
Applying if necessary a transformation from 〈τ+, τ−〉, we can assume that
α is negative simple (see Proposition 3.4, and Theorem 3.1, Part 2). But this
is impossible by Part 1.

3. The claim for β + β′ is proved in [7, Lemma 2.3]. Since β �β′ =
σ−1(σ(β)+σ(β′)) for some σ ∈ 〈τ+, τ−〉, the claim for β �β′ follows from
Proposition 3.4.

4. First suppose that α is compatible with both β and β′. The fact
that α is compatible with all cluster components of β + β′ is proved in
[7, Lemma 2.3]. The fact that α is compatible with all cluster components
of β �β′ now follows in the same way as in Part 3.

To prove the converse, suppose that α is incompatible with β. As in
Part 2 above, we can assume that α = −αi for some i. Thus, we have
[β : αi] > 0. Since α �= β′, it follows that [β + β′ : αi] > 0 as well.
Therefore, [γ : αi] > 0 for some cluster component γ of β +β′, and we are
done.

5. This follows from [7, Theorem 1.17]. ��
As a corollary of Lemma 4.3, we obtain the converse of Proposition 3.5.

Corollary 4.4. Let β and β′ be exchangeable almost positive roots. Then
there exist two adjacent clusters C and C′ such that C ′ = C − {β} ∪ {β′}.
Proof. By Lemma 4.3, Parts 3 and 4, the set consisting of β and all cluster
components of β + β′ and β �β′ is compatible (i.e., all its elements are
mutually compatible). Thus, there exists a cluster C containing this set.
Again using Lemma 4.3, Part 4, we conclude that every element of C − {β}
is compatible with β′. Hence C − {β} ∪ {β′} is a cluster, as desired. ��
Corollary 4.5. Let C and C′ = C − {β} ∪ {β′} be adjacent clusters . Then
all cluster components of β + β′ and β �β′ belong to C ∩ C′ = C − {β}.
Proof. By Lemma 4.3, Parts 3 and 4, any cluster component of β + β′ or
β �β′ is compatible with every element of C, hence must belong to C. ��

We next derive a useful alternative description of the matrix entries
of B(C).
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Lemma 4.6. In the situation of Definition 4.2, we have

bαβ(C) = ε(β, β′) · ([β + β′ : α]clus − [β �β′ : α]clus
)
.(4.9)

In particular, the entry bαβ(C) is uniquely determined by α, β, and β′.

Proof. By Corollary 4.5, the cluster expansions of the vectors β + β′ and
β �β′ are the same as their basis C expansions. Thus, (4.7) is equivalent
to (4.9). ��

We will need the following lemma (cf. Proposition 3.6).

Lemma 4.7. For a pair of exchangeable roots β and β′ and a sign ε, we
have

(τ(k)
ε )−1(τ(k)

ε (β) + τ(k)
ε (β′)) =






β + β′ if 0 ≤ k ≤ min(kε(β), kε(β
′));

β �β′ if min(kε(β), kε(β
′)) < k

≤ max(kε(β), kε(β
′)).

Proof. This is a consequence of [7, Lemma 3.2]. ��
We next establish the following symmetry property.

Lemma 4.8. For τ ∈ {τ+ , τ−}, we have bτα,τβ(τC) = −bαβ(C).

Proof. Let us introduce some notation. For every pair of exchangeable roots
(β, β′), we denote by S+(β, β′) and S−(β, β′) the two elements of Q given
by

Sε(β,β′)(β, β′) = β + β′,
S−ε(β,β′)(β, β′) = β �β′.

(4.10)

In this notation, (4.9) takes the form

bαβ(C) = [S+(β, β′) : α]clus − [S−(β, β′) : α]clus .(4.11)

The functions S± satisfy the following symmetry property:

τ Sε(β, β′) = S−ε(τβ, τβ′) for τ ∈ {τ+, τ−};(4.12)

this follows by comparing (4.3) with Lemma 4.7. The lemma follows by
combining (4.11) and (4.12) with Proposition 3.4. ��

We are finally ready for the task at hand: verifying that each matrix B(C)
is sign-skew-symmetric. In view of (4.9) and Lemma 4.3, Part 2, the signs
of its entries are given as follows:

sgn(bαβ(C)) =





ε(β, β′) if α is a cluster component of β + β′;
−ε(β, β′) if α is a cluster component of β �β′;
0 otherwise.

(4.13)

Since β is incompatible with β′, Lemma 4.3, Part 3, ensures that β cannot
be a cluster component of β + β′ or β �β′, so all diagonal entries of B(C)
are equal to 0.
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Lemma 4.9. Let α and β be two different elements of a cluster C, and let
the corresponding adjacent clusters be C − {α} ∪ {α′} and C − {β} ∪ {β′}.
Then we have bαβ(C) = 0 if and only if α′ is compatible with β′.

Proof. By (4.13), condition bαβ(C) = 0 is equivalent to

[β + β′ : α]clus = [β �β′ : α]clus = 0.(4.14)

Since all cluster components of β + β′ and β �β′ belong to C (see Corol-
lary 4.5), and since α′ is compatible with all elements of C −{α}, condition
(4.14) holds if and only if α′ is compatible with all cluster components of
β + β′ and β �β′. By Lemma 4.3, Part 4, this is in turn equivalent to α′
being compatible with β′. ��

Since the compatibility relation is symmetric, Lemma 4.9 implies that
bαβ(C) = 0 is equivalent to bβα(C) = 0, as needed.

It remains to consider the case where both bαβ(C) and bβα(C) are
nonzero. By (4.13), this means that α is a cluster component of β + β′ or
β �β′, while β is a cluster component of α+α′ or α �α′. By Lemma 4.8, it is
enough to consider the special case α = −α j ∈ −Π. Let us abbreviate ε◦ =
ε(β, β′). In view of Lemma 4.3, Part 1, (4.13) yields sgn(bαβ(C)) = −ε◦.
Interchanging α and β, and applying the same rule (4.13), we obtain, taking
into account (4.2), that

sgn(bβα(C)) =
{−ε( j) if β is a cluster component of α + α′;
ε( j) if β is a cluster component of α �α′.

By Lemma 4.3, Part 1, and Proposition 3.4, the element of the set {α + α′,
α �α′} that does not have β as a cluster component is equal to

(
τ(k◦)
ε◦
)−1(

τ(k◦)
ε◦ (α) + τ(k◦)

ε◦ (α′)
)
,

where k◦ = kε◦(β). Our goal is to prove that sgn(bβα(C)) = ε◦, which can
now be restated as follows:

(
τ(k◦)
ε◦
)−1(

τ(k◦)
ε◦ (α) + τ(k◦)

ε◦ (α′)
) =

{
α + α′ if ε◦ = ε( j);

α �α′ if ε◦ = −ε( j).
(4.15)

It was shown in the proof of Lemma 4.1 that k◦ <kε◦(β
′). As a main step to-

wards proving (4.15), we show that k◦ <kε◦(α
′). Suppose on the contrary that

kε◦(α
′)≤k◦. Applying Lemma 4.7 with k = kε◦(α

′) ≤ min(kε◦(β), kε◦(β
′)),

we see that
τ(k)
ε◦ (β + β′) = τ(k)

ε◦ (β) + τ(k)
ε◦ (β′) .

To arrive at a contradiction, notice that α′ is compatible with all cluster
components of β+β′ but is incompatible with β′ (see Lemma 4.9). It follows
that the root τ(k)

ε◦ (α′) ∈ −Π is compatible with all cluster components
of τ(k)

ε◦ (β) + τ(k)
ε◦ (β′) but incompatible with τ(k)

ε◦ (β′). But this contradicts
Lemma 4.3, Parts 4–5.
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Having established the inequality k◦ < kε◦(α
′), we see that (4.15) be-

comes a special case of Lemma 4.7. Indeed, if ε◦ = ε( j) then kε◦(α) =
kε◦(−α j) = h + 1, so k◦ < min(kε◦(α), kε◦(α

′)); and if ε◦ = −ε( j) then
kε◦(α) = kε◦(−α j) = 0, so min(kε◦(α), kε◦(α

′))≤k◦ <max(kε◦(α), kε◦(α
′)).

This concludes our proof of (2.5). ��
Proof of (2.6). Let C and C = C − {γ } ∪ {γ } be adjacent clusters. Our task
is to show that every matrix entry bαβ(C) is obtained from the entries of
B(C) by the procedure described in (2.6). We already know that all diagonal
entries in B(C) and B(C) are equal to 0 which is consistent with the matrix
mutation rule (1.3) (since we have already proved that these matrices are
sign-skew-symmetric). So let us assume that α �= β. If β = γ then the
desired equality bαγ (C) = −bαγ (C) is immediate from (4.9) and (4.4).
Thus, it remains to treat the case where α �= β and β �= γ . By Lemma 4.8,
it is enough to consider the special case β = −α j ∈ −Π.

In view of (4.7), (3.7) and (4.2), we have

bαβ(C) = −ε( j)[δ : α]C ,

bαβ(C) = −ε( j)[δ : α]C ,
(4.16)

where we use the notation

δ = δ j = −∑i �= j aijαi .

Since the basis C is obtained from C by replacing γ by γ , we can use the
expansion

γ + γ =
∑

α∈C∩C

[γ + γ : α]clus · α

(cf. Corollary 4.5) to obtain:

[δ : γ ]C = −[δ : γ ]C

[δ : α]C = [δ : α]C + [γ + γ : α]clus · [δ : γ ]C for α ∈ C ∩ C .
(4.17)

Combining (4.16) and (4.17), we get

bγβ(C) = −bγβ(C)(4.18)

bαβ(C) = bαβ(C) + [γ + γ : α]clus · bγβ(C) for α ∈ C ∩ C.(4.19)

Formula (4.18) takes care of the first case in the mutation rule (1.3). If
bγβ(C) = 0, then (4.19) again agrees with (1.3). So let us assume that
bγβ(C) �= 0. Applying (4.9) to bαγ (C) and bβγ (C), we obtain:

[γ + γ : α]clus = max(ε(γ, γ )bαγ (C), 0),(4.20)
[γ + γ : β]clus = max(ε(γ, γ )bβγ (C), 0).(4.21)
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By Lemma 4.3, Part 1, the left-hand side of (4.21) equals 0. Hence

ε(γ, γ) = −sgn(bβγ (C)) = sgn(bγβ(C))(4.22)

(using that B(C) is sign-skew-symmetric). Now (4.19), (4.20), and (4.22)
give

bαβ(C) = bαβ(C) + max(sgn(bγβ(C)) · bαγ (C), 0) · bγβ(C),

which is easily seen to be equivalent to the second case in (1.3). This
completes the verification that the matrices B(C) satisfy (2.6). ��
Proof of (2.7). We proceed by induction on the rank n of a root system Φ.
For induction purposes, we need to allow Φ to be reducible; this is possible
in view of Remark 3.8. For n = 2, the generalized associahedra of types
A1 × A1, A2, B2 and G2 are convex polygons with 4, 5, 6, and 8 sides,
respectively, matching the claim.

For the induction step, consider a geodesic loop L in the dual graph
Γ = Γ∆(Φ) for a root system Φ of rank n ≥ 3. According to the definition
of a geodesic, the clusters lying on L are obtained from some initial cluster
C by fixing n − 2 of the n roots and alternately exchanging the remaining
two roots. By (3.6), every transformation from 〈τ+, τ−〉 sends geodesics to
geodesics. Furthermore, the Coxeter number associated to a geodesic does
not change, by Lemma 4.8. Using Theorem 3.1, Part 2, we may therefore
assume, without loss of generality, that one of the n − 2 fixed roots in the
initial cluster C is −α j ∈ −Π.

