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Abstract. We show that if a closed manifold M admits an F -structure
(not necessarily polarized, possibly of rank zero) then its minimal entropy
vanishes. In particular, this is the case if M admits a non-trivial S1-action.
As a corollary we obtain that the simplicial volume of a manifold admitting
an F -structure is zero.

We also show that if M admits an F -structure then it collapses with
curvature bounded from below. This in turn implies that M collapses with
bounded scalar curvature or, equivalently, its Yamabe invariant is non-
negative.

We show that F -structures of rank zero appear rather frequently: every
compact complex elliptic surface admits one as well as any simply connected
closed 5-manifold.

We use these results to study the minimal entropy problem. We show
the following two theorems: suppose that M is a closed manifold ob-

tained by taking connected sums of copies of S4, CP2, CP
2
, S2 × S2

and the K3 surface. Then M has zero minimal entropy. Moreover, M ad-
mits a smooth Riemannian metric with zero topological entropy if and only

if M is diffeomorphic to S4, CP2, S2 × S2, CP2#CP
2

or CP2#CP2. Fi-
nally, suppose that M is a closed simply connected 5-manifold. Then M
has zero minimal entropy. Moreover, M admits a smooth Riemannian
metric with zero topological entropy if and only if M is diffeomorphic
to S5, S3 × S2, the nontrivial S3-bundle over S2 or the Wu-manifold
SU(3)/SO(3).
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1. Introduction

Let Mn be a closed orientable connected smooth manifold. Given a Rie-
mannian metric g, let φt be the geodesic flow of g.

Perhaps the simplest dynamical invariant that one can associate to φt to
roughly measure its orbit structure complexity is the topological entropy,
which we denote by htop(g). Positive entropy means in general, that the
geodesic flow presents somewhere in the phase space (the unit sphere bundle
of the manifold) a complicated dynamical behaviour. There are various
equivalent ways of defining entropy (see Subsect. 2.3) and among them
there is a formula, known as Mañé’s formula, that gives a nice Riemannian
description of htop(g). Given points p and q in M and T > 0, define
nT (p, q) to be the number of geodesic arcs joining p and q with length
≤ T . R. Mañé [30] showed that

htop(g) = lim
T→∞

1

T
log

∫
M×M

nT (p, q) dp dq.

One of the main goals in this paper will be the study of the variational
theory of the functional g �→ htop(g). In general this functional is only
upper semicontinuous in the C∞ topology ([32,46]) and it has a simple
behaviour under scaling of the metric: if c is any positive constant, then
htop(cg) = htop(g)√

c
. Hence if we want to extract interesting extremal metrics

from this functional a normalization is required. The Riemannian invariant
that we will use for this normalization is the volume Vol(M, g).

Set the minimal entropy of M to be

h(M) := inf{htop(g) | g is a smooth metric on M with Vol(M, g) = 1}.
A smooth metric g0 with Vol(M, g0) = 1 is entropy minimizing if

htop(g0) = h(M).

The minimal entropy problem for M is whether or not there exists an
entropy minimizing metric on M. Say that the minimal entropy problem
can be solved for M if there exists an entropy minimizing metric on M.
Smooth manifolds are hence naturally divided into two classes: those for
which the minimal entropy problem can be solved and those for which it
cannot. Passing by, we note that we do not obtain a meaningful invariant if
we replace the infimum by the supremum. Indeed, Manning proved in [29]
that

sup{htop(g) | g is a smooth metric on M with Vol(M, g) = 1} = ∞.

There are a number of classes of manifolds for which the minimal
entropy problem can be solved. For instance, the minimal entropy problem
can always be solved for a closed orientable surface M. For the 2-sphere and
the 2-torus, this follows from the fact that both a metric with constant positive
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curvature and a flat metric have zero topological entropy. For surfaces of
higher genus, A. Katok [23] proved that each metric of constant negative
curvature minimizes topological entropy, and conversely that any metric
that minimizes topological entropy has constant negative curvature.

This result of Katok has been generalized to higher dimensions by
G. Besson, G. Courtois and S. Gallot [6], as follows. Suppose that Mn (n ≥ 3)
admits a locally symmetric metric g0 of negative curvature, normalized so
that Vol(M, g0) = 1. Then g0 is the unique entropy minimizing metric up
to isometry. Unlike the case of a surface, a locally symmetric metric of
negative curvature on a closed n-manifold (n ≥ 3) is unique up to isometry,
by the rigidity Theorem of Mostow.

A positive solution to the minimal entropy problem appears to single out
manifolds that have either a high degree of symmetry or a low topological
complexity. What this means in our context will become apparent below.
A similar phenomenon is observed for closed 3-manifolds [2].

There is a close relationship between minimal entropy, minimal volume
and simplicial volume. As we shall explain in Subsect. 2.4 there is a positive
constant c(n) such that

c(n) ‖M‖ ≤ [h(M)]n ≤ (n − 1)nMinVol(M).(1)

Recall that the minimal volume MinVol(M) is the infimum of Vol(M, g)
where g runs over all metrics whose sectional curvature is bounded in
absolute value by 1. Also recall that the simplicial volume of a closed
orientable manifold M, ‖M‖, is defined as the infimum of

∑
i |ri| where

the ri are the coefficients of a real cycle that represents the fundamental class
of M. This number is a homotopy invariant of M. The minimal volume does
depend on the smooth structure of M (see [5]) but we do not know if the
same holds true for the minimal entropy.

Computing these invariant is in general a very difficult task. J. Cheeger
and M. Gromov introduced in [9,20] the concept of F -structure (see Sect. 5
for the precise definition). An F -structure on a manifold M is a natural
generalization of an effective torus action on M. The structure partitions
M into disjoint orbits which are flat manifolds amenable to collapse. When
the dimension of the orbits are, in a certain precise sense, locally constant,
the structure is said to be polarized. The simplest F -structures are the
T -structures, which consist of open coverings of the manifold and torus
actions on each of the elements of the covering which commute on overlaps.
The simplest example of a polarized T -structure is given by a locally free
circle action.

Cheeger and Gromov proved in [9,20] that if M admits a polarized
F -structure then the minimal volume of M vanishes. The vanishing of the
minimal volume implies in turn that all the characteristic numbers of the
manifold are zero. Cheeger and Gromov also proved that if the F -structure
has positive rank, i.e., all its orbits have positive dimension, then the Euler
characteristic of M must be zero. There exist plenty of examples of closed
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manifolds which admit F -structures but whose Euler characteristic is non-
zero. Therefore they do not admit F -structures of positive rank. For instance
the Euler characteristic of any simply connected closed 4-manifold is strictly

positive, but for any m, n, k, l, the manifold nCP2# kCP
2
# mK3# l(S2×S2)

admits a T -structure of rank zero. This will follow form the results in Sect. 5.
Hence, general F -structures are abundant in comparison with polarized
ones.

In Sect. 6 we show:

Theorem A. If the closed manifold M admits an F -structure then the
minimal entropy of M is 0.

The theorem and (1) yield the following corollary, which generalizes
the result of K. Yano [45] that closed manifolds which admit non-trivial
S1-actions have simplicial volume 0 (there is also a proof of the latter result
in [20]).

Corollary. Let M be a closed manifold. If M admits an F -structure then
the simplicial volume of M is 0.

Hence the existence of an F -structure, possibly of rank zero, also im-
poses constraints on the topology of the manifold.

The method employed in the proof of Theorem A is general enough
that allows us to apply it to the study of other types of collapsing. We will
say that M collapses with curvature bounded from below if there exists
a sequence of metrics gj for which the sectional curvature is uniformly
bounded from below, but their volumes approach zero as j goes to infinity.
Similarly we will say that M collapses with Ricci (respectively, scalar)
curvature bounded from below if there exists a sequence of metrics gj for
which the Ricci (respectively, scalar) curvature is uniformly bounded from
below, but their volumes approach zero as j goes to infinity. In Sect. 7 we
prove:

Theorem B. If the closed manifold M admits an F -structure then M col-
lapses with curvature bounded from below.

Clearly if M collapses with curvature bounded form below then it also
collapses with Ricci and scalar curvatures bounded from below. As we
explain in Sect. 7 if M has dimension ≥ 3, then it collapses with scalar
curvature bounded form below if and only if it collapses with bounded
scalar curvature. This is in turn equivalent to having non-negative Yamabe
invariant.

It is interesting to remark that for instance the manifold T 4#CP
2

admits
an F -structure but it does not collapse with bounded Ricci curvature (see
Sect. 7). Therefore our Theorem B can be regarded as an optimal extension
of the results of Cheeger and Gromov in the sense that there is no stronger
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collapsing phenomena for general F -structures other than the one claimed
in the theorem.

C. LeBrun proved in [26] that the Yamabe invariant of any compact
complex surface of general type is strictly negative. It follows from Theo-
rem B that these surfaces do not admit F -structures. Among these surfaces
of general type there are simply connected ones which are homeomorphic

(but not diffeomorphic) to connected sums of CP2’s and CP
2
’s. Hence in

dimension 4 there are simply connected closed manifolds which do not
admit F -structures and they are homeomorphic to manifolds that do admit
them. We do not know if this a phenomenon specific of dimension 4. In
dimension ≥ 5 the second author showed in [37] that any simply connected
manifold has non-negative Yamabe invariant. This opens the possibility
that any closed simply connected manifold of dimension ≥ 5 admits an
F -structure. Morever it is possible for this structure to be polarized in odd
dimensions. In fact we show in Sect. 8:

Theorem C. Every simply connected closed smooth 5-manifold M admits
a T -structure. Moreover, suppose that either:

1. M is spin;
2. M is the non-trivial S3-bundle over S2 or the Wu-manifold SU(3)/SO(3);
3. M is a connected sum of manifolds of types 1 or 2.

Then M admits a polarized T -structure.

We do not know if every closed simply connected non-spin 5-manifold
admits a polarized T -structure, even though it appears to be the case.

These results can be used to give fairly complete solutions to the minimal
entropy problem for simply connected manifolds of dimensions 4 and 5.

Theorem D. Let M be a closed manifold obtained by taking connected sums

of copies of S4, CP2, CP
2
, S2 × S2 and the K3 surface. Then h(M) = 0

and the minimal entropy problem can be solved for M if and only if M is

diffeomorphic to S4, CP2, S2 × S2, CP2#CP
2

or CP2#CP2.

A manifold M like in Theorem D realizes many intersection forms of
simply connected 4-manifolds. In fact the 11/8-conjecture (see [11,12])
states that any smooth simply connected 4-manifold is homeomorphic to
a manifold as in Theorem D. Hence, if one assumes the 11/8-conjecture,
Theorem D is saying that any smooth simply connected 4-manifold is
homeomorphic to one whose minimal entropy is zero and for which we
know the answer to the minimal entropy problem.

