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Abstract. We show that if all geodesics of two non-proportional metrics on
a closed manifold coincide (as unparameterized curves), then the manifold
has a finite fundamental group or admits a local-product structure. This
implies that, if the manifold admits a metric of negative sectional curvature,
then two metrics on the manifold have the same geodesics if and only if
they are proportional.

1. Introduction

1.1. Results

Definition 1. Let g be a Riemannian metric on a manifold Mn of dimension
n ≥ 2. A Riemannian metric ḡ on Mn is called geodesically equivalent to g,
if any geodesic of ḡ, considered as an unparameterized curve, is a geodesic
of g.

Trivial examples of geodesically equivalent metrics can be obtained by
considering proportional metrics g and C · g, where C is a positive constant.

Definition 2. A manifold Mn is called geodesically rigid, if any two geodesi-
cally equivalent Riemannian metrics on Mn are proportional. Mn is called
hyperbolic, if it admits a Riemannian metric of negative sectional curvature.

Theorem 1. Every hyperbolic closed connected manifold is geodesically
rigid.

For dimensions two and three, Theorem 1 has been proven in [20,21].
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Recall that hyperbolic manifolds are rigid in different senses. Proba-
bly the most famous result in this direction is the Mostow Rigidity Theo-
rem [26]: if two closed manifolds (of dimension greater than two) of constant
sectional curvature (−1) are diffeomorphic, then they are isometric.

Different rigidity results have been proven by Benoist, Foulon, Gromov,
Hamenstadt, Kanai, A. Katok, Labourie, Ledrappier, Margulis and other
mathematicians. Here we recall some results related to rigidities with respect
to orbital diffeomorphisms of geodesic flows.

Locally-symmetric closed manifolds of negative curvature are rigid with
respect to conjugations of the geodesic flows [2] ([10] for dimension two):
Suppose g is an arbitrary metric, and h is a locally symmetric metric of
negative sectional curvature. If there exists a diffeomorphism of the tangent
bundle of Mn that takes the orbits of the geodesic flow of g to the orbits of
the geodesic flow of h (preserving the parameter on the orbits), then there
exists a diffeomorphism φ : Mn → Mn such that φ∗g = C · h.

For two dimensional manifolds, the above result holds without the as-
sumption that h is locally-symmetric: for the two-dimensional case, the
marked length spectrum uniquely determines the metric of nonpositive cur-
vature [28,5,6].

Negatively curved manifolds of arbitrary dimension are spectrally rigid
in a slightly weaker sense: there is no isospectral deformation of a closed
manifold of negative sectional curvature [7] ([11] for dimension two).

Comparing Theorem 1 with the results listed above, we see that if we
add the assumption that the orbital diffeomorphism commutes with the
projection, the rigidity results remain true even if we do not require that
the metrics are negatively curved and that the parameter of the geodesics is
preserved.

As explained below, Theorem 1 is a special case of

Theorem 2. Let Mn be a closed connected manifold. Suppose two non-
proportional Riemannian metrics g, ḡ on Mn are geodesically equiva-
lent. If the fundamental group of Mn is infinite, then there exist r ∈
{1, 2, . . . , n − 1}, a Riemannian metric g̃ and foliations Br (of dimen-
sion r) and Bn−r (of dimension n − r) such that, in a neighborhood U(p) of
every point p ∈ Mn, there exist coordinates

(x̄, ȳ) =(
(x1, x2, . . . , xr), (yr+1, yr+2, . . . , yn)

)

such that the x-coordinates are constant on every fiber of the foliation
Bn−r ∩ U(p), the y-coordinates are constant on every fiber of the foliation
Br ∩ U(p), and the metric g̃ has the block-diagonal form

ds2 =
r∑

i, j=1

Gij(x̄)dxidx j +
n∑

i, j=r+1

Hij(ȳ)dyidy j, (1)

where the first block depends on the first r coordinates and the second block
depends on the remaining n − r coordinates. Moreover, the universal cover
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of the manifold (with the lifted metric) is isometric to the direct product of
two simply-connected Riemannian manifolds (Mr

1, g1) (of dimension r) and
(Mn−r

2 , g2) (of dimension (n − r)) with the product metric g1 + g2.

It is known [29], that the fundamental group of a closed hyperbolic manifold
is infinite. There are many ways to show that the lift of any metric (not
necessarily of negative curvature) of any closed hyperbolic manifold can
not be the product metric g1 + g2. For example, since the universal cover
of a hyperbolic manifold is contractible, the components Mr

1 and Mn−r
2

are contractible as well and, hence, the diameters of Mr
1 and Mn−r

2 are
infinite. Then, for every fixed number D ∈ R, we can find a geodesic
triangle such that the union of the D-neighborhoods of the first two edges
does not contain the third edge. For example, we can take the vertices
(x1, x2), (x1, y2), (y1, x2) ∈ Mr

1×Mn−r
2 of the triangle such that the distance

between x1 and y1 (on Mr
1) and the distance between x2 and y2 (on Mn−r

2 ) are
greater than 4D. Then, the product of the Riemannian manifolds (Mr

1, g1)

and (Mn−r
2 , g2) is not quasi-isometric to a CAT(−1) space. Thus Mn is not

hyperbolic.

1.2. History

The theory of geodesically equivalent metrics has long and fascinating
history that goes back to the works of Beltrami, Dini and Levi-Civita.

Beltrami [1] was the first to observe that two different metrics can have
the same geodesics. Let us describe a natural multi-dimensional generaliza-
tion of his example: the metric g is the restriction of the Euclidean metrics
dx2

1 + . . . + dx2
n+1 to the sphere

Sn def= {
(x1, x2, . . . , xn+1) ∈ Rn+1 : x2

1 + x2
2 + . . . + x2

n+1 = 1
}
.

The metric ḡ is the pull-back l∗g, where the mapping l : Sn → Sn is given by
l : v �→ A(v)

‖A(v)‖ , where A is an arbitrary linear nondegenerate transformation

of Rn+1.
The metrics g and ḡ are geodesically equivalent. Indeed, the geodesics

of g are great circles (the intersections of planes that go through the origin
with the sphere). The mapping A is linear and, hence, takes planes to planes.
Since the normalization w �→ w

‖w‖ takes planes to their intersections with
the sphere, the mapping l takes great circles to great circles. Thus the metrics
g and ḡ are geodesically equivalent. Evidently, if A is not proportional to
an orthogonal transformation, then g and ḡ are non-proportional.

At the end of his paper [1], Beltrami formulated the problem of de-
scribing all geodesically equivalent metrics (for surfaces.) It is not clear
from the text whether he assumed the local or the global description; ac-
tually, his motivation came from a certain problem of cartography, which
requires the global setting. Nevertheless, partially because of strong results
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of Dini, Levi-Civita, Weyl, E. Cartan and Eisenhart, the theory of geodesi-
cally equivalent metrics was mostly a local geometry.

Locally, in a neighborhood of almost every point, a complete description
of geodesically equivalent metrics has been given by Dini [8] for surfaces
and Levi-Civita [18] for manifolds of arbitrary dimension. One of the results
of Levi-Civita states that, locally, the set of metrics admitting (nontrivial)
geodesic equivalence is quite rich: in the most general case, it is controlled
by n = dim(M) parameters, each of them being a function of one variable.
For dimensions two and three, every closed manifold has a metric such
that in a neighborhood of every point the metric admits a non-proportional
geodesically equivalent metric.

Later, geodesically equivalent metrics were considered by Weyl, E. Car-
tan and Eisenhart. Weyl studied geodesically equivalent metrics on the
tensor level and found a few tensor reformulations of geodesic equivalence.
One of his most remarkable results is the construction of the projective Weyl
tensor [33]: if two metrics are geodesically equivalent, then their projective
Weyl tensors coincide. E. Cartan [4] studied geodesic equivalence on the
level of affine connections. He introduced the so-called projective connec-
tion, which allows reconstruction of geodesics as unparameterized curves.
In his book [9], Eisenhart systematically applied both methods and obtained
a series of local results.

However, our knowledge of the global (when the manifold is closed
or complete) behavior of geodesically equivalent metrics is not satisfac-
tory. Global aspects have been intensively studied by French, Soviet and
Japanese geometry schools. But, probably because of the influence of ear-
lier researchers, all known global results require fairly strong additional
geometrical assumptions.

Roughly speaking, one takes some geometric assumption written in ten-
sor form, combines it with one of the tensor reformulations of geodesic
equivalence and deduces some new object with global geometric proper-
ties, see the survey paper [25].

New methods for global investigation of geodesically equivalent metrics
have been suggested in [19,32]. The main observation of [19,32] is that the
existence of ḡ geodesically equivalent to g allows one to construct commut-
ing integrals for the geodesic flow of g, see Theorem 4 below.

This observation can be used most efficiently when the number of func-
tionally independent integrals equals the dimension of the manifold. This
corresponds to the case when there exists a point on the manifold where
the number of different eigenvalues of g with respect to ḡ is equal to
the dimension of the manifold. Then the geodesic flow of the metric g is
Liouville-integrable, and we can apply the well-developed machinery of
integrable systems. The following theorem has been obtained in [21,22] by
combining ideas of [31] with technique from [15]:

Theorem 3 ([21,22]). Let Mn be a connected closed manifold and g, ḡ be
geodesically equivalent Riemannian metrics on Mn. Suppose there exists
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a point of the manifold where the number of different eigenvalues of g with
respect to ḡ equals n. Then the following holds:

1. The first Betti number b1(Mn) is not greater than n.
2. The fundamental group of the manifold is virtually Abelian.
3. If, in addition, there exists a point where the number of different eigen-

values of g with respect to ḡ is less than n, then b1(Mn) < n.
4. If b1(Mn) = n, then Mn is homeomorphic to the torus T n.

Under the additional assumption that there exists a point where the number
of different eigenvalues of one metric with respect to the other is equal
to the dimension of the manifold, Theorem 1 follows immediately from
Theorem 3: by [29], the fundamental group of a hyperbolic manifold is not
virtually Abelian.