Lemma 4.10. Let Φ′ be the rank n − 1 root subsystem of Φ spanned by the
simple roots αi for i �= j.

1. The correspondence C ′ �→ {−α j}∪C ′ is a bijection between the clusters
in ∆(Φ′) and the clusters in ∆(Φ) that contain −α j . Thus, it identifies
the cluster complex ∆(Φ′) with the link ∆{−α j } of {−α j} in ∆(Φ) (see
Sect. 2.1).

2. Assume that the sign function (3.1) for Φ′ is a restriction of the sign
function for Φ. The matrix B(C′) associated to a cluster C′ ⊂ Φ′

≥−1 can
be obtained from the matrix B({−α j} ∪ C ′) by crossing out the row and
column corresponding to the root −α j .

Proof. Part 1 follows from [11, Proposition 3.5 (3)]. The assertion in Part 2 is
immediately checked in the special case C′ = {−αi : i �= j} (see (4.8)). It is
then extended to an arbitrary cluster C′ because the graph Γ′ = Γ∆(Φ′) is con-
nected, and the propagation rules for the matrices B(C′) and B({−α j} ∪C ′)
are easily seen to be exactly the same. (Here we use the fact that conditions
(2.1), (2.5), and (2.6) have already been checked for Γ and Γ′ alike.) ��

By Lemma 4.10, Part 1, L can be viewed as a geodesic loop inΓ′ =Γ∆(Φ′).
To complete the induction step, it remains to notice that, in view of
Lemma 4.10, Part 2, the Coxeter number associated with L in Γ′ coin-
cides with the original value in Γ. This completes the proof of (2.7). ��

Theorem 1.5 is proved.
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5. Proofs of Theorems 1.9 and 1.11–1.13

Proof of Theorems 1.11–1.13 modulo Theorem 1.9. To take Theorems 1.11–
1.13 out of the way, we begin by deducing them from Theorem 1.9. We
adopt all the conventions and notation of Sect. 4. In particular, we assume,
without loss of generality, that the Cartan matrix A is indecomposable, so
the corresponding (finite) root system Φ is irreducible. We have proved
that the complex ∆(Φ) on the ground set Φ≥−1 of almost positive roots,
together with the family of matrices B(C) introduced in Definition 4.2,
satisfy conditions (2.1)–(2.7).

Let A = A(B◦, p◦) be the cluster algebra of finite type appearing in
Theorem 1.5. Here we choose an initial seed Σ◦ = (x◦, p◦, B◦) for A by
identifying the matrix B◦ with the matrix B(C◦) at the cluster C◦ = −Π
in ∆(Φ) (see (4.8)). This gives us a seed attachment at C◦. Applying
Lemma 2.4, we obtain a surjection α �→ x[α] from Φ≥−1 onto the set
of all cluster variables in A. Note that at this point, we have not yet proved
that the variables x[α] are all distinct.

Assume for a moment that Theorem 1.9 has been established. Then
the map α �→ x[α] is a bijection, and Theorems 1.12 and 1.13 follow by
Remark 2.5.

As for Theorem 1.11, it becomes a consequence of Lemma 4.6. To be
more precise, let us associate to every lattice vector γ ∈ Q a monomial in
the cluster variables by setting

x[γ ] =
∏

α

x[α]mα , mα = [γ : α]clus .

In view of (4.9), every exchange relation (1.4) corresponding to adjacent
clusters C and C − {β} ∪ {β′} can be written in the form

x[β] x[β′] = pε(β,β′)
β (C) x[β + β′] + p−ε(β,β′)

β (C) x[β �β′],(5.1)

for some coefficients p±
β (C) ∈ P. Thus, the set of cluster variables and the

respective nonzero exponents that appear in the right-hand side of (5.1) are
uniquely determined by β and β′. The same holds for the coefficients p±

β (C),
since the cluster variables appearing in the right-hand side are algebraically
independent. ��

We denote p±
β,β′ = p±

β (C). This notation is justified in view of Theo-
rem 1.11.

Remark 5.1. In view of Corollary 4.4, the exchange relation (5.1) holds for
every pair (β, β′) of exchangeable roots. Also note that, in view of (3.7) and
(4.2), the exchange relation (5.1) takes the following more explicit form if
β′ is negative simple:

x[β] x[−α j ] = pε( j)
β,−α j

x[β − α j] + p−ε( j)
β,−α j

x[β � (−α j)](5.2)

= pε( j)
β,−α j

x[β − α j] + p−ε( j)
β,−α j

x[β − α j +∑
i �= j aijαi] .
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For the classical types, the list of all exchangeable pairs (β,−α j), together
with the explicitly given cluster expansions for β − α j and β � (−α j) =
β − α j +∑

i �= j aijαi , was given in [7, Sect. 4].

Proof of Theorem 1.9. We prove (1.10) by induction on

k(α) = min(k+(α), k−(α)) ≥ 0

(see the proof of Lemma 4.1). If k(α) = 0, then α is a negative simple root,
and there is nothing to prove. So we assume that k(α) = k ≥ 1, and that
(1.10) holds for all roots α′ with k(α′) < k.

By the definition of k(α), we have

α = τ
(k)
ε( j)(−α j) = τ

(k−1)

−ε( j) (α j)

for some j ∈ I . Since α j and −α j are exchangeable, so are α and τ(−α j),
where we abbreviate τ = τ

(k−1)

−ε( j) . Let us write the corresponding exchange
relation. Using the 〈τ±〉-invariance of the exponents appearing in exchange
relations (Lemma 4.8), together with (4.9) and (3.7), we obtain:

x[α] x[τ(−α j )] = q
∏

i �= j

x[τ(−αi)]−aij + r,(5.3)

where q, r ∈ P. For k = 1, we have α = α j , and (5.3) yields

x[α j ] = q
∏

i �= j x
−aij

i + r

x j
,

establishing (1.10). Thus, we may assume that k ≥ 2. In this case, all the
roots α′ �= α that appear in (5.3) are positive with k(α′) < k. Abbreviating

γ =
∑

i �= j

(−aij ) · τ(−αi)

and applying the induction assumption, we can rewrite (5.3) as

x[α] = xτ(−α j )−γ · q
∏

i �= j P
−aij

τ(−αi )
+ rxγ

Pτ(−α j )

,(5.4)

where all Pα′ are polynomials over ZP in the variables from the initial
cluster x◦ with nonzero constant terms. The next step of the proof relies on
the following trivial lemma.

Lemma 5.2. Let P and Q be two polynomials (in any number of variables)
with coefficients in a domain S, and with nonzero constant terms a and b,
respectively. If the ratio P/Q is a Laurent polynomial over S, then it is in
fact a polynomial over S with the constant term a/b.
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By [9, Theorem 3.1], x[α] is a Laurent polynomial. Hence, by Lemma 5.2,
the second factor in (5.4) is a polynomial over ZP with nonzero constant
term. To complete the proof of Theorem 1.9, it remains to compare (5.4)
with (1.10), and to observe that

γ = τ
(∑

i �= j aijαi

)
(by Proposition 3.4)

= τ(α j � (−α j)) (by (3.7))

= τ(α j) + τ(−α j) (by Lemma 4.7)

= α + τ(−α j). ��
Remark 5.3. Unfortunately, the argument above does not establish Theo-
rem 1.10 because there is no guarantee that the second factor in (5.4) is
a polynomial with coefficients in Z≥0[P ] even if we assume that all the
polynomials Pα′ appearing there have this property. (Recall from Defin-
ition 1.2 that P denotes the set of all coefficients p±

β,β′ appearing in various
exchange relations (5.1); we denote by Z≥0[P ] the set of polynomials with
nonnegative integer coefficients in the elements of P .) The proof of Theo-
rem 1.10 given in Sect. 6 below does not rely on Theorem 1.9, thus providing
an alternative proof of the latter.

6. Proof of Theorem 1.10

We use the nomenclature of root systems given in Bourbaki [6], including
the labeling of the simple roots in Φ by the indices 1, . . . , n. On the other
hand, our convention on associating a Cartan matrix A to a root system Φ,
as described in Sect. 1.4, is transposed to that in [6]—and the same as that
in Kac [15].

We abbreviate xi = x[−αi] for i = 1, . . . , n. Our goal is to prove that,
for every almost positive root α, we can write x[α] as a Laurent polynomial
in x1, . . . , xn with coefficients in Z≥0[P ]. This time we will proceed by
induction on the height of α (recall that ht(α) = ∑

i[α : αi]). The base case
α ∈ −Π is trivial. The induction step will follow from the lemma below.

Lemma 6.1. For every positive root α, there exists an index j ∈ I such that

x j x[α] = F(x[β1], . . . , x[βm ]) ,(6.1)

where F is a polynomial with coefficients in Z≥0[P ] in some cluster vari-
ables x[β1], . . . , x[βm] such that ht(βi) < ht(α) for all i.

The rest of this section is devoted to the proof of Lemma 6.1.
We call a positive root α non-exceptional if there exists a negative simple

root −α j exchangeable with α; otherwise, α will be called exceptional. If
the root α in Lemma 6.1 is non-exceptional, and −α j is a negative simple
root exchangeable with α, then one easily sees that all cluster components
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of the vectors α−α j and α � (−α j) appearing in the right-hand side of (5.2)
are of smaller height than α, and we are done. Thus, it remains to prove
Lemma 6.1 for the exceptional roots. First, we identify them explicitly.

Lemma 6.2. The complete list of all exceptional positive roots is as follows:

Φ is of type E8 , and α = αmax is the highest root in Φ;(6.2)
Φ is of type F4 , and α = αmax = 2α1 + 3α2 + 4α3 + 2α4 ;(6.3)
Φ is of type F4 , and α = α1 + 2α2 + 3α3 + 2α2 ;(6.4)
Φ is of type G2 , and α = αmax = 3α1 + 2α2 ;(6.5)
Φ is of type G2 , and α = 2α1 + α2 .(6.6)

Proof. As noted in [7, Remark 1.16], α and −α j are exchangeable if and
only if

[α : α j ] = [
α∨ : α∨

j

] = 1 ,(6.7)

where α∨ is the coroot corresponding to α under the natural bijection be-
tween Φ and the dual system Φ∨. Let (α, β) denote a W-invariant scalar
product on the root lattice Q. Then [α∨ : α∨

j ] = (α j ,α j )

(α,α)
[α : α j], so (6.7) is

equivalent to

[α : α j ] = 1 , (α, α) = (α j, α j) .(6.8)

Thus, we need to verify that for every positive root α, there exists a simple
root α j satisfying (6.8), unless α appears on the list (6.2)–(6.6), in which
case there is no such simple root. This is checked by direct inspection using,
e.g., the tables in [6]. (In all classical types, the list of all pairs (α,−α j)
satisfying (6.7) was given in [7].) ��
Proof of Lemma 6.1 for the type E8 and α = αmax. This case is by far the
hardest among (6.2)–(6.6), so we will treat it in detail. We will prove that in
this special case, Lemma 6.1 holds with j = 8, in the standard numeration
of simple roots (see Fig. 3).