The proof of Theorem D is partially based on the fact that the K3
surface admits a T -structure. In fact we show that any elliptic compact
complex surface admits a T -structure. We also show that T -structures
behave relatively well with respect to the usual operations of connected
sums and surgeries on manifolds.
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For simply connected 5-manifolds, we have a complete answer to the
minimal entropy problem :

Theorem E. Let M be a closed simply connected 5-manifold. Then
h(M) = 0 and the minimal entropy problem can be solved for M if and
only if M is diffeomorphic to S5, S3 × S2, the nontrivial S3-bundle over S2

or the Wu-manifold SU(3)/SO(3).

The common feature of the nine manifolds listed in Theorems D and E
is that they are elliptic. This means that their loop space homology grows
polynomially for every coefficient field (cf. Sect. 3, [15,16,21] and refer-
ences therein). In fact, as we will see in Sect. 3, these are the only elliptic
manifolds in dimensions 4 and 5. Hence Theorems D and E characterize
this very much studied class of manifolds as that for which the minimal en-
tropy problem can be solved or, equivalently, as that for which there exists
a smooth metric g with htop(g) = 0. It is tempting to speculate that perhaps
the same phenomenon occurs in any dimension.

We would like to close this introduction by illustrating some of the
ideas with specific examples. A 5-dimensional Brieskorn variety of type
(a1, a2, a3, a4) is given by the intersection of the 7-sphere in C4 with the
zero set of:

f(z1, z2, z3, z4) = za1
1 + za2

2 + za3
3 + za4

4 .

This gives a large class of simply connected 5-manifolds. In fact, they are all
spin and their second homology group can be computed using the algorithm
described in [33,38]. The Brieskorn varieties admit very simple polarized
T -structures: they have a canonically defined action of S1 which is locally
free (but not free in general). If we let

qi = lcm(a1, a2, a3, a4)/ai

then the action is given by:

eiθ (z1, z2, z3, z4) = (
eq1iθ z1, eq2iθ z2, eq3iθ z3, eq4iθ z4

)
.

For example, the Brieskorn variety M2 defined by (2, 3, 3, 3) coincides
with the spin manifold whose second homology group is Z2 ⊕ Z2. It has
the property that its loop space homology grows exponentially with Z2
coefficients and hence for any C∞ Riemannian metric g, htop(g) > 0 (see
Theorem 8.3 in Sect. 8). Since MinVol(M2) = h(M2) = 0 it follows that
the minimal entropy problem for M2 cannot be solved. It is interesting to
note that M2 has the rational cohomology ring of the 5-sphere and hence
its loop space homology with rational coefficients is actually bounded, i.e.,
M2 is rationally elliptic.

Acknowledgements. We thank S. Halperin for explaining us how to compute the growth of
the loop space homology of a 5-manifold. The first author thanks the CIMAT, Guanajuato,
México for hospitality and support while most of this work was carried out.
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2. Preliminaries on simplicial volume, minimal volume and
topological entropy

The purpose of this section is to present some of the basic material and
definitions that we will need later on.

2.1. Simplicial volume. Let M be a closed manifold. Denote by C∗ the
real chain complex of M: a chain c ∈ C∗ is a finite linear combination∑

i riσi of singular simplices σi in M with real coefficients ri . Define the
simplicial l1-norm in C∗ by setting |c| = ∑

i |ri|. This norm gives rise to
a pseudo-norm on the homology H∗(M,R) by setting

|[α]| = inf{|z| : z ∈ C∗ and [z] = [α]}.
When M is orientable, define the simplicial volume of M, denoted ‖M‖,
to be the simplicial norm of the fundamental class. The simplicial volume
is also called Gromov’s invariant, since it was first introduced by Gromov
in [20].

2.2. Minimal volume and collapsing. The minimal volume MinVol(M) of
a manifold M is defined to be the infimum of Vol(M, g) over all metrics g
such that the sectional curvature Kg of g satisfies |Kg| ≤ 1. This differential
invariant was introduced by M. Gromov in [20].

As we mentioned in the introduction we have [9]:

Proposition 2.1. If M admits a polarizedF -structure, then MinVol(M)=0.

2.3. Topological entropy and curvature. We recall in this subsection the
definition of the topological entropy of the geodesic flow of a Riemannian
metric g on a closed manifold M. The geodesic flow of g is a flow φt that
acts on SM, the unit sphere bundle of M, which is a closed hypersurface of
the tangent bundle of M. In general the topological entropy is defined for
an arbitrary continuous flow (or map) on a compact metric space.

Let (X, d) be a compact metric space and letφt : X → X be a continuous
flow. For each T> 0 we define a new distance function

dT (x, y) := max
0≤t≤T

d(φt(x), φt(y)).

Since X is compact, we can consider the minimal number of balls of radius
ε > 0 in the metric dT that are necessary to cover X. Let us denote this
number by N(ε, T ). We define

h(φ, ε) := lim sup
T→∞

1

T
log N(ε, T ).
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Observe now that the function ε �→ h(φ, ε) is monotone decreasing and
therefore the following limit exists:

htop(φ) := lim
ε→0

h(φ, ε).

The number htop(φ) thus defined is called the topological entropy of the
flow φt . Intuitively, this number measures the orbit complexity of the flow.
The positivity of htop(φ) indicates complexity or “chaos” of some kind in
the dynamics of φt . The topological entropy htop(φ) may also be defined as
htop(φ1) using the entropy of the time one-map or it may be defined in either
of the following ways. All the definitions give the same number htop(φ)
which is independent of the choice of metric [22,44].

A set Y ⊂ X is called a (T, ε)-separated set if given different points
y, y′ ∈ Y we have dT (y, y′) ≥ ε. Let S(T, ε) denote the maximal cardinality
of a (T, ε)-separated set. Then

htop(φ) = lim
ε→0

lim sup
T→∞

1

T
log S(T, ε).

A set Z ⊂ X is called a (T, ε)-spanning set if for all x ∈ X there exists
z ∈ Z such that dT (x, z) ≤ ε. Let M(T, ε) denote the minimal cardinality
of a (T, ε)-spanning set. Then

htop(φ) = lim
ε→0

lim sup
T→∞

1

T
log M(T, ε).

Given a compact subset K ⊂ X (not necessarily invariant) we can define
the topological entropy of the flow with respect to the set K , htop(φ, K ),
simply by considering separated (spanning) sets of K .

The following proposition gives an idea of the dynamical significance
of the topological entropy (for proofs see [22,44]).

Proposition 2.2. The topological entropy satisfies the following properties:

1. For any two closed subsets Y1, Y2 in X,

htop(φ,Y1 ∪ Y2) = max
i=1,2

htop(φ,Yi);

2. If Y1 ⊂ Y2 then htop(φ,Y1) ≤ htop(φ,Y2);
3. Let φi

t : Xi → Xi for i = 1, 2 be two flows and let π : X1 → X2 be
a continuous map commuting withφi

t i.e. φ2
t �π = π�φ1

t . Ifπ is onto, then
htop(φ

1) ≥ htop(φ
2) and if π is finite-to-one, then htop(φ

1) ≤ htop(φ
2).

4. Let φi
t : Xi → Xi for i = 1, 2 be two flows and let ψt := φ1

t × φ2
t be the

product flow on X1 × X2. Then htop(ψ) = htop(φ
1)+ htop(φ

2).
5. Given c ∈ R, let cφt be the flow given by cφt := φct . Then htop(cφ) =

|c|htop(φ).

Next we shall state a useful result of R. Bowen that we will need later.
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Proposition 2.3. [Corollary 18 in [7]] Let (X, d) and (Y, e) be compact
metric spaces and φt : X → X a flow. Suppose π : X → Y is a continuous
map such that π � φt = π. Then

htop(φ) = sup
y∈Y

htop
(
φ, π−1(y)

)
.

Given a Riemannian metric g, let d be any distance function compatible
with the topology of SM. Since the geodesic flow is a smooth flow on SM
we can attach to it its topological entropy that we denote by htop(g) to stress
its dependence on the Riemannian metric g. There is a formula, known as
Mañé’s formula, that gives a nice alternative way of thinking about htop(g).
Given p and q in M and T > 0, define nT (p, q) as the number of geodesic
arcs joining p and q with length ≤ T . R. Mañé showed in [30] that

htop(g) = lim
T→∞

1

T
log

∫
M×M

nT (p, q) dp dq.

Using property 5 in Proposition 2.2 it is easy to check how entropy
behaves under scaling: if c is any positive constant, then htop(cg) = htop(g)√

c
.

We now describe a basic relationship between entropy and curvature.
Let (Mn, g) be a closed Riemannian manifold and let Kmax be a positive

upper bound for the sectional curvature. It was proved in [36] that

htop(g) ≤ n − 1

2

√
Kmax − minv∈SM r(v)

2
√

Kmax
,

where SM is the unit sphere bundle of M and r(v) is the Ricci curvature in
the direction of v ∈ SM.

Let k be a positive number such that |K(P)| ≤ k for all 2-planes P.
Then, clearly r ≥ −(n − 1)k g and hence the previous inequality gives

htop(g) ≤ n − 1

2

√
k + n − 1

2

√
k = (n − 1)

√
k.(2)

The latter inequality was first proved by A. Manning in [29].

2.4. An important chain of inequalities. Let (M, g) be a closed Rieman-
nian manifold and let M̃ be its universal covering endowed with the induced
metric. Given x ∈ M̃, let V(x, r) be the volume of the ball with center x and
radius r. Set

λ(g) := lim
r→+∞

1

r
log V(x, r).

Manning [28] showed that the limit exists and it is independent of x.
Set

λ(M) := inf{λ(g) | g is a smooth metric on M with Vol(M, g) = 1}.
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It is well known [31] that λ(g) is positive if and only if π1(M) has
exponential growth. Manning’s inequality [28] asserts that for any metric g,

λ(g) ≤ htop(g).(3)

In particular, it follows that if π1(M) has exponential growth then htop(g)
is positive for any metric g. This fact was first observed by E.I. Dinaburg
in [10]. Gromov showed in [20] that if Vol(M, g) = 1, then there is a positive
constant c(n) such that

c(n)‖M‖ ≤ [λ(g)]n.(4)

Finally it was observed in [34] that using (2) it is easy to show that

[h(M)]n ≤ (n − 1)nMinVol(M).(5)

Hence if we combine (3), (4) and (5), we obtain the following chain of
inequalities:

c(n)‖M‖ ≤ [λ(M)]n ≤ [h(M)]n ≤ (n − 1)nMinVol(M).(6)

The only known manifolds with h(M) > 0 are manifolds with ‖M‖ �= 0.
For these manifolds π1(M) has exponential growth.