If n = 2, this additional assumption is equivalent to the non-proportional-
ity of the metrics, and Theorems 1, 2, 3 are equivalent: each of them tells
us that a closed surface of genus greater than one is geodesically rigid.
A self-contained proof of the last statement can be found in [20].

Note that for dimension three, under the additional assumption that there
exists a point where the number of different eigenvalues of one metric with
respect to the other is equal to the dimension of the manifold, Theorem 2
follows from Theorem 3 modulo the Poincare conjecture [23].

Theorems 1, 2 are the first multidimensional global results on geodesi-
cally equivalent metrics with no additional local assumptions.

1.3. Are Theorems 1 and 2 sharp?

Theorems 1 and 2 are sharp for dimension two: it follows from Beltrami’s
example that the sphere and the projective plane are not geodesically rigid.
Since the geodesics of any flat metric are straight lines, any two flat metrics
on the torus (or on the Klein bottle) are geodesically related (that is, there
exists a diffeomorphism that takes the geodesics of the first metric to the
geodesics of the second.)

Theorem 2 shows that the converse of Theorem 1 is not true in general:
for dimension three, it can be shown that only Seifert manifolds with zero
Euler number admit a metric g̃ and foliations Br, Bn−r as in Theorem 2,
see [23]. Thus every Seifert manifold with a torus base and with non-zero
Euler number is geodesically rigid. It is known that Seifert manifolds are
not hyperbolic.

The conclusion of Theorem 2 has two conditions: the finiteness of the
fundamental group and the existence of the metrics g̃ and the foliations
Br, Bn−r .

The second condition is sharp: if Mn admits a metric g̃ and foliations
Br, Bn−r as in Theorem 2, it admits a pair of non-proportional geodesically
equivalent metrics. Indeed, denote by g1, g2 the restrictions of g̃ to the leaves

of the foliations Br , Bn−r , respectively. Consider the metric ḡ
def= g1 +2 · g2.
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Since the metric g̃ is equal to g1 + g2, the metrics g̃ and ḡ are geodesically
equivalent (they even have the same Christoffel symbols!).

The first condition is not sharp in general: by [24], a closed three-
manifold is geodesically rigid if and only if it is homeomorphic neither to
a lens space nor to a Seifert manifold with zero Euler number. Seifert mani-
folds with zero Euler number have infinite fundamental groups. It is known
that there exist closed three-manifolds (other than the lens spaces) whose
fundamental group is finite. The Poincare homology sphere is probably the
most famous example, see [13].
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2. Integrability of geodesic flows for geodesically equivalent metrics

Let g = (gij ) and ḡ = (ḡij) be Riemannian metrics on a manifold Mn .
Consider the (1,1)-tensor L given by the formula

Li
j

def=
(

det(ḡ)

det(g)

) 1
n+1

ḡiαgα j . (2)

Then, L determines the family St, t ∈ R, of (1, 1)-tensors

St
def= det(L − t Id) (L − t Id)−1 . (3)

Remark 1. Although (L − t Id)−1 is not defined for t lying in the spectrum
of L , the tensor St is well-defined for every t. Moreover, St is a polynomial
in t of degree n − 1 with coefficients being (1,1)-tensors.

We will identify the tangent and cotangent bundles of Mn by g. This iden-
tification allows us to transfer the natural Poisson structure from T ∗Mn to
TMn.

Theorem 4 ([19,32]). If g, ḡ are geodesically equivalent, then, for every
t1, t2 ∈ R, the functions

Iti : TMn → R, Iti (v)
def= g(Sti(v), v) (4)

are commuting integrals for the geodesic flow of g.
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Since L is clearly self-adjoint with respect to ḡ, the eigenvalues of L
are real. At every point x ∈ Mn , let us denote by λ1(x) ≤ . . . ≤ λn(x) the
eigenvalues of L at the point.

Corollary 1. Let (Mn, g) be a geodesically complete connected Rieman-
nian manifold. Let a Riemannian metric ḡ on Mn be geodesically equivalent
to g. Then, for every i ∈ {1, . . . , n − 1}, for every x, y ∈ Mn, the following
holds:

1. λi(x) ≤ λi+1(y).
2. If λi(x) < λi+1(x), then λi(z) < λi+1(z) for almost every point

z ∈ Mn.

In order to prove Corollary 1, we need the following technical lemma. For
every fixed v = (ξ1, ξ2, . . . , ξn) ∈ Tx Mn, the function (4) is a polynomial
in t. Consider the roots of this polynomial. From the proof of Lemma 1, it
will be clear that they are real. We denote them by

t1(x, v) ≤ t2(x, v) ≤ . . . ≤ tn−1(x, v).

Lemma 1. The following holds for every i ∈ {1, . . . , n − 1}:
1. For every v ∈ Tx Mn,

λi(x) ≤ ti(x, v) ≤ λi+1(x).

In particular, if λi(x) = λi+1(x), then ti(x, v) = λi(x) = λi+1(x).
2. If λi(x) < λi+1(x), then for every τ ∈ R the Lebesgue measure of the set

Vτ ⊂ Tx Mn, Vτ
def= {

v ∈ Tx Mn : ti(x, v) = τ
}
,

is zero.

Proof of Lemma 1. By definition, the tensor L is self-adjoint with respect
to g. Then, for every x ∈ Mn, there exists "diagonal" coordinates in Tx Mn

where the metric g is given by the diagonal matrix diag(1, 1, . . . , 1) and
the tensor L is given by the diagonal matrix diag(λ1, λ2, . . . , λn). Then, the
tensor (3) reads:

St = det(L − tId)(L − tId)(−1)

= diag(Π1(t),Π2(t), . . . ,Πn(t)),

where the polynomials Πi(t) are given by the formula

Πi(t)
def= (λ1 − t)(λ2 − t) . . . (λi−1 − t)(λi+1 − t) . . . (λn−1 − t)(λn − t).

Hence, for every v = (ξ1, . . . , ξn) ∈ Tx Mn, the polynomial It(x, v) is given
by

It = ξ2
1Π1(t) + ξ2

2Π2(t) + . . . + ξ2
nΠn(t). (5)
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Evidently, the coefficients of the polynomial It depend continuously on the
eigenvalues λi and on the components ξi . Then, it is sufficient to prove the
first statement of the lemma assuming that the eigenvalues λi are all different
and that ξi are non-zero. For every α 
= i, we evidently have Πα(λi) ≡ 0.
Then,

Iλi =
n∑

α=1

Πα(λi)ξ
2
α = Πi(λi)ξ

2
i .

Hence Iλi(x, v) and Iλi+1(x, v) have different signs. Hence, the open interval
]λi, λi+1[ contains a root of the polynomial It(x, v). The degree of the
polynomial It is equal n − 1; we have n − 1 disjoint intervals; each of these
intervals contains at least one root so that all roots are real and the ith root
lies between λi and λi+1. The first statement of the lemma is proved.

Let us prove the second statement of Lemma 1. Suppose λi < λi+1. Let
first λi < τ < λi+1. Then, the set

Vτ
def= {

v ∈ Tx Mn : ti(x, v) = τ
}
,

consists of the points v where the function Iτ (x, v)
def= (It(x, v))|t=τ is zero;

then it is a nontrivial quadric in Tx Mn ≡ Rn and its measure is zero.
Let τ be one of the endpoints of the interval [λi, λi+1]. Without loss

of generality, we can suppose τ = λi . Let k be the multiplicity of the
eigenvalue λi . Then, every coefficient Πα(t) of the quadratic form (5) has
the factor (λi − t)k−1. Hence,

Ît
def= It

(λi − t)k−1

is a polynomial in t and Îτ is a nontrivial quadratic form. Evidently, for
every point v ∈ Vτ , we have Îτ (v) = 0 so that the set Vτ is a subset of
a nontrivial quadric in Tx Mn and its measure is zero. Lemma 1 is proved.

Proof of Corollary 1. The first statement of Corollary 1 follows immediately
from the first statement of Lemma 1: Let us join the points x, y ∈ Mn by
a geodesic γ : R → Mn , γ (0) = x, γ (1) = y. Consider the one-parametric
family of integrals It(x, v) and the roots

t1(x, v) ≤ t2(x, v) ≤ . . . ≤ tn−1(x, v).

By Theorem 4, each root ti is constant on every orbit (γ, γ̇ ) of the
geodesic flow of g so that

ti(γ (0), γ̇ (0)) = ti(γ (1), γ̇ (1)).

Using Lemma 1, we obtain

λi(γ (0)) ≤ ti(γ (0), γ̇ (0)), and ti(γ (1), γ̇ (1)) ≤ λi+1(γ (1)).

Thus λi(γ (0)) ≤ λi+1(γ (1)) and the first statement of Corollary 1 is proved.
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Let us prove the second statement of Corollary 1. Suppose λi(y) =
λi+1(y) for every point y of some subset V ⊂ Mn. Then, the value of
λi is a constant (independent of y ∈ V ). Indeed, by the first statement of
Corollary 1,

λi(y0) ≤ λi+1(y1) and λi(y1) ≤ λi+1(y0),

so that λi(y0) = λi(y1) = λi+1(y1) = λi+1(y0) for every y0, y1 ∈ V .
We denote this constant by τ . Let us join the point x with every point

of V by all possible geodesics. Consider the set Vτ ⊂ Tx Mn of the initial
velocity vectors (at the point x) of these geodesics.

By the first statement of Lemma 1, for every geodesic γ passing through
at least one point of V , the value ti(γ, γ̇ ) is equal to τ . By the second
statement of Lemma 1, the measure of the set Vτ is zero. Since the set V
lies in the image of the exponential mapping of the set Vτ , the measure of
the set V is also zero. Corollary 1 is proved.

3. Plan of proof for Theorem 2

Let Mn be closed and connected. Suppose non-proportional Riemannian
metrics g and ḡ on Mn are geodesically equivalent. As in the previous
section, consider the eigenvalues λ1 ≤ . . . ≤ λn of the tensor L given
by (2). By Corollary 1, the following two cases are possible.