We will need the following construction. In view of Lemma 4.8, any
transformation σ ∈ 〈τ+, τ−〉 gives rise to a “twisted” cluster algebra σ(A)
whose seeds are the transfers by σ of the seeds of A; if σ is written in terms
of τ+ and τ− as a product of an odd number of factors, this transfer involves
the change of signs for the matrices B and the corresponding interchange
of p+ and p− for the coefficients, as in Remark 1.3. This twist preserves the
Cartan-Killing type.

Direct computation shows that for σ = (τ−τ+)8 = (τ+τ−)8 (cf. Theo-
rem 3.1), we have σ(αmax) = −α4 and σ(−α8) = α2 + α3 + 2α4 + α5 . To
prove Lemma 6.1 for the type E8 and α = αmax, it is therefore sufficient to
show that, in the twisted cluster algebra σ(A), we have
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x4x[α2 + α3 + 2α4 + α5] = F̃(x[β1], . . . , x[βm]) ,(6.9)

where F̃ is a polynomial with coefficients inZ≥0[P ], and each βi is different
from α2 + α3 + 2α4 + α5 .

�

� � � � � � �

1

2

3 4 5 6 7 8

�

� � �

3

1 2 4

Fig. 3. Dynkin diagrams of types E8 and D4

Let J = {2, 3, 4, 5} ⊂ I , and let Φ(J) denote the type D4 root subsystem
of Φ spanned by the simple roots α j with j ∈ J . Applying Lemma 4.10
four times, we conclude that the correspondence

C′ �→ (−Π(I − J)) ∪ C′

identifies the cluster complex ∆(Φ(J)) with the link of −Π(I − J) in the
cluster complex ∆(Φ); here we use the notation

−Π(I − J) = {−αi : i ∈ I − J}.
The exchange graph Γ(J) = Γ∆(Φ(J )) is therefore identified with the induced
subgraph in the exchange graph of A whose vertices are all the clusters
containing −Π(I − J). Let A′ denote the subring in A generated by the
cluster variables x[α] for α ∈ Φ(J)≥−1, together with the “coefficients”
in all exchange relations corresponding to the edges in Γ(J), where by a
“coefficient” we mean the part of a monomial that does not involve the
variables x[α] for α ∈ Φ(J)≥−1 . (Thus, each “coefficient” is a product of
an element of P and a monomial in the variables xi for i ∈ I − J .) By
Lemma 4.10, Part 2, the ring A′ is a normalized cluster algebra of type D4
(cf. [9, Proposition 2.6]). The claim (6.9) now becomes a consequence of
the following lemma.

Lemma 6.3. In the case of type D4 , with the notation as in Fig. 3, we have

x2x[αmax] = G(x[γ1], . . . , x[γk]) .

where αmax = α1 + 2α2 + α3 + α4 , the almost positive roots γ1, . . . , γk are
different from αmax , and G is a polynomial with coefficients in Z≥0[P ].

We note that the roots β1, . . . , βm appearing in (6.9) are of two kinds:
first, the images of γ1, . . . , γk under the embedding D4 → E8 , and second,
(some of) the “frozen” roots −α1,−α6,−α7,−α8 .
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Fig. 4. Fragment of the exchange graph in the type D4

Proof. Figure 4 shows a fragment of the exchange graph in type D4 , with
each vertex C representing a cluster containing the 4 roots written into the
regions adjacent to C. The mutual compatibility of the roots in each of these
quadruples is easily checked from the definitions.

We next write the exchange relations for some pairs of adjacent clusters
shown in Fig. 4. In doing so, we use:

• (implicitly) the combinatorial interpretation of almost positive roots of
type Dn given in [11, Sect. 3.5] and reproduced in Sect. 12.4 below; see
specifically [11, Fig. 7] for the type D4;

• the resulting explicit expressions for the exchange relations which are
consequences of [7, Lemma 4.6] (see Proposition 12.14 below);

• the monomial relations among the coefficients of exchange relations
along a geodesic of type A2, as given in [9, (6.11)]; our notation is
patterned after [9, Fig. 3].

The exchange relations for the left pentagonal geodesic in Fig. 4 can be
written in the following form, with p1, . . . , p5 ∈ P :

x4x[α2+α3+α4] = p1x[α2+α3] + p3 p4x[α3],
x2x[α2+α3] = p2x1x4 + p4 p5x[α3],(6.10)

x2x[α2] = p3x2 + p5 p1 ,

x2x[α2+α3+α4] = p4x[α3]x[α4] + p1 p2x1 ,(6.11)

x[α4]x[α2+α3] = p5x[α2+α3+α4] + p2 p3x1 .(6.12)

(Among these relations, only (6.10), (6.11), and (6.12) are needed in the
proof; we wrote all five relations for the sake of clarity.) Similarly, the
exchange relations for the right pentagonal geodesic can be written as
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follows, with q1, . . . , q5 ∈ P :

x1x[αmax] = q1x[α2+α3]x[α2+α4](6.13)

+ q3q4x[α2+α3+α4],
x[α2+α3]x[α1+α2+α4] = q2x[αmax] + q4q5 ,

x[α4]x[αmax] = q3x[α1+α2+α4]x[α2+α3+α4]
+ q5q1x[α2 + α4],

x1x[α1+α2+α4] = q4x[α4] + q1q2x[α2+α4],(6.14)

x[α4]x[α2+α3] = q5x1 + q2q3x[α2+α3+α4].(6.15)

Comparing (6.15) to (6.12), we conclude that

p5 = q2q3 .(6.16)

Successively applying (6.13), (6.10)–(6.11), (6.16), and (6.14), we obtain:

x1x2x[αmax]
= q1x2x[α2+α3]x[α2+α4] + q3q4x2x[α2+α3+α4]
= q1 p2x1x4x[α2+α4] + q1 p4 p5x[α3]x[α2+α4]

+ q3q4 p4x[α3]x[α4] + q3q4 p1 p2x1

= q1 p2x1x4x[α2+α4] + q1q2q3 p4x[α3]x[α2+α4]
+ q3q4 p4x[α3]x[α4] + q3q4 p1 p2x1

= q1 p2x1x4x[α2+α4] + q3 p4x[α3]x1x[α1+α2+α4] + q3q4 p1 p2x1 ,

which implies

x2x[αmax] = q1 p2x4x[α2+α4] + q3 p4x[α3]x[α1+α2+α4](6.17) + q3q4 p1 p2 ,

and we are done.

Proof of Lemma 6.1 in the types F4 and G2. One way of handling the non-
simply-laced cases is to deduce them from the simply-laced ones by means
of the “folding” technique (see, e.g., [11, Sect. 2.4]). Alternatively, one can
perform direct computations, which show that, in the type F4, we have

x1x[α1+2α2+3α3+2α4] = P1(x[α3+α4], x[α2+α3],(6.18)
x[α2+2α3+2α4], x[α2+2α3+α4]),

x4x[2α1+3α2+4α3+2α4] = P2(x[α1+2α2+3α3+α4],(6.19)
x[α1+2α2+2α3],
x[α1 + α2 + α3 + α4],
x[α1 + α2 + α3]) ,
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and, in the type G2, we have

x2x[2α1 + α2] = P3(x[α1], x[α1 + α2]),(6.20)

x1x[3α1 + 2α2] = P4(x[α2], x[3α1 + α2]),(6.21)

where P1, P2, P3, P4 are polynomials with coefficients in Z≥0[P ]. Details
are left to the reader.

This completes our proofs of Lemma 6.1 and Theorem 1.10. ��

7. 2-finite matrices

In accordance with the plan outlined in Sect. 1.6, our next task is to prove
the implication (iii) �⇒ (iv) in Theorem 1.8, which will in turn imply
Theorem 1.6. As a first step, we restate the claim at hand as a purely
combinatorial result (see Theorem 7.1 below) on matrix mutations (1.3).

We shall write B′ = µk(B) to denote that a matrix B′ is obtained from
B by a matrix mutation in direction k. Note that µk preserves integrality
of entries, and is an involution: µk(µk(B)) = B. If two matrices can be
obtained from each other by a sequence of matrix mutations followed by
a simultaneous permutation of rows and columns, we will say that they are
mutation equivalent.

A real square matrix B = (bij ) is sign-skew-symmetric (cf. (1.2)) if, for
any i and j, either bij = bji = 0, or else bij b ji < 0; in particular, bii = 0
for all i. Furthermore, we say that B is 2-finite if it has integer entries, and
any matrix B′ = (b′

ij ) mutation equivalent to B is sign-skew-symmetric and
satisfies |b′

ijb
′
ji| ≤ 3 for all i and j.

In the language just introduced, the implication (iii) �⇒ (iv) in Theo-
rem 1.8 can be formulated as follows.

Theorem 7.1. Every 2-finite matrix B is mutation equivalent to a matrix
B◦ from Theorem 1.5.

The converse of Theorem 7.1 also holds: by Theorem 1.5 (which has
already been proved), B◦ is 2-finite.

Our proof of Theorem 7.1 occupies the rest of Sects. 7–9 below. The
main result of Sect. 7 is the following proposition.

Proposition 7.2. Every 2-finite matrix is skew-symmetrizable.

(Recall that a square matrix B is skew-symmetrizable if there exists
a diagonal matrix D with positive diagonal entries such that DB is skew-
symmetric.)

The rest of this section is devoted to the proof of Proposition 7.2.
The crucial role in the sequel will be played by a combinatorial construc-

tion that associates with a sign-skew-symmetric matrix its diagram, whose
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role is parallel to that of the Dynkin diagram for a generalized Cartan
matrix.

Definition 7.3. The diagram of a sign-skew-symmetric matrix B = (bij)i, j∈I
is the weighted directed graph Γ(B) with the vertex set I such that there is
a directed edge from i to j if and only if bij > 0, and this edge is assigned
the weight |bijb ji | .

More generally, we will use the term diagram to denote a finite directed
graph without loops and multiple edges, whose edges are assigned positive
real weights. By some abuse of notation, we denote by the same symbol
Γ the underlying directed graph of a diagram. If two vertices of Γ are not
joined by an edge, we may also say that they are joined by an edge of
weight 0.

The following lemma is an analogue of the well-known symmetrizability
criterion [15, Exercise 2.1].

Lemma 7.4. A matrix B = (bij ) is skew-symmetrizable if and only if, first,
it is sign-skew-symmetric and, second, for all k ≥ 3 and all i1, . . . , ik , it
satisfies

bi1 i2 bi2 i3 · · · bik i1 = (−1)kbi2 i1 bi3 i2 · · · bi1 ik .(7.1)

Proof. The “only if” part is trivial. Thus, let us assume that B is sign-skew-
symmetric and satisfies (7.1). Without loss of generality, we also assume
that B is indecomposable, i.e., cannot be represented as a direct (block-
diagonal) sum of two proper submatrices. It follows that the graph Γ(B) is
connected. Let T be one of its spanning trees. There exists a diagonal matrix
D = (dij) with positive diagonal entries such that dii bij = −djjb ji for every
edge (i, j) in T . (Such a matrix can be constructed inductively by setting dii
equal to an arbitrary positive number for some vertex i, and moving within
the tree T away from this vertex.) Then DB is skew-symmetric, for the
following reason: by definition of a spanning tree, any edge (i, j) of Γ(B)
which is not in T belongs to a cycle in which the rest of the edges belong
to T ; then use (7.1). ��
Lemma 7.5. Let B be a 2-finite matrix. Then the edges of every triangle in
Γ(B) are oriented in a cyclic way.