2.5. Entropy of products and submersions.

Lemma 2.4. 1. Let (M1, g1) and (M2, g2) be two compact Riemannian
manifolds. Endow M1 × M2 with the product metric g1 × g2. Then

htop(g1 × g2) =
√

[htop(g1)]2 + [htop(g2)]2.

2. Let (M, gM) �→ (N, gN ) be a Riemannian submersion where M and N
are compact manifolds. Then htop(gM) ≥ htop(gN).

Proof. Let us prove the first item. Let f : S(M1×M2) → S1 be the function
given by

f(x1, v1, x2, v2) = (|v1|x1, |v2|x2).

Since the geodesics in M1 × M2 are products of geodesics in M1 and M2,
the function f is constant along the orbits of the geodesic flow of M1 × M2.
It follows from Proposition 2.3 that

htop(g1 × g2) = sup
c∈S1

htop( f −1(c)).

If we write c = (l,m), it is easy to check using Proposition 2.2 that

htop( f −1(c)) = l htop(g1)+ m htop(g2)

from which we obtain right away the first equality in the lemma.



Minimal entropy and collapsing 425

To prove the second item, let H ⊂ SM be the set of all horizontal
unit vectors. Clearly the geodesic flow of (M, gM) leaves H invariant.
Let τ : H → SN be the restriction to H of the differential of the submer-
sion map. Since horizontal geodesics project to geodesics, τ is a surjec-
tive map that intertwines the geodesic flow of (M, gM) restricted to H
with the geodesic flow of (N, gN ). It follows from Proposition 2.2 that
htop(gM) ≥ htop(gN). ��

3. Elliptic manifolds in dimensions 4 and 5

Let M be a closed simply connected manifold and let ΩM be the space of
based loops. Let kp be the prime field of characteristic p, p prime or zero.
Following Y. Félix, S. Halperin and J.C. Thomas we say that M is elliptic
if for each p, the homology of the loop space:

n∑
i=0

dim Hi(ΩM, kp),

grows polynomially with n (cf. [15,16,21] and references therein).
Elliptic manifolds are rare. However a number of geometrically inter-

esting spaces are elliptic:

1. homogeneous spaces;
2. manifolds M admitting a fibration F → M → B with F and B elliptic;
3. manifolds M for which the algebra H∗(M, kp) is generated by two

elements for all p;
4. manifolds M admitting a smooth action by a compact Lie group with

a simply connected codimension one orbit;
5. connected sums M# N with the algebras H∗(M,Z) and H∗(N,Z) each

generated by a single class.

The manifold M is said to be rationally elliptic if the total rational
homotopy π∗(M) ⊗ Q is finite dimensional, i.e. there exists a positive
integer i0 such that for all i ≥ i0, πi(M) ⊗ Q = 0. This property is
known to be equivalent to the polynomial growth of

∑n
i=0 dim Hi(ΩM,Q).

Obviously an elliptic manifold is rationally elliptic. We will see that for
smooth 4-manifolds ellipticity and rational ellipticity are equivalent. This
is no longer the case for 5-manifolds as we will see below.

Lemma 3.1. Suppose that M is 4-dimensional and let b2 be the second
Betti number of M. If M is rationally elliptic then b2 ≤ 2.

Proof. It is shown in [18, Corollary 1.3] (cf. also [14]) that if Mn is rationally
elliptic then, ∑

k≥1

2k dim (π2k(M)⊗Q) ≤ n.(7)
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Since M is simply connected the Hurewicz isomorphism theorem implies
that

b2 = dim H2(M,Q) = dim (π2(M)⊗Q).
Since n = 4, using (7) we obtain 2 b2 ≤ 4. ��
Lemma 3.2. Let M be a closed smooth simply connected 4-manifold. The
following are equivalent:

1. M is elliptic;
2. M is rationally elliptic;

3. M is homeomorphic to S4, CP2, S2 × S2, CP2#CP
2

or CP2#CP2.

Moreover, if M is not elliptic then
∑n

i=0 dim Hi(ΩM,Q) grows exponen-
tially.

Proof. Obviously 1 implies 2. Let us prove that 2 implies 3. Suppose that M
is rationally elliptic. By Lemma 3.1, b2 ≤ 2. Since M is smooth, the Kirby-
Siebenmann obstruction vanishes. Therefore by M. Freedman’s theory [17],
the homeomorphism type of M is completely determined by the intersection
form of M. It follows that if b2 = 0, M is homeomorphic to S4 and if b2 = 1,
M is homeomorphic to CP2. When b2 = 2, the possible intersection forms
are (

0 1
1 0

)
,

(
1 0
0 −1

)
and

(
1 0
0 1

)
.

These forms correspond to S2 × S2,CP2#CP
2

and CP2#CP2 respectively.
On the other hand S4, CP2 and S2 × S2 are homogeneous spaces

and hence they are elliptic (see property 1 above). By property 5 above,

CP2#CP
2

and CP2#CP2 are elliptic.
Finally, it is well known that the homology of the loop space with rational

coefficients can either grow polynomially or exponentially. ��
Remark 3.3. For an arbitrary simply connected manifold M it is known that
if

∑n
i=0 dim Hi(ΩM, kp) does not grow polynomially then it must grow at

least like λ
√

n for some λ > 1 [16]. There is a conjecture that says that the
growth should in fact be exponential, but this is only known for rational
coefficients (as we mentioned at the end of the proof of the last lemma) and
for primes p strictly bigger that the dimension of M.

Theorem 3.4 (Following a suggestion of S. Halperin). Let M be a closed
(2s − 1)-connected manifold of dimension 4s + 1 with s ≥ 1. Then M is
elliptic if and only if H2s(M,Z) is 0, Z or Z2. Moreover, if M is not elliptic
the homology of the loop space of M grows exponentially for some field of
coefficients kp.
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Proof. It follows from a theorem of S. Eilenberg and J.C. Moore
[13, Theorem 12.1] that the homology of the loop space can be computed
as

H∗(ΩM, kp) ∼= TorC∗(M)(kp, kp),

where C∗(M) is the differential graded algebra given by the normalized
singular cochains with coefficients in kp. (In fact, Eilenberg and Moore
mention in his paper that this special case of their theorem has to be attributed
to J.F. Adams [1].)

It can be seen that for a manifold M satisfying the hypotheses of the
theorem there exists a quism between C∗(M) and (H∗(M, kp), 0). This
means a morphism of differential graded algebras with the property that
induces isomorphisms in homology. Since a quism preserves Tor it follows
that

H∗(ΩM, kp) ∼= TorH∗(M,kp)(kp, kp).

We now make use of the following lemma whose proof will be given after
completing the proof of the theorem.

Lemma 3.5. The sum of the dimensions of TorH∗(M,kp)(kp, kp) grows ex-
ponentially unless dim H2s(M, kp) ≤ 1. Conversely if dim H2s(M, kp) ≤ 1
then the sum of the dimensions of TorH∗(M,kp)(kp, kp) grow polynomially.

A result of C.T.C. Wall [43] (see also the corollary before Lemma F
in [4]) using the linking form ensures that the torsion part of H2s(M,Z)
always has the form B + B or B + B +Z2 for some finite abelian group B.
Hence if M is elliptic, the lemma implies that B must be zero and when the
Z2 factor appears the rank of H2s(M,Z) should be zero. ��
Proof of the lemma. Let us set for brevity k := kp. Observe that R :=
H∗(M, k) is a (graded) commutative local ring with residue field k that sat-
isfies Poincaré duality. We note that it suffices to prove the lemma ignoring
the grading of R because TorR

p,q(k, k) = 0 for q > p(4s+1) (the first integer
indicates the resolution degree and the second the internal grading).

Let a := dim H2s(M, k) = dim H2s+1(M, k) and let m := H2s(M, k) ⊕
H2s+1(M, k) ⊕ H4s+1(M, k) be the maximal ideal of R. Given a finitely
generated R-module U , let U0 := U/mU . U0 is a finite dimensional vector
space over k. Below we will use the following form of Nakayama’s lemma:
if ϕ : U → V is a morphism of R-modules such that the induced morphism
ϕ0 : U0 → V0 is surjective, then ϕ is also surjective.

To compute TorR(k, k) we need to take a projective resolution of k
regarded as a R-module in the obvious way. Since R is local a R-module is
projective if and only if is free. Hence, we will construct a resolution of the
form:

· · · → Rbi
∂i→· · · → Rb1

∂1→R
∂0→k → 0.
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The first map ∂0 is given simply by

∂0(x, y, z, t) = x,

where (x, y, z, t) ∈ R = H0(M, k)⊕H2s(M, k)⊕H2s+1(M, k)⊕H4s+1(M, k)
and we identify H0(M, k) with k. Clearly Ker ∂0 = m.

We will now define a surjective morphism ∂1 : R2a → m. Let 1 =
(1, 0, 0, 0) ∈ R. Clearly 1 generates R and hence given any free module Rb,
the elements ei = (0, . . . , 1i, . . . , 0) for 1 ≤ i ≤ b generate Rb. Hence,
to define ∂1 it suffices to indicate the images of the ei’s. Pick a basis of
H2s(M, k)⊕H2s+1(M, k) (which has dimension 2a) and let ∂1 be determined
by a bijection between the generators of R2a and this basis.

Note that m0 = m/m2 ∼= H2s(M, k) ⊕ H2s+1(M, k). Hence ∂0
1 is an

isomorphism and by Nakayama’s lemma ∂1 is surjective.
Let Q ⊂ R be the ideal given by those elements of the form (0, 0, 0, t).

Note that

1. mKer ∂1 = Q2a;
2. Ker ∂1/mKer ∂1 has dimension 4a2 − 1.

To define ∂2, we take R4a2−1 and we map the canonical 4a2−1 generators
of R4a2−1 onto a basis of Ker ∂1/mKer ∂1. This gives a surjective morphism
as before.

By continuing in this fashion we find that at the i-th step of the construc-
tion of the resolution we have:

1. mKer ∂i−1 = Qbi−1 ;
2. Ker ∂i−1/mKer ∂i−1 has dimension 2abi−1 − bi−2.

Therefore bi = 2abi−1 − bi−2. This implies that the growth of sequence
bi is exponential if a > 1 (with exponent a + √

a2 − 1) and at most linear
if a ≤ 1.

Now observe that we have the isomorphism Rbi ⊗R k ∼= kbi and under
this isomorphism the map ∂i ⊗1 is zero. Thus the differential of the complex
Rbi ⊗R k is zero, so the dimensions of TorR(k, k) over k grow exactly as the
bi’s. ��

Closed simply connected smooth 5-manifolds have been classified by
S. Smale in the spin case [41] and by D. Barden [4] in the general case. We
will now briefly describe the classification.