Case 1: There exists r ∈ {1, . . . , n − 1} and a constant λ ∈ R such that,
for every x ∈ Mn

λr(x) < λ < λr+1(x).

Case 2: The following two conditions hold:
(i) For every r ∈ {1, . . . , n − 1}, the maximum maxx∈Mn(λr(x))

is equal to the minimum minx∈Mn(λr+1(x)).
(ii) At least one of the eigenvalues of L is not constant.

In Sect. 4, we show that, in Case 1, we can canonically construct a metric
g̃ and foliations Br , Bn−r as in Theorem 2. This result follows from Levi-
Civita’s Theorem (Theorem 5). Levi-Civita’s Theorem ensures that the
distribution spanned over the eigenspaces of the first r eigenvalues of L is
integrable, (Corollary 2) so that it generates an r−dimensional foliation Br .
Similarly, the distribution spanned over the eigenspaces of the last n − r
eigenvalues of L generates an (n − r)−dimensional foliation Bn−r . Levi-
Civita’s Theorem also gives us a local description of geodesically equivalent
metrics in a neighborhood of almost every point. From this description, it is
easy to see how one can change g in order to obtain g̃ (as in Theorem 2). In
the proof of Corollary 4, we show that the change can be done invariantly
and globally.

A manifold equipped with a metric g̃ and foliations Br and Bn−r as in
Theorem 2 is called a locally product manifold [30]. The local and global
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theory of such manifolds is quite well developed (see, for example, [27]).
The universal cover of such manifolds (with the lifted metric and foliations)
is isomorphic to the direct product of two simply-connected Riemannian
manifolds (Mr

1, g1) and (Mn−r
2 , g2), see [16], Chapter 4, Sects. 5,6.

In Sects. 5 and 6, we show that, in Case 2, the fundamental group
of the manifold is finite. The key result of Sect. 5 is Theorem 6 which,
roughly speaking, tells us that every (closed) manifold with two geodesically
equivalent metrics satisfying (i), (ii), has a closed submanifold U with
two geodesically equivalent metrics satisfying (i), (ii) such that the natural
homomorphism Id∗ : π1(U) → π1(Mn) is a surjection. Consequently
applying Theorem 6, we come to one of the following subcases:

Subcase 1: The dimension n of the manifold Mn is q + 1, where q ≥ 1.

The eigenvalues λ1 = . . . = λq
def= λ are constant, the eigen-

value λq+1 is not constant and there exists z ∈ Mq+1 such that
λq+1(z) = λ.

Subcase 2: The dimension n of the manifold Mn is 2. The eigenvalues λ1
and λ2 are not constant and there exists a point z ∈ M2 such
that λ1(z) = λ2(z).

Subcase 3: The dimension n of the manifold Mn is q + 2, where q ≥ 1,
the eigenvalues λ1 and λq+2 are not constant and there exist
z1, z2 ∈ Mn such that λ1(z1) = λq+2(z2).

Subcase 4: The dimension n of the manifold Mn is n = q + r + 1; q > 0,
r > 0. The eigenvalues λ1 = λ2 = . . . = λr and λr+2 = λr+3 =
. . . = λn are constant. The eigenvalue λr+1 is not constant.
There exist points z0, z1 ∈ Mn such that λr+1(z0) = λ1 and
λr+1(z1) = λn .

Remark 2. Although the metrics g and ḡ are symmetrically related by their
assumed geodesic equivalence, the tensor L is not invariant with respect to
the permutation of the metrics. More precisely, the tensor (2) constructed for
ḡ, g is the inverse of (2) constructed for g, ḡ. In particular, this permutation
transforms Subcase 1 to the following subcase which is not listed above:

λ1 
= const, λ2 = . . . = λn
def= λ = const, maxx∈Mn(λ1(x)) = λ.

Also, unless otherwise stated, the metrics will be treated unequally, with
precedence being afforded to g. In particular, the word “orthogonal” will
always mean “orthogonal with respect to g”.

In Sect. 6 we deal with these subcases. We show that, in all these
subcases, the fundamental group of the manifold is finite. This completes
the proof of Theorem 2.

4. Levi-Civita’s Theorem, vanishing of the Nijenhuis torsion for L and
the proof for Case 1

Let g, ḡ be Riemannian metrics. Consider the tensor L given by (2). At
every point x ∈ Mn , consider the different eigenvalues φ1(x) < φ2(x) <
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. . . < φm(x) of L . Let ki(x) be the multiplicity of the eigenvalue φi(x) so that

k1(x)+ . . .+km(x) = n. Consider the ordered set K(x)
def= {k1(x), k2(x), . . .

. . . , km(x)}.
Definition 3. A point x ∈ Mn is called stable (with respect to the metrics
g, ḡ), if it has a neighborhood U(x) such that K(x) = K(y) for every
y ∈ U(x).

The following theorem is due to Levi-Civita 1896.

Theorem 5 ([18]). Let g, ḡ be Riemannian metrics on Mn. Let a point
x ∈ Mn be stable; let K(x) be equal to {k1, k2, . . . , km}. The metrics are
geodesically equivalent in some sufficiently small neighborhood U(x) of the
point x, if and only if there exists a coordinate system x̄ = (x̄1, . . . , x̄m)

(in U(x)), where x̄i = (x1
i , . . . , xki

i ), (1 ≤ i ≤ m), such that the quadratic
forms of the metrics g and ḡ have the following form:

g( ˙̄x, ˙̄x) = P1(x̄)A1(x̄1, ˙̄x1) + P2(x̄)A2(x̄2, ˙̄x2) + · · · +
+ Pm(x̄)Am(x̄m, ˙̄xm),

ḡ( ˙̄x, ˙̄x) = ρ1 P1(x̄)A1(x̄1, ˙̄x1) + ρ2 P2(x̄)A2(x̄2, ˙̄x2) + · · · +
+ ρm Pm(x̄)Am(x̄m, ˙̄xm),

where Ai(x̄i, ˙̄xi) are positive-definite quadratic forms in the velocities ˙̄xi
with coefficients depending on x̄i ,

Pi
def= (φi − φ1) · · · (φi − φi−1)(φi+1 − φi) · · · (φm − φi),

ρi = 1

φ1 . . . φm

1

φi

and 0 < φ1 < φ2 < . . . < φm are smooth functions such that

φi =
{

φi(x̄i), if ki = 1
constant, otherwise.

Remark 3. In Levi-Civita coordinates from Theorem 5, the tensor L is given
by the diagonal matrix

diag(φ1, . . . , φ1︸ ︷︷ ︸
k1

, . . . ., φm, . . . , φm︸ ︷︷ ︸
km

),

so that the notation “φ” for the different eigenvalues of L used before
Levi-Civita’s Theorem is compatible with the notations inside the theorem.

Corollary 2. Suppose the Riemannian metrics g, ḡ are geodesically equiva-
lent. Then the Nijenhuis torsion of the tensor L vanishes.
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Proof. Nijenhuis torsion is a tensor, so it is sufficient to check its vanishing
at almost every point. By Corollary 1, almost every point of Mn is stable.
In the Levi-Civita coordinates from Theorem 5, the tensor L is given by the
diagonal matrix

diag(φ1, . . . , φ1︸ ︷︷ ︸
k1

, . . . ., φm, . . . , φm︸ ︷︷ ︸
km

).

Since the eigenvalue φi can depend on x̄i only, the Nijenhuis torsion of L is
zero [12]. Corollary 2 is proved.

Remark 4. A self-contained proof of Corollary 2 which does not require
Levi-Civita’s Theorem can be found in [3].

Below we assume that the Riemannian metrics g, ḡ are geodesically
equivalent and that Mn is closed. Suppose the eigenvalue λr is not a constant.
Consider a number λ such that

min
x∈Mn

(λr(x)) < λ < max
x∈Mn

(λr(x)).

Consider a point x0 where λr(x0) = λ. Suppose the differential dλr is not
zero at the point x0. Denote by W0 the connected component of the set

{
x ∈ Mn : λr(x) = λ

}

containing the point x0.

Corollary 3. The set W0 is a closed submanifold of codimension 1. At every
point x ∈ W0, the tangent space TxW0 is orthogonal to the eigenvector of L
corresponding to the eigenvalue λ.

Proof. By Corollary 1, at every point of W0, the eigenvalue λr has multipli-
city one. Then, the distribution orthogonal to its eigenvector is well-defined
in a neighborhood of W0. Since L is self-adjoint with respect to g, the
orthogonal distribution is spanned over all other eigenspaces. Since the Ni-
jenhuis torsion of L vanishes, the distribution is integrable. We denote by W1
the integral hypersurface of the distribution passing through the point x0. By
Corollary 2, the eigenvalue λr is constant along the integral hypersurfaces
of the distribution [12]. Hence, W1 ⊂ W0. Let us show that W1 coincides
with W0.

By Corollary 2, in a small neighborhood of every point of W1, there exist
coordinates x, y1, . . . , yn−1 such that W0 is given by the equation x = 0
and λr is independent of the coordinates y1, . . . , yn−1. Then, the set of the
points of W1 where dλr = 0 is open (in W1). Since it is evidently closed,
and since it does not coincide with the whole W1, the set is empty. Thus
dλr 
= 0 at every point of W1. Then, by implicit function theorem, W0
coincides with W1. Corollary 3 is proved.
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Corollary 4. Let the eigenvalues of the tensor L for geodesically equivalent
Riemannian metrics g, ḡ satisfy the assumptions of Case 1: that is, for
a certain r ∈ {1, . . . , n − 1} and λ ∈ R, for every x ∈ Mn, we have

{
λi(x) < λ if i ≤ r
λi(x) > λ if i > r.

Then, there exists a Riemannian metric g̃ on Mn and foliations Br (of di-
mension r) and Bn−r (of dimension n−r) such that in a neighborhood of any
point x ∈ Mn there exist coordinates (x̄, ȳ) =(

(x1, x2, . . . xr), (yr+1, yr+2,

. . . , yn)
)

such that the x-coordinates are constant on every leaf of the foli-
ation Bn−r , the y-coordinates are constant on every leaf of the foliation Br,
and the metric g̃ is block-diagonal such that the first (r × r) block depends
on the x-coordinates and the second ((n − r) × (n − r)) block depends on
the y-coordinates.