Proof. Suppose on the contrary that bij , bik, bk j > 0 for some distinct i, j, k.
Then in the matrix B′ = µk(B), we have b′

ij = bij + bikbk j ≥ 2 and
b′

ji = bji − bjkbki ≤ −2, violating 2-finiteness. ��
Lemma 7.6. Let B be a 2-finite matrix. Then

bijb jkbki = −bjibk j bik(7.2)

for any distinct i, j, k. Also, in every triangle in Γ(B), the edge weights are
either {1, 1, 1} or {2, 2, 1}.
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Proof. In view of Lemma 7.5, we may assume without loss of generality
that B is a 3 × 3 matrix

[
0 a1 −c2

−a2 0 b1
c1 −b2 0

]
,(7.3)

where a1, b1, c1, a2, b2, c2 are positive integers. (If one of these entries is 0,
then (7.2) is automatic.) Again without loss of generality, we may assume
that the entry of maximal absolute value in B is −c2. We claim that, under
this assumption,

c1 = a2b2, c2 = a1b1 ,(7.4)

implying a1b1c1 = a2b2c2, and hence proving (7.2).
Indeed, we have

µ2(B) =
[

0 −a1 a1b1 − c2
a2 0 −b1

−a2b2 + c1 b2 0

]
.(7.5)

Applying Lemma 7.5 to µ2(B), we conclude that

a1b1 − c2 ≥ 0, a2b2 − c1 ≥ 0,

where either both inequalities are strict, or both are equalities. We need
to show that the former case is impossible. Indeed, otherwise we would
have had a2b2 > c1 ≥ 1, implying max(a2, b2) ≥ 2; also, a1b1 > c2 ≥
max(a1, b1), implying a1 ≥ 2 and b1 ≥ 2. But then max(a1a2, b1b2) ≥ 4,
contradicting the 2-finiteness of B.

It remains to show that the set of edge weights {a1a2, b1b2, c1c2} is either
{1, 1, 1}, or {2, 2, 1}. The only other option consistent with both (7.4) and
the inequalities a1a2 ≤ 3, b1b2 ≤ 3, c1c2 ≤ 3 is c2 = 3, {a1, b1} = {3, 1},
c1 = a2 = b2 = 1. Say a1 = 3 and b1 = 1 (the other case is analogous).
Then B′ = µ1(B) has |b′

23b′
32| = 4, violating 2-finiteness. ��

Now everything is ready for the proof of Proposition 7.2. It suffices to
check that every 2-finite matrix satisfies the criterion (7.1). Suppose this is
not the case. Among all instances where (7.1) is violated for some 2-finite
matrix B, pick one with the smallest value of k. Then bi j ,im = 0 for any pair
of subscripts (i j , im) not appearing in (7.1). (Otherwise we could obtain
(7.1) as a corollary of its counterparts for two smaller cycles.) In other
words, the diagram Γ(B) restricted to the vertices i1, . . . , ik must be a cycle.
Pick any two consecutive edges on this cycle that form an oriented 2-path
(that is, bi j−1i j bi j i j+1 > 0). (If there is no such pair, we will need to first
apply a mutation at an arbitrary vertex i j .) By Lemma 7.6, we have k ≥ 4,
hence bi j−1i j+1 = 0. Now apply the mutation µi j . In the resulting matrix,
condition (7.1) for the sequence of indices i1, . . . , i j−1, i j+1, . . . , ik will be
equivalent to (7.1) in the original matrix; hence it must fail, contradicting
our choice of k. ��
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8. Diagram mutations

Let B = (bij )i, j∈I be a skew-symmetrizable matrix. Notice that the diagram
Γ(B) does not determine B: for instance, the matrix (−BT ) has the same
diagram as B. However, the following important property holds.

Proposition 8.1. For a skew-symmetrizable matrix B, the diagram Γ′ =
Γ(µk(B)) is uniquely determined by the diagram Γ = Γ(B) and an index
k ∈ I . Specifically, Γ′ is obtained from Γ as follows:

• The orientations of all edges incident to k are reversed, their weights
intact.

• For any vertices i and j which are connected in Γ via a two-edge oriented
path going through k (refer to Fig. 5 for the rest of notation), the direction
of the edge (i, j) in Γ′ and its weight c′ are uniquely determined by the
rule

±√
c ± √

c′ = √
ab ,(8.1)

where the sign before
√

c (resp., before
√

c′) is “+” if i, j, k form an
oriented cycle in Γ (resp., in Γ′), and is “−” otherwise. Here either c or
c′ can be equal to 0.

• The rest of the edges and their weights in Γ remain unchanged.

�
��
��	
�
��
��

� �

�

a b

c

k
µk←→

�
����
 �
������ �

�

a b

c′

k

Fig. 5. Diagram mutation

Remark 8.2. If B has integer entries, then all edge weights in Γ are positive
integers. The rule (8.1) ensures that the same is true for Γ′: indeed, the fact
that c′ = (

√
ab ∓ √

c)2 = ab + c ∓ 2
√

abc is an integer (that is, abc is
a perfect square) is an easy consequence of the skew-symmetrizability of B
(more specifically, of the identity (7.1) with k = 3).

Our proof of Proposition 8.1 is based on the following construction.

Lemma 8.3. Let B be a skew-symmetrizable matrix. Then there exists
a diagonal matrix H with positive diagonal entries such that HBH−1

is skew-symmetric. Furthermore, the matrix S(B) = (sij) = HBH−1 is
uniquely determined by B. Specifically, the matrix entries of S(B) are
given by

sij = sgn(bij )
√|bij b ji| .(8.2)
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Proof. Let D be a skew-symmetrizing matrix for B, i.e., a diagonal matrix
with positive diagonal entries such that DB is skew-symmetric. Setting
H = D1/2, we see that HBH−1 = H−1(DB)H−1 is skew-symmetric. To
prove (8.2), note that

sgn(sij ) = sgn
(
hibij h

−1
j

) = sgn(bij),

s2
ij = |sij s ji| = ∣∣(hibij h

−1
j

) · (h jb jih
−1
i

)∣∣ = |bij b ji|,
where the hi are the diagonal entries of H .

Lemma 8.4. Let B be a skew-symmetrizable matrix. Then, for any k ∈ I ,
we have S(µk(B)) = µk(S(B)).

Proof. Follows from Lemma 8.3, together with the directly checked fact
that the mutation rules are invariant under conjugation by a diagonal matrix
with positive entries. ��
Proof of Proposition 8.1. Formula (8.2) shows that the diagram Γ(B) and
the skew-symmetric matrix S(B) encode the same information about a skew-
symmetrizable matrix B: having an edge in Γ(B) directed from i to j and
supplied with weight c is the same as saying that sij = √

c and s ji = −√
c.

Lemma 8.4 asserts that, as B undergoes a mutation µk , so does the ma-
trix S(B). Translating this statement into the language of diagrams, we
obtain Proposition 8.1. ��

In the situation of Proposition 8.1, we write Γ′ = µk(Γ), and call the
transformation µk a diagram mutation in the direction k. Two diagrams
Γ and Γ′ related by a sequence of diagram mutations are called mutation
equivalent, and we write Γ ∼ Γ′. A diagram Γ is called 2-finite if any
diagram Γ′ ∼ Γ has all edge weights equal to 1, 2 or 3. Thus a matrix
B is 2-finite if and only if its diagram Γ(B) is 2-finite. (Here we rely on
Proposition 7.2.) Note that a diagram is 2-finite if and only if so are all its
connected components.

In the case of 2-finite diagrams, Lemmas 7.5 and 7.6 ensure that every
triangle is oriented in a cyclic way, and has edge weights (1, 1, 1) or (2, 2, 1).
As a result, the rules of diagram mutations (as given in Proposition 8.1)
simplify as follows.

Lemma 8.5. Let Γ be a 2-finite diagram, and k a vertex of Γ. Then the
diagram µk(Γ) is obtained from Γ as follows:

• The orientations of all edges incident to k are reversed, their weights
intact.

• For any vertices i and j which are connected in Γ via a two-edge
oriented path going through k, the diagram mutation µk affects the edge
connecting i and j in the way shown in Fig. 6, where the weights c and
c′ are related by
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√
c + √

c′ = √
ab ;(8.3)

here either c or c′ can be equal to 0.
• The rest of the edges and their weights in Γ remain unchanged.
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� �
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a b

c

k

µk←→
��
����
 �
������ �

�

a b

c′

k

Fig. 6. Mutation of 2-finite diagrams

Taking into account Propositions 7.2 and 8.1, we see that Theorem 7.1
becomes a consequence of the following classification of 2-finite diagrams.

Theorem 8.6. Any connected 2-finite diagram is mutation equivalent to an
orientation of a Dynkin diagram. (Cf. Fig. 7, where all unspecified weights
are equal to 1.) Furthermore, all orientations of the same Dynkin diagram
are mutation equivalent to each other.

As already noted following Theorem 7.1, the converse is true as well:
any diagram mutation equivalent to an orientation of a Dynkin diagram is
2-finite.

9. Proof of Theorem 8.6

Throughout this section, all diagrams are presumed connected, and all edge
weights are positive integers. With some abuse of notation, we use the same
symbol Γ to denote a diagram and the set of its vertices. A diagram that is
not 2-finite will be called 2-infinite.

Definition 9.1. A subdiagram of a diagram Γ is a diagram Γ′ obtained
from Γ by taking an induced directed subgraph on a subset of vertices and
keeping all its edge weights the same as in Γ. We will denote this by Γ ⊃ Γ′.

We will repeatedly use the following obvious fact: any subdiagram of a
2-finite diagram is 2-finite. Equivalently, any diagram that has a 2-infinite
subdiagram is 2-infinite.

The proof of Theorem 8.6 will proceed in several steps.

9.1. Shape-preserving diagram mutations. Let k be a sink (resp., source)
of a diagram Γ, that is, a vertex such that all edges incident to k are directed
towards k (resp., away from k). Then a diagram mutation at k reverses
the orientations of all edges incident to k, leaving the rest of the graph
and all the edge weights unchanged. We shall refer to such mutations as
shape-preserving.
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Bn
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E7
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E8
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F4
� � � �

2

G2
� �

3

Fig. 7. Dynkin diagrams

Proposition 9.2. Let T be a subdiagram of a diagram Γ such that:

(i) T is a tree.
(ii) T is attached to the rest of Γ by a single vertex v ∈ T , i.e., no vertex in

T − {v} is joined by an edge with a vertex in Γ − T .

Then any diagram obtained from Γ by arbitrarily re-orienting the edges of
T (while keeping the rest of Γ intact) is mutation equivalent to Γ.

In particular, any two orientations of a tree diagram are mutation equiva-
lent.

(A tree diagram is a diagram whose underlying graph is an orientation
of a tree.)

Proof. Using induction on the size of T , we will show that one can arbi-
trarily re-orient the edges of T by applying a sequence of shape-preserving
mutations at the vertices of T − {v}. If T consists of a single vertex v, there
is nothing to prove. Otherwise, pick a leaf l ∈ T different from v, and apply
the inductive assumption to the diagram Γ′ = Γ − {l} and its subdiagram
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T ′ = T − {l}. So we are able to arbitrarily re-orient the edges of T ′ by
a sequence of shape-preserving mutations of Γ′ at the vertices of T ′ − {v}.
To do the same for T , we lift this sequence from Γ′ to Γ as follows: each
time right before we need to perform a mutation at the unique vertex k ∈ T ′
adjacent to l, we first mutate at l if necessary to make k a source or sink in T ,
rather than just in T ′. This way, we can achieve an arbitrary re-orientation
of the edges of T ′ by a sequence of shape-preserving mutations of Γ at the
vertices of T −{v}. The remaining edge (k, l) can then be given an arbitrary
orientation by a (shape-preserving) mutation at l. ��

As a practical consequence of Proposition 9.2, in drawing a diagram Γ,
we do not have to specify orientations of edges in any subdiagram T ⊂ Γ
satisfying the conditions of the proposition. Figure 7 provides an example
of this (see also Fig. 10 below).