The oriented (5-dimensional) cobordism group has order 2. The non-
trivial cobordism class is formed by the manifolds for which the Stiefel-
Whitney number w2 ∪w3 �= 0. Let M be a closed simply connected smooth
5-manifold. If M bounds, then the torsion part of H2(M,Z) is isomorphic
to G ⊕ G for some finite Abelian group G. If M belongs to the non-trivial
cobordism class then the torsion part of its second homology group is of the
form Z2 ⊕ G ⊕ G, where G is again a finite Abelian group.

The second Stiefel-Whitney class of a simply connected closed manifold
is given by a homomorphism w2 : H2(M,Z) → Z2. There exists a basis of
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the Abelian group H2(M,Z) such that it has the maximal possible number
of elements (for a basis of the Abelian group) and such that w2 does not
vanish in at most one of the elements of the basis. If the order of this element
is 2i then i depends only on M.

This invariant i(M) together with H2(M,Z) is a complete set of invari-
ants for simply connected closed 5-manifolds.

Let X−1 = SU(3)/SO(3) be the Wu-manifold, which is characterized
by i(X−1) = 1 and H2(X−1,Z) = Z2. Let X0 = S5, M∞ = S3 × S2 and
X∞ = η3 (the only non-trivial S3-bundle over S2).

For 1 ≤ j < ∞ let X j be a closed simply connected non-spin 5-manifold
such that H2(X j,Z) = Z2 j ⊕ Z2 j . Then i(X j) = j. Also let M j be a spin
manifold with H2(M j,Z) = Z j ⊕ Z j . Of course, i(M j) = 0.

Then Barden proves that any simply connected closed 5-manifold M
is diffeomorphic to a connected sum of some of these manifolds. More
precisely, M = X j# Mk1 # . . . # Mkl where −1 ≤ j ≤ ∞, k1 > 1 and ki
divides ki+1 for all i. Note that then i(M) = j and H2(M,Z) = Z2 j ⊕Z2 j ⊕
Zk1 ⊕Zk1 ⊕ . . .⊕Zks ⊕Zks , unless j = −1 in which case the first two factors
should be replaced by one copy of Z2. As a consequence of Theorem 3.4
and the classification of simply connected 5-manifolds we obtain:

Corollary 3.6. Let M be a closed simply connected 5-manifold. Then M is
elliptic if and only if M is diffeomorphic to:

1. S5;
2. S3 × S2 whose second homology group is Z and is a spin manifold;
3. η3, the nontrivial S3-bundle over S2, whose second homology group is
Z and is not spin;

4. the Wu-manifold X−1 = SU(3)/SO(3) whose second homology group
is Z2 and is not spin.

Moreover if M is not elliptic, the homology of the loop space of M grows
exponentially for some field of coefficients kp.

Table 1. The elliptic list in dimensions 4 and 5

dim 4 dim 5

S4 S5

CP2 S3 × S2

S2 × S2 X−1 = SU(3)/SO(3)

η2 = CP2#CP
2

η3

CP2#CP2
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4. Existence of a metric with zero entropy on each manifold in the
elliptic list

4.1. Dimension 4. The standard symmetric metrics on S4 and CP2 have
all the geodesics closed and with the same period, and hence their geodesic
flows have zero topological entropy. On S2 × S2 consider the product metric
of the round metric on S2; it follows from part (1) in Lemma 2.4 that the
geodesic flow of the product metric has zero entropy.

The manifold CP2#CP
2

is η2, the non-trivial S2-bundle over S2, and it
is known to be diffeomorphic to the space that we now describe. Represent
S3 ⊂ C2 as pairs of complex numbers (z1, z2) with |z1|2 +|z2|2 = 1. Let S1

act on S3 by

(w, (z1, z2)) �→ (wz1, wz2),

where w ∈ S1 is a complex number with modulus one. Let S1 also act
on S2 by rotations. Consider the space M = S3 ×S1 S2 obtained by taking
the quotient of S3 × S2 by the diagonal action of S1. The manifold M is

diffeomorphic to CP2#CP
2
. Endow S3 and S2 with the canonical metrics

of curvature one. By part (1) of Lemma 2.4 the product metric on S3 × S2

has zero entropy. By part (2) in Lemma 2.4 the submersion metric on
M = S3 ×S1 S2 will also have a geodesic flow with zero entropy.

We are left with the case of M = CP2#CP2 which is in fact the only
tricky case. The manifold M can be obtained from two copies of S3 ×S1 D2

where D2 is the 2-disk and S1 acts diagonally, glued along their boundary
S3 ×S1 S1 = S3 by an orientation reversing map. In [35] the first author
proved that the metrics considered by J. Cheeger in [8] have zero topological
entropy.

4.2. Dimension 5. The round metric on S5 and the product metric on S3×S2

clearly have zero entropy.
For the Wu manifold X−1 we proceed as follows. Let us consider a biin-

variant metric on SU(3). Since every geodesic is the orbit of a 1-parameter
subgroup and since SU(3) is compact it follows easily that all the Jacobi
fields grow at most linearly. Therefore all the Liapunov exponents of every
geodesic in SU(3) are zero. It follows from Ruelle’s inequality [39] that all
measure entropies are zero. Hence, by the variational principle, the topo-
logical entropy of the geodesic flow of SU(3) must be zero. Endow X−1
with the submersion metric. It follows from part (2) in Lemma 2.4 that this
metric has zero topological entropy.

We are left with η3. This is handled in a similar way with the help of
the next lemma which gives a convenient way of expressing η3 using group
actions.

Lemma 4.1. Consider on S3 × S3 ⊂ C2 × C2 the action of S1 given by

(w, (z1, z2, z3, z4)) �→ (wz1, wz2, wz3, z4),
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where w ∈ S1 is a complex number with modulus one. This action is fixed
point free and the quotient of S3 × S3 by this action is η3.

Proof. Let M be the quotient of S3 × S3 by the circle action. A simple argu-
ment with the long exact sequence of the fibration shows that M is simply
connected and π2(M) = Z. By the Hurewicz theorem H2(M,Z) = Z. Note

that M contains a copy of CP2#CP
2

given by the projection to M of the
subset of S3 × S3 given by {imaginary part of z4 = 0} and hence M is not
spin. It follows from the Barden-Smale classification that the only closed
simply connected non spin 5-manifold with H2(M,Z) = Z is η3. ��

Using the lemma it is easy to construct a metric on η3 with zero entropy.
Consider on S3 × S3 the product metric and on the quotient the submersion
metric. By Lemma 2.4 the metric thus constructed on η3 has zero entropy.

5. F -structures and minimal entropy

We begin by considering the case of a non-trivial S1-action. This preliminary
result will not be used in the proof for the case of a general F -structure.
But we think that its much simpler proof gives a nice picture of the ideas
behind the general case.

Theorem 5.1. Suppose that the closed connected smooth manifold M ad-
mits a non-trivial S1-action. Then the minimal entropy of M is 0.

Proof. First consider a metric g on M which is invariant under the S1-action.
This is obtained as usual by averaging any given Riemannian metric over
the orbits.

Now consider the manifold M̄ = M × S1 and for any δ > 0 the Rie-
mannian metric ḡδ = g + δdt2 (where dt2 is the Euclidean metric on S1)
on M̄.

Define a (free) S1-action on M̄ by

λ.(x, θ) = (λ.Mx, λθ)

The quotient of M̄ by this action is diffeomorphic to M and the metric
ḡδ is invariant through the action; therefore it induces a metric gδ on M. The
projection

π : (M̄, ḡδ) → (M, gδ)

is a Riemannian submersion, and therefore the entropy of gδ is bounded
above by the entropy of ḡδ (see Sect. 2.5) which is actually equal to the
entropy of g (see Sect. 2.5). Therefore to prove the theorem it is enough to
show that the volume of (M, gδ) approaches 0 as δ approaches 0. We will
prove this now.

First we identify the quotient (of M̄ by the S1-action) with M via the
diffeomorphism which sends x ∈ M to the class of (x, 1). Let vx be the
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vector tangent to the .M-action at x and let ω be the tangent to the canonical
S1-action on S1 (which gives the usual trivialization of the tangent space
of S1). Let εx = g(vx, vx).

The tangent vector to the action on M̄ is (vx, ω). If εx �= 0, the
ḡδ-orthogonal subspace to this vector is spanned by (vx,− εx

δ
ω) and the

subspace of vectors of the form (v, 0) where v ∈ Vx ⊂ Tx M, the subspace
of vectors g-orthogonal to vx . It is clear that gδ and g coincide on Vx .
Moreover, gδ(vx, v) = 0 for all v ∈ Vx .

Since

(vx, 0) = εx/δ

1 + (εx/δ)
(vx, ω)+ 1

1 + (εx/δ)
(vx,−(εx/δ)ω) ,

we have that

gδ(vx, vx) =
(

1

1 + (εx/δ)

)2

ḡδ ((vx,−(εx/δ)ω), (vx,−(εx/δ)ω))

= εx + ε2
x/δ

(1 + (εx/δ))2
= δ

δ + εx
g(vx, vx).

This implies the following equation for the volume elements of the two
metrics:

dvol(gδ) = √
δ

1√
δ+ ε

dvol(g).

This formula will be enough to show that the volume of (M, gδ) ap-
proaches 0 with δ. Note first that the formula shows that the volume of any
region computed with gδ is always at most the volume of the same region
computed with g (independently of δ). Given any � > 0, we can find an
open neighborhood of the fixed point set of the S1-action on M which has
g-volume less than �/2. Then the gδ-volume of this neighborhood will also
be less than �/2 for any δ. Away from the neighborhood, ε has a positive
lower bound, and the volume formula clearly shows that the gδ-volume of
the complement of the neighborhood is of the order of

√
δ for δ small.

Therefore, for δ small enough the volume of the complement will also be
less than �/2. This completes the proof of the theorem. ��

This result should be compared to the collapsing with bounded sectional
curvature of Cheeger and Gromov [9,20]. If the manifold M admits a lo-
cally free S1-action then picking a Riemannian metric g on M invariant
through the action and then shrinking along the orbit produces a sequence
of metrics with uniformly bounded curvature and volume and injectivity
radius converging to zero. This is not true if the action has fixed points.
To get a geometrical picture of our theorem one can consider the canonical
S1-action on S2 which has fixed points in the poles. The metrics produced in
the proof of the theorem will shrink the horizontal circles by a non-constant
factor, which approaches 1 near the poles. At the poles the curvature will
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blow-up and the injectivity radius will stay uniformly bounded from below.
But the volume will collapse and the entropy will stay bounded.