Proof. We will explicitly construct the metric g̃ and the foliations Br , Bn−r .
At every tangent space Tx Mn, denote by Vr (by Vn−r , respectively)

the vectorspace spanned over the eigenspaces of L corresponding to the
eigenvalues λ1, . . . , λr (the eigenvalues λr+1, . . . , λn, respectively). Since
there is no point where λr = λr+1, we have that Vr and Vn−r are smooth
distributions on Mn invariant with respect to L . Since the Nijenhuis torsion
of L is zero, the distributions are integrable so that they generate two
transversal foliations Br , Bn−r of dimensions r and n − r.

Denote by χr , χn−r the characteristic polynomials of the restriction of L
to Vr , Vn−r , respectively. Consider the (1,1)-tensor

C
def= (

(−1)rχr(L) + χn−r(L)
)−1

and the metric g̃ given by the relation

g̃(u, v)
def= g(C(u), v)

for any vectors u, v. (In the tensor notations, the metric g̃ is given by giαCα
j .)

Let us show that the metric g̃ and the foliations Br , Bn−r are as we need.
First of all, g̃ is an everywhere defined Riemannian metric. Indeed, take an
arbitrary point x ∈ Mn. At the tangent space Tx Mn , we can find a coordinate
system where the tensor L and the metric g are diagonal. In this coordinate
system, the characteristic polynomials χr , χn−r are given by

(−1)rχr = (t − λ1)(t − λ2) . . . (t − λr)
χn−r = (λr+1 − t)(λr+2 − t) . . . (λn − t).

Then, the (1,1)-tensor ((−1)rχr(L) + χn−r(L)) is given by the diagonal
matrix

diag




n∏

j=r+1

(λ j −λ1), . . . ,

n∏

j=r+1

(λ j −λr),

r∏

j=1

(λr+1−λ j), . . . ,

r∏

j=1

(λn −λ j)



. (6)
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We see that the tensor is diagonal and all its diagonal components are
positive. Then, the tensor C is well-defined and g̃ is a Riemannian metrics.

Let us show that at every point there exists a coordinate system

(x̄, ȳ) =(
(x1, x2, . . . , xr), (yr+1, yr+2, . . . , yn)

)

such that the x-coordinates are constant on every leaf of the foliation Bn−r ,
the y-coordinates are constant on every leaf of the foliation Br , and the
metric g is block-diagonal with the first (r × r) block depending on the first
r coordinates and the second ((n − r) × (n − r)) block depending on the
last n − r coordinates.

Since the foliations Br, Bn−r and the metric g̃ are globally defined, it is
sufficient to verify this condition at almost every point. Indeed, this condition
is equivalent to the condition that, locally, for every leaf of the foliations Br ,
Bn−r , the result of the parallel translation (in the sense of g̃) of any vector
orthogonal (here it does not matter which metric: g, ḡ or g̃ we take) to the
leaf along any curve on the leaf does not depend on the curve [30]. This is
a differential condition and it is sufficient to verify it at almost every point.

By Corollary 1, almost every point of Mn is stable. Consider the Levi-
Civita coordinates x̄1, . . . , x̄m from Theorem 5. There exists q such that
k1 + k2 + . . . + kq = r. By definition, the coordinates x̄1, . . . , x̄q are
constant on every leaf of the foliation Bn−r , the coordinates x̄q+1, . . . , x̄m
are constant on every leaf of the foliation Br .

Using (6), we see that, in the Levi-Civita coordinates, g̃ is given by

g̃( ˙̄x, ˙̄x) = P̃1(x̄)A1(x̄1, ˙̄x1) + P̃2(x̄)A2(x̄2, ˙̄x2) + · · · +
+ P̃m(x̄)Am(x̄m, ˙̄xm),

where the functions P̃ are as follows: for i ≤ q, the function P̃i is given by

P̃i
def= (φi − φ1) . . . (φi − φi−1)(φi+1 − φi) . . . (φq − φi)

(φq+1 − φi)
kq+1−1 . . . (φm − φi)km−1

.

For i > q, the function P̃i is given by

P̃i
def= (φi − φq+1) . . . (φi − φi−1)(φi+1 − φi) . . . (φm − φi)

(φi − φ1)
k1−1 . . . (φi − φq)

kq−1 .

Since φ j is a constant whenever j 
= 1, the function (φi − φ j)
k j −1 does not

depend on the variables x̄ j . Then, the metric g̃ is as we need. Corollary 4 is
proved.

5. Proof for Case 2

Within this section, we assume that the manifold is closed and connected,
and that the Riemannian metrics g, ḡ are geodesically equivalent. We need
the following technical lemmas.
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Lemma 2. Consider r ∈ {1, . . . , n − 1}. Take x0 ∈ Mn such that

λr(x0) = max
x∈Mn

(λr(x))
def= λ.

Consider q ∈ {0, . . . , n −r} such that the eigenvalues λr+1, λr+2, . . . , λr+q
are constant and are equal to λ.

Denote by V ⊂ Tx0 Mn the eigenspace of L corresponding to the eigen-
value λ. Let v0 
= 0 ∈ Tx0 Mn be orthogonal to V . Consider the geodesic
passing through the point x0 with the velocity vector v0.

Then, at every point of this geodesic, the number λ is an eigenvalue
of L of multiplicity at least q + 1.

Proof. First we consider the case λr+q+1(x0) = λ. In this case, λ is a root
of It(x0, v0) of multiplicity at least q + 2. More precisely, as in the proof of
Lemma 1, consider diagonal coordinates on Tx0 Mn such that the metric g is
given by the diagonal matrix diag(1, 1, . . . , 1) and the tensor L is given by
the diagonal matrix diag(λ1, λ2, . . . , λn). In these coordinates, the function
It is given by (5). Since by assumptions the vector v0 is orthogonal to the
eigenspace of L corresponding to λ, the components ξr, . . . , ξr+q+1 of the
vector v0 are zero. Clearly, for every i 
∈ {r, r + 1, . . . , r + q + 1}, the
number λ is a root of the polynomial Πi(t) of multiplicity at least q + 2.
Thus λ is a root of the polynomial It(x0, v0) of multiplicity at least q + 2.
Denote by γ the geodesic passing through x0 with the velocity vector v0. By
Theorem 4, for every τ ∈ R, the eigenvalue λ is a root of multiplicity at least
q + 2 of the polynomial It(γ (τ), γ̇ (τ)). Then, by Lemma 1, at least q + 1
eigenvalues of L are equal to λ. Lemma 2 is proved under the additional
assumption λr+q+1(x0) = λ.

Note that if λr−1(x0) = λ, then, by Corollary 1, the eigenvalue λr is
a constant so that at every point of the manifold λr = λr+1 = . . . = λr+q = λ
so that λ is an eigenvalue of L of multiplicity at least q + 1.

Below we assume that either r = 1 or λ > λr−1(x0); either r + q = n
or λr+q+1(x0) > λ.

We will consider the cases q = 0 and q > 0 separately, although the
proofs use the same ideas.

Suppose q = 0. Consider the polynomial It(x0, v0) and its roots
t1(x0, v0) ≤ t2(x0, v0) ≤ . . . ≤ tn−1(x0, v0). If λ is a root of the polynomial
of multiplicity at least 2, the lemma obviously follows from Theorem 4 and
Lemma 1.

Evidently, λ is a root of the polynomial It(x0, v0). More precisely, in
the diagonal coordinates from the proof of Lemma 1, the component ξr
is zero. All remaining terms of the sum (5) have the factor (λ − t) and,
therefore, vanish when t = λ. Below we assume that λ is a simple root of
the polynomial It(x0, v0).
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Consider the functions

Iλ : TMn → R, Iλ(x, v)
def= (It(x, v))|t=λ ,

Iλr : TMn → R, Iλr (x, v)
def= (It(x, v))|t=λr(x) .

By assumptions, the eigenvalue λr has multiplicity one in a small neigh-
borhood of x0. Then, it is a smooth function on this neighborhood so that
the function Iλr (x, v) is also smooth on the tangent bundle to this neighbor-
hood. Consider the function Iλ − Iλr . Its differential vanishes at the point
(x0, v0). More precisely, by assumptions, λ is a simple root of the polynomial
It(x0, v0) so that in a neighborhood of the point

(
λ, (x0, v0)

) ∈ R × TMn

the function It(x, v) is a monotone function in t. Since λr is no greater
than λ, the difference Iλ(x, v) − Iλr (x, v) is either always non-positive or
always non-negative in a small neighborhood of (x0, v0). By assumptions,
λr(x0) = λ so that Iλ(x0, v0)− Iλr (x0, v0) = 0. Hence, the function Iλ − Iλr

has a local extremum at the point (x0, v0) and its differential vanishes at this
point.

Now, the differential of the function Iλr also vanishes at the point (x0 , v0).
More precisely, as we have shown in the proof of Lemma 1, the function
Iλr is either always non-positive or always non-negative. Since Iλr (x0, v0)
is zero, the point (x0, v0) is an extremum of the function Iλr . Hence, the
differential of Iλr vanishes at the point (x0, v0).

Thus the differential of the function Iλ is zero at the point (x0, v0).
Consider the geodesic γ such that (γ (0), γ̇ (0)) = (x0, v0). Evidently, the
differential of any integral is preserved by the geodesic flow so that the
differential dIλ vanishes at every point (γ (τ), γ̇ (τ)). Let us prove that λ is
an eigenvalue of L at the point γ (τ) of this geodesic.

Consider the diagonal coordinate system at the tangent space to the
point γ (τ). In this coordinate system, the restriction of the function Iλ to
the tangent space Tγ (τ)Mn is equal to

n∑

α=1

ξ2
αΠα(λ).

The partial derivatives ∂Iλ
∂ξα

are

∂Iλ
∂ξα

= 2ξαΠα(λ).