Proposition 9.2 also justifies notation of the form Γ ∼ Am , Γ ⊃ Am ,
etc.

9.2. Taking care of the trees

Proposition 9.3. Any 2-finite tree diagram is an orientation of a Dynkin
diagram.

Proof. A diagram Γ is called an extended Dynkin tree diagram if

• Γ is a tree diagram with edge weights ≤ 3;
• Γ is not on the Dynkin diagram list;
• every proper subdiagram of Γ is a disjoint union of Dynkin diagrams.

(In this definition, we ignore the orientations of the edges.) To prove the
proposition, it is enough to show that any extended Dynkin tree diagram
is 2-infinite. Direct inspection shows that Fig. 8 provides a complete list
of such diagrams. Here each tree X(1)

n has n + 1 vertices. As before, all
unspecified edge weights are equal to 1; in the diagram G(1)

2 , we have
a ∈ {1, 2, 3}. We note that all these diagrams are associated with untwisted
affine Lie algebras and can be found in the tables in [6] or in [15, Chap. 4,
Table Aff 1]. The only diagram from those tables that is missing in Fig. 8 is
A(1)

n , which is an (n + 1)-cycle; it will be treated in Sect. 9.3.

In showing that an extended Dynkin tree diagram is 2-infinite, we can
choose its orientation arbitrarily, by Proposition 9.2. Let us start with the
three infinite series B(1)

n , C(1)
n , and D(1)

n , and in each case let us orient all the
edges left to right. Let us denote the diagram in question by X(1)

n ; thus, if
X = D (resp., B, C) then the minimal value of n is equal to 4 (resp., 3, 2). If n
is greater than this minimal value, then performing a mutation at the second
vertex from the left, and subsequently removing this vertex (together with all
incident edges) leaves us with a subdiagram of type X(1)

n−1. Using induction
on n, it remains to check the basic cases D(1)

4 , B(1)
3 and C(1)

2 . For C(1)
2 , the

mutation at the middle vertex produces a triangle with edge weights (2, 2, 2),
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� � �
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Fig. 8. Extended Dynkin tree diagrams

which is 2-infinite by Lemma 7.6. For B(1)
3 , mutating at the branching vertex

and then removing it leaves us with the subdiagram C(1)
2 which was just

shown to be 2-infinite. Finally, for D(1)

4 , let the branching point be labeled
by 1, and let it be joined with vertices 2 and 4 by incoming edges, and with
3 and 5 by outgoing edges. Then the composition of mutations µ3 ◦µ2 ◦µ1
makes the subdiagram on the vertices 2, 4 and 5 a 2-infinite triangle.

To see that G(1)
2 is 2-infinite, orient the two edges left to right and

mutate at the middle vertex to obtain a 2-infinite triangle. To see that F(1)
4 is

2-infinite, again orient all the edges left to right, label the vertices also left
to right, and apply µ1 ◦ µ2 ◦ µ3 ◦ µ4 to obtain a subdiagram C(1)

2 on the
vertices 1, 3 and 5.
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The remaining three cases E(1)
6 , E(1)

7 and E(1)
8 can be treated in a similar

manner but we prefer another approach. To describe it, we will need to
introduce some notation.

Definition 9.4. For p, q, r ∈ Z≥0, we denote by Tp,q,r the tree diagram
(with all edge weights equal to 1) on p + q + r + 1 vertices obtained by
connecting an endpoint of each of the three chains Ap, Aq and Ar to a single
extra vertex (see Fig. 9).

� � � � � � � � � �

�

�

Fig. 9. The tree diagram T5,4,2

Definition 9.5. For p, q, r ∈ Z>0 and s ∈ Z≥0, let Ss
p,q,r denote the diagram

(with all edge weights equal to 1) on p + q + r + s vertices obtained by
attaching three branches Ap−1, Aq−1, and Ar−1 to three consecutive vertices
on a cyclically oriented (s + 3)-cycle (see Fig. 10).
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Fig. 10. The diagram S5
4,3,2

Lemma 9.6. The diagram Ss
p,q,r is mutation equivalent to Tp+r−1,q,s.

Proof. Let us consider the subdiagram of Ss
p,q,r obtained by removing the

middle branch Aq . This subdiagram is a copy of Ap+s+r . We label its
vertices consecutively by 1, . . . , p+ s + r, starting with the endpoint of Ar ;
and we orient the edges of Ap and Ar so that all the edges of Ap+s+r point
at the same direction. Now a direct check shows that µ1 ◦ µ2 ◦ · · · ◦ µs+r
transforms Ss

p,q,r into Tp+r−1,q,s. ��
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Fig. 11. 2-finite cycles

The proof of Proposition 9.3 can now be completed as follows:

E(1)

6 = T2,2,2 ∼ S2
2,2,1 ⊃ D(1)

5 ;
E(1)

7 = T3,1,3 ∼ S3
3,1,1 ⊃ E(1)

6 ;
E(1)

8 = T2,1,5 ∼ S5
2,1,1 ⊃ E(1)

7 .
��

9.3. Taking care of the cycles

Proposition 9.7. Let Γ be a 2-finite diagram whose underlying graph is an
n-cycle for some n ≥ 3 (with some orientation of edges). Then Γ must be
one of the diagrams shown in Fig. 11. More precisely, one of the following
holds:

(a) Γ is an oriented cycle with all weights equal to 1.
In this case, Γ ∼ Dn (with the understanding that D3 = A3).

(b) Γ is an oriented triangle with edge weights 2, 2, 1 shown in Fig. 11(b).
In this case, Γ ∼ B3.

(c) Γ is an oriented 4-cycle with edge weights 2, 1, 2, 1 shown in Fig. 11(c).
In this case, Γ ∼ F4.

In particular, the edges in Γ must be cyclically oriented.

Proof. The case n = 3 of Proposition 9.7 follows from Lemmas 7.5 and 7.6,
so for the rest of the proof we assume that n ≥ 4.

We begin by proving the last claim of Proposition 9.7 by induction on n.
Invoking if necessary a shape-preserving mutation, we may assume that
there is a vertex v ∈ Γ that has one incoming and one outgoing edge. Let
Γ′ = µv(Γ). Then the subdiagram Γ′′ = Γ′ − {v} is an (n − 1)-cycle, which
must be cyclically oriented by the induction assumption. Backtracking to Γ,
we obtain the desired claim.

Furthermore, observe that the product of edge weights of Γ′′ is the same
as in Γ. Again using induction together with Lemma 7.6, we conclude that



Cluster algebras II 103

this product is either 1 or 4. In the former case, Γ is an oriented n-cycle, and
we apply Lemma 9.6 to obtain Γ = Sn−3

1,1,1 ∼ T1,1,n−3 = Dn , as needed. In
the latter case, Γ has two edge weights equal to 2, and the rest of them are
equal to 1. Then either Γ is one of the two diagrams (b) and (c) in Fig. 11,
or else it contains a 2-infinite subdiagram C(1)

m for some m ≥ 2. It remains
to show that the diagrams in Fig. 11(b)–(c) are mutation equivalent to B3
and F4 , respectively. This is straightforward. ��

9.4. Completing the proof of Theorem 8.6. The second claim in Theo-
rem 8.6 follows from Proposition 9.2, so we only need to show that a con-
nected 2-finite diagram Γ is mutation equivalent to some Dynkin diagram.
We proceed by induction on n, the number of vertices in Γ. If n ≤ 3, then
Γ is either a tree or a cycle, and the theorem follows by Propositions 9.3
and 9.7. So let us assume that the statement is already known for some
n ≥ 3; we need to show that it holds for a diagram Γ on n + 1 vertices.
Pick a vertex v ∈ Γ such that the subdiagram Γ′ = Γ − {v} is connected.
Since Γ′ is 2-finite, it is mutation equivalent to some Dynkin diagram Xn .
Furthermore, we may assume that Γ′ is (isomorphic to) our favorite repre-
sentative of the mutation equivalence class of Xn . For each Xn , we will
choose a representative that is most convenient for the purposes of this
proof.

Case 1. Γ′ is a Dynkin diagram with no branching point, i.e., is of one of the
types An, Bn, F4, or G2. Let us orient the edges of Γ′ so that they all point
in the same direction. If v is adjacent to exactly one vertex of Γ′, then Γ is
a tree, and we are done by Proposition 9.3. If v is adjacent to more than 2
vertices of Γ′, then Γ has a cycle subdiagram whose edges are not cyclically
oriented, contradicting Proposition 9.7. Therefore we may assume that v is
adjacent to precisely two vertices v1 and v2 of Γ′. Thus, Γ has precisely one
cycle C, which furthermore must be of one of the types (a)–(c) described in
Proposition 9.7 and Fig. 11.

Subcase 1.1. C is an oriented cycle with unit edge weights. If Γ has an edge
of weight ≥ 2, then it contains a subdiagram of type B(1)

m or G(1)
2 , unless C

is a 3-cycle, in which case µv(Γ) ∼ Bn+1 . On the other hand, if all edges
in Γ are of weight 1, then it is one of the diagrams Ss

p,q,r in Lemma 9.6
(with q = 0). Hence Γ is mutation equivalent to a tree, and we are done by
Proposition 9.3.

Subcase 1.2. C is as in Fig. 11(b). If one of the edges (v, v1) and (v, v2) has
weight 1, then µv removes the edge (v1, v2), resulting in a tree, and we are
done again. So assume that both (v, v1) and (v, v2) have weight 2. If at least
one edge outside C has weight ≥ 2, then Γ ⊃ C(1)

m or Γ ⊃ G(1)
2 . It remains to

consider the case shown in Fig. 12 (as before, unspecified edge weights are
equal to 1). Direct check shows that µl ◦· · · ◦µ2 ◦µ1 ◦µv2 ◦µv(Γ) = Bn+1 ,
and we are done.
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Fig. 12. Subcase 1(b)

Subcase 1.3. C is as in Fig. 11(c). It suffices to show that any diagram
obtained from C by adjoining a single vertex adjacent to one of its vertices
is 2-infinite. If this extra edge has weight 1 (resp., 2, 3), then the resulting
5-vertex diagram has a 2-infinite subdiagram of type B(1)

3 (resp., C(1)
2 , G(1)

2 ),
proving the claim.

Case 2. Γ′ ∼ Dn (n ≥ 4). By Proposition 9.7(a), we may assume that Γ′ is
an oriented n-cycle with unit edge weights.

Subcase 2.1. v is adjacent to a single vertex v1 ∈ Γ′. If the edge (v, v1) has
weight ≥ 2, then Γ has a subdiagram B(1)

3 or G(1)
2 . If the edge (v, v1) has

weight 1, then by Lemma 9.6, Γ is mutation equivalent to a tree, and we are
done again.