Cheeger and Gromov introduced in [9,20] the concept of F -structures
and generalize the previous result to manifolds admitting F -structures with
certain special properties: polarized F -structures of positive rank. There
exist plenty of examples of closed manifolds which admit F -structures but
which cannot be collapsed with bounded sectional curvature; manifolds
whose minimal volume is non-zero. Therefore they do not admit polar-
ized F -structures of positive rank. We will show that the minimal entropy
does vanish in the presence of general F -structures. We will follow the
notation of [9] as closely as possible, and the reader should check that ref-
erence for any detail about the definition and many constructions related to
F -structures we will use. We consider first the definition of an F -structure.

A sheaf of tori S over the smooth manifold M is said to act on M if for
each open subset U of M there is a local action of the group of sections S(U)
on U , with the obvious compatibility between restriction homomorphisms
of the sheaf and restrictions of the local actions (a local action of a group G
is an action defined only on a neighborhood of {e} × U ⊂ G × U). The
action divides M into orbits and a subset of M is called saturated if it is
a union of orbits.

Definition 5.2. An F -structure on a smooth closed manifold M is given by
an action on M of a sheaf S of tori together with a finite cover of M by
saturated open subsets {U1, . . . ,UN} such that:

(a) On each Ui there is a locally constant subsheaf Si of S and a finite
normal covering πi : Ũi → Ui such that the structure homomorphisms
of πi

∗(Si) give isomorphisms between the global sections and the stalks.
(b) The local action of the sections defines a smooth, effective torus action

.i : T ki × Ũi → Ũi,

(c) The stalk of the sheaf at any x ∈ M is spanned by the stalks of the
subsheaves corresponding to the Ui’s which contain x and non-empty
intersections of the Ui’s also have a finite covering such that the pull
back of the sheaf spanned by the corresponding Si ’s gives rise to a global
torus action as before.

Definition 5.3. An F -structure is called a T -structure if all the coverings
πi : Ũi → Ui are trivial.

Remark 5.4. The dimension of the orbit through x is called the rank of F
at x. The minimum of the dimensions of the orbits is called the rank of the
F -structure. The F -structure is called polarized if the torus actions defined
on the finite coverings are locally-free .

Remark 5.5. Our definition of F -structure is essentially the same as the one
in [9]. More precisely, one can see that given any F -structure as defined
by Cheeger and Gromov there exists an atlas with the properties in our
definition (see p. 317 in [9]).
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Remark 5.6. A T -structure is given by a covering by open subsets and
a torus action on each subset such that any intersection of the open subsets
is invariant through the corresponding actions and these commute. The stalk
over any point x of the sheaf appearing in Definition 5.2 is the maximal torus
which is acting on x. The definition is of course the same as the original one
given by Gromov in [20], except that it is only asked that the torus actions
are effective (but not necessarily locally free).

Example 5.7. Any non-trivial S1-action on M is of course a T -structure
on M. Hence, for instance, S4 and CP2 admit T -structures although they
cannot admit any polarized F -structure.

Example 5.8. The compact complex surface K3 admits a T -structure, even
though it does not admit any non-trivial S1-action [3]. Actually every elliptic
compact complex surface admits a T -structure as we will show below.

We will see now that T -structures behave relatively well with respect
to the usual operations of connected sums and surgeries on manifolds.
T. Soma proved in [42] that the family of 3-manifolds which admit polarized
T -structures is closed under connected sums. As pointed out by Gromov
in [20], this result generalizes to any odd dimension. We will see now
that the result also holds for the family of manifolds which admit general
T -structures and for any dimension greater than 2.

Theorem 5.9. Suppose X and Y are n-dimensional manifolds, n > 2,
which admit a T -structure. Then X# Y also admits a T -structure.

Proof. Pick a point x ∈ X so that x lies in only one of the open subsets of
the T -structure (for this one might need to do some harmless changes in
the T -structure, like eliminating any open subset which is contained in the
union of the others). We can also assume that the torus acting on the open
subset containing x is of dimension one and that x lies on a regular orbit.

Now pick a small (n − 1)-ball Dx centered at x and transverse to the
S1-action. The union of the orbits through Dx form an embedded solid torus
S1 × Dx . Repeat the same procedure to obtain an embedded solid torus
S1 × Dy in Y containing a point y ∈ Y . We will perform the connected sum
inside S1 × Dx and S1 × Dy.

First divide Dx into an inner ball and an outer annulus: Dx = Dε1 ∪
(Sn−2×[ε1, ε2]). We can identify S1×Dx# S1×Dy with S1×Dx−Sn−2×D2,
where D2 is a small 2-dimensional ball centered at a point in the middle of
Sn−2×[ε1, ε2] and transverse to Sn−2 in S1×Sn−2×[ε1, ε2]. The component
of the boundary corresponding to the boundary of the deleted Sn−2 × D2 is
identified with the boundary of S1 × Dy.

We can now describe the T -structure on X#Y . On (X − S1 × Dx) ∪
S1 × Dε1 leave the initial T -structure. On S1 × Sn−2 ×[ε1, ε2]−(Sn−2 × D2)
consider any non-trivial S1-action on the Sn−2-factor (here is where we
need the hypothesis n > 2). The action induced on each component of the



Minimal entropy and collapsing 435

boundary glues to the canonical action on the S1-factor to create a T 2-action
(in case n is even it will have orbits of dimension 1). Finally on Y −(S1×Dy)
leave the initial T -structure. ��
Theorem 5.10. Every compact complex elliptic surface admits a T -struc-
ture.

Proof. For the proof we will need smooth descriptions of the surfaces:
see [19,26] for details. Every elliptic surface of Euler characteristic 0 is
obtained by performing logarithmic transforms on a basic elliptic surface.
Every elliptic surface is obtained by taking the fiber sum of an elliptic
surface of Euler characteristic 0 and some rational elliptic surfaces, and
then blowing up some points.

Basic surfaces are fiber bundles with fibers T 2 and structure group in
SL(2,Z). Hence they admit a polarized T -structure whose orbits are the
fibers.

Now let B × T 2 be a neighborhood of a fiber on a basic surface M,
where B is identified with the unit ball in C = R2. Fix a positive integer
m and integers a, b such that (a, b) has order m in Zm ⊕ Zm . Let F :
B × T 2 → B × T 2 be given by F(z, t) = (e2πi/m z, t). F generates a group
G1 of diffeomorphisms of B × T 2 of order m. The quotient of B × T 2

by this group is again diffeomorphic to B × T 2. Consider also the map
L : B × T 2 → B × T 2 given by

L(z, t) = (
e2πi/m z,

(
t1e2aπi/m, t2e2bπi/m

))
.

L generates a group G2 of diffeomorphism of B × T 2 of order m which acts
freely on B × T 2. The map P : S1 × T 2/G1 → S1 × T 2/G2,

P(z, t) = (
z,

(
zat1, zbt2

))
is a diffeomorphism. The logarithmic transform (of order m) at the fiber
over (0, 0) in M is the elliptic surface M̃ obtained by gluing M − B × T 2

and B×T 2/G2 via this diffeomorphism. Clearly the obvious S1-action on B
(which fixes (0, 0)) induces an S1-action on B × T 2/G2 which commutes
with the action on the fibers. Hence M̃ admits a T -structure (with orbits of
dimension 0,1,2 and 3).

Rational elliptic surfaces are diffeomorphic to S = CP2# 9CP
2

and
therefore admit T -structures by the previous theorem. Nevertheless we will
need to perform fiber sums and so we will give another T -structure on
it, compatible with the elliptic fibration. To do this we need first to give
a description of the surface as an elliptic surface (see [26]). Let T 2 = R2/Z2

and consider the involution I(z) = −z of T 2. Let H : S2 → S2 be rotation
of 180◦ around the z-axis. The diffeomorphism

J = (I, H) : T 2 × S2 → T 2 × S2

has 8 fixed points. Identify a neighborhood of each of these points with
a ball B in C2. Consider U = {(z, l) ∈ B × CP1 : z ∈ l}. The canonical
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projection π1|U : U → B induces an isomorphism away from the preimage
of 0. Construct a surface S̃ by replacing the eight copies of B with U in
T 2 × S2. The involution J extends to an involution J̃ on S̃ which has 8
spheres as the set of fixed points. Then S = S̃/ J̃ . Let π : S2 → S2 = S2/H
be the projection. Then π ◦ π2 : T 2 × S2 → S2 induces a map p : S̃ → S2

which commutes with J̃ and so induces a map S → S2 whose generic fiber
is T 2; this map expresses S as an elliptic surface.

Note that the S1-action on B given by λ(w1, w2) = (w1, λw2) commutes
with J and induces an S1-action on U . We can extend this action to an
S1-action defined on a neighborhood of the fibers of p over the north and
south poles. This action commutes with J̃ and so induces an action on
a neighborhood of the fibers of S → S2 over the poles.

Away from the fibers over the poles S actually is the total space of a fiber
bundle with structure group {Id, I}. There is then a polarized T -structure
defined on this piece, whose orbits are the fibers. On the boundary of the
neighborhoods around the fibers over the poles the two actions commute.
This defines a T -structure on S.

The fiber sum of two elliptic surfaces is done as follows: pick regular
fibers on each surface identifying neighborhoods of them with D × T 2

(D is a small 2-ball). Delete the corresponding regular fiber from each
surface and then glue both surfaces along (D #D)×T 2. The diffeomorphism
class of the resulting surface will depend only on the isotopy class of the
diffeomorphism chosen to identify the fibers with T 2. We can therefore take
the diffeomorphism to be in SL(2,Z) and we can see that the T -structures
we defined on the surfaces of Euler characteristic 0 and the rational elliptic
surfaces glue well along the fiber sum.

Finally blowing up points means, in terms of diffeomorphisms, to take

connected sums with CP
2
’s. Such a connected sum admits a T -structure

by the previous theorem. ��
We can now also see that inside the family of manifolds with T -structures

one can perform surgery on spheres which are “well positioned” with respect
to the T -structure.

Definition 5.11. Let M be a manifold with a fixed T -structure. An embed-
ded k-sphere Sk is said to be completely transversal with respect to the
T -structure if:

1) Sk intersects only one of the open subsets of the T -structure.
2) The torus acting on the open subset of (1) has dimension 1 and the

orbits passing through Sk form an embedded Sk × S1 with trivial normal
bundle.

Remark 5.12. Note in particular that the normal bundle of a completely
transversal sphere is trivial.

Example 5.13. If X admits a T -structure and Y is any other manifold then
X × Y admits an obvious T -structure. Any homotopy class in Y which can
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be represented by an embedded sphere with trivial normal bundle (in Y ) can
be represented by a completely transversal sphere (in X × Y ).