Since all of them are zero, at least one of the functions Πα(λ) is zero. It can
happen if and only if λ is one of the eigenvalues λ1, . . . , λn. Thus λ is an
eigenvalue of L at the point γ (τ). The lemma is proved for q = 0.

Let us prove the lemma assuming q ≥ 1.
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Consider the functions

Ĩt : R × TMn → R, Ĩt(x, v)
def= It (x,v)

(λ−t)q−1 ,

Ĩ ′
t : R × TMn → R, Ĩ ′

t (x, v)
def= d

dt

(
Ĩt(x, v)

)
,

Ĩ ′
λ : TMn → R, Ĩ ′

λ(x, v)
def= (

Ĩ ′
t (x, v)

)
|t=λ

,

Ĩ ′
λr

: TMn → R, Ĩ ′
λr

(x, v)
def= (

Ĩ ′
t (x, v)

)
|t=λr (x)

.

By Lemma 1, at every point (x, v) of TMn , the number λ is a root of
It of multiplicity at least q − 1. Then, Ĩ ′

t is indeed a polynomial of degree
(n − q − 1) and, therefore, the functions Ĩ ′

λ, Ĩ ′
λr

, are well-defined.
First we will show that the differential of the function Ĩ ′

λ vanishes at the
point (x0, v0).

At the tangent space to every point of the manifold, consider the diagonal
coordinate system from the proof of Lemma 1. In view of (5), the function
Ĩt is given by

Π̃1(t)ξ
2
1 + . . . + Π̃r(t)ξ

2
r + Π̃(t)

[
ξ2

r+1 + . . . + ξ2
r+q

]

(7)+ Π̃r+q+1(t)ξ
2
r+q+1 + . . . + Π̃n(t)ξ

2
n .

Here the functions Π̃α and Π̃ are defined as follows:

Π̃
def=

∏

j 
=r+1,... ,r+q

(λ j − t),

Π̃α
def=

∏

j 
=r+1, . . . ,r+q−1

j 
=α

(λ j − t).

Although the diagonal coordinate system is not uniquely defined, the
sum of the first (r − 1) terms (respectively, the sum of the last (n − r − q)
terms) of (7) is a well-defined smooth function on the tangent bundle to
a sufficiently small neighborhood of the point x0. Indeed, by assumptions,
in a small neighborhood of x0, either r = 1 or λr−1 < λr and either r+q = n
or λr+q+1 > λ. At every point of this neighborhood, consider the subspace
V first ∈ Tx Mn (respectively, Vlast) spanned over the eigenspaces of L cor-
responding to the eigenvalues λ1, . . . , λr−1 (respectively, λr+q+1, . . . , λn).
The distributions V first , Vlast are smooth so that the orthogonal projections
Pr first , Prlast in the metric g to these distributions are smooth as well. Hence,
the functions

F̃t : R × TMn → R, F̃t(x, v)
def= Ĩt(x, Pr first(v)),

F̃ ′
t : R × TMn → R, F̃ ′

t (x, v)
def= Ĩ ′

t (x, Pr first(v)),

F̃ ′
λ : TMn → R, F̃ ′

λ(x, v)
def= Ĩ ′

λ(x, Pr first(v)),

F̃ ′
λr

: TMn → R, F̃ ′
λr

(x, v)
def= Ĩ ′

λr
(x, Pr first(v)).
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are well-defined smooth functions on the tangent bundle to the small neigh-
borhood of x0. It is easy to see that the function F̃t is the sum of the first
r − 1 terms of (7). We can similarly obtain the sum of the last (n − r − q)
terms by changing Pr first to Prlast .

Let us show that the differential of the function F̃ ′
λ vanishes at the point

(x0, v0). We will show that the differential of the function F̃ ′
λ vanishes at

every point (x0, v) of Tx0 Mn. If the projection Pr first (v) is zero, there is noth-
ing to prove. Suppose Pr first (v) 
= 0. Then, the function F̃t is a polynomial
in t of degree n − q. Clearly,

F̃ ′
λ = [

F̃ ′
λ − F̃ ′

λr

] + F̃ ′
λr

.

Let us show that λ is a simple root of the polynomial F̃ ′
t (x0, v). The

polynomial F̃t(x0, v) has n − q roots. Clearly,

λ = λr, λ = λr+q, λr+q+1, λr+q+2, . . . , λn

give us n −r −q +2 roots of F̃t(x0, v). Arguing as in the proof of Lemma 1,
one can show that there exist r − 2 roots smaller than λ. Then, λ is a root
of F̃t(x0, v) of multiplicity precisely two. Hence, λ is a root of F̃ ′

t (x0, v) of
multiplicity precisely one.

Then, in a small neighborhood of of the point
(
λ, (x0, v)

) ∈ R × TMn ,
the function F̃ ′

t is a monotone function in t. Using that λr is no greater
than λ, we obtain that the difference F̃ ′

λ − F̃ ′
λr

is either always non-positive
or always non-negative in a small neighborhood of (x0, v). By assumptions,
λr(x0) = λ so that F̃ ′

λ(x0, v) − F̃ ′
λr

(x0, v) is zero and, hence, the function
F̃ ′

λ − F̃ ′
λr

has a local extremum at the point (x0, v) and its differential
vanishes.

The differential of the function F̃ ′
λr

also vanishes at the point (x0, v).
Indeed, one can check directly that all its components in the diagonal
coordinate system have the same sign: for α < r the coefficient of ξ2

α

is equal to

−
∏

j 
=r, . . . ,r+q−1

j 
=α

(λ j − λr).

Since F̃ ′
λr

(x0, v) = 0, the point (x0, v) is a local extremum of the function
F̃ ′

λr
. Then, the differential of the function F̃ ′

λr
vanishes at the point (x0, v).

Thus the differential of the function F̃ ′
λ vanishes at the point (x0, v0).

Similarly, the differential of the function H̃ ′
λ(x, v)

def= Ĩ ′
λ(x, Prlast(v)) van-

ishes at the point (x0, v0). Since the components ξr, ξr+1, . . . , ξr+q of the
vector v0 are zero, the differential of the quadratic in velocities function

Ĩ ′
λ − H̃ ′

λ − F̃ ′
λ
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also vanishes at the point (x0, v0). Thus the differential of the function Ĩ ′
λ

vanishes at the point (x0, v0).
The function Ĩ ′

λ is an integral of the geodesic flow. Then, its differential
is preserved by the geodesic flow. Then, it is zero at every point (γ (τ), γ̇ (τ))
of the geodesic orbit (γ, γ̇ ) such that (γ (0), γ̇ (0)) = (x0, v0). Let us prove
that, at the point γ (τ), the multiplicity of the eigenvalue λ is at least q + 1.

Suppose λ is not an eigenvalue of L of multiplicity at least q + 1. Then,
λr(γ (τ)) < λ and either r + q = n or λ < λr+q+1(γ (τ)). Consider the diag-
onal coordinates at the tangent space to the point γ (τ). In these coordinates,
the components ξr+1, . . . , ξr+q of γ̇ (τ) are zero. More precisely, as we have
shown above, λ is a root of the polynomial Ĩt(x0, v0). Then, it is a root of the
polynomial Ĩt(γ (τ), γ̇ (τ)). In the diagonal coordinates, Ĩt is given by (7).
We see that the polynomials Π̃α(t) vanish when t = λ and that polynomial
Π̃(t) does not vanish when t = λ. Then, the sum ξ2

r+1 + . . . + ξ2
r+q vanishes

so that the components ξr+1, . . . , ξr+q are zero.

For α 
= r + 1, . . . , r + q, the partial derivatives
∂ Ĩ ′

λ

∂ξα
are equal to

−2ξα

∏

i 
=r+1, . . . ,r+q

i 
=α

(λi − λ).

Since all these derivatives are zero, and since at least one of the components
ξα is not zero, λ is an eigenvalue of L of multiplicity at least q +1. Lemma 2
is proved.

Lemma 3. Consider r ∈ {1, . . . , n − 1}, q ∈ {0, . . . , n − r − 1}. Suppose
there exist x0, x1 ∈ Mn such that

λr(x0) = λr+q+1(x1)
def= λ < λr+q+1(x0).

Consider a geodesic γ such that γ (0) = x0, γ (1) = x1.
Then, the eigenvalues λr+1, λr+2, . . . , λr+q are constant and are equal

to λ, and, at the point x0, the vector γ̇ (0) is orthogonal to the eigenspace of
L corresponding to the eigenvalue λ.

Proof. By Corollary 1, the eigenvalues λr+1, λr+2, . . . , λr+q are constant.
Let us prove that the eigenspace of L corresponding to the eigenvalue λ is
orthogonal to γ̇ (0).

First of all, λ is a root of multiplicity at least q + 1 of the polynomial
It(γ, γ̇ ). Indeed, by Lemma 1, we have

λ = λr(γ (0)) ≤ tr(γ (0), γ̇ (0)) ≤ . . .

≤ tr+q−1(γ (0), γ̇ (0)) ≤ tr+q(γ (0), γ̇ (0)),

tr(γ (1), γ̇ (1)) ≤ tr+1(γ (1), γ̇ (1)) ≤ . . .

≤ tr+q(γ (1), γ̇ (1)) ≤ λr+q+1(γ (1)) = λ.
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Since by Theorem 4, ti(γ (0), γ̇ (0)) = ti(γ (1), γ̇ (1)) for every i, we obtain

tr(γ (0), γ̇ (0)) = tr+1(γ (0), γ̇ (0)) = . . .

= tr+q−1(γ (0), γ̇ (0)) = tr+q(γ (0), γ̇ (0)) = λ.

Thus λ is a root of the polynomial It(γ (0), γ̇ (0)) of multiplicity at least
q + 1.

Without loss of generality, we can assume either r = 1 or λr−1(x0) < λ.
Consider the polynomial Ĩt from the proof of Lemma 2.