Subcase 2.2. v is adjacent to exactly two vertices v1 and v2 of Γ′, which
are adjacent to each other. Then the triangle (v, v1, v2) is either an oriented
3-cycle with unit edge weights or the diagram in Fig. 11(b). In the former
case, µv(Γ) is an oriented (n + 1)-cycle, so Γ ∼ Dn+1. In the latter case,
µv reverses the orientation of the edge (v1, v2), transforming Γ′ into an
improperly oriented (hence 2-infinite) cycle (cf. Proposition 9.7).

Subcase 2.3. v is adjacent to two non-adjacent vertices of Γ′ (and maybe
to some other vertices). In this case, Γ contains a subdiagram which is
a non-cyclically-oriented cycle, contradicting Proposition 9.7.

Case 3. Γ′ ∼ En = T1,2,n−4 , for n ∈ {6, 7, 8}. By Lemma 9.6, we may
assume that Γ′ = Sn−4

1,2,1 . In other words, Γ′ is a cyclically oriented (n − 1)-
cycle C with unit edge weights, and an extra edge of weight 1 connecting
a vertex in C to a vertex v1 /∈ C.

Subcase 3.1. v is adjacent to v1, and to no other vertices in Γ′. If the edge
(v, v1) has weight ≥ 2, then Γ has a 2-infinite subdiagram B(1)

3 or G(1)
2 . If

(v, v1) has weight 1, then by Lemma 9.6, Γ is mutation equivalent to a tree.

Subcase 3.2. v is adjacent to a vertex v2 ∈ C, and to no other vertices in Γ′.
Then Γ has a subdiagram of type D(1)

m or B(1)
3 or G(1)

2 .

Subcase 3.3. v is adjacent to at least two vertices in C. By the analysis in
Subcases 2.2–2.3 (with Γ′ replaced by C), we must have Γ − {v1} ∼ Dn ,
and the problem reduces to Case 2 already treated above (the role of v now
played by v1).
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Subcase 3.4. v is adjacent to v1 and a single vertex v2 ∈ C. Let v0 be
the only vertex on C adjacent to v1 in Γ′. If v2 is neither v0 nor a vertex
adjacent to v0, then the three cycles in Γ cannot be simultaneously oriented.
If v2 = v0, then µv1 removes the edge (v, v2), transforming Γ into a diagram
mutation equivalent to a tree by Lemma 9.6. If v2 is adjacent to v0, then
Γ−{v0} has no branching point, and the problem reduces to Case 1 already
treated above, with the role of v now played by v0 .

This concludes the proof of Theorem 8.6. As a consequence, we obtain
Theorems 7.1 and 1.6. ��

10. Proof of Theorem 1.7

Let B and B′ be sign-skew-symmetric matrices such that both A = A(B)
and A′ = A(B′) are Cartan matrices of finite type. We already proved that
both B and B′ are 2-finite. We need to show that B and B′ are mutation
equivalent if and only if A and A′ are of the same type. Without loss of
generality, we may assume that A and A′ are indecomposable, i.e., the
corresponding root systems Φ and Φ′ are irreducible.

We first prove the “only if” part. If B and B′ are mutation equivalent, then
the simplicial complexes ∆(Φ) and ∆(Φ′) are isomorphic to each other,
by Theorem 1.13. In particular, Φ and Φ′ have the same rank and the same
cardinality. A direct check using the tables in [6] shows that the only different
Cartan-Killing types with this property are Bn and Cn for all n ≥ 3, and
also E6, which has the same data as B6 and C6. To distinguish between these
types, note that mutation-equivalent skew-symmetrizable matrices share the
same skew-symmetrizing matrix D. Furthermore, D is skew-symmetrizing
for B if and only if it is symmetrizing for A; thus, the diagonal entries of
D are given by di = (αi, αi), where (α, β) is a W-invariant scalar product
on the root lattice. Since the root system of type Bn (resp., Cn) has one
short simple root and n − 1 long ones (resp., one long and n − 1 short), the
corresponding matrices B and B′ cannot be mutation equivalent. The same
is true for E6 and B6 (or C6) since all simple roots for E6 are of the same
length.

To prove the “if” part, suppose that A and A′ are of the same Cartan-
Killing type. By Proposition 9.2, we may assume without loss of gen-
erality that B and B′ have the same diagram. By Lemma 8.3, we have
S(B) = S(B′). Since B and B′ share a skew-symmetrizing matrix D, the
proof of Lemma 8.3 shows that S(B) = HBH−1 and S(B′) = HB′H−1 for
H = D1/2. Hence B = B′, and we are done. ��

11. On cluster algebras of geometric type

In this section we present two general results on cluster algebras of geometric
type in the sense of [9, Definition 5.7]. These algebras are not assumed to
be of finite type, so all the necessary background is contained in Sect. 1.2.
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Recall that a cluster algebra is of geometric type if it satisfies the fol-
lowing two conditions:

The coefficient semifield P is of the form Trop(pj : j ∈ J). That(11.1)
is, the multiplicative group of P is a free abelian group with a
finite set of generators pj ( j ∈ J), and the auxiliary addition ⊕ is
given by (1.1).
Every element p ∈ P , i.e., every coefficient in one of the ex-(11.2)
change relations (1.4), is a monomial in the pj with all exponents
nonnegative.

We note a little discrepancy between our choice of the ground ring Z[P ]
in Definition 1.2 and the choice described in [9, Sect. 5], where the ground
ring was taken to be the polynomial ring Z[pj : j ∈ J]. The following
additional assumption guarantees that these two choices coincide:

Every generator pj of P belongs to P .(11.3)

11.1. Geometric realization criterion. Our first result gives sufficient
conditions under which a cluster algebra of geometric type can be real-
ized as a Z-form of the coordinate ring C[X] of some algebraic variety X.

We make the following assumptions on X:

X is a rational quasi-affine irreducible algebraic variety over C.(11.4)

Irreducibility implies that the ring of regular functions C[X] is a domain, so
its fraction field is well defined. Quasi-affine means Zariski open in some
affine variety; this condition is imposed to ensure that the fraction field
of C[X] coincides with the usual field C(X) of rational functions on X.
Rationality means that X is birationally isomorphic to an affine space, i.e.,
C(X) is isomorphic to the field of rational functions over C in dim(X)
independent variables.

Let A be a cluster algebra of rank n whose coefficient system satisfies
conditions (11.1)–(11.3), and let X be the set of cluster variables in A.
Suppose the variety X satisfies

dim(X) = n + |J|;(11.5)

also suppose we are given a family of functions

{ϕy : y ∈ X} ∪ {ϕ j : j ∈ J}
in C[X] satisfying the following conditions:

the functions ϕy and ϕ j generate C[X];(11.6)
every exchange relation (1.4) becomes an identity in C[X] if(11.7)
we replace each cluster variable y by ϕy, and each coefficient

p±
z =

∏

j∈J

p
a j

j by
∏

j∈J

ϕ
a j

j .
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Proposition 11.1. Under conditions (11.1)–(11.7), the correspondence

y �→ ϕy (y ∈ X), pj �→ ϕ j ( j ∈ J)(11.8)

extends uniquely to an algebra isomorphism between the cluster algebra A
and the Z-form of C[X] generated by all ϕy and ϕ j .

Proof. Pick an arbitrary cluster x of A, and let x̃ = x ∪ {pj : j ∈ J}.
Since x is a transcendence basis of the ambient field F over ZP, the set x̃
is a transcendence basis of F over Q. Furthermore, every cluster variable
is uniquely expressed as a rational function in x̃ by iterating the exchange
relations away from a seed containing x in the exchange graph of A. In view
of (11.7), we can apply the same procedure to express all functions ϕy and
ϕ j inside the field C(X) as rational functions in the set

ϕ(x̃) = {ϕx : x ∈ x} ∪ {ϕ j : j ∈ J} .

Furthermore, we have |ϕ(x̃)| = dim(X) by (11.5). Since X is rational,
we conclude from (11.6) that ϕ(x̃) is a transcendence basis of the field of
rational functions C(X), and that the correspondence (11.8) extends to an
embedding of fields F → C(X), and hence to an embedding of algebras
A → C[X]. This proves Proposition 11.1. ��

11.2. Sharpening the Laurent phenomenon. As mentioned in Sect. 1.4,
the Laurent phenomenon, established in [9] for arbitrary cluster algebras,
says that every cluster variable can be written as a Laurent polynomial in
the variables of an arbitrary fixed cluster, with coefficients in ZP. For the
cluster algebras of geometric type, this result can be sharpened as follows.

Proposition 11.2. In any cluster algebra with the coefficient system satis-
fying conditions (11.1)–(11.3), every cluster variable is expressed in terms
of an arbitrary cluster x as a Laurent polynomial with coefficients in Z[P ].
Proof. Fix some generator p= pj◦ of the coefficient semifield P=Trop(pj :
j ∈ J). We will think of any cluster variable z as a Laurent polynomial z(p)
whose coefficients are integral Laurent polynomials in the set x ∪ {pj :
j ∈ J, j �= j◦}. Our goal is to show that z(p) is in fact a polynomial in p;
Proposition 11.2 will then follow by varying a distinguished index j◦ over
the index set J .

Define the distance d(z, x) between z and x as the shortest distance in
the exchange graph between a seed containing z and a seed whose cluster
is x. We will use induction on d(z, x) to show the following strengthening
of the desired statement:

• z(p) is a polynomial in p whose constant term z(0) is a subtraction-free
rational expression in x ∪ {pj : j ∈ J, j �= j◦} (in particular, z(0) �= 0).
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If d(z, x) = 0, then z ∈ x, and there is nothing to prove. If d(z, x) > 0,
then, by the definition of the distance, z participates in an exchange relation
(1.4) such that all the other participating cluster variables are at a smaller
distance from x than z. Applying the inductive assumption to all these
cluster variables and using Lemma 5.2 together with the fact that, by the
normalization condition, p appears in at most one of the monomials on the
right hand side of (1.4), we obtain our claim for z. ��

12. Examples of geometric realizations of cluster algebras

In this section, we present some examples of concrete geometric realizations
of cluster algebras A = A(B, p) of finite type. In all these examples, the
Cartan counterpart of B is a Cartan matrix of one of the classical types
An, Bn, Cn, Dn, and the coefficient system of A satisfies conditions (11.1)–
(11.3).

12.1. Type A1. We start by presenting four natural geometric realizations
of cluster algebras of type A1. Such an algebra A has only two one-element
clusters {x} and {x}, and a single exchange relation

xx = p+ + p− ,(12.1)

where p+ and p− belong to the coefficient semifield P. By Definition 1.2,
A is a subalgebra of the ambient field F generated by x, x, p+, and p−.

Example 12.1. Let A have the coefficient semifield P = Trop(p) (the free
abelian group with one generator), and let the coefficients in (12.1) be given
by p+ = p and p− = 1. Let G = SL2(C) be the group of complex matrices

[
a b
c d

]

with ad − bc = 1. The correspondence

x �→ a, x �→ d, p �→ bc

identifies A with the subring of the coordinate ring C[G] generated by a, d,
and bc. It is easy to see that this ring is a Z-form of the ring of invariants
C[G]H , where H is the maximal torus of diagonal matrices in G acting on
G by conjugation.

The next three examples give three different realizations of the same
cluster algebra A for which the coefficients in (12.1) are the generators of
P = Trop(p+, p−).
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Example 12.2. Let N be the group of complex matrices of the form
[

1 a c
0 1 b
0 0 1

]
.