Theorem 5.14. Let Mn be a manifold with a T -structure. Let Sk be a com-
pletely transversal sphere (with respect to the given T -structure). The mani-
fold M̂, obtained by performing surgery on S, also admits a T -structure.
Moreover, if n and n − k are odd and the structure on Mn is polarized, then
M̂ also admits a polarized T -structure.

Proof. Let Sk × S1 × Dn−k−1 be a tubular neighborhood of the union of
the orbits through S. Consider the unit n-sphere Sn ⊂ Rn+1. Pick a non-
trivial S1-action on Sn, for instance complex multiplication in the first 2
coordinates. In case n is odd we can pick a free S1-action. Choose a regular
orbit of the action and a disc Dn−1 transverse to the orbit. Pick a canonical
embedded k-sphere Sk

0 ⊂ Dn−1 and a tubular neighborhood Sk
0 ×S1×Dn−k−1

of the union of the orbits through Sk
0. The manifold M̂ is obtained by

gluing M and Sn along S and Sk
0. But gluing two copies of Sk × S1 × Dn−k−1

along the k-spheres is the same as taking the product of a k-sphere with
the connected sum of two copies of S1 × Dn−k−1. Hence in this glued part
we can consider the T -structure we defined in the proof of Theorem 5.9,
which on each component of the boundary coincides with the structure of M
and Sn, respectively. This clearly defines a T -structure on M̂. This structure
is polarized if n and n − k are odd. ��

6. Collapsing with bounded entropy: Proof of Theorem A

In this section we will prove that the minimal entropy of a closed manifold
which admits an F -structure vanishes. The general idea of the proof is
quite simple. Given an F -structure on M we define a polarized F -structure
on M × T k for some k and consider a Riemannian metric on the product
which is invariant through all the torus actions. Then we collapse the metric
along the orbits of the F -structure on M × T k. The procedure constructs
metrics which are invariant by the canonical T k-action on M × T k. Taking
the quotient by this action gives a Riemannian submersion over a metric
on M. Now, for the polarized structure on M ×T k , Cheeger and Gromov [9]
proved that the sectional curvatures of the collapsed metrics are uniformly
bounded. Therefore the entropy of the metrics are also uniformly bounded
(see Sect. 2.3) and since entropy is non-increasing under Riemannian sub-
mersions (see Sect. 2.5), the collapsed metrics on M also have uniformly
bounded entropy. The theorem therefore reduces to the proof that the vol-
umes of the metrics on M collapse. Note that the only properties about
entropy we will use in the proof are its bound in terms of curvature and its
behaviour under Riemannian submersions. Since Riemannian submersions
do not decrease sectional curvatures, the same proof works for any quantity
that depends only on lower bounds for the sectional curvature. We will
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use this remark in the next section to study certain curvature invariants for
manifolds admitting F -structures.

In the proof of the theorem we will need the following elementary lemma
from linear algebra:

Lemma 6.1. Let (V1, h1) and (V2, h2) be two real vector spaces of dimen-
sion l with inner products. Let F be a subspace of V1 ⊕ V2 of dimension l
which intersects trivially with both V1 and V2 such that for any (v,w) ∈ F,
h1(v, v) ≤ h2(w,w). Then:

a. Consider F as the graph of a map F̃ : V2 → V1 and let I : V1 → V1
be given by I(v) = π1 ◦ πF(v, 0) (πF : V1 ⊕ V2 → F is the orthogonal
projection). Then (det I)2 ≥ 4−l(det F̃)4l .

b. Given any λ, 0 < λ ≤ 1 consider the inner product h̄λ on V1 ⊕ V2
defined by λ(h1 + h2)|F + (h1 + h2)|F⊥ . Let hλ be the inner product on
V1 obtained as the quotient of h̄λ (by π1). Then dvol(hλ) ≤ dvol(h1).

Proof. a) Consider an orthonormal basis {v1, . . . , vl} of (V1, h1). If I(v j) =∑l
i=1 aijvi and we let A = (aij) then (det I)2 = det(At A). But At A is a pos-

itive definite symmetric matrix, and therefore it has l positive eigenvalues
µ1 ≤ µ2 ≤ . . . ≤ µl and (det I)2 = µ1 . . . µl ≥ µ1

l.
Now consider an orthonormal basis {w1, . . . , wl} of (V2, h2) and let

F̃(w j) = ∑l
i=1 bijvi . Let γ = (det F̃)2. If B = (bij) then γ = det(Bt B).

Again, Bt B is a positive definite symmetric matrix. Moreover, since
h1(v, v) ≤ h2(w,w) for any (v,w) ∈ F we have that no eigenvalue of
Bt B is greater than 1. Therefore the smallest eigenvalue is at least γ . This
means that for all (v,w) ∈ F, h1(v, v) ≥ γh2(w,w).

Now if (v⊥, w⊥) ∈ F⊥ we can find the unique vector (v⊥, w∗) ∈ F
whose first coordinate is v⊥. Then

h1(v
⊥, v⊥) = −h2(w

⊥, w∗) ≤ ‖w⊥‖‖w∗‖ ≤ 1√
γ

‖w⊥‖‖v⊥‖

and so h2(w
⊥, w⊥) ≥ γh1(v

⊥, v⊥)
Therefore, if h1(v, v) = 1 and (v, 0) = f + f ⊥ with f = (I(v),w) ∈ F

and f ⊥ = (v∗,−w) ∈ F⊥, we have that

h1(I(v), I(v)) ≥ γh2(w,w) ≥ γ 2h1(v
∗, v∗).

But I(v) + v∗ = v, and therefore either h1(v
∗, v∗) ≥ 1/4 or h1(I(v),

I(v)) ≥ 1/4. In any case, h1(I(v), I(v)) ≥ (1/4)γ 2.
This means that µ1 ≥ (1/4)γ 2 and so (det I )2 ≥ 4−lγ 2l, proving (a).

b) Given any v ∈ V1 write (v, 0) = fv + f ⊥
v (in F ⊕ F⊥). The map

L : V1 → V1 ⊕ V2, L(v) = fv + λ f ⊥
v , is a monomorphism. Moreover, the

image of L is included in the h̄λ-orthogonal complement of V2, V ⊥λ
2 , and

therefore L gives an isomorphism between V1 and V ⊥λ
2 .
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Pick any v ∈ V1. The map π1 ◦ L : V1 → V1 is an isomorphism.
Therefore there exists a unique a ∈ V1 such that

v = π1
(

fa + λ f ⊥
a

) = π1
(
( fa1, fa2)+ λ

(
f ⊥
a1, f ⊥

a2

)) = fa1 + λ f ⊥
a1.

Since (h1 + h2)( fa, f ⊥
a ) = 0, we have that

h1
(

fa1, f ⊥
a1

) + h2
(

fa2, f ⊥
a2

) = 0.

But since fa + f ⊥
a = (a, 0), we have that fa2 = − f ⊥

a2. Therefore

h1
(

fa1, f ⊥
a1

) = h2( fa2, fa2) ≥ 0.

There is a unique b ∈ V1 such that (b, f ⊥
a2) ∈ F. Then since h1(b, b) ≤

h2( f ⊥
a2, f ⊥

a2) and h1(b, f ⊥
a1)+ h2( f ⊥

a2, f ⊥
a2) = 0, we have that h2( f ⊥

a2, f ⊥
a2) ≤

h1( f ⊥
a1, f ⊥

a1).
Therefore

hλ(v, v) = h̄λ
(

fa + λ f ⊥
a , fa + λ f ⊥

a

)
= λ(h1 + h2)( fa, fa)+ λ2(h1 + h2)

(
f ⊥
a , f ⊥

a

) =
= λh1( fa1, fa1)+ λh2( fa2, fa2)+ λ2h1

(
f ⊥
a1, f ⊥

a1

) + λ2h2
(

f ⊥
a2, f ⊥

a2

)
≤ h1( fa1, fa1)+ λh1

(
fa1, f ⊥

a1

) + λ2h1
(

f ⊥
a1, f ⊥

a1

) + λh1
(

fa1, f ⊥
a1

) =
= h1

(
fa1 + λ f ⊥

a1, fa1 + λ f ⊥
a1

) = h1(v, v).

Hence for any v ∈ V1, hλ(v, v) ≤ h1(v, v) and (b) follows. ��
We are now ready to prove our theorem.

Theorem A. If the closed manifold M admits an F -structure then the
minimal entropy of M is 0.

Proof. Let U1, . . . ,UN be the open covering corresponding to an F -struc-
ture on M; with corresponding actions .1, . . . , .N by tori T k1 , . . . , T kN on
the coverings Ũi’s.

We can construct a regular atlas for the structure as in [9], Lemma 1.2.
Namely we construct a new open cover W1, . . . ,WJ of M obtained by
considering all non-empty intersections of the Ui’s and then removing from
each set the “unnecessary” parts. Each Wi has a finite cover W̃i where there
is defined an effective torus action. For instance, if one had U1 ∩ U2 �= ∅
then one would consider W1 = U1 ∩ U2, W2 ⊂ U1, W3 ⊂ U2 so that
W2 ∩ W3 = ∅ and both are invariant through the corresponding action (note
that on W̃1 one has defined a T k1+k2 action).

A Riemannian metric g on M is called invariant if on each of the open
subsets Wi of the F -structure the corresponding sheaf of torus acts by
isometries. An invariant metric always exists, at least after replacing the
open subsets Wi by slightly smaller ones. Such a metric is constructed
in [9], Lemma 1.3.
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Let us then fix a Riemannian metric g on M invariant through the
F -structure. Each Wi is, essentially, the intersection of certain number of
Ui’s. Assume that W1, . . . ,WJ are ordered in a non-increasing way with
respect to the number of the Ui’s intersecting. Therefore, if i > j and
Wi ∩ W j �= ∅ the torus action on Wi , restricted to Wi ∩ W j , is embedded in
the action on W j . Consider smooth functions fi : M → [0, 1], supported
in Wi which are constant along the orbits and such that { fi = 1}i=1,... ,J
covers M.

Let K = ∑N
i=1 ki and let M̄ = M × T K and ḡ = g + dx2 (where dx2

is the standard Euclidean metric on the K -torus). For each open subset Ui
consider the following (free) T ki -action on Ũi × T K :

.ī : T ki × Ũi × T K → Ũi × T K

(λ, (x, t1, . . . , ti, . . . , tN)) �→ (λ.i x, (t1, . . . , λti, . . . , tN)

where t j ∈ T k j .
These formulas clearly define an F -structure on M̄. But what is more

important to us is that it is actually a polarized F -structure of positive rank.
Note that on the Wi’s all the torus actions corresponding to the Ui’s which
are intersecting glue together to get a free torus action on W̃i × T K (where
the dimension of the torus acting is the sum of the corresponding ki’s).