Since λ is a root of the polynomial It(γ (0), γ̇ (0)) of multiplicity at least
q +1 , by definition, λ is a root of multiplicity at least two of the polynomial
Ĩt(x0, γ0). In the diagonal coordinates at the tangent space to the point
γ (0), the polynomial Ĩt is given by (7). We see that λ is a double-root of
all polynomials Π̃α(t), and is a simple root of the polynomial Π̃(t). Then,
the sum ξ2

r+1 + . . . + ξ2
r+q vanishes so that the components ξr+1, . . . , ξr+q

are zero. Hence, the eigenspace of L corresponding to the eigenvalue λ is
orthogonal to γ̇ (0). Lemma 3 is proved.

Let the eigenvalues λ1 ≤ . . . ≤ λn of the tensor L satisfy the assumptions
(i), (ii) of Case 2. Take r ∈ {1, . . . , n−1}, q ∈ {0, . . . , n−r −1}. Suppose
the eigenvalues λr , λr+q+1 are not constant. Suppose that the maximum

maxx∈Mn(λr(x)) coincides with the minimum λ
def= minx∈Mn(λr+q+1(x)).

Consider the set

U
def= {

x ∈ Mn : (λr(x) − λ)(λr+q+1(x) − λ) = 0
}
.

Theorem 6. The following holds:

1. U is a closed connected submanifold of codimension q + 1.
2. The standard homomorphism Id∗ : π1(U) → π1(Mn) of the fundamen-

tal group of U to the fundamental group of Mn is a surjection.
3. U is totally geodesic. In particular, the restrictions of the metrics g, ḡ

to U have the same (unparameterized) geodesics. We denote by L̃ the
tensor (2) (on U) for these restrictions.

4. The eigenvalues of L̃ satisfy the assumptions (i), (ii) of Case 2.

Proof. There exists z ∈ Mn such that λr(z) = λr+q+1(z) = λ. More pre-
cisely, since Mn is compact, there exist x0, x1 ∈ Mn such that λr(x0) =
λr+q+1(x1) = λ. Suppose λr+q+1(x0) > λ. Consider a geodesic γ connect-
ing these points: γ (0) = x0, γ (1) = x1. By Lemma 3, the initial velocity
vector γ̇ (0) satisfies the assumptions of Lemma 2. Hence, by Lemma 2,
at every point of the geodesic, λr = λ or λr+q+1 = λ. Then, there exists
0 ≤ τ ≤ 1 such that λr(γ (τ)) = λr+q+1(γ (τ)) = λ.

Now let us show that we can choose a point x0 ∈ Mn such that λr(x0) =
λ < λr+q+1(x0).

By assumption, the eigenvalue λr+q+1 is not constant. Then, there exists
a point y1 such that λ < λr+q+1(y1) < maxx∈Mn(λr+q+1(x)) and such
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that the differential dλr+q+1(y1) is not zero. Denote by W0 the connected
component of the set

{
x ∈ Mn : λr+q+1(x) = λr+q+1(y1)

}

containing the point y1. By Corollary 3, W0 is a submanifold of Mn of codi-
mension 1, and the eigenvector of L corresponding to λr+q+1 is orthogonal
to W0 at every point.

Consider the shortest curve γ connecting the submanifold W0 with the
point z. The curve γ is an (unparameterized) geodesic. Let x0 ∈ W0 be its
starting point and v0 
= 0 be the initial velocity vector. Consider the roots
t1(x0, v0) ≤ t2(x0, v0) ≤ . . . ≤ tn−1(x0, v0) of It(x0, v0).

Since v0 is orthogonal to W0, in the diagonal coordinates, the polynomial
It(x0, v0) is equal to (we assume v0 = (ξ1, . . . , ξn))

ξ2
r+q+1

∏

i 
=r+q+1

(λi − t).

Then, tr(x0, v0) = λr(x0). Since the geodesic γ passes through the point z
where λr = λr+1 = λ, we have tr(x0, v0) = λ so that λr(x0) = λ. Thus
λr(x0) = λ < λr+q+1(x0).

Similarly, there exists x1 ∈ Mn such that λr(x1) < λ = λr+q+1(x1).
Let us show that U is indeed a submanifold of codimension q + 1.

Take a point x ∈ U . At this point, λr = λ or λr+q+1 = λ. Suppose
λr+q+1(x) = λ > λr(x). Consider a geodesic γ such that γ (0) = x0,
γ (1) = x.

By Lemma 3, the point (γ (0), γ̇ (0)) ∈ TMn satisfies the assumptions
of Lemma 2. Then, every point of the geodesic γ is a point of U . Then,
without loss of generality, we can assume that the points x, x0 are not
conjugate along γ (otherwise, instead of the point x0 consider a new point
x̃0 ∈ γ close enough to the point x0).

Consider the exponential mapping exp : Tx0 Mn → Mn. Denote by
Ox0 ⊂ Tx0 Mn a sufficiently small neighborhood of γ̇ (0). Denote by V ⊥

x0
⊂ Tx0

the subspace orthogonal (in g) to the eigenspace of L corresponding to λ.
The space V ⊥

x0
has codimension q + 1. By Lemma 3, every point of U from

a sufficiently small neighborhood of x is an image of a point from Ox0 ∩V ⊥
x0

.
By Lemma 2, image of every point of Ox0 ∩ V ⊥

x0
is a point of U . Since the

points x0, x are not conjugate, the restriction of the the exponential mapping
to Ox0 is a diffeomorphism. Thus in a neighborhood of every point where
λr+q+1 = λ > λr , the set U is a submanifold of codimension q + 1.

Similarly, U is a submanifold of codimension q + 1 in a neighborhood
of every point where λr+q+1 > λ = λr . Let us prove that U is a submanifold
of codimension q + 1 in a neighborhood of a point z where λr+q+1(z) =
λ = λr(z).

Without loss of generality, we can assume that z is not conjugate (along
the chosen geodesics) to the points x0, x1. Arguing as above, considering
the exponential mapping from the tangent space to x0, we obtain that, in
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a small neighborhood of z, the image expx0
(Ox0 ∩ V ⊥

x0
) belongs to U and is

a submanifold of codimension q + 1. Considering the exponential mapping
from the tangent space to x1 , we obtain that, in a small neighborhood of z, the
image expx1

(Ox1 ∩ V ⊥
x1

) belongs to U and is a submanifold of codimension
q + 1. By Lemmas 2,3, every point of U lying close to z lies in the union of
the images. In order to prove that U is a submanifold of codimension q + 1,
we show that these images coincide in a small neighborhood of z.

Before proving this, we will show that the above constructed images
expx(Ox ∩ V ⊥

x ), where Ox ⊂ Tx Mn is a sufficiently small neighborhood of
a regular point of the exponential mapping and V ⊥

x ⊂ Tx Mn is the space
orthogonal to the eigenspace of L corresponding to λ, are totally geodesic.

Clearly, they are totally geodesic in the neighborhood of x such that
λr(x) < λr+q+1(x). More precisely, the tangent space TxU coincides with
V ⊥

x . Indeed, by Lemma 2, the subspace V ⊥
x lies in TxU . Since V ⊥

x and TxU
have the same dimension, they coincide. Since, by Lemma 2, every geodesic
with initial velocity vector from V ⊥

x = TxU lies in U , the submanifold U is
totally geodesic near the points where λr < λr+q+1.

In order to prove that U is totally geodesic near the points where
λr = λr+q+1, we show that the set of these points is nowhere dense in
U . Suppose that the set of points where λr = λr+q+1 is not nowhere dense
in U . Then, there exists a small smooth disk Dn−q−1 ∈ Mn of dimension
n − q − 1 such that λr = λr+q+1 = λ at every point of the disk. Consider
a convex n−ball containing this disk and a point y0 of the ball such that, for
every point of the disk, the shortest geodesic connecting the point y0 with
the point of the disk is transversal to the disk. Since at almost every point of
the manifold λr < λ < λr+q+1, without loss of generality, we can assume
λr(y0) < λ < λr+q+1(y0). Consider the restriction of the function Ĩt from
the proof of Lemma 2 to Ty0 Mn. In the diagonal coordinates, it is given
by (7). Denote by Z ∈ Ty0 Mn the set of the initial vectors of geodesic that
start at the point y0 and go through at least one point of the disk. Since the
disk has codimension n−q−1, the set U contains a disk of dimension n−q.
By Theorem 4 and Lemma 1, at every point (y0, v) ∈ Z, we have the equal-
ity tr(y0, v) = . . . = tr+q(y0, v) = λ. Then, the components ξr+1 . . . ξr+q of
the vector v must be zero, and Z is a subset of a nondegenerate quadric in the
coordinates ξ1, . . . , ξr, ξr+q+1, . . . , ξn . Thus the set has codimension q + 1
and, therefore, can not contain a disk of dimension n −q. The contradiction
shows that the set of the points where λr = λr+q+1 = λ is nowhere dense
in U . Thus the above constructed images expx0

(Ox0 ∩ V ⊥
x0

), expx1
(Ox1 ∩ V ⊥

x1
)

are totally geodesic.
Let us show that they coincide in a small neighborhood of the point z.

Indeed, by construction, the points where λr = λr+q+1 = λ lie in the in-
tersection of the images. Since the images are smooth and have the same
dimension, if they do not coincide, in an arbitrary small neighborhood of z
there exist points x, y such that x ∈ expx0

(O0 ∩ V ⊥
x0

), x 
∈ expx1
(O1 ∩ V ⊥

x1
),

y ∈ expx1
(O1 ∩ V ⊥

x1
), y 
∈ expx0

(O0 ∩ V ⊥
x0

). Clearly, λr(x) < λ = λr+q+1(x)
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and λr(y) = λ < λr+q+1(y). By Lemma 3, the initial vector of the short-
est geodesic connecting these points is orthogonal to the eigenspace of L
corresponding to λ. Then, it is tangent to the image expx0

(Ox0 ∩ V ⊥
x0

) at the
point x. Since expx0

(Ox0 ∩ V ⊥
x0

) is totally geodesic, the point y lies in the
the image expx0

(Ox0 ∩ V ⊥
x0

) as well. Thus the images coincide in a small
neighborhood of z. Finally, U is a submanifold of codimension q + 1. As
we have already proved, U is totally geodesic. It is evidently connected.