The correspondence

x �→ a, x �→ b, p+ �→ c, p− �→ ab − c

identifies A with a Z-form Z[N] = Z[a, b, c] of the ring C[N].
Example 12.3. Let G = SL3(C), and let N ⊂ G be the same as in Ex-
ample 12.2. Let X = G/N be the base affine space of G taken in the stan-
dard embedding into C3 × ∧2

C
3. Let (∆1,∆2,∆3) and (∆12,∆13,∆23)

(here ∆ij = ∆i ∧∆ j) be the standard (Plücker) coordinates inC3 and
∧2
C

3,
respectively. In these coordinates, the coordinate ring of X is given by

C[X] = C[∆1,∆2,∆3,∆12,∆13,∆23]/〈∆1∆23 − ∆2∆13 + ∆3∆12〉.
The correspondence

x �→ ∆2, x �→ ∆13, p+ �→ ∆1∆23, p− �→ ∆3∆12

identifies A with the subring of C[X] generated by ∆2,∆13,∆1∆23, and
∆3∆12. It is easy to see that this ring is a Z-form of the ring of invariants
C[X]T , where T ⊂ G is the torus of all diagonal matrices of the form




t 0 0
0 1 0
0 0 t−1



 ,

acting on X by left translations.

Example 12.4. Let X ⊂ ∧2
C

4 be the affine cone over the Grassmannian
Gr2,4 taken in its Plücker embedding. In the standard coordinates (∆ij :
1 ≤ i < j ≤ 4) on

∧2
C

4, the coordinate ring of X is given by

C[X] = C[(∆ij)]/〈∆12∆34 − ∆13∆24 + ∆14∆23〉 .

The correspondence

x �→ ∆13, x �→ ∆24, p+ �→ ∆12∆34, p− �→ ∆14∆23

identifies A with the subring of C[X] generated by ∆13,∆24,∆12∆34, and
∆14∆23. This ring is a Z-form of the ring of invariants C[X]T , where
T ⊂ SL4 is the torus of all diagonal matrices of the form




t1 0 0 0
0 t2 0 0
0 0 t−1

1 0
0 0 0 t−1

2


 ,

naturally acting on X.
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12.2. Type An (n ≥ 2). Here we present a geometric realization of a cluster
algebra of type An for all n ≥ 2, for a special choice of a coefficient system,
to be specified below.

First, we reproduce the concrete description of the cluster complex of
type An given in [11, Sect. 3.5]. We identify Φ≥−1 with the set of all
diagonals of a regular (n + 3)-gon Pn+3. Under this identification, the roots
in −Π correspond to the diagonals on the “snake” shown in Fig. 13. Non-
crossing diagonals represent compatible roots, while crossing diagonals
correspond to roots whose compatibility degree is 1. (Here and in the sequel,
two diagonals are called crossing if they are distinct and have a common
interior point.) Thus, each positive root α[i, j] = αi + αi+1 + · · · + α j
corresponds to the unique diagonal that crosses precisely the diagonals
−αi,−αi+1, . . . ,−α j from the snake (see Fig. 14).

The clusters are in bijection with the triangulations of Pn+3 by non-
crossing diagonals. The cluster complex is the dual complex of the ordinary
associahedron. Two triangulations are joined by an edge in the exchange
graph if and only if they are obtained from each other by a “flip” that replaces
a diagonal in a quadrilateral formed by two triangles of the triangulation
by another diagonal of the same quadrilateral. See [11, Sect. 3.5] and [7,
Sect. 4.1] for further details.
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−α4

−α5

Fig. 13. The “snake” in type A5

We next describe the cluster variables and the exchange relations in
concrete combinatorial terms. For a diagonal [a, b], we denote by xab the
cluster variable x[α] associated to the corresponding root. We adopt the
convention that xab = 1 if a and b are two consecutive vertices of Pn+3.
Comparing (4.9) with [7, Lemma 4.2], we conclude that the matrices B(C)
can be described as follows.
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� �
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�

α1 + α2

−α2−α1

α1 α2

Fig. 14. Labeling of the diagonals in type A2

Proposition 12.5. Let C be the cluster corresponding to a triangulation T
of Pn+3, and let B(C) = B(T ) be the corresponding matrix with rows and
columns indexed by the diagonals in T . Then each matrix entry bαβ is equal
to 0 unless α and β are two sides of some triangle (a, b, c) in T ; in the latter
case, bαβ = 1 (resp., −1) if α = [a, b], β = [a, c], and the order of points
a, b, c is counter-clockwise (resp., clockwise).

In view of Proposition 12.5, the exchange relations (5.1) in a cluster
algebra of type An have the form

xacxbd = p+
ac,bd xab xcd + p−

ac,bd xad xbc ,(12.2)

where a, b, c, d are any four vertices of Pn+3 taken in counter-clockwise
order, and p±

ac,bd are elements of the coefficient semifield P. See Fig. 15.
Let A◦ denote the cluster algebra of type An associated with the follow-

ing coefficient system. We take

P = Trop(pab : [a, b] is a side of Pn+3) ,(12.3)

and define the coefficients in (12.2) by

p+
ac,bd = qab qcd, p−

ac,bd = qad qbc ,(12.4)

where

qab =
{

1 if [a, b] is a diagonal;
pab if [a, b] is a side.

(12.5)

Since p+
ac,bd and p−

ac,bd have no common factors, they satisfy the normal-
ization condition p+

ac,bd ⊕ p−
ac,bd = 1; a direct check using Proposition 12.5
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Fig. 15. Exchanges in type An

shows that this choice of coefficients also satisfies the mutation rule (1.5),
making the cluster algebra A◦ well-defined.

Example 12.6 (Geometric realization for A◦ in type An). Let X = Xn+3 be
the affine cone over the Grassmannian Gr2,n+3 of 2-dimensional subspaces
in Cn+3 taken in its Plücker embedding (cf. Example 12.4); simply put,
X is the variety of all nonzero decomposable bivectors in

∧2
C

n+3. Let
(∆ab : 1 ≤ a < b ≤ n + 3) be the standard Plücker coordinates on X. We
identify the indices 1, . . . , n+3 with the vertices of Pn+3 by numbering these
vertices, say, counterclockwise. Thus, we associate the Plücker coordinates
with all the sides and diagonals of Pn+3. Note that we have previously used
the same set {(ab) : 1 ≤ a < b ≤ n + 3)} to label the cluster variables xab
and the coefficients pab .

Proposition 12.7. The correspondence sending each cluster variable xab
and each coefficient pab to the corresponding element ∆ab extends uniquely
to an algebra isomorphism between the cluster algebra A◦ and the Z-form
Z[X] of C[X] generated by all Plücker coordinates.

Proof. This is a special case of Proposition 11.1. To see this, we need to
verify the conditions (11.4)–(11.7). The fact that X satisfies (11.4) is well
known (for the rationality property, it is enough to note that X has a Zariski
open subset isomorphic to an affine space). For the dimension count (11.5),
we have

dim(X) = dim(Gr2,n+3) + 1 = 2n + 3 = n + |J|,
as required. The property (11.6) means that C[X] is generated by all Plücker
coordinates, which is trivial. Finally, (11.7) follows from the standard fact
that the Plücker coordinates satisfy the Grassmann-Plücker relations

∆ac∆bd = ∆ab ∆cd + ∆ad ∆bc

for all 1 ≤ a < b < c < d ≤ n + 3. ��
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We note that the ring Z[X] is naturally identified with the ring of SL2-
invariant polynomial functions with coefficients inZ on the space of (n+3)-
tuples of vectors inC2 . Representing these vectors as columns of a 2×(n+3)
matrix Z = (zij), we identify the Plücker coordinates with the 2 × 2 minors
of Z:

∆ab = z1az2b − z1bz2a (1 ≤ a < b ≤ n + 3).

Remark 12.8. It is classically known that the monomials in the Plücker
coordinates that are not divisible by ∆ac∆bd for any a < b < c < d, form
a Z-basis in Z[X] (see [16] or [26] for a proof). Let us translate this fact
into the setting of cluster algebras. We shall call a monomial

∏
α xmα

α in the
cluster variables compatible if mαmβ = 0 whenever the roots α and β are
incompatible, i.e., whenever the corresponding diagonals cross each other.
(Equivalently, all variables contributing to a compatible monomial belong to
a single cluster.) In this terminology, the cluster algebra A◦ is a free Z[P ]-
module with the basis formed by all compatible monomials. We believe that
this property remains true for an arbitrary cluster algebra of finite type (we
have checked it for all classical types); we plan to investigate it in a separate
publication. We note that linear independence of compatible monomials is
an immediate consequence of Theorem 1.9 and the uniqueness of cluster
expansions (Proposition 3.3).

12.3. Types Bn and Cn. Let Φ be a root system of type Bn or Cn . We
identify the set I in a standard way with [1, n]. As in [7, Sect. 4.2], in order
to treat both cases at the same time, we set r = 1 for Φ of type Bn , and
r = 2 for Φ of type Cn . Once again, our convention for the Cartan matrices
is different from the one in [6] but agrees with that in [15]: thus, we have
an−1,n = −r and an,n−1 = −2/r.

We recall the combinatorial description of the cluster complex of
type Bn/Cn from [11, Sect. 3.5]. Let Θ denote the 180◦ rotation of a regular
(2n +2)-gon P2n+2. There is a natural action of Θ on the diagonals of P2n+2.
Each orbit of this action is either a diameter (i.e., a diagonal connecting an-
tipodal vertices) or an unordered pair of centrally symmetric non-diameter
diagonals of P2n+2. Following [11, Sect. 3.5], we identify almost positive
roots in Φ with these orbits. Under this identification, each of the roots −αi
for i = 1, . . . , n − 1 is represented by a pair of diagonals on the “snake”
shown in Fig. 16, whereas −αn is identified with the only diameter on the
snake. Two Θ-orbits represent compatible roots if and only if the diagonals
they involve do not cross each other. More generally, in type Bn (resp., Cn),
for α, β ∈ Φ≥−1, the compatibility degree (α‖β) is equal to the number of
crossings of one of the diagonals representing α (resp., β) by the diagonals
representing β (resp., α). Thus, each positive root β = ∑

i biαi is repre-
sented by the unique Θ-orbit such that every diagonal representing −αi
(resp., β) crosses the diagonals representing β (resp., −αi) at bi points.

The clusters are in bijection with the centrally-symmetric (that is, Θ-
invariant) triangulations of P2n+2 by non-crossing diagonals. The cluster
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Fig. 16. The “snake” for the types B3 and C3

complex is the dual complex for the Bott-Taubes cyclohedron [5]. Two
centrally symmetric triangulations are joined by an edge in the exchange
graph if and only if they are obtained from each other either by a flip
involving two diameters, or by a pair of centrally symmetric flips. See [11,
Sect. 3.5] and [7, Sect. 4.2] for details.

For a vertex a of P2n+2, let a denote the antipodal vertex Θ(a). For
a diagonal [a, b], we denote by xab the cluster variable x[α] associated to the
root corresponding to the Θ-orbit of [a, b]. Thus, we have xab = xba = xa b.
Similarly to the type An , we adopt the convention that xab = 1 if a and b
are consecutive vertices in P2n+2.

Comparing (5.1) with [7, Lemma 4.4], we obtain the following concrete
description of the exchange relations in types Bn and Cn .