Pull back the functions fi to obtain smooth functions f̄i on M̄. Note that
the functions f̄i are invariant through both the torus action (on Wi × T K )
coming from M and the canonical T K -action on the T K -factor of M̄. The
same is true for the metric ḡ.

Now we proceed to collapse the metric ḡ along the orbits of the F -
structure on M̄. This is done in [9], Theorem 3.1. We will describe the
procedure, since we need to make some computations on it. Fix a small
δ > 0. For technical reasons it is convenient to first replace ḡ by ḡ0 =
(log2δ)ḡ. We construct a metric ḡ1 on M̄ by multiplying the metric ḡ0 by δ f̄1

in the directions tangent to the orbits of the torus action on W1 × T K (and
leaving the same metric in the directions orthogonal to the orbits). Note
that the T K -action on M̄ given by the canonical action on the T K -factor
is isometric with respect to ḡ1. Repeating this procedure J-times we get
a metric ḡδ = ḡJ which is invariant under the T K -action just mentioned.

Let gδ be the metric induced on M = M̄/T K . The projection (M̄, ḡδ) →
(M, gδ) is a Riemannian submersion. Therefore the entropy of gδ is bounded
above by the entropy of ḡδ (see Sect. 2.5). The entropy of ḡδ on the other
hand is bounded above by (n − 1)

√
K0, where K0 is an upper bound for

the absolute value of the sectional curvature of ḡδ (see Sect. 2.3). But it is
proved in [9], Theorem 3.1, that the sectional curvature of ḡδ is bounded
independently of δ.

Therefore we got that:
htop(gδ) ≤ c1

where c1 is some constant independent of δ.
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We will now estimate the volume of (M, gδ). We will do this by com-
paring the volume element of gδ with that of g.

Let (φ1, . . . , φn) be a g-orthonormal basis of Tx M. Then

dvol(gδ) = √
det(gδ(φi, φ j))dvol(g).

Since the volume element at a point depends only on the value of the
metric at the point, it is the same to work on Wi or on the corresponding
finite covering. Therefore from now on we will think that we are working
with a T -structure to simplify the notation. Fix any point x ∈ M and any
point (x, t) ∈ M̄ which projects to x. We have to check how the volume
element changes at each step in the construction of ḡδ. Of course there is no
change in the step i if x does not belong to Wi . So let us assume for instance
that x ∈ W1. Moreover, assume that x is not a fixed point for the torus
action (the set of fixed points has volume 0 with respect to any Riemannian
metric). We want to compare the volume elements at x of g1 and g (gi is of
course the quotient of ḡi under the T K -action on M̄).

Assume that the orbit through x of the torus action has dimension l.
There is then an orthonormal set of vectors w1, . . . , wl ∈ Tt(T K) and
some linearly independent vectors v1, . . . , vl ∈ Tx M so that the vectors
(v1, w1), . . . , (vl, wl) are tangent to the orbit on M̄, and the directions
orthogonal to the wi’s act trivially on M at x. Let H be the subspace of
T(x,t)(M × T K ) spanned by this l vectors (the tangent space to the orbit
on M̄), let V =< v1, . . . , vl >⊂ Tx M be the tangent space to the orbit
in M and let W =< w1, . . . , wl >⊂ Tt(T K ).

Let vl+1, . . . , vn be a g-orthonormal basis of the space g-orthogonal to
the orbit (in M). Note that vl+1, . . . , vn are also g1-orthogonal to the orbit
and g1(vl+ j , vl+k) = δk

j(log δ)2. Therefore

det
((

g1(vi, v j
)

1≤i, j≤n

)
= (log δ)2(n−l) det

((
g1(vi, v j

)
1≤i, j≤l

)
.

Recall that the metric ḡ1 is obtained by multiplying by δ f̄1 the values
of ḡ0 on H .

From now on we restrict our attention to V ⊕ W , since its orthogonal
complement plays no real role in the construction of g1.

We can assume that for any unitary tangent vector to any of the tori
(acting on any of the Wi), the derivative of the action in that direction has
g-norm at most one.

Therefore we are under the hypothesis of our Linear Algebra Lemma 6.1.
Consider now a g-orthonormal basis of V ; call them v0

1, . . . , v
0
l . For

each i write (
v0

i , 0
) = hi + h⊥

i ,

where hi ∈ H and h⊥
i ∈ H⊥ (the ḡ-orthogonal complement of H in V ⊕W).

Let I(v0
i ) = π1(hi) ∈ V .
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Now, for each i = 1, . . . , l, consider the vector

w0
i = hi + δ f̄1h⊥

i .

The vector w0
i is ḡ1-orthogonal to the tangent space to the torus factor. Its

first coordinate is, of course, I(v0
i )+ δ f̄1π1(h⊥

i ).
Assume that f̄1(x) = 1. Then

det
(
g
(
π1

(
w0

i

)
, π1

(
w0

j

))) = det
(
g
(
I
(
v0

i

)
, I

(
v0

j

))) + o(δ).

Note also that:

g1
(
π1

(
w0

i

)
, π1

(
w0

j

))= ḡ1
(
w0

i , w
0
j

)= log2δ
(
δ f̄1 ḡ(hi, h j)+ δ2 f̄1 ḡ

(
h⊥

i , h⊥
j

))
.

Therefore,

det
(

g1
(
π1

(
w0

i

)
, π1

(
w0

j

)))
det

(
g
(
π1

(
w0

i

)
, π1

(
w0

j

))) = o
(
log2l(δ)δl

)
det

(
g
(
I
(
v0

i

)
, I

(
v0

j

))) + o(δ)
.

Now, in the region where det
(
g(vi, v j)

)
> δ1/(4l), we have from part (a)

of Lemma 6.1 that

det
(
g
(
I
(
v0

i

)
, I

(
v0

j

))) = (det I )2 ≥ 1

4l
δ1/2

and, therefore,

dvol(g1) = (log δ)n−l

√√√√√det
(

g1
(
π1

(
w0

i

)
, π1

(
w0

j

)))
det

(
g
(
π1

(
w0

i

)
, π1

(
w0

j

))) dvol(g)

= o(δ1/4lognδ)dvol(g).

Therefore the g1-volume of the region where det
(
g(vi, v j)

)
> δ1/(4l)

and f1(x) = 1 approaches 0 as δ does.
The g-volume of the region det

(
g(vi, v j)

)
< �2 is of the order of �.

Therefore the g1-volume of the region where det
(
g(vi, v j)

)
< δ1/(4l) is of

the order of logn(δ)δ1/(8l) (using part (b) of Lemma 6.1) and therefore it also
approaches 0 with δ.

This of course implies that Vol({ f1 = 1}, gδ) approaches 0 with δ.
Finally note that in the passage from ḡ to ḡ1 there are two steps: first

we multiply by log2δ to obtain ḡ0 and then we collapse along the orbits
multiplying by δ f̄1 . Lemma 6.1, part (b), tells us that the second of these
steps does not increase volumes (on M with the quotient metric). To go from
ḡ1 to ḡ2 only the second step is performed. Therefore when passing from
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g1 to g2 the volume of the region f1 = 1 will remain small, while by taking
δ small we can make the volume of the region f2 = 1 small. Hence for δ
small enough the gδ-volume of the whole M will be as small as desired.

Since the entropy of gδ is bounded above independently of δ, the theorem
is proved. ��

7. Collapsing F -structures and curvature invariants: Proof of
Theorem B

There are many natural invariants of a smooth manifold which measure the
possible size of the curvature of a Riemannian metric of some fixed volume.
In this section we will recall some of them and study what can be said about
them for manifolds which admit F -structures. In every case we restrict
attention to the metrics verifying certain bounds on its curvature and search
for the infimum of the volumes.

Given a fixed closed smooth manifold M we consider the following
subsets of the family M of all Riemannian metrics on M:

M|K | = {g : |K | ≤ 1}
MK = {g : K ≥ −1}
M|r| = {g : |r| ≤ n − 1}
Mr = {g : r ≥ −(n − 1)}

M|s| = {g : |s| ≤ n(n − 1)}
Ms = {g : s ≥ −n(n − 1)}

where K , r and s denote as usual the sectional, Ricci and scalar curvature,
respectively. Now define (see [20,25])

MinVol(M) = inf
g∈M|K |

Vol(M, g)

VolK(M) = inf
g∈MK

Vol(M, g)

Vol|r|(M) = inf
g∈M|r|

Vol(M, g)

Volr(M) = inf
g∈Mr

Vol(M, g)

Vol|s|(M) = inf
g∈M|s|

Vol(M, g)

Vols(M) = inf
g∈Ms

Vol(M, g)

Cheeger and Gromov proved that if M is a closed manifold which admits
a polarized F -structure of positive rank then MinVol(M) = 0.

It is easy to check the same proof of the theorem in the previous sec-
tion proves that if the closed manifold M admits an F -structure, then
VolK (M) = 0. Of course, this implies that Volr(M) = Vols(M) = 0.
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More can be said about the scalar curvature. Let us first recall some facts
about the Yamabe invariant (or sigma constant in [40]). More details and
references can be found for instance in [26,37,40].

Given a conformal class of metrics C on M the Yamabe constant of C,
denoted by Y(M,C), is the infimum of the integral of the scalar curvature
over all metrics in C of volume 1 (integrating with respect to the volume
element of the same metric). The infimum is actually realized: this is a very
deep result obtained in several steps by Yamabe, Trudinger, Aubin and
Schoen. Metrics realizing the infimum have constant scalar curvature and
are usually called Yamabe metrics. The Yamabe invariant of M, Y(M), is
then defined as

Y(M) = sup
C

Y(M,C).

M admits a metric of strictly positive scalar curvature if and only if
Y(M) > 0. In this case, if the dimension of M is at least 3, M also admits
scalar flat metrics and so Vol|s|(M) = Vols(M) = 0.

Now assume that Y(M) ≤ 0. Let g ∈ Ms(M). Then there exists a Rie-
mannian metric ĝ = e f g conformal to g with constant scalar curvature and
with the same volume as g. The scalar curvature of ĝ can be written in
terms of f and g. From there it is easy to see that sḡ ≥ −n(n − 1) (see for
instance [24]). But since Y(M,Cg) ≤ 0, sḡ ≤ 0. Therefore ḡ ∈ M|s|(M)
and Vol(M, ḡ) = Vol(M, g). Hence:

Proposition 7.1. For any closed smooth manifold M of dimension greater
than 2, Vol|s|(M) = Vols(M).

Summarizing, we have proved the following:

Theorem 7.2. If M admits an F -structure, dim M > 2, then

VolK (M) = Volr(M) = Vol|s|(M) = Vols(M) = 0.