Let us prove that the standard homomorphism Id∗ : π1(U, x0) →
π1(Mn, x0) of the fundamental groups is a surjection. We have to show
that any element of the fundamental group π1(Mn, x0) can be realized by
a loop on U . Consider a geodesic segment γbase connecting the points x0
and z. By Hopf-Rinow Theorem, for every element of π1(Mn, x0), there
exist a geodesic segment γ connecting the points z and x0 such that the
loop made of the segments γ, γbase realizes this element of the fundamental
group. By Lemmas 2, 3, the geodesics γ, γbase lie on U . Thus any element
of the fundamental group π1(Mn, x0) can be realized by a loop on U .

Consider the restriction of the metrics g, ḡ to U . Denote by λ̃1 ≤ . . . ≤
λ̃n−q−1 the eigenvalues of the tensor (2) corresponding to these metrics. By
direct calculations, using the definition (2), and since the eigenspace of L
corresponding to λ is orthogonal to U at almost every point of U , it is easy
to verify that the eigenvalues λ̃i are given by






λ̃i = λi · λ
q+1
n−q for i < r

λ̃r = λr · λ
q+1
n−q if λr < λ

λ̃r = λr+q+1 · λ
q+1
n−q if λr = λ

λ̃i = λi+q+1 · λ
q+1
n−q for i > r

Thus in order to show that the eigenvalues of L̃ satisfy conditions (i),
(ii), we have to show that for every i there exists points ymax, ymin ∈ U such
that

λi(ymax) = max
x∈Mn

(λi(x)), λi(ymin) = min
x∈Mn

(λi(x)).

We assume i ≤ r, the case i > r+q can be treated similarly. If the eigenvalue
λi is constant, the statement is trivial. Suppose λi is not a constant. Then,
for almost every τ such that minx∈Mn(λi(x)) < τ < maxx∈Mn(λi(x)), there
exists y0 ∈ Mn such that λi(y0) = τ , dλi(y0) 
= 0. Denote by W0 the
connected component of the set

{
x ∈ Mn : λi(x) = τ

}

containing the point y0.
By Corollary 3, W0 is a submanifold and its normals are eigenvectors

of L corresponding to the eigenvalue τ . Take a point z ∈ U such that
λr(z) = λr+q+1(z). If z ∈ W0, there exists a point of U where λi = τ . If
z 
∈ W0, consider the shortest curve γ connecting the submanifold W0 and
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the point z. Let y ∈ W0 be the starting point of the curve and v 
= 0 be
the initial velocity vector. The vector v is orthogonal to W0. Then, in the
diagonal coordinates from the proof of Lemma 1, the polynomial It(y, v) is
equal to ξ2

i Πi(t). Hence, its roots are

t1(y, v) = λ1(y), . . . , ti−1(y, v) = λi−1(y),
ti(y, v) = λi+1(y), . . . , tn−1(y, v) = λn(y).

Since the shortest curve γ is an (unparameterized) geodesic passing through
the point where λr+q = λr+q+1 = λ, the root tr+q(y, v) = λ. Hence,
λr+q+1(y) = λ so that y ∈ U . Thus for almost every τ such that
minx∈Mn(λi(x)) < τ < maxx∈Mn(λi(x)) there exist a point of U where
λi = τ . Since U is closed, there exists ymax ∈ U where λi = maxx∈Mn(λi(x))
and ymin ∈ U where λi = minx∈Mn(λi(x)). Finally, the eigenvalues of
λ̃1, . . . , λ̃n−q−1 satisfy the assumptions (i), (ii) of Case 2. Theorem 6 is
proved.

6. Geodesically equivalent metrics with one or two non-constant
eigenvalues of L

Within this section, we assume that Mn is closed, the Riemannian metrics g
and ḡ are geodesically equivalent, and that the eigenvalues of L satisfy the
assumptions (i), (ii) of Case 2. Our goal is to prove that in all four subcases
listed in Sect. 3, the fundamental group of Mn is finite.

Remark 5. Actually, it is possible to prove that, under the assumptions of
Case 2, Subcases 1,2,3,4, the manifold is covered by the sphere. The proof
is quite lengthy. Since this statement is not necessary for Theorem 2, we
will not do it.

Proof for Subcase 1. Suppose the dimension of the manifold is n = q + 1,

where q ≥ 1, the eigenvalues λ1 = . . . = λq
def= λ are constant, the eigen-

value λq+1 is not constant, and there exists z ∈ Mq+1 such that λq+1(z) = λ.
We will show that the fundamental group of the manifold is either trivial

or homeomorphic to Z2. In order to do this, we show that the number of the
points where λq+1 = λ is at most two.

By Lemma 1, for every geodesic γ passing through at least one such point
we have t1(γ, γ̇ ) = . . . = tq(γ, γ̇ ) = λ. If v1, v2 ∈ Tx0 Mn are two tangent
vectors at an arbitrary point, x0, such that t1(x0, v1) = . . . = tq(x0, v2) = λ,
then either they are proportional or λ1(x0) = . . . = λq+1(x0) = λ. Indeed,
λ is a root of the polynomial Ĩt(x0, vi) so that Ĩλ(x0, vi) = 0. In the diagonal
coordinates, the polynomial Ĩt(x0, vi) is given by (7). Since Π̃(λ) = 0, we
have Πq+1(λ) = 0 (so that λq+1(x0) = λ) or ξ1 = ξ2 = . . . = ξq = 0 (so
that the vectors v1, v2 are proportional).

Thus any two geodesics passing through points where λq+1 = λ can
transversally intersect only at the points where λq+1 = λ. Clearly, if there
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exists three such points, then there is a neighborhood such that every point
of this neighborhood is a point of transversal intersection of such geodesics.
Then, the set of points where λq+1 = λ is not nowhere dense which con-
tradicts Corollary 1. Theorem 2 is proved under assumptions of Case 2,
Subcase 1.

Proof for Subcase 2. Suppose the dimension of the manifold is 2, the eigen-
values λ1, λ2 are not constant, and there exists z ∈ M2 where λ1 = λ2.

By definition, the integral I0 of the geodesic flow of g is quadratic in
velocities. At the tangent space to the points where λ1 < λ2, the integral
is not proportional to the Hamiltonian. At the tangent space to the point z
the integral is proportional to the Hamiltonian. By [17] (or [14]), this can
happen only on the sphere and on the projective plane. Thus the fundamental
group of M2 is either trivial or homeomorphic to Z2. Theorem 2 is proved
under assumptions of Case 2, Subcase 2.

Proof for Subcase 3. Suppose the dimension of the manifold is n = q + 2,
where q ≥ 1, the eigenvalues λ1 and λn are not constant, and there exists

z1, z2 ∈ Mq+2 such that λ1(z1) = λn(z2)
def= λ.

We will show that the fundamental group of the manifold is either
trivial or homeomorphic to Z2. First of all, by Corollary 1, the eigenvalues
λ2, . . . , λq+1 are constant and are equal to λ. By Theorem 6, the set

U
def= {

x ∈ Mn : (λ1(x) − λ)(λn(x) − λ) = 0
}
.

is homeomorphic to the circle and the fundamental group of Mn is cyclic.
Consider the generator G of the fundamental group. Since the codimension
of U is at least two, there exists τ < λ such that the element G can be
realized by a curve lying in the set

{
x ∈ Mn : λ1(x) ≤ τ

}
.

Denote by W+ the connected component of the set containing the curve.
Let us show that every element of the fundamental group of W+ or of

a double-cover of W+ can be realized on its boundary.
There exists a small ε such that at every point of W+ we have λ1 <

τ + ε < λ. On W+, consider the foliations B1, Bq+1 and the metric g̃ from
Corollary 4. At every point of W+, there exist precisely two vectors v tangent
to B1 such that g̃(v, v) = 1. Hence, on W+ or on a certain double-covering
of W+, there exists a vector field v tangent to B1 such that g̃(v, v) = 1.
By Corollary 4, the flow of the vector field v takes the leaves of Bq+1
to the leaves. Then, all the leaves are diffeomorphic. By Corollary 3, all
leaves are closed. Then, the foliation is indeed a fibration. The base of
the fibration is one-dimensional. Since the set W+ has boundary, the base
can not be homeomorphic to the circle. Thus the base is homomorphic to
the interval, and every element of the fundamental group (of W+ or of the
double-covering of W+) can be realized on any fiber.
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Denote by W− the connected component of the set
{
x ∈ Mn : λ1(x) ≥ τ

}

having points from W+. Denote by W0 the connected component of the
boundary of W− having points of W+. Clearly, λ1 = τ at every point of W0.
By Corollary 2, every point of W0 is a point of W+; moreover, W0 is a leaf
of the foliation Bq+1.

Let us show that every closed curve on W0 is homotopic to zero in Mn .
First of all, the set W− is (weakly) geodesically convex. Indeed, by Corol-
lary 3, the vector field v is orthogonal to the boundary of the set W−: we can
approach any point of the boundary by a sequence of points where dλ1 
= 0.
From (5), it follows that for every geodesic γ tangent to the boundary of
W−, the root t1(γ, γ̇ )) is equal to τ . Hence, by Lemma 1, the geodesic γ
has no points where λ1 > τ . If λ1 = τ at some point of the geodesic γ ,
the condition t1(γ, γ̇ )) = τ ensures that γ̇ is orthogonal to v at that point.
By Corollary 2, the distribution orthogonal to v is integrable. Thus the
geodesic γ can not pass through interior points of W−, and W− is (weakly)
geodesically convex.

Using the convexity, arguing similarly to the proof of the second state-
ment of Theorem 6, we obtain that every element of the fundamental group
of W− can be realized on the intersection W− ∩ U . Every connected com-
ponent of the intersection W− ∩ U is homeomorphic to the interval. Hence,
the fundamental group of W− is trivial. Thus every closed curve lying on
W0 is homotopic to zero. Finally, the order of the generator G is at most two
so that the fundamental group of Mn is at most Z2. Theorem 2 is proved
under the assumptions of Case 2, Subcase 3.