Proposition 12.9. The exchange relations in a cluster algebra of type Bn
or Cn have the following form:

xacxbd = p+
ac,bd xab xcd + p−

ac,bd xad xbc ,(12.6)

whenever a, b, c, d, a are in counter-clockwise order;

xacxab = p+
ac,ab

xab xac + p−
ac,ab

x2/r
aa xbc ,(12.7)

whenever a, b, c, a are in counter-clockwise order;

xaaxbb = p+
aa,bb

xr
ab + p−

aa,bb
xr

ab
,(12.8)

whenever a, b, a are in counter-clockwise order. See Fig. 17.

We will provide an explicit realization of a special cluster algebra A◦ of
type Bn or Cn similar to its namesake for An . The algebra A◦ corresponds to
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Fig. 17. Exchanges in types Bn and Cn

the following special choice of coefficients. We set P = Trop({pδ}), where
δ runs over all centrally-symmetric pairs of sides of the polygon P2n+2 . For
such a pair δ = {[a, b], [a, b])}, we write the corresponding generator of
P as pδ = pab = pa b. The coefficients in (12.6)–(12.8) are specified in
a similar way to (12.4)–(12.5). More precisely, to obtain a coefficient of
some monomial in (12.6)–(12.8), take this monomial and replace each of
its cluster variables xab by 1 (resp., pab) if [a, b] is a diagonal (resp., a side)
of P2n+2. The fact that these coefficients satisfy the normalization condition
is again obvious; we leave to the reader a direct check that they also satisfy
the mutation rule (1.5).

So far the material for Bn has been completely parallel to that for Cn.
However, our geometric realizations for these two types are quite different
from each other.

Example 12.10 (Geometric realization for A◦ in type Bn). Somewhat
surprisingly, it turns out that the algebra A◦ for the type Bn (for n ≥ 3) is
isomorphic, as a ring, to the cluster algebra A◦ for the type An−1. Recall
that the latter is naturally identified with the ring Z[Xn+2] generated by the
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Plücker coordinates ∆ab (for 1 ≤ a < b ≤ n + 2) on the Grassmannian
Gr2,n+2 (see Proposition 12.7).

Let us label the vertices of P2n+2 in the counterclockwise order by the
indices 1, . . . , n + 1, 1, . . . , n + 1. We associate a function from Z[Xn+2]
to every Θ-orbit on the set of all diagonals and sides of P2n+2 , as follows:

[a, a] �→ ∆aa = ∆a,n+2 (1 ≤ a ≤ n + 1),

{[a, b], [a, b]} �→ ∆ab (1 ≤ a < b ≤ n + 1),

{[a, b], [a, b]} �→ ∆ab = ∆a,n+2∆b,n+2 −∆ab (1 ≤ a < b ≤ n + 1).

(12.9)

Proposition 12.11. The correspondence sending each cluster variable and
each coefficient for the cluster algebra A◦ of type Bn to the element in (12.9)
with the same label extends uniquely to an algebra isomorphism of A◦ with
Z[Xn+2].
Proof. The proof is similar to that of Proposition 12.7. It is enough to
check that our data satisfy the conditions (11.4)–(11.7). Condition (11.4)
was already checked in the proof of Proposition 12.7. The dimension count
(11.5) now takes the form:

dim(Xn+2) = 2n + 1 = n + |J|,
as required. The property (11.6) is clear since all the Plücker coordinates
∆ab for 1 ≤ a < b ≤ n + 2 are among the functions (12.9). Finally, (11.7)
amounts to checking the following six identities (with r = 1) obtained from
the exchange relations (12.6)–(12.8) (we have to take into account possible
positions of vertices in Fig. 17 among the vertices 1, . . . , n+1, 1, . . . , n+1):

∆ac∆bd = ∆ab∆cd + ∆ad∆bc (1 ≤ a < b < c < d ≤ n + 1),(12.10)
∆ac∆bd = ∆ab∆cd + ∆ad∆bc (1 ≤ a < b < c < d ≤ n + 1),(12.11)
∆ac∆bd = ∆ab∆cd + ∆ad∆bc (1 ≤ a < b < c < d ≤ n + 1),(12.12)

∆ac∆ab = ∆ab∆ac + ∆
2/r
aa ∆bc (1 ≤ a < b < c ≤ n + 1),(12.13)

∆ab∆bc = ∆ab∆bc + ∆
2/r
bb

∆ac (1 ≤ a < b < c ≤ n + 1),(12.14)

∆aa∆bb = ∆r
ab + ∆r

ab
(1 ≤ a < b ≤ n + 1).(12.15)

Of these identities, (12.10) is a Grassmann-Plücker relation, and the rest are
reduced to this relation by simple algebraic manipulations. ��
Example 12.12 (Geometric realization for A◦ in type Cn). Let SO2 be the
group of complex matrices

[
u −v
v u

]

with u2 + v2 = 1. Consider the algebra R = C[Mat2,n+1]SO2 of SO2-
invariant polynomial functions on the space of 2×(n+1) complex matrices,
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or, equivalently, on the space of (n+1)-tuples of vectors inC2. Alternatively,
R can be identified with the ring of invariantsC[Mat2,n+1]T , where T ⊂ SL2
is the torus of all diagonal matrices of the form

[
t 0
0 t−1

]
.

Indeed, we have g(SO2)g−1 = T , where

g =
[

1 −i
1 i

]
,

so the map f �→ f g defined by f g(z) = f(gz) is an isomorphism

C[Mat2,n+1]T → C[Mat2,n+1]SO2.(12.16)

The ring R = C[Mat2,n+1]T can also be viewed as the coordinate ring
C[X] of the variety X of complex (n + 1) × (n + 1) matrices of rank ≤ 1
(even more geometrically, X − {0} is the affine cone over the product of
two copies of the projective space CPn taken in the Segre embedding).
Specifically, the map

y =
[
y11 · · · y1,n+1
y21 · · · y2,n+1

]
�→ (y1ay2b)a,b=1,...,n+1 ∈ X

induces an algebra isomorphism C[X] → C[Mat2,n+1]T . Combining this
with (12.16), we obtain an isomorphism C[X] → C[Mat2,n+1]SO2 induced
by the map

[
z11 · · · z1,n+1
z21 · · · z2,n+1

]
�→ ((z1a − iz2a)(z1b + iz2b))a,b=1,...,n+1 ∈ X .

By analogy with (12.9), we associate an element from R = C[X] to
every Θ-orbit on the set of all diagonals and sides of P2n+2 , as follows:

{[a, b], [a, b]} �→ ∆ab = z1az2b − z1bz2a

= y1a y2b − y1by2a

2i
(1 ≤ a < b ≤ n + 1) ,

{[a, b], [a, b]} �→ ∆ab = z1az1b + z2az2b

= y1a y2b + y1by2a

2
(1 ≤ a ≤ b ≤ n + 1) .

(12.17)

The following result is a type Cn counterpart of Proposition 12.11.

Proposition 12.13. The correspondence sending each cluster variable and
each coefficient for the cluster algebra A◦ of type Cn to the element in
(12.17) with the same label extends uniquely to an algebra isomorphism of
A◦ with a Z-form of R.
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Proof. The proof is analogous to that of Proposition 12.11. The only work
involved is to check that the functions in (12.17) satisfy the identities
(12.10)–(12.15), this time with r = 2. This is completely straightforward;
for example, (12.15) becomes

(
z2

1a + z2
2a

)(
z2

1b + z2
2b

) = (
z1az2b − z1bz2a

)2 + (
z1az1b + z2az2b

)2
. ��

12.4. Type Dn. Let Φ be a root system of type Dn (allowing for n = 3,
in which case Φ is of type A3). According to [11, Sect. 3.5], the almost
positive roots (hence the cluster variables) for the type Dn have a natural
surjection onto those for Bn−1 . This surjection is one-to-one over the roots
corresponding to pairs of diagonals of P2n , and two-to-one over those
corresponding to diameters. Thus, the roots in Φ≥−1 are represented by
Θ-orbits on the set of diagonals in a regular 2n-gon, in which each diameter
can be of one of two different “colors”; we denote the two different kinds
of diameters by [a, a] and [̃a, a]. The negative simple roots form a “type D
snake” shown in Fig. 18. Two Θ-orbits represent compatible roots if and
only if the diagonals they involve do not cross each other; here we use the
following convention:

diameters of the same color do not cross each other.(12.18)

More generally, for α, β ∈ Φ≥−1 , the compatibility degree (α‖β) is equal to
the number of Θ-orbits in the set of crossing points between the diagonals
representing α and β (again, with the convention (12.18)). Each positive
root β = ∑

i biαi is then represented by the unique Θ-orbit such that the
diagonals representing β cross the diagonals representing −αi at bi pairs
of centrally symmetric points (counting an intersection of two diameters of
different color and location as one such pair).

Accordingly, the cluster variables for Dn can be denoted as xα , for all
diagonals α in P2n (with the convention xα = xΘ(α)), plus n extra variables
x̃β for all diameters β̃.

With the help of [7, Lemma 4.6], we obtain the following analogue of
Proposition 12.9.

Proposition 12.14. The exchange relations in a cluster algebra of type Dn
have the following form:

xacxbd = p+
ac,bd xab xcd + p−

ac,bd xad xbc(12.19)

whenever a, b, c, d, a are in counter-clockwise order;

xacxab = p+
ac,ab

xab xac + p−
ac,ab

xaa x̃aa xbc(12.20)

whenever a, b, c, a are in counter-clockwise order;

xaax̃bb = p+
aa,bb

xab + p−
aa,bb

xab(12.21)
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Fig. 18. Representing the roots in −Π for the type D4

whenever a, b, a are in counter-clockwise order;

xaaxbc = p+
aa,bc xab xcc + p−

aa,bc xac xbb(12.22)

and

x̃aaxbc = p̃+
aa,bc xab x̃cc + p̃−

aa,bc xac x̃bb(12.23)

whenever a, b, c, a are in counter-clockwise order.

We define a special coefficient system and the corresponding cluster
algebra A◦ of type Dn in precisely the same way as for the types Bn and Cn
above. We conclude this paper with a geometric realization of this algebra
similar to the one given in Example 12.10.

Example 12.15 (Geometric realization for A◦ in type Dn). Consider the
same variety Xn+2 as in Example 12.10. Let X be the divisor in Xn+2 given
by the equation ∆n+1,n+2 = 0; thus, we have

C[X] = C[Xn+2]/〈∆n+1,n+2〉 .

(Geometrically, X is the affine cone over the Schubert divisor in the Grass-
mannian Gr2,n+2.) Let Z[X] denote the Z-form of C[X] generated by all
Plücker coordinates.

By analogy with (12.9), we introduce the following family of functions
from Z[X]:

[a, a] �→ ∆aa = ∆a,n+1, (1 ≤ a ≤ n),

[̃a, a] �→ ∆̃aa = ∆a,n+2 (1 ≤ a ≤ n),

{[a, b], [a, b]} �→ ∆ab (1 ≤ a < b ≤ n),

{[a, b], [a, b]} �→ ∆ab = ∆a,n+1∆b,n+2 − ∆ab (1 ≤ a < b ≤ n).

(12.24)
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(Note that in Z[X], there is a relation ∆a,n+1∆b,n+2 = ∆a,n+2∆b,n+1 since
we have ∆n+1,n+2 = 0.)

Proposition 12.16. The correspondence sending each cluster variable and
each coefficient for the cluster algebra A◦ of type Dn to the element in
(12.24) with the same label extends uniquely to an algebra isomorphism
between A◦ and Z[X].
Proof. The proof is completely analogous to that of Proposition 12.11.
Details are left to the reader. ��
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