The last equality is equivalent to Y(M) ≥ 0.

Clearly this theorem implies Theorem B in the introduction.
As we mentioned before there are plenty of examples of closed manifolds

M which admit F -structures and verify MinVol(M) > 0. Also C. LeBrun
proved (see [26,27]) that, for instance, an elliptic compact complex surface
collapses with bounded Ricci curvature (i.e Vol|r| = 0) if and only if it is

minimal. Therefore we have that, for instance, Vol|r|(T 4#CP
2
) > 0, while

T 4#CP
2

does admit an F -structure.

8. Minimal entropy in dimensions 4 and 5: Proofs of Theorems C, D
and E

We will study in this section the minimal entropy of simply connected
manifolds of dimensions four and five. The aim is to give an idea of up to
what point the previous results can be used to compute minimal entropies.
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Let us begin with dimension four. Homeomorphism types have been
classified by Freedman. But the main feature in dimension four is the
comparison between homeomorphism classes and diffeomorphism classes.
Freedman’s results say that the homeomorphism type of a smooth closed
simply connected 4-manifold is determined by the intersection form. Not
every possible intersection form can be realized by a smooth manifold
and the number of diffeotypes corresponding to each homeotype is essen-
tially unknown. With regards to the question of which intersection forms
are realized by a smooth manifold it all comes down to the well-known
11/8-conjecture. Namely, the basic examples of (homeomorphism types
of) simply connected smooth four-manifolds are S4, S2 × S2, CP2 and K3.
By taking connected sums of them (with different orientations) one can re-
alize many intersection forms. Namely, connected sums of CP2’s realize all
positive definite intersection forms (by the well-known result of Donaldson)
and varying the orientations of some of the factors one gets all odd forms.
Finally, the complicated part of the analysis comes from the indefinite even
intersection forms. Let H be the intersection form of S2 × S2:

H =
(

0 1
1 0

)

and let

E8 =




2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2



.

Every even indefinite bilinear form is equivalent to kE8 + lH for some
integers k and l ≥ 0. Rohlin’s theorem says that for a smooth closed
spin 4-manifold the signature is divisible by 16. For simply connected 4-
manifolds the spin condition means exactly that the intersection form is
even. Therefore we have that for the intersection forms of smooth simply
connected 4-manifolds, k is even. The intersection form of the K3 surface
is −2E8 + 3H . By taking connected sums of K3’s and S2 × S2 we see that
any such bilinear form can be realized as the intersection form of a smooth
4-manifold if l ≥ (3/2)|k|. The 11/8-conjecture says precisely that these are
exactly all the bilinear forms which come from smooth simply connected
4-manifolds. Therefore in the previous sections we have shown that:

Theorem 8.1. Assuming the 11/8-conjecture, every closed simply con-
nected smooth 4-manifold is homeomorphic to one whose minimal entropy
is 0.
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There are simply connected compact complex surfaces of general type
which are homeomorphic to connected sums ofCP2’s (with different orien-
tations). Nevertheless, they do not collapse with bounded scalar curvature
(see [26]) and so they cannot admit F -structures from the results of the
previous section. The following question therefore seems very intriguing:

Question:. Is the minimal entropy of a simply connected compact complex
surface of general type positive?

Let us now consider 5-dimensional manifolds. As we explained in
Sect. 3, closed simply connected smooth 5-manifolds have been classified
by S. Smale [41] and D. Barden [4]. We will use this classification to prove
the next theorem which clearly implies Theorem C in the introduction.

Theorem 8.2. Every simply connected closed smooth 5-manifold M admits
a T -structure and hence h(M) = 0 and VolK (M) = 0. Moreover, M admits
a polarized T -structure and hence MinVol(M) = 0 unless M is cobordant
to 0 and non-spin with 1 < i(M) < ∞.

Proof. We will prove that M admits a T -structure and then apply Theorems
A and B.

By Theorem 5.4 it is enough to show that each of the building blocks of
the classification (see Sect. 3) admits a T -structure.

Consider a smoothly embedded 2-sphere S representing j-times a gener-
ator of H2(S2 × S3,Z) (1 < j < ∞). M j is obtained by performing surgery
on S. In the same way X j is obtained by performing surgery on a sphere
representing 2 j -times the generator of H2(X∞,Z) (note that even multiples
of the generator have trivial normal bundles). This is easy to check since
these manifolds are characterized by their homology groups and whether
they are spin or not.

Of course, X0 = S5 and M∞ = S2 × S3 admit free S1-actions. X∞
also admits a free S1-action since the Hopf action on S3 commutes with
the structure group of the bundle. If we consider X∞ as the quotient of
S3 × S3 ⊂ C2 × C2 by the S1-action

(w, (z1, z2, z3, z4)) �→ (wz1, wz2, wz3, z4),

then the Hopf action is given by complex multiplication in the last two
coordinates. But to construct T -structures on all the X j’s consider the
S1-action on X∞ given by complex multiplication on the last coordinate.
This action has fixed points, of course. Call this action A2, and A1 the free
“Hopf”-action. The second homology of X∞ is generated by the image
(under the projection) of {z3 = 0, z4 = 1}. Call this 2-sphere S0. Now,
given any small ε consider the 2-sphere

Sε = {(
z1, z2, εz2, (1 − ε2‖z2‖2)1/2

)}
/S1 ⊂ X∞.

Sε is homologous to S0 and they intersect only at N = (1, 0, 0, 1). If we set
the imaginary part of z4 to be 0, we get the non-trivial S2-bundle over S2,
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S3 × S2/S1 ⊂ S3 × S3/S1, which is diffeomorphic to CP2#CP
2
. We can

modify S0 ∪ Sε inside CP2#CP
2

to obtain a smoothly embedded sphere S
representing twice the generator of H2(X∞,Z). The orbits of the A2-action
passing through S form an embedded S2 × S1 ⊂ X∞. Its normal bundle is
D× S1, where D is the D2-bundle over S2 with Euler characteristic 4. D can
be represented as the quotient of S3 × D2 under the S1-action

λ(z1, z2, z3) = (λz1, λz2, λ
4z3).

There is then a canonical S1-action A3 on D given by complex multiplication
in the last coordinate. Define a T -structure on X∞ by leaving the A2 action
on X∞ − D × S1 and giving to D × S1 the A3 action. The zero section of D
is the embedded S2 × S1 and is exactly the fixed point set of A3. For any j,
1 < j < ∞, consider a 2-sphere embedded in S2 × S1 representing 2 j−1-
times the generator of the second homology group. This sphere represents
2 j -times the generator of H2(X∞,Z). Its normal bundle is D j × R, which
is isomorphic to the trivial bundle S2 × D3. D j is usually presented as the
union of two copies of D2 × D2 glued along S1 × D2 by the map

(λ, z) �→ (λ, λ2 j+1
z).

Namely, λ2 j+1
is considered as a map γ : S1 → SO(2) and then we identify

(λ, z) with (λ, γ(λ)(z)). The identification of D j × R with S2 × D3 is
obtained by an homotopy of the loop (γ, 1) in SO(3)with the constant loop
1. The action A3 can then be viewed in S2 × D3 as:

λ.(x, y) = (ϕ(x)−1, λ×(ϕ(x)(y))),

for a map ϕ : S2 → SO(3). Here λ× means complex multiplication in
the first two (real) coordinates. Since π2(SO(3)) = 1 the map ϕ is null-
homotopic. Therefore we can define an S1-action on S2 × (D3 −{0}) which
is equal to A3 in an exterior annulus and to

λ.(x, y) = (x, λ×y)

in an inner annulus.
X j is obtained by deleting S2 × D3 of X∞ and gluing D3 × S2 along

the boundaries. Giving any S1-action to the D3-factor of the glued D3 × S2

clearly defines a T -structure on X j . These T -structures are not polarized.

The Wu-manifold X−1 = SU(3)/SO(3) admits a locally-free S1-action:
simply embed S1 in SU(3) by sending λ ∈ S1 to the diagonal matrix with λ,
λ, λ−2 as the diagonal coefficients and then follow by matrix multiplication.

Finally, for any j, 1 < j < ∞, M j is obtained by performing surgery
on a sphere S representing j-times the generator of H2(S2 × S3,Z), which
can be represented by a completely transversal sphere for the Hopf action
on the S3-factor (in the sense of Sect. 5). One then obtains by Theorem 5.14
a polarized T -structure on M j .
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This finishes the first part of the theorem. The last statement follows
because the fact that M is either non-cobordant to zero or it is cobordant
to 0 but either i(M) = 0, 1 or ∞, means that in the factorization of M as
connected sum of building blocks only appear M j ’s, X−1, X1 and X∞ and
we have put polarized T -structures on these manifolds (X1 = X−1# X−1).

��
Proof of Theorem D. We shall make use of the following remarkable fact
which is a consequence of results M. Gromov, Y. Yomdin and the Morse
theory of the loop space. A proof can be found in [34].

Theorem 8.3. Let M be a closed simply connected smooth manifold. Sup-
pose that the loop space homology of M

n∑
i=0

dim Hi(ΩM, kp)

grows exponentially with n for some field of coefficients kp. Then, any C∞
Riemannian metric has positive topological entropy.

Let M be a closed manifold obtained by taking connected sums of copies

of S4, CP2, CP
2
, S2 × S2 and the K3 surface. Since S4, CP2, CP

2
and

S2 × S2 admit a circle action and the K3 surface admits a T -structure by
Theorem 5.10, it follows from Theorem 5.9 that M admits a T -structure.
By Theorem A, the minimal entropy of M vanishes.

Suppose now that M is diffeomorphic to one of the five manifolds listed
in Theorem D. By the results in Sect. 4 each of these manifolds admits
a smooth metric g with htop(g) = 0 and hence the minimal entropy problem
can be solved for M.

On the other hand, suppose that the minimal entropy problem can be
solved for M. Since h(M) = 0 it follows that M admits a smooth metric
with zero topological entropy. Theorem 8.3 and Lemma 3.2 imply that M
must be diffeomorphic to one of the five manifolds listed in Theorem D.

��
Proof of Theorem E. Let M be a closed simply connected 5-manifold.
Theorems C and A imply that the minimal entropy of M is zero.

Suppose now that M is diffeomorphic to one of the four manifolds listed
in Theorem E. By the results in Sect. 4 each of these manifolds admit
a smooth metric g with htop(g) = 0 and hence the minimal entropy problem
can be solved for M.

On the other hand, suppose that the minimal entropy problem can be
solved for M. Since h(M) = 0 it follows that M admits a smooth metric
with zero topological entropy. Theorem 8.3 and Corollary 3.6 imply that M
must be diffeomorphic to one of the four manifolds listed in Theorem E.

��
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