Proof for Subcase 4. Suppose the dimension of the manifold is n = q+r+1;
q > 0, r > 0. Suppose the eigenvalues λ1 = λ2 = . . . = λr and the
eigenvalues λr+2 = λr+3 = . . . = λn are constant. Suppose the eigenvalue
λr+1 is not constant, and there exist z0, z1 ∈ Mn such that λr+1(z0) = λ1
and λr+1(z1) = λn.

Consider the sets

Ur
def= {

x ∈ Mn : λr+1(x) = λn

}
,

Uq
def= {

x ∈ Mn : λr+1(x) = λ1
}
.

Let us show that the sets Ur , Uq are closed submanifold of dimensions r, q,
respectively. Indeed, take a point x0 ∈ Ur . In a small convex ball around x0,
we have λ1 < λr+1. In the ball, consider the distribution of the eigenspace
of L corresponding to λ1. By Corollary 2, the distribution is integrable,
and the eigenvalue λr+1 is constant along the integrable submanifold of this
distribution. Then, the integral submanifold U ′

r passing through the point x0
lies in Ur . Thus the set Ur contains a submanifold of dimension r.

Let us show that, in the small ball, the submanifold U ′
r coincides with Ur .

Suppose that there exists a point z ∈ Ur , z 
∈ U ′
r of the ball. Denote by U ′′

r
the integral submanifold of the distribution passing through the point z.
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At every point of U ′
r ∪U ′′

r , denote by V ⊥ the eigenspace of L correspond-
ing to λn. V ⊥ is orthogonal to U ′ ∪ U ′′

r . Consider all geodesics γ passing
through the points of U ′

r ∪ U ′′
r with the velocity vectors γ̇ (0) ∈ V ⊥. Since

the codimension of U ′
r and U ′′

r is at least two, and since, by Corollary 1, at
almost every point of the ball we have λ1 < λr+1 < λn, there exists a point y
of the ball where the geodesics intersect transversally. Let us show that this
is impossible.

By Lemma 1, for every geodesic γ passing through at least one point of
Ur , we have

tr+1(γ, γ̇ ) = . . . = tn−1(γ, γ̇ ) = λn, (8)

so that λn is a root of It of multiplicity at least q. In the diagonal coordinates
from the proof of Lemma 1, the function It(γ (α), γ̇ (α)) is equal to
(
ξ2

1 + . . . + ξ2
r

)(
λ1 − t

)r−1(
λr+1 − t

)(
λn − t

)q + ξ2
r+1

(
λ1 − t

)r(
λn − t

)q

+(
ξ2

r+2 + . . . + ξ2
n

)(
λ1 − t

)r(
λr+1 − t

)(
λn − t

)q−1
. (9)

We see that the first and the second terms of the sum (9) have the factor
(λn − t)q. If λr+1(γ (α)) < λn , the third term of (9) has the factor (λn − t)q−1

only. Hence, the components ξr+2, . . . , ξn vanish.
Since the velocity vector γ̇ (0) = (ξ1, . . . , ξn) lies in V ⊥, its components

ξ1, . . . , ξr vanish so that

t1(γ , γ̇ ) = . . . = tr(γ, γ̇ ) = λ1. (10)

Arguing similar to above, at every point γ (α) such that λr+1(γ (α)) > λ1,
one can show that the components ξ1, . . . , ξr of the vector γ̇ (α) vanish as
well. Thus a point where λ1 < λr+1 < λn can not be a point of transversal
intersection of two geodesics γ . The contradictions shows that the sets U ′

r
and Ur coincide. Thus Ur is a submanifold of dimension r.

Similarly, Uq is a submanifold of dimension q.
Since the submanifolds Ur , Uq have codimension greater than one, every

element of the fundamental group can be realized on the connected set

Mn \ (Ur ∪ Uq) = {x ∈ Mn : λ1 < λr+1(x) < λn}.
At every point of Mn \ (Ur ∪ Uq), consider the vector v2 satisfying

{
L(v2) = λr+1 · v2

g(v2, v2) = (λr+1(x) − λ1)(λn − λr+1(x))
(11)

The only freedom we have is the sign of the vector. Then, at least on the
double-cover of Mn \(Ur ∪Uq), we can find a vector field v2 satisfying (11).
The fundamental group of the double-cover is finite if and only if the
fundamental group of the manifold is finite. Since our goal is to prove that
the fundamental group of Mn is finite, we can assume that the vector field
v2 is defined already on Mn \ (Ur ∪ Uq).
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By definition, every point of Mn \ (Ur ∪ Uq) is stable. By Levi-Civita’s
Theorem, every point of Mn\(Ur ∪Uq) has a neighborhood with coordinates

x̄ = (x̄1, x̄2, x̄3) = ((
x1

1, . . . , xr
1

)
, x2,

(
x1

3, . . . , xq
3

))
,

where the metrics g, ḡ are given by

g( ˙̄x, ˙̄x) = (λr+1(x2) − λ1)(λn − λ1)A1(x̄1, ˙̄x1)+
+ (λr+1(x2) − λ1)(λn − λr+1(x2)) dx2

2+
+ (λn − λr+1(x2))(λn − λ1)A3(x̄3, ˙̄x3),

(12)

ḡ( ˙̄x, ˙̄x) = (λr+1(x2) − λ1)(λn − λ1)

λr+1
1 λr+1(x2)λ

q
n

A1(x̄1, ˙̄x1) +

+ (λr+1(x2) − λ1)(λn − λr+1(x2))

λr
1λ

2
r+1(x2)λ

q
n

dx2
2 + (13)

+ (λn − λr+1(x2))(λn − λ1)

λr
1λr+1(x2)λ

q+1
n

A3(x̄3, ˙̄x3).

In these coordinates, the vector v2 is equal to ± ∂
∂x2

. Then, the distribution
orthogonal to the vector field v2 is integrable and, hence, defines a foliation
of codimension one on Mn \ (Ur ∪ Uq). Moreover, the flow of the vector
field v2 takes the leaves to the leaves. Then, all leaves are diffeomorphic.
By Corollary 3, all leaves are compact. Hence, the foliation is a fibration.
Since the base of these fibration is an interval, the fundamental group of
Mn \ (Ur ∪ Uq) coincides with the fundamental group of each of its fibers.
Denote by W0 one of the fibers.

In the Levi-Civita coordinates (x̄1, x̄2, x̄3), the fiber W0 is given by the
equation x2 = const, and the restriction of L to the tangent space to W0 is
diagonal

diag(λ1, . . . , λ1︸ ︷︷ ︸
r

, λn, . . . , λn︸ ︷︷ ︸
q

).

We see that the eigenspaces corresponding to λ1 and λn are integrable (so
that they define two foliations Br and Bq). We see that the x̄3-coordinates
are constant on every leaf of the foliation Br , the x̄1-coordinates are constant
on every leaf of the foliation Bq, and the metric g is block-diagonal with the
first (r × r) block depending on the x̄1-coordinates and the second (q × q)
block depending on the last x̄3 coordinates.

Let us show that every leaf of Bq is closed and is diffeomorphic to the
sphere Sq. Take a leaf F of Bq. Since the flow of the vector field v2 preserves
the foliations Br and Bq, without loss of generality, we may assume that at
least one point of the leaf F lies closer to Ur than the radius of injectivity
of the manifold.
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Consider the shortest curve connecting the leaf F with the submani-
fold Ur . This curve is an unparameterized geodesic and is orthogonal to the
submanifold Ur . Suppose the length of this curve is D. Denote by x0 ∈ Ur
the endpoint of the curve. Denote by V ⊥ ⊂ Tx0 Mn the subspace of Tx0 Mn

orthogonal to Ur . Consider the sphere Sq ⊂ V ⊥ of radius D (in the met-
ric g). Let us show that the restriction of the exponential mapping to the
sphere diffeomorphically maps the sphere to the leaf F.

Take a geodesic γ such that γ (0) = x0, γ̇ (0) ∈ V ⊥. As we have shown
above, for every τ such that γ (τ) ∈ Mn \ (Ur ∪ Uq) the conditions (8,10)
hold so that the components ξ1, . . . , ξr and ξr+1, . . . , ξn of the velocity
vector in (9) vanish.

Then, the velocity vector γ̇ (τ) is the eigenvector of L corresponding to
λr+1, and, hence, is orthogonal to W0. Then, the image of the sphere lies
in W0.

At every point x ∈ Mn , consider the subspace of Tx Mn spanned over
the eigenspaces of L corresponding to λn and λr+1. For every τ such that
γ (τ) ∈ Mn\Ur , the velocity vector γ̇ (τ) lies in the subspace. By Corollary 2,
the distribution of these subspaces is integrable on Mn \ Ur . In Levi-Civita
coordinates, the integral submanifolds of the distribution are given by

x̄3 = const. (14)

Since the image of the sphere Sq lies in the distribution, the points of the
image satisfy (14) so that the image of the sphere Sq coincides with the
leaf F.

In particular, every curve lying on F is contractible in Mn .
Similarly, every leaf of the foliation Br is diffeomorphic to the sphere Sr ,

and every curve lying on any leaf of Br is contractible in Mn . Since
any sphere is compact, a leaf of Br can have only finitely many points
of intersection with a leaf of Bq. Hence, there exists a finite covering
p : Sr × Sq → W0 such that the images p(Sr × (point of Sq )) are the
leaves of Br and the images p((point of Sr ) × Sq) are the leaves of Bq.
Then, the fundamental group of W0 has a subgroup of finite index such that
the subgroup is the direct product of two groups such that the elements of
the first group can be realized by curves lying on the leaves of Br and the
elements of the second group can be realized by curves lying on the leaves
of Bq. Since every curve lying on the leaves of Bq and Br is contractible
in Mn, the fundamental group of Mn is finite. Theorem 2 is proved under
the assumptions of Case 2, Subcase 4.
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